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Abstract

We present a method for determining the moment stability of stochastically forced ordinary
differential equations. We provide many details omitted in [6]. We consider the case where the
forcing arises from passing white noise through an nth order filter. We carry out a perturbation
analysis for marginal moment tensors, based on a small parameter ε that gives the amplitude
of the forcing. Our perturbation analysis is based on ladder operator approach to the vector
Ornstein-Uhlenbeck process developed by the authors in [6].
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1 Introduction

This work is an elaboration on some of the techniques developed in [6]. The original goal of
[6] was to develop a framework for analyzing the stability of the stochastically forced Mathieu
equation:

ẍ + γ ẋ +(ω2
0 + ε f (t))x = 0, (1)

where f is a stochastic process, and the stability is determined by the boundedness of the second
moment 〈〈x2(t)〉〉 [2, 9]. Here, 〈〈·〉〉 denotes the sample-average. We wanted to avoid heuristic
methods, and consider cases where f (t) is a stochastic process with a realistic power spectral
density. In particular, we do not want to have to assume that f is white noise. Hence we want
to analyze the case where f (t) is colored noise. However, in order to rigorously derive a Fokker-
Planck equation for a stochastic differential equation, the governing equation must include only
white noise [2]. We can achieve both goals of rigor and realistic power spectral density by letting
f be the output of a linear filter. That is,

ṡ = Hs+ξ (t),

f (t) = 〈a,s(t)〉,
(2)

where H is an n×n real, diagonalizable matrix, whose eigenvalues have negative real part, and a ∈
Rn (〈·, ·〉 is the standard inner product on Cn). The noise ξ has mean zero and 〈〈ξ (t + τ)ξ T (t)〉〉=
Bδ (τ), where B is symmetric positive semi-definite. We refer to the scalar process, 〈a,s(t)〉, as
colored noise or as an nth order filter.

We were originally interested in equation (1) as a model for the response of capillary gravity
waves to a time-varying gravitational field arising from random vertical motions of a container
with a free surface (as in [14]). Here f (t) represents the random fluctuations in acceleration. Since
the Fourier transform of an acceleration should vanish at zero, along with its derivative, the power
spectral density of a realistic process f should satisfy S(0) = S′(0) = 0. For example, we can
construct a two-dimensional filter using the system (2) that has the power spectral density

S(ω) =
σβ 2ω2

(ω2 +κ2)(ω2 +α2)
, (3)

for choices

H =

(
−κ 0
β −α

)
, B =

(
σ 0
0 0

)
, a =

(
β
−α

)
, α,κ,σ > 0.

Given H, B, and a, the formula for S(ω) in equation (3) follows from Corollary 13 in [6].

In [6] we analyzed the Fokker-Planck operator for the process s(t) in terms of its ladder op-
erators. Here, we apply that analysis to develop perturbation theory for parametrically forced
equations of the form

ẋ = A0x+ ε〈a,s〉A1x, (4)
where A0, A1 are N×N real matrices, and s is the solution to the stochastic equation (2).
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The purpose of this paper is to present a method for determining the stability of the solution
x(t) of (4), by which we mean the boundedness of the second moments of x(t). However, our
method applies to the pth moment, so we will not limit our analysis to second moments only.

The Fokker-Planck equation for the combined system (2) and (4) is

∂tP =
1
2

divs (B∇sP)−divs (HsP)−divx ((A0 + ε〈a,s〉A1)xP) (5)

See [8] for a derivation of this equation. The notation divs and ∇s refer to divergence and gradient
with respect to only the s j variables, and similarly divx is divergence in x variables. We note that
(5) is the same in both the Itô and Stratonovich interpretations because the matrix B is independent
of s and x (see [8]).

We can derive an equation for the pth marginal moments by multiplying (5) by monomials xα

and integrating with respect to dx, where α is a multi-index of order p. The result is an equation
for M(s, t), a symmetric tensor of the pth marginal moments. In the case p = 2 the equation for M
is of the form

∂tM = DM+A0M+MAT
0 + ε〈a,s〉

(
A1M+MAT

1
)

(6)

where D is a differential operator only with respect to the s variables, given by

Dϕ =
1
2divs (B∇sϕ)−divs (Hsϕ) , (7)

and M is the N×N symmetric matrix with Mi j =
∫
RN xix jP(s,x, t)dx. In (6), DM indicates D

applied to each component of M. The case p > 2 is addressed in Section 3.4.

