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Abstract

We consider the application of high-order spectral/hp finite element technology to the nu-
merical solution of boundary-value problems arising in the fields of fluid and solid mechanics.
For many problems in these areas, high-order finite element procedures offer many theoret-
ical and practical computational advantages over the low-order finite element technologies
that have come to dominate much of the academic research and commercial software of the
last several decades. Most notably, we may avoid various forms of locking which, without
suitable stabilization, often plague low-order least-squares finite element models of incom-
pressible viscous fluids as well as weak-form Galerkin finite element models of elastic and
inelastic structures.

The research documented in this dissertation includes applications of spectral/hp finite el-
ement technology to an analysis of the roles played by the linearization and minimization
operators in least-squares finite element models of nonlinear boundary-value problems, a
novel least-squares finite element model of the incompressible Navier-Stokes equations with
improved local mass conservation, weak-form Galerkin finite element models of viscoelastic
beams and a high-order seven parameter continuum shell element for the numerical simu-
lation of the fully geometrically nonlinear mechanical response of isotropic, laminated com-
posite and functionally graded elastic shell structures. In addition, we also present a simple
and efficient sparse global finite element coefficient matrix assembly operator that may be
readily parallelized for use on shared memory systems. We demonstrate, through the numer-
ical simulation of carefully chosen benchmark problems, that the finite element formulations
proposed in this study are efficient, reliable and insensitive to all forms of numerical locking
and element geometric distortions.
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Chapter 1

Introduction

Background

In the numerical simulation of a wide range of physical phenomena (mathematically de-
scribed in terms of boundary or initial boundary-value problems), the finite element method
has emerged as one of the most powerful tools for obtaining accurate, efficient and stable
approximate solutions. Since the publication of the groundbreaking work of Turner et al. [5],
the scientific literature and, much more importantly, practical engineering software based on
the finite element method have grown at a remarkable pace, spanning many fields of engi-
neering and applied science. At present, the finite element method is widely recognized as
the premier computational procedure for the numerical simulation of solid mechanics prob-
lems. Outside the realm of the mechanics of solids, however, the method has yet to receive
such a level of acceptance and prominence. This is especially noteworthy in computational
fluid dynamics (CFD), a field that is presently dominated by low-order finite difference and
finite volume technologies.

The genesis of most finite element models is the weak-form Galerkin formulation. It is now
well-known that the success of finite element procedures, based on the Galerkin formulation,
in obtaining favorable numerical solutions of boundary-value problems is closely tied to the
degree to which the weak formulation coincides with an unconstrained minimization problem
[6]. More generally, whenever any weak formulation (based on the Galerkin, Petrov-Galerkin,
weighted residual, or least-squares methods, among others) is equivalent to the problem of
minimizing an unconstrained convex quadratic functional, the finite element model inherits
the following highly desirable mathematical properties:

1. The numerical solution becomes an orthogonal projection of the exact solution onto
the trial space of a given conforming finite element discretization. As a result, the
numerical solution represents the “best approximation” of the exact solution in the
trial space (as measured by a well defined energy norm).

2. No highly restrictive compatibility requirements (such as the discrete inf-sup condition)
ever arise that must be additionally satisfied by the discrete conforming function spaces
of the various dependent variables.

3. The resulting linear algebraic system of global finite element equations are always
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symmetric and positive-definite (a property that may be exploited by both direct as
well as iterative solvers).

This ideal setting for finite element approximation, stemming from the unconstrained mini-
mization of a convex quadratic functional, is sometimes termed a variational setting.

In retrospect, it is now clear that the finite element method emerged in perhaps the
most favorable of settings; i.e., the analysis of linear elastic structural components. The
method initially arose as a direct extension of the classical Ritz method [7], wherein the
numerical solution is sought via a direct and discrete minimization of the total potential
energy functional. The combination of the method’s successful application to problems
in linear elasticity along with its versatility in handling irregular domains and complex
boundary conditions led researchers to extend the finite element method, in the context of
the weak-form Galerkin procedure, to boundary-value problems whose weak formulations
cannot be construed as global minimizers. For many such problems it was soon discovered
that many of the most attractive features of the finite element method exhibited in the
solution of solid mechanics problems, were no longer present.

In recent years, there has been a large body of work attempting to recover some of the
attractive features of the ideal variational setting for problems whose Galerkin based weak
formulations are either estranged or completely divorced from any notion of unconstrained
functional minimization. Many of the advocated procedures may be viewed as stabilized
Galerkin formulations and include methods such as the SUPG [8, 9], penalty [10, 3] and
Galerkin least-squares [11], among others. Unfortunately, the success of these methods
is often intertwined with ad-hoc parameters that require mesh and/or solution dependent
fine-tuning. Furthermore, it is worth noting that although the various stabilized Galerkin
formulations can often sidestep the discrete inf-sup condition, they cannot generally inherit
the best approximation property nor produce symmetric positive-definite coefficient matrices
for the case when the governing equations contain non-self-adjoint operators.

In addition to the stabilized Galerkin formulations, there has also been renewed interest
over the past two decades in developing finite element models for problems outside the
realm of solid mechanics that recover most, if not all, of the attractive features of the ideal
variational setting. One such formulation is based on the least-squares method and allows
for a finite element model to be developed for any boundary-value problem in a setting of
unconstrained functional minimization (see for example Refs. [12, 13, 14, 15, 16, 17, 18,
19, 20, 21]). The least-squares method is based on the notion of residual minimization,
wherein a least-squares functional is constructed from the sum of the squares of the norms of
the partial differential equation residuals (where the norms of standard Sobolev spaces are
typically employed). Such functionals are purely mathematical in nature and do not have
the meaning of energy of a system. The weak form is obtained via a direct minimization
of the least-squares functional. The finite element model is then obtained in the usual way,
and inherits the desirable properties discussed previously for the ideal variational setting.
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Motivation for the present study

In previous work concerned with developing effective finite element models for structures
and fluids, predominantly low-order polynomial finite element procedures have been adopted,
primarily through the use of the weak-form Galerkin formulation. As discussed previously,
the Galerkin procedure is typically sufficient to achieve a favorable setting for the numerical
simulation of deformable solids. For viscous fluids on the other hand, we find the least-
squares method to be better suited for attaining a reliable computational environment for
finite element approximations. Throughout this work, we further advocate the use of high-
order polynomial approximations to improve the discrete setting for various formulations for
fluids and structures.

To motivate the need for polynomial refinement (or p-refinement), we recall that al-
though unconstrained minimization principles offer a highly attractive setting for finite el-
ement approximation, adequate solution convergence properties under h-refinement alone
cannot always be realized. We recall that for weak forms resulting from the unconstrained
minimization of a quadratic functional, error estimates of the following type can often be
established for a given conforming finite element approximation [22]

||u−uhp||Ω,s ≤ Chp+1−s, s= 0,1 (1.1)

In the above expression u is the analytical solution, uhp is the finite element solution and C
is a constant. The quantity || · ||Ω,s is the norm associated with the Sobolev space Hs(Ω) and
Ω is the domain on which the problem is posed (see Chapter 2 for details). The quantity h is
a measure of the average element size in Ω̄ and the symbol p is the polynomial order of the
finite element approximation within a given element. Under ideal conditions the constant C
will depend on u, Ω and the material properties of the given boundary-value problem; and
is therefore, independent of h.

Unfortunately, h-refinement alone does not always constitute an effective means of im-
proving the finite element solution. For example, in the finite element approximation of the
mechanical response of structural components (such as beams, plates and shells) the con-
stant C becomes adversely large in the limit as the thickness tends to zero. Furthermore,
equal low-order interpolation of the dependent variables inevitably leads to various forms
of numerical locking that cannot be directly overcome without the use of severe mesh re-
finement. To overcome such deficiencies, most researchers employ stabilized low-order finite
element technology using either: (a) a displacement-based formulation with selective reduced
integration or (b) a mixed variational formulation based on the Hu-Washizu principle (e.g.,
the assumed strain and enhanced strain procedures). It is worth noting that low-order
stabilization procedures often necessitate additional ad-hoc fixes such as hour-glass control.

Another important example where h-refinement yields a non-optimal computational pro-
cedure arises in least-squares finite element models of the Navier-Stokes equations governing
flows of incompressible fluids. Out of practicality, the majority of such finite element mod-
els are constructed from least-squares functionals whose energy norms are not Hs(Ω)-norm
equivalent (i.e., are non-Hs(Ω)-coercive). For these finite element models, the constant C
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either depends on the mesh parameter h and/or little may be inferred directly from Eq.
(1.1). To improve the performance of low-order least-squares finite element formulations,
ad-hoc reduced integration and/or collocation procedures have often been adopted.

The present study is motivated by the observation that many of the deficiencies encoun-
tered in finite element models constructed from unconstrained minimization principles may
be largely circumvented or avoided entirely whenever a sufficiently adequate polynomial or-
der p is employed in constructing the finite element approximation uhp within each element.
In particular, whenever an appropriate level of p-refinement is utilized, efficient finite ele-
ment procedures are obtained which do not require any of the sophisticated ad-hoc tricks
that are so often required to improve the numerical solutions associated with low-order finite
element formulations. As a result, we are free in the numerical implementation to employ
full integration and allow the high-order finite element function spaces to naturally avoid
any inconsistencies found in low-order approximations that otherwise result in locking.

Scope of the research

The research began at Texas A&M University in the Fall of 2007 and is largely concerned
with developing efficient finite element models for fluids and structures based on high-order
spectral/hp finite element technology. The research encompasses an analysis of the least-
squares method as applied in the finite element solution of nonlinear boundary-value prob-
lems [23], a novel least-squares formulation of the steady and non-stationary incompressible
Navier-Stokes equations with enhanced local mass conservation and weak-form Galerkin fi-
nite element models of viscoelastic beams based on the Euler-Bernoulli, Timoshenko and
third-order Reddy beam theories [24]. In addition, we also present a general shell element
for the numerical simulation of the finite deformation of isotropic, laminated composite and
functionally graded elastic shell structures. Our aim throughout this research has been to
apply novel mathematical models and numerical solution strategies to a variety of prob-
lem sets in continuum mechanics, wherein the additional benefits obtained from employing
high-order spectral/hp finite element technology are substantial.

The dissertation is organized as follows. In Chapter 2 we present an overview of the steps
involved in developing and arriving at finite element models using high-order spectral/hp
finite element technology. We also document highly practical strategies, developed during
the course of the present research, for implementing high-order finite element procedures in
parallel computing environments using the OpenMP paradigm. Of significant importance is
a discussion on a simple and efficient shared memory based sparse global coefficient matrix
assembly operator (an algorithm which has been implemented numerically in C++ and
successfully utilized on practical finite element problems containing as many as half a million
degrees of freedom).

Chapters 3 and 4 are concerned with least-squares finite element models of nonlinear
boundary-value problems with specific applications to viscous incompressible fluid flows. In
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Chapter 3 we provide a critical examination of the consequences associated with exchang-
ing the order of application of the minimization and linearization operators in least-squares
finite element formulations of nonlinear boundary-values problems. In our analysis, we con-
sider the abstract setting for an L2-norm least-squares formulation of an abstract nonlinear
boundary-value problem. We further provide a thorough discussion of possible forms taken
by the linearized least-squares weak formulation, when linearization is either performed be-
fore or after minimization of the least-squares functional in the context of both the Picard
and Newton linearization procedures. We show both mathematically and also by way of
numerical experiments that although the least-squares principle suggests that minimization
ought to be performed prior to linearization, such an approach is often impractical and not
necessary. In Chapter 4 we present a novel least-squares finite element formulation for both
the steady and non-stationary incompressible Navier-Stokes equations based on the stan-
dard velocity-pressure-vorticity first-order system, but with enhanced element-level mass
conservation. The proposed formulation comes with little additional computational cost
(as compared to the standard velocity-pressure-vorticity least-squares formulation) and does
not compromise the unconstrained minimization setting that is so attractive in least-squares
finite element models. We showcase the performance of the proposed least-squares formula-
tion (in improving local mass conservation) through the numerical simulation of a variety of
important steady-state and non-stationary fluid flow problems.

In Chapters 5 and 6 we consider applications of spectral/hp finite element technology to
problems in solid mechanics, namely, viscoelastic beams and elastic shells. In Chapter 5, we
present efficient finite element models for initially straight viscoelastic beam structures sub-
jected to loading conditions that induce large displacements, moderate rotations and small
strains. The finite element models are constructed using the kinematic assumptions of the
Euler-Bernoulli, Timoshenko and third-order Reddy beam theories. The viscoelastic consti-
tutive equations are efficiently discretized in time using the trapezoidal rule in conjunction
with a two-point recurrence formula. The resulting finite element models are shown to be
void of both membrane and shear locking. In Chapter 6 we propose a general high-order
continuum shell finite element for use in the analysis of the fully geometrically nonlinear me-
chanical response of thin and thick isotropic, laminated composite and functionally graded
elastic shell structures. The shell formulation is based on a 7-parameter expansion of the
displacement field; thereby allowing for the use of fully three-dimensional constitutive equa-
tions while avoiding the need for a rotation tensor in the kinematical description. The shell
element is shown, through the numerical simulation of carefully chosen benchmark problems,
to be insensitive to all forms of numerical locking and severe geometric distortions. Finally, in
Chapter 7 we provide concluding remarks and offer suggestions for future research directions.

5



This page intentionally left blank.



Chapter 2

Numerical implementation of
high-order spectral/hp finite element
procedures

In this chapter, we present a general overview of fundamental steps involved in devel-
oping and arriving at finite element models of boundary-value problems using high-order
spectral/hp finite element technology. We also document highly practical strategies, many
of which were developed during the course of this study, for implementing high-order finite
element procedures for moderately large sparse finite element systems on shared-memory
based parallel computing architectures.

The chapter is organized as follows. We begin by providing an overview of some of the
basic notation and standard terminology that is employed throughout this dissertation. We
then review the standard one-dimensional C0 spectral nodal basis functions that we utilize to
develop high-order finite element interpolation functions for multi-dimensional spectral/hp
finite elements. Since high-order finite element procedures necessitate high-order quadrature
rules, we also review basic formulas needed to determine the points and weights of the Gauss-
Legendre quadrature rule (for the general case where an arbitrary number of quadrature
points are desired).

We also discuss in this chapter efficient algorithms for implementing high-order finite ele-
ment technology in parallel on shared-memory systems. Most notably, we present a global fi-
nite element assembly operator that may be readily parallelized using the OpenMP paradigm.
The set of algorithms constituting the global assembly operator were developed during the
course of the present research and have been successfully implemented using the C++ pro-
gramming language. The assembly operator efficiently constructs a sparse representation of
the global finite element coefficient matrix using a compressed row (or compressed column)
storage format. As a result, the operator is applicable to finite element equations consisting
of well over 100,000 degrees of freedom and may be used in conjunction with any number of
modern sparse equation solver libraries (e.g., UMFPACK, PARDISO, MUMPS, etc.). We
improve system memory requirements in the numerical implementation of high-order spec-
tral/hp finite element technology by adopting element-level static condensation [25], wherein
the interior degrees of freedom of each element are implicitly eliminated prior to invoking
the global assembly operator. Finally, we showcase the performance of the high-order finite
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element procedures discussed throughout this chapter through the numerical simulation of
an example problem possessing roughly half a million total degrees of freedom.

The abstract finite element problem

Notation

Before beginning our discussion on high-order spectral/hp finite element procedures and
their efficient numerical implementation, we find it prudent to introduce some standard
notation that will be used throughout this dissertation. We assume that Ω is an open
bounded subset of Rnd, where nd denotes the number of spatial dimensions. The boundary
of Ω is denoted by Γ = ∂Ω = Ω̄−Ω, where Ω̄ represents the closure of Ω. A typical point
belonging to Ω̄ is denoted as x. We employ the customary designations for the Sobolev
spaces Hs(Ω) and Hs(Γ) where s > 0 [26]. The corresponding norms are given as || · ||Ω,s and
|| · ||Γ,s. Likewise the inner products associated with these spaces are denoted as ( · , · )Ω,s and
( · , · )Γ,s respectively. The product spaces Hs(Ω) = [Hs(Ω)]nd are constructed in the usual
way.

Throughout this study we favor the so-called “Gibbs notation” for tensor analysis as
opposed to the “Ricci notation” which is popular in the continuum mechanics community.
As a result, the tensor product of vectors u and v is given as uv as opposed to u⊗ v.
Likewise, the gradient of vector u is represented with respect to an orthogonal Cartesian
coordinate system as ∇u = (∂uj/∂xi)êiêj rather than ∇u = (∂ui/∂xj)êi⊗ êj . The former
expression follows naturally whenever ∇ is defined as a vector differential operator of the
form ∇≡ êi∂/∂xi.

Weak formulations

The classical form of a typical boundary or initial boundary-value problem is not well
suited for numerical approximation via the finite element method. Instead, a given bound-
ary or initial boundary-value problem must be first recast into the form of a generalized
variational boundary-value problem, also know as a weak formulation, prior to numerical
discretization using the finite element method. In the present work we construct weak for-
mulations of various boundary and initial value problems based upon the classical weak-form
Galerkin formulation as well as through the use of least-squares variational principles. Weak
formulations typically involve integral statements over Ω and Γ that are in a generalized
sense equivalent to the original set of partial differential equations and natural boundary
conditions. In general, a weak formulation (based on either the weak-form Galerkin or least-
squares models) of a general boundary-value problem may be stated as follows: find u ∈ V
such that

B(w,u) = F(w) ∀w ∈W (2.1)
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where B(w,u) is a bilinear form, F(w) is a linear form and V and W are function spaces
(e.g., appropriate subsets of the Sobolev space H1(Ω)). The quantity u represents the set
of dependent variables (associated with the variational boundary-value problem) and w
represents the corresponding weighting or test function. Unlike classical solutions that are
defined unambiguously point-wise, weak solutions exist with respect to test functions and
are therefore understood in the context of distributions. As a result, the weak solution (and
its derivatives) is typically defined unambiguously in Ω up to a set of measure zero. We note
that Eq. (2.1) is not limited to the analysis of linear problems only, but is also applicable to
nonlinear generalized boundary-value problems that have been linearized in the context of
an appropriate iterative solution procedure (e.g., a fixed point iteration scheme such as the
methods of Picard or Newton).

High-order spectral/hp finite element models

We now proceed to describe the high-order spectral/hp finite element technology that is
employed throughout the present research. To this end we note that the finite element model
associated with Eq. (2.1) is obtained by restricting the solution space to a finite dimensional
sub-space Vhp of the infinite dimensional function space V and the weighting function to
a finite dimensional sub-space Whp ⊂W . As a result, in the discrete case we seek to find
uhp ∈ Vhp such that

B(whp,uhp) = F(whp) ∀whp ∈Whp (2.2)

We assume that the domain Ω̄ ⊂ Rnd is discretized into a set of NE non-overlapping sub-
domains Ω̄e, called finite elements, such that Ω̄ ≈ Ω̄hp =

⋃NE
e=1 Ω̄e. The geometry of each

element is characterized using the standard isoparametric bijective mapping from the master
element Ω̂e to the physical element Ω̄e. In the present study we restrict the classes of
elements considered to lines in R1, four sided quadrilaterals in R2 and six faced bricks in R3

(although numerical results are presented for nd= 1 and 2 only). As a result we can simply
define the geometry of the master element as Ω̂e = [−1,+1]nd. The natural coordinates
associated with Ω̂e (when nd = 3) are defined as ξ = (ξ1, ξ2, ξ3) = (ξ,η,ζ) (and may be
truncated appropriately whenever nd < 3). We note in passing that the continuum shell
element presented in Chapter 6 is obtained by mapping the master element Ω̂e = [−1,+1]2

onto a two-dimensional manifold Ω̄e constituting the approximate mid-surface of the eth
element. As a result, the finite element approximation of the shell mid-plane will generally
consist of a curved two-dimensional surface imbedded in three-dimensional space.

In this work we employ a family of finite elements constructed using high polynomial
order interpolation functions. The quantity h in the definition of the sub-spaces Vhp and
Whp represents the average size of all the elements in a given finite element discretization.
Likewise, the symbol p denotes the polynomial degree (or p-level) of the finite element
interpolation functions associated with each element in the model. As a result, the discrete
solution may be refined by either increasing the number of elements (i.e., reducing h) in
Ω̄hp (h-refinement), increasing the polynomial order of the approximate solution within each
element Ω̄e (p-refinement) or through an appropriate and systematic combination of both
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h-refinement and p-refinement.

Within a typical finite element Ω̄e, the set of dependent variables u is approximated using
the following general interpolation formula

u(x)≈ uhp(x) =
n∑

i=1

∆e
iψi(ξ) in Ω̂e (2.3)

where ψi(ξ) are the nd-dimensional Lagrange interpolation functions, ∆e
i is an array con-

taining the value of uhp(x) at the location of the ith node in Ω̄e and n = (p+ 1)nd is the
number of nodes in Ω̄e. The above definition is unambiguous due to the employment of the
standard isoparametric mapping Ω̂e� Ω̄e (used in the characterization of the geometry of
each element). Note that {∆e

i}n
i=1 constitutes a set of n arrays for the eth element, where

the size of each array is equal to the total number of variables comprising u. In the current
research, all interpolants appearing in Eq. (2.3) are of polynomial order p, and are hence
non-hierarchal.

There are a variety of ways in which high-order nd-dimensional interpolation functions
may be formulated. For our analysis we construct these polynomial functions from tensor
products of the one-dimensional C0 spectral nodal interpolation functions

ϕj(ξ) =
(ξ−1)(ξ+1)L′p(ξ)

p(p+1)Lp(ξj)(ξ− ξj)
in [−1,+1] (2.4)

where Lp(ξ) is the Legendre polynomial of order p and L′p(ξ) represents the derivative of
Lp(ξ) with respect to ξ. The quantities ξj represent the locations of the nodes associated
with the one-dimensional interpolants (with respect to the natural coordinate ξ). The one-
dimensional nodal points are defined as the roots of the following expression

(ξ−1)(ξ+1)L′p(ξ) = 0 in [−1,+1] (2.5)

The nodal points {ξj}p+1
j=1 found in solving Eq. (2.5) are known as the Gauss-Lobatto-

Legendre (GLL) points. Whenever p ≤ 2, the GLL points are equally spaced within the
standard interval [−1,+1]. When p > 2 the GLL points are distributed unequally with dis-
cernable bias given to the end points of the interval. The bias associated with the spacing
of the GLL points increases with p. In Figure 2.1 we plot the high-order interpolation func-
tions {ϕj}p+1

j=1 generated for the case where p = 6. In this figure we show the interpolation
functions associated with both an equal as well as a GLL spacing of the nodal points in the
standard bi-unit interval. The interpolation functions constructed using equal nodal spacing
clear exhibit oscillations (often termed the Runge effect) near the end points of the standard
interval. These oscillations become more pronounced as the p-level is increased. The spec-
tral interpolation functions, on the other hand are free of the Runge effect. Finite element
coefficient matrices constructed using spectral interpolation functions are as a result better
conditioned than matrices formulated using elements with equally spaced nodes.

It is worthwhile to note that the spectral nodal basis functions {ϕj}p+1
j=1 may be viewed as

standard Lagrange interpolation functions, with the locations of the unequally spaced nodal
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Figure 2.1. High polynomial order one-dimensional C0

Lagrange interpolation functions. Cases shown are for p= 6
with: (a) equal spacing of the element nodes and (b) unequal
nodal spacing associated with GLL points.

points given in terms of the roots of Eq. (2.5). As a result, it is possible to write the spectral
interpolants of order p using the following classical formula for Lagrange polynomials

ϕj(ξ) =

p+1∏
i=1,i,j

ξ− ξi
ξj− ξi

(2.6)

Although less elegant than Eq. (2.4), the above expression is better suited for numerical im-
plementation in a general purpose finite element program. Furthermore, the above equation
may also be easily utilized to produce a simple formula for calculating derivatives of the
one-dimensional spectral interpolation functions.

In order to generate the spectral-interpolation functions, it is necessary to be able to
evaluate high-order Legendre polynomials of arbitrary orders. For completeness we recall
that the lowest order Legendre polynomials are of the form L0(ξ) = 1 and L1(ξ) = ξ. All
subsequent Legendre polynomials may be determined through the use of the following well-
known three-point recurrence formula

Lp+1(ξ) = [(2p+1)ξLp(ξ)−pLp−1(ξ)]/(p+1) (2.7)

We also have the following useful expression for calculating the first derivative of the Legendre
polynomials

(ξ−1)(ξ+1)

p
L′p(ξ) = ξLp(ξ)−Lp−1(ξ) (2.8)
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The multi-dimensional high-order interpolation functions ψi(ξ) may be constructed by
taking simple tensor products of the one-dimensional spectral interpolants. For example, in
two-dimensions, the high-order interpolation functions may be defined as

ψi(ξ,η) = ϕj(ξ)ϕk(η) in Ω̂e = [−1,+1]2 (2.9)

where i = j+(k− 1)(p+1) and j,k = 1, . . . ,p+1. A variety of high-order two-dimensional
master elements are depicted in Figure 2.2. In this study we restrict our analysis to problems
that may be solved using either one or two-dimensional master elements. For the sake of com-
pleteness, however, we note in passing that in three-dimensions, the high-order interpolants
can be expressed as

ψi(ξ,η,ζ) = ϕj(ξ)ϕk(η)ϕl(ζ) in Ω̂e = [−1,+1]3 (2.10)

where i= j+[k−1+(l−1)(p+1)](p+1) and j,k, l = 1, . . . ,p+1.

Finite elements whose interpolation functions are constructed in terms of tensor products
of ϕj(ξ) are commonly referred to as spectral elements in the literature [25]. Such elements
are merely standard high-order Lagrange type finite elements, where the locations of the
unequally spaced nodes in Ω̂e are taken as tensor products of the roots of Eq. (2.5).

The finite element method naturally leads to a set of linear algebraic equations for each
element associated with a given finite element discretization. Substitution of Eq. (2.3) as
well as an appropriate discrete test function whp into Eq. (2.2) yields the following set of
equations for the eth element of the finite element model

[Ke]{∆e}= {F e} (2.11)

In the above expression [Ke] is the element coefficient matrix, {∆e} is a vector containing
the essential variables associated with each node of the element and {F e} is the element
force vector. The element coefficient matrix and force vector are obtained respectively by
restricting evaluation of the bilinear form B(whp,uhp) and linear form F(whp) to the domain
Ω̄e.

In this work we utilize the standard Gauss-Legendre quadrature rules in the numerical
integration of all terms appearing in the element coefficient matrix and force vector. Unless
explicitly stated otherwise, we employ full integration of all integrals and do not resort to
selective under-integration of any terms in the coefficient matrix or force vector. Numerical
results are typically obtained using a quadrature rule of at least NGP = p+1, where NGP
represents the number of quadrature points in the direction of a given natural coordinate
associated with Ω̂e. Since high-order methods require the use of high-order quadrature rules,
we note that the Gauss-Legendre quadrature points are obtained as the roots of the Legendre
polynomial of order NGP. The Gauss-Legendre quadrature weights may be obtained from
the following expression

wi =
2

(1− ξ2i )L′NGP(ξi)
2 (2.12)

where {ξi}NGP
i=1 are the quadrature points (which are distinct from and should not be confused

with the GLL points). The Gauss-Legendre quadrature points and weights as well as the

12



Figure 2.2. Examples of various high polynomial order
spectral/hp quadrilateral master elements Ω̂e: (a) a 4 noded
element, p = 1 (b) a 9 noded element, p = 2 (c) a 25 noded
element, p= 4 and (d) an 81 noded element, p= 8.

GLL points may be accurately determined within a user pre-defined numerical tolerance
through the use of a symbolic algebra package such as Maple.

The set of equations for a given finite element discretization is obtained by combining the
equations associated with each element into the following global system of linear algebraic
equations

[K]{∆}= {F} (2.13)

where

[K] =

NE

A
e=1

[Ke], {F}=

NE

A
e=1

{F e} (2.14)

In the above expressions, A is a symbolic representation of the global finite element assembly
operator. Efficient, shared-memory based parallel algorithms for the global assembly oper-
ator A will be discussed in the subsequent section for the case where the global coefficient
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matrix [K] is sparse (i.e., populated primarily by zeros).

For additional details on the computer implementation of the finite element method, in-
cluding descriptions of the bijective isoparametric mapping Ω̂e� Ω̄e and the global assembly
operator A (for full and banded matrices), we refer to the books of Reddy [27] and Bathe
[28]. For further details on construction of the spectral interpolation functions, we refer to
the book by Karniadakis and Sherwin [25].

Shared-memory based parallel implementation of high-

order finite element procedures

Having established the general high-order finite element technology that will be used
throughout this work, we turn our attention to efficient numerical implementation strategies
that may be adopted in a general finite element framework. In particular we will focus our
discussion on numerical implementation techniques that may be readily incorporated in a
parallel computing environment based on the OpenMP paradigm. OpenMP is an Application
Programming Interface (API) that supports multithreading on computer architectures that
admit shared-memory multiprocessing. This form of parallelization may be employed on
a standard desktop (possessing multiple cores) or on a single node of a supercomputer.
Unlike the more general Message Passing Interface (MPI), the use of OpenMP is restricted
to programs involving tasks that may be accomplished by a set of processors which all have
access to the same pool of shared memory.

The purpose of the current discussion is to present simple strategies, developed mostly
during the course of this research, for adapting serial finite element code for efficient parallel
execution on shared-memory systems. Paramount to this process is the ability to assemble
the global sparse coefficient matrix in a manner that is fast, memory efficient and in a
form that is appropriate for linkage with modern sparse solver libraries. We will illustrate
what we feel are the key concepts in the context of a one-dimensional steady-state heat
transfer problem. Although deceptively simple, the fundamental ideas for parallelization
introduced through this problem may be readily utilized in the analysis of a much larger
class of problems posed in multiple dimensions and solved using high-order finite element
technology. The scope of our discussion will be limited to presenting key concepts, and
we will therefore refrain from reviewing the various OpenMP pre-compiler directives that
are specific to a given programming language. We close this section by commenting on
general element-level operations, such as static condensation, that may be readily adopted
to enhance the performance of high-order finite element procedures.
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A one-dimensional example problem

Problem description

In this example (adapted from Reddy [27]), we consider the one-dimensional steady-state
transfer of heat through a wall composed of three separate constituents. The governing
equation for the temperature field T (x) (based on Fourier’s law of heat conduction) may be
expressed as

− d

dx

(
k
dT

dx

)
= 0 in Ω = (0,L) (2.15)

where k is the thermal conductivity and L = 8.5 cm is the length of the domain. The
boundary conditions for the problem are defined as

T (0) = T0, −kdT
dx

∣∣∣∣
x=L

= β[T (L)−T∞] (2.16)

where β is the convective heat transfer coefficient and T∞ is the far-field temperature of the
air on the right hand side of the domain. An illustration of the simple heat transfer problem
is provided in Figure 2.3 (a). This figure also provides numerical values used for the problem
including the lengths hi and thermal conductivities ki of each composite layer.

x

1 2 3 4

(1) (3) (2)

(a)

(b)

h1 h3 h2

Material 1, k1

Material 3, k3

Material 2, k2

T∞ = 50°C

Surface area,

A = 1 m2

T0 = 200°C

k1 = 70 W/(m⋅°C)

k2 = 20 W/(m⋅°C)

k3 = 40 W/(m⋅°C)

h1 = 2.0 cm

h2 = 4.0 cm

h3 = 2.5 cm

β = 10 W/(m2⋅°C)

Figure 2.3. A one-dimensional heat transfer prob-
lem: (a) problem description and (b) finite element discretiza-
tion of Ω̄ using three linear finite elements.
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Variational form of the problem

The variational form of the above boundary-value problem, based on the weak-form
Galerkin formulation, may be stated as follows: find T ∈ V such that

B(w,T ) = F(w) ∀ w ∈W (2.17)

where the bilinear form B(w,T ) and linear functional F(w) are given as

B(w,T ) =

∫
Ω
k
dw

dx

dT

dx
dx+βw(L)T (L) (2.18a)

F(w) = βT∞w(L) (2.18b)

The function spaces V and W associated with the weak-form Galerkin formulation of the
problem are of the form

V :=
{
T : T ∈H1(Ω), T (0) = T0

}
(2.19a)

W :=
{
w : w ∈H1(Ω), w(0) = 0

}
(2.19b)

Discrete element-level finite element equations

We represent the computational domain using a finite element mesh consisting of three
linear elements (i.e., p= 1) as shown in Figure 2.3 (b). The nodes are numbered consecutively
from left to right. For reasons which will become apparent later, we choose to number the
elements in a less structured fashion. The element connectivity array denoted by ECON for
the problem is of the form

ECON =

[
1 3 2
2 4 3

]T

(2.20)

The finite element coefficient matrices and force vectors may be determined using the fol-
lowing formulas

[Ke] =
ke

he

[
1 −1
−1 1

]
+β

[
0 0
0 αe

]
, {F e}= βT∞

{
0
αe

}
(2.21)

where α1 = α3 = 0 and α2 = 1. As a result, the finite element matrices and vectors for each
element may be expressed as

[K1] =

[
3,500 −3,500
−3,500 3,500

]
, {F 1}=

{
0
0

}
(2.22a)

[K2] =

[
500 −500
−500 510

]
, {F 2}=

{
0

500

}
(2.22b)

[K3] =

[
1,600 −1,600
−1,600 1,600

]
, {F 3}=

{
0
0

}
(2.22c)
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Element-level specification of essential boundary conditions

At this point it is customary to construct the finite element equations for the system using
the global finite element assembly operator A. Following global assembly, it is conventional
to then modify the system of equations to account for the essential boundary condition
associated with node 1. For large sparse systems of finite element equations, however, we
find that such an approach is not attractive as it requires searches and sorts that can greatly
reduce performance. An alternative procedure that is computationally efficient is to apply
the essential boundary conditions at the element level, prior to global assembly. Such an
approach yields the following modified coefficient matrix and force vector for element 1

[K1] =

[
3,500 0

0 3,500

]
, {F 1}=

{
700,000
700,000

}
(2.23)

Note that the essential boundary condition (for local node 1 of element 1) has been applied
in a manner that both preserves symmetry and conditioning of the element coefficient ma-
trix. We refer to Reddy [27] for details on maintaining symmetry when applying essential
boundary conditions.

Application of the essential boundary conditions at the element level may be facilitated
in a general finite element program, through the creation of the following one-dimensional
arrays during the pre-processing stage of the finite element simulation

BC p = (1,2,2,2), BC n = (1), BC v = (200) (2.24)

BC p may be viewed as an array of integers used in accessing the components of arrays BC n
and BC v. In general, the size of BC p is NE+1. Likewise, the integer array BC n and double
array BC v are each of length BC p(NE+1)−1 (which is the total number of element-level
essential boundary conditions). The arrays BC n and BC v contain the local node numbers
and numerical values of the essential boundary conditions. By local node numbers, we mean
the node numbering associated with the master element Ω̂e (i.e., i = 1, . . . ,(p+ 1)nd), as
opposed to the global node numbering associated with the physical element Ω̄e. The BC p,
BC n and BC v arrays are used as follows: provided that BC p(e+ 1)−BC p(e) > 0, the
local node numbers associated with the element-level boundary conditions for element e are
stored in BC n(BC p(e), . . . ,BC p(e+1)− 1). Likewise, the corresponding numerical values
are stored in BC v(BC p(e), . . . ,BC p(e+1)−1).

In the present example problem the BC p, BC n and BC v arrays are somewhat trivial as
there is only one element-level essential boundary condition. Had we replaced the convection
boundary condition on the right hand side of the domain with the strong boundary condition
T (L) = T∞, then the element-level essential boundary condition arrays would have been of
the form

BC p = (1,2,3,3), BC n = (1,2), BC v = (200,50) (2.25)

In general, the BC p, BC n and BC v arrays may be constructed for any finite element
discretization based solely on NE, p, ECON and the global essential boundary condition
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data. Application of essential boundary conditions at the element level for multi-dimensional
problems involving multiple degrees of freedom per node is achieved in a manner that is
largely analogous to the procedures outlined in the present one-dimensional case study. The
major difference encountered in higher dimensions is the need to sometimes apply the same
boundary condition multiple times (since a given boundary node will often be shared by
neighboring elements).

Sparse construction of global coefficient matrix

Prior to global assembly, the element-level equations for a particular finite element are
completely independent of the equations associated with any other element. As a result,
the element-level operations of constructing and applying boundary conditions to [Ke] and
{F e}, may be readily performed in a parallel computing environment. Parallel construction
of the global finite element system from the element-level equations in a manner that is both
fast and memory efficient is a far less trivial task. The purpose of this section, therefore, is to
present strategies developed during the course of this research for efficient construction of the
global sparse system of equations in a manner that can be readily accomplished in parallel. To
motivate our discussion, we present in BOX 1 an overview of the primary steps involved in our
parallel shared-

BOX 1. Processing stage of a low-order finite element simulation.

1. Loop over all finite elements: e= 1,NE (parallel)

� Build element coefficient matrix [Ke] and force vector {F e}
� Apply essential boundary conditions to [Ke] and {F e}
� Add components of [Ke] into the global sparse coefficient matrix [K]

� Add components of {F e} into the global force vector {F}

2. Sort global sparse coefficient matrix [K] into compressed row (or compressed
column) form (parallel)

� Sort column (or row) indices of each row (or column) of [K] in non-
decreasing order

� Sum repeated entries of [K] to enforce compatibility of primary vari-
ables

� Remove “numerical” zeros from sparse matrix [K]

3. Solve global system of equations using an appropriate linear solver library
(parallel)
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memory based implementation of the general processing stage of a given finite element simula-
tion. These procedures will be expanded upon for efficient use with high-order finite elements
in Section 2-2. The steps outlined in BOX 1 are applicable to any finite element program
regardless of whether the model problem is linear, nonlinear, quasi-static or transient. Since
we have previously addressed building [Ke] and {F e}, we will focus the remainder of our
discussion on parallel construction of the global system of sparse finite element equations.

In the current example, the full system of equations may be obtained by combining Eqs.
(2.23), (2.22b) and (2.22c) into the following set of linear algebraic equations

3,500† 0† 0 0
0† 5,100†∗ −1,600∗ 0
0 −1,600∗ 2,100♦∗ −500♦

0 0 −500♦ 510♦




∆1

∆2

∆3

∆4

 =


700,000†

700,000†∗

0♦∗

500♦

 (2.26)

Since all boundary conditions have been applied at the element level, the above system
constitutes the final set of finite element equations for our simple example problem. The
symbols †, ♦ and ∗, corresponding with e = 1, 2 and 3 respectively, are included to illustrate
which finite elements contribute to which coefficients of the global set of equations. Invoking
the linear solver yields

∆1 = 200.00◦C, ∆2 = 199.58◦C, ∆3 = 198.67◦C, ∆4 = 195.76◦C (2.27)

For very large problems it is impractical to construct the coefficient matrix [K] in the
form given in Eq. (2.26). Throughout this work we employ a compressed row (or compressed
column) representation of [K]. This sparse storage format is closely related to storage by
indices, whose data structure consists of ne (number of equations), nnz (number of non-zero
entries in [K]) and the following arrays

k i = (1,2,2,3,3,3,4,4) (2.28a)

k j = (1,2,3,2,3,4,3,4) (2.28b)

k v = (3500,5100,−1600,−1600,2100,−500,−500,510) (2.28c)

The integer arrays k i and k j contain the row and column addresses of the non-zero entries
in [K] respectively. The double precision real array k v contains the values of [K] as accessed
by k i and k j. All three arrays are of size nnz. Note that the arrays are sorted by row and
then column in ascending order. As a result, it is possible to abandon k i in favor of the
following integer array

k p = (1,2,4,7,9) (2.29)

which is of size ne + 1. As a result, the column indices of entries in row i are stored in
k j(k p(i), . . . ,k p(i+1)−1). The corresponding numerical values are stored in k v(k p(i), . . . ,k p(i+
1)− 1). The data structure associated with the compressed row form of [K] therefore con-
sists of ne, k p, k j and k v. The compressed row (or the very similar compressed column)
representation of [K] is the sparse form of the global coefficient matrix typically required by
modern linear solver libraries (e.g., UMFPACK, PARDISO, MUMPS, etc.).
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Efficient construction of the compressed row form of [K] for an arbitrary finite element
discretization is a non-trivial task. We now proceed to describe a set of simple procedures for
constructing [K] that may be readily accomplished in parallel using the OpenMP paradigm.
To simplify our discussion, we will present the key ideas in terms of the storage by indices
data structure. First, it is important to note that nnz is not generally known prior to global
assembly. However, if size([Ke]) = nke× nke (where nke is the number of equations for a
given element), then nnz may be bounded from above as nnz ≤ NE× nke2. We therefore
initialize k i, k j and k v to be of size nnzmax = NE× nke2 which for the current example
problem yields

k i = (0,0,0,0,0,0,0,0,0,0,0,0) (2.30a)

k j = (0,0,0,0,0,0,0,0,0,0,0,0) (2.30b)

k v = (0,0,0,0,0,0,0,0,0,0,0,0) (2.30c)

Our next objective is to populate the entries in the above arrays with the components
Ke

ij of the element-level coefficient matrices. To avoid race conditions in the parallel imple-
mentation of the algorithm, we will initially assign each component Ke

ij to a unique location
in the sparse coefficient matrix. Such an assignment may be accomplished through the in-
troduction of a unique integer k ∈ [1, . . . ,NE×nke2]⊂N associated with each component Ke

ij
that may be determined from the following formula

k = pnt((e−1)nke+ i)+ j−1 (2.31)

where pnt is a one-dimensional array of size NE×nke constructed during the pre-processing
stage of the analysis. In the current example problem we define pnt as

pnt = (1†,3†,7♦,11♦,5∗,9∗) (2.32)

We therefore have the following formulas for constructing k i, k j and k v

k i(k) = ECON(e, i), k j(k) = ECON(e,j) k v(k) =Ke
ij (2.33)

which as applied to the current problem yields

k i = (1†,1†,2†,2†,2∗,2∗,3♦,3♦,3∗,3∗,4♦,4♦) (2.34a)

k j = (1†,2†,1†,2†,2∗,3∗,3♦,4♦,2∗,3∗,3♦,4♦) (2.34b)

k v = (3500†,0†,0†,3500†,1600∗,−1600∗,500♦,−500♦,−1600∗,1600∗, (2.34c)

−500♦,510♦)

The symbols †, ♦ and ∗ are again included in the above expressions to more readily identify
to the reader, which finite elements are associated with which coefficients of pnt, k i, k j and
k v for the present example problem. It should be apparent that the operations described
in Eq. (2.33) may be readily accomplished in parallel. Furthermore, it should also be noted
that the elements of the pnt array have been specifically defined in the pre-processing stage
of the analysis such that the entries appearing in k i are naturally sorted in non-decreasing
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order. The meaning of the pnt array should be clear: it is used to contiguously place the ith
row of [Ke] into k i, k j and k v, starting at location pnt((e−1)nke+ i).

