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Abstract

We consider the early classification of (incomplete) time-series data given a complete time-
series training set. The early classification problem arises naturally when test sample data is
collected over time, or when costs must be incurred to collect the data. For example, for missile
defense, it is important to determine the target type long before it reaches its target. A practical
goal is to assign a class label as soon as enough data is available to make a good decision. This
objective is formalized through the notion of reliability—the probability that a label assigned
to the early, incomplete data matches that assigned to the complete data, and we propose a
method to classify incomplete data only if a user-specified reliability threshold is met. Our
approach models the complete data as a random variable whose distribution is dependent on
the current incomplete data and the training data. The method differs from standard strategies
in that our focus is on determining the reliability of the early classification decision, not only
the accuracy. Proposed methods are tested on a set of open-domain time-series datasets; where
the goal is to classify the time-series as early as possible while still guaranteeing that the
reliability threshold is met.
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1 Introduction

Early classification is important any time there is a penalty for collecting additional features of the
test data. For example, in medical applications, it is beneficial to make a diagnosis after subjecting
a patient to as few tests as possible. When working with time-series data, it is beneficial to make
time-sensitive decisions as early as possible. Of course, the earliness of a decision must be balanced
with the fact that, intuitively, as more data is collected, one may make a more informed decision.

The early classification problem is a special case of the missing features problem, to which
our methods are also applicable. Generally, features may be missing because of data drop-out,
deletion, no-responses on surveys, etc. Although the experiments and emphasis in this work are
for time-series data in which features are missing only because one has yet to collect them (if
one were to wait long enough, the incomplete data would become complete), our approach is also
useful in scenarios where the data is innately missing and cannot be recovered. The classifiers we
design may be applied to any incomplete data with the guarantee that the decision made using the
incomplete data has a high probability of matching the decision that would be made if the complete
data were available. Our approach also makes it possible to answer the related question, “If we
classify based on the current incomplete data, what is the probability that the class decision will be
the same as classifying from the complete data?”

Our approach also relates to adaptive sampling and active learning, in which one chooses which
features are to be collected first, so that a decision can be made on the best features available. This
scenario is similar to the medical diagnosis example given above, in which a doctor requests future
tests based on previous results. In this work, we do not consider adaptivity, and are agnostic to the
order in which features are discovered; however, given a current set of “best” features in incomplete
data, our methods can provide guarantees on the classification results over the yet-to-be-observed
feature space.

First, we propose optimal and practical decision rules for classifying incomplete data. In Sec-
tions 3, 4, and 5 we provide the details on how to efficiently and accurately implement the proposed
practical decision rule for classifiers that use linear or quadratic discriminants, such as linear sup-
port vector machines and linear or quadratic discriminant analysis (LDA or QDA). In Section 6,
we review related work on classifying with missing features and related work on early classifica-
tion of time-series data. Experiments in Section 7 show that the proposed incomplete decision rule
consistently provides enhanced reliability over the state of the art in classifying incomplete data.
We further discuss the results and some open questions in Section 8.

This paper significantly extends a prior conference paper [1], where we tackled the same prob-
lem but proposed a more conservative decision rule. Here, we propose a more optimal, but still
computationally tractable, decision rule. We also show how the new rule can be used with differ-
ent kinds of classifiers, show that our approach can be applied to different features, and provide
substantially more analysis and experimental results.

9



Figure 1: The figure illustrates incomplete time-series classification. The incomplete time signal
is shown in green. The complete signal is treated as random, and its distribution is estimated
assuming that it is iid with the training signals. From the pdf of the complete data one can estimate
the pdf of the feature data p(x|z), and, using this distribution, one can check whether or not a
reliable decision can be made.

2 Incomplete Decision Rules

Let ĝ(x) be a classifier function that assigns a class label to test sample x. However, suppose that
at test time, one is given an incomplete data given as a vector z in place of x. We wish to classify
z if it provides enough data to make a good decision, otherwise, we delay making a decision until
more data is available. To that end, we consider decision rules that answer the question: “If we
classify z, can we be assured that, with some minimum probability threshold, the same class label
would be chosen when classifying x?” We use the term reliability to mean the probability that the
class label assigned to z matches that assigned to x.

To estimate reliability, we model the classification features derived from the complete data as a
random variable X that is jointly distributed with Z — a random variable modeling the incomplete
data. Given a desired reliability τ ∈ [0,1] and a realization of the incomplete data z, an ideal
incomplete decision rule is to classify as class g if

P(X s.t. ĝ(X) = g|Z = z) =
∫

x s.t. ĝ(x)=g

p(x|z) dx≥ τ, (1)

and otherwise to wait for more data. Figure 2 illustrates this rule.

The ideal condition in (1) could be checked in several ways. A straightforward approach is to
compute the integral directly and see if it is greater than or equal to τ . An alternative approach is
to consider all sets A in the domain of X such that P(X ∈ A|Z = z)≥ τ , and see if ĝ(x) maps all x
in one such set to a single class g. In general, we expect these approaches to be computationally
intractable.

We propose that a more conservative, but computable, incomplete decision rule is to classify
as class g if

ĝ(x) = g for all x ∈ A for some set A such that P(X ∈ A|Z = z)≥ τ. (2)

10



Figure 2: Left: A two-dimensional feature space and a linear class decision boundary. The mass
of X lies mostly to the left of the decision boundary. For values of τ that are smaller than the
mass of X that falls to the left of the decision boundary, the ideal incomplete decision rule would
choose to classify rather than wait. Right: The entire mass of X falls on one side of the decision
boundary, and thus the ideal incomplete decision rule would choose to classify rather than wait for
any value of τ . On the other hand, the computable incomplete decision rule constructs some set A
that captures a fraction τ of the mass of X , then requires that entire set A to lie on one side of the
decision boundary. For the choice of A shown here, the set A crosses the decision boundary, and
thus the computable decision rule would choose to wait for more data.

Rule (2) differs from (1) in that only one set A that contains at least τ measure of X must be
checked. This rule is more conservative than (1) because it does not check all sets A, and thus (1)
could be satisfied without (2) being satisfied (but not vice-versa).

