
 

 

 
SANDIA REPORT 
SAND2012-7764 
Unlimited Release 
Printed September 2012 
 
 
 

Phase Diversity for Advanced Systems 
 
 
Eric A. Shields, James K. Gruetzner, and Gregory R. Brady 
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 

 
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,  
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's  
National Nuclear Security Administration under contract DE-AC04-94AL85000. 
 
Approved for public release; further dissemination unlimited. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
  



 

2 

 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 
 

 



 

3 

SAND2012-7064 
Unlimited Release 

Printed September 2012 
 
 

Phase Diversity for Advanced Systems 
 
 

Eric A. Shields 
Optical Payload Design and Realization 

 
James K. Gruetzner 

Directed Energy Laser Applications 
 

Gregory R. Brady 
Photonic Microsystem Technologies 

 
Sandia National Laboratories 

P.O. Box 5800 
Albuquerque, New Mexico  87185-MS0406 

 
 

Abstract 
 
Phase diversity (PD) is an image processing technique that operates on a collection of defocused 
images of a scene. The ensemble of defocused images and known defocus values are used to 
reconstruct the un-aberrated scene and the wavefront of the imaging system.  PD has 
successfully been applied to imaging systems with limited fields of view (FOV) over narrow 
spectral bands.  
 
Theoretical development has not addressed issues of field-dependent aberrations inherent in 
systems with larger fields of view. Algorithms which can accommodate wavelength-dependent 
aberrations in systems with broad spectral content have also largely been ignored.   
 
This report presents research into the second of these issues.  An algorithm is presented that 
theoretically enables reconstruction of wavelength-dependent wavefront data from images of a 
broadband point source.  The theoretical basis of this algorithm is presented and an experimental 
study into its utility are presented. 
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1 INTRODUCTION 

 
In a traditional imaging system, a measured scene is the convolution of the actual scene with the 
system point-source function (PSF).  The shape of the point-spread function is affected by 
diffraction, optical aberrations, focal plane sampling, focal plane charge diffusion, motion blur, 
and other effects.  These effects are deleterious to the imaging process since the goal is to obtain 
the scene in the absence of these effects. 
 
We focus here on the effects of diffraction and optical aberrations.  The impacts of these on the 
point-spread function are well understood; the PSF is the square of the Fourier transform of the 
complex pupil function.  If one knows the complex pupil function of the system one can correct 
imagery to account for the effects of diffraction and optical aberration. 
 
Traditionally the magnitude of the complex pupil function is well known.  The magnitude is 
simply the shape of the aperture of the system.  For many optical systems this is simply a circular 
disk, in which case the pupil function is unity inside the disk and zero outside.  More 
complicated optical systems may have a central obscuration and support structure.  However, the 
geometry of the obscuration and support structure are generally well known as well. 
 
Hence investigation of the complex pupil function is generally limited to its phase.  The phase of 
the complex pupil function is known as the system aberration.  The wavefront of an optical 
system is the shape of a surface of constant phase at the exit pupil of an optical system.  For a 
diffraction-limited system the wavefront is spherical.  Deviations from this spherical shape are 
called aberrations.  Note that the term aberrations and wavefront are often intermingled and the 
base spherical nature of the wavefront is generally neglected. 
 
The key to understanding the performance of a system is therefore measurement of the system 
wavefront.  Interferometry is generally used for this purpose.  Traditional interferometric 
measurements involve the use of a laser source which passes light through the optical system, off 
of a specialized return mirror, through the optical system a second time, and back to a detector 
within the interferometer.  Light at the detector is coherently interfered with a reference beam of 
known wavefront so that the wavefront difference can be measured. 
 
Phase retrieval algorithms have also been used to reconstruct the system wavefront from a 
measurement of the system point-spread function.  The accuracy and converge rates of these 
algorithms can be improved by using multiple measurements where the wavefront has been 
changed in a known manner between measurements.  For example, measurements may be taken 
at different defocus depths.  Such algorithms are referred to as phase-diverse phase retrieval 
(PDPR). 
 
The theory behind phase-diverse phase retrieval is presented in Section 2 below.  Inherent in the 
formulation of traditional PDPR theory is that light is monochromatic.  In spectrally broad 
systems, the wavefront error varies as a function of wavelength.  Previous studies have 
investigated the use of PDPR on spectrally broad systems, but the variation in wavelength was 
assumed known since the optical system being modeled was reflective (J. R. Fienup 1999). 
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We seek to extend the theory of phase-diverse phase retrieval to the case where the wavefront 
error is allowed to vary in an unknown manner as a function of wavelength.  Such would be the 
case for a system with significant wavefront error due to refractive components.  We wish to 
reconstruct the wavefront as a function of wavelength from measurements of the PSF made at a 
number of different defocus depths. 
 
If successful, this algorithm would present a new and useful way of characterizing the 
performance of an optical system.  By reconstructing wavefront as a function of wavelength, 
optical engineers could build more accurate models of the system.  Furthermore, imagery could 
be corrected more accurately in post-processing using deconvolution techniques with the 
reconstructed, broadband PSF. 
 
Another interesting application arises.  The algorithm allows for the spectral weights to be 
optimized as well.  A mission could be developed where the wavefront of the optical system as a 
function of wavelength is characterized by application of the algorithm on a known point source 
(i.e., the spectral content of the point source is known).  Once this information is obtained, the 
system could be pointed at a point source of unknown spectral content.  Since the wavefront of 
the system as a function of wavelength is known, the algorithm would be run to optimize the 
spectral weights.  In this manner the spectral content of a point source could be measured with a 
panchromatic imaging system. 
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2 MONOCHROMATIC PHASE-DIVERSE PHASE RETRIEVAL 

      

The mathematics used for broadband phase-diverse phase retrieval is closely related to the 
monochromatic phase-diverse phase retrieval algorithm presented by Thurman (Thurman, 
DeRosa and Fienup 2009).  The mathematical theory is presented briefly in that paper.  This 
chapter presents that theory in more detail so that the underlying math can be better understood. 
 
2.1 Variable Definitions 
Variable definitions are given in this section.  Variables with a caret (^) over them are estimates.  
DFT[] is used to represent the discrete Fourier transform operation while IDFT[] is used to 
represent the inverse discrete Fourier transform operation. 
 

:  The number of diversity measurements

1, 2,... :  Index on the diversity measurements

K

k K  

:  Scaling coefficients used to minimize the objective functionk  
:   The number of data points in transverse dimension 1M   
:   The number of data points in transverse dimension 2N   
 2 2 2, 1,... 1 :   Index of dimension 1 in pupil plane spaceM M Mm      

 2 2 2, 1,... 1 :   Index of dimension 2 in pupil plane spaceN N Nn      

 2 2 2, 1,... 1 :   Index of dimension 1 in image plane spaceM M Mp      

 2 2 2, 1,... 1 :   Index of dimension 2 in image plane spaceN N Nq      

ˆ( , ) :  Estimate of the amplitude at the pupil planeA m n  

ˆ( , ) :   Estimated phase at the pupil planem n  

ˆ ˆˆ ( , ) ( , )exp ( , ) :  Estimated complex field at the pupil planepE m n A m n i m n        

', '

ˆ ( , )
ˆ ˆ( , ) : definition of the dummy function ( , )

ˆ( ', ')
m n

MN B m n
A m n B m n

B m n



 

 

:  Focal length of the optical systemf  

ˆ( , ):  The basis functions for (m,n)jZ m n       

,

ˆ ˆ( , ) DFT E ( , )

1ˆ ˆ( , ) ( , ) exp 2 : Optical field in the image plane

f p

f p
m n

E p q m n

mp nq
E p q E m n i

M NMN


   
        


   

:  Detector pitchp q d      

: Distance from the pupil plane to the lensd
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1 1
:  Sample spacing in dimension 1 in the pupil planem

p dM M
  

 
 

1 1
:  Sample spacing in dimension 2 in the pupil planen

q dN N
  

 
 

      

ˆ ˆ( , ) DFT E ( , ) :  

        Estimated angular plane-wave spectrum in the back focal plane of the image lens

f fU m n p q       

ẑ :  Estimated kth defocus amountk  

2 2 2 2
2

1ˆ ˆ ˆ( , ) ( , ) exp 2 :

       Estimated angular plane-wave spectrum at the kth image plane 

k f k m nU m n U m n z m n


 
     

     

ˆ ˆ( , ) IDFT ( , ) :  Estimated optical field at the kth image planek kE p q U m n     

2ˆ ˆ( , ) ( , ) :  Estimated intensity at the kth image planek kI p q E p q    

f :  Area fill factor of the detectord  

( , ) sinc sinc :  Detector transfer functiond d
d

f f
H m n n m

N M

   
       

   
   

,ˆ :  Estimated transverse shift of image k in direction 1 in units of pixelss kp  

,ˆ :  Estimated transverse shift of image k in direction 2 in units of pixelss kq  

, ,
,

ˆ ˆ
H ( , ) exp 2 :  

     Transfer function for estimated transverse shift of kth image

s k s k
s k

mp nq
m n i

M N


  
    

      

ˆ ˆf ( , ) DFT ( , ) :  Fourier transform of the estimated intensity of the kth imagek km n I p q     

,
ˆˆ ( , ) H ( , ) ( , )f ( , ):  

      Fourier transform of the estimated point-spread function
k s k d kg m n m n H m n m n

   

( , ):  kth measured point-spread functionkG p q  

 ˆ ˆG ( , ) IDFT ( , ) :  Estimated point-spread functionk kp q g m n  

W ( , ):  Pixel weights in the image planek p q  

( , ):  Objective function to be minimizedd p q
 

:  The set of real numbers�  
:  The number of basis functions to be considered in the phase decompositionJ  
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2.2 Mathematical Theory 
In this section we develop the mathematical theory for the phase-diverse phase retrieval 
algorithm.  First the mathematics of the optical system are developed.  Then an objective 
function to be minimized is defined. 
 
2.2.1 Optical Model 
We write the estimated optical field ˆ ( , )pE m n  in the pupil plane as

 
  ˆ ˆˆ ( , ) ( , ) exp ( , ) ,pE m n A m n i m n       (2.1) 

  where m and n  are indices in the pupil plane space,  ˆ ( , )A m n is the estimated pupil amplitude, and 

ˆ( , )m n is the estimated pupil phase in radians. 

 
To calculate the optical field ˆ ( , )fE p q at the nominal focal plane of the image system, we 

calculate the discrete Fourier transform (DFT) of the pupil plane optical amplitude.  Thus we 
have 

 
,

1ˆ ˆ( , ) ( , )exp 2 ,f p
m n

mp nq
E p q E m n i

M NMN
        

   (2.2) 

where p and q are indices in the focal plane space.  Notice that in Equation (2.2) we have 
implicitly assumed that the pupil is in the front focal plane of the lens.  For the more general case 
of a system with the pupil plane a distance d in front of the lens we have (Goodman 1996) 

   2 2 2 2

,

1ˆ ˆ( , ) exp 1 ( , ) exp 2 ,f p q p
m n

i d mp nq
E p q p q E m n i

f f M NMN

 

                    

   (2.3) 

A common assumption in phase diversity applications is to assume 0d  , i.e., the pupil at the 
lens plane itself is calculated.  Standard free-space propagation techniques can then be used to 
determine the phase at a distance in front of the lens. 
 
The angular plane-wave spectrum technique for free space propagation is used to calculate the 
field at the various measurement planes.  We calculate the angular plane-wave spectrum 
ˆ ( , )fU m n of the field ˆ ( , )fE p q by calculating its discrete Fourier transform.  Thus we have 

 
,

1ˆ ˆ( , )  ( , )exp 2 .f f
p q

mp nq
U m n E p q i

M NMN
        

   (2.4) 

The field at the kth defocus plane can then be calculated simply by multiplying by the free space 
transfer function.  We have 

 
2 2 2 2

2

1ˆ ˆ ˆ( , ) ( , ) exp 2 ,k f k m nU m n U m n i z m n


 
     

 
  (2.5) 

where ˆkz is the estimate of the kth defocus plane.  Note that in Equation (2.5) we have neglected 

constant phase terms that do not affect the measured point-spread function. 
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The optical field at the kth defocus plane ˆ ( , )kE p q is obtained by calculating the inverse discrete 

Fourier transform (IDFT) of ˆ ( , )kU m n .  We therefore have 

 
,

1ˆ ˆ( , ) ( , )exp 2 .k k
m n

mp nq
E p q U m n i

M NMN
        

   (2.6) 

 
Assuming a square-law detector we have the following equation for the computed intensity in the 

kth defocus plane ( , )kI p q : 

 
2ˆ ˆ( , ) ( , ) .k kI p q E p q   (2.7) 

The detector modulation transfer function and spatial jitter in the measured point-spread 
functions are handled in the frequency domain.  A simple model for an idealized detector 
modulation transfer function is  

  ( , ) sinc sinc ,d d
d

f f
H m n n m

N M

   
       

   
  (2.8) 

where  df is the area fill factor of the detector and we assume the pixels are square.  Diffusion effects 

associated with the focal plane could be accounted for in this term as well. 

