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Abstract

Tape joints have been a key tool in assembly of nuclear weapons for almost 40 years. In that
time sufficient experience has been gained to have confidence on the robustness of this technology
within established design constraints; the structural dynamics of systems assembled by tape joints
are much less well understood. Though there is lore that tape joined structures behave linearly
in the axial direction, even that is contradicted by the literature, where such structures are found
to be bi-linear (nonlinear) in axial modes. Experimental results presented here show much more
significant nonlinearity when such systems vibrate in such a way that there is bending across the
joint cross-section.

In addition, it will be difficult to understand the nonlinear structural dynamics before the pre-loads
on the tape joints is known. Therefore, a strategy to deduce the joint pre-loads from surface strain
measurements has been developed. This technique exploits finite element analysis to generate an
approximate Green’s function to map tape loads to surface strain and employs numerical opti-
mization to solve an inverse problem. This technique is demonstrated on the same test specimen
employed in the dynamics experiments.
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Chapter 1

Introduction

Tape joints have been part of the assembly of nuclear weapons for almost forty years. The
original patent was submitted by a Sandian, Robert L. Alvis, in 1969 [4]. The appeal of tape joints
for this purpose was enumerated early on by Huerta and Black [3]; tape joints are

1. Strong,

2. Lightweight,

3. Easily assembled, and

4. Provide a smooth exterior surface

It is also desirable that the joint not consume a large amount of internal volume. In some instances
it must be assembled without access to the interior [3]. With respect to the above criteria, the tape
joint is an excellent method of attachment.

There is another category of requirements that were not explicitly discussed in [3], but were
recognized in later publications: the necessity of predicting joint response mathematically as part
of the design process. To this end, Rechard et al. [2] addressed the calculation of joint strength and
later Rechard performed finite element analysis to interpret axial stiffness of tape-joined structures
[5].

With increasing reliance on the results of computer simulation to make design and certification
decisions, predictive capability with respect to other aspects of tape joints is increasingly important.
One such area requiring better predictive capability is that of the dynamics and vibrations of tape
joined structures.

The quasistatic experiments investigated by Rechard found that the axial stiffness of jointed
structures was bi-linear (nonlinear), substantially stiffer in compression than in tension. More
recent dynamic (vibration) data of such structures in bending, presented in the first portion of
this report, demonstrate them to be highly nonlinear, with frequency decreasing with vibration
amplitude. These nonlinearities, and others, appear to derive from linear elastic contact mechanics
in the vicinity of the joints. Understanding, quantifying, and predicting that mechanics requires
understanding the pre-load in the structure due to the tapes.
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Because all of the action is taking place on interfaces inaccessible to the experimentalist, as-
sessing that preload must be done indirectly. How one can do this via surface mounted strain
gauges, finite element approximations for a Green’s function, and the solution of a mathematical
inverse problem is presented in the second portion of this report.
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Chapter 2

Nonlinear Vibration of a Tape-Joined
Structure

A test specimen consisting of two cylindrical aluminum components and the machined features
necessary for tape (stainless steel) assembly was constructed to explore both the dynamic and
quasistatic behavior. The assembled system is shown on the left hand side of Figure 2.1. In this
experiment and in the experiments discussed in a later chapter, the female component is suspended
from above by a soft spring and the male component is attached by a tape joint and hangs below.
In the dynamic experiments, a shaker imposed harmonic excitations at fixed force amplitude at
the lower rim of the male component. Tri-axial accelerometers were placed as indicated in the
right hand side of Figure 2.1. These experiments involved upward sweeps in frequency and then
corresponding downward sweeps in frequency.

A3

A1

A2

A6

A4

A5

A9

A7

A8

A12

A10

A11

Figure 2.1: The assembled tape joint test specimen is shown on the left. The locations of the
accelerometers is shown on the right, each semi-circular band indicating the axial location of three
tri-axial accelerometers. The accelerometers at the end of solid lines are visible to the camera and
the accelerometers at the end of dashed lines are on the opposite side.

These dynamic experiments yielded apparent frequency response functions (FRF) near the joint
(location 4 of the figure) due to excitation at the rim (location 10 of the figure). These are shown
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in Figure 2.2.
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Figure 2.2:The frequency response of a point at the center of the test specimen to steady state sinu-
soidal excitation on the rim. The force amplitudes are 1 lb (blue) , 5 lb (green), 10 lb (red). Solid
lines are associated with tests employing downward sweeps in excitation frequency and dashed
lines are associated with upward sweeps in excitation frequency.