The operator D is the same operator D that was characterized in terms of its associated ladder
operators in [6]. Analysis of D was also done in [12, 13], but not in terms of the the ladder-
operators developed in [6], which is what we need for carrying out perturbation analysis of (4).
There are several useful properties of D that were shown in [6], and Section 2 we collect those
properties that are used in our perturbation analysis.

As in a standard stability analysis, in order to determine the stability of (6), we look for solu-
tions of the form M̃(s, t) = eλ tM(s). Our equation for M(s) becomes

λM = DM+A0M+MAT
0 + ε〈a,s〉

(
A1M+MAT

1
)

(8)

That is, the equation for the second marginal moments of x(t) can be written as an eigenvalue
problem, and stability is decided by the sign of the real part of the largest eigenvalue. The same is
true for pth moments (see Section 3.4). As in [6] we assume that our eigenfunctions have bounded
moments of all orders in s. We present a perturbation method for determining this eigenvalue in
Section 3. For ε = 0 we can analytically determine the eigenvalues of (8), and for nonzero ε we
determine λ in a series expansion in the parameter ε . The coefficients of the expansion involves
the extended power spectral density G(z), which is defined for the process s(t) in (18), and is given
explicitly in (19) for the filter 〈a,s(t)〉. In particular, if λ0 is the unperturbed eigenvalue, then in
Section 3 we show λ = λ0 +λ2ε2 + . . . with
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λ2 = 8
N

∑
j,k=1

C jkqrCqr jk

1+δqr
G(σq +σr −σ j −σk), (9)

where σk are the eigenvalues of A0, λ0 = σq +σr, and the tensor C jklm is given by

C jklm =
1
4
(
δ jm〈gk,A1hl〉+δkm〈g j,A1hl〉+δ jl〈gk,A1hm〉+δkl〈g j,A1hm〉

)

where hk and gk are the eigenvector and adjoint eigenvector (normalized so that 〈hk,g j〉 = δ jk) of
the matrix A0.

The generalization to higher moments is discussed in Section 3.4.
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2 Preliminaries

In this section, we collect the results from [6] that we will need to develop perturbation theory for
equation (8) .

2.1 Ladder Operators for D

Lemma 1. If H has simple eigenvalues −µk < 0, ,k = 1,n and H and B form a controllable pair,
then there are 2n linearly independent ladder operators, Lk, associated with the operator D in
equation (7). These operators satisfy

[D ,L±k] = ±µkL±k, for k = 1,n (10)

where [D ,Lk] = DLk −LkD . Furthermore, we can write the operator D as

D =
n

∑
k=1

µkL−kLk. (11)

The eigenfunction Φ0(s) of D associated with the eigenvalue with the largest real part satisfies

LkΦ0 = 0 k = 1, . . . ,n. (12)

This eigenfunction has eigenvalue 0, and that there is a matrix such that Φ0(s) = e−
1
2 〈s, s〉 .

We denote by uk the eigenvectors of H with eigenvalue −µk, and the adjoint eigenvectors by
vk, with normalization 〈vk,u j〉 = δ jk. We assume throughout that the {uk} are complete.

In [6] we also proved

Lemma 2. Let H have a complete set of eigenvectors. For any vector a, there exist constants αk

and βk such that

〈a,s〉 =
n

∑
k=1

αkLk +βkL−k, (13)

In particular,

αk = 〈uk,a〉, βk = −
n

∑
m=1

αm

µm + µk
〈vk,Bvm〉, (14)

where uk and vk are the eigenvectors and adjoint eigenvectors of the matrix H. The equation for
αk can be written α = UT a with U = [u1, . . . ,un].

The commutator relations for the ladder operators will also be useful in the perturbation anal-
ysis.
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Lemma 3. The ladder operators Lk satisfy the following commutator relations.

[L j,Lk] = 0, [L− j,Lk] = δ jk, for j,k = 1, . . . ,n. (15)

We use the notation Φk = L−kΦ0 to denote eigenfunctions that are the result of a lowering
operator applied to the “top” eigenfunction Φ0. The fact that LkΦ0 = 0 for k > 0 implies (using
the second equation in equation (15) ) LkΦk = LkL−kΦ0 = L−kLkΦ0 −Φ0 = −Φ0. Collecting
our notation, we have the following definition and lemma.