 
The transfer function associated with spatial jitter is 

 
, ,

,

ˆ ˆ
H ( , ) exp 2 ,s k s k

s k

mp nq
m n i

M N


  
    

  
  (2.9) 

where ,ˆ s kp and ,ˆs kq are estimates of the transverse shifts of the PSF in units of pixels. 

 
Since the detector and spatial jitter effects are considered in the frequency domain, the transfer 
function f̂ ( , )k m n associated with the estimated point-spread function must be calculated as well.  

This transfer function is simply the DFT of ˆ ( , )kI p q and thus we have 

 
,

1ˆ ˆ( , ) ( , ) exp 2 .k k
p q

mp nq
f m n I p q i

M NMN
        

   (2.10) 

 
The total estimated transfer function ˆ ( , )kg m n associated with the PSF, detector effects, and jitter 

effects is the product of the three terms, or 
  ,

ˆˆ ( , ) H ( , ) ( , )f ( , ).k s k d kg m n m n H m n m n   (2.11) 

To calculate the estimated PSF ˆ ( , )kG p q we calculate the inverse discrete Fourier transform of 

ˆ ( , )kg m n .  That is, 
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,

1ˆ ˆ( , ) ( , )exp 2 .k k
m n

mp nq
G p q g m n i

M NMN
        

   (2.12) 

2.2.2 Objective Function 
The error d  between the estimated PSFs ˆ ( , )kG p q  and measured PSFs ( , )kG p q  is given by (J. 

R. Fienup 1997): 

 

2

,

2
1

,

ˆ( , ) ( , ) ( , )
1

,
( , ) ( , )

k k k kK
p q

d
k k k

p q

W p q G p q G p q

K W p q G p q





        
 
  


 

  (2.13) 

In Equation (2.13) ( , )kW p q  is a pixel weighting mask that can vary from measurement to 

measurement and k is a scaling factor that can vary from measurement to measurement as well.  

The mask ( , )kW p q  allows bad pixels to be masked out or regions of low signal to be weighted 

lower than regions of high signal.  The scaling factor k allows for energy variations from 

measurement to measurement. 
 
In practice the user supplies the weighting mask ( , )kW p q .  One possible choice is to set W to 

zero for bad pixels and let it be unity everywhere else.  Other possible choices exist as well, such 
as setting W to zero below a certain signal-to-noise level. 
 
The scaling factor k can be determined analytically.  To do this, the partial derivative of d
with respect to k  is taken.  The following steps show this calculation.  Note that the arguments 

( , )p q are omitted for brevity.  We start by expanding the squared term in Equation (2.13) to 
obtain: 

 

2 2 2

,

2
1

,

ˆ ˆ2
1

.
kk k k k k kK

p q
d

k k k
p q

W G G G G

K W G

 



     
   

 
 


 

  (2.14) 

 
We split the summation as shown: 

 

2 2 2 2 2 2

, ,

2 2

, ,

ˆ ˆ ˆ ˆ2 2
1 1 kj j j j j j j k k k k k kK

p q p q
d

j k j j k k
p q p q

W G G G G W G G G G

K W G K W G

   



           
   

 
 

 
  

  (2.15) 

We then calculate the derivative of d with respect to k and set this equal to zero.  The first 

term (involving the summation over j) in Equation (2.15) is independent of k and thus does not 

contribute to the derivative.  We therefore have 
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2

,

2

,

ˆ ˆ2 2
1

0
kk k k k

p qd

k k k
p q

W G G G

K W G





  
 






,  (2.16) 

which implies that 
 

 
2

, ,

ˆ ˆ ,
kk k k k k

p q p q

W G W G G     (2.17) 

or, now inserting the ( , )p q terms back, 

 
,

2

,

ˆ( , ) ( , ) ( , )

.
ˆ( , ) ( , )

k k k
p q

k

k k
p q

W p q G p q G p q

W p q G p q
 




  (2.18) 

 
We start the process of inserting Equation (2.18) into Equation (2.13) by further expanding 
Equation (2.14): 

 

2 2

, ,

2 2
1 1

, ,

ˆ ˆ2
1 1

, or
k k k k k k k kK K

p q p q
d

k kk k k k
p q p q

W G W G G G

K W G K W G

 

 

            
   
   

 
  

  (2.19) 

 

2

,

2
1

,

ˆ ˆ2
1

1 .
k k k k k kK

p q
d

k k k
p q

W G G G

K W G

 



    
    

 
 


 

  (2.20) 

Now we must remember the meaning of k , namely it is a scaling factor to get the estimate ˆ
kG

to have the same scale as the measurement kG .  When the optimization is complete we therefore 

have 
  ˆ .k k kG G    (2.21) 

Using Equation (2.21) in Equation (2.20) yields 

 
,

2
1

,

ˆ
1

1 .
k k k kK

p q
d

k k k
p q

W G G

K W G





 
 

    
 
 


 

  (2.22) 

Inserting Equation (2.18) into this expression yields 
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', '

2
,

', '

2
1

,

ˆ( ', ') ( ', ') ( ', ')
ˆ( , ) ( , ) ( , )

ˆ( ', ') ( ', ')
1

1 ,
( , ) ( , )

k k k
p q

k k k
p q k kK

p q

d
k k k

p q

W p q G p q G p q

W p q G p q G p q
W p q G p q

K W p q G p q

  
  
  
        
 
 
 
  


 

 
  (2.23) 

where the variables have been re-inserted to emphasize them.  This equation can be simplified to 

 

2

,

1 2 2

, ,

ˆ( , ) ( , ) ( , )
1

1 .
ˆ( , ) ( , ) ( , ) ( , )

k k kK
p q

d
k

k k k k
p q p q

W p q G p q G p q

K
W p q G p q W p q G p q



 
 
   

   
   
   




 
  (2.24) 

 
The phase diversity algorithm now simplifies to the problem of minimizing Equation (2.24).  
Any suitable nonlinear optimization algorithm can be used.  Traditionally, conjugate gradient 
algorithms have proven effective.  For these algorithms to work the derivatives of the objective 
function with respect to the free parameters must be calculated.  These derivatives can be derived 
analytically so that computationally-expensive numerical derivative calculations are not needed. 
 
2.2.3 Gradient with respect to PSF Estimates 
Equation (2.24) is differentiated with respect to ˆ ( , )kG p q , which is a real number.  Since the 

partial derivative of one estimate with respect to another is zero, the sum collapses.  We therefore 
have: 
   

 

2

,

2 2

, ,

ˆ( , ) ( , ) ( , )
1

.
ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

k k k
p qd

k k k k k k
p q p q

W p q G p q G p q

KG p q G p q W p q G p q W p q G p q

  
        

        
  



 
  (2.25) 

Now define 

 
2

,

ˆ( , ) ( , ) ( , )  andk k k
p q

F W p q G p q G p q      (2.26)   

 
2 2

, ,

ˆ( , ) ( , ) ( , ) ( , )k k k k
p q p q

G W p q G p q W p q G p q          (2.27) 

so we can write 

 
2

ˆ ˆ( , ) ( , )1
,

ˆ ( , )
d k k

k

G F
F G

G p q G p q

K GG p q

 
  




  (2.28) 
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where we have switched the sign on the quotient rule and changed the leading minus sign to a 
positive.  We will break this equation into two parts, I and II.  Equation I is: 

 
2

ˆ ˆ( , ) ( , )1 1k k

F F
G

G p q G p q
I

K G K G

 
  

    (2.29) 

 

2

2 2
', '

', ' ', '

1 1 ˆ( ', ') ( ', ') ( ', ')
ˆ ˆ( ', ') ( ', ') ( ', ') ( ', ') ( , )

k k k
p qk k k k k

p q p q

I W p q G p q G p q
K W p q G p q W p q G p q G p q

         
 

  (2.29) 

 
', '

2 2

', ' ', '

ˆ2 ( ', ') ( ', ') ( ', ') ( , ) ( , )
1

.
ˆ( ', ') ( ', ') ( ', ') ( ', ')

k k k k k
p q

k k k k
p q p q

W p q G p q G p q W p q G p q

I
K W p q G p q W p q G p q

 
 

  


 
  (2.30) 

We multiply the numerator and denominator by 2

', '

ˆ( ', ') ( ', ')k k
p q

W p q G p q 
  to get 

 

2

', ' ', '

2

2 2

', ' ', '

ˆ ˆ2 ( , ) ( , ) ( ', ') ( ', ') ( ', ') ( ', ') ( ', ')
1

.

ˆ( ', ') ( ', ') ( ', ') ( ', ')

k k k k k k k
p q p q

k k k k
p q p q

W p q G p q W p q G p q G p q W p q G p q

I
K

W p q G p q W p q G p q




 
 
 

 

 
  (2.31) 

 
Next we deal with Equation II: 

 
2

ˆ ( , )1 k

G
F

G p q
II

K G




   (2.32) 

 
2

2

', ' ', ' 2
2 2

', '
2 2

', ' ', '

ˆ( ', ') ( ', ') ( ', ') ( ', ') ( ', ')
1 ˆ( ', ') ( ', ') .

ˆ ( , )
ˆ( ', ') ( ', ') ( ', ') ( ', ')

k k k k k
p q p q

k k
p qk

k k k k
p q p q

W p q G p q G p q W p q G p q

II W p q G p q
K G p q

W p q G p q W p q G p q

 
      

     
   
   

 


 
  (2.33) 

The summation in the derivative term is collapsed since the derivative is with respect to a 
function of ( , )p q rather than ( ', ')p q .  We therefore have 
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2

', '

2

2 2

', ' ', '

ˆ( ', ') ( ', ') ( ', ')
1 ˆ2 ( , ) ( , ).

ˆ( ', ') ( ', ') ( ', ') ( ', ')

k k k
p q

k k

k k k k
p q p q

W p q G p q G p q

II W p q G p q
K

W p q G p q W p q G p q

 
 
 

   
   
   



 
  (2.34) 

The summation of Equations (2.31) and (2.34) can be written as 

 

 

       

', '

2

2 2

', ' ', '

2

', ' ', '

ˆ, ( ', ') ( ', ') ( ', ')
2

ˆ ( , )
ˆ( ', ') ( ', ') ( ', ') ( ', ')

ˆ ˆ ˆ, ( ', ') ( ', ') ( ', ') , ', ' ', '

k k k k
p qd

k

k k k k
p q p q

k k k k k k k
p q p q

W p q W p q G p q G p q

KG p q
W p q G p q W p q G p q

G p q W p q G p q G p q G p q W p q G p q

 
 

   
    

   
   

  
 

 



 

  .
  
  
   

 (2.35) 

2.2.4 Gradient with respect to Transverse Shifts 
The multi-variable chain rule states that if ( , )z f x y , ( , )x g s t , and ( , )y h s t , then 

   and 
z z x z y z z x z y

s x s y s t x t y t

         
   

         
. 

Thus we can write 

 
', ', ,

ˆ ( ', ')
and 

ˆˆ ˆ( ', ')
d d k

p qs k s kk

G p q

p pG p q

  


 
   (2.36) 

  

 
', ', ,

ˆ ( ', ')
.

ˆˆ ˆ( ', ')
d d k

p qs k s kk

G p q

q qG p q

  


 
   (2.37) 

The calculation of 
,ˆ
d

s kp




will be shown.  Using Equations (2.9), (2.11), and (2.12) gives 

 

, ,

,

ˆ ˆ1 ' 'ˆˆ ( ', ') ( , ) ( , ) exp 2 exp 2 exp 2 .s k s k
k d k

m n

mp nq mp nq
G p q H m n f m n i i i

M N M NMN
  

                              


  (2.37) 

Thus we have 

 
,,

ˆ ( ', ') 1 2 ' '
ˆ ( , ) exp 2 .

ˆ
k

k
m ns k

G p q i m mp nq
g m n i

p M M NMN

            
   (2.38) 

We will now put this back into the equation for 
,ˆ
d

s kp




: 
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', ', ,

ˆ ( ', ')
ˆˆ ˆ( ', ')

d d k

p qs k s kk

G p q

p pG p q

  


 
   (2.39) 

 
', ' ,,

1 2 ' '
ˆ ( , ) exp 2  

ˆˆ ( ', ')
d d

k
p q m ns k k

i m mp nq
g m n i

p M M NG p q MN

              
    (2.40) 

 
, ', ',

2 1 ' '
ˆ ( , ) exp 2 .

ˆˆ ( ', ')
d d

k
m n p qs k k

i m mp nq
g m n i

p M M NMN G p q

              
    (2.41) 

 
We now define 

 
†

', '

1 ' '
ˆ ( , ) DFT exp 2 .

