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Abstract

Within self-consistent field theory, we develop an “on-the-fly” string method to compute the min-
imum free energy path for several activated processes involving a charged, solvophobic nanopar-
ticle and a lipid membrane. Under tensions well below the mechanical stability limit of the mem-
brane, and in the regime where nucleation can occur on experimentally relevant time scales, our
study suggests that there can be at least three competing pathways for crossing the membrane:
(1) particle-assisted membrane rupture, (2) particle insertion into a metastable pore followed by
translocation and membrane resealing, and (3) particle insertion into a metastable pore followed
by membrane rupture. In the context of polymer-based gene delivery systems, this suggests a
novel role of the particle in the endosomal escape, not previously envisioned in the proton sponge
hypothesis. The methodology developed in this work represents the most advanced theoretical
technique for describing nucleation pathways in soft condensed matter systems that also include
hard-particle degrees of freedom.
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Chapter 1

Introduction

The interaction of nanoparticles with lipid membranes is a common theme underlying a number
of important topics in bionanotechnology, ranging from cytotoxicity [1] to the delivery of thera-
peutics [2]. In polymer-based gene delivery systems [3], the nanoparticle is comprised of genetic
material condensed with cationic polymers. Once internalized by the cell via endocytosis, the
nanoparticles are enclosed within membrane-bound vesicles called endosomes, and are trafficked
along the endolysosomal pathway, where acidification activates hydrolytic enzymes [4]. Hence,
the nanoparticle must escape the endosome before crossing the nuclear envelope for successful
gene expression. Clearly, membrane-particle interactions play a central role in several key steps
along the gene delivery pathway. In particular, understanding the endosomal escape mechanism
provides a direct motivation for the work described in this report.

In the proton-sponge hypothesis [5–7], the nanoparticle plays an indirect role in its own endo-
somal escape by serving as a buffering substrate for protons. As additional protons are pumped
into the endosome with an attendant influx of counterions, the increase in osmotic pressure trans-
lates to increased tension on the endosomal membrane. Eventually the membrane ruptures, thus
releasing the trapped nanoparticles into the cytosol. Importantly, membrane rupture is a thermally
nucleated process [8–13] under the small to moderate tensions generated in the proton sponge hy-
pothesis [7, 14]. It is therefore possible to imagine that the nanoparticle takes a more direct role
in the endosomal escape by interacting directly with the membrane to lower the nucleation bar-
rier for rupture. We examine this scenario in the broader context of nucleated pathways involving
membrane-particle interactions.

A number of computational studies on membrane-particle systems have been conducted to
elucidate the equilibrium structures [15–19], as well as the dynamics under (nearly) spontaneous
conditions [20, 21] or when induced by an external force [22]. However, these studies have not
addressed the thermally nucleated processes we are interested in here. Besides the long time scales
associated with these rare events, a significant challenge arises because of the high dimensional free
energy surface due to the conformation degrees of freedom of the lipid molecules, characteristic of
many soft matter systems. Hence, with any sizable nucleation barrier, direct computer simulation
is unfeasible. The potential of mean constraint force method attempts to overcome this challenge
by artificially choosing a reaction coordinate that (in general) does not coincide with the true
nucleation pathway, while the transition path sampling method [23, 24] is impractical for systems
involving large assemblies of complex molecules.
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Recently, two groups [13, 25] have developed a powerful mean-field technique for studying
minimum free energy paths (MFEP) in self-assembled polymeric systems. The technique com-
bines the self-consistent field theory (SCFT) [26] with the string method [27, 28], and overcomes
the aforemetioned time scale and dimensionality challenges. Ting et al. [13] have applied this
technique to study nucleated pore formation and rupture in membrane bilayers. To explore nucle-
ated pathways involving the membrane-nanoparticle interactions of interest here, we must further
account for the particle degree of freedom. This highly nontrivial task requires additional develop-
ment in the methodology. We therefore start with a description of the model and method.
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Chapter 2