Definition 1. The functions Φk(s) are defined as

Φk(s) = L−kΦ0(s) (16)

where Φ0(s) is the eigenfunction of D associated with the eigenvalue with the largest real part.

Lemma 4.
LkΦk(s) = −Φ0(s), k = 1, . . . ,n. (17)

2.2 The Expression for the Extended PSD

The expression for the perturbed eigenvalue λ will be written in terms of the Laplace transform
of the autocorrelation function of the filter 〈a,s(t)〉. If s(t) is a stochastic process that becomes
stationary in the limit t →∞ with autocorrelation function R(τ), then in [6] we defined the extended
power spectral density of the vector process s(t) as

G(z) =

∫ ∞

0
R(τ)e−zτ dτ. (18)

Lemma 5. Let H have simple eigenvalues −µk < 0, ,k = 1,n and H and B form a controllable
pair. With the definition of G in (18), the scalar filter 〈a,s(t)〉 has extended power spectral density
G(z) = 〈a,G(z)a〉. This can be written as

G(z) = −
n

∑
l=1

αlβl

µl + z
, (19)

provided Re [µl + z] > 0 for l = 1, . . . ,n, and αl, βl are defined in (14).

Note that the power spectral density, S(ω) =
∫
R

R(τ)eiωτdτ , of an asymptotically stationary
process is defined only for ω ∈ R. Evaluating S(ω) at complex values is not well-defined and does
not make physical sense. However, the domain of the extended power spectral density is much
larger, and Re [G(iω)] = 1

2S(ω). The domain of G is {z ∈ C : Re [µl + z] > 0 for l = 1, . . . ,n}, and
therefore contains iR by our assumption that the eigenvalues of H have negative real part. Thus, G
is an extension of S to an upper half-plane {z ∈ C : Im[iµl + z] > 0, l = 1, . . . ,n}, which contains
R.
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3 Perturbation Method for Moment Tensors

We begin with the case of second marginal moments, in which case we will have a 2-tensor of the
second marginal moments. This is a special case, because the algebra can be expressed in terms of
matrix algebra.

In this section we will use the following notation.

Definition 2. We define the operation A?M between two matrices as

A?M = AM+MAT (20)

The following lemma shows what the equation for the evolution of the second marginal mo-
ments looks like in matrix form.

Lemma 6. Let M be the 2-tensor of marginal second moments

M jk =

∫

RN
x jxkP(x,s, t)dx. (21)

M can also be viewed as an N ×N matrix that satisfies the evolution equation

∂tM = DM+(A0 + ε〈a,s〉A1)?M. (22)

Proof. If we multiply (5) by x jxk and integrate over all x, we arrive at the equation (after integrating
the x jxkdivx (AxP) term by parts)

∂tM jk = DM jk +
∫

RN
∇(x jxk) · ((A0 + ε〈a,s〉A1)xP)dx. (23)

If we let A = A0 + ε(a · s)A1, the integral term in (23) has the form

∇(x jxk) ·Ax =
N

∑
l,m=1

∂xm(x jxk)Amlxl =
N

∑
l,m=1

(x jδmk + xkδm j)Amlxl

=
N

∑
l=1

Aklxlx j +A jlxlxk = (A?X) jk (24)

where X is the matrix whose ( j,k) component is x jxk. If we integrate this last expression over all
values of x, we arrive at the result of the lemma.

This interpretation works only in the p = 2 case. The case for general p is addressed in Section
3.4.

Looking for solutions of the form M̃(s, t) = eλ tM(s), yields the eigenvalue problem for M(s)

λM = DM+A0 ?M+ ε〈a,s〉A1 ?M. (25)

The marginal moment tensor M is symmetric (M jk = Mk j), so we will use a basis of symmetric
tensors to express M.
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Definition 3. We define the matrices E jk by

E jk =
1
2
(
h jhT

k +hkhT
j

)
. (26)

where h j are eigenvectors of A0 with eigenvalues σ j, We also define

F jk =
1
2
(
g jgT

k +gkgT
j

)
(27)

where gk are the normalized adjoint eigenvectors of A0 (that is, 〈g j,hk〉 = δ jk).

We will assume that the eigenvectors h j of A0 form a complete set.

Lemma 7. The matrices E jk are eigenmatrices of A0 in the sense that

A0 ?E jk = A0E jk +E jkAT
0 = (σ j +σk)E jk. (28)

Assuming {h j}, the eigenvectors of A0, form a complete set, any symmetric matrix (with the same
dimension as A0) can be written as a linear combination of the matrices E jk.

