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Abstract 

Noise and noise-like waveforms may be generated by random modulation of only the 
phase of a sequence of samples.  Furthermore, the spectral characteristics of resulting 
waveform may be shaped by suitably constraining the statistics of the random phase 
modulations.  This maximizes the Signal-to-Noise ratio of the output of a matched filter 
by shaping the autocorrelation of the resulting sequence. 
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Foreword 

General Atomics Aeronautical Systems, Inc., builds the high-performance Lynx 
SAR/GMTI system.   

This report details the results of an academic study.  It does not presently describe any 
modes, methodologies, or techniques employed by any operational system known to the 
authors. 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction & Background 

A typical pulse-Doppler radar system emits a series of pulses, and collects echo signals.  
For each pulse, these echo signals are correlated against the transmitted waveform to 
provide a range sounding, and the range soundings are compared against each other   
across pulses to discern Doppler information.  The correlation function may be 
implemented as an equivalent matched filter, or as a direct correlation.   

Typical radar modes that operate in this fashion include Synthetic Aperture Radar (SAR), 
Inverse-SAR (ISAR), various Moving Target Indicator (MTI) radars, and coherent search 
radar systems.  This is certainly not an exhaustive list.  Herein we concern ourselves with 
generically range-Doppler radars. 

The choice of waveforms to use will depend on the objectives of the radar system with 
respect to ease of waveform generation, downstream processing issues, and desires for 
probabilities of detection, interception, spoofing, etc.  We typically desire waveforms that 
offer a large time-bandwidth product to afford both high energy and wide bandwidth for 
improved range resolution.  There are a plethora of waveforms from which to choose.  
These would include, but are not limited to, the popular Linear-Frequency-Modulated 
(LFM) chirp, Non-Linear FM (NLFM) chirp, stepped frequency systems, various phase-
coded modulation schemes, and even random and pseudo-random noise waveforms.  
Each has its own set of advantages and disadvantages. 

We focus herein on random and pseudo-random noise waveforms; in fact a specific 
subset of these. 

A typical radar system employs a final transmit power amplifier that is normally operated 
in compression, required to maximize transmitted power output and/or efficiency.  That 
is, the amplifier operates in a non-linear fashion and no longer faithfully reproduces 
amplitude modulations, severely limiting them.  Phase modulations are, however, still 
easily passed with minimum distortion.  This implies that radar systems with such power 
amplifiers favor phase/frequency modulation rather than amplitude modulations.  This is 
also true for random and pseudo-random noise waveforms. 

Accordingly, the principal subject matter of this report is random and pseudo-random 
phase modulations. 

It is well-known that the output of a matched filter, when input with a signal to which it is 
matched, is the autocorrelation function of the waveform.  Furthermore, the 
autocorrelation of a function is related by the Fourier Transform (FT) to the Energy 
Spectral Density (ESD) of the waveform.  That is, the autocorrelation function and ESD 
are FT-pairs.  We desire matched filters as their principal advantage is to maximize the 
Signal-to-Noise Ratio (SNR) of energy in the final range-Doppler map.  Most radar 
processing seeks to implement matched filters, or at least nearly so. 
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One problem with matched filters for many waveforms is undesirably high processing 
sidelobe levels in the range-Doppler map.  These are usually mitigated with additional 
filtering, often by using data tapering, or window functions, during the processing.  
Although this somewhat ‘un-matches’ the filter, resulting is some usually slight 
degradation of the range-Doppler map SNR, this trade is usually deemed worthwhile. 
While we term this SNR degradation as “slight”, it is typically in the 1-2 dB range. 

An alternative is to use waveforms designed to exhibit desirable ESD properties, where 
the autocorrelation of the waveform exhibits desirable, or at least acceptable processing 
sidelobe levels directly, that is, without additional filtering and the attendant SNR loss. 

Accordingly, we further refine the object of this report to present and discuss random and 
pseudo-random phase modulations with desirable ESD properties to maximize SNR in a 
range-Doppler map.  Necessarily, we will consider the effects of random modulations as 
manifest in the entire range-Doppler map, that is, by all pulses in a Coherent Processing 
Interval (CPI) or synthetic aperture. 

Towards this end, we present the following reference material as background 
information.  We note that the literature is rich with publications dealing with noise radar 
and related topics, with the following representing an incomplete sampling of what is 
available. 

A concise history of noise-radar development, originating in the 1950’s, is given by 
Lukin & Narayanan.1  One of the earliest papers, and seminal in the field was written 
by Horton.2 

Much analysis and a number of experimental systems deal with radar waveforms 
generated by essentially Gaussian Noise sources.  These are essentially both 
amplitude and phase modulated systems.  Papers include those by Narayanan, et al.,3 
Garmatyuk & Narayanan,4 and Bell & Narayanan.5 

A number of papers also deal with modulating a LFM chirp with noise, both 
amplitude and phase.  These would include papers by Govoni & Li,6,7 and Govoni & 
Moyer.8  

Stepped-frequency waveforms combined with random signals have been reported by 
a number of researchers.  Lukin, et al.,9,10 describe “stepped variation of a single 
frequency signal over a discrete frequency mesh according to a random law, i.e. 
frequency hopping with random hops; step-like increase of the central frequency of a 
narrow band random signal; and frequency hopping of a narrow band random signal 
according to a random law (stepped frequency), i.e. random frequency hopping of 
random signals.” Gu, et al.,11 describe what they call “stepped-frequency random 
noise signal (SFRNS).”   

