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Abstract

Reliability is of great concern to the scalability of extreme-scale systems. Of particular
concern are soft errors in main memory, which are a leading cause of failures on current
systems and are predicted to be the leading cause on future systems. While great effort has
gone into designing algorithms and applications that can continue to make progress in the
presence of these errors without restarting, the most critical software running on a node, the
operating system (OS), is currently left relatively unprotected. OS resiliency is of particular
importance because, though this software typically represents a small footprint of a compute
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node’s physical memory, recent studies show more memory errors in this region of memory
than the remainder of the system. In this paper, we investigate the soft error vulnerability
of two operating systems used in current and future high-performance computing systems:
Kitten, the lightweight kernel developed at Sandia National Laboratories, and CLE, a high-
performance Linux-based operating system developed by Cray. For each of these platforms,
we outline major structures and subsystems that are vulnerable to soft errors and describe
methods that could be used to reconstruct damaged state. Our results show the Kitten
lightweight operating system may be an easier target to harden against memory errors due
to its smaller memory footprint, largely deterministic state, and simpler system structure.
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Introduction

Concern is growing in the high-performance computing (HPC) community on the relia-
bility of future extreme scale systems. With systems continuing to grow dramatically in node
count and individual nodes also increasing in component count and complexity, large-scale
systems are becoming less reliable. In fact, experts are predicting that failure rates may go
from the current state of a handful a day [35, 34] to multiple failures an hour [4]. Recent
studies have shown soft errors in main memory to be the source of many of these failures
[21, 27]. With the predicted increase of memory density on future exascale systems [38]
and expected power optimizations such as decreases in supply voltages, the number of these
failures is expected to dramatically increase.

Several methods have been developed to address these errors. Approaches include hardware-
based techniques, such as single-bit error correction and double-bit detection (SEC-DED)
and chipkill codes [12], as well as algorithm-based mechanisms that encode the correction
mechanics directly into the application [20, 10, 7]. These hardware-based mechanisms may,
however, be insufficient at the elevated failure rates predicted for exascale systems, and most
importantly, they may not protect the most important software running on a node - the
operating system.

An operating system (OS) resilient to soft errors in memory is key to the scalability
of exascale systems for a number of reasons. First, current operating systems are unable
to recover from the vast majority of failures. Second, though the typical operating system
only occupies a small portion of a system’s total physical memory footprint, recent studies
show substantially more errors in this region than the remainder of a system’s memory [21].
Lastly, future HPC system software will need to continue running in the presence of memory
failures if current application-based, forward error recovery mechanisms are to be successful.
These forward-error recovery methods are theorized to have lower overheads and less wasted
computation than current rollback/recovery mechanisms.

In this work, we investigate the soft error vulnerability of two operating systems used
in current and future high-performance computing systems: Kitten, the lightweight kernel
developed at Sandia National Laboratories [33], and CLE, a high-performance HPC OS
based on the Linux general purpose OS. Our analysis shows that the simpler lightweight
kernel may be easier to harden against memory errors, because of its substantially smaller
memory footprint, largely deterministic state, and generally simpler system structure.
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Background

Current State of Practice

Coordinated checkpoint/restart is the dominant fault tolerance mechanism in high per-
formance computing systems. In current systems, this approach works as follows:

1. Applications periodically quiesce all activity at a global synchronization point, for
example a global barrier;

2. After synchronization, all nodes send some fraction of application and system state,
generally comprising most of system memory, over the network to dedicated I/O nodes;

3. These I/O nodes store the received checkpoint information data to stable storage,
currently hard disk-based storage;

4. In the event of application crash, the stored checkpoint can be used to restart the
application at a prior known-good state.

The continued dominance of this technique rests on a number of key assumptions regard-
ing failures that have thus far remained true:

1. Application state can be saved and restored much more quickly than a system’s mean
time to interrupt (MTTI);

2. The hardware and upkeep (e.g. power) costs of supporting frequent checkpointing are
a modest portion (currently perhaps 10-20%) of the system’s overall cost; and

3. System faults that do not crash (fail-stop) the system, such as so-called “soft errors”,
are very rare.

In an environment where failures are common, traditional checkpoint/restart has been
shown to be inappropriate for large-scale systems [35, 2, 4, 18]. Additionally, checkpoint/re-
start is problematic when dealing with non-crash failures. In particular, checkpoint/restart
preserves the impact of failures that corrupt application state. Addressing this problem
requires application developers to either restart the application from scratch or analyze
the contents of their checkpoints looking for one prior to when the fault that corrupted
application state occurred.

