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Abstract 

 

Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed 
to go beyond traditional safety techniques—such as Fault Tree Analysis (FTA)—that overlook 
important causes of accidents like flawed requirements, dysfunctional component interactions, 
and software errors. While proving to be very effective on real systems, no formal structure has 
been defined for STPA and its application has been ad-hoc with no rigorous procedures or 
model-based design tools. This report defines a formal mathematical structure underlying STPA 
and describes a procedure for systematically performing an STPA analysis based on that 
structure. A method for using the results of the hazard analysis to generate formal safety-
critical, model-based system and software requirements is also presented. Techniques to 
automate both the analysis and the requirements generation are introduced, as well as a 
method to detect conflicts between the safety and other functional model-based requirements 
during early development of the system. 
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1 Introduction and Motivation 

The introduction of new technology, such as computers and software, is changing the types of 
accidents we see today. The level of complexity in many of our new systems is leading to 
accidents in which no components failed but instead unsafe interactions among non-failed 
components lead to the loss. At the same time, traditional hazard analysis techniques assume 
accidents are caused by component failures or faults [1] and oversimplify the role of humans [2, 
3]. Attempts have been made to extend these traditional hazard analysis techniques to include 
software and cognitively complex human errors, but the underlying assumptions remain the 
same and do not match the fundamental nature of systems we are building today. For example, 
most software-related accidents can be traced to incomplete or flawed software requirements 
[4, 5], however current hazard analysis methods like Fault Tree Analysis (FTA) emphasize 
component failures and overlook unsafe requirements. In addition, new technology is changing 
the role of humans in systems from followers of procedures to supervisors of automation and 
high-level decision makers [6, 7]. New more powerful models of accident causation and hazard 
analysis techniques are needed to address these issues. 

While the traditional techniques are useful for their intended goals, they do not address the 
new causes of accidents in modern complex systems and they do not solve the problem of 
identifying or generating the safety requirements. This paper presents a method for generating 
and validating safety-critical requirements using a new hazard analysis method, STPA (System-
Theoretic Process Analysis) that is based on a new accident causation model called STAMP 
(System-Theoretic Accident Model and Processes). 

2 Evaluation of traditional hazard analysis techniques 

Many traditional hazard analysis methods used in practice can be traced to three main analysis 
techniques: Fault Trees, Event Trees, and Failure Modes and Effects Analysis. The following 
sections briefly review each of these and evaluate them with respect to their ability to ensure 
safety in complex systems. This is followed by a broader evaluation of failure-based models in 
general with a discussion of the common limitations and the need for a more powerful systems-
based approach to safety. 

2.1 Fault Tree Analysis 

Fault Tree Analysis (FTA) was developed at Bell Laboratories in 1961 under a U.S. Air Force 
contract to analyze the Minuteman missile system [8]. Electromechanical component failures 
were quite common at the time, but there was no method to analyze all potential combinations 
of failures sufficient to cause hazardous behavior such as an inadvertent (i.e. accidental) missile 
launch. Bell Labs developed FTA as a way to identify critical failure combinations, determine 
which combinations were most likely, and establish whether individual failure rates are 
sufficiently low. The analysis approach was first demonstrated on the Launch Control System  of 
Minuteman I, and then extended by Boeing and AVCO to include components throughout the 
entire Minuteman II system  [9]. Following its success on missile systems, FTA was adopted by 
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organizations in many different industries and is now one of the most popular techniques used 
during hazard analysis. 

FTA begins with an undesirable event, such as an inadvertent missile launch or aircraft engine 
failure, and proceeds in a top-down fashion to identify the causes of the undesirable event in 
progressive levels of detail. The result is documented in a tree structure, where high-level 
undesirable events or faults are caused by combinations of lower-level component failures. A 
failure is an event in which a component does not operate in accordance with its specification, 
for example if a relay fails to close properly when a voltage is impressed across its terminals. A 
fault event describes component behavior that results from a failure and causes an 
unsatisfactory state, such as a relay closing at the wrong time due to the improper functioning 
of an upstream component. [1, 5] Events at the top of the tree describe faults while the lowest-
level events, called primary events, describe failures. Figure 1 shows an example fault tree from 
the original Bell Laboratory report. 

 

Rupture of hot 

water tank

OR

Event B

Failure of 

temperature device 

to actuate controller

Event C

Failure of controller 

to actuate gas valve

Event D

Failure of gas 

valve to close

AND

Event A

Failure of relief 

valve to lift

 

Figure 1: Example fault tree from the original Bell Laboratory study [8] 

Events at each level are decomposed using either OR logic or AND logic into more detailed 
events. AND logic is used to indicate that an event will occur only if all events in the 
immediately lower level occur. OR logic indicates that the event will occur if any events in the 
immediately lower level events occur.  

When the fault tree is complete, it can be analyzed to identify combinations of component 
failures or cut sets sufficient to cause the top-level undesirable event. For example, one cut set 
for the fault tree in Figure 1 consists of event A together with event B; another cut set consists 
of event A together with C and D. The former cut set also a minimal cut set because it can not 
be further reduced into a smaller cut set sufficient to cause the top-level event. Minimal cut 
sets from a fault tree can be used to help prioritize the importance of component failures and 
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focus engineering efforts. For example, failures that appear in every minimal cut set such as 
event A in Figure 1 might warrant a higher ranking than other failures. [10] 

If the component failure rates or probabilities of individual failures are known then a 
quantitative analysis can be performed to calculate the likelihood of the top-level event. In a 
quantitative analysis the failure events are typically assumed to occur independently, which 
greatly simplifies the analysis and does not require the measurement of complex dependent 
failure rates. Although the independence assumption is often made for electromechanical 
devices, it may not be valid if the failure rates are substantially affected by changes in 
independent variables such as temperature, vibration, mechanical stresses, etc.  

2.1.1 Evaluation 

FTA is a powerful top-town method of analyzing combinations of failures that can cause an 
undesirable event. However, there are a number of limitations associated with this technique. 
Because FTA begins with an undesirable event, some other method must be used to identify 
the undesirable events that need to be analyzed. Another issue is identifying the lower-level 
events. Although some limited guidance is provided in terms of when certain operators can be 
used and how faults can be combined, much less guidance is provided for identifying the faults 
and failures in the first place. As a result, many completed fault trees are later found to omit 
important events. For example, the fault tree from an actual system in Figure 2 omits the 
possibility that a conflict alert is displayed but the controller does not observe it. Similarly, the 
fault tree in Figure 3 omits the possibility that Air Traffic Control does not check the Mach 
differential.  