ˆ ˆ( ', ') ( ', ')
d d

k
p qk k

mp nq
g m n i

M NG p q MN G p q


                 
   (2.42) 

  . 

This lets us write 

 
†*

,,

2
ˆ ˆ( , ) ( , ),

ˆ
d

k k
m ns k

i m
g m n g m n

p M

 


    (2.43)   

where the superscript * denotes complex conjugation.  We know that 
,ˆ
d

s kp




is real since both d

and ,ˆ s kp are real.  Thus †*ˆ ˆ( , ) ( , )k kig m n g m n is real. 

 
Next we need to prove a theorem for complex numbers.  Let 1 1 1z a ib   and 2 2 2z a ib  .  We 

wish to prove that if *
1 2iz z R then * *

1 2 1 2IM z z iz z    .  First we will calculate *
1 2iz z : 

 

  
   

   

*
1 2 1 1 2 2

*
1 2 1 2 1 2 2 1 1 2

*
1 2 1 2 2 1 1 2 1 2 .

iz z i a ib a ib

iz z i a a b b i a b a b

iz z a b a b i a a b b

  

     
   

 

If *
1 2iz z R  then 1 2 1 2 0a a b b  and *

1 2 1 2 2 1iz z a b a b  .  Next calculate *
1 2IM z z   : 

 

  
   

*
1 2 1 1 2 2

*
1 2 1 2 1 2 1 2 2 1

*
1 2 1 2 2 1

* * *
1 2 1 2 1 2

IM IM

IM IM

IM

IM  if .

z z a ib a ib

z z a a b b i a b a b

z z a b a b

z z iz z iz z

       
        
    
     R.

 

Using this result we can write 

 
* †

,,

2
ˆ ˆIM ( , ) ( , )

ˆ
d

k k
m ns k

m
g m n g m n

p M

         (2.44) 
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  † *

,,

2
ˆ ˆIM ( , ) ( , ) .

ˆ
d

k k
m ns k

m
g m n g m n

p M

 
     

   (2.45) 

Similarly we can write  

  † *

,,

2
ˆ ˆIM ( , ) ( , ) .

ˆ
d

k k
m ns k

n
g m n g m n

q N

 
     

   (2.46) 

2.2.5 Gradient with respect to Optical Intensity Estimates 
We now have accounted for the part of ˆ

kG that varies with translation of the images.  Next we 

need to account for the variation in the intensity data itself.  Again using the multivariable chain 
rule, we have: 

 
,

ˆ ( , )
.

ˆ ˆ ˆ( ', ') ( ', ')( , )
d d k

p qk kk

G p q

I p q I p qG p q

  


 
   (2.47) 

Inserting Equation (2.10) into Equation (2.11) lets us write 

  ,
,

1
ˆ ( , ) ( , ) ( , ) ( , )exp 2k s k d k

p q

mp nq
g m n H m n H m n I p q i

M NMN
        

   (2.48)   

and hence 
 

,
, '', ''

1 1 '' ''ˆ ( , ) ( , ) ( , ) ( '', '') exp 2 exp 2 .k d s k k
m n p q

mp nq mp nq
G p q H m n H m n I p q i i

M N M NMN MN
                      

 
  (2.49) 

We therefore have 

  ,
,

ˆ ( , ) 1 ' '
( , ) ( , ) exp 2 exp 2 .

( ', ')
k

d s k
m nk

G p q mp nq mp nq
H m n H m n i i

I p q MN M N M N
                        

 (2.50) 

   

Now let  
  ,

ˆ( , ) ( , ) ( , )k d s kH m n H m n H m n   (2.51) 

and 

  ,
ˆ( , ) IDFT ( , ) ( , ) .k d s kh p q H m n H m n      (2.52) 

 
We therefore have 

 
ˆ ( , ) 1

( ', ')
( ', ')
k

k
k

G p q
h p p q q

I p q MN


  


   (2.53) 

Plugging this back into the Equation (2.47) gives 
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,

1
( ', ')

ˆ ˆ( ', ') ( , )
d d

k
p qk k

h p p q q
I p q G p q MN

 
  

 
 .   (2.54) 

If we denote correlation with the symbol  , we have 

 
1

( ', ')
ˆ ˆ( ', ') ( , )

d d
k

k k

h p p q q
I p q MN G p q

 
   

 
 .  (2.55)   

Next we use the correlation theorem  *
IDFT DFT[ ] DFT[ ]f g f g     to write 

  † *

,

1 ' '
ˆ ( , ) ( , ) exp 2

ˆ ( ', ')
d

k k
m nk

mp nq
g m n H m n i

M NI p q MN
         

   (2.56) 

  † * *
,

,

1 ' 'ˆˆ ( , ) ( , ) ( , ) exp 2
ˆ ( ', ')

d
k d s k

m nk

mp nq
g m n H m n H m n i

M NI p q MN
         

   (2.57) 

  † * *
,

,

1 ' 'ˆˆ ( , ) ( , ) ( , ) exp 2
ˆ ( ', ')

d
k d s k

m nk

mp nq
g m n H m n H m n i

M NI p q MN
         

   (2.58) 

 
†ˆIDFT ( , )

ˆ ( ', ')
d

k

k

f m n
I p q

    
  (2.59) 

  †

,

1 ' 'ˆ ( , ) exp 2 ,
ˆ ( ', ')

d
k

m nk

mp nq
f m n i

M NI p q MN
         

   (2.60) 

where we have defined 
  † * * †

,
ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ).k s k d kf m n H m n H m n g m n   (2.61) 

2.2.6 Gradient with respect to Defocus Amounts 
It is often useful to let the defocus amounts be optimized.  This allows for compensation of any 
errors in the mechanism used to change the defocus.  We need to go through several iterations of 
the chain rule to perform this analysis.  We will first calculate derivatives with respect to 
ˆ ( , )kE m n , then ˆ ( , )kU m n , then ˆkz . 

 
Using the multivariable chain rule gives us 

 
,

ˆ ( , )
.

ˆ ˆ ˆ( ', ') ( , ) ( ', ')
d d k

p qk k k

I p q

E p q I p q E p q

  


  
   (2.62) 

Since ˆ ( ', ')kE p q is complex, we need to treat it as such in performing the derivative.  We have 

 
     

ˆ ˆ ˆ( , ) ( , ) ( , )
ˆ ˆ ˆ( ', ') RE ', ' IM ', '

k k k

k k k

I p q I p q I p q
i

E p q E p q E p q

  
 

        
  (2.63) 

where 
  *ˆ ˆ ˆ( , ) ( , ) ( , )k k kI p q E p q E p q   (2.64) 
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and RE[] denotes the operation that returns the real part of a complex value. 
 
We calculate these terms below: 

 
      *

ˆ ( , ) ˆ ˆ( , ) ( , )
ˆ ˆRE ', ' RE ', '

k
k k

k k

I p q
E p q E p q

E p q E p q

 


       
  (2.65) 

 
  

*
ˆ ( , ) ˆ ˆ( ', ') ( ', ')
ˆRE ', '

k
k k

k

I p q
E p q E p q

E p q


 

   
  (2.66) 

 
    ˆ ( , ) ˆ2 RE ( ', ')

ˆRE ', '

k
k

k

I p q
E p q

E p q




   
  (2.67) 

and 

 
      *

ˆ ( , ) ˆ ˆ( , ) ( , )
ˆ ˆIM ', ' IM ', '

k
k k

k k

I p q
E p q E p q

E p q E p q

 


       
  (2.68) 

 
  

*
ˆ ( , ) ˆ ˆ( ', ') ( ', ')
ˆIM ', '

k
k k

k

I p q
iE p q iE p q

E p q


 

   
  (2.69) 

 
  

*
ˆ ( , ) ˆ ˆ( ', ') ( ', ')
ˆIM ', '

k
k k

k

I p q
i E p q E p q

E p q

        
  (2.70) 

 
    ˆ ( , ) ˆ2 IM ( ', '

ˆIM ', '

k
k

k

I p q
i i E p q

E p q

        
  (2.71) 

 
    ˆ ( , ) ˆ2 IM ( ', ' .

ˆIM ', '

k
k

k

I p q
E p q

E p q




   
  (2.72)   

Thus 

 
 

     
ˆ ( , ) ˆ2RE ', ' 2 IM ', '

ˆ ', '
k

k k

k

I p q
E p q i E p q

E p q


 


  (2.73) 

 
ˆ ( , ) ˆ2 ( ', ').

ˆ ( ', ')
k

k

k

I p q
E p q

E p q





  (2.74) 

 

So we can write 

  ˆ2 ( ', ')
ˆ( ', ') ( , )

d d
k

k k

E p q
E p q I p q

 


 
  (2.75) 
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since 
ˆ ( , )

0
ˆ ( ', ')

k

k

I p q

E p q





for 'p p and 'q q .  If we define 

 
†ˆ ˆ( ', ') 2 ( ', ')

ˆ ( ', ')
d

k k

k

E p q E p q
I p q





  (2.76) 

Equation (2.75) simplifies to  

 
†ˆ ( ', ').

ˆ ( ', ')
d

k

k

E p q
E p q





  (2.77) 

Next we calculate 

 
,

ˆ ( , )
.

ˆ ˆ ˆ( , ) ( , ) ( , )
d d k

p qk k k

E p q

U m n E p q U m n

  


  
   (2.78) 

Using Equation (2.6) it can be easily seen that 

 
ˆ ( , ) 1

exp 2 .
ˆ ( , )

k

k

E p q mp nq
i

M NU m n MN
          

  (2.79)   

So we have 

 
,

ˆ ( , )
ˆ ˆ ˆ( , ) ( , ) ( , )

d k

p qk k k

E p q

U m n E p q U m n

 


  
   (2.80) 

  †

,

1 ˆ ( , ) exp 2
ˆ ( , )

d
k

p qk

mp nq
E p q i

M NU m n MN
          

   (2.81) 

   †*ˆ ,
ˆ ( , )

d
k

k

U m n
U m n





  (2.82) 

where we have defined 

 
† †

,

1ˆ ˆ( , ) ( , ) exp 2 .k k
p q

mp nq
U m n E p q i

M NMN
        

   (2.83) 

Lastly we calculate 

 
,

ˆ ( , )
.

ˆˆ ˆ( , )
d d k

m nk kk

U m n

z zU m n

  


 
   (2.84) 

Differentiating Equation (2.5) yields 

  2 2 2 2
2

ˆ ( , ) 1ˆ2 ( , ) .
ˆ

k
k m n

k

U m n
iU m n m n

z





    


  (2.85)   

Thus we have 

 
,

ˆ ( , )
ˆ ˆ( , )

d d k

m nk kk

U m n

z zU m n

  


 
   (2.86) 
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  †* 2 2 2 2
2

,

1ˆ ˆ( , ) ( , )2d
k k m n

m nk

U m n U m n i m n
z





    

    (2.87) 

 
2 2 2 2 † *

2
,

1 ˆ ˆIM 2 ( , ) ( , ) ,
ˆ

d
m n k k

m nk

i m n U m n U m n
z




        
   

   (2.88)   

where we have used the fact that
ˆ

d

kz





R and our previous proof of 

* * *
1 2 1 2 1 2IM  if .iz z iz z iz z     R.

 
 
2.2.7 Gradient with respect to Pupil Phase 
We will once again use multiple iterations of the chain rule to perform this calculation.  We will 

start with 
ˆ ( , )

d

kU m n




and differentiate with respect to ˆ ( , )fU m n , ˆ ( , )fE p q , ˆ ( , )pE m n , and finally 

ˆ( , )m n .  We start with 

 
,

ˆ ( , )
ˆ ˆ ˆ( ', ') ( , ) ( ', ')

d d k

m nf k f

U m n

U m n U m n U m n

  


  
   (2.89) 

and 

 
2 2 2 2

2

ˆ ( , ) 1
ˆexp 2

ˆ ( ', ')
k

k m n

f

U m n
i z m n

U m n



 

        
  (2.90) 

if 'm m  and 'n n , otherwise it is zero.  Using this we can write 

 
†* 2 2 2 2

2

1ˆ ˆ( , )exp 2
ˆ ( ', ')

d
k k m n

f

U m n i z m n
U m n




 
        

  (2.91) 

 
†*ˆ ( , )

ˆ ( ', ')
d

f

f

U m n
U m n





  (2.92)   

where we have defined 

 
† † 2 2 2 2

2

1ˆ ˆ ˆ( , ) ( , ) exp 2 .f k k m nU m n U m n i z m n


 
       

 
  (2.93) 

Next we calculate 

 
,

ˆ ( , )
.

