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Abstract

This report proposes a mean curl on quadrilateral elements égra 2D magnetics calculations.

The resulting quadrilateral element is an extension of the work [1, 4] to include the curl operator.
The resulting quadrilateral element implementation is applicable to implicit calculations in Carte-
sian coordinates which use either the vector potentidd tormulation. It is useful to note that

in the vector potential formulation, the mean curl produces a mean flux density on the element,
whereas in th& formulation the mean curl produces a mean current on the element. In both cases,
the mean curl is, by construction, divergence free. The mean curl is further developed and applied
to the nonlinear permeability capability that currently exist®\iegra 2D for the vector poten-

tial formulation. Using the proposed mean curl, a Jacobian operator is developed and presented
which is applicable to nonlinear iterations associated with the implicit problem. Note that the exist-
ing nonlinear permeability does not include hysteresis; also, the current nonlinear implementation
uses a Jacobian free solution algorithm because a Jacobian operator has neither been developed or
implemented. A Jacobian for the full quadrature implementation that currently exAtgna 2D

can be similarly derived based upon the results presented.
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1 Introduction and Motivation

This report proposes a mean curl on quadrilateral elements égra 2D magnetics calculations.

The resulting quadrilateral element implementation is applicable to implicit calculations in Carte-
sian coordinates which use either the vector potentidd tormulation. It is useful to note that

in the vector potential formulation, the mean curl produces a mean flux density on the element,
whereas in th& formulation the mean curl produces a mean current on the element. In both cases,
the mean curl is, by construction, divergence free. The mean curl is further developed and applied
to the nonlinear permeability capability that currently existiegra 2D for the vector poten-

tial formulation. Using the proposed mean curl, a Jacobian operator is developed and presented
which is applicable to nonlinear iterations associated with the implicit problem. Note that the exist-
ing nonlinear permeability does not include hysteresis; also, the current nonlinear implementation
uses a Jacobian free solution algorithm because a Jacobian operator has neither been developed or
implemented. A Jacobian for the full quadrature implementation that currently exitgma 2D

can be similarly derived based upon the results presented.

The mean curl has two potential advantages over the exiatagga 2D Gauss quadrature imple-
mentation. First, the mean curl allows for closed form evaluation of all quantities required and thus
eliminates Gauss quadrature loops. For example, in the vector potential formulation, the action of
the operator and calculation of the Jacobian matrix for Newton iterations, are simple, easily im-
plemented formulas that can be directly evaluated thus yielding faster code. The second potential
advantage relates t&legra data structures that store material properties for an elenfsgra

stores one value for a particular property on each element and does not facilitate storing values
associated with each Gauss point on an element. This limitation may conflict with constitutive
models which evaluate properties as a function of field values on an element. For example, in the
vector potential formulation, nonlinear permeability models may need to evaluate the permeability
as a function of the flux density which may vary on an element. By using the mean curl, data
requirements for calculations are consistent with exisfitegra data structures. The mean curl
yields a single, constant value for the flux density on an element which can then be used to evaluate
a single nonlinear permeability value on the element.

An outline for the report is now given. Section 2 briefly introduces the magnetic diffusion equations
that are considered, that is, Ampere’s law, Faraday’s law, Ohm’s law and a magnetic constitutive
model. Section 3 quickly develops the weak form for the vector potential formulation and then
motivates and develops the core mean curl results which are applicable to both the vector potential
formulation andB formulation. The weak form and application of the mean curl forBHermu-

lation is presented in Section 4. The mean curl introduces spurious modes that must be stabilized.
Stabilization of the mean curl is presented in Section 5. These results are also applicable to the
nonlinear permeability Jacobian that is presented in Section 6.

2 Resistive Magnetic Diffusion Equations

Alegra 2D performs aesistive magnetic diffusion calculation. This calculation is the last phase in
the operator split algorithm associated with the advancement by a single time step. The physics
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of magnetic diffusion is assumed to satisfy magneto-staticsectro-static approximations and is
mathematically represented by a simplified form of Maxwell's equations. The magnetic diffusion
equations solved iklegra 2D are derived from Ampere’s law and Faraday’s law. Ohm’s law, a
constitutive model relating the magnetic field to the flux density is appended.

Ampere’s Law
OxH=J 1)

H andJ are the magnetic field and current density respectively. rhe tate of change of dis-
placement currents in Ampere’s law are ignored based upon the electro-static assumption.

Faraday’s Law

OXxE=—— 2
xE=-22, @

B andE are the flux density and electric field respectively.

Ohm'’s Law
J=0E (3)

Ohm’s law is a constitutive model relating the current density to the magnetic field through the
material conductivity denoted hy. In this report, the conductivity is taken as a constant. Notation
for the resistivityn = % is also used.