Implementing the proposed rule in (2) requires three steps. First, one must estimate the condi-
tional density p(x|z). Second, an appropriate set A must be constructed. Third, one must compute
the probability and verify that the threshold τ in (2) is satisfied. We first discuss the construction of
a set A in Section 3, and show that our construction only requires estimates of the first and second
conditional moments of X . Then in Section 4, we show how rule (2) can be efficiently checked for
classifiers that have linear or quadratic class discriminant functions. We delay the discussion of
how to estimate the necessary moments of X until Section 5.
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Figure 3: The sets A containing mass τ of the conditional p.d.f. of X using the three different
construction methods proposed Section 3.

3 Defining a Set A that Contains Measure τ of X

To implement the decision rule (2), one must construct a set A that contains at least τ measure of
X given Z = z. In this section we propose three ways to construct a set A. Figure 3 compares these
three constructions.

3.1 Chebyshev Construction for Set A

The first construction for set A assumes only that the distribution p(x|z) has finite first and second
moments which can be estimated. Then a set A may be constructed using the multidimensional
Chebyshev inequality, which states that for X ∈Rd with known mean m and covariance R, and any
α > 0

P
(
(X−m)T R−1(X−m)≤ α

2)≥ 1− d
α2 .

Thus to satisfy P(X ∈ A|Z = z)≥ τ , define

A =

{
x s.t. (x−m)T R−1(x−m)≤ d

1− τ

}
. (3)

The set A defined by (3) is non-empty for τ ∈ (−∞,1], although τ ≤ 0 does not provide an infor-
mative bound for classifier reliability.

3.2 Naive Bayes Constructions for Set A

The Chebyshev construction given in the previous section can be overly conservative, as it makes
no assumptions about the conditional distribution of X other than a finite mean and covariance. If
one assumes more about the distribution, a tighter constraint set A may be found that results in a less

12



conservative decision rule, and therefore earlier classification for the same reliability requirement
τ . For example, if the conditional distribution is assumed to be Gaussian1, then the quadratic set
A, centered about the mean, that covers τ measure of X is

A =
{

x s.t. (x−m)T R−1(x−m)≤ erf(τ)
}
, (4)

where one must compute the inverse cdf to determine the value erf(τ) to achieve a set A with
measure τ . For a multi-dimensional Gaussian, computing the inverse cdf for (4) is non-trivial.
Equation (4) can be simplified by making the conservative näive Bayes assumption that the com-
ponents of X are independent, and thus R is diagonal. Then the quadratic function in (4) be-

comes ∑
d
`=1

(
x(`)−m(`)√

R(`,`)

)2

. Under the independent Gaussian assumption, ∑
d
`=1

(
X(`)−m(`)√

R(`,`)

)2

is a

chi-squared random variable with d degrees of freedom; thus, the erf(τ) function in (4) is easily
computed using the inverse cdf of a chi-squared random variable.

A related option is to force the set A to be a box that is centered about the mean. Again
employing the näive Bayes assumption that elements of X are independent, one may express
p(x|z) = ∏

d
`=1 p(x(`)|z). Therefore, a set A may be defined as

A = {x s.t. x(`) ∈ [m(`)− sτ(`),m(`)+ sτ(`)] ∀ `= 1, ...,d} , (5)

where sτ is a vector defining the width of the box in each dimension such that the total measure
of the box is τ . In this paper, we implement this constraint by assigning each dimension equal
measure τ1/d while assuming that each marginal distribution X(`) is Gaussian.

Both sets in (4) and (5) employ the same assumptions about the conditional distribution of
X , but (4) finds the ellipsoidal footprint of the Gaussian that has measure τ , while (5) treats the
dimensions completely independently, giving each of the marginals measure τ1/d .

1The Gaussian assumption is often justified by a maximum entropy argument or a simplicity argument.
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4 Efficient Solutions for Linear or Quadratic Discriminants

In this section, we show that the incomplete data classification rule (2) with the constraint sets A
proposed in Section 3 can be computed efficiently for classifiers of the form

ĝ(x) = argmax
g

fg(x), (6)

where fg(x) is a linear or quadratic discriminant function for the gth class, and according to (6),
the classifier assigns x to the class with maximum discriminant. For example, the linear support
vector machine (SVM) has a linear discriminant, while the quadratic discriminant analysis (QDA)
classifier has a quadratic discriminant [24].

Nearest-neighbor classifiers using a Euclidean (or Mahalanobis) distance have a discriminant
that over the set x ∈ A requires taking the minimum of a set of quadratic discriminants:

fg(x) = min
xi:yi=g

(x− xi)
T (x− xi). (7)

An optimal method for checking the incomplete decision rule (2) for this discriminant is an open
question. A conservative reliability decision can be made by treating each sample as its own class
in (6). That is, let fi(x) = (x− xi)

T (x− xi), solve (6) for the resulting quadratic discriminant, and
then classify as the class yi. A computationally simpler approach (but one that is not strictly conser-
vative), is to only consider each class’s nearest neighbor to the posterior mean, which produces one
quadratic discriminant per class. In experiments, we do something similar to the latter approach
using a local QDA classifier.

We begin with the two-class problem, and then show how this rule can be extended to multi-
class problems.

4.1 Two-class problems

We first consider a two-class problem, where the set of class labels is G = {1,2}. Let f1(x) and
f2(x) be the discriminants for classes one and two, and define

f (x) = f2(x)− f1(x).

An equivalent classifier to (6) using only f (x) can be defined by noting that f (x) = 0 defines the
decision boundary between classes 1 and 2. Therefore, classification rule (6) is equivalent to

ĝ(x) =
{

1 if f (x)≤ 0
2 if f (x)> 0 . (8)

Then the proposed incomplete data decision rule (2) is implemented

ĝ(z) =


1 if max

x∈A
f (x)≤ 0

2 if min
x∈A

f (x)> 0

no decision otherwise.

(9)
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Figure 4: Three different scenarios for incomplete data classification. In the leftmost plot, the
classifier withholds making a decision. In the center and rightmost plots, A lies completely on a
single side of the decision boundary, so the classifier assigns a label to the incomplete data.

Note that the decision rule (9) is dependent on the incomplete data through the dependence of A
on z.

The decision rule in (9) classifies the incomplete data if the constraint set A lies completely
on one side of the decision boundary or the other. If the set A lies across the decision boundary,
then the rule withholds making a decision. The three different conditions in (9) are shown for a
quadratic discriminant (and hence quadratic decision boundary) and a quadratic construction of
the set A in Figure 4.