Proof. The first part of the lemma can be proved by direct substitution. The second part can be
shown by showing that these matrices are linearly independent. We leave this as an exercise for
the reader.

Definition 4. We define the inner product of two 2-tensors as

〈P,Q〉2 = tr
(
PT Q

)
=

N

∑
j,k=1

PjkQ jk, (29)

This is the same as the standard matrix inner product for real N ×N matrices.

With this definition, we have the following lemma

Lemma 8. We have

〈Flm,E jk〉2 =
1
2
(
δkmδ jl +δklδ jm

)
, (30)

Proof. This follows from 〈g j,hk〉 = δ jk.

3.1 Zeroth Order

We assume an expansion of the form

λ = λ0 + ελ1 + ε2λ2 + . . . , M = M0 + εM1 + ε2M2 + . . . . (31)
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If we collect the terms at order zero we get

λ0M0 −DM0 − (A0M0 +M0AT
0 ) = 0. (32)

We expand about the eigenvalue of the operator DM + A0 ? M with the largest real part. The
eigenfunctions of D are scalar-valued, and the eigenmatrices of A0 ? M are constant matrices.
Assuming that both the eigenfunctions of D and the eigenmatrices of A0 ? M are complete, then
the most general solution M0 to (32) will be a product of an eigenfunction of D with an eigenmatrix
of A0 ?M, and λ0 will be the sum of the eigenvalues of D and A0 ?M.

Since the eigenvalues of A0 ? M are of the form σ j + σk, we see that for some values of q and
r the eigenvalue A0 ? M with the largest real part can be written as σ = σq + σr. Since 0 is the
largest eigenvalue of D , (see [12, 13, 6]), the eigenvalue of DM+A0 ?M with the largest real part
can be written as

λ0 = σq +σr (33)
Note that there may be several choices for σq and σr. For example, if the eigenvalue of A0 with
the smallest real part is complex, we could take σq = σr, or σq = σ r. For now we will assume that
we have chosen a particular q and r to begin the perturbation expansion.

The solution to (32) is

M0(s) = EqrΦ0(s), λ0 = σq +σr. (34)

We have the following lemma.

Lemma 9. Let H have simple eigenvalues −µk < 0, ,k = 1,n and H and B form a controllable
pair. Assume the eigenvectors {h j}

N
j=1 of A0 are complete and have eigenvalues σ j. Let P be a

symmetric N×N matrix, Φ(s) be an eigenfunction of D with eigenvalue −µ 6= 0, and λ0 = σq +σr.
If σq +σr + µ 6= σ j +σk for each j,k, then the equation

λ0Z−DZ− (A0Z+ZAT
0 ) = Φ(s)P

has a solution Z, where Z = ZT and is explicitly given by

Z =
N

∑
j,k=1

〈F jk,P〉2
σq +σr −σ j −σk + µ

E jkΦ(s). (35)

If σq +σr 6= σ j +σk for q,r 6= j,k, then the equation

λ0Z−DZ− (A0Z+ZAT
0 ) = Φ0(s)P

has a solution if and only if 〈Fqr,P〉2 = 0. In this case, the solution is given by

Z = κEqrΦ0(s)+
N

∑
j,k=1

〈F jk,P〉2
σq +σr −σ j −σk

E jkΦ0(s), (36)

where the Eqr and Erq terms are omitted from the sum, and κ is an arbitrary constant.
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The constant κ can be used to choose a normalization for Z. We do not need to choose a
specific normalization for Z, so we set κ = 0 because it is convenient.

Proof. If µ 6= 0, then when we write P in the E jk basis, which is possible because P is symmetric
and {h j}

N
j=1 are complete, and make the ansatz Z(s) = Φ(s)C, where C is a constant matrix, we

arrive at the expression for m in equation (35). If µ = 0, and hence Φ(s) = Φ0(s), then we cannot
solve this equation if P has any component in the direction of Eqr. This gives the compatibility
condition 〈Fqr,P〉2 = 0. Assuming this holds, the solution is given by equation (36). It may appear
that there is over-counting in formulas (35) and (36) because E jk = Ek j, but the normalization in
(30) compensates for this.

We will now describe the outline of the perturbation analysis. In order to help us describe the
perturbation analysis we will use the definition.