Model and Method

Our membrane bilayer consists of double-tailed amphiphiles (A) assembled in explicit solvent (S)
containing ions (±). The amphiphiles are modeled as discrete Gaussian chains having a solvophilic
head (H) segment of NH negatively charged monomers with volume vH and two solvophobic tail
(T) segments, each consisting of NT monomers with volume vT . The solvents are modeled as
monomers with volume vS and the ions are represented as monovalent point charges of the ele-
mentary charge e. The short-ranged repulsion involving the monomer units is represented by an
incompressibility condition everywhere in the system. We work in the grand canonical ensem-
ble, where the number of molecules are determined from their respective chemical potentials µJ
(J = A,S,±). In addition to the fluid species, there is a positively charged nanoparticle (P), whose
density profile is defined by a cavity function that excludes the fluid species from its interior:

hP(|r− rP|) =
1
2
(1+ tanh[(RP−|r− rP|)/w]) . (2.1)

Here, RP is the particle radius, w is the width of the interface and rP is the particle position [29,30].

The essential contributions to the model are the chain connectivity of the amphiphiles, the in-
compressibility condition, the short-ranged pairwise interactions and the long-ranged electrostatic
interactions. The derivation of the SCFT is described in detail in Refs. [13, 18, 26]. The final
expression for the grand potential is:

F =−eµA

vA
ZA[ξH ,ξT ]−

eµS

vS
ZS[ξS]−

eµ±

v±
Z±[ψ]

+
∫

dr

{
∑
JK

[
χJKφJφK +

κJ

2
|∇φJ|2−ξJφJ

]
+χT PφT hP +ψρc−

ε

2
|∇ψ|2

}
.

(2.2)

Here the summation is over JK ∈ {HT,T S,SH} and the fields φJ,ξJ, and ψ denote the monomer
volume fraction, its conjugate potential, and the electrostatic potential fields, respectively. For
notational conciseness we omit the r dependence in these field variables. The partition functions
in the first line account for the Boltzmann weight of a single molecule in its respective field(s), and
are given by

ZA[ξH ,ξT ] =
∫

drqH(r,NH)e2vHξH q2
T (r,NT +1),

ZS[ξS] =
∫

drexp{−vSξS},

Z±[ψ] =
∫

drexp{∓ψe−ub
±},

(2.3)
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i vi Ni εi κi χiH χiT χiS

H l0.05 5 50 0 — 75 —
T 0.05 10 2 8 — — 22
S 0.15 1 80 0 0 — —

Table 2.1. (L to R) The monomer volume, number of monomers,
dielectric value [33], gradient coefficient, and Flory parameters.
c± = 100 mM for the bulk ion concentration.

for the amphiphiles, solvents, and ions, respectively. Here qH and qT are the chain propagators
used to obtain the single-chain statistics for each arm of the amphiphile [18].

ub
± = e2(8πa±ε)−1 (2.4)

is the Born self-energy of an ion, where ε is the spatially varying dielectric constant (assumed to
be a simple local volume-fraction weighted average) and a± = 0.1 nm is the Born radius.

In Eq. (2.2), the local and non-local parts of the pairwise interactions are captured by χJK and
κJ , respectively [31]. Their values (see Table 2.1) are chosen to reproduce some known experi-
mental properties of lipid membranes; in particular, the linear stretching modulus for our model is
found to be 210 mN/m [32]. The solvophobicity of the nanoparticle is modeled by a Flory-like
parameter χT P that acts locally over the interfacial region of the particle and the total fixed charge
density is defined ρc = cPhP +(cH/vH)φH . Here cP is the charge density on the nanoparticle and
cH =−0.05 is the charge per head monomer. The SCF equations are obtained by requiring that
Eq. (2.2) be stationary with respect to variations in the fields, i.e. ∂F

∂ω
|ω∗ = 0, where ω = φI,ξI,ψ.

These equations are then solved iteratively until convergence, with the solutions corresponding to
(meta)stable equilibrium states of the system.