ˆ ˆ ˆ( ', ') ( , ) ( ', ')
fd d

m nf f f

U m n

E p q U m n E p q

 


  
   (2.94) 

Using Equation (2.4) lets us write 

 
ˆ ( , ) 1 '

exp 2
ˆ ( ', ')

f

f

U m n mp nq
i

M NE p q MN


          
  (2.95) 
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where only the 'p p and 'q q terms are nonzero in the summation over ( , )p q .  Thus 

  †*

,

1 ' 'ˆ ( , ) exp 2
ˆ ( ', ')

d
f

m nf

mp nq
U m n i

M NE p q MN
          

   (2.96) 

 
†*ˆ ( ', ')

ˆ ( ', ')
d

f

f

E p q
E p q





  (2.97) 

where we have defined 

 
† †

,

1 ' 'ˆ ˆ( ', ') ( , ) exp 2 .f f
m n

mp nq
E p q U m n i

M NMN
        

   (2.98) 

Next we calculate  

 
,

ˆ ( , )
.

ˆ ˆ ˆ( ', ') ( , ) ( ', ')
fd d

p qp f p

E p q

E m n E p q E m n

 


  
   (2.99) 

Using Equation (2.2) we can write 

 
ˆ ( , ) 1 ' '

exp 2 .
ˆ ( ', ')

f

p

E p q m p n q
i

M NE m n MN


          
  (2.100) 

We therefore have 

 
,

ˆ ( , )
ˆ ˆ ˆ( ', ') ( , ) ( ', ')

fd d

p qp f p

E p q

E m n E p q E m n

 


  
   (2.101) 

  †*

,

1 ' 'ˆ ( , ) exp 2
ˆ ( ', ')

d
f

p qp

m p n q
E p q i

M NE m n MN
          

   (2.102) 

 
†*ˆ ( ', ')

ˆ ( ', ')
d

p

p

E m n
E m n





  (2.103) 

 
where we have defined 

 
† †

,

1 ' 'ˆ ˆ( ', ') ( , )exp 2 .p f
p q

m p n q
E m n E p q i

M NMN
        

   (2.104) 

Using Equation (2.1) we can calculate 

 
ˆ ( , )

ˆ ˆ ˆ( , )( ', ') ( ', ')
pd d

p

E m n

E m nm n m n 

 

 

  (2.105) 

where we do not need the chain rule since ˆ( ', ')m n is a single array (i.e., does not depend on k).  
We can write this as 
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ˆ ( , )

ˆ ˆ ˆ( , )( ', ') ( ', ')
pd d

p

E m n

E m nm n m n 

 

 

  (2.106) 

  †*ˆ ˆ( ', ') ( ', ')
ˆ( ', ')

d
p pE m n iE m n

m n





  (2.107) 

   † *ˆ ˆIM ( ', ') ( ', ')
ˆ( ', ')

d
p pE m n E m n

m n





  (2.108) 

where we have used the fact that 
ˆ( ', ')

d

m n





R . 

If we write ˆ( ', ')m n using basis functions (i.e., 
1

ˆ ˆ( , ) ( , )
J

j j
j

m n Z m n 


 ) we can write 

 
.

ˆ ( , )
.

ˆˆ ˆ( , )
pd d

m nj jp

E m n

E m n 
 


 

   (2.109) 

We have 

   
1

ˆˆ ˆ( , ) ( , )exp ( , )
J

p j j
j

E m n A m n i Z m n


   (2.110) 

and thus 

 
ˆ ( , ) ˆ( , ) ( , ).

ˆ
p

j p
j

E m n
iZ m n E m n







  (2.111) 

So we can write 

 
.

ˆ ( , )
ˆˆ ˆ( , )

pd d

m nj jp

E m n

E m n 
 


 

   (2.112) 

 
†*

.

ˆ ˆ( , ) ( , ) ( , )
ˆ

d
p j p

m nj

E m n iZ m n E m n





    (2.113) 

   † *

.

ˆ ˆ( , ) IM ( , ) ( , )
ˆ

d
j p p

m nj

Z m n E m n E m n





    (2.114) 

where we have used the property that 
ˆ

d

j





R . 

2.2.8 Gradient with respect to Pupil Amplitude 

Next we calculate 
ˆ( , )

d

A m n




using 

 
ˆ ( , )

ˆ ˆ ˆ( , )( ', ') ( ', ')
pd d

p

E m n

E m nA m n A m n

 

 

  (2.115) 
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where we do not need the chain rule since ( ', ')A m n is a single array (i.e., does not depend on k).  

We have previously calculated 
ˆ ( , )

d

pE m n




.  We can easily see from Equation (2.1) that  

 
ˆ ( , ) ˆexp ( ', ')
ˆ ( ', ')

pE m n
i m n

A m n


    
 

and thus 

 
ˆ ( , )

ˆ ˆ ˆ( , )( ', ') ( ', ')
pd d

p

E m n

E m nA m n A m n

 

 

  (2.116) 

  †* ˆˆ ( ', ') exp ( ', ') ,
ˆ ( ', ')

d
pE m n i m n

A m n
    

  (2.117) 

where we have used Equation (2.103).  We know that 
ˆ ( ', ')

d

A m n





R and need one more 

property of complex numbers.  Let 1 1 1z a ib   and 2 2 2z a ib  .  We wish to prove that if 

1 2z z R then * *
1 2 1 2RE z z z z    .  First we calculate 

 
   
 

1 2 1 2 1 2 1 2 2 1

1 2 1 2 1 2 1 2if .

z z a a b b i a b a b

z z a a b b z z

   

  R
 

Next, we calculate 

 
   

 

* *
1 2 1 2 1 2 1 2 2 1

* *
1 2 1 2 1 2

RE RE

RE

z z a a b b i a b a b

z z a a b b

        
    

 

and we can see that the relationship is proven.  Thus  

   † ˆˆRE ( ', ') exp ( ', ') .
ˆ ( ', ')

d
pE m n i m n

A m n
    

  (2.118) 

2.3 Optimization 
The goal of the phase retrieval algorithm is to minimize the objective function defined in 
Equation (2.24).  As has been previously stated, a variety of algorithms have been explored for 
this task.  The algorithm preferred in the literature is conjugate gradient minimization. 
 
A significant portion of the community uses Matlab (a product of The Mathworks, Inc. of 
Natick, MA).  Matlab has a variety of algorithms available in its core product and its 
Optimization Toolbox product, but does not include conjugate gradient algorithms among these.  
Custom code for the conjugate gradient algorithm was written for this project. 
 
As part of this research effort, other optimization algorithms have been investigated as well.  
Two different algorithms available in Matlab’s Optimization Toolbox Version 6.1 (R2011b) 
have been tried.  These are implemented as the “medium scale” and “large scale” algorithms 
implemented via the function fminunc(), which performs unconstrained minimization of an 
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objective function.  When gradient information is available – as it is for phase diversity – the 
medium scale algorithm is a quasi-Newton algorithm with Hessian updating via the Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) method.   
 
The large scale algorithm is a trust-region method which restricts the multi-dimensional problem 
to a two-dimensional subspace determined via a preconditioned conjugate gradient method.  This 
prevents the need for calculating the full Hessian matrix.  Details on these algorithms are 
available in the Matlab Optimization Toolbox User’s Guide and “Practical Methods of 
Optimization” by Roger Fletcher (Fletcher 1987). 
 
The trust-region method has proven considerably more effective than conjugate gradient 
algorithms.  It generally provides a more accurate solution in a shorter period of time.  This is 
surprising considering work in the literature almost exclusively uses conjugate gradient methods. 
 
Experience also indicates, though, that for the case where the phase is allowed to vary on a pixel-
by-pixel basis, the conjugate gradient algorithm is superior.  The algorithms implemented in the 
Matlab Optimization Toolbox use considerably more memory and struggle with phase maps of 
any significant size. 
 
2.4 Phase Diversity Testbed 
A goal of this research effort is to demonstrate that phase diversity algorithms work on real data.  
Much of the work in the literature focuses on simulated data.  To this end a phase diversity 
testbed system has been built. 
 
2.4.1 Testbed Design 
The first step of development of the phase diversity testbed was to demonstrate that accurate 
monochromatic wavefronts could be reconstructed from measured point-spread functions.  The 
standard method of wavefront measurement is interferometry, and thus a system was designed 
that allowed the wavefront to be interferometrically measured. 
 
The interferometric configuration is shown below.  A PhaseCam interferometer with a 
wavelength of 632.8 nm from 4D Technology is used.  Light passes through an f/10 diverger and 
then is directed to the test lens.   
 
The test lens is an achromat from Edmund Optics (part NT45-271).  The test lens is placed 
immediately behind an iris with a diameter of 1.641 inches.  The image space f/number (the ratio 
of the focal length to the beam diameter) is 15.8. 
 
After the test lens light is directed to a Zygo reference sphere with a numerical aperture (NA) of 
0.68.  The Zygo reference sphere is a concave mirror that returns light back on itself so that it 
passes through the optical system a second time and then returns to the interferometer. 
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
Figure 1: Monochromatic Testbed in the Interferometric Configuration 

 
Note that the tip and tilt of the test lens can be adjusted to change the wavefront error. 
 
The system is then modified for the phase diversity configuration.  First a 10 micron diameter 
pinhole is aligned to the interferometric beam.  This ensures that the field angle of the beam is 
the same for both configurations.  Next a ground glass diffuser (on a substrate of ultraviolet-
grade fused silica) is inserted between the diverger and the pinhole.  This ensures that test lens is 
uniformly illuminated and destroys any effects that might arise because of the spatial coherence 
of the laser beam.  Lastly, the return sphere is replaced with an Allied Vision Technologies 
(AVT) Stingray F-504 camera.  This is a 12-bit 2/3” progressive scan CCD camera with a 
sensing area of 8.5 x 7.1 millimeters, a resolution of 2456x2058 pixels, and a pixel size of 
3.45x3.45 microns.  The following figure shows the testbed in the phase diversity configuration. 
  


Figure 2: Monochromatic Testbed in the Phase Diversity Configuration 
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The AVT camera is placed on a translation stage that allows it to be moved along the optical 
axis.  Matlab code was written to control this translation stage, the camera, and a shutter placed 
between the pinhole and the first fold mirror. 
 
Care must be taken to fully understand the coordinate systems of the two configurations.  In the 
interferometric configuration the wavefront is sensed from the source side of the test lens while 
in the phase diversity configuration it is sensed from the opposite side.  This induces an effective 
flipping of the wavefront (i.e., multiplication of the wavefront phase by -1).  The lateral 
coordinates must be fully understood and corrected for the alignment of the camera and the 
interferometric detector.   
 
The camera response was characterized by illuminating it with a uniform source.  The camera 
was placed in the exit port of an 8 inch integrating sphere with a 4 inch exit port.  A quartz-
tungsten-halogen (QTH) source was used to illuminate the integrating sphere.  Spatial variations 
of the pixel gains could thus be measured.  These variations are assumed to be independent of 
integration time. 
 
2.4.2 Interferometric Measurements 
Four different wavefronts were tested with each of three different optimization algorithms.  Note 
that a radial ringing pattern appears in the interferometrically-measured wavefronts.  This radial 
ringing is an artifact of the interferometric measurement process.  The test lens is uncoated and 
produces multiple reflections that give this weak, secondary interference pattern. 
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
Figure 3: Interferometrically-Measured Wavefronts Analyzed for Monochromatic PDPR 

 
The ringing visible in the wavefronts in Figure 3 above makes visually comparing the wavefronts 
difficult.  The following figure shows the interferometrically-measured wavefronts decomposed 
to the same Zernike coefficients used for the phase diversity reconstructions.  This tends to 
remove high-spatial-frequency noise from the measured wavefronts as the wavefronts are not 
expected to have significant energy in higher order Zernike terms.  These wavefronts are shown 
below, again using the same color ranges as Figure 3. 
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
Figure 4: Interferometrically-Measured Wavefronts Decomposed to 37 Zernike Terms 

 
2.4.3 Phase Diversity Reconstructions 
After each interferometric measurement of a wavefront was performed, the testbed configuration 
was changed to the phase diversity configuration.  Data were collected at variety of defocus 
depths.  The camera integration time at each defocus depth was set to provide a peak signal level 
of about 80% of the full well capacity.  Also, a number of frames were collected at each defocus 
depth with the shutter closed.  These frames were averaged and used to perform background 
subtraction.   
 
For the analyses shown below, data at the estimated best focus depth as well as one millimeter on 
either side of this were used.  At a defocus depth of 1 mm, the standard Z4 defocus Zernike term 
has a magnitude of 0.228.  Gain correction was used.   
 
Each algorithm was allowed to initially run for five minutes.  Standard Zernike terms Z5-Z15 
were calculated.  The optimization was carried out iteratively in the following steps: 

1. Optimize lateral and axial shifts only 
2. Optimize Zernike coefficients only 
3. Optimize Zernike coefficients, lateral shifts, and axial shifts jointly 
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After five minutes of iterating in this manner, another five minute run was performed.  During 
this run standard Zernikes Z5-Z37 were calculated.  The optimization was performed iteratively 
in the same manner. 
 