Vela & Lo Monte12 also describe noise modulated frequency steps and allow that 
“non-linear steps or spectrally discrete waveforms are also acceptable.”  Vela, et 
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al.,13 apply window functions to a “multi-tone” waveform in the time domain to 
control spectral characteristics. 

Hong, et al.,14 present “a new kind of noise radar called the random binary phase-
coded (RBPC) CW radar.” 

Zhang & Chen15 present a waveform “obtained by adding noise frequency 
modulation to normal LFM signal.” 

A particularly nice set of papers is presented by Axelsson16,17,18 who analyzes 
random phase and frequency modulation, including stepped chirps, including 
shaping the autocorrelation function via adjusting the probability density function of 
random and shuffled frequencies.   

Generating and processing NLFM chirps by shaping the waveform ESD are detailed 
in a pair of reports written by Doerry.19,20  These reports do not however specifically 
deal with noise waveforms. 

A number of papers deal directly with suppressing processing sidelobes when using 
various random waveforms.  These include papers by Jariani, et al.,21 Haghshenas & 
Nayebi,22 and Wu, et al.23  

Chaotic functions applied as phase/frequency modulation has also been reported by a 
number of researchers.  These include papers by Xu & Feng,24 Hall, et al.,25 and 
Chandra, et al.26 

More recently, a tie has been made between noise radar and compressive sensing by 
Shastry, et al.27  

Most papers ignore processing sidelobe suppression entirely.  Several treat sidelobe 
suppression by operating on received data only.  These tend to either reduce SNR, or be 
non-linear in nature with resultant adverse effects to some subsequent exploitation 
schemes.  Some discuss shaping the ESD, but typically limit themselves to specific 
functions like a Gaussian distribution of frequencies to reduce processing sidelobes in a 
SAR image. A relatively few mention how a probability distribution in random 
characteristics of a waveform affects the ESD of the waveform. 

What remains missing from these is any thorough discussion of techniques for designing 
and generating random phase/frequency modulated waveforms (only) with precise ESD 
characteristics, and hence precise Impulse Response (IPR) shapes particularly in the 
mainlobe, while retaining maximum SNR in any resulting range-Doppler map. 
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“Chaos is a friend of mine.” 
-- Bob Dylan  
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2 Overview & Summary 

We begin by noting that a random-phase signal will have a white spectrum.  Furthermore, 
a sampled-data random-phase signal will have a white spectrum over the bandwidth equal 
to the sampling frequency. 

A random phase signal will also have random phase differences between two independent 
random phases.  A phase increment across a time increment is in fact a phase-rate, or 
frequency.  A phase-rate change is in fact a frequency-hop. 

By controlling the phase-rate, that is the characteristics of the phase increments, we can 
control the spectrum of the random-phase waveform.   

Spectrum precision and sharpness is enhanced by holding a frequency for some ‘chip’ 
length.  For digitally generated phase samples, this means that the chip length needs to be 
many samples.  This is a time-bandwidth issue.  The definition of ‘many’ will depend on 
the sharpness desired, but often several tens’ of samples will be adequate. 

To shape the ESD of a random-phase signal, we need to control the average energy at 
various phase-rates.  This can be done with either or a combination of 

1. Controlling the likelihood of specific phase increments, and/or 

2. Controlling the duration of a specific phase increment chip length. 

For range-Doppler images, it is the 2-dimensional IPR that is of principal concern.  This 
will tend to average out the random effects of any single pulse. 
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“I think there's something strangely musical about noise.” 
-- Trent Reznor  
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3 Detailed Analysis 

We provide the following detailed analysis in two parts.  We begin by reviewing the 
relevant characteristics of various FM chirp waveforms.  This will provide a baseline 
reference for the following discussions.  Subsequently we develop and present various 
random-phase waveforms, comparing them to the reference FM chirp waveforms. 

We will make heavy use of examples.  Unless otherwise noted, we will presume a 
digitally generated phase with the following pulse-Doppler radar parameters. 

sf  = 1 GHz = sampling frequency, 

TB  = 500 MHz = desired waveform bandwidth, 

T  = 10.24 s = pulse width, 
N  = 1024 = number of pulses. (1) 

The sampling frequency is normally given as a limitation of the waveform generation 
hardware.  The waveform bandwidth is calculated in the customary manner from some 
required range resolution of the radar.  The pulse-width is typically chosen to meet timing 
requirements for the ranges of interest to prevent occlusion, and the number of pulses is 
calculated in well-known manners to meet Doppler resolution requirements and/or SNR 
requirements.  

We note that we can define and calculate the fractional bandwidth as 

s

T

f

B
b   = fractional bandwidth. (2) 

The sample spacing or period within a pulse is calculated as 

s
s f

T
1

  = sample period within pulse. (3) 

The number of samples within a single pulse is calculated as 

sT

T
I   = number of sample periods within pulse. (4) 

We will somewhat arbitrarily presume that we ultimately desire IPR sidelobe mitigation 
to a level consistent with a 35 dB Taylor weighting ( 4n ).  This is a popular IPR 
shape for SAR, otherwise we could have just as easily chosen a different characteristic.  
Other modes often do so. 