Linear Discriminants

In order to efficiently check (9), we must be able to efficiently compute the maximum and minimum
of f (x) over the set x ∈ A. For linear discriminant functions, f (x) is also linear. Then for a
quadratic set A, such as the Chebyshev or näive Bayes quadratic sets A given in Section 3, finding
the maximum and minimum are quadratically constrained linear programs:

max
x∈A

f (x) =max
x

β
T x+b (10)

s.t. (x−m)T R−1(x−m)≤ δ

min
x∈A

f (x) =min
x

β
T x+b (11)

s.t. (x−m)T R−1(x−m)≤ δ .
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Proposition 1: The solutions to (10) and (11) are, respectively

max
x∈A

f (x) = β
T m+

√
δ ‖ R1/2

β ‖2 +b

min
x∈A

f (x) = β
T m−

√
δ ‖ R1/2

β ‖2 +b.

The proof is given in Appendix A.

For a linear set A such as the näive Bayes box constraint set given in (5), the maximum and
minimum are

max
x∈A

f (x) =max
x

β
T x+b (12)

s.t. m(`)− sτ(`)≤ x≤ m(`)+ sτ(`) ∀ `= 1, ...,d

min
x∈A

f (x) =min
x

β
T x+b (13)

s.t. m(`)− sτ(`)≤ x≤ m(`)+ sτ(`) ∀ `= 1, ...,d.

The solution of (12) is β T m+ |β T |sτ +b, and the solution of (13) is β T m−|β T |sτ +b.

Quadratic Discriminants

If the class discriminant functions are quadratic, then f (x) = f2(x)− f1(x) will also be quadratic
and, thus, can be written

f (x) = (x− v)TV (x− v)+b. (14)

Since (14) is the difference of two quadratics, V will generally be indefinite even if f2(x) and f1(x)
are both positive semi-definite.

First consider finding the maximum and minimum of (14), as required by the incomplete de-
cision rule (9), over a quadratic constraint set A. Since V is indefinite, this is a non-convex op-
timization problem. However, strong duality holds for finding the minimum or maximum of any
quadratic function subject to a quadratic constraint, as shown by [5, Appendix B]. The dual prob-
lem is a semi-definite program (SDP), and can therefore be solved using convex optimization such
as an interior point methods. However, in our experiments, we found the SDP solution to be
prohibitively slow. Therefore, we instead propose to use the two-step gradient descent approach
described in Appendix B. [30] showed that there is at most one local non-global solution to this
non-convex problem. Also, since we need only know if the minimum or maximum of f (x) is less
than or greater than zero, we can often stop the gradient descent before convergence. Figure (5)
shows a run-time comparison between the SDP solution solved using CVX [22] running SeDuMi
[42] and the gradient-descent solution.

Now consider finding the maximum and minimum of (14) over the box set A. An efficient
solution is obtained by first performing a change of variables that diagonalizes V . Define y =V 1/2x
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Figure 5: The left figure shows the time required by the SDP vs gradient descent solutions for
different reliabilities. The right figure verifies that the solution for the methods is identical.

and w = V 1/2v, then f (x) = f (y) =‖ y−w ‖2 +b. After this change of variables, we can greatly
simplify the maximum and minimum computations required by the incomplete decision rule (9)
by making the näive Bayes assumption on the random variable Y = V 1/2X as opposed to on X .
Defining the mean of Y as my =V 1/2m,

max
x∈A

f (x) = max
y∈A
‖ y−w ‖2 +b (15)

min
x∈A

f (x) = min
y∈A
‖ y−w ‖2 +b, (16)

with
A =

{
y s.t. y(`) ∈ [my(`)− sτ(`), my(`)+ sτ(`)], ∀ `= 1, ...,d

}
,

where the sτ(`) are determined by the inverse cdf of Y (`).

After this change of variables, the y that maximizes (15) is found by assigning each y(`) to the
edge of the box that maximizes the distance from w(`). Similarly, the y that minimizes (16) assigns
y(`) = w(`) if w(`) ∈ [my(`)− sτ(`), my(`)+ sτ(`)]. Otherwise, y(`) is assigned to the edge of the
box that minimizes the distance to w(`).

4.2 Multi-class Classifiers

We now extend the results of the previous section to multi-class classifiers. For multi-class classi-
fiers, the classification rule (6) can be expressed as

ĝ(x) = c if fc(x)− fh(x)≥ 0 for all h 6= c. (17)

Using (17), the proposed incomplete data classification rule (2) can be written

ĝ(z) =

{
c if min

x∈A
fc(x)− fh(x)≥ 0 for all h 6= c

no decision otherwise
. (18)

That is, classify z as class c if the set A lies completely within the decision region for some class c,
and do not decide at the requested reliability if the set A straddles a decision boundary.
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If there are G total classes, then there are 2
(G

2

)
possible checks, minx∈A fc(x)− fh(x) ≥ 0,

implied by (18). However, if the set A contains the posterior mean m (as it does in all of our
proposed constructions), then a decision can be made with G−1 checks:

Guess: Let c = argmax
g

fg(m).

Check: Sequentially check if minx∈A fc(x)− fh(x)≥ 0 for h = 1,2, . . . ,G, h 6= c. If the check fails
for any h, stop, and output the result no decision. If the check holds for all h, then classify early as
class c.

In the next section, we prove that regardless of the construction of set A, one must compute at
most 2(G−1) checks of minx∈A fc(x)− fh(x)≥ 0.

4.3 General Multi-class Decision Process

We provide a provably efficient multi-class decision process for arbitrary constructions of the
constraint set A. We say that class c dominates class h and that class h is dominated by c if
fc(x)− fh(x) ≥ 0 for all x ∈ A. If neither class dominates the other one, then the two classes are
called tied. To classify the incomplete data z early as class c, class c must dominate all other classes.

Proposed Decision Process:

Initialize: Begin with all G classes labeled candidate.

Compare: Choose any two classes c and h that are labeled candidate and check whether or not
minx∈A fc(x)− fh(x) ≥ 0. If yes, then label h as dominated. If no, then perform a second check
to see if minx∈A fh(x)− fc(x) ≥ 0, and if so then label c as dominated, and otherwise label both
classes as tied. Continue this process until fewer than two classes are labeled candidate. If
no classes remain that are labeled candidate, then output no decision. If one class is labeled
candidate, then proceed to the Final Comparison.

Final Comparison: Check if the last class labeled candidate dominates every class labeled tied.
If yes, classify the incomplete data as the class labeled candidate, if no, output no decision.