Magnetic Constitutive Model
B=uH 4)

Magnetic permeability is denoted py In this report,u may depend on the magnitude of the

flux density||B|| in a nonlinear but smooth way. However, hysteresis and history effects are not
part of the nonlinearities considered here. This assumption on the constitutive model may not be
physically correct for some materials but was assumed as a starting point for this project work.
This relation is also assumed to be invertible so that the following makes sense,

B _
H = M—V(IIBH)B, %)

wherev(||B||) denotes the material reluctivity.
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3 Alegra2D: Vector Potential Formulation

In the vector potential formulation [3], the flux density is taken as:
B=0xA, (6)

whereB has two components in the plane spanned by unit vedtans &ndA = Ak is the vector
potential. Note the unit vectdr= i x j. Under this assumption, the divergence of the flux density
is zero, and from Faraday’s law (2),

A A
Dx(g—l-ﬁ)—O :E——E-I-an (7)

whereE is the gradient of a scalar potential. This latter condition is given because the curl of the
gradient is zero.

Amperes law (1) is written using (6) and the constitutive model (4).

OxA\
o (52)-

The above equation is combined with Ohm’s law (3) and (7) to arrive at the governing equation for
the vector potential formulation.

DX(D:A) — 098, oE, (©)

Boundary conditions will be introduced in the next section.

3.1 Weak form

To arrive at the weak form for (9), dot (9) with a vector functi&nand integrate over the domain

Jelespeafm - fe[on (50|

The vector identity]- (axb) =b- (O xa)—a- (O xb), witha= ?HXB% and b = E is useful for

deriving the boundary conditions and weak form associated with the integral on the right hand
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side. This is given as

Je- [0 (e |ow = /o[ Gagen) )o@

+ [ ey @8 (080

1 )
- LE-l-/m(DXA)-(DXE)dQ (11)

wherelg, after applying the divergence theorem, gives the boundamyliions. Combining the
last equation in (11) with (10) gives an electromagnetic energy equation for the domain. This is
also the weak form for this formulation.

Weak form:
~ 0 ~
/ [E d—A—E EO} dQ - /@(DXA)(DXENQ—FLE (12)

The left hand side represents the rate of work done by electromagnetic fields due to motion of
charge. The integral on the right hand side is the rate of energy stored in the magnetic field and
Le is apparently the rate of energy flow out of the dom@ithrough its boundaryQ. Boundary
conditions are given by applying the divergence theorehgtdefined in (11)).

Lle= O K STE ) XE} da= [ n [( D<||XB/|T>) XE] 400. (13)

wheredQ denotes the boundary of the domain and Ayl + nyfdenotes the normal to the bound-

ary. The second form of the above is used to define Dirichlet and Neuman boundary conditions
by identifying the magnetic fielth = %, and using permutation properties of the scalar triple
product. -

Dirichlet BC:  The weight functiorE is a surrogate for the electric field. The following equation
is a natural permutation of (13) and is a form convenient for this specification, where thestétm ~
is in thek direction, that is, normal to the computational plane.

Lg = / E-[AxH]dIQ, (14)
= 0Q

Therefore, because of the dot product, the Dirichlet condition is om¢benponent of the electric
field.

Neuman BC: The tangential component of the magnetic fields specified on the boundary
0dQ. This follows directly from (14) and corresponds with thetangent boundary condition
in Alegra 2D. If a non-homogeneous value is not specified, then a zero value for the tangential
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magnetic field is weakly enforced on the boundary.

3.2 Mean curl on quadrilateral elements, Cartesian coordinates

Spatial material properties legra 2D, such as permeability and conductivityo, have a single

value on each element which is assumed to be constant over the entire element. Depending upon
the functional form of the permeability = u(||B||), this assumption may or may not be true
becauseB can vary on an element. For example, when evaluating the highdl side of (12),

where the weight functiok takes on values associated with linear basis functions, ooss of

B will vary linearly. It follows that the quadrature algorithused to evaluate (12) must evaluate

U1 = u(||BJ|) a each quadrature point. However, data structurégegra 2D only support a single

cell quantity forp on the element. This limitation is the main motivation for the development of a
mean curl on the element. The remainder of this section develops the mean curl on a quadrilateral
element.

Evaluation of the integral on the right hand side of (12) is considered. On an element, the key step
and assumption is to use a mean value for the flux density when evaluating this integral. The mean
value for the flux density on an element is denoted and defined as:

_ Je(OxA)dQe

:DXA_—fedQe ) (15)

los]

UsingB, a single value for the permeability can be evaluated for la@ent. Furthermore, since

the flux density is taken as constant, it can be pulled outside the integral. Below, the reluctivity

v(||BJ|) (see (5)) is used to denote the reciprocal of the permeability and its dependence on the
mean value of the magnitude of the flux density. The approximated version of the integral on the
right hand side of (12) is denoted by

| = v(|B|)B- /e (0% E)dQe. (16)

To proceed further, the finite element discretization is introduced. For mean curl calculations, it is
convenient to represent the quadrilateral basis functions on a reference element, shown in Figure 1,
using the following set of functiong,