The different colors correspond to different levels of excitation amplitude: amplitudes are 1
lb (blue) , 5 lb (green), 10 lb (red). The dashed lines are the frequency responses measured from
up-sweeps in frequency at fixed amplitude and the solid lines are the corresponding frequency
response functions as the frequency is swept down.

Were this a linear structure, all six frequency response plots associated would overlie each
other. Figure 2.2 dramatically shows the nonlinearity of this test specimen. Three more observa-
tions are to be made from this figure:

1. The amplitude of the FRFs can vary by as much as a factor of three with amplitude. Not
only is this a strong proof of nonlinearity, it is a strong argument that nonlinearity cannot be
ignored in structural dynamics of tape-joined systems.

2. The peak acceleration associated with upward frequency sweeps is lower than that associated
with downward frequency sweeps at the same excitation frequency.
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3. For fixed excitation amplitude, that downward sweeping of excitation frequency yields ap-
parent resonance at a lower frequency than does upward sweeping of excitation frequency at
the same amplitude. This is an indication of systems that soften with amplitude [6].

4. The up-slope of the FRF curves is much steeper than the down slope. This is also a feature
of a softening response [7].

The frequencies and amplitudes of the FRF peaks are shown quantitatively in Table 2.1.

Table 2.1: Resonant amplitudes and frequencies associated with three levels of excitation.

Frequency Excitation Resonance FRF Amp.
Sweep Amp. (lb) Peak (Hz) Node 4
down 1 1082 1524
down 5 1004 698
down 10 959 446

up 1 1110 1083
up 5 1073 455
up 10 1054 236

Observations 2, 3 and 4 might be made understandable by consideration of a softening Duffing
oscillator, discussed in Appendix A. Such oscillators are characterized by stiffnesses that decrease
strongly with displacement amplitude and have resulting nonlinear dynamic properties, including
the three spelled out above. This is not to argue that tape-joined structures are Duffing oscillators,
but rather to note that dynamic properties of the test structure are sufficiently similar to those of
Duffing oscillators to infer that the underlying cause is a strong nonlinear softening.

Given the extraordinary dynamic nonlinearity of tape-joined structures suggested by these ex-
periments, it is incumbent on the analyst to accommodate these nonlinearities in any meaningful
structural dynamics simulation. This requires some qualitative understanding of the nonlinear me-
chanics at the root of this dynamic behavior, some meaningful way of representing this nonlinearity
in structural dynamics simulations, and physically meaningful approaches to parameterizing such
models.

The first step is to develop techniques to interpret experimental data to understand something
of the load state inside the joint. The rest of the body of this report is devoted to such an initiative.
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Chapter 3

Contact Nonlinearity and Vibration

The qualitative explanation for the above nonlinearity is as follows:

1. At low amplitudes of vibration, the “point of closure” remains closed and the system behaves
as though that surface were welded [5]. (A discussion of tape joint geometry is presented in
the next chapter.)

2. On the other hand, at high amplitudes of vibration (as suggested in Figure 3.1), the inertial
loads may cause deformations that overcome the preloads. As the contact patch is opened,
the effective stiffness of the system decreases.

Tape-assembled structure at small bending amplitude.

Tape-assembled structure at large bending amplitude.

Figure 3.1:At low amplitudes of vibration , the “point of closure” remains closed and the system
behaves as though that surface were welded (upper figure). At much higher vibration amplitudes,
the “surface of closure” may open at some locations along its circumference (lower figure).

This explanation is consistent with axial experiments reported by Rechard [5] and his accom-
panying two dimensional finite element analyses. In the reported experiments, the jointed structure
appeared to behave as a stiff linear system in tension and as a much stiffer linear system in compres-
sion. The finite element analyses gave qualitatively similar results, but the load at which response
switched from one linear system to another could not be calculated because the tape load was un-
known. It should be emphasized that the mechanisms elicited in quasistatic axial experiments and
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calculations reported by Rechard are in some ways qualitatively different from bending mecha-
nisms - most importantly, in bending the load increases on some portion of the point-of-closure
while it decreases at points on the opposite side of the neutral axis.

The more classical studies involved single degree of freedom systems with the contact nonlin-
earity represented as a nonlinear spring. Examples include those where the nonlinear stiffness is
approximated as a Hertzian contact [8, 9, 10]. In these problems, normal stiffness goes as preload
to the 3/2 power, so the contact is stiffer than the reference state in one part of the cycle and softer
than the reference state in another part of the cycle.

More representative of the tape joint system is that shown in Figure 3.2. Here the reference state
is that where the massless platform A, is pinned to the foundation by a pre-loadP0 and massless
platform B is similarly pinned to an opposite foundation.