Proposition 2: The above decision process correctly determines the dominating class or that there
is no dominating class.
The proof is given in Appendix A.
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Proposition 3: Given G classes, the above decision process requires at most 2(G−1) and at least
G−1 checks of minx∈A fh(x)− fc(x)≥ 0.
The proof is given in Appendix A.
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5 Estimation of the Complete Test Data Distribution

In order to construct the sets A in Section 3, one must estimate the mean m and covariance R of
the complete test data X . We do this by leveraging the incomplete data about the test signal that is
currently available along with the prior knowledge of the structure of the test signal that is available
in the corpus of training data. We present two estimation methods: 1) joint Gaussian estimation,
and 2) Gaussian mixture model (GMM) estimation. These approaches are similar to those used in
missing feature imputation, for example in speech recognition as described by [34]. However, our
approach differs from that of missing feature imputation in that the latter constructs only a point
estimate of the unknown data, whereas we construct estimates of the mean and covariance of the
unknown data.

5.1 Joint Gaussian Estimation

For joint Gaussian estimation, we assume that the complete data X is distributed jointly Gaussian
with the incomplete data Z. Therefore, the model is[

X
Z

]
∼N

([
x̄
z̄

]
,

[
Σx,x Σx,z
Σz,x Σz,z

])
. (19)

We estimate the model parameters in (19) from the training data. The mean and covariance param-
eters of X conditioned on the realization of the incomplete data Z = z are

m = ˆ̄x+ Σ̂x,zΣ̂
−1
z,z (z− ˆ̄z)

R = Σ̂x,x− Σ̂x,zΣ̂
−1
z,z Σ̂z,x,

where ˆ̄x, ˆ̄z, and Σ̂ are the estimated parameter values.

5.2 GMM Based Estimation

We assume that the joint distribution of the complete data, X , and the incomplete data, Z, is a
Gaussian mixture model, where the elements of the Gaussian mixture are the class-conditional
distributions. Under these assumptions the model is[

X
Z

]
∼ ∑

g∈G
w(g)p

([
x
z

]
|g
)
, (20)

where w(g) is the weight of the class g Gaussian and

p
([

x
z

]
|g
)
= N

([
x̄g
z̄g

]
,

[
Σx,x(g) Σx,z(g)
Σz,x(g) Σz,z(g)

])
.

We can again estimate the parameters of the model (the means, covariances, and weights) from the
training data.
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Let ˆ̄xg, ˆ̄zg, and Σ̂(g) be the estimated model parameters for class g, and define

mg = ˆ̄xg + Σ̂x,z(g)Σ̂−1
z,z (g)(z− ˆ̄zg)

Rg = Σ̂x,x(g)− Σ̂x,z(g)Σ̂−1
z,z (g)Σ̂z,x(g)

p(g|z) =
wg p(z|G = g)

∑h∈G wh p(z|G = h)
.

Given a realization Z = z, the conditional mean of X can be computed as

m = E[X |z] = ∑
g∈G

E[X ,G|z] = ∑
g∈G

mg p(g|z).

Furthermore, as shown in Appendix C, the condtional covariance of X is

R = ∑
g∈G

p(g|z)
(
Rg +mgmT

g
)
− ∑

q∈G
∑

h∈G
mqmT

h p(q|z)p(h|z).
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6 Related Work

We detail the related work in early classification and missing features, then we contrast the pro-
posed with optimal stopping, feature selection, online and incremental learning, and sequential
hypothesis ratio testing.

6.1 Other Early Classification Work

Xing et al. [49] considered the problem of making an early prediction on time-series data that
matches that of a full length one nearest-neighbor classifier. Suppose that the labeled training
dataset is {(xi,gi)}n

i=1, where xi ∈ Rd . Their approach, called early classification on time-series
(ECTS), is motivated by the idea of the minimum prediction length (MPL) of a training time-series
xi. Define xi(1 : t) ∈Rt to be the first t samples of xi. Furthermore, define, RNN(xi(1 : t)) to be the
reverse nearest neighbors of xi(1 : t) which is the set of training samples that choose xi to be their
nearest neighbor at time t. The MPL of xi is the smallest time index k such that for all k≤ `≤ d the
following holds RNN(xi(1 : `)) = RNN(xi(1 : d)) 6= /0. By this definition, the MPL is the smallest
time index at which the reverse nearest neighbors of xi do not change as the rest of the time-series
is revealed. At test time, a training point xi can be used to assign a label to a test sample x(1 : t)
once t ≥MPL(xi), the minimum prediction length of xi.

The authors found that the above procedure was too conservative; therefore, they proposed a
slightly modified way to find the MPL for ECTS. They first clustered the training data using a
hierarchical clustering method and then selected the MPL for each training time-series depending
on its cluster membership. They also introduced a parameter to control the ‘earliness’ of their
approach called minimum support – a ratio that varies between zero and one, with zero resulting in
the earliest classifier. However, the minimum support parameter is different from our τ parameter
in that it does not provide an explicit guarantee on the reliability of the early decision.

Xing et al. cite [36] as the only existing study mentioning early classification on time-series
data. [36] propose to classify a time-series using a literal based classifier, where a literal is a
descriptor describing what happens during a specified interval of the time-series. For example, the
literal increases would be set to one if the time-series increases during the specified interval, and
would be set to zero otherwise. The authors mention that for early classification of time-series
some of the literals will not yet have a value because the interval that they are measured in has not
occurred yet. The authors propose to ’omit’ these literals from the classifier in order to classifier
early. This approach to early classification is the näive approach, as it does not consider whether
or not a reliable decision can be made with the incomplete data.

6.2 Related Work on Missing and Noisy Features

Another related body of work is imputing (estimating) missing features. If missing features occur
in the training data, then standard methods of classifier training cannot be used. One method of
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dealing with this problem, called single imputation, is to fill in the missing features with their
estimated values. The missing features can be estimated using a multivariate regressor that is
trained using the subset of training data with no missing features. [39] and [37] review missing
feature methods for training data.

On the other hand, if features are missing in the test data, then they do not necessarily need to be
imputed. A classifier can be trained for this test data by removing the same features that are missing
in test data from the training data prior to classifier training. However, this approach requires the
classifier to be retrained for each different subset of missing test features. This retraining can
be avoided by estimating the missing features and then classifying the test data with the missing
features filled in by their estimates. Our method differs from methods that classify the imputed test
features in that we use the estimated mean and variance in order to measure the reliability of a test
decision made with the incomplete data. Our work is complementary to imputation methods, and
different methods than the ones we used in Section 5 could be easily substituted into the proposed
approach.

