
SANDIA REPORT
SAND-2012-3087
Unlimited Release
Printed April 2012

C++ Tensor Toolbox User Manual (v 1.0)

Todd D. Plantenga, Tamara G. Kolda

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND-2012-3087
Unlimited Release
Printed April 2012

C++ Tensor Toolbox User Manual (v 1.0)

Todd D. Plantenga
Sandia National Laboratories

Livermore, CA
Email: tplante@sandia.gov

Tamara G. Kolda
Sandia National Laboratories

Livermore, CA
Email: tgkolda@sandia.gov

Abstract

The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is
based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This
user manual briefly overviews tensor decomposition mathematics, software capabilities, and
installation of the package.

3

Acknowledgments

This work was funded by the U.S. Department of Energy, in part through the Office of Advanced
Scientific Computing Research (ASCR), as part of the Applied Mathematics Research Program
(http://www.er.doe.gov/ascr/Research/AppliedMath.html).

Thanks to Grey Ballard, Eric Chi, and Ben Allan for developing portions of the C++ code.

4

http://www.er.doe.gov/ascr/Research/AppliedMath.html

Contents

1 Introduction . 7
1.1 CP Tensor Decomposition . 7
1.2 CP-ALS . 7
1.3 CP-APR . 8
1.4 Citing Use of the Software . 8

2 Software . 9
3 Building Tensor Toolbox . 11

3.1 Unpack Tensor Toolbox Source Code . 11
3.2 Download and Install CMake . 11
3.3 Build an LAPACK Library . 12
3.4 Build and Test Tensor Toolbox . 14
3.5 CMake Tips . 17

References . 18

5

This page intentionally left blank.

1 Introduction

Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of appli-
cations ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for
manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries
and is intended for use with custom applications written by users. Classes are based on the MAT-
LAB Tensor Toolbox (http://www.sandia.gov/~tgkolda/TensorToolbox/).

The current release implements a subset of functionality from the MATLAB Tensor Toolbox.
It emphasizes efficient computation of tensor decompositions, especially for sparse data sets. Algo-
rithms are targeted for workstation machines, and do not exploit any form of parallelism. Never-
theless, it should be possible to factorize data sets with millions of nonzero elements in reasonable
time (though performance is always problem-dependent).

Contact information:
Todd Plantenga, Sandia National Laboratories
Email: tplante@sandia.gov

1.1 CP Tensor Decomposition

A tensor is an N -way or multi-way array. We are interested here in tensor decomposition, specif-
ically, CANDECOMP/PARAFAC (CP) [2, 4]. Given a real-valued tensor X of size I1 × · · · × IN ,
the goal is to express is at the weighted sum of outer products of vectors, i.e.,

X ≈M ≡
R∑

r=1

λr a
(1)
r ◦ · · · ◦ a(N)

r .

We say the tensor M is the R-component model. Each λr is a scalar for r = 1, . . . , R. Each a
(n)
r is

a vector of length In for n = 1, . . . , N and r = 1, . . . , R. The symbol ◦ represents an outer product
so that the (i, j, k) element of a ◦ b ◦ c is defined by aibjck. Each summand is a rank-one tensor,
also known as a component. There are N factor matrices defined by

A(n) ≡
[
a
(n)
1 · · · a

(n)
R

]
for n = 1, . . . , N.

The nth factor matrix is of size In × R. We call λ =
[
λ1 · · · λR

]T
the weight vector. A full

description of the CP decomposition can be found in [5]. We discuss two methods for fitting CP
decomposition for sparse tensors in the subsections that follow.

1.2 CP-ALS

The typical approach to fitting tensor data is to use a least squares fit, which is appropriate if the
data comes from a Gaussian distribution. We consider the least squares objective function, i.e.,

min
∑
i

(xi −mi)
2 subject to M =

R∑
r=1

λr a
(1)
r ◦ · · · ◦ a(N)

r .

7

http://www.sandia.gov/~tgkolda/TensorToolbox/

Here i denotes the multi-index (i1, . . . , iN). A standard approach is alternating least squares (ALS)
where all factors matrices but one is fixed at each inner iteration. Each subproblem is a standard
matrix least squares problem and can be solved exactly. For details, we refer the reader to Fig. 3.3
of [5]. For sparse tensors, we achieve efficiency with specialized operations as described in [1].

