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Abstract

Density Functional Theory (DFT) based Equation of State (EOS) construction is
a prominent part of Sandia’s capabilities to support engineering sciences. This ca-
pability is based on augmenting experimental data with information gained from
computational investigations, especially in those parts of the phase space where ex-
perimental data is hard, dangerous, or expensive to obtain. A key part of the success
of the Sandia approach is the fundamental science work supporting the computa-
tional capability. Not only does this work enhance the capability to perform highly
accurate calculations but it also provides crucial insight into the limitations of the
computational tools, providing high confidence in the results even where results can-
not be, or have not yet been, validated by experimental data. This report concerns
the key ingredient of projector augmented-wave potentials for use in pseudo-potential
computational codes. While the insights are general for all materials and codes, I
specifically address calculations of highly compressed, high temperature, lithium us-
ing the Vienna Ab-initio Simulation Package.
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Nomenclature

Dirac The Dirac Equation: The relativistic quantum mechanical wave equation de-
scribing electrons in relativistic matter, such as heavy materials like actinides.

SE The Schrodinger Equation: The non-relativistic limit of the Dirac Equation,
sufficiently accurate to describe electrons in lighter materials.

DFT Density Functional Theory: The formally exact reformulation of the wave-
function based Shrodinger and Dirac Equations in terms of density and currents.

KS The Kohn-Sham Equations: A calculational approach derived from the Dirac/SE
using DFT. These are the equations implemented in DFT codes.

Functional A short name for an approximation for the Exchange-Correlation func-
tional which is the only part of DFT that needs to be approximated. The
functional sets the possible accuracy of DFT calculations.

LMTO Linear Muffin Tin Orbital: A calculational method used in the RSPt code.

LAPW Linear Augmented Plane Wave: Another calculational method. It is con-
sidered the implementation method that gives the most accurate DFT results.
Other methods are usually verified against this method.

plane-wave code A code using plane waves as a basis set. This is the compu-
tationally most effective approach because Fourier Transforms can be used.
Calculations can also be systematically improved by increasing the number of
basis functions used, usually specified by the so called ’cut-off’. However, de-
scribing core electrons accurately requires a very large cut-off, leading to expen-
sive calculations. The plane-wave approach thus is mostly used together with
pseudo-potentials (see below).

all-electron code A code treating all electrons explicitly. LMTO and LAPW codes
are all-electron.

pseudo-potential code The chemically inert core electrons are treated in a col-
lective way via pseudo potentials, which increases the computational efficiency
considerably. A number of different approaches exist; all are verified by com-
paring to all-electron, usually LAPW results.

PAW Projected Augmented Wave: The pseudo potential technique currently con-
sidered the most accurate.



RSPt Relativistic Spin-Polarised test: The name of an all-electron, full potential,
LMTO code developed by Dr. John M. Wills at Los Alamos National Labora-
tory.

VASP Vienna Ab-initio Simulation Package: A plane wave, pseudo potential (PAW),
DFT code extensively used at Sandia.

core electron An electron close to the nucleus. In an LMTO or LAPW treatment
these electrons are considered inert and their properties only depend on the
closest nuclei. In a pseudo-potential code the effect of the core electrons on the
valence electrons is included via pseudo potentials.

semi-core electron An electron that is intermediate between a core and a valence
electron. It has the same angular momentum quantum number as some of
the valence electrons but has a lower principal quantum number (it is in a
lower shell). For the heavier nuclei (or for lighter nuclei at high pressure) these
electrons need to be treated as valence electrons.

valence electron The outermost electrons are valence electrons and their properties
are dependent on many nuclei. These electrons are forming bonds that hold a
solid or molecule together.
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Chapter 1

Introduction and Motivation

Density functional theory (DFT) is the preferred computational method for explor-
ing materials properties, and Sandia scientists are at the forefront of DFT-based
equation of state (EOS) construction, where information from both experiments and
computational investigations are used (See Figure 1.1).

DFT%? is a formally exact reformulation of the Schrédinger Equation (SE) for the
ground state of an electron system. Since the DFT equations are far easier to solve
than the many-body SE, DFT has become the preferred computational method for
exploring properties of materials. One example of a Sandia effort in this area is the
recent use of DFT results combined with Z experiments to construct a new Quartz
standard leading to resolution of an important discrepancy between flyer plate and
laser driven shock data for deuterium.® Another example is similar work for Xenon,*
a material of importance for DOE. Here DFT results helped both in showing that
the available Equation of State (EOS) tables were inaccurate at high pressures and
in the construction of a new, more accurate, EOS.