Platform B

1

u2

P0

M

k2

P0

u3

k2

Platform A

k1

k1

Platform B

k2

P0

u3

k1P0

u1

u2

M

k2

Platform A

k1

u

Figure 3.2:An illustration of a system for which tangent stiffness changes instantaneously as a
pre-load is overcome by system dynamics.

In the reference state, the stiffness of the single degree of freedom system involving massM is
2k1, the governing equation is

Mü1+2k1u1 = 0 (3.1)

and the natural frequency isω0 =
√

2k1/M. Once the dynamic loads are such thatk1u1 > P0,
platform A lifts off the foundation and the governing equation for the motion of massM suddenly
changes to

Mü1+k1

(

k1+2k2

k1+k2

)

u1 =−P0
k1

k1+k2
(3.2)
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and the natural frequency in this portion of the cycle isω1 = ω0

√

(k1+2k2)
2(k1+k2)

< ω0. Similarly when
−k1u1 > P0, platform B lifts off its foundation, The governing equation becomes:

Mü1+k1

(

k1+2k2

k1+k2

)

u1 = P0
k1

k1+k2
(3.3)

and the natural frequency again drops toω1 = ω0

√

(k1+2k2)
2(k1+k2)

< ω0.

In this system the stiffness changes discontinuously over the cycle. This transition from one
linear system to another is actually a nonlinear feature.

1. This is seen in the time domain by consideration of two identical acceleration signals applied
to the structure. Say each of these is 90% of that necessary to lift Platform A from its base.
Each of them separately elicits the response of a simple harmonic oscillator of frequency
ω0. Applied together, they elicit a much more complex response, including a switching of
governing equation in the middle of each cycle. Superposition is violated.

2. This is seen in the frequency domain by a comparison of responses to different amplitude
pulses. For small excitation, the response is exclusively at frequencyω0, but for much larger
excitation levels, the response frequency (in a harmonic balance sense) drops. This is again
a violation of linearity.

This last feature is illustrated for the system of Figure 3.2 in Figure 3.3. For this case,k1 = 1,
k2 = 1/2,M = 1, andP0 = 1, the natural frequency shows a strong dependence on vibration ampli-
tude. At very small amplitude, the natural frequency is near its exact value,

√
2 and frequency stays

steadily there until amplitude exceeds the value of 1. Beyond that point the frequency decreases
monotonically. (Each point in this graph represents the solution of the dynamic system over a full
cycle. Periodicity is enforced by requiring that each state variable have the same value at the end
of the cycle as it had at the beginning.)

This behavior is qualitatively similar to that found experimentally with our tape-assembled test
structure. This similarity argues that the nonlinearity of the tape joint vibrations is also due to a
process of gaps opening and closing. If that is the case, just as is the case in the simple mechanism
explored here, knowledge of preload (in this case tape loads) is a prerequisite to development of
quantitatively correct dynamics models.
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Chapter 4

Geometry and Assembly of Tape Joints

Alvis [1] explains tape joints as a species of tongue-and-groove joint (see Figure 4.1.) The first
enhancement on the standard tongue-and-groove (TG) joint is the use of two displaced TG joints
to restrict relative rotation. Further the TG joints are held closed by a slot into which an expanding
insert is placed.

Figure 4.1: In this figure of Alvis [1], the tape joint is treated as version of Tongue-and-Groove
joint.
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The various elements of a standard tape joint are show in Figure 4.2. Of particular note are
the locking slot, indicated by annotation “Tape Segments”, and contact location indicate by the
annotation “Point of Closure”.

Figure 4.2:The various elements of the standard tape joint are indicated in this figure of Rechard
et al. [2].

The tape is designed so that if two halves of the slot were aligned, there would be a large
compressive force a the point of closure. How the insert moves the two sides of the slots toward
alignment and causes compression at the point of closure is indicated in Figure 4.3

Figure 4.3:Opposing wedges are placed in the tape joint slot so that converging motion of those
“tapes” pushes against the sides of the slot and locks the joint. (This figure from [2]).

Tape joints are usually used to attach cylinders end to end in the manner shown in Figure 4.4.
(A very different sort of tape joint is investigated in [11].)
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Figure 4.4:Tape joints are usually used to connect cylinders in an end-to-end manner (This figure
from [3]).
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Insertion of the tapes is done through at least two windows in the walls of the outer cylinder.
(See Figure 4.5). In fact, the nomenclature is clarified by observing that it is the female component
that has the windows through which the tapered wedges are placed.

Figure 4.5:Insertion of the tapes is done through windows in the wall of the outer (female) cylinder.
(This figure from [2]).

The tapes are manufactured with regular slots so that they will bend easily about the axis of the
cylinders. This is illustrated in Figure 4.6.