1.3 CP-APR

For sparse count data, it may be better described by a Poisson distribution. In this case, we
consider the generalized KL-divergence objective function, i.e.,

min
∑
i

mi − xi logmi subject to M =

R∑
r=1

λr a
(1)
r ◦ · · · ◦ a(N)

r and λ,A(1), . . . ,A(N) ≥ 0.

We once again take an alternating approach, but this time we do alternating Poisson regression
(APR). The details of the algorithm and implementation are described in [3].

1.4 Citing Use of the Software

For CP-ALS, cite this technical report and

B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and
factored tensors, SIAM Journal on Scientific Computing 30(1):205-231, December 2007.
(doi:10.1137/060676489).

For CP-APR, cite this technical report and

E. C. Chi and T. G. Kolda. On Tensors, Sparsity, and Nonnegative Factorizations,
arXiv:1112.2414 [math.NA], December 2011. (http://arxiv.org/abs/1112.2414).

8

http://dx.doi.org/10.1137/060676489
http://arxiv.org/abs/1112.2414

2 Software

Tensor Toolbox provides source code for tensor classes and decomposition methods. Source code
is not intended to be modified by users. The header files are provided so users can write ap-
plications that call Tensor Toolbox methods. Source files are made available to inspect internal
documentation, or to modify for debugging.

The current release of Tensor Toolbox implements a subset of functionality from the MATLAB
Tensor Toolbox. The C++ code is completely independent of MATLAB code, but follows the
same object-oriented design of classes, and provides some I/O methods for interoperability with
MATLAB. Future releases will fill in missing functionality, and may add features not available in
the MATLAB Toolbox.

The primary emphasis of this release is to enable tensor decomposition of sparse data sets for
C++ applications. Methods are provided to read data from files into tensors, manipulate tensor
objects, and compute decompositions. An application might use the decomposition to analyze
patterns in the data, project to a low dimensional subspace, or estimate missing data elements.

Source code is organized under the directories:

TensorToolboxCPP-1.0-src
TTB
TTB MathLibs
TTB PerfTests
TTB Test

Files under these directories contain source code for the Tensor Toolbox libraries (TTB), unit tests
(TTB Test), performance tests (TTB PerfTests), and some basic math routines (TTB MathLibs).
Examples of using the library can be found by examining the performance tests and unit tests.

User application code needs to compile and link with the Tensor Toolbox libraries. Tensor
Toolbox is built with the CMake system (Section 3) and a local C++ compiler. User applications
will reference the header files and build with the same compiler, but do not have to integrate with
CMake.

For example, assume an application file on Linux is named MyTensorApp.cpp. It includes one
or more headers in the TTB directory, and needs to link with the Tensor Toolbox libraries. Using
the g++ compiler, this can be accomplished with:

> g++ -c MyTensorApp.cpp -I$TTBSRC /TTB

> g++ -o MyExeName MyTensorApp.o -L$TTBBLD -lttb -lttb mathlibs

where $TTBSRC is set to the source code parent directory TensorToolboxCPP-1.0-src, and $TTBBLD

is set to the build directory (in Section 3.4 it is named TTB build).

9

This page intentionally left blank.

10

3 Building Tensor Toolbox

Tensor Toolbox uses the CMake build system (http://cmake.org/) to support compilation on mul-
tiple platforms, including Linux, Windows, and Mac OSX. This section describes the process of
installing source code, third party libraries, and building test and example executables.

Several steps are required to build the C++ Tensor Toolbox. A quick outline is below, and full
details for various platforms follow.

3.1 Unpack Tensor Toolbox source code.

3.2 Download and install CMake toolset.

3.3 Obtain or build an LAPACK library (optional, but recommended).

3.4 Build and test.

3.1 Unpack Tensor Toolbox Source Code

The software is supplied in compressed file form for Unix (tar.gz) or Windows (zip). The contents
are the same, but the build procedure is slightly different.

Save the compressed file to any directory and unzip it. You should see a directory structure
like the following:

TensorToolboxCPP-1.0-src
doc
TTB
TTB MathLibs
TTB PerfTests
TTB Test
test data

Files under these directories contain source code for the Tensor Toolbox libraries (TTB), unit tests
(TTB Test), performance tests (TTB PerfTests), and some basic math routines (TTB MathLibs).