The RMS wavefront errors of the reconstructed wavefronts as well as the final objective function 
values, as calculated by Equation (2.13), are reported for each case.  Results are shown in the 
table below, along with the measured RMS wavefront errors from the interferometric test. 
 

Wavefront 

Interferometry Conjugate Gradient Quasi-Newton Trust-Region 

RMS RMS 
Objective 
Function 

Value 
RMS 

Objective 
Function 

Value 
RMS 

Objective 
Function 

Value 
A 0.0221 0.0590 0.03365 0.2064 0.05181 0.0271 0.02347 
B 0.0363 0.0458 0.008938 0.0908 0.0223 0.0390 0.004221 
C 0.0825 0.0822 0.01118 0.3390 0.03983 0.0853 0.009151 
D 0.0990 0.1473 0.03945 0.2192 0.0407 0.1175 0.01548 

Table 1: Comparison of Monochromatic Reconstruction Results 
 
This table demonstrates that the trust-region algorithm seems to be superior to the others for 
phase diversity calculations.  In fact, the quasi-Newton method never provided an adequate 
result. 
 
The following figures show the reconstructed wavefronts using the different optimization 
methods.  Note that the color scalings used for these plots are the same as are used in Figure 3 
above. 
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
Figure 5: Wavefront Reconstructions Using the Trust-Region Algorithm 


Figure 6: Wavefront Reconstructions Using the Conjugate Gradient Algorithm 
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
Figure 7: Wavefront Reconstructions Using the Quasi-Newton Algorithm 

 
Another way of assessing the accuracy of the wavefront reconstructions is to compare the 
individual Zernike terms.  The following table shows the Zernike coefficients calculated from the 
interferometrically-measured wavefronts and from the phase diversity reconstructions.  Note that 
Zernike coefficients are expressed in waves. 
 

Term 
Interferometric
Measurement 

Trust-Region PD 
Reconstruction 

Difference 

Z5 0.0117 0.0102 0.0015 
Z6 0.0010 0.0059 -0.0050 
Z7 -0.0034 -0.0035 0.0002 
Z8 0.0012 -0.0006 0.0018 
Z9 -0.0024 -0.0017 -0.0007 
Z10 -0.0008 -0.0005 -0.0004 
Z11 -0.0031 0.0030 -0.0061 
Z12 -0.0047 -0.0060 0.0013 
Z13 -0.0032 -0.0024 -0.0008 
Z14 0.0010 -0.0024 0.0034 
Z15 -0.0003 0.0011 -0.0014 

Table 2: Zernike Coefficients for Wavefront A 
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Term 
Interferometric
Measurement 

Trust-Region PD 
Reconstruction 

Difference 

Z5 -0.0179 -0.0192 0.0013 
Z6 -0.0102 -0.0123 0.0021 
Z7 0.0136 0.0142 -0.0006 
Z8 -0.0154 -0.0179 0.0025 
Z9 -0.0021 -0.0048 0.0027 
Z10 -0.0003 -0.0005 0.0002 
Z11 -0.0042 0.0001 -0.0043 
Z12 -0.0060 -0.0053 -0.0007 
Z13 -0.0028 -0.0045 0.0017 
Z14 -0.0007 -0.0002 -0.0005 
Z15 0.0008 0.0005 0.0003 

Table 3: Zernike Coefficients for Wavefront B 
 

Term 
Interferometric
Measurement 

Trust-Region PD 
Reconstruction 

Difference 

Z5 -0.0345 -0.0375 0.0030 
Z6 0.0491 0.0467 0.0023 
Z7 -0.0318 -0.0301 -0.0016 
Z8 0.0380 0.0424 -0.0044 
Z9 -0.0018 -0.0042 0.0025 
Z10 -0.0010 -0.0027 0.0016 
Z11 -0.0018 0.0149 -0.0167 
Z12 -0.0048 -0.0024 -0.0024 
Z13 -0.0034 -0.0098 0.0065 
Z14 0.0004 0.0010 -0.0006 
Z15 0.0004 -0.0001 0.0005 

Table 4: Zernike Coefficients for Wavefront C  
 

Term 
Interferometric
Measurement 

Trust-Region PD 
Reconstruction 

Difference 

Z5 -0.0810 -0.0958 0.0148 
Z6 -0.0176 -0.0176 -0.0001 
Z7 0.0294 0.0380 -0.0087 
Z8 -0.0338 -0.0372 0.0034 
Z9 -0.0027 -0.0019 -0.0007 
Z10 -0.0007 -0.0044 0.0037 
Z11 -0.0026 0.0106 -0.0131 
Z12 -0.0051 0.0003 -0.0054 
Z13 -0.0037 -0.0075 0.0038 
Z14 0.0001 -0.0005 0.0006 
Z15 0.0000 -0.0014 0.0015 

Table 5: Zernike Coefficients for Wavefront D  
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Thus far we have compared the quality of the reconstruction by comparing the reconstructed 
wavefront to the interferometrically-measured wavefront.  However, in general the 
interferometrically-measured wavefront is not available.  In that case it is useful to compare the 
reconstructed point-source images with the measurements.  This is done in the following figures.  
These figures show the reconstructed PSFs for each optimization algorithm and for each 
wavefront.  The objective function value D is shown for each PSF as well.   


Figure 8:  Measured and Reconstructed PSFs for Wavefront A 
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
Figure 9: Measured and Reconstructed PSFs for Wavefront B 


Figure 10: Measured and Reconstructed PSFs for Wavefront C 
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
Figure 11: Measured and Reconstructed PSFs for Wavefront D 

Another way of checking the fidelity of the reconstructed wavefront is to compare reconstructed 
PSFs at defocus depths that were not used in the optimization against measurements.  This 
method assumes that data at more defocus depths are available. 
 
The following figure shows the results of this analysis for Wavefront D.  The lateral and axial 
shifts were interpolated to assume linear behavior across the full defocus range used in the 
optimization.  This enforces a linear variation in both lateral motion and defocus.  The objective 
function value is calculated for a single frame of data at each of the 21 defocus depths measured. 
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
Figure 12: Objective Function Values vs. Defocus with Linear Transverse PSF Motion 

 
This plot demonstrates that the reconstructed PSFs at defocus depths not included in the 
optimization also agree well with measurements.  This provides further confidence that the 
solution accurately represents the system. 
 
At this point in the analysis it may also be valid to optimize the lateral shifts to avoid imposing 
the linear constraint describe above.  Random jitter may be present in the system due to 
vibration.  The following plot shows the objective function values after lateral shifts only have 
been optimized.  Note that the scale of this figure matches that of Figure 12. 
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
Figure 13: Objective Function Values versus Defocus after Optimizing Lateral Shifts 

 
Figure 13 shows that much of the residuals errors shown in Figure 12 are due to jitter in the 
system and that the reconstructed wavefront accurately represents the system. 
 
The monochromatic data collected with interferometer as the source clearly indicate that retrieval 
of the wavefront from measured point-spread functions is practical.  The accuracy of the 
reconstruction does depend on how the optimization is performed.  The trust-region algorithm 
included in Matlab’s Optimization Toolbox seems superior.  It is possible the quasi-Newton and 
conjugate gradient algorithms could provide better solutions if given more time. 
 
By analyzing the value of the objective function as well as comparing the reconstructed PSFs to 
the measurements, a judgment of the quality of the reconstruction can be made independent of 
the availability of interferometrically-measured wavefronts. 
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3 BROADBAND PHASE-DIVERSE PHASE RETRIEVAL 

 
The broadband theory presented here builds on the theory presented in Section 2.2 above.  The 
theory is extended to consider the case of performing through-focus PSF measurements of a 
broadband source.  The source is considered to be composed of a number of discrete 
wavelengths. 
 
3.1 Variable Definitions 
Addition variables to those presented in Section 2.1 above will be defined to handle the 
broadband case.  These variables are presented here. 
 

:  The total number of discrete wavelengths modeledL  
1,2,..., :  An index over discrete wavelengthsl L  

:  The spectral weight of the system at wavelength lS l  

:  The number of data points along transverse dimension 1 for wavelength lM l  

:  The number of data points along transverse dimension 2 for wavelength lN l  
0:  The reference wavelength  

:  The value of the th wavelengthl l  

 0 0
ˆ , : The estimated phase at the reference wavelength m n   

 ˆ , : The estimated phase at wavelength l lm n   

 
3.2 Mathematical Theory 
The mathematical theory is similar to that presented in Section 2.2.  Below we show how to 
handle modeling the system at different discrete wavelengths. 
 
3.2.1 Optical Model 
We begin by modeling the broadband system as L discrete wavelengths.  We define one of these 
wavelengths to be the reference wavelength and denote this wavelength by 0 .  We can then 

write the estimated optical field at the pupil plane as 

       0
,

ˆ ˆˆ , , exp ,p l l
l

E m n A m n i m n
 


 
  

 
.  (3.1) 

For each wavelength we size the arrays so that the following equations hold (J. R. Fienup 1999): 

  01 1

l lM M




   (3.2) 

  01 1

l lN N




 .  (3.3) 
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Matrices are truncated or zero-padded as necessary to make these equations hold.  To keep 
, , ,  and l lM N M N equal to integers, the values of the wavelengths must either be carefully 

selected or adjusted slightly from desired values. 
 
We can then calculate the estimated optical field at the nominal focal plane of the imaging 
system.  We again use the discrete Fourier transform to get 

     
,

2 2 2 20
, ,

,

1ˆ ˆ, exp ( , )exp 2
l lM N

f l p q p l
m nl l l ll l

i mp nq
E p q p q E m n i

f M NM N

  
 

    
        

     
 , (3.4) 

where we have again assumed that the pupil plane is at the lens plane. 
 
We calculate the angular plane-wave spectrum at the focal plane using the discrete Fourier 
transform, obtaining 

   
,

, ,
,

1ˆ ˆ( , )  , exp 2 .
l lM N

f l f l
p q l ll l

mp nq
U m n E p q i

M NM N


  
    

   
   (3.5) 

Multiplying this by the free space transfer function provides the angular plane-wave spectrum at 
the kth defocus plane.  We therefore have 

 
2 2 2 2

, , 2

1ˆ ˆ ˆ( , ) ( , )exp 2 ,k l f l k m n
l

U m n U m n i z m n


 
     

  
  (3.6) 

where we have again neglected constant phase terms that do not affect the measured point-spread 
function.  We use the inverse discrete Fourier transform to calculate the optical field at the kth 
defocus plane, obtaining 

 
,

, ,
,

1ˆ ˆ( , ) ( , ) exp 2 .
l lM N

k l k l
m n l ll l

mp nq
E p q U m n i

M NM N


  
    

   
   (3.7) 

We now again assume a square-law detector to calculate the intensity at the kth defocus plane.  
However, we now must also incoherently sum intensities across the wavelengths.  We therefore 
obtain the following estimated intensity at the kth defocus plane: 

   
2

,
1

1ˆ ˆ, ( , )
L

k l k l
l

I p q S E p q
L 

  ,  (3.8) 

where lS is used to represent spectral weights. 

 
Equations (2.10), (2.11), and (2.12) then hold as well using this broadband definition of 

 ˆ , .kI p q  

 
3.2.2 Objective Function 
We begin by considering the error metric presented in Equation (2.24).  The objective function 
depends on the weighting functions  ,kW p q , the measured point-spread functions  ,kG p q , 
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and the estimated point-spread function  ˆ ,kG p q .  Of these terms, only  ˆ ,kG p q depends on 

wavelength. 
 
3.2.3 Unchanged Gradients 
The gradients calculated in Section 2 with respect to PSF estimates, transverse shifts, and optical 
intensity estimates are valid in the broadband case as well, provided that the broadband 
simulation methodology described in Section 3.2.1 is employed. 
 
3.2.4 Gradient with respect to Defocus Amounts 
We follow the same methodology as Section 2.2.6, using iterations of the multivariable chain 
rule to perform the analysis.  Derivatives are calculated with respect to ,

ˆ ( , )k lE m n , then 

,
ˆ ( , )k lU m n , then ˆkz . 

 
We start the chain rule with  

 
,, ,

ˆ ( , )
.

ˆ ˆ ˆ( ', ') ( , ) ( ', ')
d d k

p qk l k k l

I p q

E p q I p q E p q

  


  
   (3.9) 

We already have 
ˆ ( , )

d

kI p q




from Equation (2.60).  We therefore need to calculate 
,

ˆ ( , )
ˆ ( ', ')

k

k l

I p q

E p q




.  