1 1 1
quzzi+§f/\1i+§rl/\2i+frlri (17)

where local coordinates on the reference element are denotédahyln, i represents the local
node index which takes on valuesiof (0,1,2,3), and component;, Az, A andT of the
guadrilateral base vectors are given in Table 1. On an element, the vector potential f@ethdn
is interpolated with the above nodal basis functions in the usual way:

A=Ak= (Y Ajg)k= S AE, (18)
J J
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30 l—f b1

X : Vertex nodes
© : Edges

o®

1
€m=(-3.-1) €m=(3-7

Figure 1. Quadrilateral reference element

whereA without an underline denotes the single unknown component of the vector poténtial,
denotes nodal values & andk denotes the unit vector normal to the computational dortain

Table 1. Components of Quadrilateral Base Vectors

Nodei & n SN | N | T
0 -05|-05|1|-1|-1| 1
1 05| -05{1] 1|-1|-1
2 0.5 051 1 1 1
3 -05| 05(1] -1 1)-1

The weight functiorE in (16) is replaced witlE; (see (18)) which defines an element contribution
from local node as

I = v(|[BI)B: /e (0% E;) dQe. (19)

The approach proposed here is equivalent to evaluation of the integral on the right hand side of (12)
using one-point quadrature. The downside of one-point quadrature is one spurious (zero-energy)
mode is introduced. There are two vectors in the null space of the element level operator implied
by (19). The first corresponds with constant values of the vector potential on an element. This
vector is denoted b¥ and it does not present any problems as the finite element approximation is
expected to capture constant values. Uniqueness with this mode is typically resolved via dirichlet
boundary conditions or for transient calculations through enhancement of the definiteness via the
mass matrix. The second vector is the spurious hourglass mMddemponents of incoming nodal
values for the vector potential that are aligned witkdo not contribute to nodal contributions in

(19), i.e., although a non-trivial value for the vector potential and its curl exist on the element,

li = 0 for eachi. Fortunately, stabilization of the hourglass mode is easily accomplished using the
orthogonal properties of the base vectors. Components éodl™ are given in Table 1.
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Before jumping into the details a brief outline of the strgtagd goal is given. The principal goal

is to demonstrate thdt in (19) is a linear combination of the base vector componéatsand

N\2i. Then stabilization can be accomplished in two different but equivalent ways. In the first case,
residual calculations are stabilized by extracting the component of the incoming vector potential
that is alond” and adding a small contribution alofghat is proportional t&(||B||). The second

form of stabilization occurs when forming element matrices implied by (19). It is shown that
element matrices are a linear combination of tensor products of the base vectord/\,. Then

an equivalent stabilization can be implemented by adding contribution to the stiffness matrix that
is along the tensor product 6fwith itself. These details are now presented. Note that it is only
necessary to work through these details to demonstrate these properties. Calculations using the
stabilized mean curl are very straightforward and do not necessarily require all these results.

To begin, the integral in (19) is written as:
[(OxE)do. = TXECe (20)
e
whereCe denotes the area of element e

/dQe
e

Given the mean curl in (20), the mean value of the flux density on an element can be directly
evaluated:

los]

= OxA

4
= .%Aj(DXEj). (21)
J:

From the above, entridg; in an element stiffness matrix are given by:

kj = v([BI) [(OXE)- (O Ep) ce. (22)

As denoted, the above relation may be nonlinear if the reluctivity depends|{@jofT his nonlin-
earity has no effect on the mean curl evaluation.

The focus is now on evaluation 6f x E;. To begin, Green’s theorem is applied to (20):

[(OxE)d0e=— § a(&.n) [ue(&.m)dg +uy (& myan] (23)
where
OX~ 0y X~ 0Y -
Us(&,n) = 5?”*‘&5” and u,(§,n) = 5%—+-5%¢ (24)

The integral on the right hand side is a path integral over the boundary of the reference element (see
Figure 1). On the edges of a linear quadrilateral element, values afidu,, are either constant
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and non-zero or zero. This simplifies the integral substhyitia

=

/e(DXEi)dQe:— (Ug +Up —Us —Up) S+ (U +Up) Az + (—Ug —Ug)A2 |, (25)

Z (. J/

-~

0

where the quantity with the under brace is zero, and the veggo@%, gg, u3 denote values for
Ugs andu, on edges, with superscripts denoting the edge, as indicated in Figure 1. Therefore the
curl on an element using one point quadrature is

/e(D x ;) dQe = —%1 (up +Up )Agi + (—Ug —u%)/\zi} : (26)

Using this result, a slightly different view of the element stiffness matrix (22) is written down. An
operatorK €, representing the element stiffness matrix is given by

e V(IBI)Ce
K"= 16

where the scalarg;] are given as:

[aT1 (AL @ A1) + a55(A2 @ N2) — afr(A1 @ N2) — afx(A2 @ Ap)] (27)

afy = (up+U3) - (up +ud),
(g +u3) - (U@ +ug),
az, = (UY+uf)- (U3 +uf). (28)

e
ars

For clarity, the tensor products above produce linear operators that act on vectors to produce an-
other vector. Suppose = A1 and consider the action ¢f\; ® A») onw.