Figure 4.6:The tapes are manufactured with regular slots so that they will bend easily about the
axis of the cylinders. (This figure from [2]).
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Chapter 5

Quasi-Static Analysis

Tape Joint Equilibrium

Consider a structure consisting of two subsystems connected by a tape joint. Each subsystem
is considered to be linear, so the only nonlinearity is that associated with their connection.

Female

Male

Female

PT

P0

PT

P0

Male

Figure 5.1:At each place along its track, the tape joint applies equal and opposite loads on each
of the two constituent units.

Consider the system whose cross-section is shown in Figure 5.1. At each point along the tape
track the tape applies roughly equal and opposite loads to the male and female components. These
are marked asPT (θ) whereθ is the circumferential angle identifying the cross section. The units
of PT are force/unit length. Each of the bodies is held in equilibrium by forcesP0(θ) at the “point
of closure” (see Figure 4.2.).

The tape forces and the closure forces do not have quite the same values.

1. The contribution to net force on each body at each arcdθ from tape force isPT (θ)rT dθ
whererT is the radius of the tape channel. The contribution of the closure force isP0(θ)r0dθ .
So the two forces are related on average by the ratior0/rT .
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2. The tape forcePT (θ) is expected to vary substantially withθ . Because the point of closure is
a significant distance from the tape, the closure force there will be influenced in an integrated
sense by values ofPT in a neighborhood of cross-sections includingθ .

It is the tape loads,PT (θ), acting through the elasticity of the bodies that are responsible for
the pre-loads at the point-of-closure. The most fundamental challenge to predictive dynamics
modeling of tape-assembled structures is deducing these tape loads.

Elasticity, Symmetry, and Inverse Problems

Tape forces cannot be directly measured; for an array of force transducers cannot be put inside
the joint or along the annulus. However, strains on the external surface of the structure can be
measured. (With a bit more difficulty, surface strains could also be measured inside the interior of
the structure.) The remainder of this section discusses using that experimental data to deduce tape
loads.

The Forward Problem

Consider the forward problem: if the load distributionPT (θ) on the tape is known, then the
surface strains on the structure can be calculated with the enforcement of some simplifications. The
first step is to re-pose the problem to be linear. This is done by removing all contact uncertainties:

1. The “point of closure” is treated as welded. This assumption worked fairly well for Rechard
[5] when modeling the assembled system under compression.

2. The tape is replaced with a distribution of equal and oppositely applied forcesFT (θ) along
the tape joint track, as suggested in Figure 5.1. It is these forces that are desired.

Consistent with assumption 2 above, the following discretization for the tape force is intro-
duced. Divide the surface of the tape track into annular segments so that thekth segment is centered
at angleθk, having angular width,dθk, and having radial depthdr equal to the radial projection of
the tape onto its track. (See Figure 5.2.) On angular segmentk, a uniform pressurepk numerically
equal toFk/r is applied. This corresponds numerically toFk units force per unit circumferential
length.

Numerically, the forward question is:

given a vectorFT of discretized forces{Fk} applied along the tape track, calculate the
displacements and strains at selected locations on and within the structure.

In a displacement-based finite element formulation this is achieved in two steps:
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Figure 5.2:Segment k on which basis force Fk is applied.

1. Given the applied force vectorF , the displacement fieldU is found from

KU = FT (5.1)

where stiffness matrixK could be expected to be well conditioned.

2. The strain field can be deduced from the displacements

ε j = B jU (5.2)

whereε j refers to the strain at locationj on the surface of the structure. Solution of Eq. (5.1) for
U givenFT is the forward problem.

The Inverse Problem

The inverse problem involves estimating the (unobservable) tape loads. Elements of the direct
solution are used to pose the inverse problem mathematically.

For each segment numberk, define the basis force vectorFT ,k such that it is zero in all rows
but thekth and has the value of one on thekth row.

The vector of tape forces can be constructed using these basis vectors:

FT = ∑
k

FT ,kFk (5.3)

Equation (5.1) can be solved for the displacement field corresponding to basis forceFT ,k:

KUk = FT,k (5.4)
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which must be solved for eachk.

FromUk the contribution ofFT,k to the jth strain is found from

ε j,k = B jUk (5.5)

Because of linearity,

ε j = ∑ε j,kFk (5.6)

In matrix form, this is

ε = HFT (5.7)

The inverse problem consists of employing Eq. (5.7) and some measured surface strains to
deduceFT .

Solving the Inverse Problem

In general, the inverse problem is ill-posed. It is ill-posed not only because the number of equa-
tions usually differs from the number of unknowns, but also because a multitude of combinations
of unknown forces could generate the known strains almost equally well.