To obtain the sparse coefficient matrix in the form of the storage by indices data struc-
ture, we sort into non-decreasing order the columns associated with each given row, enforce
compatibility of the primary variables and then remove any “numerically” zero entries. Sort-
ing the columns of a given row may be readily facilitated via a robust sorting algorithm such
as quicksort. Once sorted, compatibility of the primary variables may be achieved by
summing the coefficient matrix values associated with any duplicate sets of indices (e.g.,
see the underlined terms appearing above in k i, k j and k v). Finally, any entries in k v
that are considered “numerically” zero (i.e., whose magnitudes are less than a prescribed
tolerance TOL) may then be removed from the coefficient matrix. Carrying out each of these
operations results in

k i = (1,2,2,3,3,3,4,4,0,0,0,0) (2.35a)

k j = (1,2,3,2,3,4,3,4,0,0,0,0) (2.35b)

k v = (3500,5100,−1600,−1600,2100,−500,−500,510,0,0,0,0) (2.35c)

It is important to note that the sorting and compatibility enforcement operations may be
performed over each row via parallel processing. The final operation of removing zeros, on
the other hand is inherently serial, yet requires relatively little computational expense (i.e.,
O(nnzmax)). As a result, the overwhelming majority of computations needed to: (a) build
the element-level equations and (b) construct the global finite element coefficient matrix,
may be performed in a parallel computing environment. It should be readily apparent that
once truncated to size nnz = 8, the k i, k j and k v arrays correspond identically with those
given in Eq. (2.28).

It should be noted that up until now, we have devoted our attention to the construction
of the sparse form of [K] and have said nothing regarding the global assembly of {F}. It
turns out that even when the global system of finite element equations is large, the global
force vector {F} may be adequately stored using a simple one-dimensional array. As a
result, global construction of {F} is completely straightforward in the serial case and by
comparison requires only a modicum of additional programming logic to achieve an efficient
parallel implementation.

The algorithms described above for construction of the sparse form of [K] using the
storage by indices data structure are efficient and easy to parallelize on shared memory
systems using the OpenMP paradigm. With relatively modest modifications, the procedures
may be adapted to directly construct the compressed row form of the sparse coefficient
matrix without ever explicitly forming k i. Furthermore, the strategies can also be further
generalized to capitalize on any symmetry in the global system of equations. The main
critique of the overall algorithm is that it in general requires a somewhat greater amount of
memory to construct the sparse form of the global coefficient matrix than is actually needed
to store the sparse form of [K]. In practice, however, we find that this need for extra memory
does not constitute a computationally onerous requirement and is hence of little practical
concern.
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Additional element-level operations

The procedures outlined in the previous section have been presented in the context of the
finite element analysis of a simple one-dimensional boundary-value problem using standard
low-order finite element technology. These procedures may be readily adapted for use in the
finite element analysis of multi-dimensional boundary-value problems using both low and
high-order finite element discretizations. Efficient numerical implementation of high-order
finite element technology, however, requires the deployment of a few additional procedures
that are not necessarily required in low-order finite element formulations. The purpose of
the current discussion, therefore, is to review what we feel are the most crucial element-level
operations that may be used to substantially improve the competitiveness of high-order finite
element formulations.

In general, the element-level equations associated with the eth finite element in a typical
finite element discretization are given in terms of Eq. (2.11). During numerical construction,
however, it is typical to partition the element-level equations for a given element into the
following equivalent form[K11] · · · [K1n]

...
. . .

...
[Kn1] · · · [Knn]



{∆(1)}

...

{∆(n)}

 =


{F (1)}
...

{F (n)}

 (2.36)

where n is the number of dependent variables constituting u. We note that the element-
level equations have been partitioned with respect to the {∆(j)} arrays, where each array
represents a column vector containing the values of the jth component of uhp as evaluated

at the element nodes. The components of each {∆(j)} array are related to ∆e
i (defined in

Eq. (2.3)) by the formula ∆e
i = {∆(1)

i · · ·∆(n)
i }T.

For general nd -dimensional finite element problems, it is typically possible to express the
components of each element sub-coefficient matrix [Kαβ] as

Kαβ
ij =

∫
Ω̄e

nd∑
l=0

nd∑
m=0

Cαβ
lm (x,uhp(x))S lm

ij (x)dΩ̄e

=

∫
Ω̂e

nd∑
l=0

nd∑
m=0

Cαβ
lm (x(ξ),uhp(x(ξ)))S lm

ij (x(ξ))J(ξ)dΩ̂e

(2.37)

where J(ξ) is the Jacobian of the isoparametric coordinate transformation for the element
(i.e., the determinant of the Jacobian matrix) and i, j = 1, . . . ,(p+1)nd. A similar expression
may also be produced for determining the coefficients Fα

i of the force vector. The quantities
S lm

ij represent products of the interpolation functions (and their spatial derivatives) of the
form

S00
ij = ψiψj , S0m

ij = ψi
∂ψj

∂xm
, S l0

ij =
∂ψi

∂xl
ψj , S lm

ij =
∂ψi

∂xl

∂ψj

∂xm
(2.38)
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where l,m= 1, . . . ,nd and xm are the components of x as expressed with respect to some fixed
Cartesian coordinate system (i.e., x = xmêm). The spatial derivatives of the interpolation
functions are of course evaluated in terms of the natural coordinates ξ using the components
of the inverse Jacobian matrix associated with the isoparametric mapping from Ω̂e to Ω̄e.
Note that S lm

ij possesses the following symmetry S lm
ij = Sml

ji . The coefficients Cαβ
lm may be

constant, spatially varying and/or dependent on the components of the dependent variable

uhp(x). It is our observation that the coefficients Cαβ
lm can, in general, become quite involved;

this is especially true in shell finite element formulations as well as for least-squares based
finite element models. We recall that, throughout this work, Gauss-Legendre quadrature
rules are employed exclusively in evaluation of the element-level coefficient matrices and
force vectors. To achieve an attractive level of performance in the numerical integration of
the element-level partitioned coefficient matrices, we find it imperative to:

1. Decompose each partitioned coefficient matrix into the form given in Eq. (2.37).

2. At a given quadrature point explicitly evaluate the components of Cαβ
lm , prior to looping

over i and j in the numerical evaluation of Kαβ
ij .

Similar observations can also be made regarding construction of Fα
i .

A major disadvantage of high-order finite elements is that the connectivity between the
degrees of freedom of a given element and also between neighboring elements increases with
p. To emphasize the implications of this increased connectivity, we consider the following
scenario: suppose region Ω̄ is discretized using two distinct finite element meshes; in the
first case a standard low-order finite element discretization is employed and in the second
we utilized a high-order finite element mesh, where p > 1. Assuming that both meshes have
the same total number of nodes, the global coefficient matrix associated with the latter
discretization will always be more dense than the coefficient matrix for the former. This is a
direct consequence of the large element-level coefficient matrices that are naturally generated
when high-order finite elements are employed. High-order discretizations, however, typically
require far fewer total degrees of freedoms (as compared with low-order discretizations)
to obtain reliable numerical solutions. Even with this advantage, however, a high-order
discretization will inevitably require more computer memory resources to store the global
coefficient matrix.

The onerous memory requirements associated with high-order finite element models may
be reduced through the use of element-level static condensation [25, 27]. As we will demon-
strate, static condensation reduces global memory requirements and allows for significant
parallelization in the global solution procedure. In an effort to present the key ideas, we
rearrange the element-level equations for the eth element into the following form[

[KBB] [KBI ]
[KIB] [KII ]

]{
{∆(B)}
{∆(I)}

}
=

{
{F (B)}
{F (I)}

}
(2.39)

In the above expression we have partitioned the element-level system of equations with
respect to the element boundary degrees of freedom {∆(B)} and the element interior degrees
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of freedom {∆(I)}. Since the interior degrees of freedom for element e do not contribute to
the element-level equations of any other element, it is possible to implicitly remove them
from Eq. (2.39). This process yields the following condensed set of equations for the element
boundary degrees of freedom

[K̄e]{∆(B)}= {F̄ e} (2.40)

where the effective element coefficient matrix [K̄e] and force vector {F̄ e} are of the form

[K̄e] = [KBB]− [KBI ][KII ]−1[KIB] (2.41a)

{F̄ e}= {F (B)}− [KBI ][KII ]−1{F (I)} (2.41b)

It is important to note that [KII ]−1 need not be evaluated explicitly. Instead, the operations
[KII ]−1[KIB] and [KII ]−1{F (I)} may be performed via Gaussian elimination with partial
pivoting using the standard LAPACK subroutine dgesv.

It is now possible to formulate the global system of finite element equations in terms of
the element boundary degrees of freedom only. This system necessitates only a fraction of the
memory required to compute the full system of finite element equations (formulated in terms
of all degrees of freedom). Once the element boundary degrees of freedom have been deter-
mined by the global solver, the interior degrees of freedom may be obtained by solving the fol-
lowing set of equations for each finite
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BOX 2. Processing stage of a high-order finite element simulation.

1. Loop over all finite elements: e= 1,NE (parallel)

� Build element coefficient matrix [Ke] and force vector {F e}
� Apply essential boundary conditions to [Ke] and {F e}
� Perform static condensation to construct [K̄e] and {F̄ e}
� Add components of [K̄e] into the global sparse coefficient matrix [K]

� Add components of {F̄ e} into the global force vector {F}

2. Sort global sparse coefficient matrix [K] into compressed row (or compressed
column) form (parallel)

� Sort column (or row) indices of each row (or column) of [K] in non-
decreasing order

� Sum repeated entries of [K] to enforce compatibility of primary vari-
ables

� Remove “numerical” zeros from sparse matrix [K]

3. Solve global system of equations for all element boundary degrees of freedom
using an appropriate linear solver library (parallel)

4. Loop over all finite elements: e= 1,NE (parallel)

� Solve Eq. (2.42) for interior degrees of freedom {∆(I)}

element
[KII ]{∆(I)}= {F (I)}− [KIB]{∆(B)} (2.42)

The finite element solution procedure for high-order finite element discretizations, given in
BOX 2, is obtained by augmenting the steps presented in BOX 1 to also include element-level
static condensation.

At this point we find it prudent to note that whenever element-level static condensation
is adopted, nnzmax (used to allocate memory for constructing the sparse global coefficient
matrix) may be determined using the following formula

nnzmax = NE{n[(p+1)nd− (p−1)nd]}2 (2.43)

where we recall that NE is the number of elements and n is the number of degrees of freedom
per node. We can likewise show that for an equivalent low-order mesh (possessing the same
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total number of nodes and the p-level taken as 1) the quantity nnzmax is of the form

nnzmax = NE(2ndn)2pnd (2.44)

where NE and p are the number of elements and p-level of the original high-order dis-
cretization (as opposed to the equivalent low-order mesh). When nd = 2, it turns out that
nnzmax = 16×NE(pn)2 for both low and high-order finite element discretizations (provided
of course that element-level static condensation is adopted). As a result, system memory
requirements associated with constructing the global sparse coefficient matrix are equivalent
in both cases. This highly desirable result is especially attractive in the high-order shell
finite element formulation discussed in Chapter 6.

Figure 2.4. A high-order spectral/hp finite element dis-
cretization of a two-dimensional region. Case shown is for
p = 4: (a) finite element mesh showing the elements and
nodes and (b) finite element mesh showing the elements and
element boundary nodes.

A typical two-dimensional high-order spectral/hp finite element mesh is shown in Figure
2.4. In this figure we show both the full finite element mesh (where all nodes are depicted)
and also the statically condensed mesh (where only the element boundary nodes are shown).
It is worth noting that the computer implementation of element-level static condensation in
high-order finite element models requires either: (a) the user to carefully number the global
nodes such that the element-boundary nodes are numbered first or (b) the computer program
to automatically re-number the global nodes associated with the statically condensed mesh.
In this work we have adopted the latter approach, as it is far less restrictive on the program
user. Either way, it is important to note that it is still necessary for the computer program
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to generate a data structure for the element connectivity array associated with the statically
condensed finite element mesh. For additional details on static condensation as applied to
high-order finite element models, we refer to the book by Karniadakis and Sherwin [25] and
the journal paper by Couzy and Deville [29].

Numerical example: a verification benchmark

We now wish to numerically demonstrate the performance of the shared-memory based
parallelization strategies advocated in the previous section. As an example problem, we
consider the steady low Reynolds number two-dimensional flow of a viscous incompressible
fluid past a circular cylinder. The computational domain Ω̄ on which the problem is posed
is defined as the set difference between the closed rectangular region [−25,25]× [−15,15]
and an open unit-diameter circular cylinder centered about the origin. The fluid along the
top, bottom and left hand sides of the domain is traveling with a unit horizontal velocity. A
no slip condition is taken along the circular cylinder and an appropriate outflow boundary
condition is utilized along the right hand side of the domain (see Chapters 3 and 4 for
details). The Reynolds number for the flow is taken to be 40.

For the finite element discretization, we use 1,920 quadrilateral elements, as shown in Fig-
ure 2.5, and employ an eighth-order polynomial expansion within each element; this amounts
to 123,904 total nodal points in the finite element mesh. The finite element formulation of
the problem is obtained through the use of least-squares based finite element technology as
applied to the first-order vorticity form of the Navier-Stokes equations. The finite element
discretization, therefore, contains a total of 495,616 degrees of freedom; and as a result, is
suitable for showcasing the performance of the algorithms used in our numerical implemen-
tation. The discretization, however, is far more dense than is actually required to obtain a
reliable numerical solution.

For the numerical implementation, we utilize the C++ programming language and IBM’s
AIX v11.1 compiler. Efficient parallelization is achieved by combin-
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Figure 2.5. Finite element mesh used in the solution of
steady fluid flow past a circular cylinder: (a) full view of the
finite element mesh and (b) close up view of the finite element
mesh in the vicinity of the cylinder.
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ing the algorithms described earlier in this chapter with appropriate placements of pre-
compiler directives prior to parallelizable for loops using the C/C++ specific OpenMP
syntax #pragma omp parallel for. The current test problem has been solved using the
computational resources available at the Texas A&M Supercomputing Facility at Texas A&M
University. The simulations were run on the Hydra supercomputer, an IBM Cluster-1600,
that is made up of IBM’s 1.9 GHz RISC Power5+ processors. Each node is a symmetric
multi-processor (SMP) system with 16 processors and 25 GB of usable shared memory.

Figure 2.6. Vorticity field ω for the steady flow of a viscous
incompressible fluid past a circular cylinder at Re = 40.

Table 2.1. Elapsed wall clock time for various steps of the
finite element processing stage of a given nonlinear iteration
for steady flow past a cylinder (np is the number of processors
or threads).

Elapsed wall clock time (in seconds)
Processing procedure(s) np = 1 np = 2 np = 4 np = 8 np = 16

BOX 2: step 1 52.31 26.47 13.11 6.58 3.50
BOX 2: step 2 4.14 2.40 1.52 1.10 0.90
BOX 2: step 4 40.00 20.43 10.05 5.06 2.71
BOX 2: steps 1, 2 and 4 96.45 49.30 24.68 12.74 7.11

The non-dimensionalized vorticity field ω in the vicinity of the cylinder for the test
problem, as obtained in parallel using 16 processors, is shown in Figure 2.6. In Figure 2.7 we
provide a comparison of the theoretical performance with the actually observed speedups for
steps 1, 2 and 4 of BOX 2 (i.e., the general processing stage of the finite element simulation).
Near ideal performance is achieved for steps 1 and 4; however, the speedup observed for
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Figure 2.7. Parallel performance observed in the finite
element solution of the low Reynolds number flow of a viscous
incompressible fluid past a circular cylinder.

step 2 is clearly not optimal. Since the number of operations associated with this step is
far less than the number of computations needed to carry out steps 1 and 4 (see Table 2.1
for a comparison of wall clock times), the cumulative parallel performance is actually quite
competitive (e.g., 94.7% of ideal performance is achieved with 8 threads and 84.8% of ideal
performance is obtained using 16 threads). We note in passing that the results presented in
Figure 2.7 and Table 2.1 have been averaged over the 6 nonlinear solution iterations required
to satisfy a nonlinear convergence criteria of 10−6.

For the current example, step 3 of BOX 2 was performed using the external UMFPACK
library [30, 31, 32, 33] (a set of routines for solving sparse unsymmetric linear systems
directly using the multifrontal method). Due to element-level static condensation, only
119,296 equations needed to actually be solved at the global level (24.07% of the original
system of 495,616 equations). This translated into tremendous memory savings in both the
construction and direct factorization of [K]; in this example less than 2.5 GB of RAM was
actually required during the entire solution process. Of course, even less memory would have
been necessary had an appropriate iterative solver, such as the preconditioned conjugate
gradient method, been employed. The present case study clearly demonstrates that the
high-order finite element procedures and algorithms discussed in this chapter may be readily
utilized to efficiently solve non-trivial finite element problems on shared-memory systems.
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Chapter 3

Least-squares finite element
formulations for nonlinear
boundary-value problems: An
analysis of the minimization and
linearization operations∗

In this chapter we consider application of spectral/hp finite element procedures to the
solution of nonlinear systems of partial differential equations using least-squares variational
principles. The chapter is motivated in part by the considerable attention the least-squares
method has received in recent years, particularly as applied in the numerical solution of
the Navier-Stokes equations governing flows of viscous incompressible fluids. Although we
will discuss these equations in particular, our ultimate objective is to provide a more gen-
eral discussion of least-squares variational principles as applied to nonlinear boundary-value
problems. More specifically, we will discuss the specific roles played by the minimization and
linearization operators in nonlinear least-squares finite element models and demonstrate in
what manner the numerical solution is affected by exchanging the application order of these
operations.

The chapter is organized as follows. We begin by providing a brief overview of the
least-squares method, with an emphasis on L2-norm based least-squares formulations that
are practical for numerical implementation. We then consider the abstract setting for an
L2-norm based least-squares formulation of an abstract first-order nonlinear boundary-value
problem. The least-squares weak formulation is developed for this abstract system via di-
rect minimization of the least-squares functional through the aid of the Gâteaux derivative.
We provide a thorough discussion of possible forms taken by the linearized weak formula-
tion, when linearization is either performed before or after minimization of the least-squares
functional in the context of both the Picard and Newton linearization schemes. We show
that although the underlying least-squares principle suggests that minimization ought to be
performed prior to linearization, such an approach is often impractical and not necessary.

∗The numerical results reported in this chapter appear in the article “On the roles of minimization and
linearization in least-squares finite element models of nonlinear boundary-value problems” by G. S. Payette
and J. N. Reddy, J. Comp. Phys., vol. 230, pp. 3589–3613, 2011. Copyright (2011) Elsevier Science.
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Finally, we underscore the differences between the various linearization schemes adopted in
the abstract formulation, by numerically solving several nonlinear two-dimensional verifica-
tion benchmark boundary-value problems using least-squares finite element models. As a
first example we solve a nonlinear form of the Poisson equation. We also present three nu-
merical solutions of the incompressible Navier-Stokes equations, including steady flow past
a circular cylinder, flow over a backward facing step and lid-driven cavity flow. For each
benchmark, we provide a detailed assessment of the performance of each least-squares finite
element formulation.

An overview of the least-squares method

It is well known that the success of weak-form Galerkin finite element models in obtaining
favorable numerical solutions to partial differential equations is intimately connected with
the notion of global minimization of unconstrained quadratic functionals [6]. When the
Galerkin based weak formulation of a set of partial differential equations can be obtained
equivalently through the minimization of a quadratic functional, the finite element solution
becomes an orthogonal projection of the exact solution onto the trial space associated with
the finite element discretization. The resulting numerical solution represents the best possible
approximation of the exact solution in the trial space as measured with respect to the energy
norm of the functional. When the energy norm ‖u‖E can be shown to be equivalent to a
more standard norm associated with an appropriate Hilbert space (e.g., the H1(Ω) norm),
optimal convergence rates of the finite element solution can be established. Such a setting,
often referred to as a variational setting, is ideal for finite element approximation and is
exemplified by the case of linear elasticity [7].

Unfortunately, finite element models based on the weak-form Galerkin procedure often
depart from the ideal variational setting; this is especially the case for many problems arising
outside the realm of solid mechanics. For example, application of the Galerkin method to
the Stokes equations results in a constrained variational problem, whose discrete solution
must satisfy restrictive compatibility conditions [34]. The weak-form Galerkin finite element
model of the Navier-Stokes equations on the other hand is completely divorced from any min-
imization principles and further inherits the discrete inf-sup condition of the Stokes problem
[35]. Numerical solutions are far from optimal as characterized by the need for severe mesh
refinement in order to suppress spurious oscillations of the solution. A considerable amount
of research in recent years has been devoted to modifications of the weak-form Galerkin
approach in the hope of obtaining a more favorable setting for the numerical solution. Sta-
bilized finite element formulations such as the penalty [10, 3], SUPG [8, 9] and Galerkin
least-squares [11] have been proposed and extensively researched. These schemes have yet
to gain wide acceptance, due in part to the associated temporal and mesh dependent ad-hoc
parameters that must be fine tuned in each formulation.

Finite element models based on least-squares variational principles often offer an ap-
pealing alternative to the more popular weak-form Galerkin approach. This is especially
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relevant in the analysis of partial differential equations containing non-self-adjoint opera-
tors, as is found in the Navier-Stokes equations. Although not as popular as weak-form
Galerkin formulations, least-squares models of partial differential equations have been an
active field of research since at least the early 1970’s [36]. In 1976, Eason [37] compiled
an extensive review containing well over 200 references to least-squares methods as applied
to the solution of partial differential equations. Since the publication of this review arti-
cle, least-squares finite element models have continued to receive substantial attention and
discussion in the literature.

Least-squares variational formulations allow us to define an unconstrained convex least-
squares functional J (u) in terms of the sum of the squares of the norms of the partial
differential equation residuals [38]; where standard inner product based Sobolev norms are
typically employed (e.g., norms associated with L2(Ω) or Hk(Ω), where k ∈ N). If the
governing equations (augmented by the appropriate boundary conditions) are well posed,
it can be readily shown that the exact solution coincides with the minimizer of the least-
squares functional. As a result, in the least-squares method the weak formulation is obtained
via direct minimization of J (u). The concept of minimization of the partial differential
equation residuals is, therefore, at the heart of the least-squares formulation. For the case of
linear partial differential equations, it is always possible to associate with the least-squares
functional a well defined energy norm ‖u‖E . If it can be shown that the energy norm induced
by the least-squares functional is equivalent to an appropriate standard norm, such as the
H1(Ω) norm, optimal convergence rates can be established for the least-squares finite element
model. Under such conditions the least-squares finite element formulation constitutes an
ideal variational setting, regardless of whether or not such a setting is achieved by the
associated weak-form Galerkin finite element formulation [6].

To maintain practicality in the numerical implementation, it becomes computationally
advantageous to construct the least-squares functional in terms of the sum of the squares of
the L2(Ω) norms of the first-order form of the partial differential equation residuals. Regret-
tably, it is not always possible to establish a priori norm equivalence (or H1(Ω)-coercivity) of
the resulting least-squares formulation. As identified by Bochev [39] using Agmon, Douglis,
Nirenberg (ADN) elliptic theory [40], it is typically possible to construct a least-squares func-
tional that is H1(Ω)-coercive [6, 41, 42, 43]. Unfortunately, the optimal choice of norms can:
(a) depend on the nature of the boundary conditions of a given problem and (b) result in an
unattractive computational implementation. It is important to note that departure from the
ideal variational setting (i.e., using a least-squares functional that is non-H1(Ω)-coercive)
does not typically result in disastrous consequences for least-squares finite element mod-
els. Even when a given formulation is non-H1(Ω)-coercive, the least-squares finite element
model always: (a) possesses the best approximation property with respect to a well-defined
norm (i.e., the energy norm ‖u‖E) and (b) avoids restrictive compatibility requirements on
the finite element function spaces (i.e., the discrete inf-sup condition never arises). That
the least-squares method is always based on a minimization principle ensures a robust set-
ting that is often lacking in Galerkin based weak formulations. It is well known, however,
that non-H1(Ω)-coercive low-order finite element implementations are often prone to lock-
ing whenever full numerical integration techniques are employed in evaluating the coefficient
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matrices. In the context of the Navier-Stokes equations, it has been shown that such issues
may be largely avoided through the use of collocation or selective reduced integration strate-
gies [12, 13, 14, 15, 16, 17]. On the other hand, the combination of high-order finite element
technology with least-squares variational principles has also shown great promise in recent
years. In particular, building off of the earlier work of Jiang and Sonnad [44] and Bell and
Surana [45, 46], Proot and Gerritsma [47, 48, 49, 50] and Pontaza and Reddy [18, 19, 20, 21]
demonstrated numerically that hp-least-squares finite element models are capable of yield-
ing highly accurate results even when the least-squares functional cannot be shown to be
H1(Ω)-coercive a priori.

Least-squares finite element models offer several additional attractive features as com-
pared with weak-form Galerkin formulations. In the case of linear analysis, the least-squares
formulation always admits a symmetric positive-definite (SPD) coefficient matrix, regardless
of whether or not such symmetry is manifest in the governing partial differential equations.
As a result, extremely robust direct as well as iterative solution algorithms (such as the
preconditioned conjugate gradient method) can be employed in the solution process [51, 52]
and only half of the global coefficient matrix need be stored in memory. This is not the case
when the weak-form Galerkin scheme is applied to non-self-adjoint systems of equations [53].
As mentioned previously, the least-squares formulation does not suffer from the restrictive
inf-sup condition. This is highly desirable in the numerical discretization of fluid mechanics
problems, as it allows the velocity and pressure to be approximated using the same bases
of interpolation [38]. Finally, least-squares formulations are also free from the need for nu-
merical dissipation through the use of upwind techniques. As a result, ad-hoc stabilization
is not needed in the analysis of convection dominated problems [38].

Least-squares formulations are certainly not without their own deficiencies. Most prob-
lems in physics possess at the very minimum second order spatial differential operators.
Since no weakening of these operators is typically possible through the employment of Green’s
identities (as can be readily accomplished in weak-form Galerkin formulations), least-squares
models typically require higher regularity of the approximate solution within each element.
Higher regularity requirements negatively affect the condition number of the coefficient ma-
trix and also the continuity requirement of the solution across element boundaries. High reg-
ularity requirements may be avoided by constructing the least-squares finite element model
in terms of an equivalent lower-order system by the introduction of additional independent
auxiliary variables [38]. The resulting mixed formulation permits the use of standard La-
grange interpolation functions and also improves the conditioning of the global coefficient
matrix [51]. However, such benefits are gained at the expense of an increase in size of the
global system of equations. It can be argued that such a formulation is at least somewhat
useful, however, as the auxiliary variables often represent important physical quantities of
interest (e.g., the heat flux, vorticity, stress, etc.). Other drawbacks to least-squares formu-
lations, in the context of fluid mechanics, include lack of local mass conservation and poor
coupling between the velocity and pressure in transient problems. Least-squares formulations
seeking to address these issues have been adopted by Chang and Nelson [54], Pontaza [55],
Prabhakar and Reddy [56, 57, 58] and Prabhakar et al. [59]. Additionally, in Chapter 4 we
propose a least-squares finite element model of the incompressible Navier-Stokes equations
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with improved local mass conservation.

The minimization and linearization procedures

As stated previously, the fundamental principle for the least-squares method, as applied
to a given boundary-value problem, is that the function minimizing the least-squares func-
tional coincides with the exact solution. The necessary condition for minimization naturally
requires the first variation of the least-squares functional to be identically zero; carrying out
this procedure produces the weak form of the governing equations. In the least-squares litera-
ture it is common to refer to the resulting weak formulation as the Euler (or Euler-Lagrange)
equation of the least-squares variational boundary-value problem (see for example Bochev
[6]). The Euler equation resulting from invoking the necessary condition forms the basis
of the least-squares finite element model. As noted previously, the least-squares variational
principle associated with linear systems of partial differential equations always produces a
symmetric bilinear form and as a result, a symmetric system of finite element equations. This
is a highly attractive property of the least-squares method. When the governing equations
are nonlinear, however, symmetry of the nonlinear Euler equation is not always guaranteed.

Paramount to the solution of a system of nonlinear algebraic equations (as arise in the
finite element approximation of a nonlinear boundary-value problem) is the need for lin-
earization. In the context of an iterative solution procedure, the role of linearization is to
facilitate the solution to the original nonlinear equations through the successive solution of
an appropriate linearized form of the equations [53]. In this work we consider the two most
common iterative solution procedures, namely the methods of Picard and Newton. The Pi-
card scheme enjoys a large radius of convergence accompanied by a slow convergence rate.
Conversely, Newton’s method offers a quadratic rate of convergence when the assumed solu-
tion is near the true solution point. However, this method possesses a much smaller radius
of convergence than what is generally exhibited when the Picard scheme is employed.

In practice, it is possible to adopt one of two approaches when constructing least-squares
finite element models of nonlinear boundary-value problems. In the first approach, lineariza-
tion of the nonlinear partial differential equations is performed prior to minimization of the
least-squares functional. A major motivation for this approach is the desire to maintain sym-
metry and positive-definiteness in the resulting finite element coefficient matrix. As pointed
out by Jiang, such a framework also yields “minimization problems of quadratic functionals
which have been well studied” [38]. Whenever this approach is adopted, we say that the
least-squares finite element model is constructed via linearization before minimization. In
general, however, the discrete minimizer resulting from this approach will be associated with
the linearized governing equations (as opposed to the actual set of PDEs). In the second
approach, we instead construct the least-squares functional from the original set of nonlinear
partial differential equations [45, 46] and then require the first variation of this true least-
squares functional to be identically zero. The motivation for this approach has to do with
the least-squares principle itself. Since the least-squares method is independent of both the
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discretization procedure and the iterative nonlinear solution scheme, it is easy to see that this
second approach is mathematically consistent with the underlying least-squares variational
principle. When this procedure is chosen, we say that the finite element model is formulated
through linearization after minimization. The drawback to this approach, however, is that
the resulting linearized system will in general be non-symmetric and non-positive definite.

It is worthwhile to note that in the context of finite element models based on weak-
form Galerkin formulations, there is no distinction between linearization of the governing
partial differential equations before or after creation of the weak form. In essence, both
approaches are equivalent, owing to the fact that the Galerkin procedure constitutes a linear
operation which acts on the nonlinear set of governing equations. For the case of least-
squares finite element formulations on the other hand, linearization before minimization is
clearly not equivalent to linearization after minimization [23]. Throughout the remainder
of this chapter, we highlight the differences between these two approaches and discuss in
what context the numerical solution is affected by interchanging the application order of the
minimization and linearization operations.

Abstract least-squares formulations of nonlinear boundary-

value problems

In this section we present the steps involved in developing and arriving at weak formula-
tions, based on the least-squares method, for nonlinear boundary-value problems that can be
readily utilized to construct least-squares finite element models. To ensure a general treat-
ment of the subject, we present the fundamental concepts and procedures in the context of
an abstract boundary-value problem. The least-squares functional for this general problem is
defined in terms of the sum of the squares of the L2 norms of the abstract equation residuals.
The Euler equation associated with the problem is then developed through an appropriate
minimization of the least-squares functional with respect to the solution variable(s). We
provide a thorough discussion of possible forms taken by the linearized Euler equation, when
linearization is performed before or after minimization of the functional in the context of
both the Picard and Newton linearization schemes. We also present a simple mathematical
analysis of Newton’s method as applied to least-squares formulations (both before and after
minimization).

The abstract nonlinear boundary-value problem

We recall from notation introduced in Chapter 2 that Ω and Γ represent, respectively,
the domain and boundary upon which a typical boundary-value problem may be posed. In
addition, we follow the customary procedure of partitioning the boundary Γ into Dirichlet
ΓD and Neumann ΓN parts, such that Γ = ΓD

⋃
ΓN and ΓD

⋂
ΓN = ∅. We consider the
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following abstract boundary-value problem

L(u) = f in Ω (3.1a)

u = up on ΓD (3.1b)

g(u) = h on ΓN (3.1c)

where L is a nonlinear first-order spatial partial differential operator, u is the dependent
variable, f is the forcing function and up is the prescribed essential boundary condition. The
flux or Neumann boundary condition for the problem is expressed in terms of the operator
g and the prescribed function h. The boundary conditions are of course understood in the
sense of traces [26, 60]. We assume that the function g is linear in u and that the problem
is well-posed.

The L2 least-squares functional and associated minimization prin-
ciple

At the center of the least-squares method and the resulting least-squares finite element
model is the least-squares functional. In keeping with our desire to maintain an appropriate
level of practicality in the numerical implementation, we construct the least-squares func-
tional in terms of the sum of the squares of the L2 norms of the abstract equation residuals

J (u; f ,h) =
1

2

(
‖L(u)− f‖2

Ω,0 +‖g(u)−h‖2
ΓN,0

)
(3.2)

It is important to note that the least-squares functional has been defined such that the
Neumann boundary condition is enforced weakly as a consequence of the minimization pro-
cedure. Hence, in the numerical implementation there will be no need to constrain the finite
element function spaces to satisfy the natural boundary conditions.

The abstract minimization principle associated with the least-squares method may be
stated as follows: find u ∈ V such that

J (u; f ,h) 6 J (ũ; f ,h) for all ũ ∈ V (3.3)

The function space V associated with the least-squares problem is defined as

V =
{
u : u ∈H1(Ω), u = up on ΓD

}
(3.4)

The necessary condition for minimization requires that the first variation of J (u; f ,h) be
identically zero. The minimization procedure may be readily facilitated through the use of
the Gâteaux derivative [26]. We recall that the Gâteaux derivative (or Gâteaux variation)
of a general functional Π(u) in the direction of δu is defined as

δΠ(u, δu) =
d

dε
Π(u+ εδu)

∣∣∣
ε=0

=DΠ(u)[δu] =∇Π(u) · δu (3.5)
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where the symbolic derivative (or gradient) operator ∇ acts with respect to the dependent
variable u. With the above formula in mind, the first variation of J (u; f ,h), denote by
G(u, δu), can be expressed as

G(u, δu) = δJ (u, δu; f ,h) =
d

dε
J (u+ εδu; f ,h)

∣∣∣
ε=0

= (δL(u, δu),L(u)− f)Ω,0 +(g(δu),g(u)−h)ΓN,0

= (∇L(u) · δu,L(u)− f)Ω,0 +(g(δu),g(u)−h)ΓN,0 = 0

(3.6)

where δu ∈ W is an admissible variation of u. The linear vector space of kinematically
admissible variations W is of the form

W =
{
δu : δu ∈H1(Ω), δu = 0 on ΓD

}
(3.7)

The Euler equation associated with the abstract least-squares problem is to find u ∈ V such
that Eq. (3.6) holds for all δu ∈W .

When the governing equations for the physical system are linear, Eq. (3.6) can be ex-
pressed conveniently as

B(δu,u) = F(δu) (3.8)

where the bilinear form B(δu,u) and linear form F(δu) are given as

B(δu,u) = (L(δu),L(u))Ω,0 +(g(δu),g(u))ΓN,0 (3.9a)

F(δu) = (L(δu), f)Ω,0 +(g(δu),h)ΓN,0 (3.9b)

We can associate with the least-squares based weak formulation a well defined energy norm
‖u‖E of the form

‖u‖E =
√
J (u;0,0) (3.10)

If it can be shown that ‖u‖E is equivalent to the norm of a standard Sobolev space X
(e.g., X = H1(Ω)) in the sense that c1‖u‖2

X ≤ ‖u‖2
E ≤ c2‖u‖2

X for all u ∈ V where c1 and
c2 are positive constants, then we say that J (u; f ,h) is X -norm equivalent or X -coercive.
Under such conditions the least-squares method constitutes an ideal variational setting,
and in particular optimal convergence rates under h-refinement may be established for a
conforming finite element discretization [22]. Unfortunately, L2-norm based least-squares
functionals will not generally be X -norm equivalent. However, as demonstrated by Pontaza
[61], such functionals can still recover an optimal variational setting for least-squares finite
element models whenever an appropriate level of p-refinement is employed (where p ≥ 4 is
typically sufficient).

Clearly, in the linear case the bilinear form B(δu,u) is symmetric irrespective of the
particular form of L. When the differential operator L is nonlinear, however, this is no
longer the case. In the following sections we discuss procedures for linearizing the least-
squares based weak formulation, both before and after functional minimization.
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Linearization before minimization

Eq. (3.6) constitutes the proper setting for the least-squares variational formulation.
However, in general, this approach yields a non-symmetric coefficient matrix for nonlinear
problems. As a result, many authors choose to create a linearized version of L prior to con-
struction and minimization of the least-squares functional. Two approaches are commonly
advocated, namely the Picard method of successive substitution and the Newton scheme.
In both approaches we replace the nonlinear operator L with the linearized operator LLin

defined as
L(u) � LLin(u;u0) = L̃(u;u0)+ L̂(u0) (3.11)

In the above expression u0 represents a characteristic state about which the solution is
linearized. In the discrete numerical implementation u0 is taken either as a guess or as
a known quantity from the immediate previous iteration. The linearized operator LLin is
decomposed into the sum of L̃, which is linear in u, and L̂ which depends on u0 only.