(M@N)w = (A1®N2)N\1
= N(A2-N\q)
= N1(0)
0 (29)

Using the orthogonality properties of the base vectors in Table 1, it is easy to see thatnoth
are in the null space &€, i.e., K€ = KT = 0, where 0Ois the zero vector.

3.3 Mean curl formulae

In this section, all the expressions required to implement the mean curl in a computer program are
given. A sample implementation of the element stiffness matrix and its stabilization (described in
Section 5) is given in the appendix.
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The aredC. of a quadrilateral with nodal coordinates, y;), for j € (0,1,2,3) is

Ce= [dQe = F((a=x)(0—Y2)+ (0 =%2) (2 -Ya)). (30)
Components of the mean curl Bf (see (18)) are given by

(X3 —x1), (Ya—Y1)
(X0 —X2), (Yo z)
(X1 —X3), (Y1—Y3)
(X2—X0), (Y2—Yo)

_ 1
/(ngi)dQe = OxECe= =
e

> (31)

Given nodal valueg\; for the vector potential, components of the mean flux on an element (see
(21)) are

los]

_ 1 [ (A1—Ag)(X0—X2) — (Ao —Az) (X1 — X3)
= DX’—*:’zce{ml—Asxyo y2) — (Ao~ A2><y1—y3>} (32)

The element contribution to nodecan be evaluated directly from (19) using the above formu-
lae.

| = v<||B||>B-/e<ngi>dQe

For practical reasons, it makes sense to compute components of the Epusifig (31), as well as
the mean flux (32), and then perform a dot product between them to compute comppnents

There are a variety of ways to compute entries in the element stiffness matrix (22). One approach
is to form the tensor product using (31). Whatever the method, the unique entries of the symmetric
element stiffness matrix are given as

_ kin k2 kiz kig
V(IIB]) | kiz koo koz koa
4Ce | kiz koz ka3 Kas

Kig koa kaa Kag

K¢ —

, (33)
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where the unique componeriks are given by

kin = (X1 —X3)?+ (y1—Y3)?
kKio = (Xo—X2)(X3—X1)+ (Yo—Y2)(Y3— Y1)

ki = —(Xl —X3)? = (y1—Y3)?

kig = (X0—X2)(X1—X3) + (Yo—Y2)(Y1—¥3)
ko = (Xo—X2)*+ (Yo—Y2)?

ks = (Xo-— Xz)(Xl —X3) + (Yo—Y2) (Y1 — X3)
koa = —(X0—%2)%— (Yo—Y2)?

ks = (X1—X3)?+ (Y1—X3)?
ksa = (X2—X0)(X1—X3)+ (Y2—Yo) (Y1 — X3)
kea = (Xo—X%2)?+ (Yo—Y2)% (34)

4 Alegra 2D: B Formulation

4.1 Weak form

In the Alegra 2D B-formulation [3], the flux density has only one component which is normal
to the computational domaf. As a vector field, the flux density is denotedEs- Bk, where

the componenB is the primary unknown in the problem. One limitation of Bdormulation in
Aleggra 2D is that the material permeability must be taken as constant; therefore it is not possible
to model problems that require nonlinear permeability withBFHfermulation.

To arrive at the weak form, dot Faraday’s law (2) with a vector funcigmnd integrate over the
domainQ; use the vector identitid - (O x E) = 0- (E x H)+E- (O x H). Then, Ampere’s law

(1) combined with Ohm’s law (3) and the magnetic constitutive model (5), is used on the second
term in the vector identity. Note that singeis taken as constanf] x H = % D x B. These steps

are given below.

/H —dQ . /ﬂ-(DxE)dQ
Joens

~ Ly+ [ [E-(OxH)]do

= Lﬁ+/[(maxf)~<ﬂxﬂ> do

wherelLy, after applying the divergence theorem, gives boundaryitond. These expressions
are the weak form for thB-formulation.

18



Weak form:
/H 4o = /[DXB xﬂ)}dQJrL,:l (35)

Boundary conditions in thB-formulation are given by applying the divergence theorein{@nd
are conceptually similar to those of the vector potential formulation. n

Ly = /D (ExH)dQ = /mﬁ-(gxﬂ)dag, (36)

wheredQ denotes the boundary of the domain and ri.i + nyfdenotes the boundary normal. The
boundary integral on the right is used to define Dirichlet and Neuman conditions using properties
of the scalar triple product to permute terms.

Dirichlet BC:  The weight functiorH is a surrogate for the magnetic field.is specified o Q
and is normal to the2 domainQ. The following equation is a natural permutation of (36) and is
a form convenient for this specification, where the termE is in thek direction, that is, normal

to the computational plane.

Le = / H.[Aix E]doQ, @37)
= 0Q

Therefore, because of the dot product, the Dirichlet condition is on¢bmponent of the magnetic
field.