However, our interest here is in the nucleation pathways between equilibrium states, and in
particular the transition state, i.e. the critical nucleus. To map out these pathways, which neces-
sarily include nonequilibrium states, we apply the string method to Eq. (2.2). Briefly, we begin
with a string of discrete states in the space defined by the density fields of the monomer species
and the nanoparticle. The string is relaxed towards the MFEP by a two-step iterative procedure:
(1) an evolution equation describing the steepest descent dynamics on the free energy landscape
and (2) a redistribution of the states along the string. The latter step is key, as it prevents all the
states from falling into one of the trivial equilibrium solutions. While the string method is easily
implemented on a known free energy landscape, in SCFT the free energy as a functional of the
densities is not known a priori. Thus we take an “on the fly” approach to traverse the free energy
landscape by evaluating the gradients of Eq. (2.2) using a combination of the external potential
dynamics (EPD) [34] and hybrid particle field (HPF) [29] methods.

More specifically, we first evolve the states for some time ∆t according to the steepest descent
dynamics of the density fields. This approach is similar to that taken in dynamic SCFT [35],
but for computational convenience (see also Ceniceros and Fredrickson [36] for the target density
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problem), we choose to reformulate the dynamics in terms of the fields ξI , using the EPD method:

∂ξI

∂t
= D1

δF
δφI

. (2.5)

Here D1 is a scalar mobility coefficient and δF/δφI is the familiar functional derivative of Eq. (2.2)
so that ξI is updated by simple time iteration methods [37]. φI follows as usual by solving the
modified diffusion equation for the chain propagators in the presence of the new ξI [18]. Next, we
evolve the particle position rP according to the HPF method developed by Sides et al. [29]:

∂rP

∂t
=−D2

∂F
∂rP

=−D2
δF
δhP

g(rp− r), (2.6)

where g(r) ≡ 1
r

dhP(r)
dr r is a vector function related to the derivative of the cavity function. The

density fields and the particle position are then updated, subject to the incompressibility condition.

The second step in the string method involves a redistribution of the states along the string.
In the simplest case, this is enforced by an equal arc-length reparametrization of the string based
on the current densities, followed by a linear interpolation to obtain the new densities. The two
dynamical equations [Eq. (2.5) and Eq. (2.6)], followed by the reparametrization, are computed at
every time step. Once converged, the string coincides with the MFEP. In what follows, we discuss
the main results.
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Chapter 3

Results

To understand the effect of the nanoparticle on membrane pore formation and rupture, we first con-
sider the case in the absence of the nanoparticle, i.e. homogeneous rupture. The free energy barrier
F∗0 diverges for a tensionless membrane and vanishes at a threshold tension γt = 5.1, corresponding
to the onset of mechanical instability. The structure and free energy of the transition state in the
intermediate regime will depend on the membrane tension. For low tensions (γ = 0.6) the transi-
tion state corresponds to a well-defined pore with F∗0 = 75, whereas for higher tensions (γ = 1.9)
the transition state corresponds to a solvophilic stalk with F∗0 = 24; see Fig. 3.1. Assuming an
Arrhenius rate expression of the form k = νexp[�F∗], where ν∼ 10 µs is a transition frequency
associated with the molecular relaxation [38], nucleation will take place on experimentally relevant
time scales if F∗ . 25. Thus, nucleation is a relevant mechanism for homogeneous rupture of a
membrane under moderate tensions (γ & 1.9).