We start with 

 
     , , ,

ˆ ˆ ˆ( , ) ( , ) ( , )
ˆ ˆ ˆ( ', ') RE ', ' IM ', '

k k k

k l k l k l

I p q I p q I p q
i

E p q E p q E p q

  
 

        
  (3.10) 

and 

       
2

*
, , ,

1 1

1 1ˆ ˆ ˆ ˆ, ( , ) , ,
L L

k l k l l k l k l
l l

I p q S E p q S E p q E p q
L L 

   .  (3.11) 

We calculate these terms below: 

 
         *

, ,
1, ,

ˆ ( , ) 1 ˆ ˆ, ,
ˆ ˆRE ', ' RE ', '

L
k

l k l k l
lk l k l

I p q
S E p q E p q

LE p q E p q 

   
  

         
   (3.12) 

 

 
      *

, ,

,

ˆ ( , ) ˆ ˆ, ,
ˆRE ', '

k l
k l k l

k l

I p q S
E p q E p q

LE p q

       
  (3.13) 

 

 
     ,

,

ˆ ( , ) 2
RE ', '

ˆRE ', '

k l
k l

k l

I p q S
E p q

LE p q




   
  (3.13) 
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         *

, ,
1, ,

ˆ ( , ) 1 ˆ ˆ, ,
ˆ ˆIM ', ' IM ', '

L
k

l k l k l
l

k l k l

I p q
S E p q E p q

LE p q E p q 

   
  

         
   (3.14) 

 
      *

, ,

,

ˆ ( , ) ˆ ˆ', ' ', '
ˆIM ', '

k l
k l k l

k l

I p q S
iE p q iE p q

LE p q

       
  (3.15) 

 
      *

, ,

,

ˆ ( , ) ˆ ˆ', ' ', '
ˆIM ', '

k l
k l k l

k l

I p q iS
E p q E p q

LE p q

        
  (3.16) 

 
     ,

,

ˆ ( , ) ˆ2 IM ', '
ˆIM ', '

k l
k l

k l

I p q iS
i E p q

LE p q

        
  (3.17) 

 
    ,

,

ˆ ( , ) 2 ˆIM ', '
ˆIM ', '

k l
k l

k l

I p q S
E p q

LE p q

       
.  (3.18) 

 
Using Equations (3.10), (3.13), and (3.18) lets us write 

      , ,

,

ˆ ( , ) 2 2 ˆRE ', ' IM ', '
ˆ ( ', ')

k l l
k l k l

k l

I p q S S
E p q i E p q

L LE p q

     
  (3.19) 

   ,

,

ˆ ( , ) 2 ˆ ', '
ˆ ( ', ')

k l
k l

k l

I p q S
E p q

LE p q





.  (3.20) 

 
Using Equations (3.9), (2.60), and (3.20) lets us write 
 

    †
,

,,

2 1 ' 'ˆˆ ', ' ( , ) exp 2
ˆ ( ', ')

d l
k l k

m nk l

S mp nq
E p q f m n i

L M NE p q MN
         

 .  (3.21) 

 
In a manner similar to Equation (2.76) and (2.77) we define 

     †
, ,

2ˆ ˆ', ' ', '
ˆ ( ', ')

l d
k l k l

k

S
E p q E p q

L I p q





  (3.22) 

so that we can write 

   †
,

,

ˆ ', ' .
ˆ ( ', ')

d
k l

k l

E p q
E p q





  (3.23) 

Next we calculate 
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   

 
 

,

,, , ,

ˆ ,
.

ˆ ˆ ˆ, , ,
k ld d

p qk l k l k l

E p q

U m n E p q U m n

 


  
   (3.24) 

 
Using Equation (3.7) it can be seen that 
 

 
 
 

,

,

ˆ , 1
exp 2 .

ˆ ,
k l

l lk l l l

E p q mp nq
i

M NU m n M N


   
    

    
  (3.25) 

 
Inserting Equations (3.23) and (3.25) into Equation (3.24) results in 

 
 

 †
,

,,

1 ˆ , exp 2
ˆ ,

d
k l

p q l lk l l l

mp nq
E p q i

M NU m n M N


  
    

    
   (3.26) 

 
 

 †*
,

,

ˆ ,
ˆ ,

d
k l

k l

U m n
U m n





  (3.27) 

where we have defined  

     † †
, ,

,

1ˆ ˆ, , exp 2k l k l
p q l ll l

mp nq
U m n E p q i

M NM N


  
    

   
 .  (3.28) 

We now calculate 

 
 

 ,

, ,

ˆ ,
.

ˆˆ ˆ,
k ld d

m nk kk l

U m n

z zU m n

 


 
   (3.29) 

Differentiating Equation (3.6) yields 

 
   , 2 2 2 2

, 2

ˆ , 1ˆ2 ,
ˆ

k l
k l m n

k l

U m n
iU m n m n

z





    


.  (3.30) 

Thus we have 

     
,

†* 2 2 2 2
, , 2

,

1ˆ ˆ, , 2
ˆ

l lM N
d

k l k l m n
m nk l

U m n U m n i m n
z





    

    (3.31) 

       
,

2 2 2 2 † *
, ,2

,

1 ˆ ˆIM 2 , ,
ˆ

l lM N
d

m n k l k l
m nk l

i m n U m n U m n
z





    

  ,  (3.32) 

where we have used the fact that
ˆ

d

kz





R and our previous proof of 

* * *
1 2 1 2 1 2IM  if .iz z iz z iz z     R.
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3.2.5 Gradient with respect to Pupil Phase 
As we did in section 2.2.7, we will use multiple iterations of the chain rule.  We progress in the 

same manner, starting with with 
 ,

ˆ ,
d

k lU m n




and then differentiating with respect to  ,
ˆ ,f lU m n , 

 ,
ˆ ,f lE p q ,  ,

ˆ ,p lE m n , and finally  ˆ ,l m n .  We start with 

 
   

 
 

,

,, , ,

ˆ ,
ˆ ˆ ˆ', ' , ', '

k ld d

m nf l k l f l

U m n

U m n U m n U m n

 


  
   (3.33) 

and 

 
 
 

, 2 2 2 2
2

,

ˆ , 1
ˆexp 2

ˆ ', '
k l

k m n
lf l

U m n
i z m n

U m n



 

     
   

  (3.34) 

if 'm m  and 'n n , otherwise it is zero.  Using this we can write 

 
†* 2 2 2 2
, 2

,

1ˆ ˆ( , ) exp 2
ˆ ( ', ')

d
k l k m n

lf l

U m n i z m n
U m n




 
        

  (3.35) 

   †*
,

,

ˆ ,
ˆ ( ', ')

d
f l

f l

U m n
U m n





  (3.36) 

where we have defined 

   † † 2 2 2 2
, , 2

1ˆ ˆ ˆ, ( , ) exp 2f l k l k m n
l

U m n U m n i z m n


 
       

 
  (3.37) 

Using Equation (3.5) lets us write 

 
 
 

,

,

ˆ , 1 '
exp 2

ˆ ', '
f l

l lf l l l

U m n mp nq
i

M NE p q M N


   
    

    
  (3.38) 

where only the 'p p and 'q q terms are nonzero in the summation over ( , )p q .  Thus 

 
 

 †*
,

,,

1 ' 'ˆ , exp 2
ˆ ', '

d
f l

m n l lf l l l

mp nq
U m n i

M NE p q M N


  
    

    
   (3.39) 

 
 

 †*
,

,

ˆ ', '
ˆ ', '

d
f l

f l

E p q
E p q





  (3.40) 

where we have defined 

     † †
, ,

,

1 ' 'ˆ ˆ', ' , exp 2f l f l
m n l ll l

mp nq
E p q U m n i

M NM N


  
    

   
 .  (3.41) 

Next we calculate 
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   

 
 

,

,, , ,

ˆ ,
ˆ ˆ ˆ', ' , ', '

f ld d

p qp l f l p l

E p q

E m n E p q E m n

 


  
 .  (3.42) 

Using Equation (3.4) yields 

 
 
   , 2 2 2 20

,

ˆ , 1 ' '
exp exp 2

ˆ ', '
f l

p q
l l l lp l l l

E p q i m p n q
p q i

f M NE m n M N

  
 

     
              

.  (3.43) 

We therefore have 

 
 

   
,

†* 2 2 2 20
,

,,

1 ' 'ˆ , exp exp 2
ˆ ', '

l lM N
d

f l p q
p ql l l lp l l l

i m p n q
E p q p q i

f M NE m n M N

  
 

    
              

 (3.44) 

 
 

 †*
,

,

ˆ ', '
ˆ ', '

d
p l

p l

E m n
E m n





  (3.45) 

where we have defined 

       
,

† † 2 2 2 20
, ,

,

1 ' 'ˆ ˆ', ' , exp exp 2 .
l lM N

p l f l p q
p ql l l ll l

i m p n q
E m n E p q p q i

f M NM N

  
 

    
        

     
 (3.46) 

Next, we calculate 

 
   

 
 
,

1 ,

ˆ ,
ˆ ˆ ˆ,', ' ', '

L
p ld d

l p ll l

E m n

E m nm n m n 

 


 
 .  (3.47) 

From Equation (3.1) we have 

 
 

 
 , 0

,

ˆ , ˆ ,
ˆ ', '

p l
p l

ll

E m n
i E m n

m n








  (3.48) 

 
and hence 

 
 

   †*0
, ,

1

ˆ ˆ', ' ,
ˆ ', '

L
d

p l p l
l ll

i E m n E m n
m n


 





   (3.49) 

 
 

   † *0
, ,

1

ˆ ˆIM ', ' ,
ˆ ', '

L
d

p l p l
l ll

E m n E m n
m n


 

 
    


,

  (3.50) 

where we have used 
 ˆ ', '

d

l m n



is real. 

We will consider decomposing the   ,l m n wavefronts into basis polynomials (e.g., Zernike 

polynomials) which are allowed to vary as a function of wavelength.  We can write: 
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  
,

1

( , ) ( , )
J

l j l j
j

m n Z m n 


 .  (3.51) 

To calculate the gradient of the objective function with respect to the coefficients we start with 

 
�

�
.

.,, ,

( ', ')

( ', ')

p ld d

p lm nj l j l

E m n

E m n 
  


 

 .  (3.52) 

We have 

  �   �    0
, ,

1

, , exp ,
J

p l j l j
jl

E m n A m n i Z m n
 
 

 
  

 
   (3.53) 

and hence 

 
�     �  , 0

,

,

,
, ,

p l
p lj

j l l

E m n
i Z m n E m n


 





.  (3.54) 

We therefore have  

    �   �  
†*

0
, ,

,,

, , ,d
p l p lj

m nj l l

i Z m n E m n E m n


 



    (3.55) 

    �   �  
* †

0
, ,

,,

, IM , ,d
p l p lj

m nj l l

Z m n E m n E m n


 
       .  (3.56) 

 
3.2.6 Gradient with respect to Spectral Weights 
To calculate the gradient of the objective function with respect to spectral weights we use the 
chain rule once again.  We can write 

 
 

 
1 ,

,

,

K
kd d

kk p ql l

I p q

S SI p q

 


 





.  (3.57) 

We have 
 ,

d

kI p q


 

from Equation (2.60).  We can use Equation (3.8) to calculate  

 
   

2

,

, 1 ˆ ,
k

k l
l

I p q
E p q

S L







  (3.58) 

and hence 
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4 BROADBAND SIMULATION 
 
Initial broadband simulations to investigate aberration recovery using the phase diversity 
algorithm described in Section 3 use a simplified aberration and optical system model as 
depicted in Figure 14.  


Figure 14: Basic optical model used in simulations 

 
The phase screen is constructed using a set of Zernike polynomials with random coefficients.  
Zernike polynomials are functions which are orthogonal on the unit circle.  There are several 
realizations of these polynomials with differing orderings; we have elected mainly to use those 
described by Noll (Noll 1976).    
 
The Zernike polynomials are used to describe system aberrations.  Some orders correspond to 
named aberrations (e.g., Z4 corresponds to focus shift, while Z8 corresponds to third-order coma 
along the x-axis).  The phase in the pupil plane for the th  wavelength is computed by 
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where i  is the coefficient for the thi  Zernike polynomial, iW  is a normalizing weighting factor, 

and N  is the total number of Zernike polynomials to be used..  The electric field is then 
calculated and propagated as discussed in Section 3.2.1.  Reconstruction was done using the 
conjugate-gradient minimization function as described in section 2.3.   
 
4.1 Simulation at Five Discrete Wavelengths 
The initial examination of the algorithm involved simulation and reconstruction at five 
wavelengths:  525 nm, 575 nm, 632.8 nm, 625 nm, and 725 nm, with 632.8 nm designated as the 
“reference wavelength”. In preparation for further research, some statistical research was 
required in order to evaluate the goodness of the recovery (Zernike optimization) algorithm. 
Initially, fifty-one simulation sets were run.  The optical system modeled was f/10, with a one 
inch diameter pupil and 11 diversity planes axially spread ±1.0 mm from the focal point.   
 