In the Picard scheme LLin(u;u0) is replaced with LPic(u;u0), denoting a Picard lin-
earization of L. An important artifact of the Picard scheme is that LPic does not necessarily
represent a unique linearization of L, since a nonlinear operator can be linearized in more
than one way. In Newton’s method, the operator LLin(u;u0) is replaced with the Newton
operator LNew(u;u0) defined as

LNew(u;u0) = L(u0)+∇L(u0) · (u−u0) (3.12)

where the gradient operator ∇ now acts with respect to u0. The abstract least-squares
functional J (u; f ,h) given in Eq. (3.2) is therefore replaced by the following approximation

JLin(u;u0, f̃ ,h) =
1

2

(
‖L̃(u;u0)− f̃‖2

Ω,0 +‖g(u)−h‖2
ΓN,0

)
(3.13)

where f̃ = f−L̂(u0). The above expression has been defined in terms of the operators L̃ and
L̂ appearing in Eq. (3.11), and is thus applicable for use in the context of both the Picard
and Newton methods. The Euler equation corresponding with minimization of JLin can be
expressed as

GLin(u, δu;u0) = (L̃(δu;u0), L̃(u;u0)− f̃)Ω,0 +(g(δu),g(u)−h)ΓN,0 (3.14)

The above expression can be written equivalently as

B(δu,u) = F(δu) (3.15)

where the bilinear form B(δu,u) and linear form F(δu) are given as

B(δu,u) = (L̃(δu;u0), L̃(u;u0))Ω,0 +(g(δu),g(u))ΓN,0 (3.16a)

F(δu) = (L̃(δu;u0), f −L̂(u0))Ω,0 +(g(δu),h)ΓN,0 (3.16b)

The above forms apply to both the Picard and Newton linearization schemes. However, for
the Newton scheme, the bilinear and linear forms can be reduced to

B(δu,u) = (∇L(u0) · δu,∇L(u0) ·u)Ω,0 +(g(δu),g(u))ΓN,0 (3.17a)

39



F(δu) = (∇L(u0) · δu, f −L(u0)+∇L(u0) ·u0)Ω,0 +(g(δu),h)ΓN,0 (3.17b)

Clearly the bilinear form is symmetric and positive-definite regardless of which linearization
scheme is employed. As a result fast and robust solution procedures may be employed
in the actual finite element implementation (such as sparse forms of either the Cholesky
decomposition or the preconditioned conjugate gradient method). We also note that when
linearization is performed prior to minimization, we are able to associate with the linearized
least-squares functional the following energy norm

‖u‖E =
√
JLin(u;u0,0,0) (3.18)

Linearization after minimization

We now consider the case where construction and minimization of the least-squares func-
tional is performed without first linearizing the governing partial differential equations. As
a result, we work directly in terms of the true least-squares functional J (u; f,h) and the
nonlinear Euler equation G(u, δu) resulting from appropriate functional minimization (see
Eqs. (3.2) and (3.6)). An interesting implication of working in this setting is that we can no
longer define an energy norm associated with the least-squares functional. We note that the
Euler equation given by Eq. (3.6) is nonlinear in u. This expression can be solved through
the use of an appropriate iterative solution scheme, where linearization is fundamental to the
iterative procedure. In the case of the Picard method, the Euler equation can be linearized
as

GPic(u, δu)≡ (P(δu;u0),LPic(u;u0)− f)Ω,0 +(g (δu) ,g(u)−h)ΓN,0 (3.19)

where P(δu;u0) represents a Picard linearization of ∇L(u) · δu. It is imperative to note
that the Gâteaux variation and Picard linearization do not commute when applied to L(u).
As a result, linearization prior to minimization is clearly not equivalent to linearization after
minimization when the Picard scheme is employed. We note that it is always possible to
decompose P(δu;u0) into the following sum

P(δu;u0) = L̃(δu;u0)+LAdd(δu;u0) (3.20)

The quantity LAdd(δu;u0) represents an additional term present in the Picard linearization
of∇L(u) ·δu that is not accounted for when linearization is performed prior to minimization.
The Picard linearization of the nonlinear Euler equation can therefore be expressed as

GPic(u, δu) = (L̃(δu;u0),LPic(u;u0)− f)Ω,0 +(g(δu),g(u)−h)ΓN,0

+(LAdd(δu;u0),LPic(u;u0)− f)Ω,0
(3.21)

The underlined term in the above expression is not present when linearization is performed
prior to minimization. The linearized Euler equation can also be written as

B(δu,u)+ B̃(δu,u) = F(δu) (3.22)
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where B(δu,u) is a bilinear form, B̃(δu,u) is a mixed form (i.e., it contains both bilinear
and linear forms) and F(δu) is a linear form. These quantities are defined as

B(δu,u) = (L̃(δu;u0), L̃(u;u0))Ω,0 +(g(δu),g(u))ΓN,0 (3.23a)

B̃(δu,u) = (L Add(δu;u0),LPic(u;u0)− f)Ω,0 (3.23b)

F(δu) =−(L̃(δu;u0), L̂(u0)− f)Ω,0 +(g(δu),h)ΓN,0 (3.23c)

We have employed the decomposition of LPic defined in Eq. (3.11) in arriving at the above
expressions for B(δu,u) and F(δu).

It should be clear that the Picard linearization of the nonlinear Euler equation differs
from Eq. (3.15) only on account of B̃(δu,u). It readily follows that this mixed form is
identically zero, for all δu ∈W, whenever the true solution for u is inserted into Eq. (3.22)
(assuming of course that u0 → u). In the finite element implementation, however, we re-
place u and δu with their discrete counterparts uhp ∈ Vhp and δuhp ∈Whp, and as a result

B̃(δuhp,uhp) , 0. Consequently, the finite element solution obtained using Eq. (3.15) will not
exactly coincide with the numerical results procured via Eq. (3.22). Clearly, application of
Picard’s linearization scheme prior to minimization induces error in the numerical solution
(as compared to the case where minimization is performed first). We do expect, however,
that under proper mesh refinement, the error induced by neglecting the discrete mixed term
will diminish. A major shortcoming of applying the Picard method after minimization is
that we can no longer guarantee symmetry of the resulting bilinear form.

Eq. (3.6) can also be linearized using Newton’s method. In this case G(u, δu) is replaced
with

GNew(∆u, δu;u0)≡ G(u0, δu)+DG(u0, δu)[∆u] (3.24)

where ∆u = u−u0 and DG(u0, δu)[∆u] is the tangent operator defined as

DG(u0, δu)[∆u] =∇G(u0, δu) ·∆u

= (∇L(u0) · δu,∇L(u0) ·∆u)Ω,0 +(g(δu),g(∆u))ΓN,0

+(∇(∇L(u0) · δu) ·∆u,L(u0)− f)Ω,0

(3.25)

Since δu remains constant during the increment ∆u, it follows that

∇(∇L(u0) · δu) ·∆u = (∇∇L(u0) · δu) ·∆u = (∇∇L(u0) ·∆u) · δu (3.26)

The above implies that the tangent operator is symmetric. As a result, the expression
GNew(∆u, δu;u0) = 0 can be written in the usual manner

B(δu,u) = F(δu) (3.27)

where the bilinear form B(δu,u) and linear form F(δu) are given as

B(δu,u) = (∇L(u0) · δu,∇L(u0) ·u)Ω,0 +(g(δu),g(u))ΓN,0 (3.28a)

+((∇∇L(u0) · δu) ·u,L(u0)− f)Ω,0
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F(δu) = (∇L(u0) · δu, f −L(u0)+∇L(u0) ·u0)Ω,0 +(g(δu),h)ΓN,0 (3.28b)

+((∇∇L(u0) · δu) ·u0,L(u0)− f)Ω,0

It is interesting to note that symmetry in the bilinear form is guaranteed when linearization
is performed subsequent to minimization, if the linearization is employed in the framework
of an iterative Newton solution procedure. As a result, the coefficient matrix of the finite
element model will always be symmetric, even when the first variation of J (u; f ,h) is not.

When the underlined terms in the above expression are neglected, the scheme is equivalent
to performing linearization prior to minimization. Justification for such omission can be seen
by rewriting the linearized equations above as

B̃(δu,u)+ B̂(δu,u) = F̃(δu) (3.29)

where B̃(δu,u) is a bilinear form, B̂(δu,u) is a mixed form and F̃(δu) is a linear form. We
define these quantities as

B̃(δu,u) = (∇L(u0) · δu,∇L(u0) ·u)Ω,0 +(g(δu),g(u))ΓN,0 (3.30a)

B̂(δu,u) = ((∇∇L(u0) · δu) · (u−u0),L(u0)− f)Ω,0 (3.30b)

F̃(δu) = (∇L(u0) · δu, f −L(u0)+∇L(u0) ·u0)Ω,0 +(g(δu),h)ΓN,0 (3.30c)

We can clearly see that as u0 → u, the mixed form B̂(δu,u) goes to zero. The same is
also true in the discrete case (i.e., B̂(δuhp,uhp) → 0 as u0 → uhp). We therefore conclude
that application of Newton’s method prior to minimization of the least-squares functional
is equivalent to modifying the search direction of the Newton scheme as applied after mini-
mization. As a result, we expect both schemes to yield the same solution, provided that the
initial guess is such that convergence is possible.

A simple analysis of Newton’s method

In this section we seek to gain a deeper understanding of the iterative solution process
associated with application of Newton’s method in least-squares formulations (both before
and after minimization of the least-squares functional). To simplify the mathematical analy-
sis, we consider application of the least-squares principle to the problem of finding the simple
root of a nonlinear differentiable function f(x) defined on the interval I = [a,b]. To this end
we define the true least-squares functional as

J (x) =
1

2
f(x)2 (3.31)

In the least-squares formulation of the problem we seek to find α ∈ I such that J (α) 6 J (x)
for all x ∈ I. Invoking the minimization principle yields the nonlinear Euler equation which
may be expressed as

G(x,δx) = f ′(x)f(x)δx (3.32)
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where f ′(x) is the derivative of f with respect to x. Linearization of the Euler equation
using Newton’s method yields

B(δx,x) = F(δx) (3.33)

where the bilinear form B(δx,x) and linear form F(δx) are given as

B(δx,x) = [f ′(x0)
2 +f ′′(x0)f(x0)]xδx (3.34a)

F(δx) = [f ′(x0)(−f(x0)+f ′(x0)x0)+f ′′(x0)f(x0)x0]δx (3.34b)

The underlined terms are absent in the event that Newton’s method is applied prior to
minimization of J (x). Solving the above expression for x yields

x= x0−
f ′(x0)f(x0)

f ′(x0)2 +γf ′′(x0)f(x0)
(3.35)

where γ = 1.0.

It is interesting to note that application of Newton’s method to the true least-squares
problem is equivalent to applying Newton’s method in the solution of h(x) = g(x)f(x) = 0
where g(x) = f ′(x). It can be easily shown, however, that when the least-squares functional
is defined in terms of a Newton linearization of f(x), the least-squares problem is completely
equivalent to simply finding the solution of f(x) = 0 using Newton’s method. Clearly, the
convergence properties associated with each Newton linearization scheme will be distinct. It
has been shown by Gerlach [62] that it is possible to define g (x) such that application of
Newton’s method to h(x) = g(x)f(x) = 0 will possess superior convergence properties than a
direct application of Newton’s procedure to f(x) = 0. In such formulations, g(x) is typically
defined such that h′′(x) (or even higher derivatives of h(x)) goes to zero in the vicinity
of α. For example if g(x) is defined as g(x) = 1/

√
|f ′(x)|, Newton’s procedure produces

an algorithm with a cubic convergence rate (also known as Halley’s method [62]). Such a
procedure may be obtained by artificially setting γ to −1/2 in Eq. (3.35). Since Eq. (3.35)
is neither Newton’s procedure nor Halley’s method (as applied in the solution of f(x) = 0)
it is only reasonable to be cautious when applying this iterative scheme to the solution
of nonlinear equations. Clearly, linearization after minimization will tend to increase the
nonlinearity of the resulting Euler equation. It therefore seems plausible to assume that
such an increase may tend to negatively affect the radius of convergence of the iterative
solution procedure.

Although a rigorous mathematical analysis on the convergence behavior of the two New-
ton formulations is beyond the scope of this dissertation, we offer the following by way of
simple analysis: We invoke Taylor’s theorem, which may be applied in the exact evaluation
of a differentiable function h(x) at its root α in the vicinity of a characteristic state xn as

h(α) = 0 = h(xn)+h′(xn)(α−xn)+
h′′(ξ)

2
(α−xn)2 (3.36)

where ξ is between α and xn. Combing the above expression with Newton’s scheme (i.e.,
xn+1 = xn−h(xn)/h′(xn)) and taking the absolute value yields

|α−xn+1|=
|h′′(ξ)|

2|h′(xn)|
(α−xn)2 (3.37)
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The above expression is typically utilized to prove the quadratic convergence rate of Newton’s
method as applied in the solution of h(x) = 0. If we apply the above expression in the
evaluation of h(x) = f(x) and h(x) = f ′(x)f(x), we obtain

|α− x̄n+1|= C̄(ξ̄,xn)(α−xn)2 (3.38a)

|α− x̃n+1|= C̃(ξ̃,xn)(α−xn)2 (3.38b)

where C̄(ξ̄,xn) and C̃(ξ̃,xn) are of the form

C̄(ξ̄,xn) =
|f ′′(ξ̄)|

2|f ′(xn)|
(3.39a)

C̃(ξ̃,xn) =
|3f ′(ξ̃)f ′′(ξ̃)+f ′′′(ξ̃)f(ξ̃)|
2|f ′(xn)2 +f ′′(xn)f(xn)|

(3.39b)

It is important to note that the above equations have been defined such that the character-
istic state xn is the same in both expressions. The updated quantities x̄n+1 and x̃n+1 will
of course be distinct. In general it is difficult to assess how C̄(ξ̄,xn) compares with C̃(ξ̃,xn).
We consider two limit cases. In the case that (f ′′(ξ̄)→ 0 and f ′′(ξ̃)→ 0), C̄(ξ̄,xn) also tends
to zero while the value of C̃(ξ̃,xn) depends on |f ′′′(ξ̃)f(ξ̃)|/(2|f ′(xn)2 +f ′′(xn)f(xn)|). Also,
in the limit as |α−xn| → 0, it is obvious that C̃ → 3C̄. In both of these limit cases, lin-
earization prior to minimization appears to produce slightly superior convergence properties
than does linearization after minimization of J (x) (although both schemes have quadratic
convergence rates). However, general convergence behavior cannot be obtained through a
simple extrapolation of these limit cases.

The above discussion has been restricted to the problem of finding the simple root of
a nonlinear differentiable function of a single variable. Clearly, blind extrapolation of the
characteristics observed in this simple problem to more general classes of problems involving
the least-squares method is tenuous. However, the qualities observed in this simple prob-
lem are consistent with our numerical findings in the least-squares finite element analysis of
nonlinear boundary-value problems. As demonstrated numerically in Section 3, application
of Newton’s method (after linearization) typically results in a solution procedure possess-
ing: (a) a small radius of convergence (as compared with Newton’s method applied prior
to minimization) and (b) a rate of convergence similar to Newton’s procedure (as applied
before minimization), assuming of course that solution convergence is possible.

General remarks on abstract least-squares problem

At this point, it is worthwhile to summarize some of the more pertinent qualities asso-
ciated with the abstract least-squares formulation. In particular, the following observations
and conclusions can be drawn:

1. The roles of functional minimization and nonlinear operator linearization have distinct
and separate purposes. In general, these operations do not commute.
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2. Minimization of the least-squares functional is the fundamental variational principle
upon which the least-squares finite element model is predicated. The principle is
independent of the iterative nonlinear solution procedure and the discretization scheme,
and as a result should be applied to the true least-squares functional constructed from
the governing equations associated with a given physical system. If the model problem
is nonlinear, the least-squares functional should be constructed and minimized without
first introducing any linearizing assumptions. In the continuous setting, the minimizer
of the least-squares functional coincides with the true solution of the governing partial
differential equations.

3. Linearization is merely a means of facilitating the solution of the nonlinear Euler
equation, and may be employed in conjunction with an appropriate iterative solution
scheme (e.g., the methods of Picard or Newton).

4. In general, when the nonlinear operator is linearized prior to construction of the least-
squares functional, the discrete minimizer is associated with the linearized least-squares
functional as opposed to the proper or true least-squares functional (constructed in
terms of the nonlinear operator). Hence, minimization of the linearized least-squares
functional is not equivalent to minimization of the true least-squares functional.

5. It is often computationally advantageous to linearize the partial differential equations
prior to construction and minimization of the least-squares functional. The coefficient
matrix components are simpler to formulate and faster to compute when linearization
is applied prior to minimization. The Picard scheme produces the simplest form for the
coefficient matrix and its use is especially convenient when complicated constitutive
models are involved. The Newton scheme, on the other hand yields a slightly more
complicated expression for the coefficient matrix. However, both methods as applied
prior to minimization guarantee symmetry and positive-definiteness of the resulting
global coefficient matrix. Due in part to the formulative and computational simplic-
ity, performing linearization prior to minimization is the preferred approach of most
researchers.

6. In the discrete setting, application of the Picard method prior to minimization intro-
duces error into the resulting Euler equation (as compared to performing linearization
after invoking the minimization principle). This error is proportional to how well
the least-squares variational boundary-value problem is satisfied by the finite element
approximation of the weak solution. We expect that the magnitude and effect of this
error to diminish when proper mesh refinement is employed. This expectation is indeed
realized in the numerical results presented later in this chapter.

7. The Euler equation resulting from minimization of the true least-squares functional is
in general non-symmetric in its bilinear form. A Picard linearization of this expression
will also, in general, yield a non-symmetric bilinear form. Applying the Newton scheme
in the solution of the nonlinear Euler equation always yields a symmetric bilinear form,
regardless of the form taken by L. The resulting bilinear form, however, will not
necessarily be positive-definite.
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8. The Newton scheme can be interpreted geometrically as a numerical solution procedure
for a nonlinear set of equations that relies on the concept of a search direction (given
by the tangent operator). The abstract formulation reveals that linearization using
Newton’s method prior to minimization introduces an error in the search direction of
the scheme, as compared with application of Newton’s approach after minimization
of the least-squares functional. We expect, however, that both Newton schemes will
yield identical discrete numerical results, assuming of course that the characteristic
states are initially chosen such that solution convergence is possible. Hence, exchang-
ing the order of application of the minimization and Newton linearization operations
has no effect on the converged numerical results (i.e., the discrete minimizers coin-
cide). As we will demonstrate numerically, however, the order of application of these
operators significantly affects the radii and rates of convergence of a given numerical
implementation. Bell and Surana [45, 46] correctly recognized that the expression in
the tangent operator, given in Eq. (3.26), for the Newton case (after minimization)
may be neglected without affecting the final state of the converged solution. Such
omission is equivalent to linearizing the governing equations using Newton’s method
prior to minimization.

Numerical implementation of the least-squares method

The procedures outlined in Chapter 2 may be used to produce the least-squares finite
element model of a given nonlinear first-order system of partial differential equations. This
is accomplished by replacing the function spaces V and W with the finite dimensional sub-
spaces Vhp ⊂ V and Whp ⊂W associated with a given high-order spectral/hp finite element
discretization. This naturally leads to a set of nonlinear algebraic equations that can be
expressed as

[K({∆}(k−1))]{∆}(k) = {F}(k) (3.40)

where the index k denotes the iteration number of the nonlinear iterative solution proce-
dure. The coefficient matrix [K({∆}(k−1))] and force vector {F}(k) are constructed from
the bilinear and linear forms respectively of the given least-squares based weak formulation.
We adopt the Gauss-Legendre quadrature rules (see Chapter 2) in the numerical evaluation
of all integrals appearing in the finite element equations. For nonlinear least-squares based
finite element implementations, the order of the quadrature rule plays a critical role on the
reliability of the resulting numerical solution. For a fine discretization, it is our experience
that a quadrature rule of NGP = p+1 is typically sufficient to produce dependable numer-
ical results. For coarse meshes, however, it is typically expedient to employ higher order
quadrature formulas (e.g., p+1<NGP≤ p+5) to ensure that the integrity of the numerical
solution is not polluted by errors associated with the numerical integration scheme.

It is important to note that direct application of nonlinear least-squares finite element
models with linearization performed after minimization, often yield iterative solution schemes
that diverge. To restore convergence for these cases, we employ a relaxation scheme in the
numerical solution. To this end we call {∆}(∗) the solution calculated at the kth iteration,

46



and let {∆}(k−1) denote the solution known from the previous iteration (i.e., iteration k−1).
We define the modified current solution {∆}(k) as

{∆}(k) = ω({∆}(∗)−{∆}(k−1))+{∆}(k−1) (3.41)

where ω ∈R+ is the relaxation parameter. We note that when ω = 1.0, {∆}(k) = {∆}(∗). We
postulate the following simple expression for the relaxation parameter

ω(ε) = 1− (1−ω0)(2− ε)ε (3.42)

where ω0 is a constant specified by the user and ε represents the error in the iterative solution

ε=
‖{∆}(∗)−{∆}(k−1)‖

‖{∆}(∗)‖
(3.43)

In the above expression ‖ ·‖ is the Euclidean norm. Eq. (3.42) has been specifically designed
such that ω→ 1.0 as ε→ 0.

It is important to be able to estimate how well the numerical solution approximates the
exact solution for a particular problem. When the exact solution is known, the following
expression represents an appropriate error measure of the numerical solution

Eu = ‖u−uhp‖Ω,0/‖u‖Ω,0 (3.44)

where u and uhp represent respectively, the exact and finite element solution for a given
dependent variable. When the exact solution is unavailable we utilize an a posteriori eval-
uation of the least-squares functional J (uhp; f ,h) as an estimate for the error in the finite
element solution. We note that this approach represents a global error estimate of the sum
of all solution variables. Alternatively, J (uhp; f ,h) may also be evaluated for each element
separately as a means of identifying regions where mesh refinement may be necessary.

Numerical examples: verification benchmarks

In what follows, we apply the preceding abstract formulations to the numerical solution
of several nonlinear boundary-value problems using least-squares finite element models. It
is our intent to illustrate through these numerical experiments, various artifacts associated
with how the numerical solution is affected by exchanging the order of application of the
minimization and linearization operators. To this end we first consider the numerical solution
of a two-dimensional nonlinear Poisson equation. We then present numerical solutions of the
stationary incompressible form of the Navier-Stokes equations including flow past a circular
cylinder, flow over a backward facing step and lid-driven cavity flow.
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A nonlinear Poisson equation

We consider the solution of a nonlinear Poisson equation, governing the diffusion of heat
or chemical species. The problem may be formally stated as follows: find u(x) such that

−∇· (k∇u) = f in Ω (3.45a)

u= up on ΓD (3.45b)

−n̂ ·k∇u= qp on ΓN (3.45c)

where n̂ is the outward unit normal and k is a nonlinear function of u given by the following
formula

k = k0 +kuu > 0 (3.46)

where k0 and ku are constants. We assume the boundary conditions and data are given
such that the problem is well-posed. Direct application of the least-squares method to this
boundary-value problem is certainly possible. However, this will require a high degree of
regularity in the finite element solution such as u ∈H2(Ω). To maintain practicality in the
numerical implementation, we recast the above problem into an equivalent first-order form.
The problem can be stated as follows: find u and q such that

∇·q−f = 0 in Ω (3.47a)

q+k∇u= 0 in Ω (3.47b)

∇×q = 0 in Ω (3.47c)

u= up on ΓD (3.47d)

n̂ ·q = qp on ΓN (3.47e)

where q is a flux quantity (e.g., in the context of the heat equation, q is the heat flux).
The first-order system in Eq. (3.47) involves physical variables, although one may select an
alternative set of first-order equations that may not be physical.

We define the true least-squares functional for the nonlinear Poisson equation as

J (u,q;f) =
1

2

∫
Ω
{(∇·q−f)2 +[q+(k0 +kuu)∇u]2 +(∇×q)2}dΩ (3.48)

The Neumann boundary condition may also be included, if needed, in the definition of
the least-squares functional. It is also possible to construct a linearized form of the above
expression by performing linearization of the nonlinear parts of the Poisson equation prior
to construction of the least-squares functional. In the Picard approach we replace u∇u with
u0∇u. Likewise, in Newton’s scheme, u∇u0 +u0∇u−u0∇u0 is used in substitution of the
nonlinear term. The linearized Euler equation (or weak formulation) resulting from invoking
the minimization principle for the nonlinear Poisson equation may be stated as follows: find
u ∈ V such that

B(δu,u) = F(δu) for all δu ∈W (3.49)

where u = (u,q) and δu = (δu,δq) are ordered pairs, introduced to simplify the discussion.
Likewise, V and W are appropriate function spaces (see for example Eqs. (3.4) and (3.7)). In
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the case of Picard linearization, the bilinear form B(δu,u) and linear form F(δu) are given
as

B(δu,u) =

∫
Ω

{
[δq+(k0 +kuu0)∇δu] · [q+(k0 +kuu0)∇u] (3.50a)

+(∇· δq)(∇·q)+(∇× δq) · (∇×q)

+kuδu∇u0 · [q+(k0 +kuu0)∇u]
}
dΩ

F(δu) =

∫
Ω
f(∇· δq)dΩ (3.50b)

Likewise, for the case of Newton linearization the bilinear and linear forms can be expressed
as

B(δu,u) =

∫
Ω

{
[δq+(k0 +kuu0)∇δu+kuδu∇u0] · [q+(k0 +kuu0)∇u (3.51a)

+ kuu∇u0]+ (∇· δq)(∇·q)+(∇× δq) · (∇×q)

+ku(δu∇u+u∇δu) · [q0 +(k0 +kuu0)∇u0]
}
dΩ

F(δu) =

∫
Ω

{
f(∇· δq)+(kuu0∇u0) · [δq+(k0 +kuu0)∇δu+kuδu∇u0] (3.51b)

+ku(δu∇u0 +u0∇δu) · [q0 +(k0 +kuu0)∇u0]
}
dΩ

The underlined terms above are present when linearization is performed after minimization.
The above expressions are consistent with our findings for the abstract problem. In par-
ticular, the converged solutions for both Newton schemes should coincide, while the Picard
linearization (before minimization) introduces error in the discrete setting that is propor-
tional to how well the governing equations are satisfied by the numerical solution.

A manufactured solution

To demonstrate convergence properties of the various least-squares formulations for the
nonlinear Poisson equation, we seek to compare numerical results with an appropriate ana-
lytic solution. Since obtaining exact solutions of nonlinear equations is often a formidable
task, we resort to the method of manufactured solutions. In this approach we postulate a
solution to the partial differential equation, and then find a forcing function f that makes
the solution exact. Ideally we would like to come up with a solution that is infinitely dif-
ferentiable, to ensure that the numerical solution cannot be trivially satisfied by the finite
element basis functions.

We consider the domain for the problem to be given as Ω̄ = [0,
√

7π/2]× [0,1]. The closed
form analytic solution chosen for the problem is of the form

u(x,y) = [ex cos(x2)+π2x] sin(πy) (3.52)
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The equation parameters for k are taken as k0 = 1 and ku = 100. We note that the proposed
solution does not satisfy the Poisson equation when f = 0. To make the solution exact
we specify f such that Eq. (3.45a) is satisfied. This choice for f is sometimes termed the
consistent forcing function. The expression is somewhat complicated but can be easily
determined using a symbolic algebra software package such as Maple or Mathematica.

In the numerical implementation of the problem, the boundary conditions are applied
by specifying the exact solution for u along the whole boundary (i.e., Γ = ΓD and ΓN = ∅).
The following values are utilized as initial guesses at the beginning of the iterative nonlinear
solution procedure: u = 15 and qx = qy = 0 in Ω. The finite element model consists of a
uniform 6×2 mesh of rectangular elements. The mesh is refined by systematically increasing
the p-level of the finite element approximation functions. Nonlinear convergence is declared
once ε < 10−6. An example mesh and accompanying finite element solution of the Poisson
equation is given in Figure 3.1.

Figure 3.1. Nonlinear Poisson equation: (a) 6× 2 finite
element mesh and (b) finite element solution for u at p= 11.

The solution error Eu associated with uhp is evaluated using the pseudo-metric given in
Eq. (3.44). As expected, exponential decay of Eu is observed under p-refinement as can be
seen in Figure 3.2; this is true of all four least-squares based formulations. It is worth noting
that all formulations with the exception of the Picard method (with linearization performed
prior to minimization) yield equivalent values for Eu for a given p-level. We also, see that this
Picard scheme also yields the largest value of Eu. Clearly, the error inherent in the Picard
scheme (before minimization) does not prevent solution convergence under mesh refinement.
It does, however, prevent this scheme from being as competitive with the other least-squares
finite element formulations. In addition, we see that application of Newton’s method (before
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minimization) yields identical numerical results as compared with the two schemes where
linearization is performed subsequent to minimization. These conclusions are consistent with
our findings from the abstract least-squares problem.

Figure 3.2. Convergence of uhp as measured by Eu for
various least-squares formulations of the nonlinear Poisson
equation (uniform 6×2 mesh with p-refinement).

In Figure 3.3 we also plot the solution for u along the horizontal centerline (i.e., y = 0.5)
of the domain for p= 2 and p= 6. We compare the results obtained from the finite element
solutions (i.e., the Newton (before minimization) and Picard (before minimization)) with
the exact solution. We clearly see that for p= 2, the Newton (before minimization) scheme
produces more accurate results for u than the Picard (before minimization) formulation. As
the mesh is refined, however, the Picard method also produces acceptable results. On the
finer mesh, where p = 6, we see that the results of both schemes are nearly identical. We
have chosen to not to include results for the Newton (after minimization) formulation in
this plot as the numerical values are equivalent to those obtained by the Newton (before
minimization) scheme.

Finally, we also evaluate the nonlinear iterative solution convergence behavior of each
least-squares finite element model. In all simulations, the nonlinear equations have been
solved without the use of load stepping. The numbers of nonlinear iterations required to
satisfy the convergence criterion at various p-levels are listed in Table 3.1. Relaxation was
employed in many of the finite element simulations. For both Picard formulations, the ap-
plication of relaxation resulted in significant reductions in the required number of iterations.
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Figure 3.3. Analytic and least-squares finite element solu-
tions for u of the nonlinear Poisson equation along the hori-
zontal mid-line of the domain: (a) p= 2 and (b) p= 6.
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Table 3.1. Manufactured solution of a nonlinear Poisson
equation: Number of iterations required to satisfy the nonlin-
ear solution convergence criterion for various least-squares fi-
nite element implementations (termination criteria ε= 10−6).

Number of nonlinear iterations
Least-squares formulation ω0 p= 2 p= 4 p= 6 p= 8

Picard (before) 0.50 207 28 44 112
Newton (before) 1.00 9 6 6 6
Newton (before) 0.50 8 7 7 7
Picard (after) 0.50 56 37 33 41
Newton (after) 0.50 7 7 7 7
Newton (mixed) 0.75 6 6 6 7

However, even with relaxation, these schemes always required a large number of iterations
for convergence. In the case of the Newton linearization (performed after minimization),
complete solution divergence was observed whenever relaxation was not employed. On the
other hand, the Newton formulation (with linearization applied prior to minimization) per-
formed well with or without relaxation. We also considered a mixed Newton formulation,
where 5 Newton (before minimization) iterations were employed prior to the use of Newton
(after minimization) iterations. This mixed formulation performed slightly better than the
Newton (after minimization) formulation in several cases. Overall we find that all Newton
schemes (when relaxation is employed) offer similar convergence properties. Clearly the New-
ton scheme before minimization possesses a much larger radius of convergence as compared
with the Newton scheme after minimization.

The incompressible Navier-Stokes equations

We next turn our attention to the incompressible form of the stationary Navier-Stokes
equations, which constitutes a very popular application for least-squares variational princi-
ples. The classical problem for the non-dimensional form of the incompressible Navier-Stokes
equations can be stated as follows: find the velocity vector v(x) and pressure p(x) such that

v ·∇v =−∇p+
1

Re
∇· (∇v+∇vT)+b in Ω (3.53a)

∇·v = 0 in Ω (3.53b)

v = vp on ΓD (3.53c)

n̂ ·σ = tp on ΓN (3.53d)
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where Re is the Reynolds number, b is the body force, σ is the Cauchy stress tensor and n̂
is the outward unit normal. The Cauchy stress is given in terms of the following constitutive
equation

σ =−pI+
1

Re
(∇v+∇vT) (3.54)

Note that in this dissertation we have employed a typical abuse of notation by allowing p to
represent both the p-level of the finite element solution as well as the pressure field in the
Navier-Stokes equations.

There are many first-order formulations of the Navier-Stokes equations that have been
presented in the literature [6, 38] that can be used to construct finite element models of least-
squares type. One of the most popular schemes is the velocity-pressure-vorticity (v,p,ω)
formulation. In this formulation the vorticity vector ω =∇×v is introduced, along with the
vector identity

∇× (∇×v) =−∇2v+∇(∇·v) (3.55)

As a result, we are able to restate the original problem in terms of the following equivalent
first-order system: find the velocity v(x), pressure p(x) and vorticity ω(x) such that

v ·∇v+∇p+
1

Re
∇×ω = b in Ω (3.56a)

ω−∇×v = 0 in Ω (3.56b)

∇·v = 0 in Ω (3.56c)

v = vp on Γv (3.56d)

ω = ωp on Γω (3.56e)

n̂ · σ̃ = t̃p on ΓN (3.56f)

where ΓD has been partitioned such that ΓD = Γv
⋃

Γω and Γv
⋂

Γω = ∅. We note that
the incompressibility constraint has been imposed in the construction of the momentum
equation. The pseudo-traction boundary condition t̃p is given in terms of the pseudo-stress
tensor σ̃ defined as

σ̃ =−pI+
1

Re
∇v (3.57)

For three-dimensional analysis it is helpful to augment the above equations by the compati-
bility condition ∇·ω = 0.

We associate with the stationary first-order form of the incompressible Navier-Stokes
equations the following true least-squares functional

J (v,p,ω;b, t̃p) =
1

2

(
‖v ·∇v+∇p+

1

Re
∇×ω−b‖2

Ω,0 +‖∇·v‖2
Ω,0

+‖ω−∇×v‖2
Ω,0

) (3.58)

The outflow boundary condition may also be directly accounted for in the definition of the
least-squares functional (see Chapter 4 for details). Linearized versions of the least-squares
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functional may be obtained by replacing the nonlinear convective term with following Picard
or Newton approximations

v ·∇v|Pic = v0 ·∇v (3.59a)

v ·∇v|New = v ·∇v0 +v0 ·∇v−v0 ·∇v0 (3.59b)

The linearized least-squares based weak formulation resulting from invoking the minimization
principle may be stated as follows: find u∈V such that for all δu∈W the following expression
holds

B(δu,u) = F(δu) (3.60)

where u = (v,p,ω), δu = (δv, δp,δω) and V and W are appropriate function spaces. When
the Picard linearization scheme is employed, the bilinear form B(δu,u) and linear functional
F(δu) are given as

B(δu,u) =

∫
Ω

[(
v0 ·∇δv+∇δp+

1

Re
∇× δω

)
·
(
v0 ·∇v+∇p (3.61a)

+
1

Re
∇×ω

)
+(∇· δv)(∇·v)+(δω−∇× δv) · (ω−∇×v)

+(δv ·∇v0) · (v ·∇v0)

]
dΩ

F(δu) =

∫
Ω

[(
v0 ·∇δv+∇δp+

1

Re
∇× δω

)
·b− (δv ·∇v0)· (3.61b)(

∇p0 +
1

Re
∇×ω0−b

)]
dΩ

When Newton’s method is applied, the bilinear form and linear form are

B(δu,u) =

∫
Ω

[(
δv ·∇v0 +v0 ·∇δv+∇δp+

1

Re
∇× δω

)
· (3.62a)(

v ·∇v0 +v0 ·∇v+∇p+
1

Re
∇×ω

)
+(∇· δv)(∇·v)

+(δω−∇× δv) · (ω−∇×v)+(δv ·∇v+v ·∇δv)·(
v0 ·∇v0 +∇p0 +

1

Re
∇×ω0−b

)]
dΩ

F(δu) =

∫
Ω

[(
δv ·∇v0 +v0 ·∇δv+∇δp+

1

Re
∇× ω̃

)
· (b+v0 ·∇v0) (3.62b)

+(δv ·∇v0 +v0 ·∇δv) ·
(
v0 ·∇v0 +∇p0 +

1

Re
∇×ω0−b

)]
dΩ

The terms underlined above appear when minimization is performed prior to linearization.
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Low Reynolds number flow past a circular cylinder

In this example we consider flow past a circular cylinder, a problem that has been stud-
ied extensively by way of experiment [63, 1, 64] and is a standard benchmark for numerical
computation [65, 66, 67]. It is well-known from both experimentation [64] and numerical
modeling [68, 69] that for moderately low Reynolds numbers (5<Re< 46.1) the flow is spa-
tially stationary and characterized by two symmetric regions of circulation directly downwind
of the cylinder. The size of the standing vortices in the wake region is proportional to the
Reynolds number.

Ideally we would like to model the flow in a manner such that end effects (due to trun-
cation of the problem to a geometrically finite computational domain) do not corrupt the
integrity of the numerical solution. To this end we take Ω̄ to be the set difference between
the rectangular region [−25,25]× [−15,15] and an open circular region with unit diameter
centered about the origin. The computational domain Ω̄hp � Ω̄ consists of 240 non-uniform
finite elements, with 15 element layers in the radial direction and 16 along the circumference
of the cylinder as shown in Figure 3.4. The smallest elements are placed in the vicinity of
the cylinder to ensure adequate numerical resolution in the anticipated wake region. The
mesh geometry is characterized using an isoparametric formulation which, when combined
with high-order finite element technology, allows for a highly accurate approximation of the
cylinder surface. As in the Poisson benchmark problem, we refine the mesh by systematically
increasing the p-level of the finite element approximation functions. We consider the cases
where p = 2, 4, 6 and 8; which amounts to 3,968, 15,616, 34,944 and 61,952 total degrees
of freedom for each corresponding finite element discretization. The boundary conditions
coincide with those used in the parallel performance benchmark problem given in Chapter
2 Section 2 where the Reynolds number is taken to be 40. The outflow boundary condition
is enforced weakly through the least-squares functional (see Chapter 4) with tp taken as
zero along the right hand side of Ω̄. Nonlinear convergence is declared for a given numerical
simulation once the relative error in the solution is less than 10−6.

Since this problem does not admit an analytic solution, we obtain a reasonable a posteriori
estimate for the error via a numerical evaluation of J during the post-processing stage of the
analysis. Exponential decay of the least-squares functional, shown in Figure 3.5, is clearly
visible as the polynomial order of the numerical solution is increased. As expected, each
least-squares formulation produces identical converged results (for a given p-level) with the
exception of the Picard scheme (applied prior to minimization). The value of J for this
scheme is only slightly greater than the values determined by the other three formulations.

Figure 3.6 shows the numerically determined pressure coefficients along the surface of
the cylinder. When the mesh is coarse (p = 2), linearization before minimization using
Picard’s method yields substantially different results than does Newton’s method (where
by Newton’s method we mean either Newton scheme, as they both yield identical results).
Neither solution at this p-level, however, constitutes an appropriate converged solution for
the problem. We see that as the p-level is increased to 4, the Picard (before minimization)
and Newton schemes begin to coincide. Finally, at p = 6 we observe virtually no difference
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Figure 3.4. Finite element discretization of the computa-
tional domain Ω̄ for the analysis of steady flow past a circular
cylinder: (a) view of the complete mesh and (b) close up view
of mesh near the cylinder.

57



Figure 3.5. Convergence of the least-squares finite ele-
ment solutions under p-refinement as measured in terms of
the least-squares functional J for steady flow past a circular
cylinder at Re = 40.

between the results of either scheme. The computed values at this p-level and higher were
found to be in excellent agreement with the empirical work conducted by Grove et al. [1]. In
Figure 3.7 we also show the pressure field and velocity component vy in the vicinity of the
cylinder for the Newton solution at p = 8. Streamlines are also shown highlighting the size
of the circulation regions. Our numerical calculations predict the wake region to extend 4.50
cylinder radii downstream of the cylinder, which is in excellent agreement with the numerical
results reported by Kawaguti and Jain [65].

A word on the nonlinear iterative convergence behavior of each finite element scheme is
also in order. In each formulation we solved the equations without the employment of load
steps. A summary of the total number of iterations needed to achieve the desired termination
criteria is summarized in Table 3.2. When linearization was performed prior to minimization,
solution convergence was possible without the need for relaxation. For the case of the Picard
linearization after minimization, however, convergence was extremely slow and could not
be achieved without relaxation. Due to such poor rates of convergence, a solution at p = 8
was not attempted. Using the Newton linearization scheme after minimization produced
divergent results, with or without solution relaxation. We therefore considered a mixed
Newton scheme where 3 Newton (before minimization) iterations were used prior to subse-
quent Newton (after minimization) iterations. This method produced very good results in
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Figure 3.6. A comparison of the numerically computed
pressure coefficient Cp along the surface of the cylinder at
Re = 40 with the experimental data obtained by Grove et
al. [1]: (a) non-converged numerical solutions and (b) fully-
converged numerical solutions.
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Figure 3.7. Steady flow past a circular cylinder at Re = 40:
(a) pressure field and streamlines and (b) velocity component
vy and streamlines.

terms of minimizing the total number of iterations required for convergence. For low p-levels
this approach slightly outperformed the Newton (before minimization) scheme. Overall, the
Newton (before minimization and mixed) schemes exhibited much better convergence rates
than the Picard formulations.

Steady flow over a backward facing step

In this example we consider the flow of a viscous incompressible fluid over a backward
facing step. This problem was studied by way of experiment and also numerical simulation
by Armaly et al. [70]. Laminar, transition and turbulent flows were empirically assessed for
70<Re< 8,000, and numerically simulated for steady-state cases up to a Reynolds number
of 1,250. In our numerical study, we evaluate the stationary solution of the two-dimensional
problem at Re = 800, using the simplified step configuration proposed in the benchmark
solution of Gartling [2].

The computational domain for the problem is given as Ω̄ = [0,30]× [−0.5,0.5] as shown
in Figure 3.8. The fluid enters the domain on the left hand side of Ω̄ on 0 ≤ y ≤ 0.5. The
velocity vector at the inlet is assumed to be horizontal with the x -component given by the
parabolic expression v̄x = 24y(0.5−y). The components of the velocity are taken to be zero
along all solid surfaces in accordance with the non-slip condition. The outflow boundary
condition is enforced weakly by taking tp = 0 in the least-squares functional.

We discretize the computational domain into a set of 40 rectangular finite elements, with
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Table 3.2. Steady flow past a circular cylinder: Num-
ber of iterations required to satisfy the nonlinear solution
convergence criterion for various least-squares finite element
implementations (termination criteria ε= 10−6).

Number of nonlinear iterations
Least-squares formulation ω0 p= 2 p= 4 p= 6 p= 8

Picard (before) 1.0 11 15 15 15
Newton (before) 1.0 10 9 7 6
Picard (after) 0.5 39 161 179 –
Newton (mixed) 1.0 7 7 7 7

Figure 3.8. Geometry and boundary conditions for steady
flow of an incompressible viscous fluid over a backward facing
step at Re = 800.