In this problem, the ill-posedness is addressed in three steps.

1. The problem of Eq. (5.7) is converted to the following optimization problem:

Minimize J0(FT ) = (HFT − ε)T (HFT − ε) (5.8)

This addresses issues of minor inconsistencies in data and it makes it possible to address
issues of the rank ofH via the following steps.

2. For physical reasons, it is expected that the tape applies only compressive tractions to the
surfaces of its channel. Therefore the optimization is restricted to forces satisfying

Fk ≤ 0 (5.9)

for all k.
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3. There remains a non-uniqueness problem. There are still many combinations of force vector
FT that satisfy the above inequality and minimizeJ0 equally well; the optimization remains
ill-posed. This is addressed with the use of Tikhonov regularization [12]. The objective
function is changed as follows:

Minimize J1(FT ) (5.10)

where

J1(FT ) = J0(FT )+α1F
T
T

IN FT +α2F
T
T

STSFT +α3∑
i

F
T
T

ĤT
i STSĤi FT (5.11)

Above,

• Matrix IN is the identity matrix whose dimension is that ofFT . This term is necessary
to assure that the components of the solution vector are bounded.

• Matrix Scaptures the second central difference of the array it multiplies. The product of
it and any vector is roughly the curvature of that vector as measured circumferentially

S=















2 −1 0 · · · −1
−1 2 −1 · · · 0
0 −1 2 −1 · · · 0
...

...
...

...
...

...
−1 · · · · · · · · · −1 2















(5.12)

The -1 on the upper right and lower left ofSaccount for periodicity in the circumfer-
ential direction. The product involvingSFT serves to suppress jaggedness in plots of
the solution vectorFT . The solution is expected to be discontinuous, so care is taken
to assure thatα2 is as small as possible while still leaving the optimization robust.

• Ĥi employs the forward solution to map from applied tape loads to surface strain of
type i around the circumference at cross sectionzi. In the problem to be considered
below, there are two strain gauge orientations, axial and circumferential, and two cross-
sections on which the gauges are mounted, one on the male component and one on the
female component. Thusi runs from 1 to 4. The term in Eq. (5.11) involvingSĤiFT

serves to suppress jaggedness in plots of the strains associated with solution vector
FT . The correct solution is expected to be reasonably smooth, so this term should not
degrade the quality of our answer.

The terms on the right hand side of Eq. (5.8) are, in order:

(a) the square error in matching experimental strains,

(b) a term proportional to the square of the force vector,

(c) a term roughly proportional to the square of the curvature of the force as measured
around the circumference of the tape, and

(d) a term roughly proportional to the square of the curvature of each strain component as
measured around the circumference of the tape.
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Values ofαm are each chosen to be large enough to make the optimization process robust,
but small enough so that when the minimization solution toJ1 of Eq. (5.11) is calculated
using slightly different{αm} and that solution is used to evaluateJ0 the result is reasonably
independent of the{αm}.

An Exploitation of Axial Symmetry

In general, the matrixH is obtained by preforming a separate finite element calculation for
each applied force{FT (θk)}. In the tape joint problem, the computational effort can be reduced
by assuming axial symmetry. Of course exploiting axial symmetry calls for use of cylindrical
coordinates where locations are identified by(r,φ ,z). Let the strain at location(r,φ ,z) due to a
single pair of opposing element faces atθk be denoted asε(r,φ ,z,θk). By superposition

ε(r,φ ,z) =∑
k

ε(r,φ ,z,θk)FT (θk) rT dθk (5.13)

Simplification derives from a Galilean transform

ε(r,φ ,z,θk) = ε(r,φ −ψ,z,θk−ψ) (5.14)

for all ψ. In particular, it applies forψ = θk

ε(r,φ ,z,θk) = ε(r,φ −θk,z,θ = 0) (5.15)

A single finite element calculation is performed with a force applied to a single pair of opposing
element faces atθ = 0. The full compliance matrixH can be constructed by a superposition of
those results, providing matrixH of Eq. (5.7).

28



Chapter 6

The Quasi-Static Experiment

Test Specimen

The assembly experiments discussed below were performed on the same specimen as was used
for the vibration experiments discussed in Chapter 2. (Refer to Figure 2.1 of that chapter.)

A close-up of the assembly in the vicinity of an insertion window and a close-up of the the
female specimen alone in the vicinity of an insertion window are shown in Figure 6.1.

Figure 6.1:The insertion window as seen in the assembled system and in the female component
alone.

The tapes in their original state and as they appear after having been used in a tape joint assem-
bly and then removed are shown in Figure 6.2.