If features are noisy rather than missing, then estimating the clean feature values can improve
test accuracy. This problem arises, for example, in automatic speech recognition (ASR) systems
when the test signal is masked by noise [7, 33, 34]. [34] compare MAP estimates for noisy features
in ASR systems using Gaussian and GMM based estimators with models similar to those that we
describe in Section 5.

6.3 Optimal Stopping Rules

Quoting [17], “The theory of optimal stopping is concerned with the problem of choosing a time to
take a given action based on sequentially observed random variables in order to maximize an ex-
pected pay-off or to minimize an expected cost.” While the high-level goal is the same, the optimal
stopping perspective requires specification of misclassification costs and delay costs, which are
often difficult to specify. Given such costs, an optimal stopping rule approach would attempt to es-
timate the probability of each class given the current incomplete data, and determine the expected
costs of making a decision or waiting.

6.4 Feature Selection

A related problem in classification is to determine the best subset of features to use in classification.
For example, the classic forward selection method sequentially adds in features based on their
marginal value. Different stopping rules have been proposed to decide when to stop sequentially
adding the features [8]. Generally stopping rules are not applicable to the problem we focus on
because they assume that all increasing sets of features can be compared, rather than that one only
has the incomplete set of features and must make a decision. In addition, stopping rules are based
only on the training data statistics, and from our perspective are strictly suboptimal in that they do
not consider the current incomplete data.
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6.5 Online and Incremental Learning

In this paper we assume that a fixed set of training data is given, and that incremental features of
a test sample become available. These assumptions differ from the usual set-up of online learning
(also known as incremental learning), which assumes that incrementally more training data be-
comes available to train the classifier over time (e.g. [31], [14], [10]). Also assuming the online
learning set-up, [19] propose a stopping rule for deciding when enough training samples have been
received to classify with confidence.

6.6 Sequential Hypothesis Testing

The sequential probability ratio test (SPRT) [46] is a greedy alternate to the proposed work, de-
signed for use with probabilistic models of two hypotheses. In the context of binary classification,
and a generative model p(y|xk), it accumulates the log-likelihood ratio:

Sk = Sk−1 + log p(y1|xk)− log(y2|xk), (21)

and if Sk exceeds a preset threshold t1, the signal would be called for class 1, and if Sk goes below a
preset negative threshold t2, the signal would be called for class 2. The thresholds are set to achieve
desired error levels on class 1 and class 2 respectively.

[2] expanded SPRT for the multi-hypothesis case and applied it to linear discriminant analysis
classification (in which each class is assumed to be drawn from a distribution with the same co-
variance matrix) for a different problem than the one treated here: given a sequence of iid samples
from one class, he prescribed how to use SPRT to give a rule for how and when to determine the
class.

A key difference between the proposed approach and the SPRT approach is that (21) is greedy:
new features do not change the contribution to the log-likelihood already made by previous fea-
tures, which stems from the standard SPRT assumption successive observations are independent.
But the classifiers we consider in this paper are not trained to consider the features independently.
Further, we assume correlations between the features in order to estimate a probability distribution
over the unknown part of the feature vector, which we use to define a constraint set.
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Time-series Number of Training Test
Dataset Length Classes Samples Samples
Chlorine Concentration 166 3 467 3840
Italy Power Demand 24 2 67 1029
Face (All) 131 14 560 1690
Medical Images 99 10 381 760
Non-Invasive Fetal ECG 1 750 42 1800 1965
Non-Invasive Fetal ECG 2 750 42 1800 1965
Starlight Curves 1024 3 1000 8236
Swedish Leaf 128 15 500 625
Synthetic Control 60 6 300 300
Two Patterns 128 4 1000 4000
U Wave Gesture Library X 315 8 896 3582
U Wave Gesture Library Y 315 8 896 3582
U Wave Gesture Library Z 315 8 896 3582
Wafer 152 2 1000 6174
Yoga 426 2 300 3000

Table 1: Time-series Datasets

7 Experiments

Section 7.1 details the datasets, experimental set-up, and classifiers used. We first compare the
proposed methods to construct sets A of measure τ , reported in Section 7.2, and the proposed
estimation methods for the moments of PX |z, reported in Section 7.3. Then in Section 7.4, we
show that applying a dimensionality reduction method can greatly reduce the computation needed
at test time. Lastly, we compare our recommended reliable classifier to other approaches to early
classification. Complete experimental code can be downloaded from the publications page of
http://idl.ee.washington.edu/.

7.1 Experimental Set-up and Details

We demonstrate performance using all of the time-series datasets available on the UCR Time-
Series Classification and Clustering Page [26] that have at least five hundred test samples and at
least 15 training examples per class when this paper was written. We use the given training and
test splits, so all results can be reproduced. We also use the Synthetic Control dataset from this
repository, a dataset of Gaussian data that has only three hundred test samples, to further illustrate
the differences between the constraint sets and estimation methods that we have described for the
proposed incomplete decision rule. Table 1 gives details for the used datasets.

The time-series classification experiments are performed as follows. The test dataset consists
of n sampled time-series vectors and corresponding labels {xi,gi}n

i=1, with xi ∈ Rd and g ∈ G . At
time t, the incomplete data for the ith test time-series is zi ∈ Rt , the first t samples of xi. At each
time t we check the proposed incomplete decision rule and classify zi if the reliability condition is
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met for τ . We plot results for a set of choices of τ .

Let ti(τ) be the minimum time at which the ith test signal can be classified with reliability con-
straint τ , and let ĝ(zi(τ)) be the class label assigned to zi at this time. We measure the test reliability
as 1

n ∑
n
i=1 I(ĝ(zi(τ)) = ĝ(xi)), where ĝ(xi) is the label assigned to the complete data and I(·) is one

if the argument is true and zero otherwise. We also measure the average classification time as the
mean of the ti(τ). Ideally, we would like to classify with the smallest average classification time
while still meeting reliability requirement τ .