20 elements along the channel length and 2 along the channel height as shown in Figure 3.9.
The majority of the elements are positioned within 15 units of the channel inlet to ensure
proper resolution of all variables within the flow separation regions anticipated downstream
of the step. We once again refine the discrete solution by systematically increasing the
number of nodes in each finite element. We arrive at the numerical solution at Re = 800,
by solving a series of problems at intermediate Reynolds numbers. We begin by solving the
problem at Re = 100 followed by Re = 200 and so on until we reach Re = 800. For each
intermediate problem, we utilize the converged solution from the previous problem in the
series as the initial guess. As an initial guess for the problem where Re = 100, we assume all
variables to be zero. Nonlinear convergence is declared for each problem when the Euclidean
norm of the difference between the nonlinear solution increments is less than 10−4.

In Figure 3.10 we show the least-squares finite element solution of the problem as deter-
mined using a polynomial of order 10 within each element. The velocity vectors are depicted
along with contour plots of the velocity components and pressure field. The flow is charac-
terized by a large recirculation zone directly behind the step on the low side of the channel
that extends roughly 6.1 units beyond the step. A second region of flow separation and
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Figure 3.9. Finite element mesh for analysis of stationary
incompressible viscous flow over a backward facing step.

recirculation is also present on the top side of the channel that develops around 4.9 units
downstream of the step and extends to approximately x= 10.5.

In Figure 3.11 we compare our numerical solutions for the components of the velocity
vector along x = 7 and x = 15 with the results reported by Gartling [2], where a weak-
form Galerkin finite element model was employed. The converged results for the Picard
(linearization before minimization) and Newton schemes are in excellent agreement with the
published data. As expected, the Picard and Newton formulations yield dissimilar results
when the finite element mesh is too coarse to allow for convergence. It is interesting to note,
however, that the Picard scheme offers a somewhat better approximation of the velocity
components on the coarse mesh than does Newton’s method at x = 7 and x = 15. The
reason for this phenomenon is unclear; however, as anticipated from the abstract problem,
both schemes converge to the same solution under proper mesh refinement.

Table 3.3. Steady flow over backward facing step: Num-
ber of iterations required to satisfy the nonlinear solution
convergence criterion for various least-squares finite element
implementations, where p= 6 (termination criteria ε= 10−4).

Number of nonlinear iterations
Renolds number Picard (before) Newton (before) Picard (after) Newton (mixed)

100 13 6 81 6
200 20 4 313 4
300 28 5 616 5
400 39 6 774 6
500 53 7 641 8
600 63 8 501 7
700 69 11 405 8
800 74 15 380 10

In Figure 3.12 we plot the value of the least-squares functional for the Picard (before
minimization) and Newton (before minimization) schemes as a function of the p-level. Al-
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Figure 3.10. Steady flow of an incompressible viscous fluid
over a backward facing step at Re = 800: (a) velocity vec-
tor field at finite element nodes, (b) velocity component vx,
(c) velocity component vy, (d) pressure field and (e) finite
element mesh directly behind step.

though J is always greater for the Picard scheme as compared with Newton’s method, the
actual numerical values are nearly identical. A summary of the total number of iterations
required to reach the desired termination criteria at each Reynolds number is summarized
in Table 3.3 for p= 6. The Picard and Newton finite element solutions (where linearization
was performed prior to minimization) were obtained without the use of relaxation. For the
Picard (after minimization) formulation, a relaxation parameter of ω0 = 0.5 was utilized.
Even with the aid of relaxation, however, the scheme still suffered from a severely poor
rate of convergence. We were unable to obtain a converged solution for the Newton (after
minimization) formulation, with or without relaxation. As in the previous example, we once
again introduced a mixed Newton formulation in an attempt to recover a convergent solu-
tion. In the mixed approach, we utilized the Newton (before minimization) formulation in
the iterative solution scheme until ε was less than 0.05, at which point we switched to the
Newton (after minimization) formulation. Solution relaxation was found to be unnecessary
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Figure 3.11. Comparison of numerically computed veloc-
ity components for the steady flow of a viscous fluid over a
backward facing step at Re = 800 with the published results
of Gartling [2, 3]: (a) horizontal velocity profile at x = 7,
(b) vertical velocity profile at x = 7, (c) horizontal velocity
profile at x= 15 and (d) vertical velocity profile at at x= 15.
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Figure 3.12. Convergence of the least-squares finite ele-
ment solutions under p-refinement as measured in terms of
the least-squares functional J for steady flow past a back-
ward facing step at Re = 800.

in the mixed approach. On average the mixed formulation performed comparably to the
Newton (before minimization) scheme and in some cases superior at this p-level. However,
at higher p-levels we find little difference between the convergence behaviors of these New-
ton formulations (especially at Re = 700, 800). As expected, the Newton schemes require far
fewer iterations than their Picard counterparts.

Lid-driven cavity flow

As a final verification benchmark, we consider the classical two-dimensional lid-driven
cavity flow problem. The computational domain is taken as the unit square given as Ω̄ =
[0,1]× [0,1] and the boundary conditions are specified in terms of the components of the
velocity vector and the pressure at a single point. On the bottom and left and right sides
of the cavity the components of the velocity are taken to be zero. Along the top surface a
horizontal velocity profile is specified using the following expression

vx(x) =

{
tanh(50x) 0 6 x 6 0.5
−tanh[50(x−1)] 0.5< x 6 1.0

(3.63)
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The above boundary condition essentially prescribes vx as unity along the majority of the
top surface of the cavity with a smooth and abrupt transition to vx = 0 at the corners. The
boundary condition is applied in this way to avoid singularities in the solution in the vicinity
of the upper corners [58]. High-order methods are sensitive to such singularities, and the
above boundary condition ensures, in this sense, a well posed problem. The pressure is taken
to be zero at the single point (x,y) = (0.5,0). In our analysis, we consider the steady-state
solution of the problem at a Reynolds number of 3,200. We compare our numerical solutions
with the tabulated finite difference results reported by Ghia et al. [4], who used vx = 1 at all
points of the lid except at x= 0 and x= 1, where they used vx = 0.

Figure 3.13. Finite element mesh for the lid-driven cavity
flow problem.

The domain is discretized into a non-uniform set of 144 rectangular finite elements as
shown in Figure 3.13. The mesh is graded such that smaller elements are placed near
the boundaries to ensure proper resolution of the numerical solution in the regions of the
boundary layers and anticipated vortices. As in previous examples, the mesh is refined by
increasing the p-level of the solution within each finite element. We utilize polynomials of
orders 4, 5, 6, 7, 8 and 9 in our analysis which correspond with 9,604, 14,884, 21,316, 28,900,
37,636 and 47,524 total degrees of freedom. As in the previous example, the desired solution
at Re = 3,200 is obtained by solving a series of problems at intermediate Reynolds numbers.
In this case we solve a series of seven problems beginning with the first problem posed
with Re = 457.14 and culminating with the final desired solution at Re = 3,200. Nonlinear
convergence is considered to be achieved in each problem once the Euclidean norm of the
difference between the nonlinear iterative solution increments is less than 10−4. Due to
poor convergence properties, a numerical solution using the Picard scheme (as applied after
minimization) was not attempted.
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Figure 3.14. Two-dimensional lid-driven cavity flow at
Re = 3,200: (a) velocity component vx, (b) velocity com-
ponent vy, (c) pressure field and (d) streamline patterns in
cavity highlighting standing vortices.
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Figure 3.15. Comparison of numerically computed ve-
locity components along vertical and horizontal mid-lines of
lid-driven cavity with published results of Ghia et al. [4] at
Re = 3,200: (a) non-converged numerical solutions for hori-
zontal velocity vx profiles along vertical centerline, (b) con-
verged numerical solutions for horizontal velocity vx profiles
along vertical centerline, (c) non-converged numerical solu-
tions for vertical velocity vy profiles along horizontal center-
line and (d) converged numerical solutions for vertical veloc-
ity vy profiles along horizontal centerline.
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The velocity components, pressure field and streamlines are shown in Figure 3.14 for the
numerical solution obtained using Newton’s method (before minimization) at p = 9. The
flow is characterized by a large region of rotation that is just off-set from the geometric
center of the cavity. Secondary vortices are also present in the regions near the bottom (left
and right) and top left corners of the domain. The streamline patterns match well with the
published results of Ghia et al. [4].

In Figure 3.15 we compare our least-squares finite element solutions along the vertical and
horizontal mid-planes of the cavity with the tabulated results of Ghia et al. [4]. We once again
find that when the mesh is too coarse to yield a convergent solution, the numerical results
differ for the Picard (linearization before minimization) and Newton schemes. However, as
expected both schemes yield identical results when the mesh is properly refined. As in the
previous example, we are surprised to find that the Picard scheme offers a slightly better
approximation of the velocity components on the coarse mesh along the mid-lines of the
cavity.

The value of the least-squares functional as a function of the p-level exhibits character-
istics similar to those discussed in previous examples. In particular, the value of J in both
Newton schemes is always slightly less than (although nearly identical to) the value as deter-
mined using the Picard (before minimization) method. We were once again able to obtain
convergent solutions using the Picard and Newton schemes (with linearization performed
before minimization) without the need for solution relaxation. Solution convergence could
not be achieved for the Newton (after minimization) scheme with or without relaxation. As
a result, we again utilized a mixed Newton scheme, where Newton (before minimization)
iterations where performed until the relative error ε was less than 0.01 at which point we
switched to the Newton (after minimization) scheme. The total number of iterations required
for solution convergence at a p-level of 6 is summarized for each scheme in Table 3.4.

Table 3.4. Two dimensional cavity driven flow: Number of
iterations required to satisfy the nonlinear solution conver-
gence criterion for various least-squares finite element imple-
mentations, where p= 6 (termination criteria ε= 10−4).

Number of nonlinear iterations
Reynolds number Picard (before) Newton (before) Newton (mixed)

457.14 12 7 7
914.29 12 5 5
1371.43 12 4 4
1828.57 14 4 4
2285.71 17 4 4
2742.86 20 4 4
3200.00 23 3 3
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Chapter 4

A least-squares finite element
formulation for viscous incompressible
fluid flows with enhanced
element-level mass conservation

Tremendous progress has been achieved over the last few decades in the field of com-
putational fluid dynamics. The advent of the digital computer and in particular parallel
processing has made it possible to numerically simulate complex flow patterns that just a
few years ago could only have been investigated using experimental procedures and dimen-
sional analysis. Much of the success and breakthroughs in the numerical simulation of the
Navier-Stokes equations for incompressible fluids have come in the context of low-order finite
difference and finite volume technologies. Although the finite element method has become
the dominate method of choice in the numerical analysis of solids, it has yet to receive
such widespread acceptance when applied to fluid flow problems. It is well known, however,
that finite element procedures offer many advantages over finite difference and finite volume
methods. In particular, the finite element method can naturally deal with complex regions,
complicated boundary conditions and possesses a rich mathematical foundation. As a result,
there has been a renewed interest in recent years in developing efficient and accurate finite
element models of the incompressible Navier-Stokes equations.

The majority of finite element models for fluids are based on the weak-form Galerkin
procedure. It is well-known, however, that application of this method can lead to a non-
optimal setting for a given finite element discretization [6, 53]. As discussed in Chapter 3,
application of the weak-form Galerkin method to the incompressible Navier-Stokes equations
expressed in terms of the velocities and pressure results in a finite element model that must
satisfy the restrictive discrete inf-sup or LBB condition [34]; this effectively precludes the use
of equal interpolation of the velocity and pressure fields in the numerical implementation.
Even when the LBB condition is satisfied, the finite element solution may still be plagued by
spurious oscillations in convection dominated problems. Stabilized weak-form Galerkin finite
element formulations such as the SUPG [8, 9], penalty [10, 3] and Galerkin least-squares [11]
have received considerable attention over the last few decades and have greatly improved the
discrete setting for the finite element solution. Unfortunately, the success of these methods is
often intertwined with ad-hoc parameters that must be fine tuned for a given flow problem.
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Least-squares finite element models for the numerical simulation of viscous incompressible
fluid flows have received substantial attention in the academic literature in recent years and
offer an appealing alternative to the more popular weak-form Galerkin procedure. The
least-squares formulation allows for the construction of finite element models for fluids that
possess many of the attractive qualities associated with the well-known Ritz method [7]; for
example global minimization, best approximation with respect to a well-defined norm and
symmetric positive-definiteness of the resulting finite element coefficient matrix [6]. We refer
to Chapter 3 for a detailed discussion on both the least-squares method and advantages it
holds over the traditional weak-form Galerkin procedure.

It is well-known, however, that least-squares finite element models of both the steady
and non-stationary form of the incompressible Navier-Stokes can be plagued by poor local
(or element-level) mass conservation [71]. This is especially true whenever low-order ele-
ments are employed in a given finite element discretization. The discrete violation of the
requirement that the velocity be a solenoidal vector is often attributed to the fact that, in
least-squares formulations, local satisfaction of the governing PDEs is sacrificed in favor of
global minimization of the governing equation residuals [54]. In transient flow problems,
lack of velocity-pressure coupling [55] has also been identified as a source for poor local
mass conservation. We must emphasize that the violation is not merely numerical noise
and, depending on the nature of the domain and boundary conditions, can actually be quite
substantial [54].

Several techniques have been proposed to improve local mass conservation in least-squares
finite element models. For example Deang and Gunzburger [71] advocated weighting the
continuity equation residual in the definition of the least-squares functional, where the chosen
weight may be either uniform across the whole problem domain or distinct for each element
[72]. Chang and Nelson [54], on the other hand, combined the least-squares method with
Lagrange multipliers to exactly enforce element-level mass conservation. In this approach the
continuity equation is treated as an additional constraint for each element that is enforced
in the discrete setting through a set of NE Lagrange multipliers. Although successful [54,
73], this approach comes at the expense of increasing the system size of the finite element
equations and compromising the unconstrained minimization setting that is so attractive for
least-squares finite element models [74]. Recently Heys et al. [75] demonstrated improved
mass balance using a least-squares functional based on a novel first-order reformulation of
the incompressible Navier-Stokes equations. It is worth noting that increasing the p-level
also tends to improves mass conservation [20].

For non-stationary flows, lack of strong velocity-pressure coupling can also compromise
local mass conservation and further lead to total instability in space-time decoupled finite
element simulations [20]. Pontaza showed that the employment of a regularized form of
the continuity equation in least-squares formulations can greatly enhance velocity-pressure
coupling and as a direct consequence local mass conservation [55]. Similar approaches have
also been advocated in the iterative penalty formulations of Prabhakar and Reddy [56, 57, 58]
and Prabhakar et al. [59]. For a more mathematical analysis of such optimization methods
as applied to the Stokes problem, we refer to the work of Bochev and Gunzburger [76].
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The purpose of this chapter is to present a novel least-squares finite element model
for both the steady and non-stationary incompressible Navier-Stokes equations based on
the standard velocity-pressure-vorticity first-order system, but with enhanced element-level
mass conservation. The proposed formulation may be viewed as a direct extension of the
work of Chang and Nelson [54] and also Pontaza [55]. For the steady flow case, we recast
the constrained minimization problem of Chang and Nelson [54] into an unconstrained mini-
mization problem through the use of the penalty method. This approach is quite natural, as
the traditional least-squares method is itself in a sense a multi-equation penalty formulation
(where penalization is applied to all of the partial differential equation residuals). For non-
stationary flows, a penalty formulation is proposed that enhances local mass conservation
while improving velocity-pressure coupling and overall numerical stability.

The non-stationary incompressible Navier-Stokes equa-

tions

We consider the non-stationary incompressible flow of a viscous fluid as described by the
Navier-Stokes equations. The problem may be stated in non-dimensional form as follows:
find the velocity v(x, t) and pressure p(x, t) such that

∂v

∂t
+v ·∇v+∇p− 1

Re
∇· (∇v+∇vT) = b in Ω× (0, τ ] (4.1a)

∇·v = 0 in Ω× (0, τ ] (4.1b)

v(x,0) = v̄(x) in Ω (4.1c)

v = vp(x, t) on ΓD× (0, τ ] (4.1d)

n̂ ·σ = tp(x, t) on ΓN× (0, τ ] (4.1e)

where τ ∈ R+ is the time parameter, Re is the Reynolds number, b is the body force, σ is
the stress tensor (see Eq. (3.54)) and n̂ is the outward unit normal vector to the boundary.
In addition, v̄(x) is the initial velocity profile in Ω, vp(x, t) is the prescribed velocity on ΓD

and tp(x, t) is the traction specified on ΓN. We assume that ∇· v̄ = 0 in Ω and that the
problem is well posed. Whenever ΓN = ∅ we further prescribe the pressure at a single point
in Ω̄.

The velocity-pressure-vorticity first-order system

As discussed in Chapter 3, the Navier-Stokes equations as expressed in terms of the
primitive variables v(x, t) and p(x, t) are poorly suited for direct implementation in a least-
squares finite element formulation. To allow for the use of practical C0 basis functions in
the numerical implementation we introduce the vorticity vector ω =∇×v, which allows us
to recast the Navier-Stokes equations in terms of the following equivalent first-order system
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problem statement: find the velocity v(x, t), pressure p(x, t) and vorticity ω(x, t) such that

∂v

∂t
+v ·∇v+∇p+

1

Re
∇×ω = b in Ω× (0, τ ] (4.2a)

∇·v = 0 in Ω× (0, τ ] (4.2b)

ω−∇×v = 0 in Ω× (0, τ ] (4.2c)

v(x,0) = v̄(x) in Ω (4.2d)

v = vp(x, t) on Γv× (0, τ ] (4.2e)

ω = ωp(x, t) on Γω× (0, τ ] (4.2f)

n̂ · σ̃ = t̃p(x, t) on ΓN× (0, τ ] (4.2g)

In the above expressions ωp(x, t) is the prescribed vorticity on Γω, σ̃ =−pI+1/Re∇v is the
pseudo stress tensor and t̃p(x, t) is the pseudo traction vector specified on ΓN. The Dirichlet
part of the boundary has been partitioned such that ΓD = Γv

⋃
Γω and Γv

⋂
Γω = ∅. The

expression ∇(∇ ·v) has been eliminated from the momentum equation on account of the
solenoidal nature of the velocity field; as a result the outflow condition given in Eq. (4.2g)
is preferred over Eq. (4.1e) [77]. For three-dimensional problems it is helpful to augment
the first-order system with the seemingly redundant compatibility condition ∇ ·ω = 0 in
Ω× (0, τ ] [38].

Temporal discretization

In this work we employ a space-time decoupled finite element approximation of the de-
pendent variables. At each time step we approximate the time derivative of the velocity field
using the backwards difference formula of order n (or BDFn)

∂vs+1

∂t
�

1

∆ts+1

(
γn
0 vs+1−

∑n−1

q=0
βn

q vs−q
)

(4.3)

where ∆ts+1 = ts+1− ts is the time increment and γn
0 and βn

q are the temporal integration
parameters. It is well-known that the backward difference formulas are particularly use-
ful in the numerical solutions of stiff partial differential equations and differential-algebraic
equations (DAEs). The backward difference formulas are especially valuable in achieving
numerical stability and typically provide sufficient numerical dissipation of spurious high-
frequency modes [78]. In this chapter we adopt the BDF1 and BDF2 formulas. Since the
BDF2 time integrator is non-self-starting, we employ the BDF1 formula in the first few time
steps.

The standard L2-norm based least-squares formulation

The standard least-squares functional associated with the first-order vorticity form of the
Navier-Stokes equations is constructed in terms of the sum of the squares of the L2 norms
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of the partial differential equation residuals. In the space-time decoupled formulation, we
define the least-squares functional associated with the current time step t= ts+1 as

J∆t(v,p,ω; b̃, t̃p) =
1

2

(
α‖λn

0v+v ·∇v0 +v0 ·∇v+∇p+
1

Re
∇×ω− b̃‖2

Ω,0

+‖∇·v‖2
Ω,0 +‖ω−∇×v‖2

Ω,0 +‖n · σ̃− t̃p‖2
ΓN,0

) (4.4)

where the quantities λn
0 and b̃ are defined as

λn
0 = γn

0 /∆t, b̃ = b+v0 ·∇v0 +
1

∆t

∑n−1

q=0
βn

q vs−q (4.5)

All quantities appearing in the definition of J∆t are evaluated at the current time step
t= ts+1 unless explicitly noted otherwise. Newton’s method has been employed in linearizing
the momentum equation prior to minimization [23]. The weighting parameter α is taken as
α= (∆t)2 to ensure the discrete minimization problem is not extraneously dominated by the
momentum equation residual in the limit as ∆t→ 0.

The least-squares based weak formulation resulting from minimization of J∆t may be
stated as follows: find u ∈ V such that

B∆t(δu,u) = F∆t(δu) for all δu ∈W (4.6)

where u = (v,p,ω), δu = (δv, δp,δω) and V and W are appropriate function spaces (see for
example Eqs. (3.4) and (3.7)). The bilinear form B∆t(δu,u) and linear functional F∆t(δu)
are given as

B∆t(δu,u) =

∫
Ω

[
α

(
λn

0δv+ δv ·∇v0 +v0 ·∇δv+∇δp+
1

Re
∇× δω

)
· (4.7a)(

λn
0v+v ·∇v0 +v0 ·∇v+∇p+

1

Re
∇×ω

)
+(∇· δv)(∇·v)+(δω−∇× δv) · (ω−∇×v)

]
dΩ

+

∫
ΓN

(
− δpn̂+

1

Re
n̂ ·∇δv

)
·
(
−pn̂+

1

Re
n̂ ·∇v

)
dΓN

F∆t(δu) =

∫
Ω
α

(
λn

0δv+ δv ·∇v0 +v0 ·∇δv+∇δp+
1

Re
∇× δω

)
· b̃dΩ (4.7b)

+

∫
ΓN

(
− δpn̂+

1

Re
n̂ ·∇δv

)
· t̃pdΓN

The least-squares finite element model associated with the above standard (v,p,ω)-space-
time decoupled least-squares functional J∆t often suffers from poor local mass conservation
and can lead to an ill-behaved response (most notability in the pressure) as we march in
time; this is especially true when ∆t is small and α is taken as unity.
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A modified L2-norm based least-squares formulation with improved
element-level mass conservation

The purpose of this section is to present a modified least-squares formulation that both
enhances local mass conservation and improves velocity-pressure coupling. To this end we
first recall that in traditional Galerkin based weak formulations, the pressure may be clearly
identified as a Lagrange multiplier whose role is to enforce the divergence free constraint on
the velocity field. In least-squares formulations, however, the pressure no longer possesses
this well-defined role. In an effort to improve the function of the pressure in enforcing the
continuity equation, Pontaza [55] proposed a penalized least-squares finite element model
based on the following regularized form of the divergence free condition for the velocity

∇·v =−ε∆p in Ω× (0, τ ] (4.8)

where ε is a small parameter, ∆p = pk+1−pk and the index k ∈ N pertains to the iterative
penalization of the divergence free constraint. The incompressibility constraint is recovered
in either the limit as ε→ 0 or k →∞ (assuming of course that the sequence {∆p}∞k=0 is
Cauchy). In practice the regularization may be adopted in conjunction with the iterative
Newton solution procedure. Pontaza [55] demonstrated numerically that using Eq. (4.8) in
place of Eq. (4.2b) in the construction of J∆t results in a significant improvement in the
evolution of p for non-stationary flows.

With the regularized continuity equation in mind, we propose a novel unconstrained least-
squares formulation that both enhances element-level mass conservation for steady flows and
improves the temporal evolution of the pressure for non-stationary flows. The basic idea is to
add directly to J∆t a penalized sum of the squares of the appropriately normalized element-
level integrals of Eq. (4.8). To make the concept clear, we consider the integral of Eq. (4.8)
over an arbitrary, possibly time dependent, region P(t)

Q̂P(t) =

∮
∂P(t)

n̂ ·vdΓP(t) +

∫
P(t)

ε∆pdP(t) (4.9)

When the second term on the right hand side is neglected, the quantity Q̂P(t) may be
clearly identified in the discrete setting as the volumetric flow rate imbalance associated
with region P(t). Replacing P(t) with Ωe in the above equation allows us to obtain the
following expression for the eth element of the finite element discretization

Q̂e(t) =

∮
Γe

n̂ ·vdΓe +

∫
Ωe
ε∆pdΩe (4.10)

We find it is useful to normalize the above expression as Qe(t) = Q̂e(t)/µ(Ωe) where µ(Ωe)
denotes the Lebesgue measure or nd -dimensional volume of Ωe. As a result, Qe(t) represents
(when ε= 0) the volumetric flow rate imbalance per nd -dimensional volume of Ωe.

We are now in a position to define the following modified space-time decoupled L2-norm
least-squares functional for the first-order vorticity form of the incompressible Navier-Stokes
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equations

J ?
∆t(v,p,ω; b̃, t̃p) = J∆t(v,p,ω; b̃, t̃p)+

γ

2

NE∑
e=1

(Qe)2 (4.11)

where γ is a global weight or penalty parameter. The modified least-squares based weak
formulation resulting from minimization of J ?

∆t may be stated as follows: find u ∈ V such
that

B?
∆t(δu,u) = F?

∆t(δu) for all δu ∈W (4.12)

where the bilinear form B?
∆t(δu,u) and linear form F?

∆t(δu) may be expressed as

B?
∆t(δu,u) = B∆t(δu,u)+γ

NE∑
e=1

(∮
Γe

n̂ · δvdΓe +

∫
Ωe
εδpdΩe

)
× (4.13a)(∮

Γe
n̂ ·vdΓe +

∫
Ωe
εpdΩe

)
/µ(Ωe)2

F?
∆t(δu) = F∆t(δu)+γ

NE∑
e=1

(∮
Γe

n̂ · δvdΓe +

∫
Ωe
εδpdΩe

)
× (4.13b)∫

Ωe
εp0dΩ

e/µ(Ωe)2

Unlike J∆t, the modified least-squares functional J ?
∆t clearly includes both element-level

mass conservation as well as velocity-pressure coupling. Working in terms of J ?
∆t leads to an

unconstrained minimization problem that may be viewed as an attractive alternative to the
Lagrange multiplier based least-squares model of the Stokes equations proposed by Chang
and Nelson [54]. For stationary flows, we find that it is sufficient to take ε= 0.

Numerical examples: verification benchmarks

In this section we present numerical results obtained using the proposed least-squares
formulation. The problems have been selected to assess the capabilities of the formulation
to: (a) generally improve element-level mass conservation and (b) enhance velocity-pressure
coupling and overall numerical stability in non-stationary flows.

Stationary flow

In what follows, we test the performance of the proposed least-squares formulation to
improve mass conservation for problems involving steady fluid flows. We utilize the station-
ary least-squares functionals J and J ?, obtained by setting α = 1 and γn

0 = βn
q = 0 (where

q = 0, . . . ,n−1) in the definitions of J∆t and J ?
∆t respectively.
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Kovasznay flow

In this first example, we numerically examine a well-known incompressible fluid flow
problem possessing an analytic solution. The solution is due to Kovasznay [79] and is posed
on a two dimensional square region defined as Ω̄ = [−0.5,1.5]× [−0.5,1.5]. The proposed
solution is of the form

vx = 1− eλx cos(2πy), vy =
λ

2π
eλx sin(2πy), p= pref−

1

2
e2λx (4.14)

where the parameter λ is given as λ = Re/2− [(Re/2)2 + (2π)2]1/2 and pref is a reference
pressure (which in the current study is taken to be zero).

Figure 4.1. Kovasznay flow: (a) spectral/hp finite element
discretization of domain Ω̄ and (b) numerical solution of hor-
izontal velocity field vx for Re = 40.

We discretize the domain Ω̄ into 8 non-uniform rectangular finite elements as depicted in
Figure 4.1 (a). Figure 4.1 (b) shows the numerically computed horizontal velocity component
vx. The boundary conditions for the problem are applied by specifying the exact solution
for the velocity vector v along the entire boundary through an employment of Eq. (4.14).
We specify no boundary conditions for the vorticity and only prescribe the pressure at the
single point x = (−0.5,0). In this study the mesh is refined by systematically increasing the
p-level of the finite element approximation within each element. Nonlinear convergence for
a given numerical simulation is declared once the relative Euclidean norm of the solution
residuals, ‖∆k−∆k−1‖/‖∆k‖, is less than 10−6. All reported numerical results have been
obtained for a Reynolds number of 40.

In Table 4.1 we report the decay of the L2(Ω)-norm error measures for the velocity,
pressure and vorticity fields under p-refinement, where the penalty parameter γ is varied
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Table 4.1. Kovasznay flow: Decay of the unmodified
least-squares functional J and convergence of the numeri-
cally computed velocity components, pressure and vorticity
in the L2(Ω)-norm under p-refinement for various values of
the penalty parameter γ.

γ p-level J 1/2 ‖vx−vhp
x ‖Ω,0 ‖vy−vhp

y ‖Ω,0 ‖p−php‖Ω,0 ‖ω−ωhp‖Ω,0

0 3 1.5061 E-01 1.7124 E-02 6.2962 E-03 7.3897 E-03 1.9290 E-01
5 4.5738 E-03 2.6574 E-04 1.1853 E-04 1.4078 E-04 3.9751 E-03
7 6.7688 E-05 2.1663 E-06 1.1941 E-06 6.9539 E-07 4.4836 E-05
9 5.8185 E-07 1.2070 E-08 8.0882 E-09 5.4114 E-09 3.2600 E-07

1 3 1.5061 E-01 1.7089 E-02 6.2757 E-03 7.4704 E-03 1.9274 E-01
5 4.5738 E-03 2.6434 E-04 1.1868 E-04 1.3214 E-04 3.9711 E-03
7 6.7688 E-05 2.1659 E-06 1.1941 E-06 6.9467 E-07 4.4836 E-05
9 5.8185 E-07 1.2067 E-08 8.0881 E-09 5.3552 E-09 3.2600 E-07

10 3 1.5061 E-01 1.7080 E-02 6.2675 E-03 7.4982 E-03 1.9267 E-01
5 4.5739 E-03 2.6425 E-04 1.1873 E-04 1.2996 E-04 3.9703 E-03
7 6.7688 E-05 2.1658 E-06 1.1941 E-06 6.9442 E-07 4.4836 E-05
9 5.8185 E-07 1.2067 E-08 8.0881 E-09 5.3407 E-09 3.2600 E-07

100 3 1.5061 E-01 1.7079 E-02 6.2662 E-03 7.5023 E-03 1.9266 E-01
5 4.5739 E-03 2.6424 E-04 1.1874 E-04 1.2968 E-04 3.9702 E-03
7 6.7688 E-05 2.1657 E-06 1.1941 E-06 6.9438 E-07 4.4836 E-05
9 5.8185 E-07 1.2067 E-08 8.0881 E-09 5.3381 E-09 3.2600 E-07
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from 0 to 100. We also show the decay of the unmodified least-squares functional J . We
observe exponential decay in the error measures for all variables as the p-level is increased.
This observation is true for all values of γ considered. Figure 4.2 shows the evolution of
the error measures under p-refinement for the case where γ = 100. Clearly, the inclusion of
element-level mass conservation in the definition of J ? does not pollute the integrity of the
finite element solution.

Figure 4.3 shows the decay of the normalized volumetric flow rate imbalance Qe for
element 1 under p-refinement for γ = 0,1,10 and 100, where Ω̄1 = [−0.5,0]× [−0.5,0]. The
normalized volumetric flow rate imbalance Qe associated with each element in Ω̄hp for p-levels
3 and 7 is also provided in Figure 4.4. Although p-refinement clearly improves local mass
conservation, significant additional enhancement may be obtained through constructing the
least-squares finite element model using the modified least-squares functional J ? as opposed
to the standard least-squares functional J .
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Figure 4.2. Convergence of numerically computed velocity,
pressure and vorticity under p-refinement to the analytic so-
lution of Kovasznay for γ = 100. The decay of the square root
of the unmodified least-squares functional J is also shown.
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Figure 4.3. Decay of normalized volumetric flow rate im-
balance Qe under p-refinement for various values of γ for
Kovasznay flow. Results are for element 1, where Ω̄1 =
[−0.5,0]× [−0.5,0].
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Figure 4.4. Normalized volumetric flow rate imbalance Qe

for each finite element in Ω̄hp for Kovasznay flow. Results are
for various polynomial orders and values of γ: (a) p-level = 3
and γ = 0, (b) p-level = 3 and γ = 100, (c) p-level = 7 and
γ = 0 and (d) p-level = 7 and γ = 100.
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Flow in a 1×2 rectangular cavity at Re = 1,500

In this next example, we test the modified least-squares finite element formulation on a
problem posed at an elevated Reynolds number. To this end we consider a two-dimensional
lid-driven cavity flow problem as posed on a rectangular domain with an aspect ratio of 2,
where Ω̄ = [0,1]× [0,2]. As in the previous example, the boundary conditions are specified in
terms of the velocity vector and the pressure at a single point only. Along the bottom and
left and right sides of the cavity, the velocity is taken to be zero in accordance with the no slip
condition. It is common practice in the literature to prescribe a unit value for the horizontal
velocity component vx along the entire top surface of the cavity. In the context of high-order
finite elements, however, such a boundary condition produces undesirable singularities in the
vicinity of the upper cavity corners. In an effort to avoid an ill-posed discrete problem, the
horizontal velocity profile is instead prescribed in terms of the following expression

vp
x(x) =

{
tanh(50x) 0 6 x 6 0.5
−tanh[50(x−1)] 0.5< x 6 1.0

(4.15)

which allows for a smooth transition from 1.0 to zero in the neighborhoods of the corners as
can be seen in Figure 4.5. The pressure is taken to be zero at x = (0.5,0). The Reynolds
number for the problem is taken to be 1,500.

The finite element mesh consists of a 12× 24 discretization of 288 elements as shown
in Figure 4.6 (a). The mesh is graded so as to adequately resolve the anticipated bound-
ary layers and regions of circulation near the cavity walls. Nonlinear convergence of the
iterative solution procedure is declared once the relative norm of the solution residuals,
‖∆k −∆k−1‖/‖∆k‖, is less than 10−6. We employ a continuation approach, wherein we
arrive at the solution at Re = 1,500 by solving a series of problems posed at intermediate
Reynolds numbers. We begin by solving the problem at Re = 300 followed by Re = 600 and
so on until we reach Re = 1,500. For each problem, the converged solution taken from the
immediate previous problem in the series is used as the initial guess. The problem is solved
using the modified least-squares finite element formulation taking γ as 0, 0.1, 1.0 and 10.0.

Figure 4.6 (b) shows the vorticity field and streamlines for the problem. The flow is
characterized by two large regions of circulation, with smaller vortex regions also present in
the vicinity of the bottom as well as the upper left hand corners of the domain. In Figure
4.6 (c) we show the horizontal velocity component vx along the vertical centerline of the
domain as determined using a p-level of 9 and γ = 10.0. The streamlines and horizontal
velocity component vx along the vertical centerline are visually in excellent agreement with
the results reported by Gupta and Kalita [80].

In Figure 4.7 we show the decay of the normalized volumetric flow rate imbalance Qe for
element 107, where the geometric centroid of the element is located at x = (0.3103,0.8053).
In this figure, both the p-level and the penalty parameter γ are varied. We also provide
in Figure 4.8 an illustration of the normalized volumetric flow rate imbalance Qe for all
elements in the discretization at p-levels 5 and 7 for various values for the penalty parameter
γ. Clearly, both the polynomial order as well as the value of γ are significant factors in
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Figure 4.5. Specified horizontal velocity profile vx along
the top surface of the 2-D lid-driven cavity flow problem with
aspect ratio of 2.

improving element-level mass conservation for this problem. It is interesting to note that
substantial improvement in element-level mass conservation is obtained even for the case
where γ = 1.0.
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Figure 4.6. 2-D lid-driven cavity flow with aspect ratio
of 2 at Re= 1,500. Numerical results obtained for p-level of
9: (a) finite element mesh, (b) vorticity field and streamlines
and (c) horizontal velocity component vx along vertical cavity
centerline.
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Figure 4.7. Decay of normalized volumetric flow rate im-
balance Qe under p-refinement for various values of γ for
2-D lid-driven flow in a rectangular cavity. Results shown
are for element 107 with geometric centroid located at x =
(0.3103,0.8053).
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Figure 4.8. Normalized volumetric flow rate imbalance
Qe for each finite element in Ω̄hp for 2-D lid-driven flow in a
rectangular cavity. Results are for various polynomial orders
and values of γ: (a) p-level = 5 and γ = 0, (b) p-level = 5
and γ = 1.0, (c) p-level = 5 and γ = 10.0, (d) p-level = 7 and
γ = 0, (e) p-level = 7 and γ = 1.0 and (f) p-level = 7 and
γ = 10.0.
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Flow past a large cylinder in a narrow channel at Re = 40

As a final steady flow example, we consider a problem constituting a much more rigorous
test for mass conservation, namely flow past a circular cylinder in a narrow channel. In this
problem (which is similar to the test problem used by Chang and Nelson [54]) we take for
the domain Ω̄, the set difference between the closed rectangular region [−5,10]× [−1,1] and
an open circular region with unit diameter centered about the origin. Along the inflow part
of the boundary (i.e., the left hand side of the domain) we prescribe a parabolic horizontal
velocity profile vp

x(y) = 3
2(1− y2), which is consistent with Poiseuille flow. The pseudo-

traction is taken to be zero on the right hand side of the domain and a no-slip condition is
utilized on all other parts of the boundary. The Reynolds number, based on the diameter of
the cylinder and the average horizontal velocity at the inlet is taken to be 40.

The finite element mesh utilized in our numerical investigation is shown in Figure 4.9 (a).
The problem is solved by varying the p-level incrementally from 2 to 7. At each p-level we
further investigate the influence of the penalty parameter on improving mass conservation
by solving the problem for γ = 0, 1, 10 and 100. We adopt the same nonlinear convergence
criteria for the iterative solution procedure that was used in the two previous stationary
benchmark problems. The horizontal velocity profile in the domain is shown in Figure
4.9 (b). The element-level normalized volumetric flow rate imbalance Qe for each element
in the discretization are shown in Figure 4.9 (c)–(f) for p-levels 2 and 3, where γ is taken as
either 0 or 100. In Figure 4.10 we show the horizontal velocity profile along the gap between
the cylinder and the top of the channel at x= 0. The so-called “exact” solution in this figure
is the finite element solution obtained using a p-level of 7 and γ = 0. Figure 4.11 shows the
observed volumetric flow rate imbalance for element 115 of the finite element model, where
both the p-level and penalty parameter γ are varied. The normalized volumetric flow rate
past the crown of the cylinder for the various finite element discretizations is summarized in
Table 4.2. Clearly, mass conservation is improved by constructing the finite element model
in terms of the modified least-squares functional J ?.
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Figure 4.9. Finite element mesh, horizontal velocity com-
ponent vx and normalized volumetric flow rate imbalance Qe

for each finite element in Ω̄hp for steady flow past a large
circular cylinder in a narrow channel at Re = 40: (a) finite
element mesh, (b) horizontal velocity component vx, (c) Qe

for p-level = 2 and γ = 0, (d) Qe for p-level = 2 and γ = 100,
(e) Qe for p-level = 3 and γ = 0 and (f) Qe for p-level = 3
and γ = 100.
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Figure 4.10. Horizontal velocity vx(0,y) profiles along the
gap between the top of the circular cylinder and the channel
wall at x= 0 for flow past a large cylinder in a narrow channel.

Table 4.2. Normalized volumetric flow rate past the crown
(x= 0,y) of the large circular cylinder.

Normalized volumetric flow rate
p-level γ = 0 γ = 1 γ = 10 γ = 100

2 0.34870 0.53887 0.81899 0.97124
3 0.65973 0.81925 0.95983 0.99538
4 0.95250 0.98485 0.99767 0.99975
5 0.99335 0.99951 0.99971 0.99997
6 0.99828 0.99951 0.99993 0.99999
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Figure 4.11. Decay of normalized volumetric flow rate
imbalance Qe under p-refinement for various values of γ for
flow past a large cylinder in a narrow channel. Results shown
are for element 115 with geometric centroid located at x =
(−0.8365,0).
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Transient flow

In this section we assess the performance of the proposed least-squares formulation to
improve mass conservation, velocity-pressure coupling and overall numerical stability in the
numerical simulation of non-stationary fluid flows. Unless otherwise stated, we take α =
(∆t)2 in the definition of J ?

∆t for each numerical simulation.

Flow past a circular cylinder at Re = 100

As an inaugural non-stationary example we consider the standard flow past a circular
cylinder problem, where the Reynolds number is taken as 100. For the computational domain
Ω, we take the set difference between the open square region (−15.5,25.5)×(−20.5,20.5) and
a closed unit-diameter circle that is centered about the origin. The spatial discretizations
Ω̄hp that are employed in the finite element simulations are shown in Figure 4.12. The top
mesh contains 2,004 quadratic elements (i.e., the p-level is 2). Likewise, the bottom mesh
contains 501 elements, where the p-level is taken as 4. Each discretization contains 8,216
nodes and 32,864 total degrees of freedom.