10 

Controller does not 

perceive the conflict [in 

flight paths]

Controller does not 

issue any instruction 

[to avoid the collision]

OR

Controller 

perceives the 

conflict, but cannot 

devise a resolution 

maneuver

Controller perceives the 

conflict and may be able 

to devise a resolution 

maneuver but does not 

have the timeAND

No conflict alert is 

displayed Controller 

believes 

conflict alert is 

a false alarm

OR

Conflict alert does not 

cause controller to 

perceive conflict
Controller does 

not perceive the 

conflict from his 

flight information

OR

Computer 

systems 

fail

Encounter is 

beyond conflict 

alert capabilities
Threat is non-

transponder 

aircraft

 

Figure 2: A partial fault tree for an aircraft collision avoidance system [11] 
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Incompliant procedure 

(with overtake 

Mach>0.4) is 

undetected by Air 

Traffic Control

OR

Air Traffic Control 

incorrectly checks 

Mach differential

Flight Crew provides 

wrong relative position 

(behind or leading) to 

Air Traffic Control

Communication errors 

(partial corruption of 

the message during 

the transport)

 

Figure 3: A partial fault tree for proposed airspace procedures [12] 

At each level, FTA users must seek out additional information and identify lower level causes, 
but there is no systematic method for doing so. The analysis itself (finding causes and linking 
them together) is performed mentally based on one’s own experience and knowledge; the fault 
tree itself simply documents of the output of the analysis. The analysis must also be based on 
some existing model of the system, but FTA does not include any standard system model so a 
mental model is typically used instead. For these reasons, there is no way to check or verify that 
all the causes have been identified at any given point or that all users are operating with the 
same mental model of the system. Meanwhile, some of the most important contributors to 
accidents in complex systems today involve subtle behavior that was never anticipated or not 
included in the developers’ mental model. In addition, because FTA relies on an existing model 
of the system it is less useful for driving critical decisions during early stages of development 
when the model does not yet exist. 

Another disadvantage is the lack of a stopping rule when performing FTA. Failure and fault 
events can almost always be decomposed further, and a subjective assessment must always be 
made about when to stop. For example, the diamond shapes in Figure 2 indicate events that 
are not further decomposed in the analysis. The lowest-level boxes Figure 3 were not 
decomposed further either. In practice, decomposition often stops when the causes are no 
longer obvious or become too complex. However, the subtle or complex factors are often the 
most important ones to identify, especially for software- and human-intensive systems. For 
example, the event “controller believes conflict alert is a false alarm” cannot be addressed 
without understanding why that behavior may occur (e.g. the system may have generated too 
many false alarms in the past). As others have noted, FTA often finds only what is already 
intuitively obvious. [5, 13] 

Although FTA was originally developed to analyze combinations of electromechanical device 
failures, various attempts have been made since its original inception in the 1960s to extend 
FTA to other system components such as software programs or human operators. Boeing used 
simulators to attempt to identify and quantify potential pilot errors for use in a fault tree as 
early as 1968, but noted that the human system was far too complex for an accurate 
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assessment and that developing numerical values was slow and painful process [14]. A number 
of improvements have been made since then, but the same limitations are still being observed: 

Operators do not get simulator sickness as do pilots, they do not have to make billion 
dollar tradeoffs which they might in an actual severe accident, and the simulators 
themselves can only simulate ‘standard, textbook scenarios.’ .... ‘Hot cognition’, decision 
making under fire and uncertainty, is just not elicited in a simulator. [15] 

The most serious problem … continues to be the same problem that was recognized in 
the early 1960s among HRA practitioners—the scarcity of data on human 
performance that are useful for quantitative predictions of human behavior in 
complex systems. … Except for use of highly fallible expert judgment, the training 
simulator is the only practical method for collecting data on human errors that have 
very low probabilities of occurrence (1E-4 or smaller) or which are associated with 
operating conditions that would occur with a very low frequency. Yet the simulator is 
not the real world. How can raw data from training simulators be modified to reflect 
real-world performance? This is not a small problem. [16] 

Expert judgments have also been utilized as a way to identify and quantify operator errors in a 
fault tree [12, 17]. In practice, this approach is typically used when there is little or no objective 
data available for the quantity of interest; critics argue that it is therefore not possible to 
validate (or falsify) the expert estimates that are used [18]. Expert estimates are also subject to 
a number of cognitive biases: estimates are almost always overconfident, usually over- or 
under-estimate the quantity of interest, and vary significantly between experts. [19, 20] 
Although numerous methods have been proposed to reduce systematic biases, critics argue 
that these approaches only improve inter-judge reliability and do not necessarily validate the 
estimates themselves. [18, 19] 

Because FTA focuses on decomposition into failure events, it is difficult to analyze complex 
computer software systems. Software is fundamentally different from hardware—when 
software exhibits unsafe behavior, it is not due to “wear and tear” on the software. Software is 
unsafe when it correctly follows flawed programming that existed from the beginning. In 
practice, software errors are often ignored completely in the fault tree [5, 21], or included in a 
box labeled “software failure” that is not decomposed further as in Figure 2.  

2.2 Event Tree Analysis 

Event trees were developed during the WASH-1400 nuclear power plant safety study in 1974 
[22, 23]. A comprehensive fault tree analysis was originally attempted for this task, but was 
deemed too large and cumbersome to be practical. [5, 22] Event trees were conceived as a way 
to condense the analysis by first defining potential accident paths so that each failure in the 
path can be further analyzed using a separate fault tree. Although event trees were originally 
designed to be combined with fault trees as part of an overall Probabilistic Risk Assessment, 
Event Tree Analysis (ETA) has more recently been introduced as a separate method in its own 
right [22, 24-26]. 

A simplified event tree for a nuclear reactor is shown in Figure 4. The first step is to identify an 
initiating failure event such as a ruptured pipeline or loss of power. Next, a set of barriers or 
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protective functions intended to prevent the initiating event from leading to an accident are 
identified and listed in the sequence of anticipated operation. Finally, a logical tree is 
constructed by tracing forward in time from the initiating event and inserting a binary branch at 
each barrier to reflect the possible success or failure of that barrier.  

 

Figure 4: Simplified event tree for a nuclear reactor adapted from [27] 

Like fault trees, the structure of an event tree lends itself well to a quantitative analysis if the 
probabilities of each barrier’s success or failure are known. In practice each barrier is often 
assumed to operate independently, which allows computing the probability of each end state 
(conditioned on the initiating event) by simply multiplying the probabilities of success or failure 
of each barrier on the path to the end state. The end state probabilities can also be calculated if 
the barriers operate dependently and the probability of each barrier’s success or failure 
(conditioned on the success or failure of the previous barrier) is known. 

2.2.1 Evaluation 

Event Trees Analysis is a useful way to examine the anticipated effects of physical protection 
systems when the probabilities of failure are known, but like any method there are several 
limitations. Event trees must start with an initiating event, but do not provide a way to 
systematically identify the initiating events or to be sure that all relevant initiating events are 
included. Some other method must be used to identify the initiating events that need to be 
considered. In addition, because the analysis starts by assuming the initiating event has 
occurred, preventative measures to avoid the initiating event are not considered. 