Definition 5. We say a function f(s) is in Vk if it can be written as the sum of eigenfunctions of D

times constant vectors, where each of the eigenfunctions is the product of k or less ladder operators
L− j, j = 1, . . . ,n times the eigenfunction Φ0(s).

The perturbation analysis proceeds as follows. We have a zeroth-order solution M0 = EqrΦ0,
which is clearly in V0. We will see by induction , that the function Mk(s) will be in Vk.

The equation at each higher order will be of the form

λ0Mk −DMk −A0 ?Mk = −λkM0 + rk−1(s) (37)
where rk−1(s) is function that can be computed using the M j and λ j for j < k. In particular, we
have

rk−1(s) = −
k−1
∑
j=1

λ jMk− j + 〈a,s〉A1 ?Mk−1 (38)

Assuming that for j < k the functions M j(s) are in V j, then using equation (13) we can see that
the term rk−1(s) will be in Vk. We can write

rk−1(s) = Φ0(s)bk−1 + r̂k−1(s) (39)
where the term r̂k−1(s) can be written as a sum of eigenfunctions of D times constant tensors,
where none of the eigenfunctions is Φ0(s). With this in mind we see that we will be able to solve
equation (37) if and only if λk〈Fqr,Eqr〉2 = 〈Fqr,bk−1〉2, and therefore by (30)

λk =
2

1+δqr
〈Fqr,bk−1〉2. (40)

Once we have chosen λk in this way, we can solve for mk, and it will clearly be in Vk, thus allowing
us to continue the process to the next value of k by induction.
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Terms in rk−1(s) proportional to Φ0 can only arise at even steps in the process (i.e. equations
for λ2 j,M2 j) because LkΦk = −Φ0 (see Lemma 17). These terms proportional to Φ0 must satisfy
the compatibility condition 〈Fqr,P〉 = 0 as in Lemma 9.

3.2 First Order

Substituting the expansions in (31) into equation (25) and collecting terms of order ε , we arrive at
the equation for M1

λ0M1 −DM1 −A0 ?M1 = −λ1M0 +

(
n

∑̀
=1

α`L` +β`L−`

)
A1 ?M0. (41)

Lemma 10. Under the same assumptions as Lemma 9, we have λ1 = 0 and

M1 =
n

∑̀
=1

Φ`(s)C` (42)

where

C` =
N

∑
j,k=1

2β`

〈F jk,A1Eqr〉2
σq +σr −σ j −σk + µ`

E jk, (43)

and E jk are defined in (26) and Φ` defined in Definition 1.

Proof. The only term proportional to Φ0(s) is−λ1M0. But 〈Fqr,M0〉2 6= 0 because M0 = EqrΦ0(s),
so λ1 = 0.

From Lemma 9, we have that

M1 =
n

∑̀
=1

N

∑
j,k=1

β`

〈F jk,A1Eqr +EqrAT
1 〉2

σq +σr −σ j −σk + µ`

E jkΦ`(s)

=
n

∑̀
=1

N

∑
j,k=1

β`

2〈F jk,A1Eqr〉2
σq +σr −σ j −σk + µ`

E jkΦ`(s). (44)

We used the fact that F jk and Eqr are symmetric to write 〈F jk,A1Eqr +EqrAT
1 〉2 = 2〈F jk,A1Eqr〉2

3.3 Second Order

If λ and M solve (25), and have the form as in (31), we can collect terms of order ε 2 to get the
equation for M2

λ0M2 −DM2 −A0 ?M2 = −λ2M0 +

(
n

∑̀
=1

α`L` +β`L−`

)
A1 ?M1. (45)
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Lemma 11. Under the same assumptions as Lemma 9, we have

λ2 = −
2

〈Fqr,Eqr〉2

n

∑̀
=1

α`〈Fqr,A1C`〉2 (46)

Proof. With the definition of C` in (43) we have M1 = ∑n
`=1 C`Φ`(s). Using (13), (15), and (17)

when expanding 〈a,s〉A1 ?M1, the only term proportional to Φ0(s) is

−λ2EqrΦ0(s)−
n

∑̀
=1

α`A1 ?C`Φ0(s). (47)

The compatibility condition from Lemma 9 gives

λ2〈Fqr,Eqr〉2 = −
n

∑
k

α`〈Fqr,A1 ?C`〉2. = −
n

∑̀
=1

2α`〈Fqr,A1C`〉2

Theorem 1. Assume the conditions of Lemma 9. For q,r fixed, if we have Re
[
σq +σr −σ j −σk + µ`