Because of this limitation, there is significant effort underway within the community to
develop forward-error recovery methods for application fault tolerance [18, 15, 6]. These
methods deal with faults by correcting lost or incorrect state rather than restarting an
application from a previously saved state. This approach avoids the wasted power and
work of rollback/recovery methods like checkpointing and typically have significantly lower
overheads.
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DRAM Failures

Recent studies have shown DRAM errors in main memory to be the most common source
of failures on today’s HPC platforms [21, 27]. The prevalence of these DRAM errors is related
to the fact that typical large scale systems contain tens to hundreds of thousands of DRAM
modules. A combination of the quantity and density of the information stored makes these
modules particularly susceptible to faults. Moreover, with expected power optimizations,
such as decreased supply voltages and increases in memory densities, the number of DRAM
errors is expected to increase for future exascale systems [38].

To address these faults, current HPC systems typically include some form of error cor-
rection. The most common memory resilience scheme has the memory controller write addi-
tional checksum bits on each block of data. The memory controller then uses these checksum
bits to detect and correct DRAM errors. Single-symbol Error Correction and Double-symbol
Error Detection (SEC-DED) schemes allow systems to recover from the simplest memory
failures and at least detect more complex (and less frequent) ones; or more complex chipkill-
based codes [12] that allow a system to tolerate an entire DRAM chip failure at the cost of
reduced performance and increased energy usage.

Uncorrectable DRAM errors, errors to two or more bits, are becoming increasingly com-
mon in systems with SEC-DED memory protection [36], with these errors occurring in up
to 8% of DIMMs per year. For an exascale class system, this translates to multiple uncor-
rectable errors per hour. Such errors generally result in a machine check exception being
delivered to the operating system, which then typically logs the error, and either kills the
application to which the memory location belongs, or reboots the system if the error resides
in a critical portion of the operating system’s address space [25].

As stated earlier, though the typical operating system occupies a very small portion of the
system’s total physical memory, errors within the operating system’s address space are much
more likely to occur than errors within the remainder of memory [21]. Therefore, techniques
to address these errors at the system level are critical to the scalability of exascale systems.

Approach

The advantages described thus far in this paper provide a compelling reason to evaluate
an HPC operating system’s vulnerability to memory errors. In this evaluation, we consider
two operating systems of the type we expect to see on an exascale class system. The first is
the Kitten lightweight kernel [33] developed by Sandia National Laboratories. The second is
a variant of the Linux general-purpose operating system, called the Cray Linux environment.

Kitten is a special-purpose, limited-functionality OS designed for use on the compute
nodes of massively parallel supercomputers. Its code base is derived from Linux, but is
modified to minimize kernel-level functionality to only that needed for a set of mission-

7



critical HPC applications and moves as much as possible into user-space. Kitten is similar
to previous lightweight kernels (LWK) such as SUNMOS, Puma, Cougar, and Catamount.
Kitten, however, distinguishes itself from these prior LWKs by providing a Linux-compatible
user environment, a more modern and extensible code base, and a virtual machine monitor
capability via the Palacios virtual machine monitor [30] which allows full-featured guest
operating systems to be loaded on-demand at very low overhead [26].

The Cray Linux Environment (CLE) is Cray’s scalable operating system for their XT line
of supercomputers. CLE is based on the Linux general-purpose operating system with the
addition of a number of optimizations to improve scalability. These optimizations include:
enhancements to memory management, improved out-of-memory handling, and modifica-
tions for decreased OS jitter.

In this work, we will consider vulnerability to three types of common memory failures:

• Detected and corrected single-bit errors

• Detected but uncorrectable multi-bit errors

• Undetected “silent” data corruption

While fully protecting against each of these error types would be ideal, in many cases, the
cost of doing so would far outweigh the benefit. Our goal is to identify the highest-impact
opportunities for improving an OS’s resilience to memory errors.