When human behavior is included in an event tree, human actions are reduced to a binary 
decision that is equated to a success or failure in the tree. This simplification masks the wide 

End State

Success Success

Failure Success Success Success

Failure Success Success

Success Core melt

Failure

Failure Core melt w/ release

Failure Success Success Success

Failure Success Core melt

Failure Core melt w/ release

Failure Success Success

Failure Success Core melt

Failure Core melt w/ release

Barrier 5

Loss Of Offsite 

Power

Diesel 

Generators

Seal Loss Of 

Coolant Accident

Emergency 

Feedwater 

System

EP Recirculation Containment

Initiating Event Barrier 1 Barrier 2 Barrier 3 Barrier 4
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range of behaviors possible at any given moment and removes critical context that explains 
why a person would choose a given action. Human behavior is intimately connected to and 
influenced by the context in which it occurs: the information available, goals, past experiences, 
beliefs about the current system state, interpretation of various observations, etc. By removing 
the context, preventative measures to ensure safe behavior are easily overlooked. 

Although the barriers in an event tree are often assumed to operate independently of each 
other, in practice they may not be truly independent. For example, in the recent Fukushima 
accident the loss of offsite power and the loss of the diesel generators were not independent 
events; they were both caused by the same factors. In general, the behavior of multiple barriers 
can be heavily dependent on the same set of factors, especially if human behavior is involved. 
For example, in the infamous Three Mile Island (TMI) incident the operators were unaware of 
steam forming in the core and they manually disabled the primary loop pumps and the 
emergency core cooling pumps. Clearly, the failure of these barriers to operate was not 
independent. 

Design errors and requirements flaws are critical factors that cannot be analyzed with an event 
tree. In the example above, an important reason TMI operators did not initially believe coolant 
was being lost is that an indicator lamp erroneously suggested that a relief valve was closed and 
a water level indicator erroneously suggested the water level was sufficient. Both of these 
instruments satisfied their individual requirements and in fact operated exactly as designed, but 
the design and requirements were flawed. A stuck relief valve caused a mismatch between the 
indicator lamp and the actual state of the valve, and trapped steam in the reactor core caused a 
mismatch between the measured water level and the actual level in the core. Design and 
requirements issues such as these are not addressed in an event tree. 

Higher-level systemic causes such as organizational and managerial issues are also omitted 
from an event tree. For example, poor management, ineffective communication, misplaced 
regulatory priorities, and complacent attitudes were important contributors at TMI [28] and 
simultaneously affected the efficacy of multiple barriers, but these aspects are all omitted in an 
event tree. Event trees also omit non-linear or feedback relationships that can contribute an 
accident, such as two or more processes that mutually affect each other. For example, the 
operators at TMI initially believed that coolant was not being lost because their interactions 
with the system reinforced this belief. Processes operating at a much higher level are also 
important; for example, low accident rates can give rise to complacency and increased 
pressures to reduce budget and oversight, which in turn leads to higher accident rates. [29] All 
of these aspects are overlooked in an event tree. 

Note that many of these omitted factors are also missing in FTA; combining event trees and 
fault trees may improve some aspects of the analysis but it does not address these factors that 
are missing from both techniques. This is discussed in more detail in section 2.4. 

2.3 FMEA and FMECA 

Failure Modes and Effect Analysis (FMEA) and it’s cousin Failure Modes Effects and Criticality 
Analysis (FMECA) were developed by reliability engineers to systemically evaluate the effect of 
component failures on system performance [24]. These approaches were first introduced as a 
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procedure for weapons systems in 1949 [30], and in 1955 a similar procedure was introduced 
by the U.S. Navy Bureau of Aeronautics [31]. In the 1960s these methods were refined and 
adopted by the aerospace industry and used on a number of NASA programs including Apollo. 
[32] By the 1970s they were being used in civil aviation, the automotive industry, and even 
offshore petroleum exploration. [32-35] Today FMEA and FMECA are used across a broad array 
of fields including food, drug, and cosmetic industries [36]. 

Due to its popularity, FMEA has been implemented in a number of different ways but generally 
follows the same bottom-up approach. First, the various components in the system are 
identified. Next, the failure modes—defined as mechanisms by which a component may fail to 
achieve its designed function—are identified [37, 38]. For each failure mode, the potential 
causes and effects on the system are investigated. FMECA follows the same basic process, but 
in addition assigns a criticality to each failure mode by examining the severity and probability of 
each identified effect. Table 1 below shows an example FMECA worksheet that summarizes the 
analysis. 

Table 1: Example FMECA worksheet adapted from [39] 

Component 
Failure 
Mode Cause Effect Severity 

Probability of 
Occurrence Criticality 

Water Tank Leak Corrosion Lost water Catastrophic Very Low High 

Valve 

Stuck 
closed 

Dirt, 
corrosion 

No water Catastrophic Low Very High 

Stuck open 
Corrosion, 
power 

False trip Marginal Moderate Low 

Note that the same process can be applied to either physical or functional models of the 
system, although in practice there can be a significant overlap between the two. For example, if 
applied to a physical model then the analysis of failure modes, effects, and severity are still 
identified with respect to the designed function of each component, and if applied to a 
functional model then the causes and failures may still be based on the physical 
implementation of the components. [37, 38, 40] 

2.3.1 Evaluation 

FMEA and FMECA are useful methods for analyzing the reliability of physical system 
components and prioritizing them with respect to reliability goals. However, there are a 
number of limitations especially when applied to other systems or other goals. Because these 
methods start by identifying low-level failures to analyze further, the resulting scenarios that 
are analyzed include both hazardous and non-hazardous scenarios triggered by a failure. Both 
types of scenarios are analyzed in the same level of detail. If the goal is safety-related, then the 
effort spent analyzing non-hazardous failures may consume important resources while not 
adding significant value to the analysis. 

More importantly, the set of scenarios triggered by a failure does not include all unsafe 
scenarios, as illustrated in Figure 5. For example, if the system requirements are flawed then 
the emergent behavior of the system may be unsafe even though all components operate 
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exactly as designed and required. Filtering out all scenarios that do not begin with a failure 
effectively excludes these types of hazardous scenarios. 

 

Figure 5: A Venn diagram of failure scenarios and unsafe scenarios 

Like other methods, FMECA assumes a linear progression of events and does not capture non-
linear and feedback relationships. However, unlike other methods, FMECA only considers 
scenarios initiated by a single failure and omits scenarios that result only from a combination of 
several failures. By focusing on single failures, only a subset of scenarios triggered by a failure 
(the left circle in Figure 5) are analyzed. 