Neuman BC: The tangential component of the magnetic fiElds specified on the boundary

0Q. This follows directly from (37) and corresponds with tBegangent boundary condition in
Alegra 2D. If a non-homogeneous value is not specified, then a zero value for the tangential electric
field is weakly enforced.

4.2 Mean curl on quadrilateral elements, Cartesian coordinates

From the mean curl point of view, this section is nearly identical to Section 3.2. There, the mean
curl was used to calculate the mean flux density on an element. In this section, the mean curl is
used to calculate the mean current on an element.

Evaluation of the integral on the right hand side of (35) is considered. On an element, the key step
and assumption is to use the mean value of the current when evaluating this integral.

19



The mean current is defined by:

fe (D;E) dQ.

J=
- JodQe

(38)
Given the mean curredt the approximated version of the integral on the right hadé sf (35)
is denoted by V:

V=n3- [(0xH)dQe, (39)

wheren denotes material resistivity (see (3)). For simplicity, dependengeonfthe mean current

was not denoted here although that could be included. Here the resistivity (reciprocal of the con-
ductivity) is assumed to be constant. This is not an impediment; perhaps the conductivity depends
upon the current through temperature in which case the mean value of the current can be used to
calculate the resistivity.

To proceed further, the finite element discretization is introduced, where the previously defined
basis functions (17) on a quadrilateral are used. On an element, the flux d&rsityterpolated
with the basis functions in the usual way:

B=Bk= (Y Bjp)k= S BjH, (40)
J J

whereB without an underline denotes the single unknown component of the flux deBsitig-
notes nodal values @&, andk denotes the unit vector normal to the computational dorfaifihe
weight functionH in (35) is replaced wittH; (see (40)) which defines an element contribution
from local node as

Vi=n3- [(0xH)de (41)

At this stage, nearly all the results and analysis from the vector formulation can be applied. Those
results are given in the following section.

4.3 Mean curl formulae

In this section, formulas relating to the mean curl for By®rmulation are given. Only those that

are unique and or distinct from the vector potential formulation are included, otherwise a reference
to the equation number is given. A sample computer implementation of the element stiffness
matrix and its stabilization (described in Section 5) is given in the appendix.

The cell area of a quadrilater@l, and the mean curl of shape functidis< H; are given in (30)
and (31) respectively, witk; replaced wittH; in the latter.

The mean currertis analogous to the mean flux density. Using the definition&88)the previous

20



result (32), this is written as

- OxB 1 [ (B1—Bs)(%—X2) — (Bo—B2)(x1— Xxa)
: { (B1—B3)(Yo—Y2) — (Bo—B2)(y1—Y3) } (42)

_
- H 2Ceu

For practical reasons, it makes sense to compute components of the dyiisihg (31), as well
as the mean current (42), and then perform a dot product between them to compute comyonents
in (41).

An element stiffness matrix analogous to (33) is given as

ki1 ki2 kiz Kia

n ki koo koz koa
Ke— , 43
4Ceu | ki3 koz ka3 kag (43)

Kia koa ksa Kag

where the unique componerks are identical to those given in (34).

5 Stabilization

As described in Section 3.2, the mean curl approach introduces spurious modes. If these modes are
not stabilized, then the mean curl approach is useless. This is the how-to section for stabilizing the
mean curl quadrature described in this report. Stabilization can be accomplished in two different
but equivalent ways. Depending upon the context, it may be necessary to implement both.

In the first case, action of the mean curl operator is evaluated without use of the element stiffness
matrix. This operator may correspond with either (19) or (41) for either the vector potential or
B-formulation respectively. In both cases, an incoming vector of nodal quantities associated with
an element, eithefAg, A1, A2, Az) or (Bo, B1, B, B3) are given. Whichever the case, let the given
components define a vector The basic idea is to compute a new veaipr= (u-I")I" which is

a projection ofu along the hourglass vectdr The output of the operator is augmented/summed
with a ur, wherea is a small number proportional to the appropriate material properties.

The second form of stabilization is implemented by stabilizing the element stiffness matrix. This
is accomplished by augmentii, (33) or (43), for either the vector potential formulation or the
B-formulation respectively. In both cases, the element stiffness matrix is stabilized by adding a
matrixKg =al T .

Recall that the mean curl operator produces the zero vector for any incoming fields along the
hourglass vector. Then these methods artificially eliminate the null space of the operator that is
associated witlh. The following vectors will stabilize these operators when they are used in either
linear or nonlinear solution algorithms. Note that the scaling is arbitrary. Material properties are
introduced to make the ficticious stabilization vectors scale in a way that may be meaningful for
the physics.
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Stabilizing the vector potential formulation  The operator (19) defininfy is augmented with
Ir.

li=li+1r, (44)

where

v(BII)

Ir =a
Fi 2Ce

(Ao—A1+Az —Ag)li,

a > 0is a small, user specified stabilizing constant, Bnig a component of the hourglass mode
defined in Table 1. The stiffness matrix (33) associated with the vector potential formulation is
augmented with thi&g.

