

SANDIA REPORT
SAND2012-4080
Unlimited Release
May 2012

Extending and Automating a Systems-
Theoretic Hazard Analysis for
Requirements Generation and Analysis

John Thomas

Prepared by
Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

3

SAND2012-4080

Unlimited Release

May 2012

Extending and Automating a Systems-Theoretic
Hazard Analysis for Requirements Generation and

Analysis

John Thomas

Engineering Systems Division, School of Engineering

Massachusetts Institute of Technology

Sandia National Laboratories

P.O. Box 5800

Albuquerque, New Mexico 87185-MS0405

Abstract

Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed
to go beyond traditional safety techniques—such as Fault Tree Analysis (FTA)—that overlook
important causes of accidents like flawed requirements, dysfunctional component interactions,
and software errors. While proving to be very effective on real systems, no formal structure has
been defined for STPA and its application has been ad-hoc with no rigorous procedures or
model-based design tools. This report defines a formal mathematical structure underlying STPA
and describes a procedure for systematically performing an STPA analysis based on that
structure. A method for using the results of the hazard analysis to generate formal safety-
critical, model-based system and software requirements is also presented. Techniques to
automate both the analysis and the requirements generation are introduced, as well as a
method to detect conflicts between the safety and other functional model-based requirements
during early development of the system.

4

5

CONTENTS

1 Introduction and Motivation ...7

2 Evaluation of traditional hazard analysis techniques..7

2.1 Fault Tree Analysis ..7

2.1.1 Evaluation ..9

2.2 Event Tree Analysis ...12

2.2.1 Evaluation ..13

2.3 FMEA and FMECA ...14

2.3.1 Evaluation ..15

2.4 General evaluation of failure-based methods..16

3 The STAMP Accident Model ..19

4 STPA Hazard Analysis ...20

5 Formal Specification for Hazardous Control Actions ..24

6 A Procedure to Identify Hazardous Control Actions ...25

6.1 Part 1: Control actions provided in a state where the action is hazardous26

6.2 Part 2: Control actions not provided in a state that makes inaction hazardous28

7 Formal method for identifying Hazardous Control Actions ..29

8 Generating Model-Based Specifications ..31

9 Conclusions: ..34

10 References ..34

FIGURES

Figure 1: Example fault tree from the original Bell Laboratory study [8]8

Figure 2: A partial fault tree for an aircraft collision avoidance system [11]10

Figure 3: A partial fault tree for proposed airspace procedures [12] ..11

Figure 4: Simplified event tree for a nuclear reactor adapted from [27]13

Figure 5: A Venn diagram of failure scenarios and unsafe scenarios ..16

Figure 6: Preliminary control diagram for an automated door controller...................................21

Figure 7: General control loop with causal factors ...23

Figure 8: Augmented control structure with the door controller’s process model27

6

TABLES

Table 1: Example FMECA worksheet adapted from [39] ..15

Table 2: Potentially hazardous control actions for a simple automated door controller22

Table 3: Contexts for the open door control action..28

Table 4: Contexts for the lack of an open door control action ..29

Table 5: Example hazardous control action table for the door open command31

Table 6: Example SpecTRM-RL table for the door open command...33

7

1 Introduction and Motivation

The introduction of new technology, such as computers and software, is changing the types of
accidents we see today. The level of complexity in many of our new systems is leading to
accidents in which no components failed but instead unsafe interactions among non-failed
components lead to the loss. At the same time, traditional hazard analysis techniques assume
accidents are caused by component failures or faults [1] and oversimplify the role of humans [2,
3]. Attempts have been made to extend these traditional hazard analysis techniques to include
software and cognitively complex human errors, but the underlying assumptions remain the
same and do not match the fundamental nature of systems we are building today. For example,
most software-related accidents can be traced to incomplete or flawed software requirements
[4, 5], however current hazard analysis methods like Fault Tree Analysis (FTA) emphasize
component failures and overlook unsafe requirements. In addition, new technology is changing
the role of humans in systems from followers of procedures to supervisors of automation and
high-level decision makers [6, 7]. New more powerful models of accident causation and hazard
analysis techniques are needed to address these issues.

While the traditional techniques are useful for their intended goals, they do not address the
new causes of accidents in modern complex systems and they do not solve the problem of
identifying or generating the safety requirements. This paper presents a method for generating
and validating safety-critical requirements using a new hazard analysis method, STPA (System-
Theoretic Process Analysis) that is based on a new accident causation model called STAMP
(System-Theoretic Accident Model and Processes).

2 Evaluation of traditional hazard analysis techniques

Many traditional hazard analysis methods used in practice can be traced to three main analysis
techniques: Fault Trees, Event Trees, and Failure Modes and Effects Analysis. The following
sections briefly review each of these and evaluate them with respect to their ability to ensure
safety in complex systems. This is followed by a broader evaluation of failure-based models in
general with a discussion of the common limitations and the need for a more powerful systems-
based approach to safety.

2.1 Fault Tree Analysis

Fault Tree Analysis (FTA) was developed at Bell Laboratories in 1961 under a U.S. Air Force
contract to analyze the Minuteman missile system [8]. Electromechanical component failures
were quite common at the time, but there was no method to analyze all potential combinations
of failures sufficient to cause hazardous behavior such as an inadvertent (i.e. accidental) missile
launch. Bell Labs developed FTA as a way to identify critical failure combinations, determine
which combinations were most likely, and establish whether individual failure rates are
sufficiently low. The analysis approach was first demonstrated on the Launch Control System of
Minuteman I, and then extended by Boeing and AVCO to include components throughout the
entire Minuteman II system [9]. Following its success on missile systems, FTA was adopted by

8

organizations in many different industries and is now one of the most popular techniques used
during hazard analysis.

FTA begins with an undesirable event, such as an inadvertent missile launch or aircraft engine
failure, and proceeds in a top-down fashion to identify the causes of the undesirable event in
progressive levels of detail. The result is documented in a tree structure, where high-level
undesirable events or faults are caused by combinations of lower-level component failures. A
failure is an event in which a component does not operate in accordance with its specification,
for example if a relay fails to close properly when a voltage is impressed across its terminals. A
fault event describes component behavior that results from a failure and causes an
unsatisfactory state, such as a relay closing at the wrong time due to the improper functioning
of an upstream component. [1, 5] Events at the top of the tree describe faults while the lowest-
level events, called primary events, describe failures. Figure 1 shows an example fault tree from
the original Bell Laboratory report.

Rupture of hot

water tank

OR

Event B

Failure of

temperature device

to actuate controller

Event C

Failure of controller

to actuate gas valve

Event D

Failure of gas

valve to close

AND

Event A

Failure of relief

valve to lift

Figure 1: Example fault tree from the original Bell Laboratory study [8]

Events at each level are decomposed using either OR logic or AND logic into more detailed
events. AND logic is used to indicate that an event will occur only if all events in the
immediately lower level occur. OR logic indicates that the event will occur if any events in the
immediately lower level events occur.

When the fault tree is complete, it can be analyzed to identify combinations of component
failures or cut sets sufficient to cause the top-level undesirable event. For example, one cut set
for the fault tree in Figure 1 consists of event A together with event B; another cut set consists
of event A together with C and D. The former cut set also a minimal cut set because it can not
be further reduced into a smaller cut set sufficient to cause the top-level event. Minimal cut
sets from a fault tree can be used to help prioritize the importance of component failures and

9

focus engineering efforts. For example, failures that appear in every minimal cut set such as
event A in Figure 1 might warrant a higher ranking than other failures. [10]

If the component failure rates or probabilities of individual failures are known then a
quantitative analysis can be performed to calculate the likelihood of the top-level event. In a
quantitative analysis the failure events are typically assumed to occur independently, which
greatly simplifies the analysis and does not require the measurement of complex dependent
failure rates. Although the independence assumption is often made for electromechanical
devices, it may not be valid if the failure rates are substantially affected by changes in
independent variables such as temperature, vibration, mechanical stresses, etc.