2.4 General evaluation of failure-based methods 

One of the most important limitations of failure-based methods is that by definition they omit 
entire classes of factors that lead to accidents. In general, failure-based methods were designed 
to model the propagation of component failures in a system that cause an undesired event. 
However, many causes of accidents do not involve any component failure. With today’s 
systems becoming increasingly complex, more and more accidents are occurring not due to 
component failures but instead due to critical design errors or requirements flaws. In addition, 
socio-technical systems tend to exhibit dynamic non-linear behavior that is difficult or 
impossible to capture with a technique designed for a linear propagation of faults. Continuously 
adaptive behavior, goal-seeking behavior, local optimization with global deterioration, goal 
erosion, mutually reinforcing relationships causing exponential growth or collapse, and 
budgetary/financial pressures are just a few factors that can have a critical impact on the safety 
of a system. However these are dynamic processes, not independent failure events, and are not 
explained with a one-way linear fault propagation structure. 

Similarly, human error in a failure-based method is treated in exactly the same way as a 
hardware failure—as a deviation from a specified behavior or procedure. However, like 
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software, the number of potential ways a human can deviate is virtually infinite. Even if all 
noncompliant behaviors could be listed, it is not sufficient to just identify them; in order to 
prevent a behavior it is necessary to understand why a person might behave that way. In other 
words, it requires first understanding the conditions under which unsafe decisions might make 
sense to a person at the time and then modifying or adding requirements to make the correct 
decisions obvious. Unfortunately, framing human error as a failure requires oversimplifying 
human behavior as a binary decision between right and wrong, which only obscures the 
underlying reason for the error. Many important human-related causal factors can be 
overlooked because they are difficult or impossible to model in a fault tree, including: 

 Correct human behavior was not defined for certain situations 

 Specified human behavior is known but thought to be incorrect 

 Procedures conflict with each other, or it is not obvious which procedure applies 

 Information necessary to carry out a procedure is not available or is incorrect 

 The person has multiple responsibilities or goals that may conflict 

 Past experiences and current knowledge conflict with a procedure 

 Procedures are not clear or misunderstood 

 Procedures are known but responsibility for the procedures is unclear or misunderstood 

 Procedures are known and followed, but they are unsafe 

Consider an example1: In the 2010 Deepwater Horizon oil spill, a critical factor was that workers 
reported a successful negative pressure test when in reality oil had already begun seeping into 
the well. [41, 42] The workers did not know that earlier tests had clogged a pipe that rendered 
a key instrument reading invalid. Note that in this case the behavior was compliant—the 
workers followed the required procedures but the procedures were unsafe. The behavior was 
not a “failure event” because nothing failed – the flaw existed from the beginning in the form of 
inadequate procedures and feedback for the crew. A failure-based method could help focus 
engineering efforts on preventing the pipe from getting clogged or perhaps preventing workers 
from deviating from procedures, but would not help address the flawed requirements and 
inadequate feedback loops that existed. For example, a potential solution that adds equipment 
to detects a clogged pipe and adjusting worker procedures to utilize this information would be 
masked by a failure-based method that focuses only on preventing clogs and enforcing worker 
compliance with existing procedures. 

Most failure-based methods were originally designed and developed to handle simple 
electromechanical components. Numerous attempts have been made to extend these methods 
to other components like software, but software is fundamentally different in the sense that it 
does not fail like hardware does. Unlike hardware, software always behaves exactly the way it 
was programmed (and therein lies the problem). If software exhibits unsafe behavior, it is 
because that unsafe behavior was programmed from the beginning—not because the software 
“wore out” or “broke” over time. Because of this fundamentally different problem and the 

                                                        

1 This example is necessarily an oversimplification of the complex events that unfolded on the Deepwater Horizon, 
but it is nevertheless a useful illustration for the point being made. 
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virtually infinite number of ways software can be programmed incorrectly, it is very difficult to 
capture software-related causes in a failure-based method. In practice, software errors are 
often ignored completely [5, 21], or included under a label of “software failure” that is not 
decomposed further. However simply stating that the software could cause an undesirable 
event offers little assistance to the system and software developers who need to make the 
software safe.  

Failure-based methods are often be applied quantitatively to consider the probability of certain 
failures and outcomes. Assuming independence between different failure events is very 
common and can significantly simplify the analysis, but this assumption is often made 
incorrectly. For example, the primary and backup O-rings on the Challenger shuttle were 
originally believed to be independent and redundant2. [43] Unfortunately, they weren’t truly 
independent because low temperature and mechanical pressures affected both O-rings and 
contributed to their simultaneous failure in the famous 1986 accident. While assuming 
independence between failure events may simplify the probabilistic calculations, doing so has 
often resulted in overconfident probabilities for hazardous events. 

Accurately quantifying probabilities for software errors is difficult or impossible. Even if all 
potential software errors could be listed for a simple system, predicting their probability of 
occurrence is not feasible. An error is either known to exist or not known to exist. If an error is 
ever known, it’s far more effective to simply fix it than to add events to a fault-based model or 
guess a probability of occurrence.  

Although software errors are important, the majority of software-related accidents can be 
traced to flawed requirements rather than a problem with the software implementation itself 
[44, 45]. Clearly in any system—whether dealing with software, hardware, or even human 
components—safety is dependent on having correct and safe requirements. However, there is 
no empirical data for quantifying the probability that a requirement is flawed. Like software 
instructions, if a requirement is ever known to be flawed it is far more effective to fix it than to 
guess the probability that it is wrong. 

Requirements provided in the form of procedures for human operators are also critical for 
ensuring safety. For example, inadequate procedures played an important role in the Three 
Mile Island partial nuclear meltdown in 1979. Many operating and emergency procedures 
contained substantive errors, typographical errors, imprecise or sloppy terminology, and 
violated the nuclear reactor’s specifications [5]. Again, there is typically no data to support a 
probabilistic estimate of a flawed procedure before an accident. Even if such an estimate had 
been produced for Three Mile Island before 1979, it most likely would have been incorrect; 
before the accident the procedures were thought to be safe. Only afterward in hindsight were 
the flaws discovered. 

                                                        
2 The SRB O-ring joint criticality status was originally classified as C 1R (redundant). When Marshall proposed 
changing the status to C 1 (non-redundant), Thiokol engineers disagreed with the change and argued that it should 
remain C 1R. Although status was eventually officially changed to C 1, this issue remained an important factor in 
the resulting accident. 43. Vaughan, D., The Challenger launch decision : risky technology, culture, and deviance at 
NASA. 1996, Chicago: University of Chicago Press. xv, 575 p. 
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It’s easy to see the lack of a probabilistic estimate for these problems and focus on creating 
methods to produce such estimates. However, it’s important to recognize that the problem is 
much larger than just the lack of a quantitative probability. Suppose such an estimate did exist 
for requirements. What would the number mean? Any value other than 0% or 100% just 
indicates a lack of knowledge—i.e. it is not known whether a given requirement is flawed or 
safe, and the engineering task is therefore incomplete. The core issue is therefore not a 
difficulty quantifying existing knowledge; the core issue is obtaining the right knowledge in the 
first place. Addressing these problems will require better methods for finding flaws and creating 
safe requirements, not methods that estimate what is already known. 

