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Abstract

In speaker verification (SV) systems that employ a support vector machine (SVM)
classifier to make decisions on a supervector derived from Gaussian mixture model
(GMM) component mean vectors, a significant portion of the computational load is
involved in the calculation of the a posteriori probability of the feature vectors of the
speaker under test with respect to the individual component densities of the universal
background model (UBM). Further, the calculation of the sufficient statistics for the
weight, mean, and covariance parameters derived from these same feature vectors also
contribute a substantial amount of processing load to the SV system. In this paper, we
propose a method that utilizes clusters of GMM-UBM mixture component densities
in order to reduce the computational load required. In the adaptation step we score
the feature vectors against the clusters and calculate the a posteriori probabilities
and update the statistics exclusively for mixture components belonging to appropriate
clusters.

Each cluster is a grouping of multivariate normal distributions and is modeled by a
single multivariate distribution. As such, the set of multivariate normal distributions
representing the different clusters also form a GMM. This GMM is referred to as a hash
GMM which can be considered to a lower resolution representation of the GMM-UBM.
The mapping that associates the components of the hash GMM with components of
the original GMM-UBM is referred to as a shortlist.

This research investigates various methods of clustering the components of the
GMM-UBM and forming hash GMMs. Of five different methods that are presented one
method, Gaussian mixture reduction as proposed by Runnall’s [24], easily outperformed
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the other methods. This method of Gaussian reduction iteratively reduces the size of
a GMM by successively merging pairs of component densities. Pairs are selected for
merger by using a Kullback-Leibler based metric.

Using Runnal’s method of reduction, we were able to achieve a factor of 2.77 reduc-
tion in a posteriori probability calculations with no loss in accuracy when the original
UBM consisted of 256 component densities. When clustering was implemented with a
1024 component UBM, we achieved a computation reduction of 5 with no loss in ac-
curacy and a reduction by a factor of 10 with less than 2.4% relative loss in accuracy.
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1 Introduction

Speaker recognition (SR) can be broken down into two tasks: speaker verification (SV) and
speaker identification (SI). In SV systems the task is to determine whether a person is who
he/she claims to be. In SI systems there is no claim of identity for the unknown speaker
and so the system must determine who is talking from a set of known speakers. For an SI
trained with NSI unique speakers, the SI task of determining which of these NSI speakers
spoke the utterance is a 1 : NSI classification problem [20]

More recently, some research has examined ways to reduce the required computation of
SR systems without sacrificing accuracy—which will always be the most important factor.
Computational reduction in SR systems is aimed at the test-stage where fast recognition or
low power consumption (in embedded applications) may be important factors. Since training
an SR system is normally a one-time, up-front cost, emphasis is not normally placed on fast
training. In fact, it may be argued that increasing training time for potentially faster test-
stage time is an acceptable trade-off.

Much of the research on reducing computation in SR has focused on SI. The reason
being that in the test-stage of a Gaussian Mixture Model (GMM) SI system, a maximum
a posteriori (MAP) decision is made to identify the unknown speaker. The MAP decision
requires a likelihood calculation of an unknown speaker’s test feature vectors for each speaker
model in the system. In SI systems with a large number of speaker models, the MAP decision
is the recognized bottleneck [13], [1].

A number of different methods have also been proposed to reduce the computation in
GMM-UBM SV systems where one of the primary computational bottlenecks is in the num-
ber of a posteriori probability calculations required in the log likelihood ratio. For example,
a method was proposed by Sarkar to reduce the number of features being evaluated by
eliminating those with substantial redundancy [25, 26]. Depending on the corpus and dis-
tance metric used to measure redundancy, they were able to achieve little to no performance
degradation with a frame rate reduced by a factor of 4. Auckenthaler and Mason used
hash tables [2] and were able to reduce the computational burden by creating a shortlist
between a smaller hash GMM and the full component size GMM achieving a processing
reduction factor of about 6 with “no noticeable performance degradation.” The approach by
Xiang and Berger [27] was to generate a structural background model (SBM) and structural
GMMs (SGMM) for the target speakers. The SBM and SGMM were multilayered GMMs
that could be considered GMMs of different resolution. The SGMM-SBM method achieved
a computational reduction by a factor of 17 with a 5% reduction in equal error rate (EER).