For elemental bulk materials with simple structures, such as face-centered cubic (fcc)
or body-centered cubic (bce) atomic arrangements, a computational cell with only
one atom can be used. For such simple materials, DF'T codes that treats all electrons
very precisely can be used, at least at low temperatures. However, for more com-
plicated structures and for calculations at higher temperatures, larger computational
cells with more atoms are needed for a good description of the material. For these
applications pseudo-potential codes, such as the Vienna ab-initio simulation program
(VASP),'%!! have become the workhorse computational tool. In such a code the inert
core electrons are replaced by a pseudo-potential (pp) and only the valence electrons
are treated explicitly, allowing for more efficient use of computer resources. High
quality pseudo-potentials are available for VASP and other codes, the quality usually
being determined by comparing zero temperature lattice constants and bulk moduli
with results from equivalent calculations with an all-electron code. It is important to
note that the quality of a pseudo-potential can only be determined by comparison to
all-electron calculations, never by comparison to experiment.

The key issue with pseudo-potentials are their transferability. A pp is usually con-
structed from the all-electron results of a single, free, spherically symmetric atom.
For this atom the pp is generally producing the same results as an all-electron cal-
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Figure 1.1. The foundation of Science Based Engineering
is to build bridges from the fundamental Laws of Nature up
to the Engineering codes, bridging several length and time
scales. In this figure two different paths are depicted. The
upper one is quite complicated and illustrates the general
problem of bridging several different scales. The lower path is
already in use at Sandia. For Equation of State construction,
data provided by Density Functional Theory (DFT) based
calculations are used in addition to experimental data. The
DFT calculations are used in two ways, either directly or as
a provider of forces in a Molecular Dynamics scheme.
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culation. However, the success of transferring a pp to a different environment, such
as to an atom in a bulk lattice, is dependent on a number of factors. Until recently
most pps have been constructed for bulk matter at equilibrium and at fairly low
temperatures. While these pps usually produce very good zero temperature equilib-
rium lattice constants and bulk moduli, their use in other environments can produce
less reliable results. At Sandia we are using the projector augmented-wave (PAW)
pseudo-potentials in VASP for shock physics applications. It is well known that both
the dense matter and the elevated temperatures in this regime can make these pp re-
sults less accurate. The aim of my work on PAW potentials for VASP is to understand
and remedy the limitations of standard VASP potentials.
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Chapter 2

Density Functional Theory

Density Functional Theory (DFT) is an exact reformulation of the fundamental law
of nature governing the behavior of electrons. If electrons are in materials with heavy
ions, the fundamental law is the Dirac equation. For materials composed of lighter
ions, such as Li, the non-relativistic limit of the Dirac equation, the Schrodinger
equation, might be used.

Density Functional Theory was first developed using the Schrodinger equation. Using
the Hohenberg-Kohn theorem,® the Shrodinger equation, which decides the electronic
properties of a material via many-body electronic wave-functions, can be cast in
the form of the Kohn-Sham (KS) equations, which instead decide the behavior of
ground state electrons via auxiliary non-interacting single particle Kohn-Sham or-
bitals forming the true electron density of the material. The key point is that solving
for non-interacting single particles is a much less demanding task than solving for
many-body wave-functions.

Despite the theory in itself being exact, approximations for the Exchange-Correlation
functional still need to be done since the form of this object is unknown. The accu-
racy of the approximation for the Exchange-Correlation functional is the factor that
decides the ultimately attainable accuracy of the calculations. No calculations based
on DFT can ever give better results than this approximation allows. If the ’divine™3
functional were known, however, the KS equations would yield the exact same results
as the fundamental law of nature, the Schrodinger Equation.

The KS equations are often interpreted as the equations of electrons moving in a
field formed by all the other electrons, so called mean-field theory. From a mean-
field theory perspective the KS orbitals can be interpreted as approximations for
the true many-body electron wave-functions. This alternative interpretation of the
KS equations can be very fruitful if handled correctly, but it also has created, and is
creating, a lot of confusion in the field. In Figure 2.1 we try to compare the two views.
In addition to the 'pure’ KS equations, several mean-field theory based schemes are
also implemented in VASP.
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Figure 2.1. The exact functional would give the exact den-
sity, p, and thus the exact properties via density functionals,
F[p]. The unknown wave function density functional, ¥[p],
would in this case give all properties that can be calculated
from the Schrodinger equation exactly. However, the mean
field view of using the KS orbitals as approximate electron
wave functions would be approximate. Only the density and
properties calculated via density functionals are guaranteed
to be exact. The quality of a functional can thus not be
judged by how well it reproduces wave function derived prop-
erties. From Reference 12.
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Chapter 3

The Projector Augmented Wave
method

The computational advantages of the DFT method are further advanced by combin-
ing it with a pseudo-potential method. In contrast to the approximate exchange-
correlation functionals, a pseudo-potential approximation is a numerical one. The
results obtained with a pseudo-potential should give the exact same results as an
all-electron calculation, provided the same exchange-correlation functional is used.