2.1.1 Evaluation

FTA is a powerful top-town method of analyzing combinations of failures that can cause an
undesirable event. However, there are a number of limitations associated with this technique.
Because FTA begins with an undesirable event, some other method must be used to identify
the undesirable events that need to be analyzed. Another issue is identifying the lower-level
events. Although some limited guidance is provided in terms of when certain operators can be
used and how faults can be combined, much less guidance is provided for identifying the faults
and failures in the first place. As a result, many completed fault trees are later found to omit
important events. For example, the fault tree from an actual system in Figure 2 omits the
possibility that a conflict alert is displayed but the controller does not observe it. Similarly, the
fault tree in Figure 3 omits the possibility that Air Traffic Control does not check the Mach
differential.

10

Controller does not

perceive the conflict [in

flight paths]

Controller does not

issue any instruction

[to avoid the collision]

OR

Controller

perceives the

conflict, but cannot

devise a resolution

maneuver

Controller perceives the

conflict and may be able

to devise a resolution

maneuver but does not

have the timeAND

No conflict alert is

displayed Controller

believes

conflict alert is

a false alarm

OR

Conflict alert does not

cause controller to

perceive conflict
Controller does

not perceive the

conflict from his

flight information

OR

Computer

systems

fail

Encounter is

beyond conflict

alert capabilities
Threat is non-

transponder

aircraft

Figure 2: A partial fault tree for an aircraft collision avoidance system [11]

11

Incompliant procedure

(with overtake

Mach>0.4) is

undetected by Air

Traffic Control

OR

Air Traffic Control

incorrectly checks

Mach differential

Flight Crew provides

wrong relative position

(behind or leading) to

Air Traffic Control

Communication errors

(partial corruption of

the message during

the transport)

Figure 3: A partial fault tree for proposed airspace procedures [12]

At each level, FTA users must seek out additional information and identify lower level causes,
but there is no systematic method for doing so. The analysis itself (finding causes and linking
them together) is performed mentally based on one’s own experience and knowledge; the fault
tree itself simply documents of the output of the analysis. The analysis must also be based on
some existing model of the system, but FTA does not include any standard system model so a
mental model is typically used instead. For these reasons, there is no way to check or verify that
all the causes have been identified at any given point or that all users are operating with the
same mental model of the system. Meanwhile, some of the most important contributors to
accidents in complex systems today involve subtle behavior that was never anticipated or not
included in the developers’ mental model. In addition, because FTA relies on an existing model
of the system it is less useful for driving critical decisions during early stages of development
when the model does not yet exist.

Another disadvantage is the lack of a stopping rule when performing FTA. Failure and fault
events can almost always be decomposed further, and a subjective assessment must always be
made about when to stop. For example, the diamond shapes in Figure 2 indicate events that
are not further decomposed in the analysis. The lowest-level boxes Figure 3 were not
decomposed further either. In practice, decomposition often stops when the causes are no
longer obvious or become too complex. However, the subtle or complex factors are often the
most important ones to identify, especially for software- and human-intensive systems. For
example, the event “controller believes conflict alert is a false alarm” cannot be addressed
without understanding why that behavior may occur (e.g. the system may have generated too
many false alarms in the past). As others have noted, FTA often finds only what is already
intuitively obvious. [5, 13]

Although FTA was originally developed to analyze combinations of electromechanical device
failures, various attempts have been made since its original inception in the 1960s to extend
FTA to other system components such as software programs or human operators. Boeing used
simulators to attempt to identify and quantify potential pilot errors for use in a fault tree as
early as 1968, but noted that the human system was far too complex for an accurate

12

assessment and that developing numerical values was slow and painful process [14]. A number
of improvements have been made since then, but the same limitations are still being observed:

Operators do not get simulator sickness as do pilots, they do not have to make billion
dollar tradeoffs which they might in an actual severe accident, and the simulators
themselves can only simulate ‘standard, textbook scenarios.’ ‘Hot cognition’, decision
making under fire and uncertainty, is just not elicited in a simulator. [15]

The most serious problem … continues to be the same problem that was recognized in
the early 1960s among HRA practitioners—the scarcity of data on human
performance that are useful for quantitative predictions of human behavior in
complex systems. … Except for use of highly fallible expert judgment, the training
simulator is the only practical method for collecting data on human errors that have
very low probabilities of occurrence (1E-4 or smaller) or which are associated with
operating conditions that would occur with a very low frequency. Yet the simulator is
not the real world. How can raw data from training simulators be modified to reflect
real-world performance? This is not a small problem. [16]

Expert judgments have also been utilized as a way to identify and quantify operator errors in a
fault tree [12, 17]. In practice, this approach is typically used when there is little or no objective
data available for the quantity of interest; critics argue that it is therefore not possible to
validate (or falsify) the expert estimates that are used [18]. Expert estimates are also subject to
a number of cognitive biases: estimates are almost always overconfident, usually over- or
under-estimate the quantity of interest, and vary significantly between experts. [19, 20]
Although numerous methods have been proposed to reduce systematic biases, critics argue
that these approaches only improve inter-judge reliability and do not necessarily validate the
estimates themselves. [18, 19]

Because FTA focuses on decomposition into failure events, it is difficult to analyze complex
computer software systems. Software is fundamentally different from hardware—when
software exhibits unsafe behavior, it is not due to “wear and tear” on the software. Software is
unsafe when it correctly follows flawed programming that existed from the beginning. In
practice, software errors are often ignored completely in the fault tree [5, 21], or included in a
box labeled “software failure” that is not decomposed further as in Figure 2.

2.2 Event Tree Analysis

Event trees were developed during the WASH-1400 nuclear power plant safety study in 1974
[22, 23]. A comprehensive fault tree analysis was originally attempted for this task, but was
deemed too large and cumbersome to be practical. [5, 22] Event trees were conceived as a way
to condense the analysis by first defining potential accident paths so that each failure in the
path can be further analyzed using a separate fault tree. Although event trees were originally
designed to be combined with fault trees as part of an overall Probabilistic Risk Assessment,
Event Tree Analysis (ETA) has more recently been introduced as a separate method in its own
right [22, 24-26].

A simplified event tree for a nuclear reactor is shown in Figure 4. The first step is to identify an
initiating failure event such as a ruptured pipeline or loss of power. Next, a set of barriers or

13

protective functions intended to prevent the initiating event from leading to an accident are
identified and listed in the sequence of anticipated operation. Finally, a logical tree is
constructed by tracing forward in time from the initiating event and inserting a binary branch at
each barrier to reflect the possible success or failure of that barrier.

Figure 4: Simplified event tree for a nuclear reactor adapted from [27]

Like fault trees, the structure of an event tree lends itself well to a quantitative analysis if the
probabilities of each barrier’s success or failure are known. In practice each barrier is often
assumed to operate independently, which allows computing the probability of each end state
(conditioned on the initiating event) by simply multiplying the probabilities of success or failure
of each barrier on the path to the end state. The end state probabilities can also be calculated if
the barriers operate dependently and the probability of each barrier’s success or failure
(conditioned on the success or failure of the previous barrier) is known.

2.2.1 Evaluation

Event Trees Analysis is a useful way to examine the anticipated effects of physical protection
systems when the probabilities of failure are known, but like any method there are several
limitations. Event trees must start with an initiating event, but do not provide a way to
systematically identify the initiating events or to be sure that all relevant initiating events are
included. Some other method must be used to identify the initiating events that need to be
considered. In addition, because the analysis starts by assuming the initiating event has
occurred, preventative measures to avoid the initiating event are not considered.