A simulated set of diversity plane point spread functions was obtained with a simulated pupil 
wavefront aberration constructed of Zernike terms to the 14th order.  The coefficients of the 
random terms were derived from a normal distribution.  Coefficients were then scaled by 2 n  , 
where n is the order of the corresponding Zernike polynomial.  Finally, the total simulation 
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aberration was scaled to produce a root-mean-square (RMS) wavefront error of 0.15 waves (0.94 
radians) at the reference wavelength.    
 
Optimizations were conducted in several sections.  First, in order to simulate correction for 
positional error, the error metric was optimized for lateral and axial position a total of 25 times.  
Following that, an optimization for pupil Zernike coefficients of tip, tilt, and focus (Z2-Z4) was 
performed for 35 iterations.  Next, 35 iterations of optimization of all wavelength- and diversity 
plane-dependent Zernike terms through 7th order were conducted.  Finally, a point-by-point 
phase optimization in the pupil plane was conducted for 200 iterations.  Results are shown in 
Figure 15(a). 
 

(a) (b) 

(c) (d) 
Figure 15: Histograms of wavefronts after phase diversity reconstruction:  

Five wavelengths were used to simulate a broadband signal, with the algorithm 
attempting to recover the simulated  aberrations at those same wavelengths.  Nine 
histogram bins per wavelength are shown.  Vertical lines mark the mean values, and 
curves representing a log-normal distribution with the respective mean are plotted for 
visual effect.  (a) Uncorrelated aberrations.  (b)–(d)  Comparisons of remaining wavefront 
errors when the aberrations are uncorrelated, identical (“reflective”), and linearly 
correlated.   
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Aberration reconstruction was much better for the shorter wavelengths than the longer 
wavelengths.  However, even the worst case showed a significant recovery of the original 
aberration, averaging more than 90% even at the longer wavelengths. 
 
The computation time for an average wavefront reconstruction in the above set was 2:27 hours.  
Some experimentation showed that changing the number of iterations to 25 for axial and lateral 
optimization, 35 for tip, tilt, and focus Zernike term optimization, 50 for optimization of all 
Zernike polynomials, and finally 50 for point-by-point phase optimization, reduced the time to 
1:23 hours, while only suffering less than a 0.005 radian change in RMS phase error.   Due to the 
reduction in computational time of over 40%, this sequence of optimizations was used in the 
subsequent few sets of simulations. 
 
In a real system, it is likely that the wavefront error would be a smoothly varying function of 
wavelength rather than totally uncorrelated.  Statistical runs were next conducted using identical 
Zernike coefficients for each wavelength (with phase variation measured in terms of the 
reference wavelength).  This would reasonably model a totally reflective optical system.  
Statistical runs were also run with the coefficients being a linear function of wavelength, varying 
approximately ±20% from those of the reference wavelength.  A histogram of the resulting RMS 
wavefront errors (between simulated and recovered pupil phases) is shown in Figure 15(b) – (d).  
Once again, in all cases the shorter wavelength phase errors were recovered more precisely, with 
the correlated aberrations showing a significant improvement in recovery.  However, this benefit 
was reduced at longer wavelengths, with only minor improvement noticed at the longest 
wavelength. 
 
In the above simulations, the simulated spot size was produced with an aberration error formed 
with Zernike terms through order 14 and recovered with terms only through 7th order.  This 
placed an upper bound on the ability of the algorithm to recover the original aberrations in terms 
of Zernike polynomials alone.  The use of point-by-point phase aberration is intended to 
ameliorate this problem.   
 
In order to examine the significance of this effect, a set of simulations was done in which both 
the simulated phase errors used to produce the PSFs, as well as the recovered phase errors, were 
composed of Zernike polynomials up to 7th order.   
 
Results are depicted in Figure 16(a).  In these plots, “Same order” refers to the use of 7th order 
Zernike polynomials for both simulation of the input error (used to create the PSFs) and for the 
Zernike coefficient recovery portion of the optimization sequence.  “Different orders” refers to 
the use of 14th order Zernike polynomials to create the simulated aberrations and PSF, with the 
Zernike coefficients being recovered limited to the use of 7th order Zernike polynomials.  Once 
again the shorter wavelength aberrations were extrapolated significantly better than those of 
longer wavelengths.   
 
Of interest, as shown in Figure 16(b) – (f), when compared to the earlier simulations with 
different orders, there is a significant improvement in reconstruction at the longer wavelengths 
when the Zernike recovery algorithm is of the same order as the simulated aberrations.  Since the 
optimization based upon Zernike coefficients at the pupil precedes the optimization based upon a 
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point-by-point phase, this may indicate that the Zernike coefficients for the shorter wavelengths 
are better optimized than those at longer wavelengths.  As a result of this, the point-by-point 
phase optimization process would make relatively better progress at the longer wavelengths, 
since the starting point (in terms of Zernike coefficients) is further from the ideal than is the case 
at shorter wavelengths. 
 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 16: Results using 7thorder Zernike polynomials for simulation and reconstruction: 
Eleven histogram bins are shown, with a vertical line plotted at the mean value and a log-
normal curve plotted for visual effect.  (a) A comparison of results by wavelength.  (b)– (f) 
Comparison by wavelength to simulations where Zernike polynomials through order 14 
(labeled “Different orders”) was used to create the simulated image PSFs. 
 
 

5 EXPERIMENTAL TESTING 
 
The broadband phase-diverse phase retrieval algorithm was tested with two lasers of 
significantly different wavelengths.  The testbed layout shown in Figure 2 was modified to the 
configuration shown below. 
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
Figure 17: Dual-Wavelength Phase-Diverse Phase Retrieval Testbed Configuration 

 
This configuration was used to combine the two laser beams.  The 632.8 nm laser was polarized 
and its amplitude was controlled by the use of the rotating polarizer.  The 405 nm laser was not 
polarized and its amplitude was controlled via a neutral density filter.  These beams were 
combined with a polarization-insensitive beam combiner and illuminated a ground glass diffuser.  
The ground glass diffuser served to provide uniform illumination of the 10 m pinhole.  This 
makes the alignment of the two beams relative to each other rather insensitive and also serves to 
reduce beam amplitudes to levels that do not saturate the detector. 
 
Data were first collected with each laser independently.  The monochromatic phase-diverse 
phase retrieval algorithm described in Section 2 was used to independently measure the 
wavefronts at the two wavelengths.  The axial shifts of the spots were not allowed to vary in this 
analysis.  Instead, the Z4 (defocus) Zernike coefficient was allowed to vary.  This allows for the 
focus of the system to be adjusted axially while maintaining the known separations between the 
measurement planes.  A single frame of data at each of three defocus depths was used to perform 
the reconstructions. 
 
The relative strengths of the two beams were characterized by comparing the total energy (in 
detector counts) of the two beams when incident on the detector independently.  The ratio of the 
total energy in the 632.8 nm beam to the 405 nm beam was 0.65. 
 
5.1 Simulations of Broadband Images 
By definition, current phase-diversity reconstruction techniques are based upon optimizing an 
error function at discrete wavelengths.  In other words, it is multi-spectral, and rather than truly 
broadband.  The purpose of our investigation is to determine the extent to which this multi-
spectral technique can be used in the presence of a broadband image.   
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This subsection reports the results of simulations of a pseudo-broadband system with multi-
spectral phase diversity reconstruction of pupil plane phase aberrations.  The simulated optical 
system is modeled on the test bed described in Section 5, which is an f/16 system with a 1.65” 
(41.9 mm) circular aperture.   Diversity plane locations were set at locations 1 mm apart on the 
range 5 mm  5 mmz   , with the nominal focus at the origin.  To simulate jitter in the 
detector as it is set to the various diversity planes, the x- and y- locations were offset a random 
distance described by a normal distribution with a standard deviation of 20 pixels.  Since jitter 
along the z-axis can be subsumed into the coefficients of the focus Zernike polynomial (Z4) 
peculiar to each diversity plane, no z-axis jitter was simulated.1  We also defined the pupil 
aberrations to be correlated linearly with wavelength, i.e., that the aberrations, in terms of 
coefficients of Zernike polynomial bases functions, are linear functions of wavelength, in the 
same manner as in Section 4.1.  The RMS wavefront error at the reference wavelength (632.8 
nm) was maintained at 0.15 waves (0.94 radians). 
 
Two multi-spectral broadband wavelength distributions were used in addition to a five-
wavelength simulation at the wavelengths used for reconstruction.  The following numbers and 
wavelengths used were: 

 Five:  525 nm, 575 nm.  632.8 nm, 675 nm, 725 nm 
 Nine:  525 nm, 550 nm, 575 nm, 600 nm,  632.8 nm, 650 nm, 675 nm, 700 nm, 725 nm 
 Eleven:  500 nm, 525 nm, 550 nm, 575 nm, 600 nm,  632.8 nm, 650 nm, 675 nm, 700 

nm, 725 nm, 750 nm 
 

The five wavelengths are those at which pupil aberrations are recovered.  These are present in 
the simulation in all cases.  For nine wavelengths, additional PSFs were inserted by incoherent 
addition from wavelengths in between the original set.  For eleven wavelengths, two additional 
wavelengths, outside the recovery band, were added.  These two sets were chosen as a baselines 
to examine the ability of the phase diversity phase recovery algorithm to function in the presence 
of signals outside the recovery wavelengths:  if the algorithm didn’t perform adequately in these 
situations, it would have no hope of performing in the case of a true broadband signal. 
 

                                                 
1 It was found in simulations that optimizing these focus terms as well as z-axis location could lead to “fighting” 
between the two.  Since other Zernike coefficients that vary by diversity plane are optimized in the diversity 
algorithm, it was believed most efficient to set the z-axis locations to their nominal values.  
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

 
(a) (b) (c) 

Figure 18: Log of the error function versus iteration step for an arbitrary simulation: 
In each case, the error function was computed for recovery at five wavelengths.  The 
simulated PSFs were constructed from simulations using the specified number of 
wavelengths (see text).  (a) Five wavelengths.  (b) Nine wavelengths.  (c) Eleven 
wavelengths. 
 

(a) (b) 

(c) (d) 
Figure 19: Histograms showing phase errors for 50 simulation runs in each set: 

All sets recovered phase errors at five wavelengths.  The simulated PSFs were 
constructed from simulations using the specified number of wavelengths (see text).  (a) 
Five wavelengths.  (b) Nine wavelengths.  (c) Eleven wavelengths.  (d) Twenty-one 
wavelengths.  The right-most bin includes all values equal to or greater than 0.10 radians. 
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The phase error remaining after phase recovery at five wavelengths was similar in both the case 
where five wavelengths were used to create the simulated PSFs and where nine wavelengths 
within the wavelength band were used, as shown in  

(a) (b) 

(c) (d) 
Figure 19 (a) and (b).  As noted in section 4.1, the phase errors at shorter wavelengths were 
notably less accurate than those at longer wavelengths.  When eleven wavelengths, including two 
outside the recovery band, were used to construct the simulated PSFs, there was a notable 
increase in average phase error for the middle wavelengths.  In other words, the benefits of the 
shorter wavelength seen in previous reconstructions were reduced.  The exact cause is unclear, 
but it is hypothesized that the shortest wavelength, having the more tightly focused PSF (i.e.,a 
smaller Airy disk) has a greater impact on the PSF images than longer wavelengths with their 
“softer” foci. 
In order to better simulate a true broadband signal, a set of simulations was run with 21 
wavelengths, ranging from 375 nm through 875 nm, used to create the simulated PSFs. The RMS 
wavefront error at the reference wavelength (nm) was held to 0.15 waves (0.94 
radians).  In addition, to better simulate an actual signal, the intensities were spectrally weighted 
by a Gaussian function, 
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The statistics for 50 simulation runs are shown in Figure 19(d).   
 
A definite lowering of recovery accuracy was noted, with the average of the shorter wavelengths 
performing no better than the worst wavelength in the earlier simulations with only five spectral 
components.  On the other hand, the remaining wavefront error for the longer wavelengths 
almost doubled. Even so, the phase diversity algorithm still recovered more than 90% of the 
original wavefront error, indicating that phase diversity is a promising method for broadband 
phase error reconstruction.   
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Input Recovered Difference 

 

 

 

 
Figure 20: Wavefront reconstructions at 525 nm for an arbitrarily selected simulation: 

Columns are simulated input phase, recovered phase, and difference.  Rows indicate the 
number of simulation wavelengths (see text).  Piston, tip/tilt, and power are removed. 
 