The projector augmented-wave (PAW) method was developed by Blochl in 1994.2
The version of the PAW method implemented in VASP is thoroughly described in
Reference 11 and the PAW potentials produced for this method are now the only
recommended ones for use in VASP. A library of functional-specific PAW potentials
is distributed together with the source code. The distribution deployed in April 2012
contains many 'GW PAWSs’ which are of special interest to the Sandia shock physics
community.

Pseudo-potentials can also be used in many-body schemes based on the mean-field
view of the KS equations (see Fig. 2.1). One such method of relevance for this
work is the GW method. This method uses the unoccupied states (which have no
real meaning in DFT since they do not contribute to the density) and it has been
noted that PAWSs that give very accurate ground state properties still can produce
highly deficient unoccupied states. Since the Fermi-Dirac distribution of electrons
at high temperatures distributes electrons also to states that are unoccupied at zero
temperature, where pseudo-potentials are constructed, we have noted that using the
GW PAWSs improves the quality of calculations for high-temperature shock physics
applications.

The many components of a PAW potential for VASP are contained in a file named
POTCAR. The individual components are well described in section "IV. PAW
DATASETS” in Reference 11. A computer program generating POTCAR files have
been provided to me by the main VASP developer, Dr. George Kresse, who has also
produced all the standard PAW potentials distributed with VASP. The generator pro-
gram takes a minimum of two input files, V_.RHFIN and PSCTR, and there are at
least 30 parameters that can be set in those files. This report will not concern all of
them. However, for the understanding of the results and insights presented below, a
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few of these parameters need to be discussed. At the beginning of each POTCAR
file is an information section stating the values of relevant parameters. Note that,
although the VASP default units are Angstrom (A) and electron Volt (eV), lengths
in this section are in bohr, if not otherwise specified.

The all-electron calculation

A pseudo-potential is constructed from an all-electron calculation on a single, free,
atom. The aim is to obtain a pseudo-potential that in a pseudo-potential calculation
would reproduce selected all-electron results for this atom.

Atom configuration

Contained in the PAW generator program is thus an all-electron DFT code that
produces wave-functions and eigenvalues for a spherically symmetric atom. However,
in many cases we need to have higher angular momentum components available in a
VASP calculation, even though these states are not occupied in an atom. One example
is the higher angular momentum state often used to produce the local potential (see
below). Sometimes, we also want to use an excited atom as the bases for the PAW
construction; this is the case for most of the Li PAWSs discussed in more detail below.
The input to the all-electron calculation in the PAW generation is contained in the
V_RHFIN file. In POTCAR files produced with the newer versions of the PAW
generator code, such as the version I have used in this work, the atomic configuration
is printed in the information section at the beginning of the file.

The exchange-correlation functional

The all-electron calculation performed in the process of generating the pseudo-potential
is using a specific exchange-correlation functional. This is also specified in the
V_RHFIN file. In general a pseudo-potential is functional specific and should not be
used with another functional. However, the PAW implementation used in VASP is
very insensitive to the functional used in producing the PAW, and from version 5 of
VASP accurate results can be obtained with any implemented functional used on the
standard LDA or PBE' PAW potentials. In Reference 14 we show that both LDA
and PBE'® PAWs can be used together with AMO05! in VASP 5, giving nearly identi-
cal results. This allows the use of new functionals in VASP 5 without the substantial
work of generating functional specific pps. Many of the calculations at Sandia are
made using both LDA and AMO05, and we have thus been focusing on making LDA
PAWs for use in shock physics applications. The functional used in the production of
the PAW is written in the information section as the value of the tag LEXCH. Note

18



that the value CA ('Ceperly and Alder parameterized by J.Perdew and Zunger’) de-
notes LDA with the Perdew-Zunger correlation,!” which is fitted to the Ceperly and
Alder Quantum Monte-Carlo results for the uniform electron gas.*