Strain Gauges

Axially and circumferentially oriented strain gauges are placed on the male and female com-
ponents near the inter-component seam. Circumferential placement of the gauges is identified by
angular distance from an origin centered at the window shown in Figure 6.1. A summary of gauge
orientations and angular locations is presented in Table 6.1.
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Figure 6.2:The tapes in their original state and as they appear after having been used in a tape
joint assembly and then removed.

Angular Location 0◦ 15◦ 45◦ 90◦ 135◦ 150◦ 270◦

Male Axial X X X X X X X
Male Circum. X X X X X
Female Axial X X
Female Circum. X X

Table 6.1: Angular locations of strain gauges

The Test

The test consisted of the following steps

1. Suspend the female component so that its tape assembly section faces down.

2. Lift the male component up from below until it mates with the female section.

3. Zero all strain gauges.

4. Start recording of strain gauge channels.

5. Insert tapes, hammering them in as necessary.

6. Hammer on sides of assembled structure to permit tapes to settle.

7. Discontinue recording strain gauge signals.

8. Disassemble.

The above procedure was performed twice. We refer to data collected from the first and second
assembly process as associated with Assembly 1 and Assembly 2, respectively. The steps in the
test process are indicated in the annotations shown in Figure 6.3.
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Figure 6.3:The various steps in the testing process are reflected in the axial strain histories. These
strains are from Assembly 1.
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In Figure 6.3 it is noted that the magnitude of the axial strainat 90◦ on the female component is
substantially larger than the strains shown from the male component. This is made more obvious
in Figure 6.4 where the strain is observed in the female component at 90◦ with those from the male
component at that angle; the ratio is almost 2/1. Circumferential (hoop) strains are shown in Figure
6.5. There the hoop strains are seen to be substantially lower than the corresponding axial strains.
This is not a surprise, since they are due primarily to Poisson effects. Strain data from the second
assembly process are very similar to that shown from the first. (See Figures 6.6, 6.7, and 6.8.)
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Figure 6.4:Axial strains on the male and female components at90◦ and270◦ on Assembly 1.
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Figure 6.5:Hoop strains from Assembly 1.
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Figure 6.6:Axial strain histories from Assembly 2.
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Figure 6.7:Axial strains on the male and female components at90◦ and270◦.
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Figure 6.8:Hoop strains from Assembly 2.
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Chapter 7

Finite Element Analysis

The single three-dimensional finite element analysis involving 106,000 elements was per-
formed involving one set of loads on elements in the tape channel located approximately at zero
degrees. A cross-sectional view of the the mesh containing the tape region is shown in Figure 7.1.

Figure 7.1:Finite element mesh in vicinity of tape joint.

As discussed near the end of Chapter 5, the elasticity of the system can be captured sufficiently
by performing one finite element analysis, where equal and opposite concentrated forces are ap-
plied to the male and female portions of the tape track in the vicinity ofθ = 0. Axial symmetries
permit the rest of elastic response to be captured through a sequence of angular transformations.

Axial strains of that single finite element analysis are shown in the mesh in Figure 7.1. Also
indicated in that figure are the axial locations of the strain gauges on the male and female compo-
nents. The circumferential distribution of surface strains on the male component due to a concen-
trated force at 0◦ are shown in Figure 7.2 and the corresponding strain distributions on the female
component are shown in Figure 7.3.

The axial strains measured on the male body are expected to be generally much larger (by a
factor of 5) than those on the female body according to a comparison of Figures 7.2 and 7.3. This
would be consistent with the strain gauges on the female component being substantially further
from the point of closure than are those on the male component. There is reason to be suspicious
of the strains measured on the female components.
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Figure 7.2:Circumferential distribution of surface strains on the male component due to a con-
centrated force at0◦.
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Figure 7.3:Circumferential distribution of surface strains on the female component due to a con-
centrated force at0◦.
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Chapter 8

Results

It was impossible to match simultaneously strains measured on the female component and on
the male component. Because the the female strains were suspicious already, it was decided to
employ only the strains on the male component in the inverse problem for tape loads.

Assembly 1

The techniques discussed above employed the strain data collected on the male component of
Assembly 1 to generate the tape load distribution (force/length) shown in Figure 8.1.
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Figure 8.1:Circumferential distribution of tape load computed for Assembly 1.

How well the computed tape force distribution can reproduce the strains measured on the male
component in Assembly 1 is indicated in Figures 8.2 and 8.3.
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Figure 8.2:Circumferential distribution of axial strain for Assembly 1 from measurement and from
computed tape load.
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Figure 8.3:Circumferential distribution of hoop strain for Assembly 1 from measurement and from
computed tape load.
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Overall, it appears that the computed tape load distribution(Figure 8.1) can reproduce the
measured strains on the male component in Assembly 1.