K& = K®+K¢, (45)

where

Stabilizing the B-formulation ~ The operator (41) defining is augmented witNf,.

Vi= Vi +V, (46)
where
n
V. = Bo—B1+Bo—B3)l;
r 2Celi( o—B1+B2—B3)li,

a > 0is a small, user specified stabilizing constant, Bnid a component of the hourglass mode
defined in Table 1. The stiffness matrix (43) associated with the vector potential formulation is
augmented with th&g.

KE = K®+KE, (47)
where
1-1 1-1
e N 1 1-11
r=0gcn| 1-1 1-1
111 1
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6 Linearization of the Vector Potential Formulation for Non-
linear Permeability

This section is only relevant to the vector potential formulation using the mean curl. A similar
result can also be obtained for full quadrature but that is not presented.

For nonlinear implicit calculations, a Jacobian matrix is needed for Newton-Raphson iterations.
Nonlinearities are assumed to be smooth, i.e., the reluctwityv(||B||), see (5), is assumed to

be differentiable with respect to the magnitude of the magnetic ffiBJd Hysteresis and history
effects are not part of the nonlinearities considered here. If these assumptions on the reluctivity are
met, then the exact form and dependencg @i the flux density is not critical, that is, it should

be possible to derive the required derivative for other forms.

The element Jacobian matrix is calculated by differentiating (19) with respect to nodal quantities
Ay. Denote the Jacobian &, = Il Using the chain rule,

J A
v JIBI g % |
K= GiE] o5 A B 0N dQet VB 5 - [ (0> N)de
Note that - )
2||B Bj I X B
= =g - (OxN,), wherens=—.
08, on e (R0 e g

Then the Jacobian is written as
ik = v fig - (DX N B - [ (0% M) dQe+v(([BI) DX R - [ (0% N)d.
- e e
where

_0v
2| B|

VT

The Jacobian represents a chande(see (19)) at each nodal point that arises due to small changes
in the vector potential. To evaluate the above on an element, nodal quafAiids, Ay, Az) are
expected to be known. With these values, the mean flux dejBjtycan be evaluated from the
mean curl of the vector potential on the element thus allowing evaluation of the reluetiyiBy).
Similarly, it must then be possible to evaluate the slope of the reluctivity cu\at the computed
mean value of the flux densit}B|| on the element.

The above Jacobian includes two terms. The first term is a constitutive model response and is due
to a change in the reluctivity. The second term on the right is a direct change due to change in
the vector potential; this term is a direct effect resulting from the fact that the mean magnetic field
is changing. Except fovr, which is a material dependent property that must be given, all of the
terms required to compute the above Jacobian were given in Section 3.3.

The above linear operator can be stabilized using the previously defined stabilization (45); it has
exactly the same null space as the previously defined element stiffness matrix (22). Note that
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the second term in the Jacobian is identical to (22). The #rshtis the tensor product of a two
vectors,u, = fig- (O x Ny ) andyv; = B- (0 x N;)Ce. Bothuy, andy; are a linear combination of
the components of\; and A, and therefore it follows that the tensor product will be a linear
combination of them as well.

7 Demonstration Calculations on a Single Element

In this section, an eigen analysis is performed on a typical element stiffness matrix computed
using the mean curl. The element stiffness matrix is subsequently stabilized and the eigen analysis
is repeated. With this approach, element stiffness matrix properties described earlier in the report
are easily demonstrated in a practical setting. Results presented are typical and representative of
what would be seen in the practical application of this element.

The element used for demonstration calculations is depicted in Figure 2, where nodal coordinates
(x,y) of each vertex are denoted. The element stiffness matrix for the vector potential formulation
or theB-formulation, given by (33) or (43) is computed assuming that the material property (either

1 = 1.0 or v(||B||) = 1.0) on the element. This assumption is only for simplicity and is not a
ﬁmitation or restriction on the relevance of the demonstration calculations. Several key points are
illustrated.

e Observe that there are 2 zero eigenvalues for the case without stabilization.

e Only one eigenvalue is changed after stabilization, i.e., the eigenvalue associated with the
hourglass mode is now positive; the remaining eigenvalues are unchanged.

o After stabilization (see (45) or (47)), the eigenvalue that remains zero is associated with the
eigen vector representing constant solutions on the element. This is a requirement for the
element to properly represent the constant solution.

e Observe that after stabilization, the eigen vectors associated with the original non-zero eigen
values are unchanged from the un-stabilized matrix.