When human behavior is included in an event tree, human actions are reduced to a binary
decision that is equated to a success or failure in the tree. This simplification masks the wide

End State

Success Success

Failure Success Success Success

Failure Success Success

Success Core melt

Failure

Failure Core melt w/ release

Failure Success Success Success

Failure Success Core melt

Failure Core melt w/ release

Failure Success Success

Failure Success Core melt

Failure Core melt w/ release

Barrier 5

Loss Of Offsite

Power

Diesel

Generators

Seal Loss Of

Coolant Accident

Emergency

Feedwater

System

EP Recirculation Containment

Initiating Event Barrier 1 Barrier 2 Barrier 3 Barrier 4

14

range of behaviors possible at any given moment and removes critical context that explains
why a person would choose a given action. Human behavior is intimately connected to and
influenced by the context in which it occurs: the information available, goals, past experiences,
beliefs about the current system state, interpretation of various observations, etc. By removing
the context, preventative measures to ensure safe behavior are easily overlooked.

Although the barriers in an event tree are often assumed to operate independently of each
other, in practice they may not be truly independent. For example, in the recent Fukushima
accident the loss of offsite power and the loss of the diesel generators were not independent
events; they were both caused by the same factors. In general, the behavior of multiple barriers
can be heavily dependent on the same set of factors, especially if human behavior is involved.
For example, in the infamous Three Mile Island (TMI) incident the operators were unaware of
steam forming in the core and they manually disabled the primary loop pumps and the
emergency core cooling pumps. Clearly, the failure of these barriers to operate was not
independent.

Design errors and requirements flaws are critical factors that cannot be analyzed with an event
tree. In the example above, an important reason TMI operators did not initially believe coolant
was being lost is that an indicator lamp erroneously suggested that a relief valve was closed and
a water level indicator erroneously suggested the water level was sufficient. Both of these
instruments satisfied their individual requirements and in fact operated exactly as designed, but
the design and requirements were flawed. A stuck relief valve caused a mismatch between the
indicator lamp and the actual state of the valve, and trapped steam in the reactor core caused a
mismatch between the measured water level and the actual level in the core. Design and
requirements issues such as these are not addressed in an event tree.

Higher-level systemic causes such as organizational and managerial issues are also omitted
from an event tree. For example, poor management, ineffective communication, misplaced
regulatory priorities, and complacent attitudes were important contributors at TMI [28] and
simultaneously affected the efficacy of multiple barriers, but these aspects are all omitted in an
event tree. Event trees also omit non-linear or feedback relationships that can contribute an
accident, such as two or more processes that mutually affect each other. For example, the
operators at TMI initially believed that coolant was not being lost because their interactions
with the system reinforced this belief. Processes operating at a much higher level are also
important; for example, low accident rates can give rise to complacency and increased
pressures to reduce budget and oversight, which in turn leads to higher accident rates. [29] All
of these aspects are overlooked in an event tree.

Note that many of these omitted factors are also missing in FTA; combining event trees and
fault trees may improve some aspects of the analysis but it does not address these factors that
are missing from both techniques. This is discussed in more detail in section 2.4.

2.3 FMEA and FMECA

Failure Modes and Effect Analysis (FMEA) and it’s cousin Failure Modes Effects and Criticality
Analysis (FMECA) were developed by reliability engineers to systemically evaluate the effect of
component failures on system performance [24]. These approaches were first introduced as a

15

procedure for weapons systems in 1949 [30], and in 1955 a similar procedure was introduced
by the U.S. Navy Bureau of Aeronautics [31]. In the 1960s these methods were refined and
adopted by the aerospace industry and used on a number of NASA programs including Apollo.
[32] By the 1970s they were being used in civil aviation, the automotive industry, and even
offshore petroleum exploration. [32-35] Today FMEA and FMECA are used across a broad array
of fields including food, drug, and cosmetic industries [36].

Due to its popularity, FMEA has been implemented in a number of different ways but generally
follows the same bottom-up approach. First, the various components in the system are
identified. Next, the failure modes—defined as mechanisms by which a component may fail to
achieve its designed function—are identified [37, 38]. For each failure mode, the potential
causes and effects on the system are investigated. FMECA follows the same basic process, but
in addition assigns a criticality to each failure mode by examining the severity and probability of
each identified effect. Table 1 below shows an example FMECA worksheet that summarizes the
analysis.

Table 1: Example FMECA worksheet adapted from [39]

Component
Failure
Mode Cause Effect Severity

Probability of
Occurrence Criticality

Water Tank Leak Corrosion Lost water Catastrophic Very Low High

Valve

Stuck
closed

Dirt,
corrosion

No water Catastrophic Low Very High

Stuck open
Corrosion,
power

False trip Marginal Moderate Low

Note that the same process can be applied to either physical or functional models of the
system, although in practice there can be a significant overlap between the two. For example, if
applied to a physical model then the analysis of failure modes, effects, and severity are still
identified with respect to the designed function of each component, and if applied to a
functional model then the causes and failures may still be based on the physical
implementation of the components. [37, 38, 40]

2.3.1 Evaluation

FMEA and FMECA are useful methods for analyzing the reliability of physical system
components and prioritizing them with respect to reliability goals. However, there are a
number of limitations especially when applied to other systems or other goals. Because these
methods start by identifying low-level failures to analyze further, the resulting scenarios that
are analyzed include both hazardous and non-hazardous scenarios triggered by a failure. Both
types of scenarios are analyzed in the same level of detail. If the goal is safety-related, then the
effort spent analyzing non-hazardous failures may consume important resources while not
adding significant value to the analysis.

More importantly, the set of scenarios triggered by a failure does not include all unsafe
scenarios, as illustrated in Figure 5. For example, if the system requirements are flawed then
the emergent behavior of the system may be unsafe even though all components operate

16

exactly as designed and required. Filtering out all scenarios that do not begin with a failure
effectively excludes these types of hazardous scenarios.

Figure 5: A Venn diagram of failure scenarios and unsafe scenarios

Like other methods, FMECA assumes a linear progression of events and does not capture non-
linear and feedback relationships. However, unlike other methods, FMECA only considers
scenarios initiated by a single failure and omits scenarios that result only from a combination of
several failures. By focusing on single failures, only a subset of scenarios triggered by a failure
(the left circle in Figure 5) are analyzed.

2.4 General evaluation of failure-based methods

One of the most important limitations of failure-based methods is that by definition they omit
entire classes of factors that lead to accidents. In general, failure-based methods were designed
to model the propagation of component failures in a system that cause an undesired event.
However, many causes of accidents do not involve any component failure. With today’s
systems becoming increasingly complex, more and more accidents are occurring not due to
component failures but instead due to critical design errors or requirements flaws. In addition,
socio-technical systems tend to exhibit dynamic non-linear behavior that is difficult or
impossible to capture with a technique designed for a linear propagation of faults. Continuously
adaptive behavior, goal-seeking behavior, local optimization with global deterioration, goal
erosion, mutually reinforcing relationships causing exponential growth or collapse, and
budgetary/financial pressures are just a few factors that can have a critical impact on the safety
of a system. However these are dynamic processes, not independent failure events, and are not
explained with a one-way linear fault propagation structure.