Next, we proceed to examine the effect of a charged and/or solvophobic nanoparticle on the
nucleation barrier to rupture, beginning with the low tension case (γ = 0.6). The string is initial-
ized between two fixed end states [see Fig. 3.2(a) and (f)] and evolved according to the algorithms
described earlier. The resulting MFEP reveals the following nucleation pathway. Through electro-
static attraction, the positively charged particle adsorbs onto the surface of the negatively charged
membrane. This metastable state is shown in (b). From here, rupture takes place by a two-step nu-
cleation process. First, the particle pushes into and punctures the membrane, overcoming the first
barrier; see (c). Note that the trans leaflet, which is already thinned in (b), is broken first and the

Figure 3.1. The transition state for homogeneous membrane rup-
ture when γ = 0.6 (a) and γ = 1.9 (b). Contour plots show the lipid
head densities in cylindrical coordinates.
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Figure 3.2. Membrane under low tension (γ = 0.6): states along
the MFEP for membrane rupture in the presence of a nanoparticle
(RP = 4, cP = 0.5, χT P = 0).

cis leaflet is held intact by the electrostatic attraction to the particle. Once the membrane bilayer
is broken, the particle sits in a highly transient metastable pore that is lined by lipid head groups,
as shown in (d). From here the membrane can expel the particle and reseal the defect. However to
proceed to rupture, the pore must expand to some critical radius r∗; see (e). Importantly, r∗ > RP
for this case and hence the second transition state in the two-step nucleation pathway is essentially
the same as the transition state for homogeneous rupture; compare (e) with Fig. 3.1(a).

In Fig. 3.3, the MFEP for rupture in the presence of a particle is plotted as a function of the true
reaction coordinate s that defines the set of images along the string, and also as a function of the
particle position z, for several values of membrane tension. In all cases, the charged nanoparticle
first adsorbs onto the surface of the membrane, stabilizing the initial state. For the low tension
case (γ = 0.6), rupture then proceeds by the two barrier crossings described above: puncturing the
membrane with rate k1 [Fig. 3.2(c)] and expanding the pore with rate k2 [Fig. 3.2(e)]. The first of
these is reversible, with backward rate k�1, and the second, irreversible. Intermediate to the two
transition states is the transient, metastable pore [Fig. 3.2(d)]. The mean first-passage time for this
two-step nucleation process is given by

τ =
1
k1

+
k�1

k1k2
+

1
k2
, (3.1)

and the nucleation rate may be approximated as J = τ�1 [39,40]. Here, breaking the surface of the
membrane is the more energetically costly step, with F∗1 = 51. Furthermore, because the reverse
rate k�1 for the transient state to expel the particle and reseal the pore is high (F∗�1 = 3, whereas
F∗2 = 45), rupture can effectively be considered crossing a single barrier with F∗ = 93. Recall
F∗0 = 75 for homogenous rupture; thus, for a membrane under low tension the particle does not
assist in rupture.
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Figure 3.3. The MFEP for membrane rupture in the presence of
a nanoparticle (RP = 4, cP = 0.5, χT P = 0), as a function of the
reaction coordinate s and the particle position z (inset) for several
values of tension. The nucleation barrier for homogeneous rupture
is shown in parentheses.

In the proton sponge hypothesis, the membrane tension is believed to play an important role
in the endosomal escape [7]. We find that with increasing tension, the metastable pore becomes
more stable with respect to resealing k�1 but less stable with respect to rupture k2, and eventually
unstable altogether; see Fig. 3.3. In particular, for γ = 1.9 rupture becomes a one-step nucleation
process. To understand this result, recall that for this tension the transition state for homogeneous
rupture is a solvophilic stalk with F∗0 = 24 [Fig. 3.1(b)]. The transition state for particle-assisted
membrane rupture also corresponds to a solvophilic stalk [Fig. 3.4(c)], but with a reduced barrier
F∗ = 18 (Fig. 3.3). Here the positively charged nanoparticle is able to interact with both leaflets of
the membrane to facilitate the formation of the stalk-like structure, thereby lowering the nucleation
barrier to rupture. This result suggests a direct role of the nanoparticle in the endosomal escape,
not previously envisioned in the proton sponge hypothesis, and illustrates the importance of having
an induced tension on the membrane.

Figure 3.4. Membrane under moderate tension (γ = 1.9): states
along the MFEP for membrane rupture in the presence of a
nanoparticle (RP = 4, cP = 0.5, χT P = 0).