The focus of this dissertation is on how to reduce the computational load in the SV
test-stage of a state-of-the-art, support vector machine (SVM) using a GMM supervectors
system. We propose several different methods of creating a hash GMM. The first method
is similar to the GS1 hash of [2] but with a different method of generating shortlists which
map the component densities from the hash GMM to components of the GMM-UBM. We
use a method based on the Kullback-Leibler (KL) divergence between the components of
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the hash GMMs and the GMM-UBM components to generate shortlists for the hash GMMs.
Two other hash generation methods we analyze are based on the idea of “GMM reduction.”
Our approach differs from Auckenthaler and Xiang [2, 27] primarily in that we use a new
method of GMM reduction for creating the hash GMM and that we are using a SVM-based
SV system described by Campbell [5] rather than the GMM-UBM system.

The remainder of the dissertation is organized as follows. In Chapter 2 we review SV sys-
tems based on SVM using GMM supervectors. Next, in Chapter 3 we present several methods
of clustering the GMM-UBM component densities to create a hash GMM. In Chapter 4 we
present the results that we have obtained using these various methods. Finally, Chapter 5
presents the conclusions from this work as well as proposes possible future work.
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Figure 1. Speaker Verification System.

2 Introduction to Speaker Verification

2.1 Introduction

While the task of SI and SV may be different, SV verifies a single claim of identity whereas
SI tries to determine a speaker’s identity from a possibly large set of potential speakers,
both involve the same two major stages: training and testing. Whether training for SI or
SV, we assume that we have access to voice samples from all speakers that will be identified
or verified in the test stage. Fig. 1(a) shows that within the training stage, the SV system
first calculates feature vectors from the training speech utterances. Next speaker models are
fit to the feature vectors. Within the test stage, Fig. 1(b), a speech utterance and claim of
identity are provided and again the first step in processing is to calculate feature vectors.
From these feature vectors the SV system must make a decision to accept/reject the identity
claim based on the voiced sample.

As the process of generating feature vectors is common to both the training and testing
stages, the process used to calculate the feature vectors is first examined. Next, the training
stage is examined including the creation of a UBM. Finally, the test stage of the SVM based
SV system is presented.
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2.2 Frontend Processing and MFCC Based Feature Vectors

Many modern SI/SV systems use mel-frequency cepstral coefficients (MFCCs) as a form of
parametric representation of the speech signal. The MFCC representation has several key
characteristics. The first is that it is a more compact representation than the discrete Fourier
transform (DFT) and thus provides for dimensional reduction. A second characteristic is
that it segments the frequency spectrum into critical bands using mel frequency filters.
The mel filters are designed to be representative of the human auditory system. Finally,
MFCCs are formed using homomorphic processing. A homomorphic process is a process
that transforms convolution into addition which can simplify deconvolution. In particular,
for SI/SV applications, this provides a means of decoupling the excitation source as well as
channel effects while maintaining information about the time-varying vocal tract.

Fig. 2 depicts the different processing steps that are used in the feature extraction stage.
The first step in feature extraction is often pre-emphasis of the speech signal. The pre-
emphasis filters suppresses frequencies below about 200 Hz as there is little important speech
energy below these frequencies [3, p. 120]. The filter is a simple high pass filter of the form

spr[n] = sin[n]− aspr[n− 1] (1)

where sin[n] is the input speech signal, spr[n] is the pre-emphasized signal, and a is the
feedback coefficient controlling the cutoff frequency of the high-pass filter. Typically a takes
on a value of around 0.9− 1.0 This work uses a value of 0.97.

The pre-emphasized speech signal is then analyzed using time-frequency analysis by
means of a short-time Fourier transform. This is represented by the three blocks of Seg-
mentation, Windowing, and Spectral analysis in Fig. 2. The STFT of the speech signal is
calculated by

Sn̂(ejω̂) =
∞∑

m=−∞

w[m]spr[n̂−m]ejω̂(n̂−m) (2)

where w[m] is the window function.