Similarly, human error in a failure-based method is treated in exactly the same way as a
hardware failure—as a deviation from a specified behavior or procedure. However, like

17

software, the number of potential ways a human can deviate is virtually infinite. Even if all
noncompliant behaviors could be listed, it is not sufficient to just identify them; in order to
prevent a behavior it is necessary to understand why a person might behave that way. In other
words, it requires first understanding the conditions under which unsafe decisions might make
sense to a person at the time and then modifying or adding requirements to make the correct
decisions obvious. Unfortunately, framing human error as a failure requires oversimplifying
human behavior as a binary decision between right and wrong, which only obscures the
underlying reason for the error. Many important human-related causal factors can be
overlooked because they are difficult or impossible to model in a fault tree, including:

 Correct human behavior was not defined for certain situations

 Specified human behavior is known but thought to be incorrect

 Procedures conflict with each other, or it is not obvious which procedure applies

 Information necessary to carry out a procedure is not available or is incorrect

 The person has multiple responsibilities or goals that may conflict

 Past experiences and current knowledge conflict with a procedure

 Procedures are not clear or misunderstood

 Procedures are known but responsibility for the procedures is unclear or misunderstood

 Procedures are known and followed, but they are unsafe

Consider an example1: In the 2010 Deepwater Horizon oil spill, a critical factor was that workers
reported a successful negative pressure test when in reality oil had already begun seeping into
the well. [41, 42] The workers did not know that earlier tests had clogged a pipe that rendered
a key instrument reading invalid. Note that in this case the behavior was compliant—the
workers followed the required procedures but the procedures were unsafe. The behavior was
not a “failure event” because nothing failed – the flaw existed from the beginning in the form of
inadequate procedures and feedback for the crew. A failure-based method could help focus
engineering efforts on preventing the pipe from getting clogged or perhaps preventing workers
from deviating from procedures, but would not help address the flawed requirements and
inadequate feedback loops that existed. For example, a potential solution that adds equipment
to detects a clogged pipe and adjusting worker procedures to utilize this information would be
masked by a failure-based method that focuses only on preventing clogs and enforcing worker
compliance with existing procedures.

Most failure-based methods were originally designed and developed to handle simple
electromechanical components. Numerous attempts have been made to extend these methods
to other components like software, but software is fundamentally different in the sense that it
does not fail like hardware does. Unlike hardware, software always behaves exactly the way it
was programmed (and therein lies the problem). If software exhibits unsafe behavior, it is
because that unsafe behavior was programmed from the beginning—not because the software
“wore out” or “broke” over time. Because of this fundamentally different problem and the

1 This example is necessarily an oversimplification of the complex events that unfolded on the Deepwater Horizon,
but it is nevertheless a useful illustration for the point being made.

18

virtually infinite number of ways software can be programmed incorrectly, it is very difficult to
capture software-related causes in a failure-based method. In practice, software errors are
often ignored completely [5, 21], or included under a label of “software failure” that is not
decomposed further. However simply stating that the software could cause an undesirable
event offers little assistance to the system and software developers who need to make the
software safe.

Failure-based methods are often be applied quantitatively to consider the probability of certain
failures and outcomes. Assuming independence between different failure events is very
common and can significantly simplify the analysis, but this assumption is often made
incorrectly. For example, the primary and backup O-rings on the Challenger shuttle were
originally believed to be independent and redundant2. [43] Unfortunately, they weren’t truly
independent because low temperature and mechanical pressures affected both O-rings and
contributed to their simultaneous failure in the famous 1986 accident. While assuming
independence between failure events may simplify the probabilistic calculations, doing so has
often resulted in overconfident probabilities for hazardous events.

Accurately quantifying probabilities for software errors is difficult or impossible. Even if all
potential software errors could be listed for a simple system, predicting their probability of
occurrence is not feasible. An error is either known to exist or not known to exist. If an error is
ever known, it’s far more effective to simply fix it than to add events to a fault-based model or
guess a probability of occurrence.

Although software errors are important, the majority of software-related accidents can be
traced to flawed requirements rather than a problem with the software implementation itself
[44, 45]. Clearly in any system—whether dealing with software, hardware, or even human
components—safety is dependent on having correct and safe requirements. However, there is
no empirical data for quantifying the probability that a requirement is flawed. Like software
instructions, if a requirement is ever known to be flawed it is far more effective to fix it than to
guess the probability that it is wrong.

Requirements provided in the form of procedures for human operators are also critical for
ensuring safety. For example, inadequate procedures played an important role in the Three
Mile Island partial nuclear meltdown in 1979. Many operating and emergency procedures
contained substantive errors, typographical errors, imprecise or sloppy terminology, and
violated the nuclear reactor’s specifications [5]. Again, there is typically no data to support a
probabilistic estimate of a flawed procedure before an accident. Even if such an estimate had
been produced for Three Mile Island before 1979, it most likely would have been incorrect;
before the accident the procedures were thought to be safe. Only afterward in hindsight were
the flaws discovered.

2 The SRB O-ring joint criticality status was originally classified as C 1R (redundant). When Marshall proposed
changing the status to C 1 (non-redundant), Thiokol engineers disagreed with the change and argued that it should
remain C 1R. Although status was eventually officially changed to C 1, this issue remained an important factor in
the resulting accident. 43. Vaughan, D., The Challenger launch decision : risky technology, culture, and deviance at
NASA. 1996, Chicago: University of Chicago Press. xv, 575 p.

19

It’s easy to see the lack of a probabilistic estimate for these problems and focus on creating
methods to produce such estimates. However, it’s important to recognize that the problem is
much larger than just the lack of a quantitative probability. Suppose such an estimate did exist
for requirements. What would the number mean? Any value other than 0% or 100% just
indicates a lack of knowledge—i.e. it is not known whether a given requirement is flawed or
safe, and the engineering task is therefore incomplete. The core issue is therefore not a
difficulty quantifying existing knowledge; the core issue is obtaining the right knowledge in the
first place. Addressing these problems will require better methods for finding flaws and creating
safe requirements, not methods that estimate what is already known.

When human behavior is included in a quantitative fault tree, the quantitative analysis typically
assumes that the behavior is random with a given probability. However, human behavior is not
random—it is heavily influenced by the context in which is appears. For example, in the 2005
Texas City explosion a critical factor is that operators did not follow standard operating
procedures to release hydrocarbons via the 3-pound venting system. Instead, they bypassed
the venting system and released hydrocarbons through a blowdown stack into open air. In the
absence of any knowledge about the system it might appear that these operators “flipped a
coin” to decide whether to follow the procedure, but this is far from true. The decision was a
direct result of influence from supervisory personnel who advocated the bypass because it
significantly shortened the startup time and had been used successfully many times in the past
[46, 47]. With this additional knowledge, the operators’ behavior does not appear random at
all—it was both predictable and preventable given the context in which it occurred. While
quantitative failure-based methods tend to isolate the context by emphasizing human actions
as random events, a better understanding of the context can often lead to a more accurate
perception and more effective solutions.

Although human error is often only used to refer to behavior during the operation of a system,
it also applies to the development of a system. For example, software errors and flawed
requirements are really just forms of human error. In fact, even hardware failures can be traced
back to human decisions regarding the design and construction of the component, the selection
of the component for a specific purpose in an assumed operating environment, the design of
the system that interfaces with the component, and the inclusion of any protective measures
that detect and handle (or don’t) the potential failure of the component. Therefore it is not
surprising that the same issues that plague software errors and flawed requirements appear
again for human behavior in general.

3 The STAMP Accident Model

STAMP is a model of accident causation that treats safety as a control problem, rather than as a
failure problem [48]. While unsafe control includes inadequate handling of failures, it also
includes system and software design errors and erroneous human decision making. In STAMP,
accidents are viewed as the result of inadequate enforcement of constraints on system
behavior. The reason behind the inadequate enforcement may involve classic component

20

failures, but it can also result from unsafe interactions among components operating as
designed or from erroneous control actions by software or humans.

STAMP is based on the observation that there are four types of hazardous control actions that
need to be eliminated or controlled to prevent accidents:

1. A control action required for safety is not provided or is not followed

2. An unsafe control action is provided that leads to a hazard

3. A potentially safe control action is provided too late, too early, or out of sequence

4. A safe control action is stopped too soon or applied too long

One potential cause of a hazardous control action in STAMP is an inadequate process model
used by human or automated controllers. The process model contains the controller’s
understanding of 1) the current state of the controlled process, 2) the desired state of the
controlled process, and 3) the ways the process can change state. This model is used by the
controller to determine what control actions are needed. In software, this process model is
usually implemented in variables and embedded in the program algorithms. For humans, the
process model is often called the “mental model”. Software and human errors frequently result
from incorrect process models, e.g., the software thinks the spacecraft has landed and shuts off
the descent engines. [49] Accidents can therefore occur when an incorrect or incomplete
process model causes a controller to provide control actions that are hazardous. While process
model flaws are not the only cause of accidents in STAMP, it is a major contributor.