And lastly, we will presume no system noise so that all the uncertainty is purely a 
function of the waveform, and not of the measurement. 
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3.1 FM Chirps 

We present next some variations of FM chirps.  These are typically defined as monotonic 
frequency slopes from beginning to end of a pulse.  More precisely, we are defining them 
as waveforms with different beginning and ending instantaneous frequencies, with non-
reversing frequency slopes (allowing sections of zero slope).  The frequency slope may 
generally be positive or negative (or at times zero), although we will present examples 
with only non-negative slopes.   

FM chirps have deterministic phase functions, which can generally be described as 

   



i

Ii
n nini

2

,,  , (5) 

where 

n = pulse index, 122  NnN , 
i  = waveform sample index, 122  IiI , 

n  = reference phase for the nth pulse,  (6) 

and 

 ni,  = an instantaneous frequency function. (7) 

The difference between various FM chirps is in the nature of  ni, . 

In general,  ni,  will also be centered on a reference frequency, and exhibit some chirp 
rate, where 

n  = reference frequency for the nth pulse, 

ni,  = chirp rate for the ith sample of the nth pulse. (8) 

The parameters n , n , and ni,  may be modulated on a pulse to pulse basis to provide 

motion compensation.28   In addition, n  may be additionally modulated to provide other 

benefits (e.g. ambiguous range mitigation, etc.). 
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3.1.1 LFM Chirp 

The instantaneous frequency of the LFM chirp waveform will have form 

    iTTni snsn
2

,0,   , (9) 

Figure 1 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 2 shows the autocorrelation function of the waveform of Figure 1.  Also 
shown for comparison is a Taylor window desired compressed pulse response.  Figure 3 
shows the 2-D IPR of a range-Doppler map using N pulses.  Figure 4 shows principal 
axes cuts of the range-Doppler map in Figure 3. 

3.1.2 LFM Stepped Chirp 

The instantaneous frequency of the waveform will now have a stepped form 

     ifTTni snsn
2,   , (10) 

where 

 if  = some quantized function of index i. (11) 

For the stepped chirp, we set 

   stepstep iif  floor , (12) 

where the step length in samples is calculated as 

KIstep   = step length in samples, (13) 

where 

K  = the number of frequency steps in a single pulse. (14) 

The number of samples and step-size are chosen to balance the sharpness of the ESD 
edges with the flatness of the passband. 

For our examples 5.0b , and 160K .  This allows each step to be a uniform 
64step  samples. 

Figure 5 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.    Figure 6 shows the autocorrelation function of the waveform of Figure 5.  Also 
shown is a Taylor window desired compressed pulse response.  Figure 7 shows the 2-D 
IPR of a range-Doppler map using N pulses.  Figure 8 shows principal axes cuts of the 
range-Doppler map in Figure 7. 
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Figure 1.  LFM chirp energy spectrum.  Note the nearly rectangular shape. 
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Figure 2.  LFM chirp autocorrelation function.  The reference function is a -35 dB Taylor window 
with 4n . 
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2D Image - zoomed
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Figure 3.  LFM chirp pulses:   2-D IPR of data set of with Taylor windows applied in both fast-time 
and across pulses.  Color units are in dB. 
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Figure 4.  Principal axes cuts of 2-D IPR. 
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Figure 5.  LFM stepped chirp energy spectrum.  Note the nearly rectangular shape, albeit with some 
additional fluctuations compared to Figure 1. 
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Figure 6.  LFM stepped chirp autocorrelation function.  The reference function is a -35 dB Taylor 
window with 4n . 
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2D Image - zoomed
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Figure 7.  LFM stepped chirp pulses:   2-D IPR of data set of with Taylor windows applied in both 
fast-time and across pulses.  Color units are in dB. 
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Figure 8.  Principal axes cuts of 2-D IPR. 
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3.1.3 NLFM Stepped Chirp 

The instantaneous frequency of the NLFM waveform will now still have form 

     ifTTni snsn
2,   , (15) 

but where the quantization function of index i is now adjusted as a nonlinear function of 
index i.  Here we will adjust the duration of otherwise linearly spaced frequencies.  
Accordingly, we will quantize the index i as 

  k
K

I
if  , (16) 

where k is the minimum integer that satisfies 





k

Kk
kstepi

2
,  = accumulated step length in samples, 22 KkK  , (17) 

and where the length of the individual steps or chips themselves are adjusted as a 
function of the window taper function as 

 





 kw

K

I
Kkstep round,  = the length of the individual frequency chips, (18) 

and  

 kwK  = the weighting or window taper function employed. (19) 

For our examples 5.0b , 160K ,  and  kwK  embodies the Taylor window function.  
As a practical matter, the rounding operation needs to facilitate the constraint that the 
sum of all steps equals the total number of waveform samples, that is 

I
K

Kk
kstep 






12

2
,  . (20) 