When human behavior is included in a quantitative fault tree, the quantitative analysis typically 
assumes that the behavior is random with a given probability. However, human behavior is not 
random—it is heavily influenced by the context in which is appears. For example, in the 2005 
Texas City explosion a critical factor is that operators did not follow standard operating 
procedures to release hydrocarbons via the 3-pound venting system. Instead, they bypassed 
the venting system and released hydrocarbons through a blowdown stack into open air. In the 
absence of any knowledge about the system it might appear that these operators “flipped a 
coin” to decide whether to follow the procedure, but this is far from true. The decision was a 
direct result of influence from supervisory personnel who advocated the bypass because it 
significantly shortened the startup time and had been used successfully many times in the past 
[46, 47]. With this additional knowledge, the operators’ behavior does not appear random at 
all—it was both predictable and preventable given the context in which it occurred. While 
quantitative failure-based methods tend to isolate the context by emphasizing human actions 
as random events, a better understanding of the context can often lead to a more accurate 
perception and more effective solutions. 

Although human error is often only used to refer to behavior during the operation of a system, 
it also applies to the development of a system. For example, software errors and flawed 
requirements are really just forms of human error. In fact, even hardware failures can be traced 
back to human decisions regarding the design and construction of the component, the selection 
of the component for a specific purpose in an assumed operating environment, the design of 
the system that interfaces with the component, and the inclusion of any protective measures 
that detect and handle (or don’t) the potential failure of the component. Therefore it is not 
surprising that the same issues that plague software errors and flawed requirements appear 
again for human behavior in general. 

3 The STAMP Accident Model 

STAMP is a model of accident causation that treats safety as a control problem, rather than as a 
failure problem [48]. While unsafe control includes inadequate handling of failures, it also 
includes system and software design errors and erroneous human decision making. In STAMP, 
accidents are viewed as the result of inadequate enforcement of constraints on system 
behavior. The reason behind the inadequate enforcement may involve classic component 
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failures, but it can also result from unsafe interactions among components operating as 
designed or from erroneous control actions by software or humans. 

STAMP is based on the observation that there are four types of hazardous control actions that 
need to be eliminated or controlled to prevent accidents: 

1. A control action required for safety is not provided or is not followed 

2. An unsafe control action is provided that leads to a hazard 

3. A potentially safe control action is provided too late, too early, or out of sequence 

4. A safe control action is stopped too soon or applied too long 

One potential cause of a hazardous control action in STAMP is an inadequate process model 
used by human or automated controllers. The process model contains the controller’s 
understanding of 1) the current state of the controlled process, 2) the desired state of the 
controlled process, and 3) the ways the process can change state. This model is used by the 
controller to determine what control actions are needed. In software, this process model is 
usually implemented in variables and embedded in the program algorithms. For humans, the 
process model is often called the “mental model”. Software and human errors frequently result 
from incorrect process models, e.g., the software thinks the spacecraft has landed and shuts off 
the descent engines. [49] Accidents can therefore occur when an incorrect or incomplete 
process model causes a controller to provide control actions that are hazardous.  While process 
model flaws are not the only cause of accidents in STAMP, it is a major contributor. 

4 STPA Hazard Analysis 

STPA (System Theoretic Process Analysis) is a hazard analysis technique built on STAMP. The 
first step in STPA is to identify the potentially unsafe control actions for the specific system 
being considered. These unsafe control actions are used to create safety requirements and 
constraints on the behavior of both the system and its components. Additional analysis can 
then be performed to identify the detailed scenarios leading to the violation of the safety 
constraints. As in any hazard analysis, these scenarios are then used to control or mitigate the 
hazards in the system design.  

Before beginning an STPA hazard analysis, potential accidents and related system-level hazards 
are identified along with the corresponding system safety constraints that must be controlled. 
As an illustrative example, consider a simple automated door control system for a train. The 
accidents to be considered are: injury to a person by falling out of the train, being hit by a 
closing door, or being trapped inside a train during an emergency. The system-level hazards 
relevant to this definition of an accident include:  

H-1: Doors close on a person in the doorway 

H-2: Doors open when the train is not in a station or is not aligned with a station 
platform 

H-3: Passengers/staff are unable to exit during an emergency.  
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Figure 6: Preliminary control diagram for an automated door controller 

STPA is performed on a functional control diagram of the system, which is shown in Figure 6 for 
the train door controller. The first part of STPA identifies hazardous control actions for each 
component that could produce a system-level hazard by violating the system safety constraints. 
Once the set of hazardous control actions has been identified, the second part of STPA analyzes 
the system to determine the potential scenarios that could lead to providing a hazardous 
control action. These scenarios can be used to design controls for the hazards or, if the design 
already exists, to ensure that these scenarios are adequately controlled.  

STPA Step One: The first step of STPA identifies control actions for each component that can 
lead to one or more of the defined system hazards. The four general types of unsafe control 
actions were shown above. Hazardous control actions can be documented using a table as in 
Table 1. The hazardous control actions can then be translated into system and component 
safety requirements and constraints.  
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Table 2: Potentially hazardous control actions for a simple automated door controller 

Control 
Action 

1) Not Given 2) Given Incorrectly 3) Wrong Timing or 
Order 

4) Stopped too 
soon or applied 
too long 

Provides 
door open 
command 

Doors not commanded open 
once train stops at a 

platform [not hazardous]
3
 

 

Doors not commanded open 
for emergency evacuation 
[see H-3] 

 

Doors not commanded open 
after closing while a person 
or obstacle is in the 
doorway [see H-1] 

Doors commanded 
open while train is 
in motion [see H-2] 

 

Doors commanded 
open while train is 
not aligned at a 
platform [see H-2] 

Doors commanded open 
before train has stopped 
or after it started 
moving (same as “while 
train is in motion”) *see 
H-2] 

 

Doors commanded open 
late, after train has 
stopped [not hazardous] 

 

Doors commanded open 
late after emergency 
situation [see H-3] 

Door open 
stopped too 
soon during 
normal stop [not 
hazardous] 

 

Door open 
stopped too 
soon during 
emergency stop 
[see H-3] 

Provides 
door close 
command 

Doors not commanded 
closed or re-closed before 
moving [see H-2] 

Doors commanded 
closed while person 
or object is in the 
doorway [see H-1] 

 

Doors commanded 
closed during an 
emergency 
evacuation [see H-
3] 

Doors commanded 
closed too early, before 
passengers finish 
entering/exiting [see H-
1] 

 

Doors commanded 
closed too late, after 
train starts moving [see 
H-2] 

Door close 
stopped too 
soon, not 
completely 
closed [see H-2] 

Each item in the table should be evaluated to determine whether it is hazardous as defined by 
the system-level hazards. For instance, in this simple example the doors remaining closed 
during a routine train stop (non-emergency) is not hazardous because it does not lead to any of 
the three hazards specified above. If this situation is a safety concern, then the hazard list can 
be updated to include the corresponding hazard On the other hand, commanding the doors 
open while the train is in motion is hazardous because it leads to hazard H-2. Each unsafe 
control action is then translated into a component-level safety constraint (e.g. train must not be 
capable of starting with door open, doors must remain closed while train is in motion, etc.).  