We perform incomplete classification experiments with two different classifiers. The first clas-
sifier is local QDA [20]. Local QDA learns the mean and covariance for the class g discriminant
function for test point x, fg(x), by estimating them using the k nearest class g training points to
test point x. We choose k ∈ {1, 2, 4, 8, 16, 32, 64, 128} by cross-validation on the training data.
In our implementation of local QDA, we use a diagonal covariance matrix, and we regularize the
covariance estimate by adding 10−4I, where I is the identity matrix. Since we do not have the com-
plete data x, we instead estimate the mean and covariance for fg(x) by finding the nearest class g
neighbors to the mean of X . The second classifier that we use is a linear SVM which we implement
using LibSVM [6] with default settings.

7.2 Comparison of Construction of Sets of Measure τ

We first compare the three set construction methods proposed Section 3, the Chebyshev set (3), the
Gaussian näive Bayes quadratic set (4), and the Gaussian näive Bayes box set (5).

We vary the reliability parameter between four values τ = [0.001, 0.1, 0.25, 0.9], and we per-
form prediction using the jointly Gaussian model (19). Figure 6 plots the results for the Synthetic
Control, Medical Images, and Two Patterns datasets. In all cases, the empirical reliability rate
exceeds the reliability requirement τ . Additionally, these plots verify that the Chebyshev set is the
most conservative, as it waits the longest to classify the test data, and the näive Bayes quadratic set
is the least conservative.

Table 2 compares the average testing time per test sample for the three different constraint sets
when τ = 0.9. This table shows that the näive Bayes box set is the least computationally complex,
followed by the näive Bayes quadratic set, and finally the Chebyshev set.

Local QDA Linear SVM
Chebyshev Quadratic Box Chebyshev Quadratic Box

Synthetic Control 1.8 0.7 0.4 0.4 0.3 0.3
Medical Images 27.1 2.7 1.4 1.9 1.0 0.8
Two Patterns 12.45 2.0 1.0 1.8 0.5 0.3

Table 2: Average test time per sample, in seconds, for the three different constraint sets.
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Figure 6: Average classification time vs test reliability for local QDA (left column) and linear
SVM (right column) using jointly Gaussian prediction. The symbols correspond to choices of
τ ∈ {0.001, 0.1, 0.25, 0.9}.

7.3 Comparison of Estimation Methods

In this section we compare the performance of reliable incomplete classification using jointly Gaus-
sian estimation (19) to that using GMM estimation (20). We use the same classifiers and values
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Figure 7: Average classification time vs test reliability for local QDA (left column) and linear SVM
(right column) using the näive Bayes quadratic constraint set with τ varied between [0.001, 0.1,
0.25, 0.9].

for τ as given in the previous section.
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Local QDA Linear SVM
Joint Gaussian GMM Joint Gaussian GMM

Synthetic Control 0.7 0.9 0.3 0.7
Medical Images 2.7 5.5 1.0 2.7

Two Patterns 2.0 3.4 0.5 0.8

Table 3: Average test time per sample, in seconds, for the two different estimation methods.

Figure 7 plots the average classification time vs. test reliability for the jointly Gaussian and
GMM estimation methods using the näive Bayes quadratic constraint set. The figure shows that
on the Synthetic Control and Medical Images datasets, the GMM method dominates the jointly
Gaussian over all τ values for both classifiers. On the Two Patterns dataset with local QDA classi-
fication, the GMM method is not uniformly better than the jointly Gaussian method.

Table 3 compares the total testing time of the two approaches, and as expected, the GMM
method requires more test time than the simpler jointly Gaussian method.

7.4 Dimensionality Reduction Features

An advantage of our reliable incomplete classification approach is that it can use any features de-
rived from the data for which we can estimate the mean and covariance. As an example alternative
to using the time-series samples as the features, we select a smaller feature set by first prepro-
cessing the time-series using supervised linear dimensionality reduction. Linear dimensionality
reduction finds a matrix B ∈R`× d, ` < d that maps the data from d-dimensional to `-dimensional
space. Supervised dimensionality reduction uses the label information in the training data to find
a reduced space where the data is also separated by class.

When using linear dimensionality reduction, the complete data becomes a vector y = Bx ∈ R`

as opposed to x∈Rd . Let Y be a random variable representing the distribution of the complete data.
Due to the linear relationship Y = BX , it is straighforward to compute the mean and covariance
parameters of Y using the models described in Section 5.

Linear dimensionality reduction can provide two advantages over classifying the time-series
features. First, it can diminish the impact of noisy or non-discriminative features in the time-
series data, thus providing increased accuracy. Second, reducing the number of features reduces
the computational complexity. For a time-series with d samples, there are d− t unknown samples
at time t. Thus, if we simply use the time-series samples as the features for classification, the
optimization problem that the reliable incomplete classifier must solve has d− t free variables. For
a long time series, this can cause the computational complexity to become extreme when t is small.
However, performing linear dimensionality reduction reduces the number of unknowns to ` which
can greatly reduce the number of variables in the optimization for reliable classification.

We use local discriminative Gaussian (LDG) dimensionality reduction [32] to learn B. We
choose LDG dimensionality reduction because 1) it can separate multi-modal data, 2) the solution
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Time-series Number of Test time LDG test time
Dataset length LDG features at t=1 (ms) at t=1 (ms)
Chlorine Concentration 166 42 76 4
Italy Power Demand 24 2 2 1
Face (All) 131 30 40 2
Medical Images 99 11 18 2
Non-Invasive Fetal ECG 1 750 30 6,107 4
Non-Invasive Fetal ECG 2 750 23 5,789 3
Starlight Curves 1024 26 15,697 2
Swedish Leaf 128 20 35 2
Synthetic Control 60 7 9 1
Two Patterns 128 22 31 2
U Wave Gesture Library X 315 12 418 2
U Wave Gesture Library Y 315 6 382 1
U Wave Gesture Library Z 315 10 393 2
Wafer 152 17 55 2
Yoga 426 26 945 2

Table 4: Time-series length and the number of features after LDG dimensionality reduction as
well as a comparison of the testing time, in milliseconds, required to perform reliable local QDA
classification with the näive Bayes quadratic constraint set and jointly Gaussian estimation. The
test time shown measures the average time, per test sample, to perform reliable classification at
time t = 1. Therefore, this is a worst case test time in terms of real-time performance as the
number of unknowns in the optimization problem for reliable classification is maximized at time
t = 1.
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is fast, requiring only a maximal eigenvalue decomposition, and 3) it has been shown to work well
even when few training samples are provided and the input dimensionality is large. Furthermore,
we can choose the best input dimensionality by performing cross-validation on the training dataset
to find a reduced space that is both small and accurate. Table 4 shows the dimensionality of
the training data after LDG dimensionality reduction. The table also compares the testing time
required to perform reliable local QDA classification with the näive Bayes quadratic constraint set
with jointly Gaussian estimation at time t = 1 with and without LDG dimensionality reduction.
On the datasets with more than three hundred time-series samples, using LDG dimensionality
reduction results in an orders of magnitude decrease in the testing time.