This section will describe how to compile and build the Tensor Toolbox libraries, and test
executables. In general, your application will use classes and methods in the libraries. The unit
test and performance test executables are good places to look for examples of calling the libraries.

3.2 Download and Install CMake

CMake is a leading open-source build system that supports multiple operating systems. You need
to download a CMake binary distribution (typically, 5-10 Mbytes in size) appropriate for your
operating system and install it. The installation creates a CMake tool that will be used to construct
platform-specific build scripts for compiling Tensor Toolbox source code. CMake is not a compiler;
it assumes a C++ compiler is already installed.

11

http://cmake.org/

Visit http://cmake.org/ and find a recent release of CMake for your target operating sys-
tem. The CMake release must be 2.6.2 or later. At the time this documentation was pro-
duced, the CMake distribution could be found by clicking on RESOURCES and then Download
to reach http://cmake.org/cmake/resources/software.html. Only the binary distribution is needed
(no CMake source code). For example, cmake-2.8.7-Linux-i386.tar.gz was the file name for an
x86 Linux machine, and cmake-2.8.7-win32-x86.zip the file name for an x86 Windows machine.

Installation of CMake is very simple, and explained on the CMake download page. For example,
on a Linux machine just unpack the file to any directory (the procedure does not require root
privileges). It should create a new subdirectory tree with a name like cmake-2.8.7-Linux-i386.
Just add the subdirectory cmake-2.8.7-Linux-i386/bin to PATH.

On Windows, run the CMake distribution file to start an installation wizard and follow the direc-
tions. By default, CMake will install at C:\\Program Files\CMake 2.6 and create a Start Menu
entry that invokes the CMake GUI interface. If you prefer to run the command line version of
CMake, then click a wizard button that adds CMake to PATH.

3.3 Build an LAPACK Library

A third party LAPACK (Linear Algebra PACKage) library is required for certain Tensor Toolbox
capabilities. The software comes with a default implementation for quickly compiling and running
the code, but a proper third party LAPACK library is recommended. The provided default con-
tains only some of the LAPACK functions required, so certain Tensor Toolbox capabilities are not
available until the package is linked with a proper LAPACK.

Your system may already have LAPACK installed. For instance, on some Linux distributions
LAPACK is available in the file /usr/lib/liblapack.a. In this case CMake should find it automatically
and no further effort is needed. Try building the software as described in Section 3.4; the CMake
configuration will state clearly whether an LAPACK library was found.

If LAPACK was not found on your system, or you prefer a particular version, then the library
must be installed. LAPACK libraries are available from many sources. Perhaps the most common
version is from Netlib, freely available at http://netlib.sandia.gov/lapack. Other possibilities are
vendor-provided libraries like the Intel MKL or AMD ACML, and tunable versions such as ATLAS.

LAPACK functions called by Tensor Toolbox are listed below. An asterisk indicates a function
not available in the default implementation provided with the software.

dasum dger

daxpy dgesv

dcopy dnrm2

ddot dscal

dgemm idamax

dgemv

Make sure the library contains these functions and their dependents, or there will be unresolved
symbols when linking executables. CMake will test for the presence of these functions when it
configures Tensor Toolbox, and will halt with a warning message if it detects a problem.

12

http://cmake.org/
http://cmake.org/cmake/resources/software.html
http://netlib.sandia.gov/lapack/

Linux example of building Netlib. This example shows a particular case of building a Netlib
version using the GNU compilers. Netlib produces two library files, one for BLAS functions such
as ddot and one for LAPACK functions such as dgesv. The link order of these files matters; in the
example below the LAPACK library must be listed before the BLAS library. The Netlib libraries
are created using a Fortran compiler, so the Tensor Toolbox C++ executables must include a
Fortran-to-C library (the CMake build process will try to do this automatically). Please note this
is just one possible example and your build procedure may differ.