Figure 9 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 10 shows the autocorrelation function of the waveform of Figure 9.  Also 
shown is a Taylor window desired compressed pulse response.  Note that the 
autocorrelation function is substantially on top of the reference IPR, although some 
spikes away from the mainlobe are present.  These are due to the quantization of the chip 
duration steps kstep , .  Figure 11 shows the 2-D IPR of a range-Doppler map using N 

pulses.  Figure 12 shows principal axes cuts of the range-Doppler map in Figure 11. 
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3.1.4 NLFM Stepped Chirp – Alternate Technique 

The instantaneous frequency of the NLFM waveform will now have the more generic 
form 

  sinsn TTni ,,   , (21) 

but where  

in,  = instantaneous frequency offset for the ith sample in the nth pulse. (22) 

Frequency increments will be stepped, uniformly distributed in time, but the steps 
themselves will be nonlinear, and a function of the desired spectral taper.  We begin by 
determining the instantaneous frequency increments for a non-quantized NLFM chirp.  
We may use an algorithm as is detailed in the Sandia report by Doerry.19  This gives us 
an ideal frequency offset for each sample index i which we denote with 





i

Ii
sidealinidealin T

2
,,,,   = ideal frequency offset for the ith sample, (23) 

where 

idealin ,,  = ideal chirp rate for the ith sample. (24) 

We once again calculate the quantized chip index as 

   stepstep iif  floor ,  

KIstep   = step length in samples. (25) 

This allows us now to quantize the frequency offsets as 

  idealifnin ,,,    = quantized frequency offset for the ith sample. (26) 

For our examples 5.0b , 640K ,  and idealin ,,  embodies the Taylor window 

function. 

Figure 13 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 14 shows the autocorrelation function of the waveform of Figure 13.  Also 
shown for comparison is a Taylor window desired compressed pulse response.  Note that 
the autocorrelation function is substantially on top of the reference IPR.  Figure 15 shows 
the 2-D IPR of a range-Doppler map using N pulses.  Figure 16 shows principal axes cuts 
of the range-Doppler map in Figure 15.
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Figure 9.  NLFM stepped chirp energy spectrum.  Note the tapering across the relevant spectrum. 
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Figure 10.  NLFM stepped chirp autocorrelation function.  The reference function is a -35 dB Taylor 
window with 4n .  They agree quite well except for some spikes away from the mainlobe. 
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2D Image - zoomed
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Figure 11.  NLFM stepped chirp pulses:   2-D IPR of data set of with Taylor window applied only 
across pulses.  The range sidelobe reduction is due to the spectral shaping of the waveform.  Color 
units are in dB. 
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Figure 12.  Principal axes cuts of 2-D IPR. 
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Figure 13.  Alternate NLFM stepped chirp energy spectrum.  Note the tapering across the relevant 
spectrum. 
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Figure 14.  Alternate NLFM stepped chirp autocorrelation function.  The reference function is a -35 
dB Taylor window with 4n . 
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2D Image - zoomed
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Figure 15.  Alternate NLFM stepped chirp pulses:   2-D IPR of data set of with Taylor window 
applied only across pulses.  The range sidelobe reduction is due to the spectral shaping of the 
waveform.  Color units are in dB. 
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Figure 16.  Principal axes cuts of 2-D IPR. 
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3.2 Random Phase Increments 

We present next some waveforms where the phase contains some random nature.  
Specifically, we are interested in waveforms where the frequency is to some degree 
random.  The phase is of course the integral of the frequency.  Our ultimate intent is to 
shape the spectrum of the waveform by manipulating the statistics of the randomness.   

Recall that the instantaneous frequency is just the time-rate of change of phase.  In a 
sampled data system, it is the phase increment per sample time.  Consequently, we will 
retain the form of the phase expression in terms of an accumulated instantaneous 
frequency, that is 

   



i

Ii
n nini

2

,,  , (27) 

where 

n = pulse index, 122  NnN , 
i  = waveform sample index, 122  IiI , 

n  = reference phase for the nth pulse,  (28) 

and 

 ni,  = an instantaneous frequency function. (29) 

The difference between various waveforms is again in the nature of  ni, . 

In general,  ni,  will also again be centered on a reference frequency, and exhibit some 
now random offset, where the instantaneous frequency of the waveform will now have 
the more generic form 

  sinsn TTni ,,   , (30) 

where  

n  = reference frequency for the nth pulse, 

in,  = frequency offset for the ith sample of the nth pulse. (31) 

As before, the various parameters may be additionally modulated on a pulse to pulse 
basis to provide motion compensation.  In addition, n  may be additionally modulated to 

provide other benefits (e.g. ambiguous range mitigation, etc.). 
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3.2.1 Random Phase / Random Frequency 

We begin a staged approach to our investigation by beginning with perhaps the simplest 
random phase waveform.  Accordingly, we set 

    





 

2

1
,2, niXni u  , (32) 

where 

 niXu ,  = uniformly distributed random value over the interval )1,0[ . (33) 

To be sure, in this case  niXu ,  is a different random selection for each index i and n. 

Figure 17 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 18 shows the autocorrelation function of the waveform of Figure 17.  Also 
shown for comparison is a Taylor window desired compressed pulse response.  