7.5 Comparison to Other Methods

In this section, we compare the performance of our reliable incomplete data classifier to ECTS2

[49] and several baselines. For all experiments in this section, we use the näive Bayes quadratic
constraint set because it proved to be uniformly better than the box constraint set across all experi-
ments in Section 7.2, while not being as overly conservative as the Chebyshev set. We also use the
jointly Gaussian estimation method as it is faster to compute than the GMM method, particularly
for the long time-series with many classes (the three U Wave Gesture Library datasets and two
Non-Invasive Fetal ECG datasets). We also only show results for local QDA, as the reliable local
QDA classifier classified earlier than reliable SVM in all experiments of Sections 7.2 and 7.3.

ECTS trades off between the objectives of classifying early and ensuring that early labels meet
final labels by using a parameter, MS, that varies between zero and one, with zero resulting in
the earliest classification time. However, we emphasize that this parameter is not the same as our
reliability parameter τ , in that it provides no guarantee on reliability of the early predictions, but
is instead a knob that the user can tune to trade off between earliness and reliability. [49] set
this parameter to 0 in the majority of their experiments. We compare to ECTS by varying this
parameter MS ∈ {0,0.05,0.1,0.2,0.4,0.8}.

We also compare to the performance of two baseline methods that we call Fixed-time local
QDA and Fixed-time 1-NN. These methods use no predictive power, but instead classify all test
signals at some user specified time: t samples.

The reliability results are shown in Figures 8 and 9. Reliable incomplete local QDA classi-
fication and reliable incomplete local QDA classification with LDG features perform well across
all experiments. Reliable local QDA using the time series samples as features (the red line in the
plots) dominates fixed-time local QDA in test reliability for all datasets over all values of τ . The
only times that reliable local QDA with LDG features fails to dominate fixed-time local QDA are
when τ = 0.001 on the Italy Power Demand, U Wave Gesture Library Y, and Wafer datasets.

We also note that the leftmost pink circle in these plots is the earliest possible average classi-
fication time that ECTS can achieve, as MS = 0 is the smallest possible value for the minimum
support parameter. On the other hand, reliable early classification can achieve earlier times than

2The authors graciously provide code for ECTS at http://zhengzhengxing.blogspot.com/p/research.html.
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those shown in the figures by setting τ < 0.001. Therefore, if someone wanted to set τ by cross-
validation on the training dataset, the reliable incomplete classifier offers more flexibility than
ECTS.

Figures 10 and 11 plot the test accuracy of the various approaches. The accuracy plots show
that for some datasets, local QDA achieves higher accuracy than 1-NN; therefore, ECTS suffers in
comparison to reliable local QDA due to the fact that it attempts to match a less accurate classifier.

The accuracy plots also show that although ECTS is typically more reliable than fixed-time
1-NN, it is less accurate for at least one value of MS on twelve of the fourteen datasets. On the
other hand, reliable local QDA using the time-series samples as features is less accurate than fixed-
time local QDA on only the Medical Images and Chlorine Concentration datasets. However, on
the Chlorine Concentration dataset, reliable local QDA with LDG features exceeds the accuracy of
fixed-time local QDA. Furthermore, we found that reliable local QDA classification using GMM
estimation (not shown) exceeds the accuracy of fixed-time local QDA on the Medical Images
dataset. The proposed reliable classification approach can be used with a wide variety of features,
classifiers, and estimation methods in order to maximize accuracy for a particular application.

Finally, the accuracy in the Starlight Curves dataset of Figure 11 demonstrates an important
consideration for ECTS and reliable local QDA. Both of these methods try to match the labels
that are assigned by the respective fixed-time classifiers at time 1024. However, the fixed-time
local QDA plot shows that the underlying local QDA accuracy remains essentially flat from time
two hundred to time 1024, and fixed-time 1-NN shows that accuracy decreases. Therefore, both
incomplete classifiers would be better served by treating the complete data as only the first two
hundred samples rather than all 1024.
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Chlorine Concentration Italy Power Demand
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Figure 8: Average classification time vs test reliability for reliable incomplete local QDA classi-
fication (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG Rel.
Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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Two Patterns U Wave Gesture Library X
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Figure 9: Average classification time vs test reliability for reliable incomplete local QDA classi-
fication (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG Rel.
Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.

34



Chlorine Concentration Italy Power Demand
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Figure 10: Average classification time vs test accuracy for reliable incomplete local QDA classi-
fication (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG Rel.
Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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Two Patterns U Wave Gesture Library X
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Figure 11: Average classification time vs test accuracy for reliable incomplete local QDA classi-
fication (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG Rel.
Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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8 Discussion and Some Open Questions

We have proposed a practical incomplete decision rule that is a conservative approximation of
the optimal rule. Experiments on a set of time-series data showed consistently earlier and more
reliable predictions on average than other approaches. We showed that for linear or quadratic clas-
sifiers the proposed decision rule can be checked either with an analytic solution or using convex
optimization. We only touched on applying the proposed rule to nearest neighbor classifiers, and
it is an open question how to apply this approach efficiently to other classification strategies. In
particular, we suspect the proposed approach could also be implemented efficiently with decision
trees that use a cascade of linear discriminants by casting each decision into a form similar to (8).

This paper has focused on answering the question “With probability τ , will the classification
decision from this incomplete data be the same as from the complete data?” The presented tools
can also be used to answer the related question: “If we classify based on the current incomplete
data, what is the probability that assigned label will match that which would be chosen using the
complete data?” The answer can be computed by finding the largest τ that makes the first question a
“Yes,” which may require guessing a τ , solving the first question, refining τ up or down depending
on the answer, and iterating.