- Download lapack-3.4.0.tgz from http://netlib.sandia.gov/lapack
- Unpack the distribution (this example assumes the directory /tmp is used)
- Consult README and other documentation for Netlib instructions.
- For a Linux RHEL 5.5 machine build a minimal LAPACK as follows:

> cd /tmp/lapack-3.4.0

> cp INSTALL/make.inc.gfortran make.inc

> make lib (should produce file liblapack.a)
> make blaslib (should produce file librefblas.a)

- Add this option to the CMake command line when building Tensor Toolbox:
-DLAPACK LIBS="$LH/liblapack.a;$LH/librefblas.a"

(where $LH is the LAPACK home /tmp/lapack-3.4.0)
- If CMake has trouble finding the native Fortran-to-C library, try adding:

-DLAPACK ADD LIBS="gfortran"

Windows example using Netlib CLAPACK with MSVC. This example uses a precompiled
Netlib distribution made with the Microsoft Visual C++ compiler (MSVC). Netlib code is usually
written in Fortran, but it is often more convenient to use the free MSVC compiler on Windows.
Netlib provides a version of the source code that is translated to C, called CLAPACK. Symbol
names are different, and an extra flag must be passed on the command line to inform CMake.
Please note this is just one possible example and your build procedure may differ.

- Download CLAPACK3-Windows.zip from http://netlib.sandia.gov/clapack
- Unzip the distribution in any directory; here, assume c:\temp is used
- Add these options to the CMake command line:

-DLAPACK LIBS="c:\temp\CLAPACK3-Windows\CLAPACK\Release\clapack.lib"
-DHAVE BLAS F2C=yes

Linux example of using Intel MKL. The Intel MKL contains routines for LAPACK and many
other math functions that are specially tuned for Intel microprocessors. Assuming MKL version
10.3.7 is installed under $MKL, add the options below to the CMake command line (please note this
is just one possible example and your build procedure may differ):

- Add these options to the CMake command line:
-DLAPACK LIBS="$MKL/mkl/lib/intel64/libmkl rt.so"

-DLAPACK ADD LIBS="$MKL/lib/intel64/libiomp5.so"

13

http://netlib.sandia.gov/lapack/
http://netlib.sandia.gov/clapack/

3.4 Build and Test Tensor Toolbox

The CMake tool constructs platform-specific build scripts for compiling and linking executables.
We recommend making an “out of source” build, instead of building the object and executable files
in the source directories. This is easy to do with CMake and allows the existence of multiple builds
without conflict.

To create an out of source build, make a clean directory, change to it, and run CMake from this
directory. CMake allows the build directories to be anywhere, but in the remainder of this section
we assume a clean directory called build is created at the same level as TensorToolboxCPP-1.0-src.
After successfully building, the directory structure will look like the following (on Windows the
libraries will be named ttb.lib and ttb mathlibs.lib):

TensorToolboxCPP-1.0-src
doc (provided)
TTB (provided)
TTB MathLibs (provided)
TTB PerfTests (provided)
TTB Test (provided)
test data (provided)

TTB build (you create this)
libttb.a (built by CMake)
libttb mathlibs.a (built by CMake)
bin (built by CMake)

perf CpAlsAminAcid (built by CMake)
perf CpAlsRandomKtensor (built by CMake)
unit tests (built by CMake)

test data (files copied by CMake)

The examples below show how to run CMake on various platforms. In all cases, please run the
unit tests executable after building to verify correctness of the libraries. For help with CMake,
refer to http://www.cmake.org/Wiki/CMake. For information on linking with an LAPACK library,
see Section 3.3.

Linux. Start in the directory above TensorToolboxCPP-1.0-src and run the following commands:

> mkdir TTB build

> cd TTB build

> cmake ../TensorToolboxCPP-1.0-src

-- The CXX compiler identification is GNU

-- ...

-- Build files have been written to: ...

> make

> ./bin/unit tests

The execution of cmake displays several lines of informational output, only a few of which are
shown above. Its behavior is roughly similar to a Unix “autoconf” or “config” tool. It produces
the subdirectory structure described above, plus directories called CMakeFiles and CMakeInclude,
and a Makefile that works with the chosen compiler. Running make in the last step produces the

14

http://www.cmake.org/Wiki/CMake

libraries and executables. You can run the executables from the current directory, as shown for
unit tests.

Windows using Visual Studio. CMake can generate a Microsoft Visual Studio project for the
Tensor Toolbox source code, and then Visual Studio C++ can be used to compile the libraries and
executables. This example uses the free Microsoft Visual C++ 2010 (Express Edition) with version
10.0 C++ compiler. A subsequent example describes how CMake can produce a set of Makefile
files that work with the command line nmake tool in the Express Edition.