                                                        
3 This is not hazardous because it does not lead to any of the system-level hazards (see H-1,H-2,H-3 above). If the 
hazards and accidents included in the safety analysis were extended to include inconvenience to the passengers, 
then this item would be considered hazardous. 
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STPA Step Two: The second step of STPA examines each control loop in the safety control 
structure to identify potential causal factors for each hazardous control action, i.e., the 
scenarios for causing a hazard.  

Figure 7 shows a generic control loop that can be used to guide this step. While STPA Step One 
focused on the provided control actions (the upper left corner of Figure 7), STPA Step Two 
expands the analysis to consider causal factors along the rest of the control loop. 

Consider a hazardous control action for the automated door controller: the doors are 
commanded closed while a person is in the doorway. STPA Step Two would show that one 
potential cause of that action is an incorrect belief that the doorway is clear (an incorrect 
process model). The incorrect process model, in turn, may be the result of inadequate feedback 
provided by a failed sensor or the feedback may be delayed or corrupted.  Alternatively, the 
designers may have omitted a feedback signal. 

 

 

 
Figure 7: General control loop with causal factors 
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Once the second step of STPA has been applied to determine potential causes for each 
hazardous control action identified in STPA Step One, the causes should be eliminated or 
controlled in the design.  

5 Formal Specification for Hazardous Control Actions 

In this section, a formal specification is introduced and defined for hazardous control actions in 
STAMP. This specification forms the basis for procedures that identify hazardous control actions 
during STPA Step One. The specification is also used in later sections to develop of automated 
algorithms that assist in identifying the actions and to generate requirements that enforce safe 
behavior. In addition, although the formal structure is defined here relative to system-level 
hazards, an identical structure can be applied relative to system-level functions or goals. These 
parallel structures form the basis for methods in section 8 that can be used generate both 
safety and functional model-based requirements as well as detecting potential conflicts 
between the two. 

A hazardous control action in the STAMP accident model can be expressed formally as a four-
tuple (S,T,CA,C) where: 

 S is a controller in the system that can issue control actions. The controller may be 
automated or a human. 

 T is the type of control action. There are two possible types: Provided describes a 
control action that is issued by the controller while Not Provided describes a control 
action that is not issued. 

 CA is the control action or command that is output by the controller. 

 C is the context in which the control action is or is not provided. 

For example, in the case of an automated train door controller, consider the following 
hazardous control action: The train door controller provides the open door command while the 
train is moving. This control command can be expressed as (S,T,CA,C) where: 

S = Train door controller 

T = Provided 

CA = Open door command 

C = Train is moving 

Each element of a hazardous control action is a member of a larger set, i.e. the following 
properties must hold: 

1. S ∈ Ş, where Ş is the set of controllers in the system 
2. T ∈ , where  = {Provided, Not Provided} 
3. CA ∈ (S), where (S) is the set of control actions that can be provided by 

controller S 
4. C ∈ (S), where (S) is the set of potential contexts for controller S 
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To assist in enumerating or aggregating individual contexts, it is helpful to further decompose 
the context C into variables, values, and conditions: 

 V is a variable or attribute in the system or environment that may take on two or more 
values. For example, train motion and train position are two potential variables for a 
train. 

 VL is a value that can be assumed by a variable. For example, stopped is a value that can 
be assumed by the variable train motion. 

 CO is a condition expressed as a single variable/value pair. For example, train motion is 
stopped is a condition. 

 The context C is the combination of one or more conditions and defines a unique state 
of the system or environment in which a control action may be given. 

 

The following additional properties related to the context of a hazardous control action can 
therefore be defined: 

5. V ∈ (S), where (S) is the set of variables referenced in the system hazards  
6. VL ∈ (V), where (V) is the set of values that can be assumed by variable V 
7. CO = (V, VL) ∈ (S), where (S) is the set of conditions for controller S 
8. C = (CO1, CO2, ...), where each COi is independent. That is, no two COi refer to the 

same variable V. 

Finally, each hazardous control action must be linked to a system-level hazard: 

9. To qualify as a hazardous control action, the event (S, T, CA, C) must cause a hazard 
H ∈ , where  is the set of system level hazards. 

A hazardous control action expressed as a four-tuple (S, T, CA, C) must satisfy the above 
properties 1-9. 

6 A Procedure to Identify Hazardous Control Actions 

This section introduces a procedure for rigorously and systematically identifying the hazardous 
control actions during the first step of STPA. [50]. The approach is based on the idea that many 
control actions are only hazardous in certain contexts. For example, a command to open the 
doors of a train is not hazardous by itself—it depends on the system state or state of the 
environment in which the command is given. For example, the command to open train doors is 
hazardous when the train is moving, or when the train is stopped but misaligned with the 
platform. The new procedure involves identifying potential control actions, identifying 
potentially hazardous states, and then analyzing which combinations together yield a 
hazardous control action. 

Three parts of the procedure are described in the following sections, and each part can be 
performed independently of the others. The first part deals with control actions that are 
provided under conditions that make the action hazardous. The second part deals with control 
actions that are not provided under conditions that make inaction hazardous.  
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6.1 Part 1: Control actions provided in a state where the action is 
hazardous 

In this procedure, a controller and the associated control actions are selected from the control 
structure. In the train example above, the automated door controller can provide four control 
actions: open doors, stop opening doors, close doors, or stop closing doors. Next, the 
controller’s process model is defined to determine the environmental and system states that 
affect the safety of the control actions.  

Controllers use the values of the process model to determine what control actions to provide. 
In order to make safe decisions, the control algorithm must use process model variable values 
(i.e., system state or environmental values that are known to the controller). If the controller 
does not know the values of system state and environmental values that are related to hazards, 
then the controller cannot be designed to provide safe control actions. Figure 8 shows the 
required process model for the door controller to carry out its control safely. The required 
variables in the process model are identified by the definition of the system hazards. For 
example, hazard H-1 identifies the state of the doorway (whether it is clear or not) as an 
important environmental variable in deciding whether to close the doors or not. 
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Figure 8: Augmented control structure with the door controller’s process model 

 

Once the process model variables have been identified, the potentially hazardous control 
actions can be identified by examining each potential combination of relevant process model 
values to determine whether issuing that control action in that state will be hazardous. For 
example, one possible process model state for the open door command consists of the values: 
the train is stopped, there is no emergency, and the train is not aligned with a platform. 
Providing the open door command in this context is a hazardous control action. 