The number of valence electrons

A crucial decision to make in the PAW construction is how many of the electrons
should be classified as core or valence. The core electrons in a PAW potential are
represented as core charge densities based on the atomic calculation. As long as the
core electrons in a VASP calculation are still atomic like and inert, that is, they do
not participate in the binding, this is a good approximation. However, as matter is
compressed, core electrons that at equilibrium are inert, can start to participate in
the binding of the material, thus becoming valence electrons. Another problematic
case is at very high temperatures, when core electrons might need to be promoted to
higher energy states according to the Fermi-Dirac distribution. This is a very strong
limitation of a pseudo-potential and no calculation can be trusted in the regime where
electrons assumed to be inert in a PAW potential actually are not. The solution to this
problem is to design PAW potentials that promote some of the atomic core electrons
to valence electrons. In the case of compressed Li we need to have all three electrons
as valence electrons. So the PAW potentials I discuss here all have no core charges.
The number of core vs valence electrons are also set in the V_RHFIN file. The very
first number after the name of the PAW potential in the POTCAR file is the number
of valence electrons.

The PAW generation

The first and most important criteria for a good PAW potential is that it reproduces
the most important results of the all-electron calculation on the single, free, atom.
There is no hope to be able to mimic all-electron results for more complicated systems
if the PAW potential cannot at least reproduce the atomic properties. Theoretically,
the PAW method is able to exactly reproduce the all-electron wave-functions of the
valence electrons, but in practice this is never attainable. By evaluating the log-
arithmic derivatives of the atomic pseudo wave-functions and compare them to the
logarithmic derivatives of the exact atomic wave-functions produced in an all-electron
calculation, the quality of the scattering properties can be assessed. The PAW gen-
erator code is printing out logarithmic derivatives of the atomic wave-functions from
the all-electron, the bare pseudo-potential, and the full PAW calculations in a file
named DDE. In the previous distribution of PAW potentials, this DDE file was
given together with the POTCAR, the V_.RHFIN, the PSCTR, and a file with the
all-electron atomic potential, named V_TABIN (used to speed up the all-electron
atomic calculations by giving a good input potential for the self-consistent loop).
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The DDE file is the main tool for tuning the parameters in the PSCTR file for ob-
taining an accurate PAW potential. A good correspondence between the all-electron
and the PAW logarithmic derivatives is a necessary but not sufficient criteria for a
good PAW potential.

The logarithmic derivatives are calculated at a specified distance from the atom cen-
ter. This radius is given in the POTCAR information section as RWIGS. In newer
versions of the generator code the value of RWIGS can be set to any value without
influencing any other setting, thus, the rest of the POTCAR file is independent of
this value. However, this value is still a good indicator as to the smallest nearest
neighbor distance at which the PAW potential can be trusted. More stringent re-
strictions of the maximum compression at which the PAW potential can be trusted
are set by the various cutoff radii used in the PAW construction. The RWIGS value
is usually set slightly larger than the largest of these radii. Examples of logarithmic
derivative plots are shown in Figure 3.1 and they will be discussed further below.

The basic idea with a pseudo-potential is to smoothen out the rapidly varying wave-
functions near the atomic center, permitting the use of a smaller basis to resolve the
variations of the pseudo-wave functions compared to the all-electron wave functions.
The basis size in a plane-wave code is determined by the kinetic energy cutoff (EN-
MAX in the POTCAR file, but ENCUT in the calculation input file, INCAR). The
computational cost of a calculation is highly dependent on this cutoff energy. Stan-
dard PAW potentials are constructed with both accuracy and speed in mind, and
while accuracy demands smaller radii, speed requires larger, and the final choice of
radii will always be a compromise. However, for the applications we are interested in
for this work, the primary focus is on accuracy, not the speed of the calculations.

The local potential

The local potential is used for all angular momentum channels that do not have their
own projectors or pseudo-potentials. It can be constructed from either 1) a higher
angular momentum pseudo-potential or 2) an independent pseudized construction
based on the all-electron potential. In both cases the local potential outside of a
certain radius is equal to the self-consistent, all-electron potential while it is modified
inside this radius. The first case is used if the tag ICORE is set. The value of ICORE
is the angular momentum channel that is used as the local potential and its radius
can be found in the last line of the ”Description” part of the information section in
POTCAR (which should, of course, have the same angular momentum, [, as the
ICORE value). In the second case the cutoff radius is shown by the RCLOC tag.
The harder (having smaller radius) this local potential is the better description of the
scattering properties we get. After all, if the radius is 0 we recover the all-electron
potential. However, the harder we make the local potential, the easier it is to have
unphysical ”ghost” states appearing. Signs of ghost states sometimes can be seen
already in the DDE plots, but sometimes only further testing, such as the Density
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Figure 3.1. The arctan of the logarithmic derivatives of
pseudo wave-functions (colored) compared to those of all-
electron wave-functions (black and grey, not seen if the col-
ored points are exactly on top). In order to generate the DDE
files plotted in (a) and (b), I have had to regenerate the full
POTCAR file. In order to not accidentally use these in real
calculations I have marked them with DO NOT USE”.

of States (DOS) calculations discussed below, reveals them.