Next, mel-frequency cepstrum coefficients are calculated. This is done in the blocks
labeled as Mel Filter Transform and Cepstral analysis in Fig. 2. The mel cepstrum was for-
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mulated by Davis and Mermelstein [8] in order to add the effects of human audio perception
to cepstral processing [7]. The mel filters are a set of triangular filters that are logarimically
spaced to group the DFT values of the STFT into critical bands [19]. The filters are linearly
spaced in the mel scale which is found by the equation

pitch in mels = 1127loge(1 + F/700) (3)

A set of example mel filters is shown in Fig. 3. The mel-spectrum is computed for the mth

frame as

MFm[r] =
1

Ar

Ur∑
k=Lr

|Vr[k]Sm[k]|2 (4)

where Vr[k] is the rth filter ranging from DFT index Lr to index Ur. The term Ar is a
normalization term for the rth filter and is found as

Ar =
1

Ar

Ur∑
k=Lr

|Vr[k]|2 (5)

The MFCCs are computed by calculating the cepstrum of the mel-spectrum

mfccm[n] =
1

R

R∑
r=1

log (MFm[r]) cos

[
2π

R
(r + 1/2)n

]
(6)
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Or more simply, MFCC = DCT (LOG(MF )).

The MFCC coefficients are then processed with RASTA channel compensation [12]. The
purpose of RASTA processing is to suppress the effect of convolutional noise sources that
might be present in a speech signal. For example switching from one microphone to another
where both have linear characteristics. The convolutional noise becomes additive in the
log domain from cepstral processing. In the RASTA method, each frequency channel is
band-pass filtered in the time domain with a band-pass filter with a notch at DC. If the
channel characteristics vary much slower than the speech signal characteristics, this notch
will suppress slow variations in the short-term spectrum due to the slow varying channel.
The filter that is used in the RASTA processing step is shown in Fig. 4.

After RASTA processing, a temporal derivative of the data is calculated within each
frequency channel. Clearly, speech is a time varying signal and as such it would seem rea-
sonable to try to capture information about this dynamic nature. Delta-cepstral coefficients
are used in an attempt to capture some of this dynamic information. The delta-cepstrum is
an approximation to the first derivative while the delta-delta cepstrum is an estimate of the
second derivative. In this work, we have only made use of the delta cepstrum. Typically,
the delta cepstrum is computed with a locally smoothed estimate of the first derivative as

∆mfccm[n] =

∑M
k=−M k(mfccm+k[n])∑M

k=−M k2
(7)

The final processing step shown in Fig. 2 is feature warping. The purpose of feature warp-
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Figure 5. Steps involved in training the SVM using GMM
supervectors SV system [9].

ing is to enhance features and make them more robust to channel effects. While RASTA
processing is used to remove linear convolution effects, it is not robust to additive noise.
Feature warping attempts to mitigate both linear channel effects as well as additive chan-
nel noise [17]. In particular feature warping attempts to exploit the effect that additive
noise generally reduces the variance of the cepstral feature parameters. The distribution
of the cepstral features is mapped to a normal distribution (though the ideal distribution
is multimodal). The result is that whether or not additive noise is present, the resulting
feature warped distribution is very similar whereas the input distributions may have been
significantly different.

The final output of the frontend processing is a set of feature vectors that contain MFCCs
and delta-MFCCs that that have been processed with feature warping.