3.2.2 Limiting Random Phase Increments 

We next illustrate constraining the frequency increments by setting 

    





 

2

1
,2, niXbni u  . (34) 

We would expect this to alter the ESD and associated autocorrelation function, depending 
on fractional bandwidth factor b.  For our examples 5.0b . 

Figure 19 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 20 shows the autocorrelation function of the waveform of Figure 19.  Also 
shown is a Taylor window desired compressed pulse response. 

Note that it is difficult to define an edge to the ESD to readily identify the waveform 
bandwidth.  In other words, there is considerable ‘spillage’ outside the band of interest.  
This is because the frequency is allowed to change over its entire interval for each 
increment in index i.  To sharpen the edges, we need to provide more correlation from 
sample to sample.  One way to do this is with the concept of a ‘chip’, where frequency 
may randomly jump only at chip boundaries where a chip is some number of individual 
samples. 

The sharpness of the band edges is essentially then a time-bandwidth issue for the chip. 
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Figure 17.  Random phase energy spectrum.  Note the ensemble average of the spectra is much flatter 
than the spectrum of a single pulse. 
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Figure 18.  Random phase autocorrelation function.  The reference function is a -35 dB Taylor 
window with 4n .  Note how sidelobes diminish with ensemble averages. 
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Figure 19.  Limited random phase energy spectrum.  Note the ensemble average of the spectra is 
much smoother than the spectrum of a single pulse. 
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Figure 20.  Limited random phase autocorrelation function.  The reference function is a -35 dB 
Taylor window with 4n .  Note the sidelobe reduction and mainlobe broadening. 
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3.2.3 Random Frequency Chips 

We may sharpen the edges of the spectrum by allowing frequency changes only at chip 
edge boundaries.  We model this as 

     





 

2

1
,2, nifXbni u  , (35) 

where 

   stepstep iif  floor . (36) 

This may be viewed as a frequency-hopping spread-spectrum technique.  We would 
expect this to sharpen the edges of the ESD and thereby shape the associated 
autocorrelation function accordingly, depending on fractional bandwidth factor b.  For 
our examples 5.0b . 

Figure 21 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 22 shows the autocorrelation function of the waveform of Figure 21.  Also 
shown is a Taylor window desired compressed pulse response.  Figure 23 shows the 2-D 
IPR of a range-Doppler map using N pulses.  Figure 24 shows principal axes cuts of the 
range-Doppler map in Figure 23. 

Immediately obvious is the apparent noise level in the off-axis directions from the 
mainlobe peak in Figure 23, both as a brighter band at ranges nearer the peak, and a 
residual lower level more distant from the peak.  This is in fact sidelobe energy due to the 
residual phase noise due to the randomness within the waveform.  This off-axis sidelobe 
energy is at a fairly low level, in our example at approximately 50 dBc in the band and 
approximately 60 dBc outside the band.  These levels will depend on integration gain in 
general, which in turn depends on number of pulses, number of samples, etc.  For many 
applications these levels will be inconsequential, although some radar modes may be 
more sensitive than others.  A more complete discussion of this noise floor may be found 
in any of several references listed earlier, and in particular papers by Axelsson.16,17 

3.2.4 Random Frequency Chips with Shaped Spectrum 

We may further shape the spectrum by altering the statistics of the random values that we 
select.  We now model our instantaneous frequency function as 

     





 

2

1
,2, nifXbni w  , (37) 

where 

 niX w ,  = shaped-distribution random value over the interval )1,0[ . (38) 
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For our purposes  niX w ,  will have a Probability Density Function (PDF) with the same 

shape as the desired window taper function for the ESD.  For our examples, this will be 
the 35 dB Taylor window with 4n .  Appendix A details a Matlab function to 
accomplish this. 

Figure 25 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 26 shows the autocorrelation function of the waveform of Figure 25.  Also 
shown for comparison is a Taylor window desired compressed pulse response. Note that 
they match quite well, especially in the region of the mainlobe.   Figure 27 shows the 2-D 
IPR of a range-Doppler map using N pulses.  Figure 28 shows principal axes cuts of the 
range-Doppler map in Figure 27. 

3.2.5 Quantized Random Frequency Chips with Shaped Spectrum 

In the previous section, the random frequencies were selected from within the continuum 
of the passband.  Here we now allow the frequencies to be limited to some finite set that 
are uniformly arrayed within the passband.  Although the frequencies themselves are 
quantized to a linear spacing, the likelihood of selecting a particular frequency is still 
adjusted to shape the spectrum.  We now model our instantaneous frequency function as 

      





 

2

1
,2, nifXgbni w  , (39) 

where the quantization function is presumed to allow the same number K steps as there 
are individual chips, that is 

   
K

Kx
xg

floor
  . (40) 

This isn’t absolutely required, but nevertheless convenient. 

We also recall the definitions from previous sections 

 niX w ,  = shaped distribution random value over the interval )1,0[ , and 

   stepstep iif  floor . (41) 

For our examples, 5.0b , 160K , and the spectral weighting shape will be the 35 dB 
Taylor window with 4n .  