Partial wave cutoffs

A PAW potential contains partial waves and projectors. These are constructed from
all-electron wave-functions obtained in the all-electron calculation. There are two
types of wave-functions used: wave-functions calculated at the atomic eigenenergies,
and wave-functions calculated at non-eigenenergies. In both cases pseudo-wave func-



tions are constructed by pseudizing inside a specified radius, as is shown in Figure 3.2.

08}
061
04

02

—o2f

—o0af v

Figure 3.2. A pseudized radial wave-function (red) com-
pared to an all-electron radial wave-function (blue). Since
the match at the cutoff radius (1.058 Angstrém) is to second
order, the two wave-functions agree fairly well also some dis-
tance inside this cutoff. The horizontal axis in the plot is the
distance from the nucleus in units of Angstrom.

The values of the energies and the cutoff radii for the partial waves are listed in the
"Description” part of the information section in the POTCAR file. The largest of
the cutoff radii is also listed in the RCORE tag. This value is a good indicator of the
limit at which further compression would cause accuracy concerns.

Number of projectors

The energies and radii of the partial waves and the number of projectors are deter-
mined by examining the DDE plots. The simple rule is that you add a projector if
the desired accuracy can not be obtained with the current set. However, determining
the energy of this added projector is a highly non-linear process, and some amount
of trial-and-error is usually needed. Since harder potentials generally are more ac-
curate, fewer projectors are usually needed for those PAW potentials. However, for
improving the scattering properties in the higher energy range required for high tem-
perature calculations, more projectors are needed. Having more than 3 projectors
with the same angular momentum is very hard to achieve, this problem is similar to
the problem of over-complete basis sets in all-electron codes. A general observation
is that constructing PAW potential encompasses many of the same problems and
questions as constructing accurate basis sets for all-electron codes.
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The valence compensation charge

Claims have been made that the introduction of valence compensation charges into
the VASP PAW scheme is problematic (see Reference 7 and references therein). It
seems this problem, if present, is small in LDA PAWSs and in fact I see no sign of any
problems that might be attributed to the presence of compensation charges. However,
I have also taken great care in using an appropriate setting for the dense augmentation
grid. I routinely use an augmentation grid energy cutoff (ENAUG) double that of
the plane-wave grid specified by ENCUT. I have also made sure the compensation
charge radius, RDEPT, in my Li PAW is comparable to other cutoffradii.
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Chapter 4

A Li PAW for hot dense matter

The library of standard PAW potential deployed in April 2012 contains 8 Li LDA
PAWSs. Two of them, Li and Li_GW, are one-electron potentials which are not ad-
equate for our applications. Of the remaining 6 I have chosen 3 to examine more
closely, together with my new Li PAW.

PAW potentials, three standard and one new

The three standard Li PAW potentials I have chosen to examine more closely are
Li_sv_old, which is the three-electron one from the older distribution, Li_sv_.GW, and
Li_AE_GW2. The new Li PAW designed for use in highly compressed and hot Li is
named Li_AEM_v1, and the information section of the POTCAR file is reproduced
below. All 4 PAWs are produced from an atom with 2 electrons in the 1s state.
However, the remaining electron is in the 2s state for Li_sv_old but in the 2p state for
the other ones (see the Atomic configuration part of the information section below).
As mentioned, all are LDA PAWs.

The pertinent details of the standard potentials are given in Table 4.2 together with
the same details of Li_LAEM _v1.

From Table 4.2 it is clear that of the standard potentials Li_ AE_GW2 should give
best scattering properties at smaller radii. I thus chose to compare my new Li PAW
with this one. In Figure 3.1 I compare the DDE plots for this potential and the new
Li_AEM _v1 at the RWIGS radius of both. It is clearly seen that while Li AE_GW2
is excellent at its RWIGS of 1.600 bohr, outside of all cutoff radii, it is failing in
reproducing the all-electron scattering properties at 0.800 bohr, a radius that is far
inside of all cutoff radii. The interaction of two atoms positioned within each others
cutoff radii can thus be completely corrupt. This severely limits the accuracy of
calculations of compressed matter.