4 STPA Hazard Analysis

STPA (System Theoretic Process Analysis) is a hazard analysis technique built on STAMP. The
first step in STPA is to identify the potentially unsafe control actions for the specific system
being considered. These unsafe control actions are used to create safety requirements and
constraints on the behavior of both the system and its components. Additional analysis can
then be performed to identify the detailed scenarios leading to the violation of the safety
constraints. As in any hazard analysis, these scenarios are then used to control or mitigate the
hazards in the system design.

Before beginning an STPA hazard analysis, potential accidents and related system-level hazards
are identified along with the corresponding system safety constraints that must be controlled.
As an illustrative example, consider a simple automated door control system for a train. The
accidents to be considered are: injury to a person by falling out of the train, being hit by a
closing door, or being trapped inside a train during an emergency. The system-level hazards
relevant to this definition of an accident include:

H-1: Doors close on a person in the doorway

H-2: Doors open when the train is not in a station or is not aligned with a station
platform

H-3: Passengers/staff are unable to exit during an emergency.

21

Figure 6: Preliminary control diagram for an automated door controller

STPA is performed on a functional control diagram of the system, which is shown in Figure 6 for
the train door controller. The first part of STPA identifies hazardous control actions for each
component that could produce a system-level hazard by violating the system safety constraints.
Once the set of hazardous control actions has been identified, the second part of STPA analyzes
the system to determine the potential scenarios that could lead to providing a hazardous
control action. These scenarios can be used to design controls for the hazards or, if the design
already exists, to ensure that these scenarios are adequately controlled.

STPA Step One: The first step of STPA identifies control actions for each component that can
lead to one or more of the defined system hazards. The four general types of unsafe control
actions were shown above. Hazardous control actions can be documented using a table as in
Table 1. The hazardous control actions can then be translated into system and component
safety requirements and constraints.

22

Table 2: Potentially hazardous control actions for a simple automated door controller

Control
Action

1) Not Given 2) Given Incorrectly 3) Wrong Timing or
Order

4) Stopped too
soon or applied
too long

Provides
door open
command

Doors not commanded open
once train stops at a

platform [not hazardous]
3

Doors not commanded open
for emergency evacuation
[see H-3]

Doors not commanded open
after closing while a person
or obstacle is in the
doorway [see H-1]

Doors commanded
open while train is
in motion [see H-2]

Doors commanded
open while train is
not aligned at a
platform [see H-2]

Doors commanded open
before train has stopped
or after it started
moving (same as “while
train is in motion”) *see
H-2]

Doors commanded open
late, after train has
stopped [not hazardous]

Doors commanded open
late after emergency
situation [see H-3]

Door open
stopped too
soon during
normal stop [not
hazardous]

Door open
stopped too
soon during
emergency stop
[see H-3]

Provides
door close
command

Doors not commanded
closed or re-closed before
moving [see H-2]

Doors commanded
closed while person
or object is in the
doorway [see H-1]

Doors commanded
closed during an
emergency
evacuation [see H-
3]

Doors commanded
closed too early, before
passengers finish
entering/exiting [see H-
1]

Doors commanded
closed too late, after
train starts moving [see
H-2]

Door close
stopped too
soon, not
completely
closed [see H-2]

Each item in the table should be evaluated to determine whether it is hazardous as defined by
the system-level hazards. For instance, in this simple example the doors remaining closed
during a routine train stop (non-emergency) is not hazardous because it does not lead to any of
the three hazards specified above. If this situation is a safety concern, then the hazard list can
be updated to include the corresponding hazard On the other hand, commanding the doors
open while the train is in motion is hazardous because it leads to hazard H-2. Each unsafe
control action is then translated into a component-level safety constraint (e.g. train must not be
capable of starting with door open, doors must remain closed while train is in motion, etc.).

3 This is not hazardous because it does not lead to any of the system-level hazards (see H-1,H-2,H-3 above). If the
hazards and accidents included in the safety analysis were extended to include inconvenience to the passengers,
then this item would be considered hazardous.

23

STPA Step Two: The second step of STPA examines each control loop in the safety control
structure to identify potential causal factors for each hazardous control action, i.e., the
scenarios for causing a hazard.

Figure 7 shows a generic control loop that can be used to guide this step. While STPA Step One
focused on the provided control actions (the upper left corner of Figure 7), STPA Step Two
expands the analysis to consider causal factors along the rest of the control loop.

Consider a hazardous control action for the automated door controller: the doors are
commanded closed while a person is in the doorway. STPA Step Two would show that one
potential cause of that action is an incorrect belief that the doorway is clear (an incorrect
process model). The incorrect process model, in turn, may be the result of inadequate feedback
provided by a failed sensor or the feedback may be delayed or corrupted. Alternatively, the
designers may have omitted a feedback signal.

Figure 7: General control loop with causal factors

24

Once the second step of STPA has been applied to determine potential causes for each
hazardous control action identified in STPA Step One, the causes should be eliminated or
controlled in the design.

5 Formal Specification for Hazardous Control Actions

In this section, a formal specification is introduced and defined for hazardous control actions in
STAMP. This specification forms the basis for procedures that identify hazardous control actions
during STPA Step One. The specification is also used in later sections to develop of automated
algorithms that assist in identifying the actions and to generate requirements that enforce safe
behavior. In addition, although the formal structure is defined here relative to system-level
hazards, an identical structure can be applied relative to system-level functions or goals. These
parallel structures form the basis for methods in section 8 that can be used generate both
safety and functional model-based requirements as well as detecting potential conflicts
between the two.

A hazardous control action in the STAMP accident model can be expressed formally as a four-
tuple (S,T,CA,C) where:

 S is a controller in the system that can issue control actions. The controller may be
automated or a human.

 T is the type of control action. There are two possible types: Provided describes a
control action that is issued by the controller while Not Provided describes a control
action that is not issued.

 CA is the control action or command that is output by the controller.

 C is the context in which the control action is or is not provided.

For example, in the case of an automated train door controller, consider the following
hazardous control action: The train door controller provides the open door command while the
train is moving. This control command can be expressed as (S,T,CA,C) where:

S = Train door controller

T = Provided

CA = Open door command

C = Train is moving

Each element of a hazardous control action is a member of a larger set, i.e. the following
properties must hold:

1. S ∈ Ş, where Ş is the set of controllers in the system
2. T ∈ , where = {Provided, Not Provided}
3. CA ∈ (S), where (S) is the set of control actions that can be provided by

controller S
4. C ∈ (S), where (S) is the set of potential contexts for controller S

25

To assist in enumerating or aggregating individual contexts, it is helpful to further decompose
the context C into variables, values, and conditions:

 V is a variable or attribute in the system or environment that may take on two or more
values. For example, train motion and train position are two potential variables for a
train.

 VL is a value that can be assumed by a variable. For example, stopped is a value that can
be assumed by the variable train motion.

 CO is a condition expressed as a single variable/value pair. For example, train motion is
stopped is a condition.

 The context C is the combination of one or more conditions and defines a unique state
of the system or environment in which a control action may be given.

The following additional properties related to the context of a hazardous control action can
therefore be defined:

5. V ∈ (S), where (S) is the set of variables referenced in the system hazards
6. VL ∈ (V), where (V) is the set of values that can be assumed by variable V
7. CO = (V, VL) ∈ (S), where (S) is the set of conditions for controller S
8. C = (CO1, CO2, ...), where each COi is independent. That is, no two COi refer to the

same variable V.

Finally, each hazardous control action must be linked to a system-level hazard:

9. To qualify as a hazardous control action, the event (S, T, CA, C) must cause a hazard
H ∈ , where is the set of system level hazards.

A hazardous control action expressed as a four-tuple (S, T, CA, C) must satisfy the above
properties 1-9.