Assembly 2

The techniques discussed above employed the strain data collected on the male component of
Assembly 2 to generate the tape load distribution (force/length) shown in Figure 8.4.
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Figure 8.4:Circumferential distribution of tape load computed for Assembly 2.

How well the computed tape force distribution can reproduce the strains measured on the male
component in Assembly 2 is indicated in Figures 8.5 and 8.6. Overall, it appears that the computed
tape load distribution (Figure 8.4) can reproduce the measured strains on the male component in
Assembly 2, but not as well as was the case for Assembly 1.
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Figure 8.5:Circumferential distribution of axial strain for Assembly 2 from measurement and from
computed tape load.
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Figure 8.6:Circumferential distribution of hoop strain for Assembly 2 from measurement and from
computed tape load.
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Future Cautions

It is not too surprising that the strains measured on the female component were unreliable;
correctly applying strain gauges is a notoriously difficult task. With that in mind, for future exper-
imentation, it would be good to perform validation tests on the strain gauges before assembly of
the full test structure.

An approach to such validation is the following:

1. Apply strain gauges at the desired locations on each of the male and female components.

2. Without attaching the components, apply known forces to the various locations on the “point
of closure” on each component. Record the resulting strain gauge values.

3. Perform corresponding finite element analysis, evaluating strain at the locations of the gauges.
This should be a well-conditioned analysis problem.

4. Confirm that the experimental strains and those obtained by finite element analysis agree.

45



46



Chapter 9

Conclusion

Several conclusions can be drawn from the work presented here:

• On the basis of the experiments reported here, tape-joined structures can be expected to be
remarkably nonlinear in vibration that involves bending at the joint. This feature can be
expected to have a major role in response of such structures when subject to lateral blast.

• Analytic predictions for dynamic response of tape-joined structures that do not account for
this nonlinearity are going to be of very low fidelity.

• Understanding and ultimately predicting the joint nonlinearity requires some method of es-
timating the preloads in those joints. One method of doing so has been presented here. Yet
more tools must be developed to use this information to understand and to predict quantita-
tively the structural nonlinearity of the joints.

Some candidate means of incorporating nonlinear dynamics of tape-jointed structures are: very
low-order models (such as a Duffing equation) and techniques which incorporate the nonlinearity
into integrated finite element analysis without solving contact problems at every time step. An
approach for the latter is suggested in Appendix B.
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Appendix A

The Softening Duffing Oscillator

Duffing oscillators are simple harmonic oscillator devices containing a cubic restoring force.
Such systems are well-studied and discussed lucidly in [13] and in [14]. They are often considered
paradigms for nonlinear vibration.

In dimensionless form the governing equation for the forced Duffing oscillator subject to har-
monic excitation is

y′′+2ζy′+y+αy3 = cosΩτ (A.1)

If the coefficientα of that cubic term is positive, the system stiffens with amplitude. If the
coefficient is negative, the system softens with amplitude.

This problem can be solved numerically by integrating over each period with the constraints
that y(0) = y(T) andy′(0) = y′(T) whereT = 1/Ω. More often, such equations are addressed
through the method of harmonic balance, where harmonics of the driving frequency and the
Galerkin technique is employed to find the complex coefficient of each harmonic [15]. Consider
just the first harmonic with

y(τ) = R

(

Y(Ω)eiΩτ
)

(A.2)

Substitution of Eq. (A.2) into Eq. (A.1) yields a cubic equation forY(Ω)2 at eachΩ. A feature of
cubic equations with real coefficients is that there are always either one or three real solutions, so
at each value ofΩ there are always either one or three real solutions forY2 corresponding to one
or three realizable solutions for|Y(Ω)|. It is conventional to plot|Y(Ω)| vs Ω2, and for negativeα
the locus of such solutions has the form of the black curve of Figure A.1.

At values ofΩ2 for which there are three solutions forY(Ω), one of these is always unstable
and not realized in steady state. The other two are quasi-stable and solutions may jump from one
branch to another. On which branch a solution will be found depends on history, for instance:

• Sweeping through frequencies, starting atlow Ω2, where only one frequency exists (point A
in the figure), the system amplitude tends to stay on thelower branch of the three-solution
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regime until another one-solution regime is encountered. Atthat point the solution must
“jump up” to that branch. This is a jump from point C to point D in the figure.

• Sweeping through frequencies, starting athigh Ω2, where only one frequency exists (point
B in the figure), the system amplitude tends to stay on theupperbranch of the three-solution
regime until another one-solution regime is encountered. At that point the solution must
“jump down” to that branch. This is a jump from point E to point F in the figure.