Note that the DDE files provided in the old distribution of PAW potentials usually
only give data in the energy range —2 to 2 Rydberg (for PAWs with core electrons
in the valence the range is usually extended to include the core state energy, in this
case around —4 Ry). The much larger range I am using now is to make sure the
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PAW Li_AEM_v1 8Aug2012

3.00000000000000
parameters from PSCTR are:

VRHFIN =Li: 1s2p AEM

LEXCH
EATOM

TITEL
LULTR

TIUNSCR
RPACOR

POMAS
RCORE
RWIGS
ENMAX
RCLOC
LCOR
LPAW
EAUG
RMAX
RAUG
RDEP
RDEPT
QCUT

A

S

CA

197.8207 eV,

PAW Li_AEM_v1 8Aug2012

14.5394 Ry

= F use ultrasoft PP 7

= 0 unscreen: 0-lin 1-nonlin 2-no

= 0.000 partial core radius

= 7.010; ZVAL = 3.000 mass and valenz

= 0.800 outmost cutoff radius

= 0.800; RWIGS = 0.423 wigner-seitz radius (au A)
= 1323.165; ENMIN = 0992.373 eV

= 0.705
= T
= T
472
.268
.300
.802
.750

L T | | R [ I |

w

N

| ©O

O O O - =k O

Atomic configuration

cutoff

paw PP

for local pot
correct aug charges

core radius for proj-oper

factor for augmentation sphere

radius for radial grids

core radius for aug-charge

19.723 optimization parameters

.862; QGAM =

occ.

.0000
.0000
.0000
.0000
.0000

O O, ON

RCUT

.700
.700
.770
.800
.800
.800

O O O O O O

TYP RCUT

The information section of the LiiAEM_v1

5 entries
n 1 J E
1 0 0.50 -52.5301
2 0 0.50 -2.8763
2 1 0.50 -1.5828
3 2 1.50 -1.3606
4 3 2.50 -1.3606
Description
1 E TYP
0 -52.5300617 23
0 -53.8913162 23
0 217.6932160 23
1 -1.5828088 23
1 122.4524340 23
2 54 .4233040 23
Table 4.1.
POTCAR file.
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Table 4.2. All lengths in bohr and all energies in eV.

Lisvoold | Lisv.GW | LiLAE.GW2 | Li_AEM_v1
RWIGS 2.050 1.800 1.600 0.800
ENMAX 270.990 433.253 509.283 1323.165
EAUG 428.394 806.423 1188.107 3296.472
RCLOC or ICORE/RCUT | 2/1.550 1.003 1.206 0.705
RCORE 2.000 1.500 1.350 0.800
RDEPT 1.550 1.500 1.500 0.750
s projectors RCUT 1.550 1.200 1.100 0.700
2.000 1.200 1.100 0.700
— 1.300 1.300 0.770
p projectors RCUT 2.000 1.500 1.350 0.800
2.000 1.500 1.350 0.800
— — 1.350 —
d projectors RCUT — 1.500 1.350 0.800
— — 1.350 —
f projectors RCUT — 1.500 1.350 —

scattering properties are good also at the large energies that will be populated at
high temperatures due to the Fermi-Dirac distribution.

Calculations using the new Li PAW potential and
comparison with other calculations

In order to further test the new PAW potential and also gain some insight into the lim-
itations of the standard ones I have performed several sets of calculations. The calcu-
lations have been performed using the ab-initio total-energy and molecular-dynamics
program VASP (Vienna ab-initio simulation program) developed at the Institut fiir
Materialphysik of the Universitit Wien.!01!

The Li_AEM_v1 calculations are performed with a plane-wave kinetic energy cutoff
(ENCUT) of 4080 eV, while the augmentation grid cutoff (EAUG) is 8160 eV. The
standard potentials are used with ENCUT = 2040 and ENAUG = 4080. All calcula-
tions are done with a I' centered 32 x 32 x 32 Monkhorst-Pack!'® k-point mesh which
resulted in 969 irreducible k-points. All calculations are made with the tetrahedron
scheme with Blochl corrections® (ISMEAR = —5)
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Equilibrium density

According to the LAPW results of Haas et. al.,” that are considered the most accurate
calculations of lattice constants to date, the LDA, zero temperature equilibrium bce
lattice constant is 3.363 Angstrom. As seen in Figure 4.1, all potentials give the same
energy vs lattice constant curves.