Listed below are results of the eigenvalue analysis with stabilizatioa {0~4) and without sta-
bilization (a = 0). Itis illustrative to consider the action of the element operator on the hourglass
vector in both cases. Because the material property on the element is taken as unity, this produces
a vector which is proportional to the stabilization parameter and inversely proportional the element
areaCe. See (33) and (43).
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Eigen value computation on symmetric matrix stored
No stabilization.
matrix:

form.
Lower triangular
4.5679012346e01
2.5925925926e01
—4.5679012346e01
—2.5925925926e01
Eigenvalues:
—5.6255300012¢e16
Eigenvectors:
7.0197435793e01
—8.5041171229e02
7.0197435793e01
—8.5041171229e02

Eigen value computation on symmetric matrix stored
With stabilization.
matrix:

form.
Lower triangular
4.5683456790e01
2.5921481481e01
—4.5674567901e01
—2.5930370370e01
Eigenvalues:
—1.3766994923e16
Eigenvectors:
—5.0000000000e01
—5.0000000000e01
—5.0000000000e01
—5.0000000000e01

(0.0,0.0)

Figure 2. Quadrilateral element; Aregg

alpha=0.0

6.9444444444e01
—2.5925925926e01
—6.9444444444e01

—4.8069663422e17

8.5041171229e02
7.0197435793e01
8.5041171229e02
7.0197435793e01

6.9448888889e01
—2.5930370370e01
—6.9440000000e01

1.7777777778e04
5.0000000000€01
—5.0000000000e01

5.0000000000<01
—5.0000000000e01
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in

4.5679012346<01
2.5925925926.01

5.8084783039e01
5.9511652441e01
—3.8188522147e01
—5.9511652441e01
3.8188522147e01

in

alpha=.0001

4.5683456790.01
2.5921481481e01

5.8084783039e01

5.9511652441e01
—3.8188522147e01
—5.9511652441e01
3.8188522147e01

lower triangular

6.9444444444e01
1.7216213054e+00

—3.8188522147e01
—5.9511652441e01
3.8188522147e01
5.9511652441e01

lower triangular

6.9448888889e01
1.7216213054e+00

—3.8188522147e01
—5.9511652441e01
3.8188522147e01
5.9511652441e01



8 Introduction to Magnetization of Materials

Two basic types of magnetic materials are introduced and reviewed: diamagnetic, and paramag-
netic. These materials do not manifest magnetic hysteresis and are representative of magnetic
materialsAlegra 2D can currently model. This information is commonly known and available
from various sources and websites [2, 5, 6]. Hysteresis and hence ferromagnetic materials are not
discussed.

Magnetic fields arise due to charges in motion and are fundamentally a physical phenomenon in-
duced and understood at the atomic scale through quantum mechanics — well beyond the discussion
here. However, for continuum modeling purposes, it is helpful to have a basic understanding of
the physics of magnetism. This then becomes helpful in matching mathematical models to specific
materials. At the atomic scale, electrons spinning about nuclei can conceptually be thought of
as tiny currents which induce magnetic dipoles. The aggregation of these tiny magnetic dipoles
in the bulk material and their response to applied magnetic fields is how magnetic materials are
classified.

Diagmagnetic materials When a material consists of atoms/molecules with no unpaired elec-
trons, the net magnetic field in the bulk material is zero. However, when an external field is applied
to the material, in addition to the Coulomb force of attraction towards the nuclei, a Lorenz force
acts on electrons either speeding them up or slowing them down. This change in angular momen-
tum of the electron is in the opposite direction of the applied magnetic field; hence there is a small
induced magnetic moment in the bulk in the opposite direction of the applied field [2, 6]. This ac-
counts for why these materials have a relative permeability slightly less than 1. When the applied
field is removed, the Lorenz force is removed and the material returns to its original state with
no net magnetization. Diamagnetic materials are not attracted to an applied field. Note that the
diamagnetic response described here is very small compared to a ferromagnetic response. A con-
stitutive model such as that currentlyAhegra2D may be relevant to diamagnetic materials.

Paramagnetic materials Paramagnetic materials typically have unpaired electrons which in ag-
gregate at the continuum scale, have magnetic dipoles which tend to cancel each other out because
of random atom/molecule orientations. Thus, in the bulk, paramagnetic materials have no net mag-
netic field. In contrast with diamagnetic materials, unpaired electrons are free to orient themselves
in response to an applied field. The tiny magnetic dipoles experience a torque which tends to align
them with the applied field [5]. At a temperature of absolute zero, the extent to which dipoles
align themselves is at a maximum. At room temperature, thermal agitation tends to prevent the
material from completely aligning with the applied field. Whatever the case may be, the net align-
ment enhances/amplifies the applied field and the material is magnetized and hence paramagnetic
materials have a relative permeability slightly greater than 1. The paramagnetic response to an
applied field is relatively small compared with a ferromagnetic response. Paramagnetic materials
are attracted to an applied field and do not exhibit hysteresis. When the applied field is removed,
magnetization due to parallel alignment of dipoles is removed and the material returns to a state
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of zero magnetization. A constitutive model such as thateriily in Alegra2D may be relevant to
paramagnetic materials.