6 A Procedure to Identify Hazardous Control Actions

This section introduces a procedure for rigorously and systematically identifying the hazardous
control actions during the first step of STPA. [50]. The approach is based on the idea that many
control actions are only hazardous in certain contexts. For example, a command to open the
doors of a train is not hazardous by itself—it depends on the system state or state of the
environment in which the command is given. For example, the command to open train doors is
hazardous when the train is moving, or when the train is stopped but misaligned with the
platform. The new procedure involves identifying potential control actions, identifying
potentially hazardous states, and then analyzing which combinations together yield a
hazardous control action.

Three parts of the procedure are described in the following sections, and each part can be
performed independently of the others. The first part deals with control actions that are
provided under conditions that make the action hazardous. The second part deals with control
actions that are not provided under conditions that make inaction hazardous.

26

6.1 Part 1: Control actions provided in a state where the action is
hazardous

In this procedure, a controller and the associated control actions are selected from the control
structure. In the train example above, the automated door controller can provide four control
actions: open doors, stop opening doors, close doors, or stop closing doors. Next, the
controller’s process model is defined to determine the environmental and system states that
affect the safety of the control actions.

Controllers use the values of the process model to determine what control actions to provide.
In order to make safe decisions, the control algorithm must use process model variable values
(i.e., system state or environmental values that are known to the controller). If the controller
does not know the values of system state and environmental values that are related to hazards,
then the controller cannot be designed to provide safe control actions. Figure 8 shows the
required process model for the door controller to carry out its control safely. The required
variables in the process model are identified by the definition of the system hazards. For
example, hazard H-1 identifies the state of the doorway (whether it is clear or not) as an
important environmental variable in deciding whether to close the doors or not.

27

Figure 8: Augmented control structure with the door controller’s process model

Once the process model variables have been identified, the potentially hazardous control
actions can be identified by examining each potential combination of relevant process model
values to determine whether issuing that control action in that state will be hazardous. For
example, one possible process model state for the open door command consists of the values:
the train is stopped, there is no emergency, and the train is not aligned with a platform.
Providing the open door command in this context is a hazardous control action.

Each row in Table 3 specifies a different context for the open door command.4 Context here is
defined as a combination of values of the process model variables. Each context is then
evaluated to determine whether the control action is hazardous in that context, and the result
is recorded in the three columns on the right. The two right-most columns incorporate timing
information as well. For example, providing an open door command in the context of an

4 Note that each of the four commands would need to be analyzed, including the stop commands.

28

emergency while the train is stopped is not hazardous; in fact, that’s exactly what should
happen. However, providing the open door command too late in that context is certainly
hazardous.

Table 3: Contexts for the open door control action

Control
Action

Train Motion Emergency Train Position

Hazardous control action?

If provided
any time in
this context

If provided
too early in
this context

If provided
too late in
this context

Door open
command
provided

Train is moving No emergency
(doesn’t
matter)

Yes Yes Yes

Door open
command
provided

Train is moving Emergency exists
(doesn’t
matter)

Yes* Yes* Yes*

Door open
command
provided

Train is stopped Emergency exists
(doesn’t
matter)

No No Yes

Door open
command
provided

Train is stopped No emergency
Not aligned

with platform
Yes Yes Yes

Door open
command
provided

Train is stopped No emergency
Aligned with

platform
No No No

*assumption: passengers can exit to the following or proceeding car in an emergency

Note that during this process, some combinations of conditions may expose conflicts in the
design that need to be considered. For example, is it hazardous to provide the open door
command during a fire (an emergency) while the train is in motion? In other words, is it safer to
keep the doors closed and trap the passengers inside while the train crawls to a complete stop
or is it better to open the doors and risk physical injury because the train is moving? These
questions can and should prompt exploration outside the automated door controller. For
example, that issue might be addressed in the design by providing a way for passengers to exit
to nearby train cars when there is an emergency and the train is moving.

6.2 Part 2: Control actions not provided in a state that makes
inaction hazardous

29

This part of the procedure considers potential states in which the lack of a control action is
hazardous. The same basic process is used: identify the corresponding process model variables
and the potential values, create contexts for the action using combinations of values, and then
consider whether an absence of the specified control action would be hazardous in the given
context. Table 4 shows the hazardous control actions for the door open command not being
provided.

Table 4: Contexts for the lack of an open door control action

Control
Action

Train Motion Emergency Train Position Door State
Hazardous if not
provided in this

context?

Door open
command not
provided

Train is stopped No emergency
Aligned with

platform
Person not in

doorway No
5

Door open
command not
provided

Train is stopped No emergency
Aligned with

platform
Person in
doorway

Yes

Door open
command not
provided

Train is stopped No emergency
Not aligned

with platform
(doesn’t matter) No

Door open
command not
provided

Train is stopped Emergency exists
(doesn’t
matter)

(doesn’t matter) Yes

Door open
command not
provided

Train is moving (doesn’t matter)
(doesn’t
matter)

(doesn’t matter) No

7 Formal method for identifying Hazardous Control
Actions

5 This is not hazardous because it does not lead to any of the system-level hazards (see H-1,H-2,H-3 in the
previous section). If the hazards and accidents included in the safety analysis were extended to include
inconvenience to the passengers, then this row would describe a hazardous control action.

30

This section defines a formal method that can be used to automate much of the manual
process described in the previous section. Based on the formal structure defined in Section 5, a
set of potentially hazardous control actions can be enumerated given certain information about
the system. The information needed is:

 : the set of system-level hazards

 Ş: the set of controllers in the system

 (S): the set of control actions for each controller S

 : the set of variables referenced in the hazards

 (V): the set of potential values for each variable V

Most, if not all, of this information can be determined well in advance of the detailed design of
a system. The set is typically determined during the Preliminary Hazard Analysis (PHA) of the
system. The set Ş and (S) can be extracted from a preliminary control structure of the
system. The set is identical to the process model variables in the control structure, and
can be extracted from the set of hazards . The potential values (V) are also found in the
process model, and can be defined once is known.

Given this basic information about the system, properties 1-8 from Section 5 can be applied to
automatically generate a list of potential hazardous control actions in the form of combinations
of (S, T, CA, C). First, a controller S is selected from the set Ş. Then the set of conditions (S)
is generated by pairing each variable in with each value in (V). Then the set of contexts
is generated by combining each independent condition from (S). Finally, the list of
potentially hazardous control actions for the selected controller S is generated by
combining each element of , (S), and (S). This process can be repeated for each
controller S in the set Ş.

This process guarantees that properties 1-8 from Section 5 are satisfied. Because a detailed
behavioral model of the system typically does not exist during the earliest phases of
development, it may not be possible to automatically apply property 9. However, this final step
can be performed by the engineering team. Because the algorithm above generates
combinations that satisfy all other criteria, the generated list is a superset of the actual
hazardous control actions. Therefore this task is essentially a trimming exercise: the team does
not need to add any new hazardous control actions, they only need to remove non-hazardous
control actions from the list based on their knowledge of the physics or other engineering
properties of the overall system outside the domain of formal logic. For example, in the
following table the engineering team would need to fill in the column on the far right:

31

Table 5: Example hazardous control action table for the door open command

Control
Action

Train
Motion

Emergency Train Position Hazardous?

Door open

command

Moving (doesn’t

matter)

(doesn’t matter) Yes

Door open

command

Stopped Yes (doesn’t matter) No

Door open

command

Stopped No Not at platform Yes

Door open

command

Stopped No At platform No

Finally, for each potential hazardous control action that is provided (T = Provided), timing
information such as potentially hazardous delays within a given context should also be
considered. For example, suppose it is not hazardous to provide a door open command while
the train is stopped and there is an emergency. In fact, this behavior may be exactly what is
expected of the system. However, providing the door open command too late in that context
could certainly be hazardous even if the control action is eventually provided. This condition
can be addressed by adding the columns hazardous if provided too early and hazardous if
provided too late as described in [50].