Red/Blue: Li_sv_old, Pink/Cyan: Li_sv_GW, Orange/Magenta: Li_AE_GW?2, Black/Black: Li_AEM_v1

E - Emin (6V)
[

0.025f
0.020;
0.015}
0.010¢

0.005¢

Lattice constant (A)

325 3.30 3.35 3.40 3.45 3.50

Figure 4.1. Energy versus volume near equilibrium calcu-
lated using different PAW potentials. As seen the different
potentials give nearly identical curves, resulting in identical
equilibrium volume and bulk modulus.

A fit to the Murnaghan Equation of State'® gives equilibrium lattice constants of
3.362 Angstrom for all potentials while the bulk modulus is 15.07 GPa.

Pressure

We can expect the differences between potentials to be more apparent at higher
pressures, where the differences in cutoff radii start to influence the results. In Ref-
erence 7, calculations with various pseudo-potentials using various codes are made
for compressed Li up to 25 g/cm?. In Figures 4.2 and 4.3 T compare my results with
those of Figures 4 and 5 of Reference 7. The PAW potential used in the Karasiev
et. al. Abinit and Quantum Expresso (QE) calculations have a cutoff radius of 0.8
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bohr, equivalently to the Li_LAEM_vl PAW. These three pressure curves are on top
of each other in Figure 4.2, and only show minor differences in the differently scaled
Figure 4.3. The blue and magenta curves in Figures 4.2 and 4.3, are calculated with
the same PAW (Li_sv_old) in VASP, but, as is evident from Figure 4.3, they do not
give exactly the same results. This possibly indicates that one or the other, or both,
calculations are not converged. However, it should also be noted that the discrepan-
cies are only seen when the Li_sv_old PAW potential is used outside of its range of
validity.

On the top of both Figures 4.2 and 4.3, I have added a scale expressing the density
in half the nearest neighbor (nn2) distance. If the density is such that this distance is
smaller than the cutoff radii in the PAW potential we can suspect that the PAW po-
tential might not be accurately describing the system. While it is clear that accurate
pressures are obtained for densities with smaller nn2 distances than the RWIGS and
RCORE values, the accuracy does eventually deteriorate as the nn2 distance becomes
smaller. Unfortunately the calculations can still be performed: they do not break un-
til the nn2 distance is far smaller than the smallest projector RCUT. In this case
this means that the calculations do not break until the 1s electron wave-functions on
different atoms have a substantial overlap. However, the pressure is in large error at
this point.

It is well known that since the matching of the pseudo-wavefunctions and the all-
electron wavefunctions at the RCUT radius is both for the value and the derivative,
the pseudo and all-electron wavefunctions usually agree to some smaller radius than
RCUT (see Figure 3.2). I have verified that this radius is at least RCUT/1.2 for
all the Li partial waves studied in this project. I empirically find that a maximum
density corresponding to an nn2 distance of RCORE/1.2 is a good indicator for ac-
curate pressure (as long as RDEPT is smaller than RCORE). This translates to a
Li bee maximum density of 2.7, 6.5, 8.9, and 42.6 g/cm?® for Li_sv_old, Li_sv.GW,
Li_AE_.GW2, and Li_AEM _v1, respectively. The Li_ AE_GW2 pressure starts to devi-
ate before this compression: I attribute this to the RDEPT value being larger than the
RCORE value, and taking this into account, the maximum density for this potential
is 6.5 g/cm?®.

Density of States

To address the issue of ghost states I have calculated the density of states (DOS) at
different compressions. Ghost states give a DOS that has peaks that should not be
there and in order to address this we thus need to know the true DOS for Li. Dr. John
Wills, Los Alamos National Laboratory, used his RSPt?%2! all-electron, full potential,
LMTO code to provide me with reference DOS at three different compressions: these
are show in Figure 4.4(a). The RSPt code has been shown to give the same results
as VASP PAWs for equilibrium lattice constants and bulk moduli.'*
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Pink: Karasiev et. al. Abinit, Orange: Karasiev et. al. QE
Black: Li_ AEM_v1
Magenta: Li_sv_old, Blue: Karasiev et. al. VASP (Li_sv_old)
Dashed: Li_sv_GW, Dotted: Li AE_GW2

Half nearest neighbor distance (bohr)

25000 2.33 | 1.§l | 1.36 - 1.;I_6 | 1.98 | | 0.94 | | 0.?6 | 0.8
20000+
15000+
<
o
QS
[a
10000+
5000¢
OL@s s e
0 5 10 15 20 25
pu (g/em®)
Figure 4.2. Comparison with results from Reference 7
(Figure 4).
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P (GPa)