Each row in Table 3 specifies a different context for the open door command.4 Context here is 
defined as a combination of values of the process model variables. Each context is then 
evaluated to determine whether the control action is hazardous in that context, and the result 
is recorded in the three columns on the right. The two right-most columns incorporate timing 
information as well.  For example, providing an open door command in the context of an 

                                                        
4 Note that each of the four commands would need to be analyzed, including the stop commands. 
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emergency while the train is stopped is not hazardous; in fact, that’s exactly what should 
happen. However, providing the open door command too late in that context is certainly 
hazardous. 

 

Table 3: Contexts for the open door control action 

Control 
Action 

Train Motion Emergency Train Position 

Hazardous control action? 

If provided 
any time in 
this context 

If provided 
too early in 
this context 

If provided 
too late in 
this context 

Door open 
command 
provided  

Train is moving No emergency 
(doesn’t 
matter) 

Yes Yes Yes 

Door open 
command 
provided  

Train is moving Emergency exists 
(doesn’t 
matter) 

Yes* Yes* Yes* 

Door open 
command 
provided  

Train is stopped Emergency exists 
(doesn’t 
matter) 

No No Yes 

Door open 
command 
provided  

Train is stopped No emergency 
Not aligned 

with platform 
Yes Yes Yes 

Door open 
command 
provided 

Train is stopped No emergency 
Aligned with 

platform 
No No No 

*assumption: passengers can exit to the following or proceeding car in an emergency 

 

Note that during this process, some combinations of conditions may expose conflicts in the 
design that need to be considered. For example, is it hazardous to provide the open door 
command during a fire (an emergency) while the train is in motion? In other words, is it safer to 
keep the doors closed and trap the passengers inside while the train crawls to a complete stop 
or is it better to open the doors and risk physical injury because the train is moving?  These 
questions can and should prompt exploration outside the automated door controller. For 
example, that issue might be addressed in the design by providing a way for passengers to exit 
to nearby train cars when there is an emergency and the train is moving. 

 

6.2 Part 2: Control actions not provided in a state that makes 
inaction hazardous 
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This part of the procedure considers potential states in which the lack of a control action is 
hazardous. The same basic process is used: identify the corresponding process model variables 
and the potential values, create contexts for the action using combinations of values, and then 
consider whether an absence of the specified control action would be hazardous in the given 
context. Table 4 shows the hazardous control actions for the door open command not being 
provided. 

 

Table 4: Contexts for the lack of an open door control action 

Control 
Action 

Train Motion Emergency Train Position Door State 
Hazardous if not 
provided in this 

context? 

Door open 
command not 
provided  

Train is stopped No emergency 
Aligned with 

platform 
Person not in 

doorway No
5
 

Door open 
command not 
provided  

Train is stopped No emergency 
Aligned with 

platform 
Person in 
doorway 

Yes 

Door open 
command not 
provided 

Train is stopped No emergency 
Not aligned 

with platform 
(doesn’t matter) No 

Door open 
command not 
provided  

Train is stopped Emergency exists 
(doesn’t 
matter) 

(doesn’t matter) Yes 

Door open 
command not 
provided 

Train is moving (doesn’t matter) 
(doesn’t 
matter) 

(doesn’t matter) No 

 

7 Formal method for identifying Hazardous Control 
Actions 

                                                        

5 This is not hazardous because it does not lead to any of the system-level hazards (see H-1,H-2,H-3 in the 
previous section). If the hazards and accidents included in the safety analysis were extended to include 
inconvenience to the passengers, then this row would describe a hazardous control action. 
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This section defines a formal method that can be used to automate much of the manual 
process described in the previous section. Based on the formal structure defined in Section 5, a 
set of potentially hazardous control actions can be enumerated given certain information about 
the system. The information needed is: 

 : the set of system-level hazards 

 Ş: the set of controllers in the system 

 (S): the set of control actions for each controller S 

 : the set of variables referenced in the hazards  

 (V): the set of potential values for each variable V 

Most, if not all, of this information can be determined well in advance of the detailed design of 
a system. The set  is typically determined during the Preliminary Hazard Analysis (PHA) of the 
system. The set Ş and (S) can be extracted from a preliminary control structure of the 
system. The set  is identical to the process model variables in the control structure, and 
can be extracted from the set of hazards . The potential values (V) are also found in the 
process model, and can be defined once  is known. 

Given this basic information about the system, properties 1-8 from Section 5 can be applied to 
automatically generate a list of potential hazardous control actions in the form of combinations 
of (S, T, CA, C). First, a controller S is selected from the set Ş. Then the set of conditions (S) 
is generated by pairing each variable in  with each value in (V). Then the set of contexts  
is generated by combining each independent condition from (S). Finally, the list of 
potentially hazardous control actions for the selected controller S is generated by 
combining each element of , (S), and (S). This process can be repeated for each 
controller S in the set Ş. 

This process guarantees that properties 1-8 from Section 5 are satisfied. Because a detailed 
behavioral model of the system typically does not exist during the earliest phases of 
development, it may not be possible to automatically apply property 9. However, this final step 
can be performed by the engineering team. Because the algorithm above generates 
combinations that satisfy all other criteria, the generated list is a superset of the actual 
hazardous control actions. Therefore this task is essentially a trimming exercise: the team does 
not need to add any new hazardous control actions, they only need to remove non-hazardous 
control actions from the list based on their knowledge of the physics or other engineering 
properties of the overall system outside the domain of formal logic. For example, in the 
following table the engineering team would need to fill in the column on the far right: 
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Table 5: Example hazardous control action table for the door open command 

Control 
Action 

Train 
Motion 

Emergency Train Position Hazardous? 

Door open 

command 

Moving (doesn’t 

matter) 

(doesn’t matter) Yes 

Door open 

command 

Stopped Yes (doesn’t matter) No 

Door open 

command 

Stopped No Not at platform Yes 

Door open 

command 

Stopped No At platform No 

 

Finally, for each potential hazardous control action that is provided (T = Provided), timing 
information such as potentially hazardous delays within a given context should also be 
considered. For example, suppose it is not hazardous to provide a door open command while 
the train is stopped and there is an emergency. In fact, this behavior may be exactly what is 
expected of the system. However, providing the door open command too late in that context 
could certainly be hazardous even if the control action is eventually provided. This condition 
can be addressed by adding the columns hazardous if provided too early and hazardous if 
provided too late as described in [50]. 

Once the hazardous control actions have been identified, each action can be inverted to define 
a safety requirement for the system. For example, the hazardous control action from the first 
row of Table 1 can be inverted as follows: 

Hazardous control action: Train door controller provides the open door command while 
the train is moving. 