Another related question that can be answered is, “Can we reliably classify as class g with this
incomplete data?” That is, there may be only one class (or a subset of classes) which we would
like to identify with incomplete data. For example, in determining if a cyst is cancerous or benign,
doctors will often have a patient come back every few months to see how it changes over time.
There is generally no rush to call it benign, but one would like to classify it as cancerous as soon
as that is a reliable class label. This question can be answered by applying the incomplete decision
rule given in (2) only to the class of interest.
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A Proofs

Proof of Proposition 1: For the minimum problem (11), the Lagrange dual function is g(λ ) =

β T m− 1
4λ

BT RB+b−λδ , a concave function of λ , and g(λ ) is maximized for λ ∗ =
√

1
4δ

BT RB.
Since λ ∗ ≥ 0, it is dual feasible. Since the objective function is convex, strong duality holds, and
thus the maximum of the dual problem equals the minimum of the primal problem. A similar
analysis can be performed for the maximum problem.

Proof of Proposition 2: First, note that each pairwise check reduces the number of classes labeled
candidate by either two classes if the classes tie, or by one class (the loser) if one class dominates.
Second, once a class has tied with another class or has been dominated, it cannot be the correct
dominating class. Thus the proposed decision process eventually reduces the number of classes
labeled candidate to either zero or one. If there are zero classes left labeled candidate, then all
classes have either tied or been dominated, and the above process correctly chooses not to classify.
If there is one class remaining that is labeled candidate it must be compared to all the classes that
tied on their first comparison. It is not necessary to also compare to the classes labeled dominated
by the transitivity of the domination rule.

Proof of Proposition 3: We first note that in the Compare step, the pairwise comparison between
classes c and h requires a single minimum computation if c dominates h, and two computations if
the classes tie or if h dominates c. Furthermore, we define T to be the number of pairwise com-
parisons that result in ties during the Compare step, and D as the number of pairwise comparisons
that do not result in a tie in the Compare step (such evaluations necessarily result in one class that
was labeled candidate being re-labeled dominated). Thus, the compare step requires at most
2T +2D minimum calculations.

On the other hand, each pairwise comparison in the Final Comparison check requires only a
single minimum computation.

There are two cases to consider

Case 1: Consider the case that the Compare step in the decision process results in one class left
labeled candidate. Immediately prior to the Final Comparison step, there are G−1 classes that
have been re-labeled tied or dominated, and since each tie results in two classes being re-labeled
tied, it must be that

G−1 = D+2T. (22)

In the Final Comparison step, the Gth class must be compared to at most the 2T classes labeled
tied, each of which requires one minimum calculation. Thus the maximum number of calculations
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needed is

2T +2D+2T
= 2(G−1) by (22).

Conversely, the best case is that there are no ties, and that each pairwise check requires only a
single minimum calculation. This case requires G−1 minimum calculations.

Case 2: The second case is that at the end of the Compare step there are zero classes labeled
candidate. Therefore,

G = D+2T, (23)

and the total number of comparisons required is

2T +2D
= G+D by (23).

There can be at most G− 2 comparisons that result in one class dominating the other (otherwise,
one class would remain labeled candidate after the Compare step), so the maximum number of
minimum calculations is again 2(G−1).

Since it requires at least one minimum calculation to change a class label from candidate to
dominated or tied, the minimum number of calculations is G.
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B Gradient Descent Solution for the Quadratic Min and Max
Problems

The min problem with quadratic f (x) subject to a quadratic constraint set is written as

min
x∈A

f (x) =min
x

(x− v)TV (x− v)+b (24)

s.t. (x−m)R−1(x−m)≤ δ ,

where V is indefinite and R is positive semi-definite. We propose to solve this problem using the
two-step gradient descent approach described in [43].

We first reformulate (24) as the trust region subproblem (TRSP). Define

z = R
−1
2 (x−m)

A = 2R
1
2V R

1
2

y = 2R
1
2V (m− v)

btsrp = b+ vTV v+mTV m−2mTV v.

Then rewrite (24) as

min
x∈A

f (x) =min
z

1
2

zT Az+ yT z+btsrp (25)

s.t. ‖ z ‖≤
√

δ .

Let ρ equal the largest eigenvalue of A. The following two-step iteration converges to a z∗ that
is a local minimum of the TRSP (25):

Step 1 : zk+1 = zk−
1
ρ
(Azk + y)

Step 2 : zk+1 = min
[

zk+1,
‖ zk+1 ‖√

δ
zk+1

]
,

where Step 1 computes a gradient step, and Step 2 projects the zk+1 found in Step 1 onto the
constraint set in (25).

The TRSP has been shown to have at most one local minimum that is not also the global
minimum [30], and thus the above algorithm has proven to be robust in finding the minimum of
(25).

Furthermore, for the incomplete data decision rule (9), it is not necessary to find the true mini-
mum over A of f (x), but it is instead sufficient to know only whether or not it is less than or equal
to zero. Therefore, the iteration can be stopped early if zT

k Azk + yT zk +btsrp ≤ 0.
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C Derivation of the Variance for GMM Based Estimation

Let mg = E[X |g,z], Rg = COV[X |g,z], and p(g|z) be defined as in Section 5.2.

R =
∫

x
(x−m)(x−m)T p(x|z) dx

=
∫

x
∑

g∈G
(x−m)(x−m)T p(x,g|z) dx

= ∑
g∈G

p(g|z)
∫

x
(x−m)(x−m)T p(x|g,z) dx

= ∑
g∈G

p(g|z)
∫

x

(
xxT −2x ∑

h∈G
mT

h p(h|z)+ ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z)

)
p(x|g,z) dx

= ∑
g∈G

p(g|z)

(∫
x
xxT −2xmT

g +mgmT
g p(x|g,z) dx+

∫
x
2xmT

g −2x ∑
h∈G

mT
h p(h|z) p(x|g,z) dx

−mgmT
g + ∑

q∈G
∑

h∈G
mqmT

h p(q|z)p(h|z)

)

= ∑
g∈G

p(g|z)

(
Rg +2mgmT

g −2mg ∑
h∈G

mT
h p(h|z)−mgmT

g + ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z)

)

= ∑
g∈G

p(g|z)

(
Rg +mgmT

g −2mg ∑
h∈G

mT
h p(h|z)

)
+ ∑

q∈G
∑

h∈G
mqmT

h p(q|z)p(h|z)

= ∑
g∈G

p(g|z)
(
Rg +mgmT

g
)
− ∑

q∈G
∑

h∈G
mqmT

h p(q|z)p(h|z).
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