Once the hazardous control actions have been identified, each action can be inverted to define
a safety requirement for the system. For example, the hazardous control action from the first
row of Table 1 can be inverted as follows:

Hazardous control action: Train door controller provides the open door command while
the train is moving.

Safety requirement: Train door controller must not provide the open door command
while the train is moving.

While this simple example is fairly obvious and would probably not require the use of a formal
method, experience using this approach on real systems such as spacecraft [51], the air
transportation system [52, 53], and missile defense systems [54] has led to the identification of
safety-critical requirements that were never considered during the normal development of
these systems.

8 Generating Model-Based Specifications

Identifying the hazardous behaviors to avoid is necessary, but it’s not enough: requirements
need to be created to define the actual behavior necessary to prevent hazards, and existing
requirements need to be checked to verify that these hazardous behaviors will not occur.
Because hazardous control actions have been defined with a formal representation, it is
possible to compare these actions against an existing formal model-based specification (e.g.

32

SpecTRM-RL) to determine whether these hazardous control actions may occur. Furthermore, if
no formal specification exists, it is possible to automatically generate the parts of the
specification necessary to ensure hazardous behavior is prevented.

The following functions can be defined from the set of hazardous control actions:

 HP(H, S, CA, C): This function is True if and only if hazard H results from controller S
providing command CA in context C. This function is defined for all H ∈ , S ∈ Ş, CA ∈

(S), C ∈ (S).
 HNP(H, S, CA, C): This function is True if and only if hazard H results from controller S

not providing command CA in context C. This function is defined for all H ∈ , S ∈ Ş, CA
∈ (S), C ∈ (S).

The formal specification or control algorithm to be generated can be expressed as the following
function:

 R(S, CA, C): This function is True if and only if controller S is required to provide
command CA in context C. This function must be defined for all S ∈ Ş, CA ∈ (S), C ∈

(S).

The function R must satisfy certain criteria to prevent hazardous behavior. Namely, any control
action that is hazardous in a given context must not be provided by the control algorithm in
that context:

 ∀ H ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): HP(H, S, CA, C) ⇒ ¬R(S, CA, C) (1)

In addition, if a control action that is absent in a given context will produce a hazard, then the
control action must be provided by the control algorithm in that context:

 ∀ H ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): HNP(H, S, CA, C) ⇒ R(S, CA, C) (2)

The required behavior R can then be generated to satisfy these two criteria. Any behavior
appearing in HNP must appear in R, and any behavior that appears in HP must be absent from
R. If the same behavior appears in HNP and HP, then no R can satisfy both criteria. The
following additional criterion can be defined to detect these conflicts and ensure that a solution
R exists:

∀ H1 ∈ , H2 ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): HP(H1, S, CA, C) ⇒ ¬HNP(H2, S, CA, C)
 (3)

The third criterion above is a consistency check that can be applied to the hazardous control
actions independently of the formal specification R. If the third criterion does not hold, there is
a design or requirements flaw in the system. Both action and inaction by controller S will lead to
a hazard and violate a safety requirement. Although the conflict cannot be automatically
resolved, it can be automatically detected and flagged for review by the engineering team.

The resulting requirements can be expressed in a formal model-based requirements
specification language, such as SpecTRM-RL [55]. For example, Table 6 below contains a formal
SpecTRM-RL specification for the train door example. The three columns on the right specify
three contexts in which the open doors command must be provided: when the train is aligned
and stopped, or when the train is stopped and an emergency exists, or when the doors are

33

closing on a person and the train is stopped. The latter two columns specify behavior that is
required to prevent the system hazards, and were automatically generated by a software tool
that implements the procedure above. The first column specifies behavior that is necessary
only for the intended function of the system, and therefore is not automatically generated by
the procedure above.

Table 6: Example SpecTRM-RL table for the door open command

However, the first column can be generated automatically by defining functional behavior of
the system in the same way that hazardous behavior was defined. Functional specifications can
then be generated along with the safety-related specifications by following a parallel method.
In addition to HP and HNP, which capture hazardous control actions, a new function FP can be
introduced to capture control actions that are needed to achieve functional goals:

 FP(F, S, CA, C): This function is True if and only if system-level function F must be
achieved by controller S providing command CA in context C to achieve a system-level
function F

The function FP can be defined by identifying which control actions in each context are
necessary to achieve the system-level functions . The same process used in Section 3 to
identify hazardous control actions can be used, except the system-level functions are
considered instead of the system-level hazards . The required behavior R can then be
computed as in Section 4, but with an additional criterion to capture the functional behavior:

 ∀ F ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): FP(F, S, CA, C) ⇒ R(S, CA, C) (4)

Applying this criterion, any behavior appearing in FP must also appear in R. Note that if the
same behavior appears in FP and HP, then there is a design or requirements flaw in the system
because the same control action is both necessary to achieve a system-level function and
prohibited because it presents a system-level hazard. In this case, no R exists that prevents the
hazards while achieving the system functions. The following additional criterion can therefore
be defined:

34

 ∀ H ∈ , F ∈ , S ∈ Ş , CA ∈ (S), C ∈ (S): HP(H, S, CA, C) ⇒ ¬FP(F, S, CA, C) (5)

This final criterion is a consistency check to detect conflicts between hazardous and functional
behavior. As before, these conflicts cannot be automatically resolved, but they can be
automatically detected and flagged for review by the engineering team.

9 Conclusions:

Traditional hazard analysis techniques were evaluated and found to overlook several important
types of causal factors including like flawed requirements, dysfunctional component
interactions, and software and other design errors. A new hazard analysis technique called
STPA was also described. STPA has been applied to many complex systems and has proven to
be both feasible and effective in systems for which traditional analyses had already been
performed. STPA found the same hazardous scenarios as existing analyses, but STPA also found
additional scenarios involving complex software and human errors [51, 54].

Although STPA has proven to be very effective on real systems, no formal structure had been
defined for STPA and its application was ad-hoc with no rigorous procedures or model-based
design tools. This report defines a formal mathematical structure underlying STPA and
describes a procedure for systematically performing an STPA analysis based on that structure. A
method for using the results of the hazard analysis to generate formal safety-critical, model-
based system and software requirements is also presented. Techniques to automate both the
analysis and the requirements generation are discussed, as well as a method to detect conflicts
between the safety and other functional model-based requirements during early development
of the system. Current research is exploring potential ways in which similar kinds of detailed
procedures can be created to assist the analyst during STPA Step Two. Much of the analysis is
potentially automatable and we are also exploring this potential.

10 References

1. Vesely, W.E. and N.H. Roberts, Fault Tree Handbook. 1987: US Independent Agencies

and Commissions.

2. Dekker, S., Ten questions about human error : a new view of human factors and system

safety. Human factors in transportation. 2005, Mahwah, N.J.: Lawrence Erlbaum

Associates. xix, 230 p.

3. Dekker, S., The field guide to understanding human error. 2006, Aldershot, England ;

Burlington, VT: Ashgate. xv, 236 p.

4. Lutz, R.R. Analyzing software requirements errors in safety-critical, embedded systems.

in International Conference on Software Requirements. 1992. IEEE.

5. Leveson, N., SafeWare : system safety and computers. 1995, Reading, Mass.: Addison-

Wesley. xvii, 680 p.

35

6. Bainbridge, L., Ironies of Automation, in New Technology and Human Error, J.

Rasmussen, K. Duncan, and J. Leplat, Editors. 1987, John wiley and Sons: New York.

7. Sarter, N.B. and D.D. Woods, How in the World Did We Ever Get into That Mode -

Mode Error and Awareness in Supervisory Control. Human Factors, 1995. 37(1): p. 5-19.

8. Watson, H.A., Launch Control Safety Study. Vol. 1. 1962.

9. Ericson, C.A. Fault Tree Analysis – A History. in Proceedings of The 17th International

System Safety Conference. 1999.