Figure 20 (525 nm), Figure 21 (632.8 nm), and Figure 22 (725 nm) depict the results for four 
arbitrarily selected reconstructions, one each from simulations using five, nine, eleven, and 21 
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wavelengths to create the PSFs.2  Again, it is readily apparent that phase-diversity aberration 
reconstruction is beneficial in each of these cases. 
 

Input Recovered Difference 

  

  

  

  
Figure 21: Wavefront reconstructions at 633 nm for an arbitrarily selected simulation: 

Columns are simulated input phase, recovered phase, and difference.  Rows indicate the 
number of simulation wavelengths (see text).  Piston, tip/tilt, and power are removed. 
                                                 
2 The zero-phase reference is arbitrary depending upon the random nature of the phase errors.  In other words, the 
fact that the eleven-wavelength phase error is more negative while the others are more positive is not significant.  
Also, since these are individual simulations, they cannot be used to draw conclusions requiring a statistical analysis.  
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Simulations in support of two-wavelength testing are discussed in Section 5.4. 


Input Recovered Difference 

 

 

 
Figure 22: Wavefront reconstructions at 725 nm for an arbitrarily selected simulation: 

Columns are simulated input phase, recovered phase, and difference.  Rows indicate the 
number of simulation wavelengths (see text).  Piston, tip/tilt, and power are removed. 

  



 

65 

5.2 632.8 nm Monochromatic Testing 
The axial coordinate system was set up so that the 632.8 nm wavelength had its best focus 
position near Z=0.  The Z4 Zernike coefficient for the reconstructed wavefront at 632.8 nm was 
0.0045 waves, corresponding to a relative shift between the actual best focus position and the 
Z=0 position of only 20 m.  The following figure shows the reconstructed wavefront at 632.8 
nm with piston, tip, tilt, and power removed. 


Figure 23: Reconstructed Wavefront at 632.8 nm without Piston, Tip, Tilt, and Power 

 
No interferometric measurement was possible at this time as the interferometer had been sent 
back to the manufacturer to fix an electrical safety problem.  These data were collected on July 
3rd, 2012.  The system had not been changed since the previous use on May 25th, 2012, though.  
On that day, an interferometric measurement was performed with the following result.  The 
wavefront was fit to 37 Zernike coefficients to reduce radial ringing artifacts associated with the 
uncoated nature of the test lens. 
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
Figure 24: Interferometrically Measured Wavefront fit to 37 Zernike Terms 

We see that Figure 23 and Figure 24 agree well.  This is born out in the normalized root-mean-
square error (NRMSE) analysis of the phase diversity reconstruction as well.  NRMSE provides 
a metric for how well the reconstructed PSF matches the measured PSF.  The following plot 
shows NRMSE as a function of position for the interferometer data collections made.  The 
defocus depths of -4, 0, and +4 mm were used in the phase diversity reconstruction, the other 
depths were not. 


Figure 25: NRMSE vs. Position for the 632.8 nm Phase Diversity Reconstruction 
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Lastly, the reconstructed PSFs were compared visually against the measured PSFs.  These can be 
seen to agree well.  The following figure shows these PSFs at the -4 mm position. 


Figure 26: Measured and Reconstructed PSFs at -4 mm Position for the 632.8 nm Test 

 
5.3 405 nm Monochromatic Testing 
Next testing with the 405 nm laser as the only source was performed.  The axial coordinate 
system was maintained. The reconstructed Z4 Zernike coefficient was 1.477 waves, 
corresponding to a focus shift of 4.122 mm.  This agrees well with results from a Zemax model 
of the system, which predicts a shift of 4.046 mm.  The following figure shows the reconstructed 
wavefront at 405 nm with piston, tip, tilt, and power removed.   


Figure 27: Reconstructed Wavefront at 405 nm without Piston, Tip, Tilt, and Power 

 
No interferometric data exist since no interferometer is available at this wavelength.  The 
following plot shows NRMSE versus position for this test.  Data at five defocus depths (0.5, 2, 
4.5, 6.5, and 8.5 mm) were used in the phase diversity reconstruction. 
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
Figure 28: NRMSE vs. Position for the 405 nm Phase Diversity Reconstruction 

 
Clearly the values for this reconstruction are higher than those shown in Figure 25.  In particular, 
the data appear to have a characteristic V-shape.  This is not understood at this time.  The V-
shape can be worsened by changing the focal length of the system, but the 661 mm focal length 
used in this simulation seems to give the best results. 
 
The reconstructed PSFs also do not agree quite as well with the measured PSFs.  The following 
figures show these PSFs at the 0.5 mm defocus depth. 


Figure 29: Measured and Reconstructed PSFs at 0.5 mm Position for the 405 nm Test 

 
Testing with a true broadband spectral source was abandoned in favor of the two-wavelength 
methodology described above.  This two-wavelength methodology provides a stepping stone to 
the broadband case from the monochromatic case that is considerably simpler. 
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It is not clear why the NRMSE is higher for the 405 nm case.  It is perhaps likely that this is due 
to the shorter wavelength providing higher spatial frequency content in the PSF, which is more 
difficult to match.  Indeed, the reconstructed PSF shown in Figure 29 shows some radial ringing 
artifacts that are not present in the measurement, perhaps because of motion blur. 
 
The magnitude of the wavefront error being reconstructed is likely close to being correct.  A 
Zemax model of the system was created and the tilt of the lens was set to 1.45°.  The following 
wavefront was simulated for the 632.8 nm case: 


Figure 30: Zemax Model of 632.8 nm Wavefront assuming 1.45° Lens Tilt 

 
Neglecting the rotation of the wavefront (which could be adjusted by changing the tilt angle in 
Zemax), the wavefront is similar to that shown in Figure 24.  The corresponding wavefront at 
405 nm is shown in the next figure. 
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
Figure 31: Zemax Model of 405 nm Wavefront assuming 1.45° Lens Tilt 

 
As can be seen from these figures, the RMS wavefront error of the 405 nm wavefront is expected 
to be considerably greater than the RMS wavefront error of the 632.8 nm wavefront.  In fact, the 
reconstructed value of 0.190 waves is not too far off from the predicted value of 0.168 waves. 
 
5.4 Two-Wavelength Testing 
 
A set of 50 simulations were run to examine the expected effect of the algorithm on an error-free 
experiment corresponding to the testbed.   The spectral weights were assigned based upon 
laboratory measurements, but all other parameters are as specified in section 4, with Zernike 
polynomials through 9th order used to produce the PSFs and Zernike polynomials through 7th 
order used for recovery. 
 
Figure 32(a) provides a histogram of the remaining RMS phase error.  Performance was 
excellent with, in the majority of cases, over 99% of the error recovered for each wavelength.  
Again, the longer wavelength was not recovered quite as well.   
 
Figure 32(b) shows the reduction in the error metric as a function of minimization iteration for an 
arbitrary run.  The first 20 iterations center the PSFs close to the optical axis.  Significant and 
quick improvements occur when optimizing based upon Zernike coefficients, with incremental 
improvements following the major initial reductions.  The point-by-point phase optimization also 
produces some benefit, but the effect is minor. 
 
Phase images for an arbitrary run are shown in Figure 33.  A comparison to Figure 20 through 
Figure 22 readily establishes visually that the algorithm would be expected to work quite well at 
two single wavelengths. 
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(a) (b) 
Figure 32: Simulation of testbed.   

(a) Histogram showing remaining wavefront RMS error after reconstruction at the two 
wavelengths.  The vertical lines represent the mean value of the remaining RMS error.  
The curves represent a log-normal plot with the given mean value, and are included for 

visualization purposes only.   (b) Plot showing progress in reducing the error function for 
an arbitrary simulation. 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 33: Wavefront images from arbitrary simulation.  
Leftmost column shows phase error used to create the PSFs.  Middle column shows 

recovered phase error.  Rightmost column shows the difference between the recovered 
and the simulated error.  Images (a) – (c):  425 nm.  Images (d) – (f): 632.8 nm. 
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Actual data were collected for the two-wavelength case using the testbed.  The following figures 
show the reconstructed wavefronts. 


Figure 34: 405 nm Wavefront Reconstructed from Two-Wavelength Data 


Figure 35: 632.8 nm Wavefront Reconstructed from Two-Wavelength Data 
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The two reconstructed wavefronts agree well with the monochromatic measurements.  The 
following plot shows NRMSE versus position for this test; all defocus depths were used in the 
optimization. 


Figure 36: NRMSE vs. Position for the Two-Wavelength Phase Diversity Reconstruction 

 
The reconstructed PSFs do show slight errors relative to the reconstructed PSFs.  The following 
figure shows the PSFs at the 8 mm position. 


Figure 37: Measured and Reconstructed PSFs at 8 mm Position for the Two-Wavelength 

Test 
 

There is some asymmetry in the measured PSF that is not present in the reconstructed PSF. 
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6 CONCLUSIONS 
 
A method for incorporating wavelength-varying wavefront information in a broadband phase-
diverse phase retrieval algorithm has been devised and presented.  This algorithm extends earlier 
work in broadband phase-diverse phase retrieval by allowing the wavefront variations as a 
function of wavelength to be optimized rather than specified.  This algorithm also allows the 
spectral weights to be optimized, potentially allowing the spectrum of an unknown point source 
to be characterized by a panchromatic imaging system. 
 
Simulation results for the broadband PDPR algorithm demonstrate its utility.  Accurate 
reconstructions were achieved under a variety of circumstances, including the case where fewer 
wavelengths were considered in the reconstruction as compared to the simulation.  This is an 
encouraging result, as it more closely simulates what happens when reconstructions are 
performed with a true broadband source.  The accuracy of the reconstruction was generally 
poorer at longer wavelengths compared to shorter wavelengths.  This is believed to be due to the 
fact that shorter wavelengths are responsible for the sharper features in the PSF and are hence 
better determined by the data. 
 
An experimental test was performed with two wavelengths.  Results of this testing indicate that 
the algorithm can successfully retrieve the wavefront at two different wavelengths from a 
polychromatic measurement.  No assumption on the variation of wavefront as a function of 
wavelength is imposed. 
 
Future work on this program would continue with the two-wavelength testing to see if the 
agreement could be improved further.  Some testing indicates that improved reconstructions may 
be possible when defocus depths are added one at a time to the optimization routine, rather than a 
single optimization being performed simultaneously over all defocus depths.  Testing could also 
be performed with a different test lens where the shape of the wavefront varied more as a 
function of wavelength. 
 
Next, optimizations assuming that the wavefronts as a function of wavelength are known but the 
spectral weights are not could be performed.  The same two-wavelength test configuration and 
data could be used for this analysis. 
 
Lastly, testing could be conducted with a full broadband source.  Careful characterization of the 
spectral response of the testbed system would need to be made.  This includes characterizing the 
response of any optics used as well as the spectral response of the detector. 
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APPENDIX A:  ZERNIKE COEFFICIENTS 
 
The Zernike polynomials are a set of polynomials that are orthogonal over the unit circle.  A 
number of ordering and scaling conventions are used in the literature and by various software 
packages.  The convention used here are the orthonormal Zernike coefficients described by Noll 
(Noll 1976).  The following figure shows the first fifteen polynomials. 


 

Figure 38: The First 15 Standard Zernike Polynomials 
 
 
The following table provides the equations for the first fifteen Zernike polynomials using Noll’s 
convention: 

Z1:Piston

Z2:Tilt X Z3:Tilt Y

Z4:Defocus Z5:Astig 1st ord 45 deg Z6:Astig 1st ord 0 deg

Z7:Coma Y Z8:Coma X Z9:Trefoil 30 deg Z10:Trefoil 0 deg

Z11:Spherical Ab. Z12:Astig 2nd ord 0 deg Z13:Astig 2nd ord 45 deg Z14:Tetrafoil 0 deg Z15:Tetrafoil 22.5 deg
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Zernike # n m Equation Description 
1 0 0 1 Piston 

2 1 0  2 cosr   Tilt X 

3 1 1  2 sinr   Tilt Y 

4 2 0  23 2 1r   Defocus 

5 2 1 
2 )6 (2r sin   Astig 1st ord. 45 deg 

6 2 2 
2 cos )6 (2r   Astig 1st ord. 0 deg 

7 3 0  38(3 2 )sinr r   Coma Y 

8 3 1  38(3 2 )cosr r   Coma X 

9 3 2 
38 sin(3 )r   Trefoil 30 deg 

10 3 3 
3 cos8 (3 )r   Trefoil 0 deg 

11 4 0  4 25 6 6 1r r   Spherical Aberration 

12 4 1 
4 210(4 3 )cos(2 )r r   Astig 2nd ord 0 deg 

13 4 2 
4 210(4 3 )sin(2 )r r   Astig 2nd ord 45 deg 

14 4 3 
410 cos(4 )r   Tetrafoil 0 deg 

15 4 4 
4 si10 )n(4r   Tetrafoil 22.5 deg 

Table 6: Definition of the First 15 Standard Zernike Polynomials 
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