Figure 29 shows the energy spectrum of both a single pulse, and the average over all N 
pulses.  Figure 30 shows the autocorrelation function of the waveform of Figure 29.  Also 
shown is a Taylor window desired compressed pulse response.  Note again that they 
match quite well, especially in the region of the mainlobe.  Figure 31 shows the 2-D IPR 
of a range-Doppler map using N pulses.  Figure 32 shows principal axes cuts of the 
range-Doppler map in Figure 31. 
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Figure 21.  Random frequency chip energy spectrum.  Note the ensemble average of the spectra is 
much smoother than the spectrum of a single pulse. 
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Figure 22.   Random frequency chip autocorrelation function.  The reference function is a -35 dB 
Taylor window with 4n .  Note the sinc nature of the autocorrelation function. 
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2D Image - zoomed
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Figure 23.  Random frequency chip pulses:   2-D IPR of data set of with Taylor window applied in 
both dimensions.   Color units are in dB. 
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Figure 24.  Principal axes cuts of 2-D IPR. 
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Figure 25.  Shaped-spectrum random frequency chip energy spectrum.  Note the ensemble average of 
the spectra is much smoother than the spectrum of a single pulse. 
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Figure 26.  Shaped-spectrum random frequency chip energy spectrum.  Note how well the 
autocorrelation function matches the reference -35 dB Taylor window with 4n .   
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2D Image - zoomed
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Figure 27.  Shaped-spectrum random frequency chip pulses:   2-D IPR of data set with Taylor 
window applied only in azimuth dimension.   Color units are in dB. 
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Figure 28.  Principal axes cuts of 2-D IPR. 
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Figure 29.  Shaped-spectrum quantized random frequency chip energy spectrum.  Note the ensemble 
average of the spectra is much smoother than the spectrum of a single pulse. 
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Figure 30.  Shaped-spectrum quantized random frequency chip autocorrelation function.  Note how 
well the autocorrelation function matches the reference -35 dB Taylor window with 4n .   
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2D Image - zoomed
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Figure 31.  Shaped-spectrum quantized random frequency chip pulses:   2-D IPR of data set with 
Taylor window applied only in azimuth dimension.   Color units are in dB. 
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Figure 32.  Principal axes cuts of 2-D IPR. 
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3.2.6 Randomly Shuffled Quantized Frequency Chips with Shaped 
Spectrum 

Heretofore, we have selected random frequencies within the passband without regard for 
any prior choices.  That is, each chip’s frequency was chosen independent of any other 
chip’s frequency.  Consequently, for any one pulse, a particular part of the desired 
spectrum might be over-represented, and another part of the spectrum might be under-
represented, purely as a matter of chance.  Only in the aggregate of all pulses, in a 
statistical sense, would the desired spectrum be filled in with the appropriate shaping. 

We now add another constraint to the randomness of chip frequencies and their energies.  
Namely, we now insist that each individual pulse contains chips with frequencies that 
within the pulse cover the entire desired passband.  Essentially, we will begin with a 
NLFM stepped chirp, and just randomly shuffle the chips.  Each pulse will be shuffled 
differently, but each pulse will still contain the same set of chips, identical in both 
frequency and duration. 

The instantaneous frequency of the new waveform will still have form 

     ifTTni snsn
2,   , (42) 

but where the quantization function of index i is now adjusted in the constrained random 
fashion.  Recall that there will be K total chips, with linearly increasing index 

22 KkK  . 

We now define a function that shuffles the index values, and notate it as 

 knkSh  = shuffling function that shuffles index k uniquely for pulse n. (43) 

Appendix B lists a Matlab function that implements this. 

The new sequence of quantized sample indices is then calculates as 

   k
K

I
if nkSh , (44) 

where k is the minimum integer that satisfies 

 





k

Kk
kstep nk

i
2

Sh,  = accumulated step length in samples, 22 KkK  ,  

  (45) 

where in turn we continue to calculate individual chip durations as 
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 





 kw

K

I
Kkstep round,  = the length of the individual frequency chips, (46) 

and the window taper function is given by 

 kwK  = the weighting or window taper function employed. (47) 

What this says is that a chip’s frequency is a draw from the shuffled finite set of 
allowable frequencies, and the duration of that chip is still corresponding to the actual 
frequency drawn, specifically its position in the passband. 

For our examples 5.0b , 160K ,  and  kwK  embodies the Taylor window function.  
As before, we address a practical matter that the rounding operation needs to facilitate the 
constraint that the sum of all steps equals the total number of waveform samples, that is 

I
K

Kk
kstep 






12

2
,  . (48) 

Figure 33 shows the energy spectrum of both a single sample pulse, and the average over 
all N pulses.  Note that this spectrum is somewhat smoother than that in Figure 29.  
Figure 34 shows the autocorrelation function of the waveform of Figure 33.  Also shown 
is a Taylor window desired compressed pulse response.  Note that the autocorrelation 
function is substantially on top of the reference IPR.  Figure 35 shows the 2-D IPR of a 
range-Doppler map using N pulses.  Figure 36 shows principal axes cuts of the range-
Doppler map in Figure 35. 

Gratuitous Comments 

This specific algorithm just described forces a particular chip frequency to appear once 
and only once within a pulse.  The ‘once’ criterion gives us a complete spectrum for each 
pulse, as desired.  The ‘only once’ part can be relaxed without compromising this desire.  
For example, if each chip frequency appeared exactly twice, albeit with proper duration 
but equal probability, then we would achieve similar results.  Of course, if any chip 
frequency appeared, say, twice, then for a given pulse width we would need to either 
reduce the duration of any one chip, or coarsen the frequency quantization.  These effects 
would have to be evaluated with respect to the IPR.  