10. Mannan, S. and F.P. Lees, Lee's loss prevention in the process industries: hazard

identification, assessment, and control. Lee's Loss Prevention in the Process Industries:

Hazard Identification, Assessment, and Control. 2005: Elsevier Butterworth-Heinemann.

11. Lebron, J.E., System safety study of minimum TCAS II, 1983, Federal Aviation

Administration: Washington, D.C. p. 360 p. in various pagings.

12. RTCA, Safety, Performance an Interoperability Requirements Document for the In-Trail

Procedure in the Oceanic Airspace (ATSA-ITP) Application, 2008: Washington, DC.

13. Childs, C., Cosmetic System Safety. Hazard Prevention, 1979.

14. Hixenbaugh, A.F., Fault Tree for Safety, 1968, Defense Technical Information Center

Boeing Co. Support Systems Engineering Seattle, WA Ft. Belvoir. p. 29 p.

15. Dougherty, E.M., Human Reliability-Analysis - Where Shouldst Thou Turn. Reliability

Engineering & System Safety, 1990. 29(3): p. 283-299.

16. Swain, A.D., Human Reliability-Analysis - Need, Status, Trends and Limitations.

Reliability Engineering & System Safety, 1990. 29(3): p. 301-313.

17. RTCA and EUROCAE, Guidelines for Approval of the Provision and Use of Air Traffic

Services Supported by Data Communications, 2002.

18. Moray, N., Dougherty's dilemma and the one-sidedness of human reliability analysis

(HRA). Reliability Engineering & System Safety, 1990. 29(3): p. 337-344.

19. Kantowitz, B.H. and Y. Fujita, Cognitive theory, identifiability and human reliability

analysis (HRA). Reliability Engineering & System Safety, 1990. 29(3): p. 317-328.

20. Mosleh, A., V.M. Bier, and G. Apostolakis, A Critique of Current Practice for the Use of

Expert Opinions in Probabilistic Risk Assessment. Reliability Engineering & System

Safety, 1988. 20(1): p. 63-85.

21. Leveson, N. and C.S. Turner, An Investigation of the Therac-25 Accidents. Computer,

1993. 26(7): p. 18-41.

22. Ericson, C.A., Hazard analysis techniques for system safety. 2005, Hoboken, NJ: Wiley-

Interscience. xx, 499 p.

23. Rasmussen, N.C., Reactor safety study : an assessment of accident risks in U.S.

commercial nuclear power plants. 1975, Washington; Springfield, Va.: N.R.C.; National

Technical Information Service.

36

24. Rausand, M. and A. Høyland, System reliability theory : models, statistical methods, and

applications. 2nd ed. Wiley series in probability and statistics Applied probability and

statistics. 2004, Hoboken, NJ: Wiley-Interscience. xix, 636 p.

25. Verma, A.K., Reliability and safety engineering. 1st ed. Springer series in reliability

engineering. 2010, New York: Springer.

26. Skelton, B., Process safety analysis : an introduction. 1997, Houston, Tex.: Gulf Pub. xii,

213 p.

27. Apostolakis, G., et al., Integration of Reactor Design, Operations, and Safety, in MIT

Course 22.392006.

28. Walker, J.S., Three Mile Island : a nuclear crisis in historical perspective. 2004,

Berkeley: University of California Press. xi, 303 p.

29. Marais, K., J.H. Saleh, and N.G. Leveson, Archetypes for organizational safety. Safety

science, 2006. 44(7): p. 565-582.

30. Military, U.S., MIL-P-1629 Procedures for Performing a Failure Modes Effects and

Criticality Analysis, 1949.

31. Dhillon, B.S., Maintainability, maintenance, and reliability for engineers. 2006, Boca

Raton: CRC/Taylor & Francis. 217 p.

32. Stamatis, D.H., Design for Six Sigma. Six sigma and beyond. 2002: ST LUCIE PR.

33. SAE, ARP926 Design Analysis Procedure For Failure Modes, Effects and Criticality

Analysis 1967.

34. National Research Council, Safety and offshore oil. 1981: National Academy Press.

35. National Academy of Engineering, Outer continental shelf resource development safety:

a review of technology and regulation for the systematic minimization of environmental

intrusion from petroleum products. 1972: National Academy of Engineering, Marine

Board.

36. Duckworth, H.A. and R.A. Moore, Social Responsibility: Failure Mode Effects and

Analysis. Industrial Innovation Series. 2010: Taylor and Francis.

37. Crow, D. and A. Feinberg, Design for Reliability. Electronics Handbook Series. 2001:

CRC Press.

38. Stamatis, D.H., Failure Mode and Effect Analysis: Fmea from Theory to Execution.

2003: ASQ Quality Press.

39. Goble, W.M., Control systems safety evaluation and reliability. 3rd ed. ISA resources for

measurement and control series. 2010, Research Triangle Park, NC: International Society

of Automation. xvi, 458 p.

40. Fullwood, R.R. and R.R. Fullwood, Probabilistic safety assessment in the chemical and

nuclear industries. 2000, Boston: Butterworth-Heinemann. xxix, 514 p.

41. BP, Deepwater Horizon Accident investigation Report. 2010.

42. Drilling, N.C.o.t.B.D.H.O.S.a.O., Deep Water: The Gulf Oil Disaster and the Future of

Offshore Drilling. 2010.

37

43. Vaughan, D., The Challenger launch decision : risky technology, culture, and deviance at

NASA. 1996, Chicago: University of Chicago Press. xv, 575 p.

44. Lutz, R.R., Analyzing software requirements errors in safety-critical, embedded systems.

Technical report. Iowa State University. Dept. of Computer Science. 1993, Ames, Iowa:

Iowa State University Dept. of Computer Science. 14 p.

45. Leveson, N., Completeness in formal specification language design for process-control

systems, in Proceedings of the third workshop on Formal methods in software

practice2000, ACM: Portland, Oregon, United States. p. 75-87.

46. Division, U.S.D.C.f.t.S.D.o.T.H., Statement of Facts. 2007.

47. Panel, B., The Report of the BP U.S. Refineries Independent Safety Review Panel. 2007.

48. Leveson, N., Engineering a safer world : systems thinking applied to safety. Engineering

systems. 2012, Cambridge, Mass.: MIT Press. xx, 534 p.

49. Leveson, N.G., Role of software in spacecraft accidents. Journal of spacecraft and

Rockets, 2004. 41(4): p. 564-575.

50. Thomas, J. and N. Leveson, Performing Hazard Analysis on Complex, Software- and

Human-Intensive Systems, in International System Safety Conference2011, System Safety

Society: Las Vegas, NV.

51. Ishimatsu, T., et al., Modeling and Hazard Analysis using STPA, in Conference of the

International Association for the Advancement of Space Safety2010: Huntsville,

Alabama.

52. Laracy, J.R., A systems-theoretic security model for large scale, complex systems applied

to the US air transportation system, in Engineering Systems Division2007, Massachusetts

Institute of Technology, Engineering Systems Division.

53. Fleming, C., et al., Safety Assurance in Nextgen. NASA Technical Report, 2011.

54. Pereira, S., G. Lee, and J. Howard, A System-Theoretic Hazard Analysis Methodology for

a Non-advocate Safety Assessment of the Ballistic Missile Defense System, in AIAA

Missile Sciences Conference2006: Monterey, CA.

55. Leveson, N.G., M.P.E. Heimdahl, and J.D. Reese, Designing specification languages for

process control systems: lessons learned and steps to the future, in Proceedings of the 7th

European software engineering conference held jointly with the 7th ACM SIGSOFT

international symposium on Foundations of software engineering1999, Springer-Verlag:

Toulouse, France. p. 127-145.

38

Distribution:

1 MS 0405 C. Aas, 0432

1 MS 0405 N. Brown, 0432

1 MS 0492 J. Brewer, 0411

1 MS 0899 Technical Library, 9536

1 MS 0359 D. Chavez, LDRD Office, 1911

39