]
>

0 for each j,k = 1, . . . ,N and ` = 1, . . . ,n, then

λ2 = 8
N

∑
j,k=1

C jkqrCqr jk

1+δqr
G(σq +σr −σ j −σk), (48)

where

C jklm =
1
4
(
δ jm〈gk,A1h`〉+δkm〈g j,A1h`〉+δ jl〈gk,A1hm〉+δkl〈g j,A1hm〉

)

Proof. From Lemma 10 we have

λ2 = −
1

〈Fqr,Eqr〉2

n

∑̀
=1

2α`

N

∑
j,k=1

2β`

〈F jk,A1Eqr〉2〈Fqr,A1E jk〉2
σq +σr −σ j −σk + µ`

= 4
N

∑
j,k=1

〈F jk,A1Eqr〉2〈Fqr,A1E jk〉2
〈Fqr,Eqr〉2

n

∑̀
=1

−α`β`

σq +σr −σ j −σk + µ`

= 4
N

∑
j,k=1

〈F jk,A1Eqr〉2〈Fqr,A1E jk〉2
1
2(1+δqr)

G(σq +σr −σ j −σk). (49)

We used 〈Fqr,Eqr〉2 = 1
2(1 + δqr), which follows from (30). To prove (48) we only need to show

that 〈F jk,A1E`m〉2 = C jk`m. But writing out 〈F jk,A1E`m〉2 we get a sum of four terms, each of the
form

tr
(
g jg

T
k A1h`h

T
m

)
= tr

(
A1h`h

T
mg jg

T
k

)
= δ jmtr

(
A1h`g

T
k

)
= δ jm〈gT

k ,A1h`〉.

This, together with (49), yields (48).
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3.4 Higher Moments

For pth marginal moments, we define the p-tensor M by

Mk1k2...kp =

∫

RN
xk1xk2 . . .xkpP(s,x, t)dx. (50)

We define the multiplication A ? M between the 2-tensor A (which is an N ×N matrix) and the
p-tensor M as the p-tensor given by

(A?M)k1k2...kp
=

J

∑
j=1

N

∑
i=1

Ak j,iMk1,...,k j−1,i,k j+1,...,kp. (51)

If we multiply (5) by xk1xk2 . . .xkp and integrate we obtain

∂tMk1...kp = DMk1...kp +
∫

RN
∇(xk1xk2 . . .xkp) · (A0 + ε〈a,s〉A1)xPdx (52)

The integral term is of the form

∇(xk1xk2 . . .xkp) ·Ax =
N

∑
m,`=1

(δmk1xk2 . . .xkp +δmk2xk1xk3 . . .xkp+

. . .+δmkpxk1 . . .xkp−1)Am`x`

=
J

∑
j=1

N

∑
i=1

Ak j,ixk1 . . .xk j−1xi,xk j+1 , . . .xkp (53)

Therefore, with the definition of A?M given in (51), can write (52) as

∂tM = DM+A0 ?M+ ε〈a,s〉A1 ?M, (54)

As mentioned before, if p = 1, then A?M is just matrix multiplication, and if p = 2, then A?M =
AM+MAT . Looking for solutions of the form M̃(s, t) = eλ tM(s), yields the equation for M(s)

λM = DM+A0 ?M+ ε〈a,s〉A1 ?M. (55)

To carry out the analysis as in Section 3, we need a basis for symmetric tensors (symmetric under
permutation of the indices) and built from the {h j}. We can use tensors of the form

E j1... jp = Sym
(
h j1 ⊗h j2 · · ·⊗h jp

)
, (56)

where the notation Sym
(
h j1 ⊗h j2 · · ·⊗h jp

)
, means to take the average of all permutations of the

tensor product of h j1 ,h j2, . . . ,h jp . The adjoint basis is F j1... jp = Sym
(
g j1 ⊗g j2 · · ·⊗g jp

)
, and the

inner product is

〈P,Q〉p =
N

∑
k1=1

N

∑
k2=1

· · ·
N

∑
kp=1

Pk1,k2,...,kpQk1,k2,...,kp. (57)

There are np,N =

(
N + p−1

p

)
distinct pth order monomials in N variables, therefore there are

np,N basis tensors. There is an analogous result to Lemma 9 for solving the perturbation equations,
and the rest of the analysis follows accordingly.
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