This is akin to choosing a card from two combined and shuffled decks. Each deck is a 
complete set of chip frequencies. Of course, any number of decks might also be shuffled 
together to extend this concept. 

Furthermore, other variations might also be employed.  For example, some integer 
number of decks for a single pulse might be shuffled together with a random subset of an 
additional deck.  Or a deck of frequency chips might be dealt across multiple pulses.  
Other combinations are also easily conceived. 
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Figure 33.  Shaped-spectrum randomly shuffled frequency chips energy spectrum.  Note the 
ensemble average of the spectra is much smoother than the spectrum of a single pulse. 
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Figure 34.  Shaped-spectrum randomly shuffled frequency chips autocorrelation function.  Note how 
well the autocorrelation function matches the reference -35 dB Taylor window with 4n .   
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2D Image - zoomed
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Figure 35.  Shaped-spectrum randomly shuffled frequency chips pulses:   2-D IPR of data set with 
Taylor window applied only in azimuth dimension.   Color units are in dB. 
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Figure 36.  Principal axes cuts of 2-D IPR. 
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3.2.7 Compound Pulses with Multiple Chip Decks 

With some malice of forethought, we examine now a particular structure of random-
phase waveforms.  The structure is designed as follows. 

1. Each pulse is divided into two or more contiguous frames.   

2. Each frame is an independently shuffled complete deck of frequency chips. 

3. Otherwise, each deck has characteristics as defined in the last section. 

We illustrate this in Figure 37. 

This particular construct forces each frame to have the same spectral characteristics as the 
entire pulse.  This in turn allows a fraction of the entire pulse to offer the same resolution 
as the entire pulse.  We would normally desire that the waveform segments in individual 
frames to not correlate well with each other, as this would cause enhanced undesirable 
sidelobes in the overall waveform autocorrelation function.  Furthermore, this works 
better with longer pulsed to mitigate quantization effects in both time duration and 
frequency. 
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Figure 37.  Pulses may be divided into multiple frames, with each frame exhibiting different 
modulation characteristics. 
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For our examples the overall compound pulse width is T  = 20.48 s but is made of two 
equal-length individual frames, with each frame exhibiting 5.0b , 160K , and  kwK  
embodies the Taylor window function.   

Figure 38 shows the energy spectrum of both a single compound pulse, and the average 
over all N pulses.  Note that this spectrum is generally equivalent to that in Figure 33, 
albeit with slightly more energy because of its overall doubled length.  Figure 39 shows 
the autocorrelation function of the waveform of Figure 38.  Also shown for comparison is 
a Taylor window desired compressed pulse response.  Note that the autocorrelation 
function is substantially on top of the reference IPR.  Figure 40 shows the 2-D IPR of a 
range-Doppler map using N pulses.  Figure 41 shows principal axes cuts of the range-
Doppler map in Figure 40. 

Gratuitous Comments 

We offer that the basic concept just described may be modified or enhanced in any of a 
number of ways, including but not limited to the following. 

1. Individual frames need not necessarily be the same length or duration. 

2. Subsequent pulses need not contain the same number of frames. 

3. Individual frames need not have the same frequency chip set, including in either 
quantization, bandwidth, or spectral regions. 

Compound pulses will be addressed more fully in a separate report. 
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Figure 38.  Energy spectrum of compound pulse with two frames, with individual frames shaped-
spectrum randomly shuffled frequency chips.  
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Figure 39.  Autocorrelation function of compound pulse with two frames, with individual frames 
shaped-spectrum randomly shuffled frequency chips.  Note how well the autocorrelation function 
matches the reference -35 dB Taylor window with 4n .   
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2D Image - zoomed
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Figure 40.  Compound pulse with two frames, with individual frames shaped-spectrum randomly 
shuffled frequency chips:   2-D IPR of data set with Taylor window applied only in azimuth 
dimension.   Color units are in dB. 
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Figure 41.  Principal axes cuts of 2-D IPR. 
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3.2.8 Comments 

We now provide a generalized description of the waveform selection procedure.  This is 
illustrated in Figure 42. 
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Figure 42.  Generalized waveform selection procedure. 
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We elaborate on the boxes as follows. 

Input Parameter Selection:  This box represents the specification of waveform 
parameters, including pulse width, bandwidth, number of frames, number of 
chips, sampling frequency, etc.  We note that generally a chip may be as few as 
one sample. 

Chip Frequency Selection:  Based on input parameters, the allowable chip 
frequencies are specified, and from them chip frequencies are assigned to each 
chip.  Frequencies may be selected based on desired statistics to facilitate ESD 
shaping. 

Chip Duration Selection:  Also based on input parameters, allowable chip 
durations are specified and selected for each chip.  Chip durations may be selected 
based on desired statistics to facilitate ESD shaping. 

Chip Randomizer:  With individual chip characteristics defined, the chips are 
then randomized as to their order and concatenated into a larger pulse.  In some 
cases, specific subsets of the chips may first be concatenated into frames, and then 
the frames concatenated into a larger pulse. 