17



ò
ò

òò
ò

ò

ò

ò

ò

òòò
ò

ò
òòòò

ò
ò

òòò

ò

ò

ò

ò
ò

òò

ò
ò

ø

ø

ø

ø
ø

ø

ø

ø

ø

ø

ø

ø

øø
øøøøøøøøøøøø

øø

ø

ø

ø

ø

ø

ø

ø

ø
ø

ø

ø

ø æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

à

à

à

àà
à

à

à

à

à
à

à

à

àààààà

à

à

à
à

à

à

à
à

àà

à

à

à
ô

ô

ô
ôôô

ô

ô

ô

ô
ô
ô

ô
ô

ô
ôô

ô
ô

ô

ô
ô
ô

ô

ô

ô
ôôô

ô

ô

ô

(1.5, 2, 0.5, -2) 
(0.6, 2, 0.5, -2)
(0.6, 2, 0.5, 0)  
(0.6, 2, 1.5, 0) 
(0.6, 4, 0.5, 0)ø

æ

ò

à

ô

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

10

20

30

40

50

60

z
D

F

Figure 3.5. The MFEP for particle translocation as a function of
the particle position z for different tensions and particle parame-
ters, corresponding to (γ,RP,cP,χT P).

Next, we consider particle translocation as an alternate path for the endosomal escape. Here
the particle crosses without rupturing the membrane. Beyond the delivery of medical therapeutics,
particle translocation is of interest for understanding the mechanisms of nanoparticle cytotoxic-
ity [41] and viral cell entry [42], and is therefore of interest in its own right. We return to the
membrane under low tension (γ = 0.6) and the same particle considered previously. The critical
pore radius of the transition state for rupture is larger than the radius of the particle. For success-
ful translocation the particle only needs to create a pore large enough to pass through, and thus
we expect translocation to be the preferred pathway over rupture. Although still highly unlikely,
translocation is indeed the more favorable mechanism for crossing the membrane, where F∗ = 54
(Fig. 3.5?).

To lower the barrier to the regime where translocation can occur on experimentally relevant
time scales, we consider the effects of the particle size, charge and solvophobicity. Particles smaller
than the critical pore radius for homogeneous rupture should translocate more easily. Reducing the
particle size to RP = 2 while maintaining the same charge density and solvophobicity, we find that
the free energy barrier is indeed lowered to F∗ = 39 (Fig. 3.54), which is still on the high side for
thermally-nucleated translocation. With the reduced particle size, we increase the charge density
to cP = 1.5, and find the free energy barrier is increased to F∗ = 51 (Fig. 3.5◦). This result can
be rationalized by noting that the density of negatively charged amphiphilic heads is higher for an
intact membrane compared to a pore with high curvature. Thus the particle gains more favorable
electrostatic interactions by adsorbing onto the surface rather than inserting into a pore. If instead
we increase the particle solvophobicity by setting χT P =−2, the particle is able to interact with the
solvophobic tail region of the membrane, thereby lowering the free energy barrier for translocation
to F∗ = 33 (Fig. 3.5�).

Based on these results, we find that translocation of a charged and/or solvophobic nanoparti-
cle through a membrane under low tension is unlikely to occur by thermal nucleation. However,
particle translocation becomes possible upon increasing the membrane tension. Taking the particle
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with the lowest free energy barrier for translocation (RP = 2, cP = 0.5, χT P = −2.0), we increase
the membrane tension to γ = 1.5 and find that the particle inserted into the middle of the mem-
brane is now a metastable state along the MFEP; see (Fig. 3.55). Translocation is now a two-step
process, the first barrier corresponding to particle insertion, with F∗1 = 19, and the second barrier
corresponding to expelling the particle and resealing the pore, with F∗2 = 10. Using Eq. (3.1), we
compute the nucleation rate for translocation and find J = νexp[−19.6], indicating that the process
can occur on experimentally relevant time scales.