Our evaluation will proceed as follows. First, for each OS, we will look at its complexity
and how that complexity changes as a function of time. Our metric for complexity will be
Source Lines Of Code (SLOC) count [11]. This metric gives us a rough measure of how
difficult constructing and managing memory error mitigation methods will be. Next, we
compare the memory footprints of the two operating systems, outlining how these footprints
may change as an application progresses. Lastly, we breakdown the vulnerability of an OS
on a per-subsystem basis, enumerating the subsystems’ critical state (state that must be
free of errors). Additionally, for this critical state we describe possible failure mitigation
strategies.

Results

Source Lines of Code

The Linux kernel has been enormously successful in attracting developers and users over
its twenty year history. Due to this large development community and strong hardware
support, Linux has also been successful in attracting HPC developers and is widely used
within the community. Figure 1(a) plots the growth of the full Linux kernel codebase in
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terms of source lines of code (SLOC), tracking its growth from approximately 120K SLOC
in 1994 to its present size of over 10M SLOC. As the figure shows, the majority of the
codebase consists of drivers. However, as shown in the right graph of Figure 1, non-driver
core kernel code is also considerable and is growing rapidly. The current version of Linux,
version 3.3, consists of approximately 350K SLOC in the core x86 architecture port (/kernel,
/mm, and arch/x86 directories).

The Kitten codebase, in contrast, is currently a total of 246K SLOC, which drops to 66K
SLOC once the Infiniband drivers and associated Linux driver support code are removed.
Kitten’s core kernel code for the x86 architecture port is 30K SLOC, which is an order of
magnitude smaller than the corresponding subset of Linux. This suggests that Kitten is
considerably less complex than Linux, and will be easier to harden against memory errors.
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Figure 1. Comparison of Linux Kernel and Kitten Kernel
source lines of code (SLOC).
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Memory Footprint Comparison

Figure 2 compares the physical memory layouts used by Kitten and Linux. The primary
difference between the two is that Kitten explicitly partitions memory into two regions, one
for kernel memory and another for user-space applications, while Linux uses a unified page
pool and dynamically assigns pages to different roles as needed. Kitten’s kernel memory
footprint has a fixed upper limit (currently 64 MB) that does not change during runtime,
while Linux’s footprint changes over time and can grow to the maximum size of physical
memory.

Each user-space process on Kitten requires three pages of kernel memory to store task
and address space structures, as well as a static amount of kernel memory to store the
application’s page tables. When using 2 MB pages on the x86 architecture, approximately
8 KB of page table memory is needed for each gigabyte of application memory. Linux has
similar per-process kernel memory requirements, with the addition of the pages in the page
cache being used by the process. Kitten does not have a page cache. Additionally, Linux
uses the 4 KB page size by default, resulting in more kernel memory being used for page
tables (2 MB per GB of application memory). Libraries such as libhugetlbfs and recent
transparent large page support in Linux are making it easier for applications to use large
page sizes, with the caveat that memory fragmentation over time causes significant issues.

addr 0

top of
memory

64 MB
Kernel Memory

 

Used For
Kernel

Text/Data/Heap/Stack
Page Tables

User
Memory

 
Used For

Application 
Text/Data/Heap/Stack

ELF Excutables

Unified Page Pool
 

Used For
User Memory
Page Tables
Slab Caches
Buffer Cache
Kernel Data

etc.

Kitten Linux

Figure 2. Physical memory layout of Kitten and Linux.

While a standard Linux kernel can grow to the full extent of the physical memory on
the machine, typically the size is much smaller. In fact, CLE has a number of memory
usage optimizations that limit memory footprint size. Specifically, CLE limits the size of
the page cache using an I/O forwarding technique that avoids caching of file reads and
writes. Figure 3 shows a comparison of the Kitten and CLE footprints. For Kitten, memory
partitioning limits total kernel size to 64MB. For the CLE, we show the average kernel
size measured using the smem [39] memory tracking tool while running the LAMMPS [32]
molecular dynamics code from Sandia National Laboratories. From the figure, we see that
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worst case Kitten OS size is more than an order of magnitude smaller than the average case
from the CLE. Kitten’s smaller and deterministic footprint generally means simpler methods
to protect and correct this state due to DRAM errors.
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Figure 3. Comparison of the worst case Kitten static and
dynamic kernel size to the average case measured on CLE.
The average CLE memory footprint is an order of magnitude
larger then the worst case for Kitten.