F

E

Up−Sweep and Down−Sweep FRF

Ω

|Y|

2

A
B

D

C

Figure A.1: The softening Duffing oscillator admits multiple response amplitudes at fixed ampli-
tude of harmonic excitation. “Up-jumps” and “down-jumps” in amplitude occur at the driving
frequency is swept up or down, respectively.

Several observations should be made about theup-jumpanddown-jumpprocesses:

1. Theup-jumpsaccompanying up-sweeps in frequency occur at frequencies higher than the
frequencies associated withdown-jumpsaccompanying down-sweeps in frequency.

2. The peak displacement amplitudes associated with the em up-jumps islower than the peak
displacement amplitudes associated with thedown-jumps.

3. The jump displacementalwaysoccurs on the left side of the peak; the peak has infinite slope
on the left and more gradual fall-off on the right.
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Appendix B

A Reduced Tape-Joint Model for Finite
Element Analysis

Solution of contact is computationally intensive. Retaining the nonlinear, but nearly elastic
contribution of the tape joint to the dynamics of an assembled structure in a computationally
tractable manner requires some substitute for solving the contact problem at every time step. Far
better would be implementation of some method capturing the nonlinearity in a manner consistent
with finite element model formulation, but providing explicit force-type output as a function of
kinematic quantities.

Component A Component B

Zero−Thickness Interface

Figure B.1: The assembled system is modeled as two physical components jointed by a zero-
thickness interface whose properties are to be found.

Consider the system shown in Figure B.1. The system consists of two physical components
connected by a nonlinear zero-thickness interface. The properties of the interface are determined
by comparison with a reference system consisting of the two physical components above, but as
though the components were welded together.

Consider a bending oscillation as suggested by Figure 3.1. Either via detailed nonlinear finite
element analysis accounting for contact or from experiment, one may deduce the compliance that
the interface introduces to the system. For instance, for the case of low amplitude oscillation,
the difference between measured natural bending frequency and that which would be calculated
for the reference system can be ascribed to the presence of the interface. In the regime of very
low amplitude oscillations, that compliance would be a constant number. At higher amplitudes of
vibration, a nonlinear interface elasticity,M(φ), might be deduced. HereM is the effective moment
applied over the interface cross section andφ is the finite rotation associated with that moment.

The unknown interface model must be constructed so as to reproduceM(φ). To do this, an
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infinitesimally thick layer of material (film) that is capableof finite stretch in the normal direction
is considered (Figure B.2). The deformation of that layer is treated as a monotonically increasing
functions of normal traction.

The constitutive equation for the film is of the form

σ = f (u) (B.1)

whereσ is the normal traction andu is the corresponding finite displacement.

φ

σ

Figure B.2:The joint is modeled as a finitely deformable, but infinitesimally thick material.

It is necessary to make some kinematic assumptions connecting the local deformation of the
interface layer with the overall relative rotation of the left and right components. This is accom-
plished by making the usual beam-bending assumptions:

1. Plane surfaces remain plane.

2. Stretch is proportional to distance from the neutral axis.

3. The neutral axis is on the centroid of the cross section.

These assumptions are somewhat redundant with each other, but their enumeration is helpful.

The kinematic assumptions above are expressed mathematically by

u= φy (B.2)

whereu is the stretch of the interface material a distancey from the neutral axis.
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The moment is

M(φ) =
∫

A
y f(u(y))dA=

∫

A
y f(φy)dA

=
∫

y
y f(φy)w(y)dy (B.3)

wherew(y)dy= dA.

The above has the character of a Volterra integral equation of the first kind and can be solved
by any of several standard methods.

Implementation in a finite element code should be fairly straight-forward. Zero thickness el-
ements are defined in the interface. Topology of the elements will be that of a squashed hex
element. The material properties are uniform among the elements in a particular interface and can
be specified in the usual manner. Though these elements are nonlinear, they are elastic so their
implementation should not be substantially more difficult than that of the more common bi-linear
elements.

If there is asymmetry in the bending response, for example, bending vibration at small ampli-
tude occurs in two orthogonal planes and at different natural frequencies, then the development
can proceed as follows:

1. Postulate the existence of two species of nonlinear interface material, say typeA and typeB.

2. Postulate the distribution of the typeA to go as sinθ whereθ = 0 is on the neutral axis of
the first bending mode.

3. Postulate the distribution of the typeB to go as cosθ .

4. Generate and solve two coupled linear integral equations to capture the two bending re-
sponsesMA(θ) andMB(θ).
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