Interestingly, the critical nucleus for homogeneous rupture in this case is a pore on the order
of the size of the particle. Therefore, the electrostatic attraction between the positively charged
nanoparticle and the negatively charged amphiphilic heads are able to stabilize the pore, preventing
rupture. Based on this result, we can imagine a third pathway for crossing the membrane barrier:
particle insertion into the metastable pore followed by rupture. From our MFEP calculation, we
find F∗1 = 19 and F∗2′ = 8 for insertion and rupture, respectively, so that the overall nucleation rate
for crossing the two barriers is J = νexp[−19.1]. Note that in the earlier mechanism depicted in
Fig. 3.2 and Fig. 3.3, the metastable state is a partially punctured membrane, whereas here the
metastable state is a membrane pore with a fully inserted particle.
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Chapter 4

Conclusion

We conclude with some general remarks on nucleated pathways for a nanoparticle to cross the
bilayer membrane, and some implications for the endosomal escape in gene delivery systems. Our
results indicate at least three competing pathways: (1) particle-assisted membrane rupture, (2)
particle translocation followed by membrane resealing, and (3) particle insertion into a metastable
pore followed by membrane rupture. These results suggest a direct role of the nanoparticle in
the endosomal escape, not envisioned in the proton sponge hypothesis. In all cases, sufficiently
high membrane tension is required for the nucleation barriers to be surmountable on realistic time
scales, suggesting that the osmotic pressure component of the proton sponge hypothesis is crucial
for the successful endosomal escape of the nanoparticles. This conclusion is consistent with the
theoretical work of Yang and May [14], which found that the nanoparticle alone would not lead
to enough osmotic pressure to induce sufficient membrane tension, and that some excess free
polymers are needed. Experimental studies revealed that the presence of these free polymers can
increase the gene transfection efficiency by up to two orders of magnitude [43,44]. In what follows,
we summarize our findings on the three nucleated pathways.

For particle-assisted membrane rupture, a key consideration is the membrane structure at the
transition state, which is primarily controlled by the membrane tension. In particular, the mem-
brane tension must be sufficiently high, so that the size of the critical nucleus (e.g. a solvophilic
stalk) is on the order of the particle radius. Once this criterion is met, the charges on the particle
should be enough to promote the adsorption onto and subsequent puncture of the membrane but
not so much as to stabilize the pore. The particle solvophobicity is unimportant in this case, since
rupture occurs before the particle has had significant interaction with the solvophobic tail region
of the membrane.

In the case of particle translocation, increasing particle charge increases the barrier because the
particle gains more favorable electrostatic interactions by adsorbing onto the surface of the mem-
brane rather than inserting into a pore. In contrast, increasing particle solvophobicity decreases
the barrier for translocation because the particle inserted into a pore can interact favorably with the
lipid tails. Again, membrane tension is critical to reaching barriers surmountable on realistic time
scales. With sufficient tension, the pore with a particle inserted into the center of the membrane
becomes a metastable state on the MFEP to translocation. This state suggests—and indeed we
find—another nucleated pathway from this metastable state: pore expansion, leading to rupture.

The mode of crossing the membrane bilayer depends on the membrane tension and the particle
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properties. Here, we have considered particle radius, charge density and solvophobicity. Even
within this set of parameters, we have not exhaustively explored the space for the most likely
nucleation pathways. With the introduction of other types of interactions, for example specific
ligand-receptor interactions [21] or different geometries [22], it should be possible that any of the
pathways can become most favorable. The types of calculations illustrated in this work can be
used to identify the optimal conditions for selecting a particular pathway.

Finally, the methodology developed in this work represents the most advanced theoretical tech-
nique for describing nucleation pathways in soft condensed matter systems that also include hard-
particle degrees of freedom. We expect the method to be useful for studying a wide range of
nucleation phenomena beyond membrane systems, for example, in nanoparticle polymer compos-
ites [29, 45, 46].
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