Orange: Karasiev et. al. QE, Black: Li_AEM_v1
Magenta: Li_sv_old, Blue: Karasiev et. al. VASP (Li_sv_old)
Dashed: Li_sv_GW, Dotted: Li_AE_GW2

Half nearest neighbor distance (bohr)

233 185 161 147 136 128 1.16 1.08

1000

100+

Wer 25— 1
pLi (g/em’)

Figure 4.3. Comparison with results from Reference 7

(Figure 5).That the blue dashed line sometimes is lower than

the rest up to around 3 g/cm? is an artifact of fewer points.
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(a) Reference DOSs calculated with the all-electron, full-potential, LMTO code,
RSPt.2921 The legend gives the lattice constants used in Angstrém, corresponding
to 0.6, 3.0, and 3.5 g/cm?.
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| | | |
=50 -40 -30 -20 -10
E — Efermi (ev)

(b) DOSs calculated with Li_LAEM_v1 using VASP. Legend as in (a).

Figure 4.4. Verification of DOS. Considering the vast dif-
ference in methods, these DOSs can be considered equiva-
lent. In particular there is no sign of significant extra peaks
introduced by ghost states in the VASP DOS. The differences
above ~ 10 eV are numerical artifacts (number of bands taken
into account). 29



3.363 Angstrom | attice constant
Black: Li_sv_old, Magenta: Li_AE_GW2, Orange: Li_sv_GW, Green: Li_AEM_v1
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Figure 4.5. DOS at the LDA equilibrium density (0.6
g/cm?) calculated using different PAW potentials in VASP.

Finally we compare the DOS of all 4 potentials considered in this work. As seen all
potentials give the same DOS at equilibrium density. At higher densities, in particular
the Li_sv_old DOS starts to differ from the Li_AEM_v1 DOS. It is however evident
from Figure 4.7 that quite similar DOS still can give rise to substantial differences in
pressure, see Figure 4.3.
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Figure 4.6. DOS at 3.5 g/cm? calculated using different
PAW potentials in VASP.
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10 g/cc
Gray: Li_sv_old, Magenta: Li_AE_GW?2, Orange: Li_sv_GW, Green: Li_AEM_v1
30 bands
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Figure 4.7. DOS at 10 g/cm? calculated using different
PAW potentials in VASP.
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Chapter 5

Summary and Conclusion

As the codes available for use in Engineering Sciences become more and more sophis-
ticated, materials models used in these codes need to be increasingly accurate. Sandia
scientists are at the forefront of DFT-based EOS construction, where experimental
information is augmented with information obtained in computational investigations,
in order to achieve improved accuracy. The success of the Sandia effort is based on
insights and development obtained via studies such as this.

In a pseudo-potential code, such as the Vienna ab-initio simulation package (VASP),
every atom needs to be described by a pseudo-potential. While other calculational
settings, such as k-point sampling and planewave basis size, can be tuned at will, these
pseudo-potentials are constructed outside of the computational code and need to be
provided as input to the calculation. If the accuracy of a provided pseudo-potential
is not enough for the application at hand, another one needs to be constructed.

In this study three lithium projector augmented wave (PAW) potentials distributed
together with VASP have been investigated and their range of applicability deter-
mined. In addition a new Li PAW potential has been constructed and investigated in
the same manner. In Table 5.1, the estimated limitations of the Li PAW potentials
studied are given.

Table 5.1. Estimated limits for accurate use of certain
PAW potentials
Lisv_old | Lisv.GW | LiLAE_.GW2 | Li_ AEM_v1

minimum nearest (A) 0.882 0.661 0.661 0.353
neighbor distance (bohr) 1.667 1.250 1.250 0.667
maximum bce Li density | (g/cm?) 2.7 6.5 6.5 42.6
Highest substantially (eV) 34.0 > 109 > 109 > 136
populated energy (Ry) 2.5 > 8 > 8 > 10

As a general rule, PAW potentials should not be used for compressions resulting in a
nearest neighbor distance of less than 2x MAX(RCORE,RDEPT)/1.2. Note also that
a PAW potential should not be used for temperatures that substantially depopulates
the lowest energy valence state. In such cases a PAW potential with more valence
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electrons should be used. Unfortunately there is no general rule for determining the
highest substantially populated energy, as this is determined from the accuracy of the
logarithmic derivatives.
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