All flow fields are initially taken to be zero. The horizontal velocity component vx is then
gradually increased in time along the left, top and bottom sides of Ω̄hp in accordance with the
formula vp

x(t) = v∞tanh(t); the free-stream velocity v∞ is taken to be 1.0. A no-slip boundary
condition is used along the circular cylinder and the outflow boundary condition (along the
right hand side of the domain) is enforced weakly by taking the pseudo-traction t̃p as zero
in the definition of J ?

∆t. We employ the BDF2 time integrator with a uniform time step
size of ∆t = 0.1 sec. Since the BDF2 integration formula is non-self-starting, we utilize the
BDF1 formula for the first 10 time steps. A total of 3,000 time steps are employed in each
transient finite element simulation. A nonlinear convergence criteria of ε = 10−6, defined
in terms of the relative Euclidean norm of the residuals in the nodal velocities between
two successive iterations, is adopted at each time step. This typically requires only 2 or 3
nonlinear iterations. The linearized algebraic equations are constructed and solved using the
sparse finite element equation solution procedures outlined in Chapter 2; the UMFPACK
direct solver library [30, 31, 32, 33] is utilized in the numerical solution of the global sparse
set of finite element equations. We solve for the temporal evolution of the fluid using the
modified least-squares functional J ?

∆t for the cases where γ is either 0 or 100. Although all
results reported below have been obtained by taking ε as zero, we note in passing that we have
also obtained reliable solutions using ε = 0.005 and 0.01. The additional velocity-pressure
coupling associated with a non-zero value for ε, however, typically demands a greater number
of nonlinear iterations to meet the nonlinear convergence criterion of ε= 10−6.

In Figure 4.13 we show the time history of the velocity components, vorticity and pressure
at the spatial point (x,y) = (1,0) as computed using the finite element mesh shown in Figure
4.12 (c) with γ taken as 100. The dimensional pressure field shown in Figure 4.13 (d)
has been obtained by scaling the non-dimensional pressure field by a factor of 100. The
virtually stationary flow pattern that forms during the early stages of the simulation becomes
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Figure 4.12. Spectral/hp finite element discretizations
used to numerically simulate the unsteady viscous flow of
an incompressible fluid past a circular cylinder: (a) compu-
tational domain Ω̄hp for a p-level of 2, (b) close-up view of
Ω̄hp in the vicinity of the cylinder for a p-level of 2, (c) com-
putational domain Ω̄hp for a p-level of 4 and (d) close-up view
of Ω̄hp in the vicinity of the cylinder for a p-level of 4.
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noticeably unstable between 150 and 175 sec. The instability eventually results in a well-
defined periodic swirling of vortices that are shed in the wake region immediately downwind
of the cylinder. This oscillatory behavior is commonly referred to as the von Kármán vortex
street. We measure the non-dimensional period to be T = 6.035; this translates into a non-
dimensional shedding frequency (or Strouhal number) of St = 0.1657. This is in very close
agreement with St = 0.1653 reported by Pontaza and Reddy [20] using a space-time coupled
spectral/hp least-squares finite element simulation.

Instantaneous contours of the velocity components vx and vy along with the pressure
field p in the wake region are depicted in Figure 4.14 at t = 280 sec. We also provide in
Figure 4.15 snapshots of the vorticity field ω during the course of a single shedding cycle.
Both figures have been generated using the numerical results obtained using a p-level of 4
and γ = 100. We see that within a given period T two eddies are shed from the cylinder into
the wake region, one originating from the top and the other from the bottom of the cylinder.
The former eddy spins clockwise while the latter rotates in the counterclockwise direction.
The outflow boundary condition, imposed weakly through the least-squares functional J ?

∆t,
clearly allows the fluid to leave the computational domain in a physically reasonable manner.

In an effort to showcase the performance of the modified least-squares formulation in
improving local mass conservation, we present in Figure 4.16 the normalized volumetric flow
rate imbalance Qe for the finite elements in a neighborhood of the wake region behind the
circular cylinder. The reported results are for the numerical solution obtained at t = 260
sec. using the spatial discretization shown in Figure 4.12 (c). We see that element-level mass
conservation is clearly improved by taking γ as 100 as opposed to 0 in the modified least-
squares formulation. The improvement is particularly noticeable for the smaller elements in
Ω̄hp that are closest to the cylinder. To assess general mass conservation for the fluid flowing
past the circular cylinder, we post-compute the absolute value of the volumetric flow rate

Q(t) =

∣∣∣∣∮
Γs

n̂ ·vhp(t)dΓ
s

∣∣∣∣ (4.16)

across the closed surface Γs = ∂Ωs, where Ωs = (−1.5,1.5)2. We numerically evaluate Q at
each time step using the Gauss-Legendre quadrature rule. In Figure 4.17 we trace the time
history of Q for both spatial discretizations where γ is again taken as either 0 or 100. For
both spatial discretizations we observe significant improvement in mass conservation across
Γs when γ is taken as 100.
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Figure 4.13. Time history of the flow fields behind the cir-
cular cylinder at (x,y) = (1,0) as determined using a p-level
of 4 in the spatial discretization: (a) horizontal velocity com-
ponent vx, (b) vertical velocity component vy, (c) vorticity ω
and (d) pressure field p.
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Figure 4.14. Instantaneous contours for flow past a cir-
cular cylinder at t= 280 sec., where the finite element mesh
associated with a p-level of 4 has been utilized: (a) horizon-
tal velocity component vx, (b) vertical velocity component vy

and (c) pressure field p.
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Figure 4.15. Time history of vorticity contours behind
the circular cylinder at five successive discrete instances in
time. The finite element mesh associated with a p-level of
4 has been employed: (a) t = 280.0 sec., (b) t = 281.2 sec.,
(c) t= 282.4 sec., (d) t= 283.6 sec. and (e) t= 284.8 sec.
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Figure 4.16. Normalized volumetric flow rate imbalance
Qe for the finite elements in the vicinity of the wake region
behind the circular cylinder. The results shown are a snap-
shot taken at t = 260 sec. using a p-level of 4 in the spatial
discretization: (a) γ = 0 and (b) γ = 100.
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Figure 4.17. Time history of the volumetric flow rate Q
past the closed surface Γs, where Γs = ∂Ωs is the boundary
associated with the region Ωs = (−1.5,1.5)2. The reported
results are obtained using the spectral/hp spatial discretiza-
tions shown in Figure 4.12 where: (a) the p-level is 2 and
(b) the p-level is 4.
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Flow past a large cylinder in a narrow channel at Re = 100

In this next example we revisit the obstructed channel flow problem introduced previously
as a steady flow benchmark. To obtain a non-stationary problem, we raise the Reynolds
number from 40 to 100 and vertically translate the circular cylinder 0.01 spatial units upward.
The channel is again taken to be 15 units in length and 2 in height, with the center of the
cylinder placed 5 units from the inlet side of the domain. The finite element mesh is nearly
identical to the one employed in the stationary flow problem (see Figure 4.9 (a)). A close
up view of the mesh (in the vicinity of the cylinder) used in the current study is shown in
Figure 4.18.

Figure 4.18. Close-up view of the finite element mesh used
to simulate unsteady flow through a channel with a circular
obstruction. The shaded regions Ω̄s

u and Ω̄s
d are control vol-

umes used in the post-processing stage to assess the severity
of mass conservation violation for a given finite element sim-
ulation.

All flow fields are taken initially to be zero. For the inflow boundary condition, taken
along the left hand side of the computational domain, we specify a time dependent parabolic
horizontal velocity profile vp

x(y, t) = 3
2(1− y2)tanh(t). The prescribed outflow and no slip

boundary conditions are the same as those described for the steady-state version of the
problem. As in the previous non-stationary example, we again employ the BDF2 time
integrator (where the BDF1 integrator is utilized for the first 10 time steps). We solve the
problem over a total time interval of 100 sec. The nonlinear convergence criteria, defined
in terms of the relative Euclidean norm of the residuals in the nodal velocities between
two successive iterations, is taken as ε = 10−4 at each time step. The UMFPACK direct
solver library is again utilized in the solution of the sparse global system of finite element
equations. The problem is solved using the modified least-squares functional J ?

∆t for all
possible combinations of the following parameters: γ = 0 and 100, ε= 0 and 0.005, p-level = 4
and 6 and ∆t= 0.05. To verify that the numerical solutions are indeed sufficiently resolved
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Figure 4.19. Time history of the vertical velocity com-
ponent vy downstream from the circular cylinder at (x,y) =
(2,0) as determined using a p-level of 6 in the spatial dis-
cretization. The time step is ∆t= 0.02, γ= 100 and ε= 0.005.

in time, we also solved the problem using a time increment of ∆t= 0.02 for the case where
the p-level is 6, γ = 100 and ε= 0.005.

The time history of the vertical velocity component vy at the spatial point (x,y) = (2,0)
is shown in Figure 4.19. The non-symmetric domain allows the instability in the flow to
propagate quickly such that a well-defined periodic response is reached at around 50 sec.
into the simulation. From Figure 4.19 we measure the non-dimensional period for a typical
vortex shedding cycle to be T = 1.93 which corresponds with a non-dimensional shedding
frequency of St = 0.5181. The presence of the channel clearly results in a much shorter
shedding cycle than what was observed in the previously presented external flow past a
cylinder problem.

Contours of the instantaneous pressure p, velocity component vy and vorticity ω in the
wake region are shown in Figure 4.20 at t= 75.5 sec. for a p-level of 6. The swirling of vortices
that develops in the wake region clearly becomes suppressed (due to the channel walls) as
the fluid travels further downstream past the cylinder. In Figure 4.21 we present a snapshot
of the normalized volumetric flow rate imbalance Qe for all elements in the computational
discretization Ω̄hp at t= 75.5 sec., using a p-level of 4. We take ε= 0 in the post-processing of
Qe for each element. In Figure 4.22 we trace the time histories of the volumetric flow rate Q
(obtained using Eq. (4.16)) through the closed boundaries of the upstream and downstream
control regions Ω̄s

u and Ω̄s
d shown in Figure 4.18, again using a spatial discretization with a

p-level of 4. Noticeable improvement in mass conservation is observed for each element Ω̄e

in Ω̄hp and also for the control regions for the case where γ = 100.
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Figure 4.20. Instantaneous contours for flow in a channel
past a circular cylinder at t = 75.5 sec., where the finite el-
ement mesh associated with a p-level of 6 has been utilized:
(a) pressure field p, (b) vertical velocity component vy and
(c) vorticity ω. The results shown are for the case where
∆t= 0.05, γ = 100 and ε= 0.005.
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Figure 4.21. Normalized volumetric flow rate imbalance
Qe for each finite element in Ω̄hp for flow in a channel past a
circular cylinder at t= 75.5 sec. The results shown have been
obtained using a time increment of ∆t= 0.05 sec.: (a) the p-
level is 4 and γ = 0 and (b) the p-level is 4, γ = 100 and
ε= 0.005.
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Figure 4.22. Time histories of the volumetric flow rate
Q past: (a) the closed surface Γs

u and (b) the closed surface
Γs

d. The surfaces Γs
u = ∂Ωs

u and Γs
d = ∂Ωs

d are the boundaries
of the upstream and downstream control volumes shown in
Figure 4.18. The results are for the case where the p-level is
4 and ∆t= 0.05.

Time histories of the volumetric flow rate Q past the crown of the cylinder are plotted
in Figure 4.23 for different values of γ and ε at p-levels 4 and 6. The results shown have
been normalized by the long term prescribed inlet volumetric flow rate. Similar results were
observed at the domain exit and also at x= 1.0. In the upper two plots (where the p-level is
4 and 6 respectively) we observe excellent mass conservation when γ = 100 for both values
chosen for ε.

In an effort to demonstrate that the proposed formulation improves velocity-pressure
coupling and overall numerical stability in the simulation of transient flows, we show in the
lower two plots of Figure 4.23 the normalized volumetric flow rates past the crown of the
cylinder using a non-scaled version of J ?

∆t (i.e., taking α= 1) for a p-level of 6. For the stan-
dard least-squares formulation, obtained by setting γ = 0, we observe spurious oscillations in
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Figure 4.23. Time histories of the normalized volumetric
flow rate Q past the crown (x = 0,y) of the large circular
cylinder. All results have been obtained using a time incre-
ment of ∆t = 0.05 sec.: (a) the p-level is 4 and α = (∆t)2,
(b) the p-level is 6 and α = (∆t)2 (c) the p-level is 6 and
α= 1.0 and (d) the p-level is 6 and α= 1.0.
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all fields, which eventually leads to total instability of the finite element solution procedure;
this simulation was, therefore, manually terminated at t= 20 sec. The cases where γ = 100
yield reliable results for all fields; furthermore, excellent mass conservation is observed de-
spite the fact that we have employed no scaling of the momentum equation residual in the
definition of the least-squares functional. When γ = 100 and ε = 0.005 we observe “exact”
mass conservation up to 3 decimal places for all time. For the current example problem
it is clear that the modified least-squares formulation has the ability to: (a) improve mass
conservation and (b) enhance numerical stability in the simulation of non-stationary flows.
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Chapter 5

Viscoelastic beams∗

In this chapter we develop and numerically implement high-order finite element models for
the quasi-static and fully transient mechanical response of initially straight viscoelastic beams
subjected to loads that induce large displacements, moderate rotations and small strains.
Beams are among the most commonly employed structural members and are encountered in
virtually all systems of structural design. The kinematic assumptions upon which theories
for beams are based are, to a large extent, independent of the actual constitutive makeup of
a given beam structure. Closure of most analytic or numerical models for beams, however,
is most often achieved through the additional assumption of elastic material response. The
usefulness of the models resulting from this additional conjecture cannot be overstated; this is
especially true in the analysis of metallic and ceramic based structural components. There are
many engineering materials, however, that cannot be adequately modeled using the classical
elasticity assumption. One such category, which constitutes the focus of this chapter, is the
set of viscoelastic solid materials (we will restrict our attention to linear viscoelastic solids).
Prominent examples that often fall into this category of materials include metals at elevated
temperatures, polymers, rubbers and concrete. These materials are often highly favored
for use in structural components, due to their natural ability to dampen out structural
vibrations. Robust, efficient finite element technology for the analysis of viscoelastic beams,
is therefore of particular importance.

The theoretical foundations of viscoelasticity are well established. We refer to the stan-
dard texts of Flügge [81], Christensen [82], Findley [83] and Reddy [84] for an overview on
the theory of viscoelastic material behavior, as well as the classical analytical solution tech-
niques that may be used to solve simple viscoelastic boundary-value problems. For example,
in Flügge [81], the Laplace transform procedure is employed to obtain exact expressions
for the transverse deflection of viscoelastic beams. Another important analytical solution
method, discussed by Christensen and Findley et al. [82, 83], is the correspondence principle
which under certain loading conditions allows linear elasticity solutions to be converted into
viscoelasticity solutions through the use of integral transformations. Analytical solutions
based on the Laplace transform method or correspondence principle, however, are typically
limited to very simple geometric configurations, boundary conditions and material models.

∗Part of the numerical results reported in this chapter appear in the article “Nonlinear quasi-static
finite element formulations for viscoelastic Euler-Bernoulli and Timoshenko beams” by G. S. Payette and
J. N. Reddy, Comm. Numer. Meth. Eng., vol. 26, pp. 1736–1755, 2010. Copyright (2009) John Wiley &
Sons, Ltd.

109



Numerical methods provide a powerful framework for obtaining approximate solutions to
viscoelasticity problems. The finite element method, in particular, has been employed with
great success in the analysis of viscoelastic bodies by many researchers. Of paramount im-
portance, in the formulation of a numerical procedure for solving viscoelastic boundary-value
problems, is the ability to efficiently integrate the viscoelastic constitutive equations in time.
Keeping this in mind, Taylor et al. [85] employed the finite element method in conjunction
with a two-point recurrence relation to solve viscoelasticity problems such that solution data
from only the immediate previous time step (as opposed to the entire deformation history) is
needed in determining a body’s configuration at the current time step. Similarly, Oden and
Armstrong [86] presented a finite element framework for thermoviscoelasticity and conducted
numerical experiments involving thick-walled cylinders subjected to time-dependent bound-
ary conditions. In their work, they extended the applicability of recurrence-based temporal
integration formulas to also include nonlinear boundary-value problems. Additional general
finite element formulations for viscoelastic continua can be found in Refs. [87, 88, 89, 90].

Although three-dimensional finite element formulations are applicable to continua in
general, it is often computationally advantageous to specialize these models to structural
elements such as beams, plates and shells. When appropriately employed, finite element
formulations for structures can offer the prospect of highly accurate numerical solutions, often
at a mere fraction of the computational expense needed to conduct a fully three-dimensional
simulation. A variety of beam theory based finite element models have been presented in
the literature for the analysis of viscoelastic structures. The majority of these formulations
employ some form of either the Euler-Bernoulli or Timoshenko beam theories and are mostly
restricted to small strain analysis. The formulations differ in how the convolution form of the
viscoelastic constitutive equations are temporally discretized. A popular approach adopted
by many researchers is to employ the Laplace transform method directly in the construction
of the finite element equations [91, 92, 93]. In this approach, quantities associated with the
time domain, including the convolution integral, are transformed into variables associated
with the s coordinate of the Laplace space. A successful numerical simulation therefore
requires an efficient and accurate inversion of the solution in s space back to the time
domain. Many of the key ideas are presented in work of Aköz and Kadioglu [92], wherein
a Timoshenko beam element is developed using mixed variational principles. In their work,
the finite element model requires numerical inversion from the Laplace-Carson domain back
to the time domain. Temel et al. [93] utilized the Durbin’s inverse Laplace transform method
in an analysis of cylindrical helical rods (based on the Timoshenko beam hypotheses).

Additional numerical formulations for viscoelastic beams have been constructed using
the Fourier transform method [94], the anelastic displacement (ADN) procedure [95, 96],
the Golla-Hughes-McTavish (GHM) method [97, 98, 99, 100] and the trapezoidal rule [101].
It can be shown that when the relaxation moduli are given in the form of Prony series,
the convolution form of the linear viscoelastic constitutive equations may be equivalently
expressed as a set of ordinary differential equations (in terms of a collection of internal strain
variables). Numerical discretization procedures exploiting this ODE form of the viscoelastic
constitutive equations have been successfully adopted in the works of Johnson et al. [102] and
Austin and Inman [103]. It is worth noting that finite element models for sandwich beams
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(based on the Euler-Bernoulli and Timoshenko beam hypotheses) have also been developed
by Galucio et al. [104] using fractional derivative viscoelastic constitutive models.

The viscoelastic beam finite element formulations described above are restricted to a class
of problems involving infinitesimal strains and small deflections. As a direct consequence,
these models lack the ability to account for various geometrically nonlinear effects that can
become significant whenever the externally applied loads are sufficiently large. The objective
of the present chapter, therefore, is to develop a family of efficient locking-free nonlinear finite
element models based on the Euler-Bernoulli (EBT), Timoshenko (TBT) and Reddy third-
order (RBT) beam theories that can be readily applied to the analysis of quasi-static and
fully transient viscoelastic beam structures.

The chapter is organized as follows. We first review the kinematic assumptions that form
the basis for each of the three beam theories considered in the present study. An effective
strain tensor (a simplification of the Green-Lagrange strain) is then introduced along with
the assumed linear viscoelastic constitutive model. The finite element formulation for each
beam theory is then derived from the principle of virtual displacements, or equivalently
through the use of the weak-form Galerkin procedure. In the fully discretized finite element
models, the convolution integrals (emanating from the viscoelastic constitutive equations)
are temporally approximated using the trapezoidal rule in conjunction with a two-point
recurrence formula. We conclude the chapter by presenting numerical results for quasi-
static and fully transient verification benchmark problems. We shown that all forms of
locking may be avoided through the use of either: (a) low-order finite elements with selective
employment of full and reduced numerical integration strategies or (b) fully integrated finite
elements constructed from high-order polynomial interpolation functions of both Lagrange
and Hermite type.

Kinematics of deformation

There are a variety of beam theories that have been successfully employed in the mechan-
ical analysis of structural elements [105]. Such theories are typically formulated in terms of
truncated Taylor series expansions of the components of the displacement field; where the
expansions are taken with respect to the thickness coordinate. Before presenting the re-
sulting simplified displacement fields for the beam theories considered in this work, we first
introduce some notation that is somewhat unique to the current chapter. We let B ⊂ R3, an
open and bounded set, denote the material or reference configuration occupied by the beam
at t = 0. The material configuration may be expressed as B = Ω×A, where Ω = (0,L) and
L is the initial length of the beam. In addition the quantity A represents the undeformed
cross-sectional area of the beam. A typical material point belonging to B is denoted as
X = (X,Y,Z). Likewise the spatial or current configuration of the beam at time t is denoted
by Bt and an associated point is given as x = (x,y,z). The motion of the beam is a one pa-
rameter family of configurations (where the time t is the parameter) that may be expressed
in terms of the standard bijective mapping χ : B×R→Bt. As a result, the location of point
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X at time t is given as x =χ(X, t). The displacement may be expressed in the usual manner
as u(X, t) = χ(X, t)−X.

The displacement fields for the EBT, TBT and RBT

The most simple and commonly used beam theory is the Euler-Bernoulli beam theory
(EBT), which is based on the displacement field

u(X,Z,t) = u0(X,t)−Z
∂w0

∂X
(5.1a)

w(X,Z,t) = w0(X,t) (5.1b)

where the X coordinate is taken along the beam length, the Z coordinate along the thickness
direction of the beam, u0 is the axial displacement of a point on the mid-plane (X,0,0) of
the beam and w0 represents the transverse deflection of the mid-plane. The Euler-Bernoulli
displacement field implies that straight lines orthogonal to the mid-surface before deforma-
tion remain so after deformation. The major deficiency associated with the EBT is failure
to account for deformations associated with shearing.

A slightly more complicated theory is the Timoshenko beam theory (TBT) and is based
on the displacement field

u(X,Z,t) = u0(X,t)+Zφx(X,t) (5.2a)

w(X,Z,t) = w0(X,t) (5.2b)

When the deformation is small the parameter φx(X,t) may be interpreted as the rotation of
the transverse normal about the Y axis. The Timoshenko beam theory relaxes the normality
assumption of the Euler Bernoulli theory and admits a constant state of shear strain across
a given cross section. Since the actual shear strain for a beam is at least quadratic, the
TBT necessitates the use of shear correction coefficients in order to accurately predict the
transverse displacements of thick beams.

The final beam theory considered in this chapter is the third-order Reddy beam theory
(RBT). In the RBT, the displacement field (for a beam with a rectangular cross section)
takes the following form

u(X,Y,Z,t) = u0(X,t)+Zφx(X,t)−Z3c1

(
φx(X,t)+

∂w0

∂X

)
(5.3a)

w(X,Y,Z,t) = w0(X,t) (5.3b)

In the above expression c1 = 4/(3h2), where h is the height of the beam and b is the beam
width. The displacement field of the Reddy beam theory suggests that a straight line per-
pendicular to the undeformed mid-plane becomes a cubic curve following deformation. As
a result, the Reddy beam theory provides a more realistic prediction (as compared with the
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Figure 5.1. Deformation of a beam structure according
to the Euler-Bernoulli, Timoshenko and third-order Reddy
beam theories (adapted from Reddy [106]).

EBT and TBT) of the shear strain along the cross-section of a beam and as a result circum-
vents the need for shear correction factors. Figure 5.1 shows the kinematics of deformation of
a transverse normal for a beam structure as predicted by each beam theory. It is important
to note that the displacement field of Reddy’s third-order beam theory contains the other
two lower-order beam theories as special cases. The TBT is recovered by setting c1 = 0 and
the EBT is obtained by replacing φx with −∂w0/∂X. Since the lower-order theories are in
this sense contained within the RBT, we will restrict the scope of our remaining discussion
to developing a finite element model for viscoelastic beams based on the third-order Reddy
beam theory only. Numerical results, however, will be presented using all three beam theo-
ries. For details specific to the Euler-Bernoulli and Timoshenko beam theories, we refer to
the article by Payette and Reddy [24].
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The effective strain tensor for the simplified theory

In the mechanical analysis of deformable solids, it is imperative to employ stress and
strain measures that are consistent with the deformations realized (see [53, 107]). When
the deformations of the body are large, there are a variety of strain measures that may
be employed. In our formulation we employ a total Lagrangian description of the defor-
mation (more precisely, we employ a simplified description that includes only some of the
nonlinearities present in the Lagrangian formulation). In the Lagrangian description, the
Green-Lagrange strain tensor E constitutes an appropriate measure of the strain at a point
in the body. For the present analysis the non-zero Cartesian components of E may be
expressed as

EXX =
∂u

∂X
+

1

2

[(
∂u

∂X

)2

+

(
∂w

∂X

)2]
(5.4a)

EXZ =
1

2

(
∂u

∂Z
+
∂w

∂X
+
∂u

∂X

∂u

∂Z

)
(5.4b)

EZZ =
1

2

(
∂u

∂Z

)2

(5.4c)

In the present formulation we wish to develop a finite element framework that is applicable
under loading conditions that produce large transverse displacements, moderate rotations
(10-15◦) and small strains [106]. Under such conditions it is possible to neglect the underlined
terms in the above definition of the Green-Lagrange strain tensor. Consequently, we employ a
reduced form of the Green-Lagrange strain tensor, denoted by ε, whose non-zero components
may be expressed as

εxx =
∂u0

∂x
+

1

2

(
∂w0

∂x

)2

+ z
∂φx

∂x
− z3c1

(
∂φx

∂x
+
∂2w0

∂x2

)
(5.5a)

γxz = 2εxz =
(
1− c2z2

)(
φx +

∂w0

∂x

)
(5.5b)

where c2 = 3c1. The strain components associated with the linearized strain tensor ε are
commonly called the von Kármán strain components. This simplified strain tensor will be
used in both the viscoelastic constitutive equations and the virtual work statement. For
a comparison of numerical results obtained using the above simplified theory with the full
nonlinear theory for elastic structures, we refer to the work of Başar et al. [108]. It is
important to note that the material coordinates appearing in the definition of the reduced
strain components and throughout the remainder of this chapter are denoted as (x,y,z) as a
reminder that the present formulation is applicable to small strains and moderate rotations,
and is therefore a linearization of the more general finite deformation theory.
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Linear viscoelastic constitutive equations

For linear viscoelastic materials, the constitutive equations relating the components of
the second Piola-Kirchhoff stress tensor S to the Green-Lagrange strain E may be expressed
in terms of the following set of integral equations

S(t) = �(0) : E(t)+

∫ t

0
�̇(t− s) : E(s)ds (5.6)

where �̇(t− s) ≡ d�(t− s)/d(t− s) and �(t) is the fourth-order viscoelasticity relaxation
tensor. Note that throughout this chapter, a dot appearing above a given variable always
denotes differentiation with respect to the inclosed arguments (e.g., ḟ(t) = df(t)/dt and
ḟ(t− s) = df(t− s)/d(t− s)). Replacing E with ε yields

σxx(x, t) = E(0)εxx(x, t)+

∫ t

0
Ė(t− s)εxx(x, s)ds (5.7a)

σxz(x, t) =G(0)γxz(x, t)+

∫ t

0
Ġ(t− s)γxz(x, s)ds (5.7b)

where σxx and σxz are the nonzero components of second Piola-Kirchhoff stress tensor used in
the present simplified formulation. The quantities E(t) and G(t) are the relaxation moduli.
The specific forms of E(t) and G(t) will depend upon the material model employed. For the
present analysis we assume that these relaxation functions can be expanded as Prony series
of order NPS as

E(t) = E0 +
NPS∑
l=1

Ēl(t), G(t) =G0 +
NPS∑
l=1

Ḡl(t) (5.8)

where Ēl(t) and Ḡl(t) have been defined as (following the generalized Maxwell model)

Ēl(t) = Ele
−t/τE

l , Ḡl(t) =Gle
−t/τG

l (5.9)

The Prony series representation of the viscoelastic relaxation moduli will prove critical in
the implementation of efficient temporal numerical integration algorithms of the viscoelastic
constitutive equations.

The weak-form Galerkin finite element model

The Galerkin based weak formulation

The weak-form Galerkin finite element model of the third-order Reddy beam theory may
be developed by applying the principle of virtual work to a typical beam as viewed in the
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reference configuration. The dynamic form of the virtual work statement may therefore be
expressed as

G(δu,u) =−δK(δu,u)+ δWI(δu,u)+ δWE(δu,u)

=

∫
B

(
δu ·ρ0ü+ δE : S− δu ·ρ0b

)
dV −

∫
Γσ

δu · t0dS

�

∫ L

0

∫
A

(
δu ·ρ0ü+ δε : σ− δu ·ρ0b

)
dAdx−

∫
Γσ

δu · t0dS ≡ 0

(5.10)

where δK is the virtual kinetic energy, δWI is the internal virtual work and δWE is the
external virtual work. The additional quantities ρ0, b and t0 are the density, body force and
traction vector, respectively. The above expression constitutes the weak form of the classical
Euler-Lagrange equations of motion of a continuous body.

Since the generalized displacements (u0,w0,φx) depend only on x and t, it is possible
to pre-integrate the virtual work statement over A. As a result, the computational domain
for the problem reduces to the material line Ω̄ = [0,L] taken along (x,y = 0, z = 0). The
finite element discretization is therefore obtained by partitioning this material line into a
set of NE finite elements, as described in Chapter 2, where the domain of the eth element
may be expressed as Ω̄e = [xe

a,x
e
b]. The resulting variational problem associated with the

weak formulation of the Reddy beam equations may therefore be expressed as follows: find
(u0,w0,φx) ∈ V =Q×X ×Y such that for all (δu0, δw0, δφx) ∈W = Q̃×X̃ ×Ỹ the following
expressions hold within each element:

0 =

∫ xb

xa

(
I0δu0ü0 +

∂δu0

∂x
Nxx− δu0f

)
dx− δu0(xa)Q1− δu0(xb)Q5 (5.11a)

0 =

∫ xb

xa

[
I0δw0ẅ0 +

∂δw0

∂x

(
c21I6

∂ẅ0

∂x
−J4φ̈x

)
+
∂δw0

∂x

(
∂w0

∂x
Nxx +Qx (5.11b)

− c2Rx

)
−∂

2δw0

∂x2
c1Pxx− δw0q

]
dx−Q2δw0(xa)−Q6δw0(xb)

− Q3

(
−∂δw0

∂x

)∣∣∣∣
x=xa

−Q7

(
−∂δw0

∂x

)∣∣∣∣
x=xb

0 =

∫ xb

xa

[
δφx

(
−J4

∂ẅ0

∂x
+K2φ̈x

)
+ δφx(Qx− c2Rx) (5.11c)

+
∂δφx

∂x
(Mxx− c1Pxx)

]
dx−Q4δφx(xa)−Q8δφx(xb)

The function spaces comprising the product spaces V and W are defined as

Q :=
{
u0 : u0 ∈H1(Ω)×C2(I), u0 = up

0 onΓu

}
(5.12a)

X :=
{
w0 : w0 ∈H2(Ω)×C2(I), w0 = wp

0 onΓw, −∂xw0 = ϕp
0 onΓϕ

}
(5.12b)

Y :=
{
φx : φx ∈H1(Ω)×C2(I), φx = φp

x onΓφ

}
(5.12c)

Q̃ :=
{
δu0 : δu0 ∈H1(Ω)×C(I), δu0 = 0 onΓu

}
(5.12d)

116



X̃ :=
{
δw0 :δw0 ∈H2(Ω)×C(I), δw0 = 0 onΓw,−∂xδw0 = 0 onΓϕ

}
(5.12e)

Ỹ :=
{
δφx : δφx ∈H1(Ω)×C(I), δφx = 0 onΓφ

}
(5.12f)

where Hm(Ω) is the Sobolev space of order m, I = [0, τ ] is the time interval (where τ > 0) and
∂x()≡ ∂()/∂x. The quantities Γu, Γw, Γϕ and Γφ each represent a set of points along Ω̄ where
u0, w0, −∂xw0 and φx are specified respectively. For the sake of brevity we have omitted
the superscript e from quantities appearing in Eq. (5.11) and throughout the remainder of
this work (e.g., xa and xb). The quantities f and q appearing above are the distributed axial
and transverse loads respectively. We have also introduced the following constants

Ii = ρ0Di = ρ0

∫
A
zidA, J4 = c1(I4− c1I6), K2 = I2−2c1I4 + c21I6 (5.13)

The internal stress resultants Nxx, Mxx, Pxx, Qx and Rx are defined as
Nxx

Mxx

Pxx

 =

∫
A


1
z
z3

σxxdA,

{
Qx

Rx

}
=

∫
A

{
1
z2

}
σxzdA (5.14)

and can be expressed in terms of the generalized displacements (u0, w0, φx) through the use
of the viscoelastic constitutive equations. The quantities Nxx, Mxx and Qx are the internal
axial force, bending moment and shear force. In addition, Pxx and Rx are higher order
stress resultants that arise in the third-order beam theory due to the cubic expansion of
the axial displacement field. The quantities Qj (where j=1,. . . ,8) are the externally applied
generalized nodal forces.

The semi-discrete finite element equations

In this section we develop the semi-discrete finite element equations associated with the
third-order Reddy beam theory. Within a typical finite element the generalized displacements
(u0,w0,φx) may be adequately approximated using the following interpolation formulas

u0(x,t) �
n∑

j=1

∆
(1)
j (t)ψ

(1)
j (x) (5.15a)

w0(x,t) �
2n∑
j=1

∆
(2)
j (t)ψ

(2)
j (x) (5.15b)

φx(x,t) �
n∑

j=1

∆
(3)
j (t)ψ

(1)
j (x) (5.15c)

where a space-time decoupled formulation has been adopted and n represents the number
of nodes per element. Since the weak formulation requires w0, ∂w0/∂x and ∂2w0/∂x

2 to

all belong to L2(Ω)×C2(I), the discrete setting naturally dictates that ψ
(2)
j be at the
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very minimum C1(Ω̄) functions. As a result, ψ
(1)
j are standard (n− 1)th-order Lagrange

interpolation functions (see Chapter 2), while ψ
(2)
j are (2n−1)th-order Hermite interpolation

functions. Inserting the above approximations into Eq. (5.11) results in the semi-discrete
finite element equations for the RBT which may be expressed at the current time t as

[Me]{∆̈e}+[Ke]{∆e}+

∫ t

0
{Λe(t,s)}ds= {F e} (5.16)

The element-level equations may be partitioned into the following equivalent set of expres-
sions

[Mαβ]{∆̈(β)}+[Kαβ]{∆(β)}+

∫ t

0
{Λ(α)(t,s)}ds= {F (α)} (5.17)

where α and β range from 1 to 3 and Einstein’s summation convention is implied over β.
The components of the partitioned coefficient matrices and vectors may be expressed as

M11
ij =

∫ xb

xa

I0ψ
(1)
i ψ

(1)
j dx (5.18a)

M12
ij =M21

ji = 0 (5.18b)

M13
ij =M31

ji = 0 (5.18c)

M22
ij =

∫ xb

xa

(
I0ψ

(2)
i ψ

(2)
j + c21I6

dψ
(2)
i

dx

dψ
(2)
j

dx

)
dx (5.18d)

M23
ij =M32

ji =−
∫ xb

xa

J4
dψ

(2)
i

dx
ψ

(1)
j dx (5.18e)

M33
ij =

∫ xb

xa

K2ψ
(1)
i ψ

(1)
j dx (5.18f)

K11
ij =

∫ xb

xa

E(0)D0
dψ

(1)
i

dx

dψ
(1)
j

dx
dx (5.19a)

K12
ij =

1

2
K21

ji =
1

2

∫ xb

xa

(
E(0)D0

∂w0(x,t)

∂x

)
dψ

(1)
i

dx

dψ
(2)
j

dx
dx (5.19b)

K13
ij =K31

ji = 0 (5.19c)

K22
ij =

∫ xb

xa

[
1

2
E(0)D0

(
∂w0(x,t)

∂x

)2dψ
(2)
i

dx

dψ
(2)
j

dx
+G(0)Âs

dψ
(2)
i

dx

dψ
(2)
j

dx
(5.19d)

+E(0)c21D6
d2ψ

(2)
i

dx2

d2ψ
(2)
j

dx2

]
dx

K23
ij =K32

ji =

∫ xb

xa

(
G(0)Âs

dψ
(2)
i

dx
ψ

(1)
j −E(0)L4

d2ψ
(2)
i

dx2

dψ
(1)
j

dx

)
dx (5.19e)

K33
ij =

∫ xb

xa

(
E(0)M2

dψ
(1)
i

dx

dψ
(1)
j

dx
+G(0)Âsψ

(1)
i ψ

(1)
j

)
dx (5.19f)
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Λ1
i (t,s) =

∫ xb

xa

Ė(t− s)D0
dψ

(1)
i

dx

[
∂u0(x,s)

∂x
+

1

2

(
∂w0(x,s)

∂x

)2]
dx (5.20a)

Λ2
i (t,s) =

∫ xb

xa

{
Ė(t− s)D0

∂w0(x,t)

∂x

dψ
(2)
i

dx

[
∂u0(x,s)

∂x
+

1

2

(
∂w0(x,s)

∂x

)2]
(5.20b)

+ Ė(t− s)
d2ψ

(2)
i

dx2

(
c21D6

∂2w0(x,s)

∂x2
−L4

∂φx(x,s)

∂x

)
+ Ġ(t− s)Âs

dψ
(2)
i

dx

(
∂w0(x,s)

∂x
+φx(x,s)

)}
dx

Λ3
i (t,s) =

∫ xb

xa

[
Ė(t− s)

dψ
(1)
i

dx

(
M2

∂φx(x,s)

∂x
−L4

∂2w0(x,s)

∂x2

)
(5.20c)

+ Ġ(t− s)Âsψ
(1)
i

(
∂w0(x,s)

∂x
+φx(x,s)

)]
dx

F 1
i =

∫ xb

xa

ψ
(1)
i fdx+ψ

(1)
i (xa)Q1 +ψ

(1)
i (xb)Q5 (5.21a)

F 2
i =

∫ xb

xa

ψ
(2)
i qdx+Q2ψ

(2)
i (xa)+Q6ψ

(2)
i (xb)+Q3

(
−
dψ

(2)
i

dx

)∣∣∣∣
x=xa

(5.21b)

+Q7

(
−
dψ

(2)
i

dx

)∣∣∣∣
x=xb

F 3
i =Q4ψ

(1)
i (xa)+Q8ψ

(1)
i (xb) (5.21c)

In the above equations we have made extensive use of the following constants

Âs =D0−2D2c2 +D4c
2
2 (5.22a)

L4 = c1(D4−D6c1) (5.22b)

M2 =D2−2D4c1 +D6c
2
1 (5.22c)

The fully-discrete finite element equations

In this section we develop the fully discretized finite element equations for the Reddy
beam theory. We begin by partitioning the time interval I = [0, τ ] into a set of N non-

overlapping subintervals such that I =
⋃N

k=1Ik, where Ik = [tk, tk+1] and tk < tk+1 for all
Ik ⊂I. The solution may then be obtained incrementally by solving an initial value problem
within each subinterval Ik, where we assume that the solution is known at t = tk. Within
each subregion it is therefore necessary to introduce approximations for both the temporal
derivatives of the generalized displacements (resulting from the inertia terms) as well as the
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convolution integrals (resulting from the viscoelastic constitutive model of the material).
The temporal derivatives of the generalized displacements may be adequately approximated
through the use of the Newmark scheme [109] or one of its variants [110]. Since temporal
integration of the inertia terms is relatively straightforward, we restrict the current discussion
to discretization of the quasi-static form of the semi-discrete finite element equations only.

In the present work, we approximate the convolution integrals present in the semi-discrete
form of the finite element equations using the trapezoidal rule within each time subinterval.
It is important to note, however, that a naive application of the trapezoidal rule (or any
other approximation scheme for that matter) in the numerical integration of the convolu-
tion terms will result in a computationally unattractive solution procedure requiring storage
of the generalized displacements for the entire deformation history. When N is large, the
computational time expended at a given time step can become dominated by the task of
evaluating the convolution integrals. Of course the storage required will also negatively af-
fect the amount of memory needed in a given simulation. Since the viscoelastic relaxation
moduli are expressed in terms of Prony series, it is possible to develop an efficient recur-
rence based temporal integration algorithm that requires only the storage of the generalized
displacements and a set of internal variables evaluated at the Gauss points, both from the
immediate previous time step only.