Safety requirement: Train door controller must not provide the open door command 
while the train is moving. 

While this simple example is fairly obvious and would probably not require the use of a formal 
method, experience using this approach on real systems such as spacecraft [51], the air 
transportation system [52, 53], and missile defense systems [54] has led to the identification of 
safety-critical requirements that were never considered during the normal development of 
these systems. 

8 Generating Model-Based Specifications 

Identifying the hazardous behaviors to avoid is necessary, but it’s not enough: requirements 
need to be created to define the actual behavior necessary to prevent hazards, and existing 
requirements need to be checked to verify that these hazardous behaviors will not occur. 
Because hazardous control actions have been defined with a formal representation, it is 
possible to compare these actions against an existing formal model-based specification (e.g. 
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SpecTRM-RL) to determine whether these hazardous control actions may occur. Furthermore, if 
no formal specification exists, it is possible to automatically generate the parts of the 
specification necessary to ensure hazardous behavior is prevented. 

The following functions can be defined from the set of hazardous control actions: 

 HP(H, S, CA, C): This function is True if and only if hazard H results from controller S 
providing command CA in context C. This function is defined for all H ∈ , S ∈ Ş, CA ∈ 

(S), C ∈ (S). 
 HNP(H, S, CA, C): This function is True if and only if hazard H results from controller S 

not providing command CA in context C. This function is defined for all H ∈ , S ∈ Ş, CA 
∈ (S), C ∈ (S). 

The formal specification or control algorithm to be generated can be expressed as the following 
function: 

 R(S, CA, C): This function is True if and only if controller S is required to provide 
command CA in context C. This function must be defined for all S ∈ Ş, CA ∈ (S), C ∈ 

(S). 

The function R must satisfy certain criteria to prevent hazardous behavior. Namely, any control 
action that is hazardous in a given context must not be provided by the control algorithm in 
that context: 

 ∀ H ∈ ,  S ∈ Ş , CA ∈ (S), C ∈ (S): HP(H, S, CA, C) ⇒ ¬R(S, CA, C) (1) 

In addition, if a control action that is absent in a given context will produce a hazard, then the 
control action must be provided by the control algorithm in that context: 

 ∀ H ∈ ,  S ∈ Ş , CA ∈ (S), C ∈ (S): HNP(H, S, CA, C) ⇒ R(S, CA, C) (2) 

The required behavior R can then be generated to satisfy these two criteria. Any behavior 
appearing in HNP must appear in R, and any behavior that appears in HP must be absent from 
R. If the same behavior appears in HNP and HP, then no R can satisfy both criteria. The 
following additional criterion can be defined to detect these conflicts and ensure that a solution 
R exists: 

∀ H1 ∈ , H2 ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): HP(H1, S, CA, C) ⇒ ¬HNP(H2, S, CA, C)
 (3) 

The third criterion above is a consistency check that can be applied to the hazardous control 
actions independently of the formal specification R. If the third criterion does not hold, there is 
a design or requirements flaw in the system. Both action and inaction by controller S will lead to 
a hazard and violate a safety requirement. Although the conflict cannot be automatically 
resolved, it can be automatically detected and flagged for review by the engineering team. 

The resulting requirements can be expressed in a formal model-based requirements 
specification language, such as SpecTRM-RL [55]. For example, Table 6 below contains a formal 
SpecTRM-RL specification for the train door example. The three columns on the right specify 
three contexts in which the open doors command must be provided: when the train is aligned 
and stopped, or when the train is stopped and an emergency exists, or when the doors are 
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closing on a person and the train is stopped. The latter two columns specify behavior that is 
required to prevent the system hazards, and were automatically generated by a software tool 
that implements the procedure above. The first column specifies behavior that is necessary 
only for the intended function of the system, and therefore is not automatically generated by 
the procedure above. 

Table 6: Example SpecTRM-RL table for the door open command 

 

 

However, the first column can be generated automatically by defining functional behavior of 
the system in the same way that hazardous behavior was defined. Functional specifications can 
then be generated along with the safety-related specifications by following a parallel method. 
In addition to HP and HNP, which capture hazardous control actions, a new function FP can be 
introduced to capture control actions that are needed to achieve functional goals: 

 FP(F, S, CA, C): This function is True if and only if system-level function F must be 
achieved by controller S providing command CA in context C to achieve a system-level 
function F 

The function FP can be defined by identifying which control actions in each context are 
necessary to achieve the system-level functions . The same process used in Section 3 to 
identify hazardous control actions can be used, except the system-level functions  are 
considered instead of the system-level hazards . The required behavior R can then be 
computed as in Section 4, but with an additional criterion to capture the functional behavior: 

 ∀ F ∈ ,  S ∈ Ş , CA ∈ (S), C ∈ (S): FP(F, S, CA, C) ⇒ R(S, CA, C) (4) 

Applying this criterion, any behavior appearing in FP must also appear in R. Note that if the 
same behavior appears in FP and HP, then there is a design or requirements flaw in the system 
because the same control action is both necessary to achieve a system-level function and 
prohibited because it presents a system-level hazard. In this case, no R exists that prevents the 
hazards while achieving the system functions. The following additional criterion can therefore 
be defined: 
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 ∀ H ∈ , F ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): HP(H, S, CA, C) ⇒ ¬FP(F, S, CA, C) (5) 

  

This final criterion is a consistency check to detect conflicts between hazardous and functional 
behavior. As before, these conflicts cannot be automatically resolved, but they can be 
automatically detected and flagged for review by the engineering team. 

9 Conclusions: 

Traditional hazard analysis techniques were evaluated and found to overlook several important 
types of causal factors including like flawed requirements, dysfunctional component 
interactions, and software and other design errors. A new hazard analysis technique called 
STPA was also described. STPA has been applied to many complex systems and has proven to 
be both feasible and effective in systems for which traditional analyses had already been 
performed. STPA found the same hazardous scenarios as existing analyses, but STPA also found 
additional scenarios involving complex software and human errors [51, 54]. 

Although STPA has proven to be very effective on real systems, no formal structure had been 
defined for STPA and its application was ad-hoc with no rigorous procedures or model-based 
design tools. This report defines a formal mathematical structure underlying STPA and 
describes a procedure for systematically performing an STPA analysis based on that structure. A 
method for using the results of the hazard analysis to generate formal safety-critical, model-
based system and software requirements is also presented. Techniques to automate both the 
analysis and the requirements generation are discussed, as well as a method to detect conflicts 
between the safety and other functional model-based requirements during early development 
of the system. Current research is exploring potential ways in which similar kinds of detailed 
procedures can be created to assist the analyst during STPA Step Two. Much of the analysis is 
potentially automatable and we are also exploring this potential. 
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