Major Kernel Subsystems

This section examines several kernel subsystems that exist in both operating systems,
and discusses techniques that could be used to harden them against memory errors. The
subsystems are discussed in the order of their kernel memory footprint in the Kitten kernel.
This analysis captures the vast majority of Kitten’s kernel memory footprint, and is rep-
resentative of the baseline kernel-level functionality needed to support highly-scalable HPC
applications.

Page Table Memory

Both Kitten and Linux store page tables in kernel memory. The amount of page table
memory used varies depending on the page size used: 4 KB pages require 2 MB of page table
memory per gigabyte of application memory, 2 MB pages require 8 KB per gigabyte, and 1
GB pages require 8 bytes per gigabyte. In general, Kitten is always able to use the larger
page sizes for application memory due to its segment-based and static memory allocation
policy. Recent Linux kernels attempt to use large page sizes when possible, but memory
fragmentation can limit the usefulness of this optimization.
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Both OSs consider page table memory errors as fatal, either killing the affected application
or the entire node. However, Kitten’s deterministic mapping of virtual to physical addresses
would make it straightforward to recreate the corrupted page table memory contents from the
base physical address and length information stored in the address space region object. This
would not work on Linux due to its demand paging scheme, where unpredictable physical
addresses are assigned to virtual addresses at runtime. Extra redundant state would need to
be stored, and furthermore it may be difficult or impossible to tell which page table values
have become corrupted if hardware notification is not provided.

Physical Memory Management

As described in Section , Linux uses a unified physical page pool. Linux maintains a
memory map array, with one entry for each page of physical memory, to track the current
state of each page frame in the system. Each entry in the table is 56 bytes, requiring 14 MB
of overhead per GB of physical memory (1.4%).

Kitten does not maintain a memory map array. Instead, it maintains a free list of
physical memory segments, where each segment consists of a physically contiguous set of
pages with identical type (e.g., allocation status, memory type, associated NUMA node).
Kitten’s segment list typically holds 10–100 entries for a high-end NUMA system, requiring
less than 4 KB of kernel memory. Kitten’s physical memory tracking scheme would not
work well for a general-purpose kernel, but is a good match for its target workloads where
applications are allocated large contiguous regions of physical memory that are not demand
paged.

As with page table memory, memory errors to the physical memory tracking data struc-
tures are considered fatal. In this case, however, there is no easy way to recreate the cor-
rupted state. Instead, additional state of some form would have to be maintained, such as
software-maintained ECC bits or redundant copies.

Dynamic Kernel Memory

Both OS kernels provide a mechanism for kernel subsystems and device drivers to allocate
dynamic memory, similar to malloc() at user-level. Kitten implements this functionality us-
ing a buddy system memory allocator that covers the kernel memory portion of the physical
address space (by default 64 MB). To avoid wasting memory due to over-allocation, Kitten
uses a minimum block size of 32 bytes, which results in approximately 2 MB of buddy alloca-
tor state (one bit per 32 byte block). Kitten was profiled on an 8-core Intel system running
an 8-thread OpenMP benchmark and found to use a maximum of 45 KB of dynamically
allocated kernel memory.

Linux implements dynamic kernel memory allocation via a slab cache [5], which allocates
physical memory from a buddy allocator that covers all of physical memory. The buddy
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allocator uses a 4 KB minimum block size, resulting in approximately 256 KB of overhead
per gigabyte of physical memory. Each slab cache requires a small state tracking structure
of approximately 128 bytes plus 32 bytes per NUMA node. As an example, a Cray XE6
compute node running CLE 4.0.36 (Linux 2.6.32.45) maintains 130 slab caches of various
sizes.

In addition to all of the memory allocator data structures being assumed to be reliable
(buddy allocator state, slab cache info), each block of memory allocated has a small header
at its start storing the size of the block and where it should be returned when freed (16 bytes
for Kitten). This data would need to be protected from memory errors somehow, possibly
by an ECC-like code or by storing redundant copies of the header. Alternatively, the caller
could be made aware of the header so that it might try to protect it.