We assume, without loss of generality, that the quasi-static semi-discrete finite element
equations have been successfully integrated temporally up until t= tk. Our goal, therefore,
is to numerically integrate the finite element equations over the subinterval Ik to obtain the
solution for the generalized displacements at t = tk+1. Before proceeding we must empha-
size that all subsequent discussions regarding efficient recurrence based temporal integration
strategies rely on the following multiplicative decompositions of the Prony series terms ap-
pearing in the definition of the relaxation moduli [111]

˙̄El(tk+1− s) = e−∆tk+1/τE
l ˙̄El(tk− s), ˙̄Gl(tk+1− s) = e−∆tk+1/τG

l ˙̄Gl(tk− s) (5.23)

where ∆tk+1 = tk+1− tk is the time step associated with subinterval Ik. With the above
formulas in mind, we note that the components of Λα

i (tk+1, s) may be conveniently expressed
as

Λα
i (tk+1, s) =

nα∑
j=1

jΛ̄α
i (tk+1, s) (5.24)

where n1 = 1, n2 = 3 and n3 = 2. The components jΛ̄α
i (tk+1, s) can be decomposed multi-

plicatively using the following general formula

jΛ̄α
i (tk+1, s) =

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
l β

α(∆tk+1)
j
lmκ

α(tk, s)Wm (5.25)

In the above expression we have employed the Gauss-Legendre quadrature rule in evaluation
of all spatial integrals (resulting in summation over m). The quantity Wm represents the
mth quadrature weight associated with the Gauss-Legendre quadrature rule. Summation
over l is due to the Prony series representation of the relaxation moduli. The multiplicative
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decomposition of each jΛ̄α
i (tk+1, s) is essential for the recurrence based integration strategy.

The components of j
mχ

α
i (tk+1) are used to store the discrete finite element test functions as

well as any nonlinear quantities associated with the first variation of the simplified Green-
Lagrange strain tensor. In the present formulation the components of j

mχ
α
i (tk+1) are defined

as

1
mχ

1
i (tk+1) =

dψ
(1)
i (xm)

dx
(5.26a)

1
mχ

2
i (tk+1) =

∂w0(xm, tk+1)

∂x

dψ
(2)
i (xm)

dx
(5.26b)

2
mχ

2
i (tk+1) =

d2ψ
(2)
i (xm)

dx2
(5.26c)

3
mχ

2
i (tk+1) =

dψ
(2)
i (xm)

dx
(5.26d)

1
mχ

3
i (tk+1) = 1

mχ
1
i (tk+1) (5.26e)

2
mχ

3
i (tk+1) = ψ

(1)
i (xm) (5.26f)

In the above expression, xm represents the value of x as evaluated at the mth quadrature
point of a given finite element. The isoparametric mapping Ω̂e� Ω̄e used to characterize the
geometry of each element allows for simple evaluation of such expressions. The components
of j

l β
α(∆tk+1) are defined as

1
l β

1(∆tk+1) = 1
l β

2(∆tk+1) = 2
l β

2(∆tk+1) = 1
l β

3(∆tk+1) = e−∆tk+1/τE
l

3
l β

2(∆tk+1) = 2
l β

3(∆tk+1) = e−∆tk+1/τG
l

(5.27)

Likewise, the components of j
lmκ

α(tk, s) may be determined using the following formulas

1
lmκ

1(tk, s) = ˙̄El(tk− s)D0

[
∂u0(xm, s)

∂x
+

1

2

(
∂w0(xm, s)

∂x

)2]
(5.28a)

1
lmκ

2(tk, s) = 1
lmκ

1(tk, s) (5.28b)

2
lmκ

2(tk, s) = ˙̄El(tk− s)
(
c21D6

∂2w0(xm, s)

∂x2
−L4

∂φx(xm, s)

∂x

)
(5.28c)

3
lmκ

2(tk, s) = ˙̄Gl(tk− s)Âs

(
∂w0(xm, s)

∂x
+φx(xm, s)

)
(5.28d)

1
lmκ

3(tk, s) = ˙̄El(tk− s)
(
M2

∂φx(xm, s)

∂x
−L4

∂2w0(xm, s)

∂x2

)
(5.28e)

2
lmκ

3(tk, s) = 3
lmκ

2(tk, s) (5.28f)

It is important to note that the components of j
lmκ

α(tk, s) have been defined such that the
following multiplicative recurrence formulas hold

j
lmκ

α(tk+1, s) = j
l β

α(∆tk+1)
j
lmκ

α(tk, s) (5.29)
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The above expressions are admissible on account of the assumption that the relaxation
parameters are expressed in terms of Prony series.

We assume that at t= tk the components of the following expression are known∫ tk

0

jΛ̄α
i (tk, s)ds=

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk)

j
lmX

α(tk)Wm (5.30)

where j
lmX

α(tk) is a set of history variables (stored at the quadrature points of each element)
that are of the form

j
lmX

α(tk) =

∫ tk

0

j
lmκ

α(tk, s)ds (5.31)

We note that j
lmX

α(0) = 0. At t= tk the above history variables are known and there is no
need to explicitly evaluate the expression appearing on the right hand side of Eq. (5.31). At
the subsequent time step t= tk+1 Eq. (5.30) may be written as∫ tk+1

0

jΛ̄α
i (tk+1, s)ds=

∫ tk

0

jΛ̄α
i (tk+1, s)ds+

∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds

=
NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
l β

α(∆tk+1)
j
lmX

α(tk)Wm

+

∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds

(5.32)

It is important to note that we have expressed the first integral on the right hand side of
the above equation in terms of j

lmX
α(tk) (which is known from the previous time step). To

integrate the remaining expression over the subinterval Ik we employ the trapezoidal rule
which may be expressed as∫ tk+1

tk

jΛ̄α
i (tk+1, s)ds �

∆tk+1

2

[
jΛ̄α

i (tk+1, tk)+ jΛ̄α
i (tk+1, tk+1)

]
=

∆tk+1

2

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
l β

α(∆tk+1)
[j
lmκ

α(tk, tk)

+ j
lmκ

α(tk, tk+1)
]
Wm

(5.33)

As a result, Eq. (5.32) can be written in the following simplified form∫ tk+1

0

jΛ̄α
i (tk+1, s)ds=

NGP∑
m=1

NPS∑
l=1

j
mχ

α
i (tk+1)

j
lmX

α(tk+1)Wm (5.34)

where

j
lmX

α(tk+1) =
∆tk+1

2
j
l β

α(∆tk+1)
[j
lmκ

α(tk, tk)+ j
lmκ

α(tk, tk+1)
]

+ j
l β

α(∆tk+1)
j
lmX

α (tk)
(5.35)
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As a result, in Eq. (5.34) we have developed a general expression for integrating the vis-
coelastic terms up to any discrete instance in time. The expression relies on a recurrence
relationship defined in terms of the set of history variables j

lmX
α(tk+1). These variables

must be stored in memory at the immediate previous time step and may be updated to the
subsequent time step in accordance with the procedure outlined in Eq. (5.35). The history
variables may be expressed explicitly as

1
lmX

1(tk+1) =
∆tk+1

2
D0

{
˙̄El(∆tk+1)

[
∂u0(xm, tk)

∂x
+

1

2

(
∂w0(xm, tk)

∂x

)2]
(5.36a)

+ ˙̄El(0)

[
∂u0(xm, tk+1)

∂x
+

1

2

(
∂w0(xm, tk+1)

∂x

)2]}
+ e−∆tk+1/τE

l 1
lmX

1(tk)
1
lmX

2(tk+1) = 1
lmX

1(tk+1) (5.36b)

2
lmX

2(tk+1) =
∆tk+1

2

[
˙̄El(∆tk+1)

(
c21D6

∂2w0(xm, tk)

∂x2
−L4

∂φx(xm, tk)

∂x

)
(5.36c)

+ ˙̄El(0)

(
c21D6

∂2w0(xm, tk+1)

∂x2
−L4

∂φx(xm, tk+1)

∂x

)]
+ e−∆tk+1/τE

l 2
lmX

2(tk)

3
lmX

2(tk+1) =
∆tk+1

2
Âs

[
˙̄Gl(∆tk+1)

(
∂w0(xm, tk)

∂x
+φx(xm, tk)

)
(5.36d)

+ ˙̄Gl(0)

(
∂w0(xm, tk+1)

∂x
+φx(xm, tk+1)

)]
+ e−∆tk+1/τG

l 3
lmX

2(tk)

1
lmX

3(tk+1) =
∆tk+1

2

[
˙̄El(∆tk+1)

(
M2

∂φx(xm, tk)

∂x
−L4

∂2w0(xm, tk)

∂x2

)
(5.36e)

+ ˙̄El(0)

(
M2

∂φx(xm, tk+1)

∂x
−L4

∂2w0(xm, tk+1)

∂x2

)]
+ e−∆tk+1/τE

l 1
lmX

3(tk)
2
lmX

3(tk+1) = 3
lmX

2(tk+1) (5.36f)

It is now possible to express the fully discretized finite element equations at the current
time step as

[K̄]k+1{∆}k+1 = {F}k+1−{Q̃}k+1 (5.37)

where

K̄11
ij =

∫ xb

xa

(
E(0)+

∆tk+1

2
Ė(0)

)
D0

dψ
(1)
i

dx

dψ
(1)
j

dx
dx (5.38a)

K̄12
ij =

1

2
K̄21

ji =
1

2

∫ xb

xa

(
E(0)+

∆tk+1

2
Ė(0)

)
D0

∂w0(x,tk+1)

∂x

dψ
(1)
i

dx

dψ
(2)
j

dx
dx (5.38b)

K̄13
ij = K̄31

ji = 0 (5.38c)
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K̄22
ij =

∫ xb

xa

[
1

2

(
E(0)+

∆tk+1

2
Ė(0)

)
D0

(
∂w0(x,tk+1)

∂x

)2dψ
(2)
i

dx

dψ
(2)
j

dx
(5.38d)

+

(
E (0)+

∆tk+1

2
Ė(0)

)
c21D6

d2ψ
(2)
i

dx2

d2ψ
(2)
j

dx2

+

(
G(0)+

∆tk+1

2
Ġ(0)

)
Âs
dψ

(2)
i

dx

dψ
(2)
j

dx

]
dx

K̄23
ij = K̄32

ji =

∫ xb

xa

[(
G(0)+

∆tk+1

2
Ġ(0)

)
Âs
dψ

(2)
i

dx
ψ

(1)
j (5.38e)

−
(
E(0)+

∆tk+1

2
Ė(0)

)
L4
d2ψ

(2)
i

dx2

dψ
(1)
j

dx

]
dx

K̄33
ij =

∫ xb

xa

[(
E(0)+

∆tk+1

2
Ė(0)

)
M2

dψ
(1)
i

dx

dψ
(1)
j

dx
(5.38f)

+

(
G(0)+

∆tk+1

2
Ġ(0)

)
Âsψ

(1)
i ψ

(1)
j

]
dx

and

Q̃α
i =

nα∑
j=1

jQ̄α
i (5.39)

The components of jQ̄α
i (tk+1) are of the form

1Q̄1
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)D0
dψ

(1)
i

dx

[
∂u0(x,tk)

∂x
+

1

2

(
∂w0(x,tk)

∂x

)2]
dx (5.40a)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τE
l
dψ

(1)
i (xm)

dx
1
lmX

1(tk)Wm

1Q̄2
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)D0
∂w0(x,tk+1)

∂x

dψ
(2)
i

dx

[
∂u0(x,tk)

∂x
(5.40b)

+
1

2

(
∂w0(x,tk)

∂x

)2]
dx+

NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τE
l
∂w0(xm, tk+1)

∂x
×

dψ
(2)
i (xm)

dx
1
lmX

2(tk)Wm

2Q̄2
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)
d2ψ

(2)
i

dx2

(
c21D6

∂2w0(x,tk)

∂x2
−L4

∂φx(x,tk)

∂x

)
dx (5.40c)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τE
l
d2ψ

(2)
i (xm)

dx2
2
lmX

2(tk)Wm

3Q̄2
i =

∆tk+1

2

∫ xb

xa

Ġ(∆tk+1)Âs
dψ

(2)
i

dx

(
∂w0(x,tk)

∂x
+φx(x,tk)

)
dx (5.40d)
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+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τG
l
dψ

(2)
i (xm)

dx
3
lmX

2(tk)Wm

1Q̄3
i =

∆tk+1

2

∫ xb

xa

Ė(∆tk+1)
dψ

(1)
i

dx

(
M2

∂φx(x,tk)

∂x
−L4

∂2w0(x,tk)

∂x2

)
dx (5.40e)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τE
l
dψ

(1)
i (xm)

dx
1
lmX

3(tk)Wm

2Q̄3
i =

∆tk+1

2

∫ xb

xa

Ġ(∆tk+1)Âsψ
(1)
i

(
∂w0(x,tk)

∂x
+φx(x,tk)

)
dx (5.40f)

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τG
l ψ

(1)
i (xm)2lmX

3(tk)Wm

A Newton based iterative solution procedure

The fully discretized finite element equations are nonlinear due to the use of the von
Kármán strain components in the definition of the effective strain tensor ε. In our work,
we adopt the Newton procedure in the iterative solution of the nonlinear finite element
equations. The resulting linearized finite element equations are of the form

[T e]
(r)
k+1{δ∆

e}(r+1)
k+1 =−([K̄e]

(r)
k+1{∆

e}(r)
k+1−{F

e}(r)
k+1 +{Q̃e}(r)

k+1) (5.41)

where {δ∆e}(r+1)
k+1 represents the incremental solution at the (r + 1)th nonlinear iteration.

The total global solution at the (r+1)th iteration is obtained as

{∆}(r+1)
k+1 = {δ∆}(r+1)

k+1 +{∆}(r)
k+1 (5.42)

The element tangent stiffness matrix [T e]
(r)
k+1 appearing in the Newton linearization of the

finite element equations may be expressed (using Einstein’s summation convention over n)
as

T e
ij = K̄e

ij +
∂K̄e

in

∂∆e
j

∆e
n +

∂Q̃e
i

∂∆e
j

(5.43)

All quantities comprising the tangent stiffness matrix are formulated using the solution from
the rth iteration. The partial derivatives are taken with respect to the solution at the
current time step. The components of the tangent stiffness matrix may be determined using
the following general formulas

T 11
ij = K̄11

ij (5.44a)

T 12
ij = T 21

ji = 2K̄12
ij (5.44b)

T 13
ij = T̄ 31

ji = 0 (5.44c)

T 22
ij =

∫ xb

xa

D0

{(
E(0)+

∆tk+1

2
Ė(0)

)[
∂u0(x,tk+1)

∂x
+

(
∂w0(x,tk+1)

∂x

)2]
(5.44d)
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+
∆tk+1

2
Ė(∆tk+1)

[
∂u0(x,tk)

∂x
+

1

2

(
∂w0(x,tk)

∂x

)2]}
dψ

(2)
i

dx

dψ
(2)
j

dx
dx

+
NGP∑
m=1

NPS∑
l=1

e−∆tk+1/τE
l
dψ

(2)
i (xm)

dx

dψ
(2)
j (xm)

dx
1
lmX

2(tk)Wm + K̄22
ij

T 23
ij = T 32

ji = K̄23
ij (5.44e)

T 33
ij = K̄33

ij (5.44f)

Clearly the tangent stiffness coefficient matrix is symmetric.

Numerical locking and high-order finite element interpolation func-
tions

It is well-known that low-order finite elements for beams are prone to locking [53, 105, 7]
when quadrature rules are employed that result in exact integration of the element coeffi-
cient matrices and force vectors. To circumvent the locking phenomena, we consider two
philosophically dissimilar numerical procedures. In the first approach, we employ the lowest
order element admissible in the formulation (i.e., a two-node element). Selective full and one
point Gauss-Legendre quadrature rules are applied; where reduced integration techniques
are employed on all nonlinear expressions associated with the finite element model. This
element is denoted as an RBT-2-R element (meaning a two-node reduced integration RBT
element). It is worth noting that this element requires a splitting of the history variables
into subsets associated with the full and reduced integration points. In the second approach,
we construct the Reddy beam finite elements using high polynomial order expansions of the
dependent variables, by systematically increasing the number of nodes per finite element.
In this approach, the same quadrature formulas may be adopted in the evaluation of all ex-
pressions appearing in the coefficient matrices and force vectors of the finite element model.
The resulting elements are denoted in this work as RBT-n elements, where n represents the
number of nodes per element. In Section 5 we also present numerical results obtained using
Euler-Bernoulli and Timoshenko beam elements denoted as EBT-n and TBT-n respectively.

The high-order Lagrange interpolation functions {ψ(1)
i }n

i=1 are constructed, with
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Figure 5.2. Interpolation functions for a high-order RBT
finite element where n= 6 and i= 1, . . . ,n: (a) Lagrange inter-
polation functions ψ(1)

i , (b) Hermite interpolation functions
ψ̂

(2)
2i−1 and (c) Hermite interpolation functions ψ̂(2)

2i .

respect to the natural coordinate ξ, using the C0 spectral nodal interpolation formula given

in Eq. (2.4). The high-order Hermite interpolation functions {ψ̂(2)
i }2n

i=1, on the other hand,

may be developed for the master element Ω̂e through the use of the following expression

ψ̂
(2)
i (ξ) =

2n∑
j=1

cj−1
i ξj−1 (5.45)

The coefficients cj−1
i appearing in the above equation may be determined by imposing the

following compatibility conditions on the interpolation functions

ψ̂
(2)
2i−1(ξj) =−

dψ̂
(2)
2i

dξ

∣∣∣∣
ξ=ξj

= δij ,
dψ̂

(2)
2i−1

dξ

∣∣∣∣
ξ=ξj

= ψ̂
(2)
2i (ξj) = 0 (5.46)
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where i and j both range from 1 to n. The Hermite interpolation functions {ψ(2)
i }2n

i=1
associated with the physical element Ω̄e may be determined as

ψ
(2)
2i−1(ξ) = ψ̂

(2)
2i−1(ξ), ψ

(2)
2i (ξ) = Jeψ̂

(2)
2i (ξ) (5.47)

where Je = dx/dξ is the Jacobian of the element coordinate transformation Ω̂e� Ω̄e. With
the above formulas in mind, we are now in a position to be able to generate the interpolation
functions for a beam element possessing any number of nodes per element. The standard
lowest order two-node element may be obtained as a special case. The interpolation functions
associated with a six-node RBT finite element are shown in Figure 5.2.

Numerical examples: verification benchmarks

In this section, numerical results are presented and tabulated for the mechanical response
of viscoelastic beam structures obtained using the proposed finite element formulation for the
Euler-Bernoulli, Timoshenko and third-order Reddy beam theories. The results have been
obtained using the Newton solution procedure described previously. Nonlinear convergence
is declared at the current step once the Euclidean norm of the normalized difference between

the nonlinear iterative solution increments (i.e., ‖{∆}(r+1)
k+1 −{∆}(r)

k+1‖/‖{∆}
(r+1)
k+1 ‖), is less

than 10−6.

The material model utilized in the quasi-static numerical studies is based upon the exper-
imental results tabulated by Lai and Bakker [112] for a glassy amorphous polymer material
(PMMA). The Prony series parameters for the viscoelastic relaxation modulus given in Table
5.1 were calculated by Payette and Reddy [24] from the published compliance parameters
[112]. As in the work of Chen [91] and Payette and Reddy [24], we assume that Poisson’s
ratio is time invariant. As a result, the shear relaxation modulus is given as

G(t) =
E(t)

2(1+ν)
(5.48)

where Poisson’s ratio is taken to be ν = 0.40 [113].

Quasi-static mechanical response

Deflection of a thin beam under uniform loading

In this first example we consider a viscoelastic beam of length L = 100 in. and cross
section 1 in.× 1 in. At t = 0 sec. the beam is subjected to a uniform vertically distributed
load q0 = 0.25 lbf/in that is maintained for 1,800 sec. Due to symmetry about x = L/2,
it is only necessary to computationally model half of the physical domain; as a result, we
take Ω̄hp = [0,L/2]. To assess the performance of various finite element discretizations in
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Table 5.1. Viscoelastic relaxation parameters for a PMMA.

E0 205.7818 ksi
E1 43.1773 ksi τE

1 9.1955×10−1 sec.
E2 9.2291 ksi τE

2 9.8120×100 sec.
E3 22.9546 ksi τE

3 9.5268×101 sec.
E4 26.2647 ksi τE

4 9.4318×102 sec.
E5 34.6298 ksi τE

5 9.2066×103 sec.
E6 40.3221 ksi τE

6 8.9974×104 sec.
E7 47.5275 ksi τE

7 8.6852×105 sec.
E8 46.8108 ksi τE

8 8.5143×106 sec.
E9 58.6945 ksi τE

9 7.7396×107 sec.

circumventing the locking phenomena, we consider the following three sets of boundary
conditions (for the RBT):

1. Hinged at both ends

w0(0, t) = u0(L/2, t) =
∂w0

∂x
(L/2, t) = φx(L/2, t) = 0 (5.49)

2. Pinned at both ends

u0(0, t) = w0(0, t) = u0(L/2, t) =
∂w0

∂x
(L/2, t) = φx(L/2, t) = 0 (5.50)

3. Clamped at both ends

u0(0, t) = w0(0, t) =
∂w0

∂x
(0, t) = φx(0, t) = 0

u0(L/2, t) =
∂w0

∂x
(L/2, t) = φx(L/2, t) = 0

(5.51)

Similar boundary conditions may also be adopted for the Euler-Bernoulli and Timoshenko
beam theories.

In the numerical implementation we discretize the computational domain Ω̄hp using 10
QBT-2 elements (11 nodes), 5 QBT-3 elements (11 nodes), 3 QBT-4 elements (10 nodes) and
2 QBT-6 elements (11 nodes), where Q= E, T or R. An equal time increment ∆t= 1.0 sec.
has been employed for all time steps. Five load steps were used in each simulation at t= 0 to
ensure nonlinear convergence of the instantaneous elastic response. At each subsequent time
step the finite element equations were solved iteratively using the Newton procedure, which
typically required only 2 or 3 nonlinear iterations. In Tables 5.2 and 5.3 and we summarize
the numerical results for the maximum vertical deflection of the viscoelastic beam for the
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Table 5.2. Quasi-static EBT and TBT finite element so-
lutions for the maximum vertical deflection w0(L/2, t) of a
viscoelastic beam under uniform load q0 with three different
boundary conditions.

Time, t EBT-2-R TBT-2 TBT-3 TBT-4 TBT-6

Hinged-hinged
0 7.2961 0.8629 7.0098 7.2939 7.2980

200 8.6194 1.0194 8.1966 8.6151 8.6217
400 8.7617 1.0363 8.3221 8.7571 8.7641
600 8.8486 1.0465 8.3986 8.8439 8.8510
800 8.9183 1.0548 8.4598 8.9134 8.9207

1,000 8.9775 1.0618 8.5118 8.9725 8.9799
1,200 9.0287 1.0678 8.5567 9.0236 9.0311
1,400 9.0733 1.0731 8.5958 9.0681 9.0758
1,600 9.1126 1.0778 8.6301 9.1073 9.1150
1,800 9.1474 1.0819 8.6605 9.1420 9.1498

Pinned-pinned
0 1.2481 0.7258 1.2452 1.2453 1.2452

200 1.3278 0.8210 1.3244 1.3243 1.3242
400 1.3358 0.8307 1.3324 1.3323 1.3322
600 1.3407 0.8366 1.3372 1.3371 1.3370
800 1.3446 0.8413 1.3411 1.3410 1.3409

1,000 1.3478 0.8452 1.3443 1.3442 1.3441
1,200 1.3507 0.8486 1.3471 1.3470 1.3469
1,400 1.3531 0.8516 1.3496 1.3495 1.3494
1,600 1.3553 0.8542 1.3517 1.3516 1.3515
1,800 1.3572 0.8565 1.3536 1.3535 1.3534

Clamped-clamped
0 0.9110 0.1727 0.8832 0.9102 0.9109

200 1.0000 0.2038 0.9707 0.9988 0.9997
400 1.0089 0.2071 0.9795 1.0077 1.0086
600 1.0144 0.2092 0.9848 1.0130 1.0140
800 1.0187 0.2108 0.9891 1.0173 1.0183

1,000 1.0223 0.2122 0.9927 1.0210 1.0220
1,200 1.0255 0.2134 0.9957 1.0241 1.0251
1,400 1.0282 0.2144 0.9984 1.0268 1.0278
1,600 1.0306 0.2154 1.0008 1.0292 1.0302
1,800 1.0327 0.2162 1.0029 1.0313 1.0323
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Table 5.3. Quasi-static RBT finite element solutions for
the maximum vertical deflection w0(L/2, t) of a viscoelastic
beam under uniform load q0 with three different boundary
conditions.

Time, t RBT-2 RBT-2-R RBT-3 RBT-4 RBT-6

Hinged-hinged
0 5.4740 7.2840 7.2277 7.2946 7.2980

200 6.1234 8.6052 8.5170 8.6169 8.6217
400 6.1895 8.7473 8.6552 8.7592 8.7641
600 6.2295 8.8340 8.7396 8.8460 8.8510
800 6.2615 8.9035 8.8071 8.9156 8.9207

1,000 6.2886 8.9627 8.8646 8.9748 8.9799
1,200 6.3119 9.0138 8.9143 9.0259 9.0311
1,400 6.3322 9.0584 8.9575 9.0705 9.0758
1,600 6.3499 9.0975 8.9956 9.1098 9.1150
1,800 6.3656 9.1322 9.0293 9.1445 9.1498

Pinned-pinned
0 1.2442 1.2493 1.2452 1.2452 1.2452

200 1.3233 1.3291 1.3242 1.3242 1.3242
400 1.3313 1.3371 1.3322 1.3322 1.3322
600 1.3361 1.3420 1.3370 1.3370 1.3370
800 1.3399 1.3459 1.3409 1.3409 1.3409

1,000 1.3432 1.3492 1.3441 1.3441 1.3441
1,200 1.3460 1.3520 1.3470 1.3470 1.3469
1,400 1.3484 1.3545 1.3494 1.3494 1.3494
1,600 1.3506 1.3566 1.3515 1.3515 1.3515
1,800 1.3525 1.3585 1.3534 1.3534 1.3534

Clamped-clamped
0 0.9037 0.9098 0.9106 0.9108 0.9109

200 0.9918 0.9992 0.9993 0.9995 0.9997
400 1.0007 1.0082 1.0083 1.0084 1.0086
600 1.0060 1.0136 1.0136 1.0138 1.0140
800 1.0103 1.0180 1.0180 1.0182 1.0183

1,000 1.0139 1.0216 1.0216 1.0218 1.0220
1,200 1.0170 1.0248 1.0247 1.0249 1.0251
1,400 1.0197 1.0275 1.0275 1.0277 1.0278
1,600 1.0221 1.0299 1.0298 1.0300 1.0302
1,800 1.0242 1.0321 1.0319 1.0322 1.0323
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Figure 5.3. Maximum vertical deflection w0(L/2, t) of a
hinged-hinged viscoelastic beam subjected to a uniform ver-
tically distributed load q0, where two RBT-6 elements have
been used in the finite element discretization.
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Figure 5.4. Maximum vertical deflection w0(L/2, t) of both
pinned-pinned and clamped-clamped viscoelastic beams sub-
jected to a uniform vertically distributed load q0, where two
RBT-6 elements have been used in the finite element dis-
cretization.

133



three different sets of boundary conditions listed above. In Figures 5.3 and 5.4 we also plot the
maximum vertical deflections for the three cases as obtained using the RBT-6 discretization.

It is evident from the numerical results that the TBT element suffers from numerical
locking whenever low-order polynomial expansions are employed. This is also true of the
RBT-2 element when used to solve the hinged-hinged problem. In general, however, we find
that the RBT-n elements are less prone to locking than are the TBT-n elements. In fact, the
RBT-3 element is almost completely locking free. On the other hand, the Timoshenko beam
equations require the use of Lagrange interpolation functions only, and are hence simple to
construct. The solutions resulting from the TBT-6 and RBT-6 discretizations are spatially
fully converged and can actually be obtained using a coarse grid consisting of only a single
element. As a result, the overall computational cost associated with these single element
discretizations is actually quite low. It is interesting to note that the low-order EBT-2-R
and RBT-2-R also provide reliable numerical results for the transverse deflection.

Table 5.4. Analytical and finite element solutions for
the maximum quasi-static vertical deflection w0(L/2, t) of a
hinged-hinged beam under uniform transverse loading q0.

Maximum vertical deflection, w0(L/2, t)
Time, t Exact ∆t= 0.1 ∆t= 1.0 ∆t= 2.0 ∆t= 5.0 ∆t= 10.0

0 7.2980 7.2980 7.2980 7.2980 7.2980 7.2980
200 8.5429 8.5437 8.6217 8.8493 10.2278 14.7260
400 8.6827 8.6835 8.7641 8.9993 10.4291 15.1493
600 8.7680 8.7689 8.8510 9.0910 10.5524 15.4107
800 8.8364 8.8372 8.9207 9.1645 10.6513 15.6214

1,000 8.8945 8.8954 8.9799 9.2270 10.7356 15.8022
1,200 8.9448 8.9456 9.0311 9.2811 10.8087 15.9597
1,400 8.9886 8.9895 9.0758 9.3282 10.8726 16.0983
1,600 9.0271 9.0280 9.1150 9.3697 10.9288 16.2210
1,800 9.0612 9.0621 9.1498 9.4064 10.9787 16.3306

For the hinged-hinged beam configuration, the vertical deflection coincides with the ex-
act solution of the geometrically linear theory. In Table 5.4 we compare numerical results
obtained using two RBT-6 beam elements with the exact solution for the Timoshenko beam
theory given by Flügge [81] as

w0(L/2, t) =
5q0L

4

384D2

[
1+

8(1+ν)

5κ

(
h

L

)2]
D(t) (5.52)

where D(t) is the creep compliance and κ is the shear correction factor. The error in the
numerical solution due to temporal discretization based on the trapezoidal rule tends to
over-predict the deflection of the beam as is evident in Table 5.4 (where numerical solutions
obtained using various time increment sizes are compared).
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Deflection of a thick beam under uniform loading

In this next example we consider a thick viscoelastic beam (i.e., L/h< 20) to demonstrate
the ability of the RBT finite element formulation to accurately account for deformations
associated with shearing. We modify the thin beam problem given in the previous example
by taking L = 10 in., q = 25.0 lbf/in and ∆t = 1.0 sec. All other geometric and material
parameters are the same as in the previous example. In Table 5.5 numerical results are
presented for the transverse deflection of pinned-pinned and clamped-clamped beams. The
same number of elements (per element type) are employed as in the previous example. In
Table 5.5 we also compare results from the Reddy beam theory with finite element solutions
obtained using a low-order reduced integration finite element model based on the Euler-
Bernoulli beam theory (which does not account for deformations associated with shearing).
The numerical results obtained for the RBT element compare well with numerical solutions
obtained using TBT finite elements [24].

Table 5.5. Comparison of the quasi-static finite element
solutions for the maximum vertical deflection w0(L/2, t) of
thick pinned-pinned and clamped-clamped viscoelastic beams
under uniform transverse loading q0.

Maximum vertical deflection, w0(L/2, t)
pinned-pinned clamped-clamped

Time t EBT-2-R RBT-2-R RBT-6 EBT-2-R RBT-2-R RBT-6

0 0.07184 0.07362 0.07367 0.01459 0.01645 0.01653
200 0.08437 0.08643 0.08649 0.01724 0.01943 0.01952
400 0.08571 0.08779 0.08785 0.01752 0.01975 0.01985
600 0.08652 0.08862 0.08869 0.01769 0.01995 0.02004
800 0.08717 0.08929 0.08935 0.01783 0.02010 0.02020

1,000 0.08773 0.08985 0.08992 0.01795 0.02024 0.02033
1,200 0.08821 0.09034 0.09041 0.01805 0.02035 0.02045
1,400 0.08862 0.09076 0.09083 0.01814 0.02045 0.02055
1,600 0.08899 0.09114 0.09121 0.01822 0.02054 0.02064
1,800 0.08931 0.09147 0.09154 0.01829 0.02062 0.02072

Deflection of a thin beam under time-dependent loading

For this example we employ the geometric parameters, material properties and hinged-
hinged boundary conditions utilized in the first numerical example. We replace the stationary
uniformly distributed load with the following quasi-static transverse load

q(t) = q0

{
H(t)− 1

τ(β−α)
[(t−ατ)H(t−ατ)− (t−βτ)H(t−βτ)]

}
(5.53)
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where q0 = 0.25 lbf/in, τ = 200 sec. and H(t) is the Heaviside function. The parameters α
and β (where 0≤ α≤ β ≤ 1) are constants whose values may be appropriately adjusted. The
load function above is constant for 0< t<ατ and decays linearly from t= ατ to t= βτ , after
which the load is maintained at zero. We utilize the above loading function to numerically
demonstrate that the finite element model correctly predicts that the viscoelastic beam will
eventually recover its original configuration upon removal of all externally applied mechanical
loads. The numerical solution for the problem, as obtained using two RBT-6 elements, is
presented in Figure 5.5 for various values of α and β. It is clear that in all cases, the beam
does tend to recover its original configuration following removal of the externally applied
load.

Figure 5.5. Maximum vertical deflection w0(L/2, t) of
a hinged-hinged viscoelastic beam subjected to a time-
dependent transversely distributed load q(t).
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Fully-transient mechanical response

Forced vibrational response of hinged beams

As a final example, we consider the fully transient response of viscoelastic beams under
mechanical loading as modeled using the third-order Reddy beam theory. For this example
we employ a simple three parameter solid model utilized previously by Chen [91]. In the
standard three parameter solid model, the relaxation modulus may be expressed as

E(t) =
k1k2

k1 +k2

(
1− e−t/τE

1

)
+k1e

−t/τE
1 (5.54)

where in the present example k1 = 9.8×107 N/m2 and k2 = 2.45×107 N/m2. The relaxation
time is of the form τE

1 = η/(k1 +k2) and the material density is taken to be ρ0 = 500 kg/m3.
A constant Poisson ratio of ν = 0.3 is assumed.

Figure 5.6. A comparison of the time-dependent verti-
cal response w0(L/2, t) (with units of mm) of hinged-hinged
beams due to a suddenly applied transversely distributed load
q(t). Results are for both viscoelastic as well as elastic beams.

We consider a beam with hinged boundary conditions at both ends. The beam length,
width and thickness are taken to be L = 10 m, b = 2 m and h = 0.5 m respectively. We
consider two loading scenarios. In loading scenario (1) a uniformly distributed transverse
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Figure 5.7. A comparison of the time-dependent vertical
response w0(L/2, t) (with units of mm) of hinged-hinged vis-
coelastic and elastic beams due to a periodic concentrated
load F (t) (where η = 2.744×108 N-sec./m2).

load is specified along the entire length of the beam as q(t) = q0H(t) N/m, where q0 = 10.
Likewise, for loading scenario (2) a periodic concentrated force is applied at the center
of the beam as F (t) = q0sin(πt) N, where q0 = 50. In the finite element discretization of
both problems, we employ two RBT-6 elements of equal size. As in the previous examples,
symmetry is once again exploited in construction of the finite element meshes. We utilize
the Newmark-β procedure [109] for performing temporal discretization of the inertia terms
appearing in the fully transient beam finite element equations. The Newmark integration
parameters are chosen in accordance with the constant-average acceleration method [27].
Both transient problems are solved over a total time interval of 20 sec. For loading scenario
(1) we employ 500 time steps, while 1,000 time steps are utilized for loading scenario (2).

Numerical results for loading scenarios (1) and (2) are presented in Figures 5.6 and 5.7
respectively. In each figure we present both viscoelastic and elastic solutions (where the
Young’s modulus is obtained in the elastic case by taking Eelastic =E(0)). As expected, the
viscoelastic effects tend to add damping to what would otherwise be purely elastic response.
In Figure 5.6 we present fully transient viscoelastic results using two different values for
η. This problem is also solved using the quasi-static viscoelasticity solution procedure. It
is evident that the transient viscoelastic solution approaches the steady-state quasi-static
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viscoelastic response once a sufficiently long enough period of time has transpired. For
loading scenario (2) the viscoelastic material properties clearly reduce the overall amplitude
of the forced vibrational response. An overall smoothing of the beam response is also observed
for this problem.
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Chapter 6

A Nonlinear Shell Finite Element
Formulation for Isotropic, Laminated
Composite and Functionally Graded
Shell Structures

In this chapter we present a weak-form Galerkin finite element formulation for the general
analysis of elastic shear-deformable shell structures using an improved first-order shell theory
with seven independent parameters. As shells constitute some of the most prevalent and
significant of structural components employed in engineering design, efficient and accurate
procedures for their numerical simulation are of great importance. Robust algorithms are
particularly crucial, as shells are widely recognized as the prima donnas of structures [114]
due to the fact that small changes in geometry and loading can culminate in large changes
in the mechanical response.

In the finite element analysis of shells there are primarily four categories of element types
that may be adopted: (a) facet-shell elements, (b) 3-D elasticity elements or layerwise theory
elements, (c) continuum shell elements (or degenerated shell elements) and (d) 2-D shell
theory elements. The facet-elements were developed during the emergence of the finite el-
ement method and consist of planar elasticity elements with additional plate-like bending
analysis capabilities. These simple elements are still available in many of the commercial
finite element software. The 3-D elasticity elements are of course the most general elements;
however, their use becomes prohibitively expensive whenever thin and/or multi-layered com-
posite shell structures are to be analyzed. For the case of composite shells, finite elements
based on a layerwise theory offer a less expensive computational procedure as compared with
3-D elasticity elements since aspect ratio requirements are dictated by the mid-surface mesh
only (see for example Reddy [115, 116] and Robbins and Reddy [117, 118]).

The majority of recent advances in the finite element analysis of shells have come in the
areas of continuum shell elements and 2-D shell theory elements. Continuum shell elements
were initially introduced by Ahmad et al. [119] and are constructed by mapping a two-
dimensional master element onto a surface in R3 constituting the mid-plane of the element.
An isoparametric approach is typically adopted in characterizing the approximate mid-plane
of the shell element as well as approximating the displacement field. The approximate three-
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dimensional geometry of the shell element is usually recovered in the continuum approach
by prescribing a unit normal at each node that is interpolated using the standard basis
functions of the element. The formulation is completed by imposing appropriate kinematic
assumptions on the displacement field. Although no shell theory is explicitly invoked, the
resulting formulation may be identified as a shell element with qualities consistent with a
first-order shear deformation shell model.

In contrast to the so-called continuum elements, shell elements based on a shell theory, are
formulated using an exact analytical description of the undeformed mid-surface of the shell.
The shell mid-surface is therefore represented using a 2-D chart φ(ω1,ω2); i.e., a smooth
injective mapping from ω̄ ⊂ R2, the closure of the open bounded region ω, onto Ω̄ ⊂ R3.
The three-dimensional shell geometry is then obtained by the 3-D chart: Φ(ω1,ω2,ω3) =
φ(ω1,ω2) + ω3a3(ω

1,ω2), where a3 is the analytic unit normal to the mid-surface, ω3 ∈
[−h/2,h/2] and h is the shell thickness. In shell theory the fundamental kinematic assump-
tions, stress and strain measures, constitutive model, virtual work statement and governing
equations are all expressed with respect to the general curvilinear coordinates (ω1,ω2,ω3)
used to characterize the three-dimensional shell geometry. Furthermore, the finite element
mesh is constructed on ω̄ as opposed to Ω̄. Examples of finite element models for shells
constructed directly from shell theories can be found in Refs. [120, 121, 122, 123] and more
recently in the work of Arciniega and Reddy [124, 125]. To the casual observer, the shell
theory and continuum based shell finite elements appear quite different from each other. As
discussed by Büechter and Ramm, however, the formulations are actually quite similar and
when based on the same mechanical assumptions “differ only in the kind of discretization”
[126].

The underlying kinematic assumptions adopted in the vast majority of continuum and
shell theory based shell finite element models require either 5 or 6 independent variables
in the characterization of the displacement field. In 5-parameter models, thickness changes
are neglected and as a result, the plane-stress condition must be invoked [127]. In addition
a rotation tensor is typically introduced in finite rotation implementations to exactly en-
force the inextensibility condition [120, 108]. The rotation tensor may be parametrized by
means of rotational degrees of freedom; however, depending on the adopted parametriza-
tion, singularities and other rank-deficiencies can arise (see for example Betsch et al. [128]).
6-parameter formulations, on the other hand, may be employed in conjunction with fully
three-dimensional constitutive equations; however, such implementations are unfortunately
hindered by an erroneous state of constant normal strain through the thickness, a phenomena
known as Poisson locking [129]. It is crucial to note that this form of locking is an artifact
of the mathematical model and not the discrete finite element implementation.

In recent years there has been significant attention devoted to shell finite element formula-
tions that may be employed with unmodified fully three-dimensional constitutive equations.
Motivation for these models stems from the desire to circumvent many of the problems asso-
ciated with the incorporation of the plane-stress assumption. Such formulations account for
thickness stretching and provide reasonable representations of all components of the through-
thickness stress states of thin and thick shell structures. These models are usually called
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7-parameter formulations, as they involve seven independent parameters in the kinemati-
cal description. In a 7-parameter model, the transverse displacement is expanded up to a
quadratic term, which essentially mitigates Poisson locking when three-dimensional consti-
tutive equations are adopted. Some of the notable works on 7-parameter shell formulations
include Sansour [130] and Bischoff and Ramm [129, 131].