First, make sure environment variables are configured for the Microsoft compiler. If installed
in its default location, this is accomplished (for version 10.0) by running:

> c:\Program Files\Microsoft Visual Studio 10.0\VC\bin\vcvars32.bat

CMake can execute in a GUI or from the command line. This example uses a Windows DOS-like
command line console such as the one below.

Start in the directory above TensorToolboxCPP-1.0-src and run the following commands:

> mkdir TTB build

> cd TTB build

> cmake -G "Visual Studio 10" ..\TensorToolboxCPP-1.0-src
-- Check for working C compiler: Visual Studio 10

-- ...

-- Build files have been written to: ...

The execution of cmake displays several lines of informational output, only a few of which are
shown above. It produces a subdirectory structure similar to that of TensorToolboxCPP-1.0-src,
and a file ALL BUILD.vcxproj with the main Visual Studio project.

Now either start Visual Studio and open the file ALL BUILD.vcxproj, or double-click directly on
ALL BUILD.vcxproj from Windows Explorer. Use Visual Studio to build ALL BUILD, compiling and
linking everything, including the libraries, unit test executable, and examples. A successful build
is shown in the screen shot below.

15

Run the unit test and example executables to verify proper installation.

Windows using NMake. CMake can generate a set of Makefile files that work with the Visual
Studio command line nmake tool. This example uses the free Microsoft Visual C++ 2010 (Express
Edition) with version 10.0 C++ compiler.

First, make sure environment variables are configured for the Microsoft compiler. If installed
in its default location, this is accomplished (for version 10.0) by running:

> c:\Program Files\Microsoft Visual Studio 10.0\VC\bin\vcvars32.bat

CMake can execute in a GUI or from the command line. This example uses a Windows DOS-like
command line console such as the one below.

Start in the directory above TensorToolboxCPP-1.0-src and run the following commands:

> mkdir TTB build

> cd TTB build

> cmake -G "NMake Makefiles" ..\TensorToolboxCPP-1.0-src

16

-- Building for: NMake Makefiles

-- The C compiler identification is MSVC

-- ...

-- Build files have been written to: ...

> nmake

The execution of cmake displays several lines of informational output, only a few of which are
shown above. It produces a subdirectory structure similar to that of TensorToolboxCPP-1.0-src,
with Makefile files that work with the chosen compiler. Running nmake in the last step produces
the Tensor Toolbox libraries and executable. Run the unit test and example executables to verify
proper installation.

3.5 CMake Tips

Documentation for CMake is part of the CMake installation, or can be found on the CMake web
site (http://cmake.org/).

When modifying CMake build options, it is usually best to completely erase the previous build
directory and start over.

Files in the source distribution named CMakeLists.txt or files that end with the suffix .cmake
were written for Tensor Toolbox. Some of these can be edited to alter CMake behavior. For
instance, to enable more makefile output during compilation, edit ConfigureBuildType.cmake and
uncomment the line

SET (CMAKE VERBOSE MAKEFILE ON)

Then you should call cmake in a clean build directory.

17

http://cmake.org/

References

[1] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and factored
tensors, SIAM Journal on Scientific Computing, 30 (2007), pp. 205–231.

[2] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scal-
ing via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319.

[3] E. C. Chi and T. G. Kolda, On tensors, sparsity, and nonnegative factorizations.
arXiv:1112.2414 [math.NA], December 2011.

[4] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis, UCLA working papers in phonetics, 16 (1970), pp. 1–
84. Available at http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.

[5] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51
(2009), pp. 455–500.

18

http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf

DISTRIBUTION:

1 MS 9159 Todd Plantenga, 8958

1 MS 9159 Tamara Kolda, 8966

1 MS 0899 Technical Library, 9536 (electronic copy)

1 MS 0359 D. Chavez, LDRD Office, 1911

19

This page intentionally left blank.

v1.36

	Front Page
	Title & Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 CP Tensor Decomposition
	1.2 CP-ALS
	1.3 CP-APR
	1.4 Citing Use of the Software

	2 Software
	3 Building Tensor Toolbox
	3.1 Unpack Tensor Toolbox Source Code
	3.2 Download and Install CMake
	3.3 Build an LAPACK Library
	3.4 Build and Test Tensor Toolbox
	3.5 CMake Tips

	References