9 Summary

A quadrilateral element for2 magnetics calculations was presented. This element uses single
point quadrature and is applicable to linear and nonlinear implicit application computer codes
where the curl operator is needed. Because the element uses reduced order quadrature it must be
stabilized. The report presented the stabilization which is easily incorporated into an implemen-
tation; a sample implementation was provided. Some simple but representative calculations on an
element were done illustrating the element null space and how the stabilization perfectly eliminates
the spurious mode while leaving the remaining modes undisturbed. For implicit transient magnetic
calculations, or magnetostatic calculations involving nonlinear paramagnetic or diamagnetic ma-
terials, the linearized element stiffness matrix was developed an presented.
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A Fortran coding example for mean curl on quadrilateral

subroutine meancurl_phi(xy, meancurl)
implicit none
integer ,parameter::npe=4, dimension=2
real«8,intent(in)::xy(dimension ,npe)
real«8,intent(inout):: meancurl (npe,dimension)
real«8,dimension (0:3)::x,y
real«8::area, ainv
x(0:3)=xy(1,1:4)
y(0:3)=xy(2,1:4)
| area of quad
area=0.5x ( (x(3)=x(1))*(y(0)—y(2))+(x(0)—x(2))+(y(1)-y(3)) )
a_inv = 1.0/area
meancurl(1,1)=0.
meancurl(1,2)=0.
meancurl(2,1)=0. a_inv
meancurl(2,2)=0. a_inv

5% a.inv
5 %
5 %
5 %
meancurl(3,1)=0.5 % a_inv
5 %
5 %
5 %
1T U

a.inv

(x(3)—x(1))
(y(3)-y(1))
(x(0)—x(2))
(y(0)-y(2))
(x(1)—x(3))
(y(1)-y(3))
(x(2)—x(0))
(y(2)-y(0))

meancurl (3,2)=0. a_inv

meancurl(4,1)=0. a_inv

meancurl(4,2)=0. a_inv
end subroutine meamurl_phi

KX K K K K X K

subroutine elementstiffness (xy,eK,mat, alpha)

Input:

xy: element coordinates

mat: scalar coefficient associated with material

alpha: scalar hourglass constant used for stabilization

I
|

I

!

! Output:

! x+ Element stiffness ’'eK’ is computed
! x 1) symmetric 4x4 matrix

! % 2) stored in lower triangular form
! x 3) Note storage

! K11

! K21 K22

! K31 K32 K33

|

K41l K42 K43 K44
implicit none
integer ,parameter ::npe=4, dimension=2, length=10
real«8,intent(in)::xy(dimension ,npe)
real«8,intent(in):: mat, alpha
real«8,intent(inout)::eK(length)
I mc is meancurl
real«8,dimension (npe,dimension):: mc
real«8,dimension (0:3)::x,y
real«8,parameter ,dimension (0:3)::hg=(/1.61.0,1.0,-1.0/)
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real«8::area,g
x(0:3)=xy(1,1:4)
y(0:3)=xy(2,1:4)

I area of quad
area=0.5% ( (x(3)—=x(1))*(y(0)—y(2))+(x(0)—x(2))*(y(1)-y(3)) )

! mean curl of shape functions
call meancurl_phi(xy,mc)

I form element stiffness by tensor product

I column 1
eK(1l) = mat* area * ( mc(1,1) » mc(1l,1) + mc(1,2)x mc(1,2) )
eK(2) = mat* area * ( mc(2,1) » mc(1l,1) + mc(2,2)* mc(1,2) )
eK(3) = mat* area* ( mc(3,1) * mc(1,1) + mc(3,2)x mc(1,2) )
eK(4) = mat* area x ( mc(4,1) » mc(1l,1) + mc(4,2)x mc(1,2) )
I column 2
eK(5) = mat* area* ( mc(2,1) * mc(2,1) + mc(2,2)x mc(2,2) )
eK(6) = mat* area x ( mc(3,1) * mc(2,1) + mc(3,2)* mc(2,2) )
eK(7) = mat* area* ( mc(4,1) * mc(2,1) + mc(4,2)x mc(2,2) )
I column 3
eK(8) = mat* area * ( mc(3,1) * mc(3,1) + mc(3,2)* mc(3,2) )
eK(9) = mat* area * ( mc(4,1) x mc(3,1) + mc(4,2)x mc(3,2) )
I column 4

eK(10) = mat* area x ( mc(4,1) « mc(4,1) + mc(4,2)x mc(4,2) )

I add hourglass stabilization
g = alphax(mat/4.0/area)

eK(1) = eK(1) + g=x hg(0)xhg(0)
eK(2) = eK(2) + g=x* hg(l)xhg(0)
eK(3) = eK(3) + g=x hg(2)xhg(0)
eK(4) = eK(4) + g=x* hg(3)xhg(0)
eK(5) = eK(5) + g=x* hg(l)xhg(l)
eK(6) = eK(6) + g=x hg(2)xhg(1)
eK(7) = eK(7) + g=* hg(3)xhg(l)
eK(8) = eK(8) + g=x hg(2)xhg(2)
eK(9) = eK(9) + g=x* hg(3)xhg(2)
eK(10) = eK(10) + g=* hg(3)xhg(3)

end subroutine elemenstiffness
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