It is well-known that low-order finite element implementations for shells suffer from var-
ious forms of locking whenever a purely displacement-based formulation is adopted. The
locking phenomena occurs on account of inconsistencies that arise in the discrete finite el-
ement representation of the membrane and transverse shear energies. In recent years, the
issue of locking has been most prominently addressed through the use of low-order finite ele-
ment technology using Hu-Washizu type mixed variational principles. Among the successful
low-order implementations are the assumed strain (see Dvorkin and Bathe [132] and Hinton
and Huang [133]) and enhanced strain (see Simo and Rifai [134]) formulations. High-order
finite element implementations have also been advocated in recent years as a means of elim-
inating the locking phenomena completely. Mostly notably, whenever a sufficient degree of
p-refinement is employed, highly reliable locking free numerical solutions may be obtained in
a purely displacement-based setting. Among the relevant works are the least-squares finite
element formulations of Pontaza and Reddy [135, 136] and Moleiro et al. [137, 138] for the
linear analysis of plates and the tensor-based (i.e., shell theory based) weak-form Galerkin
finite element models of Arciniega and Reddy [124, 125] for the finite deformation analysis
of isotropic, laminated composite and functionally graded shells.

In this chapter we present an improved first-order shear deformation continuum shell
finite element formulation for use in the analysis of the fully geometrically nonlinear me-
chanical response of thin and thick isotropic, composite and functionally graded elastic shell
structures. We adopt a 7-parameter formulation which naturally circumvents the need for
a rotation tensor in the kinematical description and allows us to use fully three-dimensional
constitutive equations in the numerical implementation. Many of the advances in recent
years in the area of locking-free shell finite element formulations have been in the context of
low-order elements and mixed variational principles. In the present work, however, we utilize
high-order spectral/hp type quadrilateral finite element technology in a purely displacement-
based finite element setting which naturally allows us to obtain: (a) highly accurate approx-
imations of arbitrary shell geometries and (b) reliable numerical results that are completely
locking-free. In the computer implementation, the Schur complement method is adopted at
the element level to statically condense out all degrees of freedom interior to each element
in a given finite element discretization. This procedure vastly improves computer memory
requirements in the numerical implementation of the resulting shell element and allows for
significant parallelization of the global solver. The use of spectral/hp finite element technol-
ogy provides an efficient mechanism for reducing errors associated with the isoparametric
approximation of arbitrary shell geometries. This constitutes an important departure from
the tensor based shell finite element formulation proposed previously in the work of Arcin-
iega and Reddy [124, 125], where a chart was employed to ensure exact parametrization of
the shell mid-surface.
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The shell finite element framework presented in this chapter is applicable to the fully
geometrically nonlinear analysis of elastic shell structures based on the St. Venant Kirchhoff
material model. The formulation requires as input the prescription of the three-dimensional
coordinates of the shell mid-surface as well as two sets of directors (one set normal and
the other tangent to the mid-surface) at each node in the shell finite element model. Each
of these quantities is approximated discretely using the standard spectral/hp finite element
interpolation functions within a given shell element. The prescribed tangent vector is par-
ticularly useful, as it allows for the simple construction of the local bases associated with the
principle orthotropic material directions of each lamina in a given composite. This allows
us to freely adopt skewed and/or arbitrarily curved quadrilateral shell elements in actual
finite element simulations. We show, through the numerical simulation of carefully chosen
non-trivial benchmark problems, that the proposed shell element is insensitive to all forms
of numerical locking and severe geometric distortions.

Parametrization of the reference configuration of the

shell

A shell structure is by definition a solid body with one geometric dimension being sig-
nificantly smaller than the other two. In the classical theory of shells, this concept is made
mathematically precise through the definition of a mid-surface Ω (where Ω, an open bounded
set, is the reference or undeformed mid-surface of the shell) imbedded in physical space R3

and a thickness parameter h. The mid-surface is characterized using either a single or a set
of two-dimensional charts from R2 into R3 (e.g., in the single chart case φ : ω→ Ω ⊂ R3,
where ω ⊂ R2).

In this work we immediately dispense with this exact parametrization of Ω and instead
introduce an appropriate finite element based approximation of the mid-surface. To this end,
we assume that the closure of Ω (denoted by Ω̄) has been approximated by a conforming
set of high-order spectral/hp quadrilateral finite elements. We denote the resulting finite
element approximation of Ω̄ as Ω̄hp. This isoparametric characterization of the mid-surface
leads to the following standard finite element type approximation

X = φe(ξ1, ξ2) =
n∑

k=1

ψk(ξ
1, ξ2)Xk in Ω̂e (6.1)

within a given element, where X represents a point on the approximate mid-surface and
ψk are the two-dimensional spectral/hp basis functions. In the above expression Xk are the
locations in R3 of the mid-surface nodes of the eth element (note that all finite element nodes
reside on Ω̄hp). The element nodal coordinates Xk (as well as all other subsequent nodal
quantities) are given with respect to a fixed orthonormal Cartesian coordinate system with
basis vectors: {Ê1, Ê2, Ê3}; as a result Xk =Xk

i Êi (where Einstein’s summation convention
is implied over i). The master element Ω̂e used in the isoparametric characterization of
the approximate element mid-surface Ω̄e (i.e., φe : Ω̂e → Ω̄e ⊂ Ω̄hp) is taken as the standard
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bi-unit square Ω̂e = [−1,+1]2. It should be clear that p-refinement offers us an attractive
mechanism for reducing errors in the computational model associated with approximating
Ω̄ by Ω̄hp.

At each point of the mid-surface Ω̄e of a given element we define the vectors

aα =
∂X

∂ξα
≡X,α (6.2)

which are linearly independent and thus form a local basis of the tangent plane. We follow
the customary convention and allow Greek indices to range over 1 and 2 and Latin indices
over 1, 2 and 3. The unit normal vector may be defined as

a3 =
a1×a2

||a1×a2||
(6.3)

We see that for each (ξ1, ξ2) ∈ Ω̂e, the vectors ai define a basis for R3. In the current work,
we will be largely unconcerned with a3 and instead utilize a finite element approximation of
the unit normal defined within a given element as

n̂ =
n∑

k=1

ψk(ξ
1, ξ2)n̂k (6.4)

The present formulation, therefore, requires as input the mid-surface locations X and the
unit normals n̂, both evaluated at the finite element nodes.

We are now in a position to characterize the three-dimensional geometry of the unde-
formed configuration of a typical shell element B̄e

0 and as a consequence B̄hp
0 (i.e., the finite

element approximation of the three-dimensional undeformed shell configuration B̄0). As-
suming a constant thickness h (not to be confused with the mesh parameter) we define the
position vector in the shell element as

X = Φe(ξ1, ξ2, ξ3) = φe(ξ1, ξ2)+ ξ3
h

2
n̂ =

n∑
k=1

ψk(ξ
1, ξ2)

(
Xk + ξ3

h

2
n̂k

)
(6.5)

where ξ3 ∈ [−1,+1]. The process of parametrizing B̄e
0 is summarized in Figure 6.1.

At each point of the shell element B̄e
0 (not necessary on the mid-surface Ω̄e) we define a

set of covariant basis vectors

gi =
∂X

∂ξi
≡X,i (6.6)

Using Eq. (6.5) allows us to express the shell basis vectors as

gα = aα + ξ3
h

2
n̂,α, g3 =

h

2
n̂ (6.7)

In Figure 6.2 we provide an illustration of the vectors aα and gα at points A and B respec-
tively, in a typical shell element B̄e

0. Note that A resides on the mid-surface Ω̄e, while B lies
directly above A in the direction of the unit normal n̂.
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Figure 6.1. The process of approximating the three-
dimensional geometry of a shell element in the reference con-
figuration based on a isoparametric map from the parent ele-
ment to the finite element approximation of the mid-surface
followed by an additional map to account for the shell thick-
ness.

The covariant basis vectors gi allow us to write a differential line element in B̄e
0 in terms

of the curvilinear coordinates (ξ1, ξ2, ξ3) as

dX = dX1 +dX2 +dX3 = g1dξ
1 +g2dξ

2 +g3dξ
3 (6.8)

which can be expressed in matrix form as


dX1

dX2

dX3

 = {dξ}T[J ] =


dξ1

dξ2

dξ3


T


∂X1
∂ξ1

∂X2
∂ξ1

∂X3
∂ξ1

∂X1
∂ξ2

∂X2
∂ξ2

∂X3
∂ξ2

∂X1
∂ξ3

∂X2
∂ξ3

∂X3
∂ξ3

 (6.9)

The quantity [J ] is the Jacobian matrix, which is always invertible. The inverse of the
Jacobian matrix is for our purposes denoted as [J?]. Likewise, the determinant of [J ] is
simply referred to as J . It is easy to show that a differential volume element in B̄e

0 is given
as

dB̄e
0 = dX1 · (dX2×dX3) = Jdξ1dξ2dξ3 (6.10)
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Figure 6.2. Geometry of a typical shell finite element B̄e
0

in the reference configuration. The basis vectors aα and gα

as well as the finite element representation of the unit normal
n̂ are also shown.

We associate with the covariant basis, a dual or contravariant set of basis vectors gi defined
by the relation

gi ·gj = δij (6.11)

where δij is the Kronecker delta. The contravariant basis vectors may also be determined
from the following formulas

g1 =
g2×g3

J
, g2 =

g3×g1

J
, g3 =

g1×g2

J
(6.12)

The covariant and contravariant basis vectors may be alternatively defined in terms of the
components of Jacobian matrix and its inverse

gi = JijÊj , gi = J?
jiÊj (6.13)

For completeness, we provide the following formulas for evaluating the components of [J ]

J11 =
∂X1

∂ξ1
=

n∑
k=1

∂ψk

∂ξ1

(
Xk

1 + ξ3
h

2
n̂k

1

)
(6.14a)

J12 =
∂X2

∂ξ1
=

n∑
k=1

∂ψk

∂ξ1

(
Xk

2 + ξ3
h

2
n̂k

2

)
(6.14b)
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J13 =
∂X3

∂ξ1
=

n∑
k=1

∂ψk

∂ξ1

(
Xk

3 + ξ3
h

2
n̂k

3

)
(6.14c)

J21 =
∂X1

∂ξ2
=

n∑
k=1

∂ψk

∂ξ2

(
Xk

1 + ξ3
h

2
n̂k

1

)
(6.14d)

J22 =
∂X2

∂ξ2
=

n∑
k=1

∂ψk

∂ξ2

(
Xk

2 + ξ3
h

2
n̂k

2

)
(6.14e)

J23 =
∂X3

∂ξ2
=

n∑
k=1

∂ψk

∂ξ2

(
Xk

3 + ξ3
h

2
n̂k

3

)
(6.14f)

J31 =
∂X1

∂ξ3
=
h

2

n∑
k=1

ψkn̂
k
1 (6.14g)

J32 =
∂X2

∂ξ3
=
h

2

n∑
k=1

ψkn̂
k
2 (6.14h)

J33 =
∂X3

∂ξ3
=
h

2

n∑
k=1

ψkn̂
k
3 (6.14i)

Likewise, the components of [J?] may be determined as

J?
11 = (J22J33−J23J32)/J (6.15a)

J?
12 = (J13J32−J12J33)/J (6.15b)

J?
13 = (J12J23−J13J22)/J (6.15c)

J?
21 = (J23J31−J21J33)/J (6.15d)

J?
22 = (J11J33−J13J31)/J (6.15e)

J?
23 = (J13J21−J11J23)/J (6.15f)

J?
31 = (J21J32−J22J31)/J (6.15g)

J?
32 = (J12J31−J11J32)/J (6.15h)

J?
33 = (J11J22−J12J21)/J (6.15i)

where J is of the form

J = J11(J22J33−J23J32)−J12(J21J33−J23J31)+J13(J21J32−J22J31) (6.16)

The displacement field and strain measures

We now consider the motion χ(X, t) of the shell from the reference finite element config-

uration B̄hp
0 to the current or spatial finite element configuration B̄hp

t . To this end we recall
that the displacement of a material point from the reference configuration to the current
configuration may be expressed in the usual manner as

u(X, t) = χ(X, t)−X = x(X, t)−X (6.17)
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We next assume that at any point within a typical shell element B̄e
0, the displacement vector

may be approximated by a Taylor series expansion with respect to the thickness curvilinear
coordinate ξ3

u(X(ξi), t) � u(0)(ξα, t)+ ξ3u(1)(ξα, t)+
(ξ3)2

2
u(2)(ξα, t)+ · · · (6.18)

where u(j)(ξα, t) = ∂ju(ξi, t)/∂(ξ3)j |ξ3=0.

We wish to truncate the Taylor series approximation for u such that the resulting shell
model is asymptotically consistent with three-dimensional solid mechanics [127]; thereby
allowing for the use of fully three-dimensional constitutive equations in the mathematical
model and subsequent numerical implementation. We therefore restrict the displacement
field to the following seven-parameter expansion

u(ξi) = u(ξα)+ ξ3
h

2
ϕ(ξα)+(ξ3)2

h

2
ψ(ξα) (6.19)

where each u(j)(ξα, t) (j = 0,1 and 2) has been renamed, and for j = 1 and 2, scaled by some
factor of h. For the sake of brevity, we omit the time parameter t from the above expressions
and the subsequent discussion. The generalized displacements u, ϕ and ψ may be expressed
as

u(ξα) = ui(ξ
α)Êi, ϕ(ξα) = ϕi(ξ

α)Êi, ψ(ξα) = Ψ(ξα)n̂(ξα) (6.20)

The quantity u represents the mid-plane displacement and ϕ is the so-called difference
vector (which gives the change in the mid-surface director). The seventh parameter Ψ
is included to circumvent spurious stresses in the thickness direction, caused in the six-
parameter formulation by an artificial constant normal strain (a phenomena referred to as
Poisson locking [129]).

The position occupied by a material point belonging to B̄e
0 at the current time t may

be evaluated by substituting the assumed displacement field into Eq. (6.17) which upon
rearrangement yields

x = X+u = x+ ξ3
h

2
ˆ̄n+(ξ3)2

h

2
Ψn̂ (6.21)

where x = X+u (a point on the deformed mid-surface) and ˆ̄n = n̂+ϕ (a pseudo-director
associated with the deformed mid-surface). It is important to note that unlike n̂; the director
ˆ̄n is in general neither a unit vector nor is it normal to the deformed mid-surface.

We define the finite element approximation of the displacement field given by Eq. (6.19)
as

u(ξi) =
n∑

k=1

ψk(ξ
1, ξ2)

(
uk + ξ3

h

2
ϕk +(ξ3)2

h

2
Ψkn̂(ξα)

)
(6.22)

where n̂(ξα) is given by Eq. (6.4). Note that we interpolate Ψ and n̂ separately in the finite
element approximation of ψ (as opposed to interpolating the product Ψn̂ as a single entity).
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The derivative of the displacement field with respect to the curvilinear coordinates of the
element may be expressed as

u,α =
n∑

k=1

∂ψk

∂ξα

[
uk + ξ3

h

2
ϕk +(ξ3)2

h

2

(
Ψkn̂(ξβ)+ n̂kΨ(ξβ)

)]
(6.23a)

u,3 = h

n∑
k=1

ψk(ξ
1, ξ2)

(
1

2
ϕk + ξ3Ψkn̂(ξβ)

)
(6.23b)

We recall from continuum mechanics that the deformation gradient F may be defined as

F = (∇0x)T = x,ig
i = ḡig

i (6.24)

where ḡi = gi+u,i are the covariant basis vectors associated with the deformed finite element

configuration of the three-dimensional shell B̄hp
t . The nabla symbol ∇0 is the material

gradient operator. It should be clear that F is a two-point tensor relating differential line
segments in the material configuration to their associated differential line segments in the
deformed configuration.

We next define the Green-Lagrange strain tensor E as

E =
1

2

(
FT ·F− I

)
=

1

2

(
u,i ·gj +gi ·u,j +u,i ·u,j

)
gigj

(6.25)

which relates the difference in the squares of differential spatial and reference configuration
line segments as

(ds)2− (dS)2 = dx ·dx−dX ·dX = 2dX ·E ·dX (6.26)

The covariant components of the Green-Lagrange strain tensor (i.e., the coefficients of the
second order tensor contravariant bases gigj appearing in Eq. (6.25)) may be expanded in
terms of the thickness coordinate ξ3 as

Eij(ξ
m) = ε

(0)
ij + ξ3ε

(1)
ij +(ξ3)2ε

(2)
ij +(ξ3)3ε

(3)
ij +(ξ3)4ε

(4)
ij (6.27)

where ε
(n)
ij = ε

(n)
ij (ξα). In the present formulation we neglect all covariant components of

E that are of higher order than linear in ξ3. The retained covariant components may be
determined as

ε
(0)
αβ =

1

2

(
u,α ·aβ +aα ·u,β +u,α ·u,β

)
(6.28a)

ε
(1)
αβ =

h

4

[
u,α ·

(
n̂,β +ϕ,β

)
+

(
n̂,α +ϕ,α

)
·u,β +ϕ,α ·aβ +aα ·ϕ,β

]
(6.28b)

ε
(0)
α3 =

h

4

[
u,α ·

(
n̂+ϕ

)
+aα ·ϕ

]
(6.28c)
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ε
(1)
α3 =

h

2

{
h

4

[
ϕ,α · n̂+

(
n̂,α +ϕ,α

)
·ϕ

]
+

(
aα +u,α

)
·ψ

}
(6.28d)

ε
(0)
33 =

h2

8

(
2n̂+ϕ

)
·ϕ (6.28e)

ε
(1)
33 =

h2

2

(
n̂+ϕ

)
·ψ (6.28f)

We see from the above expressions that in the six-parameter formulation (obtained by taking

ψ = 0) the strain component ε
(1)
33 is identically zero.

Constitutive equations

The underlying kinematic assumptions of the adopted shell finite element formulation can
be applied in the context of a multitude of material models (e.g., Cauchy elastic, hyperelastic,
viscoelastic, elasto-plastic, etc.). In this work we assume that the material response remains
in the elastic regime. Furthermore, we assume that the second Piola Kirchhoff stress tensor
S is related to the Green-Lagrange strain tensor E by the following relation

S = � : E (6.29)

where �=Cijklgigjgkgl is the fourth-order elasticity tensor. We require the elasticity tensor
to be independent of the shell deformation. However, we do allow � to be non-homogeneous
(i.e., a function of X). This frame-indifferent hyperelastic constitutive model is often called
linear elastic (not to be confused with the theory of linear elasticity). In the numerical
implementation, we rely on the following component representation of the set of constitutive
equations

Sij = CijklEkl (6.30)

The adopted material model may also be expressed in matrix form as

S11

S22

S33

S23

S13

S12


=


C1111 C1122 C1133 C1123 C1113 C1112

C1122 C2222 C2233 C2223 C2213 C2212

C1133 C2233 C3333 C3323 C3313 C3312

C1123 C2223 C3323 C2323 C2313 C2312

C1113 C2213 C3313 C2313 C1313 C1312

C1112 C2212 C3312 C2312 C1312 C1212





E11

E22

E33

2E23

2E13

2E12


(6.31)

where the coefficient matrix [Cijkl] appearing in the above expression is the matrix form of
the contravariant components of the elasticity tensor �. It should be evident that there are
in general 21 unique contravariant components of �.

For completeness, we recall that the second Piola Kirchhoff stress tensor S is defined as

S = JFF−1 ·σ ·F−T (6.32)

where σ is the true or Cauchy stress tensor and JF = detF. The symmetry of S follows from
the symmetry of σ.
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Isotropic shells: homogeneous and functionally graded

We now specialize the assumed constitutive model for use in the context of isotropic shells.
We consider the homogeneous case and also the scenario where the material is functionally
graded through the thickness of the shell. Homogeneous shells are abundant and can be
found in piping, pressure vessels, ship hulls, large roofs and the bodies of automobiles.
Functionally graded shells on the other hand have been advocated for use in high temperature
environments with applications in reactor vessels, turbines and other machine parts [116].
These materials are typically composed of metals and ceramics to maximize the strength
and toughness properties of the former and the thermal and corrosion resistance attributes
of the latter.

For isotropic materials, the fourth-order elasticity tensor may be expressed as

�= λII+2µ� (6.33)

The Lamé parameters λ and µ are related to the Young’s modulus E and Poisson’s ratio ν
by the following expressions

λ=
νE

(1+ν)(1−2ν)
(6.34a)

µ=
E

2(1+ν)
(6.34b)

The quantities I = δijÊiÊj and � = 1
2(δikδjl + δilδjk)ÊiÊjÊkÊl are the second and fourth-

order identity tensors respectively. These tensors may also be expressed with respect to the
covariant basis vectors gi as

I = G = gijgigj (6.35a)

�=
1

2
(gikgjl +gilgjk)gigjgkgl (6.35b)

where gij = gi ·gj are the contravariant components of the Riemannian metric tensor G in
the reference configuration. We can therefore express the contravariant components of � as

Cijkl = λgijgkl +µ(gikgjl +gilgjk) (6.36)

Although � depends on only the Lamé parameters, the 21 contravariant components asso-
ciated with the matrix [Cijkl] are in general distinct from one another.

For the homogeneous case, the Young’s modulus and Poisson’s ratio are constant through-
out the shell structure. For functionally graded structures, we assume that the shell is com-
posed of two isotropic constituents. In such cases, we allow the Young’s modulus to vary with
respect to the shell thickness coordinate ξ3 as prescribed by the following smooth function

E(ξ3) = (E+−E−)f+(ξ3)+E− (6.37)
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where

f+(ξ3) =

(
ξ3 +1

2

)n

(6.38)

The quantities E− and E+ constitute the Young’s moduli at the bottom (ξ3 =−1) and top
(ξ3 = +1) surfaces of the shell respectively. Eq. (6.37) constitutes a power-law variation of E
through the shell thickness (where the non-negative constant n is the power-law parameter).
Note that E− and E+ are recovered throughout the thickness in the limits where n→∞
and n→ 0 respectively. As in the homogeneous case, functionally graded shells may also be
described using Eq. (6.36) if the Lamé parameters are taken as functions of ξ3.

Laminated composite shells

In this work we are also concerned with the numerical simulation of laminated composite
shell structures. A composite laminae is a thin sheet (plate or shell like) of material, typically
composed of two distinct constituents, which together possess desirable mechanical properties
that cannot be exhibited by the individual materials acting in bulk alone. A laminated
composite shell is a collection of stacked laminae (where the stacking sequence is typically
prescribed in a manner which maximizes the desired stiffness of the composite). In our
analysis, we treat each laminae as an orthotropic layer of material. We further assume that
for a given structure, perfect bonding exists between each layer and that the continuum
hypothesis holds.

Figure 6.3. The mid-surface Ω̄e of a typical high-order
spectral/hp shell finite element (case shown is for a p-level of
8). The unit normals n̂k and tangents t̂k are also shown at
the element nodes.

To simplify the discussion, we initially restrict our attention to a shell composed of a single
orthotopic layer (i.e., one laminae). Next, we define at each node in Ω̄hp a unit vector t̂ that
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is tangent to the finite element approximation of the mid-plane. The discrete tangents are
utilized to define a continuous tangent vector field in Ω̄hp. Within each element, the tangent
field is represented using the following standard interpolation formula

t̂ =
n∑

k=1

ψk(ξ
1, ξ2)̂tk (6.39)

The tangent vector t̂ is prescribed in a manner that allows us to easily construct a local
orthogonal Cartesian basis {ê1, ê2, ê3} associated with the principle directions of the or-
thotropic laminae. In Figure 6.3 we show the geometry, nodes, unit normals n̂k and unit
tangents t̂k for a typical high-order spectral/hp shell finite element. Note that the direction
of t̂ need not coincide with the direction of either a1 or a2.

We next express the elasticity tensor � for the shell with respect to the local basis
{ê1, ê2, ê3} (which we will soon define) as

�= C̄ijklêiêj êkêl (6.40)

Assuming an orthotropic material model allows us to express the coefficients C̄ijkl in matrix
form as

[C̄ijkl] =


C̄1111 C̄1122 C̄1133 0 0 0
C̄1122 C̄2222 C̄2233 0 0 0
C̄1133 C̄2233 C̄3333 0 0 0

0 0 0 C̄2323 0 0
0 0 0 0 C̄1313 0
0 0 0 0 0 C̄1212

 (6.41)

The components of the coefficient matrix [C̄ijkl] may be determined in terms of the Engi-
neering parameters: E1, E2, E3, ν12, ν13, ν23, G12, G13 and G23 as

[C̄ijkl] =



1
E1

−ν12
E1

−ν13
E1

0 0 0

−ν12
E1

1
E2

−ν23
E2

0 0 0

−ν13
E1

−ν23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12



−1

(6.42)

Note that 9 independent material parameters are required to define the orthotropic form of
the elasticity tensor �.

We next address construction of the local basis {ê1, ê2, ê3} for a typical shell element.
Without loss of generality we take ê3 = n̂. Next we assume that ê1 may be obtained locally
in terms of a proper finite rotation of the tangent t̂ about the unit normal n̂, where the angle
of rotation is θ. In this work we always define t̂ such that it is sufficient to take θ as constant
in Ω̄e and throughout Ω̄hp. Given the preceding assumptions, we can show from geometry
that the local basis for the principle directions of the material is given as

ê1 = t̂cosθ+ n̂× t̂sinθ (6.43a)
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ê2 =−t̂sinθ+ n̂× t̂cosθ (6.43b)

ê3 = n̂ (6.43c)

It should be clear that when θ= 0, the in-plane principle basis vectors of the material reduce
to: ê1 = t̂ and ê2 = n̂× t̂. It is important to note that the in-plane material basis vectors
êα are constructed independent from the in-plane natural basis vectors aα. As a result,
we may freely employ unstructured skewed and/or curved quadrilateral finite elements in
the numerical discretization of complex shell structures. Key to the success of the present
formulation is an appropriate prescription of the discrete tangent vector t̂ and angle of
rotation θ. In Figure 6.4 we show the unit normal n̂, unit tangent t̂, rotation angle θ and
local material basis vectors êi at a point on the mid-surface of a typical shell element.

In the numerical implementation we require the contravariant components Cijkl of the
elasticity tensor �. These may be obtained by contracting Eq. (6.40) with gigjgkgl which
yields

Cijkl = TimTjnTkpTlqC̄mnpq (6.44)

where the components of Tij are defined as

Tij = gi · êj = J?
kiĒjk (6.45)

and Ējk = êj · Êk. We see that evaluation of Cijkl requires 5 matrix multiplications. In the
actual numerical implementation, however, we have generated the C++ code for evaluating
the 21 independent coefficients in Cijkl using the symbolic algebra software Maple. The
expressions are quite involved and are hence not provided in the text of this dissertation.

Figure 6.4. The unit normal n̂, unit tangent t̂, rotation
angle θ and local basis vectors {ê1, ê2, ê3} at a point on the
mid-surface Ω̄e of a typical shell finite element.
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The above discussion has been limited to the analysis of composite shells composed of
a single orthotropic layer. For multi-layered composites, we define a unit tangent vector t̂
along with a set of orientation angles θ = (θ1, . . . , θNL) associated with each ply (where NL
is the total number of layers). We number each layer in the laminated composite in order
from the bottom ply to the top laminae. Within a given layer (say layer q) we obtain the
local material basis vectors {êq

1, ê
q
2, ê

q
3} using θq in place of θ in Eq. (6.43). Once the local

basis vectors are known, we may determine the components Cijkl throughout the qth ply
using Eq. (6.44).

Weak formulation and discrete numerical implementa-

tion

The finite element model is developed using the standard weak-form Galerkin procedure,
which is equivalent to the principle of virtual displacements. We restrict our formulation
to static or quasi-static analysis, and therefore omit the inertial terms. The principle of
virtual work may be stated as follows: find Φ ∈ V such that for all δΦ ∈ W the following
weak statement holds

G(δΦ,Φ) = δWI(δΦ,Φ)+ δWE(δΦ,Φ)≡ 0 (6.46)

The quantities δWI and δWE are the internal and external virtual work, respectively. These
quantities may be defined with respect to the undeformed configuration as

δWI =

∫
B0

δE : SdB0 (6.47a)

δWE =−
∫
B0

δu ·ρ0b0dB0−
∫

Γσ

δu · t0ds (6.47b)

where ρ0 is the density, b0 is the body force and t0 is the traction vector (which are all
expressed with respect to the reference configuration). The function space of admissible
configurations V and linear vector space of admissible variations W are defined for the
continuous problem as

V =
{

Φ =(u,ϕ,Ψ) : Φ ∈H1(Ω)×H1(Ω)×H1(Ω), Φ = Φp on ΓD
}

(6.48a)

W =
{
δΦ =(δu, δϕ, δΨ) :δΦ ∈H1(Ω)×H1(Ω)×H1(Ω), δΦ = 0 on ΓD

}
(6.48b)

where ΓD is the part of the boundary on which Φ is specified.

In the numerical implementation, we restrict Φ and δΦ to their appropriate high-order
spectral/hp finite element sub-spaces: Φhp ∈ Vhp and δΦhp ∈Whp. This results in the follow-
ing discrete variational problem: find Φhp ∈ Vhp such that

G(δΦhp,Φhp) = δWI(δΦhp,Φhp)+ δWE(δΦhp,Φhp)≡ 0 ∀ δΦhp ∈Whp (6.49)
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We refer the reader to Chapter 2 for details on the high-order spectral/hp basis functions.
Evaluation of the internal virtual work statement for the eth element of the discrete problem
yields

δWe
I =

∫
Be

0

(δε(0) + ξ3δε(1)) : � : (ε(0) + ξ3ε(1))dBe
0

=

∫
Ω̂e

∫ +1

−1

(
δε

(0)
ij + ξ3δε

(1)
ij

)
Cijkl

(
ε
(0)
kl + ξ3ε

(1)
kl

)
Jdξ3dΩ̂e

=

∫
Ω̂e

[
Aijklδε

(0)
ij ε

(0)
kl +Bijkl

(
δε

(0)
ij ε

(1)
kl + δε

(1)
ij ε

(0)
kl

)
+Dijklδε

(1)
ij ε

(1)
kl

]
dΩ̂e

(6.50)

where
∫
Ω̂e ( ·)dΩ̂e =

∫ +1
−1

∫ +1
−1 ( ·)dξ1dξ2. The quantities Aijkl, Bijkl and Dijkl are the con-

travariant components of the effective extensional, extensional-bending coupling and bending
fourth-order stiffnesses respectively. The components may be determined as

{Aijkl,Bijkl,Dijkl}=

∫ +1

−1
{1, ξ3,(ξ3)2}CijklJdξ3 (6.51)

It is crucial to note that the stiffness components have been systematically defined such that
they include the Jacobian determinant J . In the computer implementation, we perform the
above integration numerically using the Gauss-Legendre quadrature rule (with 50 quadra-
ture points taken along the thickness direction of each laminae). Therefore, no thin-shell
approximating assumptions are imposed on either J or Cijkl in the finite element model.

The external virtual work consists of body forces and tractions. For each element, we
decompose the boundary of the shell into top Γe

σ,+, bottom Γe
σ,− and lateral Γe

σ,S surfaces.
As a result, the external virtual work for a typical shell element may be expressed as

δWe
E =−

∫
Be

0

δu ·ρ0bdBe
0−

∫
Γe

σ

δu · t0ds

=−
∫
Be

0

δu ·ρ0bdBe
0−

∫
Γe

σ,+

δu · t+
0 ds

+−
∫

Γe
σ,−

δu · t−0 ds
−

−
∫

Γe
σ,S

δu · tS
0 ds

S

(6.52)

The traction boundary conditions along the top and bottom of the shell element may be
expressed as∫

Γe
σ,+

δu · t+
0 ds

+ =

∫
Ω̂e

n∑
k=1

ψk(ξ
1, ξ2)

(
δuk +

h

2
δϕk +

h

2
δΨkn̂

)
· t+

0 J
+dΩ̂e (6.53a)

∫
Γe

σ,−

δu · t−0 ds
− =

∫
Ω̂e

n∑
k=1

ψk(ξ
1, ξ2)

(
δuk− h

2
δϕk +

h

2
δΨkn̂

)
· t−0 J

−dΩ̂e (6.53b)

where the following quantities have been used:

J+ = ||g+
1 ×g+

2 ||, J− = ||g−1 ×g−2 || (6.54a)

g+
α = gα(ξ1, ξ2,+1), g−α = gα(ξ1, ξ2,−1) (6.54b)
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The nonlinear solution procedure

In general, the discrete virtual work statement constitutes a highly nonlinear set of al-
gebraic equations. As in previous chapters, we employ Newton’s method in the solution of
the resulting equations. To facilitate a numerical solution for problems involving very large
deformations, we further imbed the iterative Newton procedure within an incremental load
stepping algorithm. For post-buckling analysis we employ a cylindrical arc-length solution
procedure.

The basic iterative Newton procedure

The basic Newton method proceeds as follows: given a characteristic solution state Φn
hp

(not necessarily satisfying the virtual work statement) we seek to find ∆Φn+1
hp satisfying the

following linearized expression

G(δΦhp,Φ
n
hp)+DG(δΦhp,Φ

n
hp)[∆Φn+1

hp ] = 0 (6.55)

where ∆Φn+1
hp = Φn+1

hp −Φn
hp. To simplify the present discussion, we introduce the following

notation for the discrete quantities: Φ̂n = Φn
hp, δΦ̂ = δΦhp and ∆Φ̂n+1 = ∆Φn+1

hp . Next,
assuming that the applied loads are deformation independent, the discrete tangent operator
DG(δΦhp,Φ

n
hp)[∆Φn+1

hp ] may be evaluated within a typical element as

DGe(δΦ̂, Φ̂n)[∆Φ̂n+1] =DGe
G(δΦ̂, Φ̂n)[∆Φ̂n+1]+DGe

M (δΦ̂, Φ̂n)[∆Φ̂n+1] (6.56)

The geometric tangent operatorDGe
G(δΦ̂, Φ̂n)[∆Φ̂n+1] and material tangent operatorDGe

M (δΦ̂, Φ̂n)[∆Φ̂n+1]
are determined within the element as

DGe
G(δΦ̂, Φ̂n)[∆Φ̂n+1] =

∫
Be

0

(
Dδε

(0)
ij [∆Φ̂n+1]+ ξ3Dδε

(1)
ij [∆Φ̂n+1]

)
SijdBe

0 (6.57a)

=

∫
Ω̂e

(
Dδε

(0)
ij [∆Φ̂n+1]N ij +Dδε

(1)
ij [∆Φ̂n+1]M ij

)
dΩ̂e

DGe
M (δΦ̂, Φ̂n)[∆Φ̂n+1] =

∫
Be

0

(
δε

(0)
ij + ξ3δε

(1)
ij

)
Cijkl

(
Dε

(0)
kl [∆Φ̂n+1] (6.57b)

+ ξ3Dε
(1)
kl [∆Φ̂n+1]

)
dBe

0

=

∫
Ω̂e

[(
Aijklδε

(0)
ij +Bijklδε

(1)
ij

)
Dε

(0)
kl [∆Φ̂n+1]

+
(
Bijklδε

(0)
ij +Dijklδε

(1)
ij

)
Dε

(1)
kl [∆Φ̂n+1]

]
dΩ̂e

The contravariant components of the internal stress resultants N ij and M ij appearing in the
discrete tangent operator may be evaluated as

N ij =

∫ +1

−1
SijJdξ3 =

(
Aijklε

(0)
kl +Bijklε

(1)
kl

)∣∣
Φhp=Φ̂n (6.58a)

158



M ij =

∫ +1

−1
ξ3SijJdξ3 =

(
Bijklε

(0)
kl +Dijklε

(1)
kl

)∣∣
Φhp=Φ̂n (6.58b)

Upon substitution of the discrete finite element solution variables and trial functions into
the linearized virtual work statement, we arrive at a system of highly complex equations for
the eth element in the finite element model of the form

[Ke](n){δ∆e}(n+1) = {F e}(n) (6.59)

where [Ke](n) is the element tangent coefficient matrix, {F e}(n) is the element force vector
and {δ∆e}(n+1) = {∆e}(n+1)−{∆e}(n) is the incremental solution. Due to the incredible
complexity of the above system of equations (there are 22,050 unique terms in the discrete
tangent operator DGe(δΦ̂, Φ̂n)[∆Φ̂n+1]), the symbolic algebra software Maple has been uti-
lized in the construction of [Ke](n) and {F e}(n). As discussed in Chapter 2, we partition Eq.
(6.59) into the following equivalent form[K11](n) · · · [K17](n)

...
. . .

...

[K71](n) · · · [K77](n)



{δ∆(1)}(n+1)

...

{δ∆(7)}(n+1)

 =


{F (1)}(n)

...

{F (7)}(n)

 (6.60)

The components of each element sub-coefficient matrix and force vector may be expressed
as

K
αβ(n)
ij =

∫
Ω̂e

2∑
l=0

2∑
m=0

Cαβ
lm (X(ξ1, ξ2), n̂(ξ1, ξ2),Φn

hp(ξ
1, ξ2))S lm

ij (ξ1, ξ2)dΩ̂e (6.61a)

F
α(n)
i =

∫
Ω̂e

2∑
l=0

Fα
l (X(ξ1, ξ2), n̂(ξ1, ξ2),Φn

hp(ξ
1, ξ2))T l

i (ξ1, ξ2)dΩ̂e (6.61b)

where i, j = 1, . . . ,(p+1)2 and α,β = 1, . . . ,7. The functions S lm
ij and T l

i are of the form

S00
ij = ψiψj , S0m

ij = ψi
∂ψj

∂ξm
, S l0

ij =
∂ψi

∂ξl
ψj , S lm

ij =
∂ψi

∂ξl

∂ψj

∂ξm
(6.62a)

T 0
i = ψi, T 1

i =
∂ψi

∂ξ1
, T 2

i =
∂ψi

∂ξ2
(6.62b)

where l and m each range from 1 to 2. The coefficients Cαβ
lm and Fα

l (which are independent
of i and j) are quite involved; in the numerical implementation we have obtained these
quantities symbolically using Maple and have then translated the resulting expressions into
C++ code. At this point it is worth noting that interpolating Ψ and n̂ separately in the
finite element approximation of ψ (refer to Eq. (6.22)) is crucial in ensuring that Cαβ

lm and

Fα
l are indeed independent of the i and j indices in K

αβ(n)
ij and F

α(n)
i .

The components of the element coefficient matrix and force vector are obtained numer-
ically using the Gauss-Legendre quadrature rule, where p+1 quadrature points are taken
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in each coordinate direction of Ω̂e. At a given integration point (ξ1I , ξ
2
J) ∈ Ω̂e we evaluate

numerically, based on Eq. (6.51), the components of Aijkl, Bijkl and Dijkl. Once the effective

stiffnesses are known we determine Cαβ
lm (ξ1I , ξ

2
J) and Fα

l (ξ1I , ξ
2
J) and then apply the summa-

tion procedure of the Gauss-Legendre quadrature rule to the components of K
αβ(n)
ij and

F
α(n)
i . Repeating this process at each quadrature point in Ω̂e ensures an efficient numerical

implementation.

Upon application of the global finite element assembly operator A, discussed in detail in
Chapter 2, we arrive at the following global system of linearized algebraic equations

[K](n){δ∆}(n+1) = {F}(n) (6.63)

which may be constructed and solved recurrently for {δ∆}(n+1) until a pre-defined nonlinear
convergence criterion has been satisfied. As part of the global assembly process, we employ
element-level static condensation (see Chapter 2). It is worth mentioning that in terms of
system memory requirements (associated with constructing and storing the sparse form of
[K](n)) our present high-order spectral/hp finite element formulation for shells is very much
comparable with standard low-order shell finite element implementations. Furthermore, un-
like many low-order discretizations, the present shell finite element formulation is completely
displacement-based. As demonstrated in Section 6, highly accurate numerical results may be
obtained using the proposed shell element without the need for solution stabilization (e.g.,
reduced integration, assumed strain and/or mixed interpolation).

The incremental/iterative Newton and cylindrical arc-length procedures

We now discuss the incremental/iterative Newton procedure as well as the cylindrical
arc-length method. These nonlinear solution strategies are necessary when solving problems
involving very large deformations and/or rotations. In both solution schemes, we assume that
the external loads are applied in increments. Next, we express the discrete weak formulation,
given by Eq. (6.49), at the current load step t+∆t as

t+∆t{R}= t+∆t{F int}− t+∆tλ{F ext} ≡ 0 (6.64)

where t+∆t{F int} is a column vector obtained from the internal virtual work and {F ext}
is a constant vector (independent of the load step) constructed from the externally applied
virtual work. The quantity t+∆tλ is the load factor associated with the current load step.
Linearizing the above expression using Newton’s method yields

t+∆t[K](n){δ∆}(n+1) =−t+∆t{R}(n) + δλ(n+1){F ext} (6.65)

where {δ∆}(n+1) and δλ(n+1) are defined as

{δ∆}(n+1) = t+∆t{∆}(n+1)− t+∆t{∆}(n) (6.66a)

δλ(n+1) = t+∆tλ(n+1)− t+∆tλ(n) (6.66b)
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In the incremental/iterative Newton solution procedure, t+∆tλ is prescribed by the user,
and hence δλ(n+1) = 0. In this case we solve for a sequence of shell configurations {k∆tΦhp}N

k=1
associated with the prescribed load parameters {k∆tλ}N

k=1. In solving for configuration
t+∆tΦhp, the coefficient matrix t+∆t[K](0) and residual t+∆t{R}(0) are constructed using the
converged solution tΦhp from load step t.