Address Spaces and Tasks

At its heart, Kitten’s main purpose is to bootstrap user-space address spaces and tasks
(threads and processes) and then get out of the way. Both address spaces and tasks are
tracked by kernel-level state structures. Kitten’s task structure is 8 KB in size and includes
the task’s kernel-level stack. Kitten’s address space structure is around 800 bytes in size.
Both structures are almost entirely self-contained, with only two pointers to additional data
structures. Kitten’s address space structure points to a list of virtual memory regions, of
which there are usually four for a typical application address space: text, data, heap, and
stack.

Linux has similar, but more complex task and address space structures. For example,
the Linux task structure has over 160 fields, compared to 23 fields for Kitten. The obvious
reason for this large difference is the additional functionality that Linux provides. However,
much of this is not useful for HPC workloads, and simply increases the effort needed to
understand and protect the codebase.

Kernel Entry and Exit

Kernel entry and exit occurs through well-defined interfaces. Both Linux and Kitten
route all interrupts through a small assembly stub, which saves the necessary state and then
calls the appropriate higher-level handler. Similarly, when applications make system calls,
the kernel is entered through a common routine, which then redirects through a table to the
appropriate handler.

This structure could potentially be leveraged to do coarse-grained kernel memory error
detection and correction. At each kernel entry and exit, the entire kernel memory space could
be checksummed to ensure that no kernel data was silently corrupted. This is straightforward
on Kitten due to its contiguous kernel memory region. On Linux, kernel memory and
application memory is interleaved both in physical memory and in the kernel’s virtual address
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space, making the checksum process more difficult but still possible.

Clearly, this approach would have high overhead when invoked. However, HPC ap-
plications typically do not make many system calls, and could benefit from the increased
protection from memory errors. Additionally, it would eliminate the need to protect each
individual kernel data structure, reducing memory overhead.

Page Retirement

An additional technique that applys to all of the kernel subsystems discussed thus far
is page retirement [21]. In this scheme, the OS monitors the memory errors corrected by
hardware and uses this information to predict which memory pages are likely to fail soon.
Kernel data structures using these pages can then be migrated to more stable memory pages
or discarded if appropriate. Recent versions of Linux can already use this technique to
discard clean page cache pages that have experienced an uncorrectable memory error.

Kitten and Linux are both written in C, which makes migrating kernel data structures
difficult since it is difficult to determine which other structures point to the data being moved.
Furthermore, it is difficult to determine which kernel-level data structures are using a given
page. Therefore, both OSs would require heavy modification in order to take advantage of
this technique. In this regard, Kitten’s smaller codebase could potentially be an advantage.

Related Work

Resiliency and fault-tolerance has been identified by the Department of Energy and
Department of Defense as one of the key fundamental challenges of extreme-scale computing.
The majority of the work in this active research area has focused solely on the application
and ignored the operating and runtime systems, which is the focus of this work. Essentially
all of these approaches attempt to improve the performance of checkpoint/restart as it is the
most widely used mechanism for fault-tolerance today.

In addition to these application-based methods, a small handful of researchers have been
focusing on designing fault-tolerant userspace libraries for HPC systems that applications can
use to construct algorithm-based resilience. In each of these research areas is an underlying
assumption that the operating and runtime systems are resilient to failures or if not, an
expensive restart of the OS must be done. In the remainder of this section, we describe
these approaches and briefly discuss their potential benefits and costs.
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High-speed Storage for Checkpoint/Restart

Checkpointing to local disk and flash memory systems has periodically been proposed
to speed up checkpoint/restart systems by placing large amounts of high-speed storage near
the data that must be checkpointed. Actually deploying large amounts of local non-volatile
storage in an exascale system is potentially very challenging. Local disk-based storage has
traditionally been avoided because of the increased failures it causes, for example. Upcoming
non-volatile phase change PCRAM, resistive RRAM devices, and modern NAMD and NOR
flash technologies provide high bandwidth and reliability, but are potentially very expensive.
Unless their cost per bit rivals that of DRAM, using such technologies for checkpoint/restart
purposes would result in checkpointing hardware that makes up a much larger portion of
the system cost. Additionally, write durability issues may require periodically replacing all
flash memory in the system, further impacting total costs.

Asynchronous Checkpointing and Message Logging

Another approach that has been suggested to improve the performance of checkpointing
systems is uncoordinated or asynchronous checkpointing [1, 23, 24]. These methods typically
checkpoint and restore from local storage without the synchronization used by coordinated
checkpointing. To support a node restoring from a local asynchronous checkpoint, nodes in
this approach keep a log of recent messages that they have sent. When a node restores from
a previous checkpoint, it can then replay reception of messages using remote nodes’ logs.