Phase Accumulator:  With frequencies chosen for each sample time for each 
pulse, these are then accumulated within a pulse to provide a phase function of 
sample index. 

Sine ROM:  Phase samples are then converted into amplitudes.  These may be 
both Sine and Cosine functions of the phase for Quadrature outputs (single-
sideband mixing), or simply one of Sine or Cosine functions of the phase for 
single-ended output (double-sideband mixing). 

Numerous variations and combinations of the aforementioned examples may be conjured. 
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“So much of life, it seems to me, is determined by pure randomness.” 
-- Sidney Poitier 
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4 Conclusions 

We have proposed herein the following. 

 Random-phase waveforms may still be capable of relatively precise IPR shapes in 
a range-Doppler map.  This is accomplished by controlling the statistical 
characteristics of the phase ‘increments’, or instantaneous frequencies. 

 We may shape the ESD of such a waveform by controlling the instantaneous 
frequencies themselves, or the durations of the frequency chips, or both.  
Furthermore, it is possible to shape the ensemble average ESD to match a 
specified window taper function, thereby precisely providing a desired shape to 
the IPR, particularly in the mainlobe, in a range-Doppler map. 

 The range-Doppler map or image will tend to average out fluctuations in the ESD 
of any single pulse.  Consequently, the CPI of the random signals should be 
considered as a whole. 
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“Random numbers should not be generated with a method chosen at random.” 
-- Donald Knuth 
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Appendix A – Matlab Random Number Generator with 
Specified Density 

We present here a Matlab function that creates an array of random values over the 
interval [0,1) with a specified Probability Density Function (PDF). 

 
% randx 
% 
% create array of random values in interval [0,1) with desired  
% distribution 
% 
% Z = randx(M,N,win) 
% 
% where 
%   M = number of rows 
%   N = number of columns 
%   win = desired PDF taper  (default: taylor(-35,3,1024)) 
% 
%   'win' must have length at least 64 
% 
  
% awd 20120529 
  
function Z = randx(M,N,win); 
  
if nargin<=2, 
    %%% choose default window function 
    Nwin = 1024;   
    win = taylor(-35,4,Nwin)'; 
else 
    Nwin = length(win); 
    %%% test if negative window values 
    if min(win)<0, 
        disp('randx:  Error:  negative PDF not allowed'); 
        X = NaN; 
        return; 
    end 
    %%% test if inadequate PDF length 
    if Nwin<64, 
        disp('randx:  Error:  PDF length < 64'); 
        X = NaN; 
        return; 
    end 
end 
  
%%% normalize taper function to a PDF 
win = win/sum(win);; 
  
%%% calculate CDF of input PDF 
cwin = cumsum(win); 
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%%% create array of uniform random values 
Zin = rand(M,N); 
  
%%% create output array 
Z   = zeros(M,N); 
  
%%% for each desired output sample 
for m=1:M, 
    for n=1:N, 
        % find index of CDF for corresponding rand value 
        z2 = min(find(cwin>=Zin(m,n))); 
        z1 = z2-1; 
        z2 = min(z2,Nwin); 
        z1 = max(z1,1); 
        if z1==1, 
            z2 = 2; 
        elseif z2==Nwin, 
            z1 = Nwin-1; 
        end 
        c2 = cwin(z2); 
        c1 = cwin(z1); 
         
        % perform linear interpolation to find non-integer  
        % index value 
        z = z1 + (z2-z1)*(Zin(m,n)-c1)/(c2-c1); 
         
        % normalize index value to the interval [0,1) 
        Z(m,n) = z/Nwin; 
    end 
end 
  
%%% ensure Z values are in proper interval 
Z = max(Z,0); 
Z = min(Z,(1-eps)); 
  
return; 
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Appendix B – Matlab Random Shuffle Function 

We present here a Matlab function that shuffles the column entries in an array of data. 

 
% shuffle    
% 
% shuffle the entries in columns of an input array 
% 
% [Y,I] = shuffle(X) 
% 
% X = array of input data 
% 
% Y = output array with column entries shuffled 
% I = mapping of column indices in shuffled array 
 
% awd 20120717 
  
function    [Y,I] = shuffle(X) 
  
[M,N] = size(X); 
  
%%% if row vector, reorder into a column vector and set flag 
flag = 0; 
if M==1, 
    flag = 1; 
    X = reshape(X,N,M); 
    [M,N] = size(X); 
end 
  
%%% create random number matrix same size as input matrix 
num = rand(size(X)); 
 
%%% sort random number matrix -- this in turn causes a random  
%%% shuffling of indices in each column of the array 
[Y,I] = sort(num); 
  
%%% reorder the elements of the input array X according to the  
%%% now random order of the indices in array I 
for n=1:N, 
    for m=1:M, 
        Y(m,n) = X(I(m,n),n); 
    end 
end 
  
%%% if input was originally a row vector, then order output  
%%% into row vector also 
if flag, 
    Y = reshape(Y,N,M); 
end 
  
return; 
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“Those who trust to chance must abide by the results of chance.” 
-- Calvin Coolidge  
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“Luck can be assisted. It is not all chance with the wise.” 
-- Baltasar Gracian 
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