For the vast majority of nonlinear problems, the incremental/iterative Newton procedure
is adequate. However, in the numerical simulation of the post-buckling of shell structures,
such a naive strategy may fail to trace the equilibrium path through the limit points. For
these problems we employ an arc-length procedure, wherein a constraint equation is proposed
to control the load factor associated with a given load step. For general details on the
historical development of the arc-length method we refer to the work of Riks [139, 140] and
Crisfield [141] (detailed explanations of the method may also be found in the texts of Bathe
[28] and Reddy [53]).

In the arc-length solution procedure, we introduce the following additive decomposition
of the incremental solution

{δ∆}(n+1) = {δ∆̄}(n+1) + δλ(n+1){δ∆̃}(n+1) (6.67)

Using the above expression along with Eq. (6.65) allows us to obtain the following two sets
of linearized equations for {δ∆̄}(n+1) and {δ∆̃}(n+1)

t+∆t[K](n){δ∆̄}(n+1) =−t+∆t{R}n (6.68a)

t+∆t[K](n){δ∆̃}(n+1) = {F ext} (6.68b)

Once the above equations have been solved (and assuming of course that δλ(n+1) is known),
we may obtain {δ∆}(n+1) using Eq. (6.67). Next we define the solution increments t+∆t{∆̂}(n+1)

and t+∆tλ̂(n+1), between configurations t+∆tΦ
(n+1)
hp and tΦhp, as

t+∆t{∆̂}(n+1) = t+∆t{∆}(n+1)− t{∆} (6.69a)

= t+∆t{∆̂}(n) +{δ∆̄}(n+1) + δλ(n+1){δ∆̃}(n+1)

t+∆tλ̂(n+1) = t+∆tλ(n+1)− tλ (6.69b)

= t+∆tλ̂(n) + δλ(n+1)

With the above formulas in mind, we are able to define the standard spherical arc-length
constraint equation for δλ(n+1) as

t+∆tK(n+1) = ||t+∆t{∆̂}(n+1)||2 +β(t+∆tλ̂(n+1))2||{F ext}||2− (t+∆t∆L)2

= a1(δλ
(n+1))2 +a2δλ

(n+1) +a3 = 0
(6.70)

where t+∆t∆L is the so-called arc-length, β is a scaling parameter and || · || denotes the
Euclidean norm. The constraint t+∆tK(n+1) is a quadratic equation in δλ(n+1) with coeffi-
cients: a1, a2 and a3 given as

a1 = ||{δ∆̃}(n+1)||2 +β||{F ext}||2 (6.71a)
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a2 = 2
[(

t+∆t{∆̂}(n) +{δ∆̄}(n+1)
)T{δ∆̃}(n+1) +βt+∆tλ̂(n)||{F ext}||2

]
(6.71b)

a3 = ||t+∆t{∆̂}(n) +{δ∆̄}(n+1)||2 +β(t+∆tλ̂(n))2||{F ext}||2− (t+∆t∆L)2 (6.71c)

The two possible solutions for the constraint equation may be expressed as

δλ
(n+1)
1 =

−a2 +
√
a2

2−4a1a3

2a1
, δλ

(n+1)
2 =

−a2−
√
a2

2−4a1a3

2a1
(6.72)

We select δλ
(n+1)
i such that the inner product of t+∆t{∆̂}(n+1) with t+∆t{∆̂}(n) is positive.

This ensures that we do not march backwards along the previously computed solution path.

In the event that both δλ
(n+1)
1 and δλ

(n+1)
2 yield positive inner products of t+∆t{∆̂}(n+1)

with t+∆t{∆̂}(n), we select {δ∆}(n+1) such that t+∆t{∆̂}(n+1) is closest to t+∆t{∆̂}(n) in the
Euclidean metric. For the first iteration of a given load step, we select t+∆t{∆̂}(1) such that
the inner product of t+∆t{∆̂}(1) with t{∆̂} is positive [142] (where t{∆̂} is the converged
incremental solution from load step t). In the numerical implementation we take β = 0,
which results in the well-known cylindrical arc-length procedure (we refer to Crisfield [141]
for a discussion on the importance of β).

To initialize the arc-length solution method (at the first load step: ∆t and initial itera-
tion: n= 0) we take ∆tλ(0) = 0, prescribe an appropriate value for δλ(1) (typically we define
{F ext} such that it is sufficient to take δλ(1) = 1) and then solve Eq. (6.68b) for {δ∆̃}(1).
We then take {δ∆}(1) = δλ(1){δ∆̃}(1) and define the arc-length ∆t∆L for the subsequent
nonlinear iterations as

∆t∆L= δλ(1)||δ∆̃(1)|| (6.73)

To improve the efficiency of the arc-length method, we adjust the arc-length t+∆t∆L
depending on how many iterations were required to achieve nonlinear solution convergence
at the immediate previous load step t. We adopt the following formula from the literature
[142]

t+∆t∆L= t∆L
√

t+∆tI/tI (6.74)

where tI is the actual number of iterations required for convergence at the immediate previous
load step and t+∆tI is the desired number of iterations required to satisfy the convergence
criterion at the current load step. We typically take 4≤ t+∆tI ≤ 6, which naturally reduces
the arc-length in the vicinity of limit points and increases the arc-length whenever nonlinear
convergence is quickly achieved.
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Numerical examples: verification benchmarks

In this section we present numerical results for various standard shell benchmark prob-
lems. The problems include various plates and cylinders, a hemisphere with an 18◦ hole and
a pinched hyperboloidal shell. The problems have been selected to showcase the capabilities
of the proposed shell finite element formulation in solving some of the more challenging finite
deformation problems for elastic shells found in the literature. We are particularly interested
in comparing solutions obtained using the present shell finite element formulation with the
numerical results reported by Arciniega and Reddy [124], wherein a tensor-based shell finite
element model was adopted. In this previous research, a given shell geometry was prescribed
exactly at the quadrature points while high-order Lagrange type basis functions (with equal
spacing of the element nodes) were utilized for the numerical solution.

We construct the finite element approximation of the undeformed mid-surface geometry
for each example problem by mapping the nodal positions of a conforming finite element
discretization of ω̄ ⊂ R2 (a closed and bounded region) onto the nodal locations associated
with Ω̄hp ⊂ R3. The coordinates of R2 are denoted as (ω1,ω2) and unless otherwise stated
we take ω̄ = [0,1]× [0,1]. The discrete mapping used to characterize the nodal coordinates
of Ω̄hp is also employed to prescribe the nodal values for n̂ and t̂. A convergence criterion of
10−6 is adopted in all numerical examples.

A cantilevered plate strip under an end load

As a first example problem, we consider the mechanical response of a cantilevered plate
strip subjected to a distributed end shear load q as shown in Figure 6.5, where L= 10, b= 1
and h = 0.1. We consider an isotropic plate and also a multi-layered composite laminate
with material properties given as

Isotropic : E = 1.2×106, ν = 0.0 (6.75a)

Orthotropic :


E1 = 1.0×106, E2 = E3 = 0.3×106

G23 = 0.12×106, G13 =G12 = 0.15×106

ν23 = 0.25, ν13 = ν12 = 0.25
(6.75b)

The isotropic problem has been considered by many authors (see for example Refs. [143,
144, 145, 146, 147, 148, 149]), while a composite version of the problem has been proposed
recently by Arciniega [150].

We employ a regular finite element mesh consisting of 4 elements, with the p-level taken as
4. The unit normal and unit tangent vectors are prescribed as: n̂ = Ê3 and t̂ = Ê1. In Figure
6.6 we show the computed axial and vertical deflections of the plate tip for the isotropic case.
The calculated deflections are in excellent agreement with the numerical results reported by
Sze et al. [149]. In Figure 6.7 we trace the transverse tip deflections vs. the applied load q for
four different lamination schemes. We see that the stacking sequence (90◦/0◦/90◦) yields the
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Figure 6.5. A cantilevered plate strip subjected at its end
to a vertically applied shear force.

most flexible response while the (0◦/90◦/0◦) laminate exhibits the greatest stiffness. As ex-
pected, the non-symmetric

Figure 6.6. Tip deflections vs. shear load q for an isotropic
cantilevered plate strip under end loading.
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Figure 6.7. Vertical tip deflections u3 vs. shear load q
for laminated composite cantilevered plate strips under end
loading.
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stacking sequence (-45◦/45◦/-45◦/45◦) also leads to lateral deflection of the plate in the
direction of the X2 coordinate. The composite plate results compare nicely with the results
reported by Arciniega [150]. For completeness, we show in Figure 6.8 the undeformed and
various deformed mid-surface configurations of the isotropic plate strip.

Figure 6.8. Undeformed and various deformed mid-surface
configurations of an isotropic cantilevered plate strip sub-
jected at its end to a vertical shear force (q = 0.4,1.2,2,4,10
and 20).

Post-buckling of a plate strip

In this next example we wish to determine the post-buckling behavior of an isotropic
plate strip subjected to an end compressive load q as shown in Figure 6.9. The material
properties for the problem are those employed by Massin and Al Mikdad [151], given as

E = 2.0×1011, ν = 0.3 (6.76)

In addition, the geometric parameters are prescribed as L = 0.5, b = 0.075 and h = 0.0045.
The analytical solution, first obtained by Leonhard Euler, may be found in the well-known
text on the linearized theory of elasticity by Timoshenko [152].

To instigate post-buckling behavior of the plate beyond the limit point, we introduce a
perturbation technique, wherein the load is prescribed slightly out-of-plane at an angle of
1/1000 radians (see Massin and Al Mikdad [151] for a similar approach). In Figure 6.10 we
trace the axial and transverse deflections of the plate tip vs. the externally applied load P ,
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Figure 6.9. A cantilevered plate strip subjected at its end
to a compressive axial force.

where P is the net resultant force associated with the distributed load q. We also show in
this figure the Euler-Bernoulli beam theory based critical buckling load Pcr = EI(π/2L)2 =
1124.21, where I = bh3/12 is the second moment of area about the X2 axis. We see that
post-buckling occurs in the numerical simulation in the immediate vicinity of the critical
load Pcr. We find that our computed tip deflections are in excellent agreement with the
numerical results reported by Arciniega and Reddy [124]. In Figure 6.11 we further show the
undeformed and various post-buckled mid-surface configurations of the plate strip. Although
the cylindrical arc-length method may be employed for this problem, the reported results
have been obtained using the incremental/iterative Newton procedure. This is admissible
since the applied load is non-decreasing when traversing the limit point.
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Figure 6.10. Tip deflections vs. compressive load P for
the cantilevered plate strip (a mesh of 4 elements with the
p-level taken as 8 has been employed).

Figure 6.11. Undeformed and various post-buckled de-
formed mid-surface configurations of the axially loaded can-
tilevered plate strip (P = 1,125, 1,250, 2,000, 3,000, 4,000,
5,000, 6,000, 7,000).
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A slit annular plate under an end shear force

We now examine a plate problem whose geometry cannot be exactly characterized in
terms of the isoparametric map given in Eq. (6.1). The problem consists of a slit cantilevered
annular plate as shown in Figure 6.12 that is subjected to a line shear load q at its free end.
We take Ri = 6, Ro = 10 and h= 0.03. We consider an isotropic plate and also a multi-layered
composite laminate, where the material properties are taken as

Isotropic : E = 21.0×106, ν = 0.0 (6.77a)

Orthotropic :


E1 = 20.0×106, E2 = E3 = 6.0×106

G23 = 2.4×106, G13 =G12 = 3.0×106

ν23 = 0.25, ν13 = ν12 = 0.3
(6.77b)

Numerical solutions for the isotropic case may be found in Refs. [126, 153, 154, 155, 156,
148, 149] among others, while a laminated composite version of the problem has been solved
by Arciniega and Reddy [124].

Figure 6.12. A cantilevered slit annular plate subjected at
its end to a vertical shear force.

We employ a finite element mesh consisting of 4 elements with the p-level taken as 8.
The nodal coordinates of the mid-surface Ω̄hp are obtained using the following formula

X = [Ri +(Ro−Ri)ω
1][cos(2πω2)Ê1 +sin(2πω2)Ê2] (6.78)

The unit normal vector is given as n̂ = Ê3 and the unit tangent vector (used for the laminated
composite problem) is defined at the nodes as

t̂ = cos(2πω2)Ê1 +sin(2πω2)Ê2 (6.79)
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Each numerical simulation is conducted using the incremental/iterative Newton procedure
with 80 load steps.

The transverse tip deflections vs. the net applied force P = (Ro−Ri)q at points A and
B are shown for the isotropic case in Figure 6.13. The computed deflections agree very well
with the tabulated displacement values reported by Sze et al. [149]. In Figure 6.14 we trace
the tip deflections at point B vs. the applied load P for four distinct lamination schemes. Our
computed results are found to be in excellent agreement with the displacements reported by
Arciniega and Reddy [124] for each set of stacking sequences. In Figure 6.15 we show the
undeformed and various deformed mid-surface configurations of the isotropic plate and the
(-45◦/45◦/-45◦/45◦) laminated composite structure. Clearly, both structures undergo very
large deformations which are qualitatively quite similar.

Figure 6.13. Tip deflections at points A and B vs. shear
force P for the isotropic slit annular plate.
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Figure 6.14. Vertical tip deflections u3 at point B vs. shear
force P for various laminated composite slit annular plates.
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Figure 6.15. Undeformed and various deformed mid-
surface configurations of two annular plates: (a) an isotropic
plate, where P = 0.16, 0.32, 0.64, 1.28, 1.92, 2.56 and 3.20 and
(b) a laminated composite plate with (-45◦/45◦/-45◦/45◦)
stacking sequence, where P = 0.09, 0.18, 0.36, 0.72, 1.08,
1.44 and 1.80.

A cylindrical panel subjected to a point load

We next examine the mechanical response of various thin cylindrical rooflike panels, each
subjected to a point force P as shown in Figure 6.16. Variants of this problem are found
throughout the literature (see for example Refs. [143, 146, 153, 154, 147, 124] among others)
and are especially popular on account of the snap-through behavior. In the present example
we take α= 0.1 rad., a= 508 mm and R= 2,540 mm (where R is the radius of the undeformed
mid-surface). We perform a parametric study by considering the following three cases for the
shell thickness: h = 25.4,12.7 and 6.35 mm. We investigate isotropic, laminated composite
and functionally graded shell configurations with material properties given as

Isotropic : E = 3,102.75 N/mm, ν = 0.3 (6.80a)

Orthotropic :


E1 = 3,300 N/mm, E2 = E3 = 1,100 N/mm
G23 = 440 N/mm, G13 =G12 = 660 N/mm
ν23 = 0.25, ν13 = ν12 = 0.25

(6.80b)

Functionally graded:

{
E− = 70 GPa, E+ = 151 GPa
ν− = 0.3, ν+ = 0.3

(6.80c)

For the laminated composite shell problems, we consider the following lamination schemes:
(90◦/0◦/90◦), (0◦/90◦/0◦), (-45◦/45◦/-45◦/45◦) and (30◦/-60◦/-60◦/30◦).
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Figure 6.16. A shallow cylindrical panel subjected at its
center to a vertical point load.

The finite element nodal values for the mid-surface coordinates and the unit normal
vector are obtained using the following formulas

X =
a

2
ω1Ê1 +R[sin(αω2)Ê2 +cos(αω2)Ê3] (6.81a)

n̂ = sin(αω2)Ê2 +cos(αω2)Ê3 (6.81b)

where the full physical domain may be parametrized by taking ω̄= [−1,1]2. The unit tangent
vector is prescribed as t̂ = Ê1. With the exception of the angled-ply laminates (-45◦/45◦/-
45◦/45◦) and (30◦/-60◦/-60◦/30◦), all numerical simulations are conducted using one quarter
of the physical domain by taking ω̄ = [0,1]2 and invoking appropriate symmetry boundary
conditions. We employ a uniform 2×2 mesh for the quarter model and a 4×4 discretization
for the full domain using a p-level of 4. Along the hinged edges, we take the nodal translations
and X1 component of the difference vector as zero.
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Figure 6.17. Vertical deflection of a shallow isotropic cylin-
drical panel under point loading (case shown is for h = 25.4
mm).

In Figure 6.17 we show the deflection of the isotropic shell at point A vs. the applied load
P for the case where h = 25.4 mm. The results, which agree strongly with those reported
by Arciniega [150], have been obtained using the incremental/iterative Newton procedure.
In Figures 6.18 through 6.21 we trace the center deflections vs. P for the isotropic and
laminated composite panels for the cases where h = 12.7 and 6.35 mm. Each numerical
simulation has been conducted using the cylindrical arc-length method. The results are in
excellent agreement with the tabulated values given by Sze et al. [149]; and for the angled-ply
laminates, the solutions presented by Arciniega and Reddy [124]. It is evident that decreasing
the shell thickness greatly increases the complexity of the equilibrium path associated with
the arc-length based numerical solution. For example, we observe from Figures 6.20 and
6.21 that laminates (0◦/90◦/0◦), (-45◦/45◦/-45◦/45◦) and (30◦/-60◦/-60◦/30◦) exhibit highly
involved equilibrium paths when h= 6.35 mm.

Numerical results for metal-ceramic functionally graded panels, for the cases where h =
12.7 and 6.35 mm, are shown in Figures 6.22 and 6.23. The metal (aluminum) is taken as the
bottom material and the ceramic (zirconia) as the top constituent, with the elastic properties
given in Eq. (6.80c). As in the isotropic and laminated composite cases, the complexity of
the equilibrium paths of the functionally graded panels increases as the shell thickness h is
reduced. We adopt the cylindrical arc-length procedure and vary the power-law parameter
n to obtain the numerical solutions. The results shown in Figures 6.22 and 6.23 are visually
in unison with the deflection curves provided by Arciniega and Reddy [124].
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An artifact of the snap-through phenomena is the mathematical existence of multiple so-
lution configurations for certain loading scenarios. For example, the 6.35 mm thick laminate
panel with stacking sequence (0◦/90◦/0◦) possesses 5 equilibrium configurations for the case
where P = 0 kN. These configurations (including the undeformed configuration) are shown
in Figure 6.24, from left to right and top to bottom, in the order in which they occur in
traveling along the equilibrium path (shown in Figure 6.20). Further mathematical analysis
(which is beyond the scope of this dissertation) is required to assess the stability of each
solution configuration.

Figure 6.18. Vertical deflection of an isotropic and lami-
nated composite shallow cylindrical panels under point load-
ing (cases shown are for h= 12.7 mm).
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Figure 6.19. Vertical deflection of an isotropic and a lami-
nated composite shallow cylindrical panel under point loading
(cases shown are for h= 6.35 mm).

Figure 6.20. Vertical deflection of a laminated composite
shallow cylindrical panel under point loading (case shown is
for h= 6.35 mm).
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Figure 6.21. Vertical deflection of laminated composite
shallow cylindrical panels under point loading (cases shown
are for h= 6.35 mm).

Figure 6.22. Vertical deflection of functionally graded
metal-ceramic shallow cylindrical panels under point loading
(cases shown are for h= 12.7 mm).
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Figure 6.23. Vertical deflection of functionally graded
metal-ceramic shallow cylindrical panels under point loading
(cases shown are for h= 6.35 mm).
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Figure 6.24. Undeformed and various deformed mid-
surface configurations of the (0◦/90◦/0◦) stacking sequence
laminated composite shallow cylindrical panel (cases shown
are for h= 6.35 mm and P = 0 kN). The vertical component
of each mid-surface configuration has been magnified by a
factor of 4.
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Pull-out of an open-ended cylindrical shell

In this example we consider the mechanical deformation of an open-ended cylinder, as
shown in Figure 6.25, subjected to two pull-out point forces P . Unlike the previous example,
in this problem we apply the loads such that the shell undergoes very large displacements
and rotations. As a result, this problem constitutes a severe test of shell finite element
formulations and has been addressed in Refs. [153, 155, 156, 148, 149, 124] among others.
The isotropic material properties are taken as

E = 10.5×106, ν = 0.3125 (6.82)

The geometric parameters are taken as: L= 10.35, h= 0.094 and R= 4.953 (where we have
taken R as the radius of the undeformed mid-surface as opposed to the radius of the inner
surface of the shell).

Figure 6.25. An open-ended cylindrical shell subjected to
two point loads.

Symmetry in the geometry, material properties and loading allow us to construct the
numerical model using only an octant of the actual open-ended cylinder. For the numerical
model we employ a regular 2× 2 mesh (with the p-level taken as 8) of the shell octant
containing points A, B, C and D. The incremental/iterative Newton procedure is adopted
using a total of 80 load steps.

The radial deflections vs. the net applied pulling force P are shown in Figure 6.26 for
points A, B and C. The computed deflections are in excellent agreement with results of
Sze et al. [149] and also Arciniega and Reddy [124]. The mechanical response of the shell
is interesting in that the deformation is initially bending dominated; however, membrane
forces clearly play an increasingly significant role as the load is intensified, resulting in a
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pronounced overall stiffening of the structure. In Figure 6.27 we show the undeformed and
various deformed mid-surface configurations for the open-ended cylindrical shell pull-out
problem. The overall deflections and rotations are clearly quite large, especially for the final
shell configuration (i.e., the case where P = 40,000).

Figure 6.26. Radial deflections at points A, B and C vs.
pull-out force P for the open-ended cylindrical shell.
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Figure 6.27. Undeformed and various deformed mid-
surface configurations of the open-ended cylindrical shell:
(a) undeformed configuration, (b) P = 5,000, (c) P = 10,000,
(d) P = 20,000, (e) P = 30,000 and (f) P = 40,000.
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A pinched half-cylindrical shell

In this next example we consider a half-cylindrical shell subjected to a single point force
P as shown in Figure 6.28. Numerical solutions for this problem may be found in Refs.
[153, 155, 147, 148, 149, 124] among others. We employ the following material properties for
the isotropic and laminated composite versions of the problem

Isotropic : E = 2.0685×107, ν = 0.3 (6.83a)

Orthotropic :


E1 = 2,068.5, E2 = E3 = 517.125
G23 = 198.8942, G13 =G12 = 795.6
ν23 = 0.3, ν13 = ν12 = 0.3

(6.83b)

The geometric parameters are taken as L = 304.8, R = 101.6 (where R is the radius of the
mid-surface) and h= 3.0.

Figure 6.28. A half-cylindrical shell subjected to a single
point load.

As in the previous example, we exploit symmetry of the problem by performing the finite
element simulations using half of the physical domain of the shell (see the
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Figure 6.29. Vertical deflection at point A of an isotropic
half-cylindrical shell under point loading.

Figure 6.30. Vertical deflection at point A of two lami-
nated composite half-cylindrical shells under point loading.
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line of symmetry shown in Figure 6.28); a regular 4×4 mesh is adopted for each simulation
with the p-level taken as 8. For the support boundary conditions along the bottom longitudi-
nal edges, we take the vertical deflection and X3 component of the difference vector as zero.
For the laminated composite simulations, with stacking sequences given as: (90◦/0◦/90◦) and
(0◦/90◦/0◦), we prescribe the unit tangent vector as t̂ = Ê1.

Figure 6.31. Undeformed and various deformed mid-
surface configurations of the isotropic pinched half-cylindrical
shell: (a) undeformed configuration, (b) P = 600, (c) P =
1,200 and (d) P = 2,000.

In Figures 6.29 and 6.30 we trace the vertical displacements at point A of the isotropic
and laminated composite cylinders. The cylindrical arc-length procedure has been used in
each numerical simulation to smoothly traverse the limit points. We find that the computed
displacements agree well with the results reported by Arciniega and Reddy [124]. Finally,
in Figure 6.31 we show the undeformed and various deformed mid-surface configurations of
the pinched isotropic half-cylinder.

A pinched hemisphere with an 18◦ hole

We now consider a pinched isotropic hemisphere with an 18◦ circular cutout. This prob-
lem is widely recognized as one of the most severe shell benchmark problems involving
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finite deformations and has been addressed by many researchers (see for example Refs.
[144, 126, 157, 155, 156, 147, 148, 149] among others). The computational domain (i.e., one
quarter of the hemisphere) is shown in Figure 6.32. The external loads for the problem con-
sist of four alternating radial point forces P , prescribed along the equator at 90◦ intervals.
The mid-surface radius and shell thickness are taken as R = 10.0 and h= 0.04 respectively;
furthermore, the material properties are prescribed as

E = 6.825×107, ν = 0.3 (6.84)

Figure 6.32. A pinched hemisphere with an 18◦ hole (the
computational domain shown above is one quarter of the
physical domain of the shell).

For the finite element mesh we employ a regular 8× 8 discretization with the p-level
taken as 4. The finite element nodes on the mid-surface Ω̄hp are obtained using the following
formula

X =R
{

sin[α+(π/2−α)ω1][cos(πω2/2)Ê1 +sin(πω2/2)Ê2]

+cos[α+(π/2−α)ω1]Ê3

} (6.85)

where α= 18◦ = π/10 rad. The incremental/iterative Newton method is used in the solution
procedure with 80 load steps and Pmax is taken as 400. In addition to the symmetry boundary
conditions, we also require the X3 component of the displacement of the node located at
point B to be zero.

Figure 6.33 shows the radial deflections at points B and C vs. the applied pinching force
P . Our reported deflections compare quite well with the numerical results tabulated by
Sze et al. [149]. In Figure 6.34 we show the undeformed and three deformed mid-surface
configurations of the pinched hemisphere.
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Figure 6.33. Radial deflections at points B and C of the
pinched hemisphere.

Figure 6.34. Undeformed and various deformed mid-
surface configurations of the pinched hemispherical shell:
(a) undeformed configuration, (b) P = 150, (c) P = 300 and
(d) P = 400.
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A pinched composite hyperboloidal shell

As a final numerical example we consider the finite deformation of a laminated composite
hyperboloidal shell that is loaded by four alternating radial point forces P . This challenging
benchmark, originally proposed by Başar et al. [108], was designed to test the capabilities
of shell elements in handling geometrically complex shell structures undergoing very large
displacements and rotations. The problem has been considered by Wagner and Gruttmann
[158], Balah and Ghamedy [159] and more recently by Arciniega and Reddy [124]. The
computational domain (i.e., one octant of the actual hyperboloid) is shown in Figure 6.35.
The orthotropic material properties for each lamina are taken as

E1 = 40.0×106, E2 = E3 = 1.0×106

G23 = 0.6×106, G13 =G12 = 0.6×106 (6.86)

ν23 = 0.25, ν13 = ν12 = 0.25

Figure 6.35. A pinched laminated composite hyper-
boloidal shell (the computational domain shown above is one
octant of the physical domain of the shell).

We employ three finite element discretizations of the computational domain (see Figure
6.36) including: a structured 4×4 mesh, an unstructured 4×4 mesh and a structured 5×5
mesh; where in all cases the p-level is taken as 8. The unstructured mesh is utilized to
showcase the ability of the proposed shell element to accurately solve nontrivial laminated
composite shell problems using skewed elements. Each mesh is generated by mapping the
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nodal coordinates of an appropriate conforming discretization of ω̄= [0,1]2 onto the finite el-
ement approximation of the mid-surface Ω̄hp of the composite hyperboloid using the following
formula

X =R0(ω
2)

[
cos(πω1/2)Ê1 +sin(πω1/2)Ê2

]
+Lω2Ê3 (6.87)

where R0(ω
2) = R1

√
1+(Lω2/C)2. The geometric parameters are taken as R1 = 7.5, C =

20/
√

3, L= 20.0 and h= 0.04. The unit normal and tangent vectors are defined at the finite
element nodes using the following expressions

n̂ =
∂X/∂ω1×∂X/∂ω2

||∂X/∂ω1×∂X/∂ω2||
(6.88a)

t̂ =−sin(πω1/2)Ê1 +cos(πω1/2)Ê2 (6.88b)

Figure 6.36. Finite element discretizations of the compos-
ite hyperboloid, where the p-level is 8: (a) a 4×4 structured
discretization, (b) a 4× 4 unstructured discretization and
(c) a 5×5 structured discretization.

In Figures 6.37 and 6.38 we show various displacement components vs. the applied
load P at points A, B, C and D of the hyperboloidal shell for the composite lamination
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Figure 6.37. Deflections at points A, B, C and D of the
pinched (0◦/90◦/0◦) stacking sequence laminated composite
hyperboloidal shell.

Figure 6.38. Deflections at points A, B, C and D of the
pinched (90◦/0◦/90◦) stacking sequence laminated composite
hyperboloidal shell.
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Figure 6.39. Undeformed and various deformed mid-
surface configurations of two pinched laminated compos-
ite hyperboloidal shells: (a) (0◦/90◦/0◦): undeformed con-
figuration, P = 250 and P = 500 (from left to right) and
(b) (90◦/0◦/90◦): undeformed configuration, P = 250 and
P = 500 (from left to right).

schemes: (0◦/90◦/0◦) and (90◦/0◦/90◦). The computed displacements for the stacking se-
quence (0◦/90◦/0◦), obtained using both structured and unstructured meshes, are in excel-
lent agreement with the results of Başar et al. [108] and Arciniega and Reddy [124]. The
displacements calculated for the laminate (90◦/0◦/90◦) (obtained using the regular 5×5 dis-
cretization shown in Figure 6.36 (c)), however, are greater than the values reported by Başar
et al. [108] but are also somewhat less than the results obtained by Arciniega and Reddy
[124]. In Figure 6.39 we show various mid-surface configurations of the hyperboloid for each
composite laminate. All numerical results have been obtained via the incremental/iterative
Newton procedure using 120 load steps.
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Chapter 7

Conclusions

Summary and concluding remarks

In this dissertation we have presented finite element formulations for fluid and solid me-
chanics problems using high-order spectral/hp finite element technology. Our aim throughout
this work has not been to indiscriminately champion high-order finite element procedures
in the numerical simulation of all phenomena associated with these disciplines. On the con-
trary, our primary objective has been to adopt novel mathematical models and innovative
discretization procedures in the numerical simulation of fluids and solids, wherein the addi-
tional benefits of employing high-order spectral/hp finite element technology are pronounced.
We find that for many such problem sets (especially those whose weak formulations may be
identified as global minimizers), high-order finite element procedures offer the prospect of
highly accurate numerical solutions that are completely devoid of all forms of locking. As
a result ad-hoc tricks (e.g., reduced integration and/or mixed interpolation) required to
stabilize low-order finite element formulations are unnecessary.

An overview of the steps involved in developing and arriving at efficient finite element
models using spectral/hp finite element technology were presented in Chapter 2. The pre-
sentation was quite general and therefore applicable to finite element problems posed in 1,
2 or 3 spatial dimensions. A notable contribution contained in this chapter was a sparse
global finite element assembly operator that admits parallelization on shared-memory com-
puter systems using the OpenMP paradigm. To improve system memory requirements, we
implemented an element-level static condensation technique, wherein the interior degrees of
freedom of each element were implicitly eliminated prior to assembly of the global system of
finite element equations. Robustness and efficiency of the proposed global assembly operator
and static condensation technique were assessed through the numerical simulation of a finite
element problem possessing nearly half a million total degrees of freedom.

Chapter 3 was one of two chapters devoted to finite element models formulated using the
least-squares method. In this chapter we examined the roles of minimization and lineariza-
tion in least-squares finite element models of nonlinear boundary-value problems. As the
least-squares method is independent of: (a) the adopted discretization procedure and (b) the
chosen solution scheme, the underlying least-squares principle demands that minimization
of the least-squares functional be performed prior to linearization (where linearization is
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introduced in the context of an appropriate fixed point iterative solution procedure). With
this in mind, we discussed practical consequences associated with exchanging the order of
application of the minimization and linearization operations in least-squares finite element
models of nonlinear boundary-value problems. In the analysis we relied on an examination of
the abstract mathematical setting of the least-squares method, a simple analysis of Newton’s
procedure as applied to least-squares problems and on qualities observed in numerical exper-
iments. Overall we find that although the least-squares principle suggests that minimization
ought to be performed prior to linearization, such an approach is often impractical and not
necessary.

In Chapter 4 we presented a novel least-squares finite element formulation of the steady-
state and non-stationary incompressible Navier-Stokes equations with enhanced local mass
conservation. The proposed formulation was a modification of the standard L2-norm least-
squares formulation of the Navier-Stokes equations based on the equivalent velocity-pressure-
vorticity first-order system. In the new formulation, we modified the standard least-squares
functional to also include an appropriately penalized sum of the squares of the element-level
integrals of a regularized form of the continuity equation. As a consequence, the result-
ing finite element model directly inherited terms in the bilinear form and linear functional
(which could be adjusted based on the penalty parameter) that tend to improve element-
level mass conservation. A notable quality of the formulation was that improved mass
conservation could be attained without introducing additional variables or compromising
the unconstrained minimization setting for the numerical solution. Numerical simulations
confirmed that the proposed formulation could significantly improve mass conservation for
both steady and non-stationary flows. For transient flows, the formulation was further shown
to enhance velocity-pressure coupling and overall numerical stability (most notably for cases
where the momentum equation residual, appearing in the least-squares functional, was not
weighted by the square of the time step).

Chapters 5 and 6 were devoted to solid mechanics problems. In Chapter 5 we presented
finite element models of viscoelastic beam structures based on the kinematic hypotheses
of the Euler-Bernoulli, Timoshenko and third-order Reddy beam theories. The formula-
tions (valid for beams undergoing moderately large transverse displacements and rotations)
were obtained by replacing the Green-Lagrange strain with the von Kármán strain in both
the constitutive equations and the virtual work statement. The linear viscoelastic consti-
tutive equations, taken in convolution form, were temporally discretized using a two-point
recurrence formula. High polynomial order Hermite basis functions were introduced in the
interpolation of the transverse displacements for the Euler-Bernoulli and third-order Reddy
beam theories. These high-order, globally C1 continuous interpolants, were prescribed using
the standard GLL points (see Chapter 2) as the nodal locations for the master element.
Carefully chosen quasi-static and fully transient benchmark example problems were solved
to showcase the insensitivity of each beam element to both membrane and shear locking.

Finally in Chapter 6 we proposed a high-order spectral/hp continuum shell finite ele-
ment for the numerical simulation of the fully finite deformation mechanical response of
isotropic, laminated composite and functionally graded elastic shell structures. The shell
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element was based on a modified first-order shell theory using a 7-parameter expansion of
the displacement field. The seventh parameter was included to allow for the use of fully
three-dimensional constitutive equations in the numerical implementation. The finite ele-
ment coefficient matrices and force vectors were evaluated numerically using appropriate
high-order Gauss-Legendre quadrature rules at the appropriate quadrature points of the el-
ement mid-surface. The virtual work statement was further integrated numerically through
the shell thickness at each quadrature point of the mid-surface; hence no thin-shell approx-
imations were imposed in the numerical implementation. For laminated composite shells,
we introduced a user prescribed vector field (defined at the nodes) tangent to the shell
mid-surface. This discrete tangent vector allowed for simple construction of the local bases
associated with the principle orthotropic material directions of each lamina. As a result, we
were free to employ skewed and/or arbitrarily curved elements in actual finite element simu-
lations. We demonstrated, through the numerical simulation of carefully chosen benchmark
problems, that the proposed shell element was insensitive to all forms of numerical locking
and severe geometric distortions.

Topics of ongoing and future research

In this dissertation we have considered applications of high-order spectral/hp finite el-
ement technology to problems posed in the fields of fluid mechanics and solid mechanics.
Our discussion has thus far been limited to a study of these topics in isolation from each
another. Of particular interest going forward is the combination of our developed finite ele-
ment technology to problems involving the fully coupled interaction of fluids and solids (i.e.,
fluid-structure interaction). In what follows we briefly describe an example problem that is
solved using a least-squares finite element model of the incompressible Navier-Stokes equa-
tions that can handle moving fluid boundaries (a preliminary step towards implementation
of a general purpose fluid-structure interaction code).

We consider the flow of a viscous incompressible fluid inside a square cavity, where the
cavity under consideration is a bi-unit square centered at the origin. A 0.28 units diameter
solid circular cylinder is positioned at the origin of the cavity at t= 0. Immediately following
t= 0, the cylinder begins to translate with an instantaneous unit velocity in the x direction.
We impose no-slip type boundary conditions along all solid surfaces, including the cylinder
Γcyl and cavity walls Γwalls, where Γ = Γcyl ∪Γwalls. This amounts to specifying v = 0 on
Γwalls and vx = 1 on Γcyl. We prescribe the pressure to be zero at the single node located at
(x,y) = (−1,0). The Reynolds number for the flow is taken as Re = 100 by specifying ρ= 1,
µ= 1/100 and a characteristic unit length. The initial boundary-value problem is posed on
the time interval t= (0,0.7].

The computational domain is discretized into 480 non-uniform finite elements, where we
place 40 element layers along the circumference of the cylinder and 12 in the radial direction.
A depiction of the finite element mesh at t = 0 and t = 0.70 is shown in Figure 7.1. Mesh
refinement is employed near the cylinder to ensure acceptable numerical resolution of all
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Figure 7.1. Finite element discretization of computational
domain Ω̄ for the analysis of transient incompressible flow
inside a square cavity induced by the motion of a circular
cylinder: (a) fluid mesh at t= 0 and (b) fluid mesh at t= 0.70.

variables in the wake region downstream of the cylinder. We solve the problem using a
p-level of 4 in each finite element, which amounts to 31,360 total degrees of freedom in the
numerical model. We employ Newton’s method to linearize the finite element equations and
adopt a time step size of ∆t= 0.005. The α-family of time approximation is utilized in the
temporal discretization (with α taken as 0.5); the first-order backward difference scheme is
employed in the first few iterations.

A word on the adopted fluid mesh motion scheme is in order. The evolution of the deform-
ing fluid mesh is determined at each time step using a standard pseudo-elasticity formulation
(see Belytschko et al. [107]) that is implemented in conjunction with the arbitrary Lagrangian
Eulerian (ALE) formulation. In this approach, we solve a linear elasticity boundary-value
problem with Dirichlet boundary conditions at each time step on the fluid domain. The po-
sition of the cylinder at the current time step is used directly as a boundary condition in the
mesh motion scheme to determine the new locations and velocities of the nodes of the fluid
mesh. A weak-form Galerkin finite element model of the pseudo-elasticity equations is em-
ployed. To prevent excessive distortion of elements in the model we specify the Young’s mod-
ulus for
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Figure 7.2. Transient flow of an incompressible viscous
fluid inside a square cavity induced by a moving cylinder at
t= 0.25,0.50 and 0.70 (from left to right respectively): (a) ve-
locity component vx (b) velocity component vy and (c) non-
dimensional pressure field p.
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the eth finite element as Ee = E0µ(Ωe)−0.5 where µ(Ωe) is the area of the element; the
strictly-positive quantity E0 is arbitrary. In Figure 7.2 we present snapshots of the numerical
results for the velocity components and pressure at t= 0.25, 0.50 and 0.70. We see that at
this Reynolds number the flow field is symmetric about the y-axis. Our numerical results
agree well with the high-order weak-form spectral element solution presented by Bodard et
al. [160]. Based on these preliminary results, the prospect of extending our work to the
numerical simulation of fluid-structure interaction problems using high-order spectral/hp
finite element procedures appears promising.

In addition to the fluid-structure interaction computational technology, the shell element
developed herein may also be extended to the analysis of laminated composite shell struc-
tures experiencing: (a) inelastic response, (b) fracture and (c) damage. These topics are of
particular interest to the structures community.
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[69] J. Dušek, P. Le Gal, and P. Fraunié, “A numerical and theoretical study of the first
Hopf bifurcation in a cylinder wake,” J. Fluid Mech., vol. 264, pp. 59–80, 1994.

[70] B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schonung, “Experimental and theoret-
ical investigation of backward-facing step flow,” J. Fluid Mech., vol. 127, pp. 473–96,
1983.

203



[71] J. M. Deang and M. D. Gunzburger, “Issues related to least-squares finite element
methods for the Stokes equations,” SIAM J. Sci. Comput., vol. 20, no. 3, pp. 878–906,
1998.

[72] P. Bolton and R. W. Thatcher, “On mass conservation in least-squares methods,” J.
Comput. Phys., vol. 203, no. 1, pp. 287–304, 2005.

[73] X. Ye, “A least-squares finite-element method for the Stokes equations with improved
mass balances,” Comput. Math. Appl., vol. 38, no. 3–4, pp. 229–237, 1999.

[74] M. M. J. Proot and M. I. Gerritsma, “Mass- and momentum conservation of the least-
squares spectral element method for the Stokes problem,” J. Sci. Comput., vol. 27,
pp. 389–401, 2006.

[75] J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. McCormick, “An alternative least-
squares formulation of the Navier-Stokes equations with improved mass conservation,”
J. Comput. Phys., vol. 226, no. 1, pp. 994–1006, 2007.

[76] P. B. Bochev and M. D. Gunzburger, “Least-squares finite-element methods for opti-
mization and control problems for the Stokes equations,” Comput. Math. Appl., vol.
48, no. 7–8, pp. 1035–1057, 2004.
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