While this approach can increase checkpointing performance, logging increases the la-
tency of messaging operations and potentially takes significant amounts of memory on a
node. Finally, asynchronous checkpointing approaches can result in cascading rollbacks; re-
cent work attempts to bound the amount of rollback that may be necessary [19], but also
places non-trivial limits on application behavior. Lastly, thus far there has been little work
examining the performance of a general message logging approach at the scales one might
expect to see at exascale.

Other Checkpointing Systems

Memory-based checkpointing [31, 37] uses the memory of a remote machine to checkpoint
node state. Unless node memory is primarily read-only (in which case RAID 5-like techniques
can be used), this approach doubles the memory demands of an application. Since memory
is regarded as a key budget and power constraint in exascale systems, the benefits of these
techniques are unclear.

Multi-level checkpointing [29] is a library-based approach for controlling checkpointing to
multiple storage targets, including memory-based checkpoints, local checkpoint storage, and
remote checkpoints, into a single system. Because of this, it shares some of the advantages
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and disadvantages of memory-based checkpointing and local storage techniques. Unlike these
techniques, however, multi-level checkpointing has the flexibility to choose between multiple
levels of storage based on system design parameters, making it a promising technique for
exascale systems.

Finally, recent studies have looked at the benefits and costs of combining replication
with traditional checkpoint/restart [18, 16, 14]. These studies seek to find the “break-even”
points for replication, or the point where this replication approach uses fewer resources then
traditional checkpoint/restart alone. In contrast to the other methods described thus far in
this section, since replication typically duplicates not only the application processes but also
a subset of the OS instances, errors with the operating and runtime system can be handled.

Fault Tolerant Userspace Libraries

In contrast to the checkpointing work described above, a number of researchers are in-
vestigating constructing libraries that are tolerant to certain kinds of faults. The idea be-
ing that the applications use these libraries to construct application-specific fault tolerance
mechanisms, typically termed algorithm-based fault tolerance (ABFT) [20]. These ABFT
techniques typically require a fault-tolerant message passing environment. There have been a
number of these resilient message passing libraries based on MPI, including; FT-MPI [22, 17],
AMPI [9], MPI/FT [3], and C3 [8]. The differences between these libraries is beyond the
scope of this work, but each of these libraries allows for an application to continue operating
in the presence of faults, possibly in a degraded mode, and it is left up to the application to
ensure the result is correct.

Current Operating System Memory Error Handling

OS-level handling of DRAM faults has generally been either very limited or used very
heavyweight solutions. Linux and other operating systems, for example, provide low-level
techniques for handling, logging, and notifying the application of such errors [25]. These
techniques generally terminate the application or OS kernel, and potentially invoke higher-
level recovery systems based on, for example, checkpointing or redundancy. Some systems
have attempted to provide additional protection against memory faults both on CPUs [13]
and GPUs [28], though with substantial cost.

Conclusions and Future Work

In this paper we presented a preliminary evaluation of operating system vulnerability to
DRAM failures, a common error in current and future extreme-scale systems. Hardening sys-
tem software to this class of errors will be critical for the success of emerging fault-tolerance
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methods. This work focused on two HPC operating systems; Kitten, the lightweight oper-
ating system developed at Sandia National Laboratories and the Cray Linux Environment,
a HPC variant of the Linux operating system. Each of these OSs represents an OS con-
struction methodology currently used in HPC. For each OS, we present the complexity of
each OS in terms of the metric SLOCCount, examine the memory footprint, and evaluate
vulnerability on a per subsystem basis. Where critical state is found, state that must be
protected from DRAM errors, we outline mitigation methods that can used. Overall, these
results suggest hardening the Kitten lightweight kernel to to be more tractable due to its
smaller and deterministic state in comparison to Linux.

While this preliminary analysis shows there is promise in this idea, more work is clearly
needed. For example, a detailed analysis of the mitigation techniques, outlining both the
space and performance overheads is need to decide which methods are ideal. Additionally,
hardening system software to failures beyond those that occur in system RAM will be key
to scalability of extreme-scale systems. Lastly, evaluating the hardened OSs and system
services to errors will be key to outlining this work’s overall merit.
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