2.3 SV System Training

In this section, we briefly review the training stage of the SVM system using GMM super-
vectors as described in [5]. Training the SV system is achieved in four steps as depicted in
Fig. 5. The first step is constructing a GMM-UBM. The second step is MAP-adaptation of
the UBM to target speakers. The third step is constructing supervectors from the MAP-
adapted GMMs. In the final step, SVMs are trained to target speakers.
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UBM Construction

The first step in training, as depicted in Fig. 5(a), consists of constructing a GMM-UBM
using the feature vectors from a large collection of non-target speakers. The GMM-UBM is
represented by the model parameters λUBM = {wi,ηi,Σi} which are the weight, mean vector,
and diagonal covariance matrix respectively for the i-th component density where 1 ≤ i ≤M
and M is the number of components densities of the GMM (typically 1024 or 2048). For a
D-dimensional feature vector, x, the GMM which is a superposition of multivariate Gaussian
component densities is defined as

p(x|λ) =
M∑
i=1

wipi(x). (8)

Each of the individual densities pi(x) is itself a multivariate Gaussian distribution with mean
ηi and covariance Σi of the form

pi(x) =
1

(2π)D/2|Σi|1/2
e−

1
2
(x−ηi)′(Σi)

−1(x−ηi). (9)

Typically, parameters of the the GMM-UBM are estimated using the expectation-maximization
(EM) technique [22]. EM is an iterative two step technique that first calculates the expec-
tation values for membership values (the a posteriori probability) for each feature vector

Pr(i|xt, λ) =
wipi(xt|ηi,Σi)

M∑
k=1

wkpk(xt|ηk,Σk)

(10)

. The second step re-estimates the sufficient statistics parameters

ŵi =
1

T

T∑
t=1

Pr(i|xt, λ)

η̂i =

∑T
t=1 Pr(i|xt, λ)xt∑T
t=1 Pr(i|xt, λ)

Σ̂i =

∑T
t=1 Pr(i|xt, λ)x2

t∑T
t=1 Pr(i|xt, λ)

− η̂2
i (11)

where T is the number of training feature vectors. This two step process of alternately
calculating the expectation (10) and updating the the sufficient statistics (11) is iterated
until some convergence criterion is met (maximum number of iterations and/or percentage
change in log-likelihood).

As a result, the GMM-UBM training has estimated a GMM with a substantial number
of mixture components (typically 2048 components) to fit to the training feature vectors
what were extracted from voice samples in a large number of speakers. Further, the UBM
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is often trained using speech samples that match the conditions of the test data. If the test
environment/speaker characteristics are unknown, then it is common to use training data
that is a diverse as possible in terms of channels, microphones, speaker dialects, etc...

In our system, the background model has been created by training GMMs to subpopu-
lations of the training speaker data [21]. These GMMs are then combined to form a single
GMM-UBM. We have trained separate GMMs for male/female speakers from different cor-
pora. For example with two corpora we have trained four GMMs (male and female for each
corpus). To merge the GMM trained on each subpopulation we have merged the sets of
mean vectors and covariance matrices. We have assumed that each of the populations is
equally likely and therefore have simply scaled the weights by the reciprocal of the number
of subpopulations, wi = wisubpop/4.

MAP Adaptation

In the second step, Fig. 5(b), feature vectors extracted from target speakers’ utterances are
used to MAP-adapt the mean vectors of the GMM-UBM using a form of Bayesian adaptation
[23]. While the typical maximum likelihood training method trains models for each speaker
independently, the adapted UBM approach derives a speakers model by updating a pre-
trained UBM model. This MAP adaptation provides a tighter coupling between the UBM
and speaker adapted GMM.

The MAP adaptation is a two step process that is very similar to the EM algorithm
used for training the GMM-UBM. The MAP-adapted speaker model is denoted λs,u =
{wi,µs,u,i,Σi} in which µs,u,i is the MAP-adapted mean vector for the i-th component den-
sity from utterance u of speaker s. The model, λs,u, is a GMM with the same weights wi and
covariance matrices Σi as the GMM-UBM but with mean vectors that have been adapted.

The first step of the MAP adaptation is to calculate the sufficient statistics just as would
be done in the EM algorithm. First, the probabilistic alignment of the feature vectors into
the UBM mixture components are calculated with

Pr(i|xt) =
wipi(xt)

M∑
j=1

wjpj(xt)

(12)

where

pi(x) =
1

(2π)D/2 |Σi|1/2
e−(1/2)(x−µi)

′Σ−1
i (x−µi). (13)
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Figure 6. MAP Adaptation of UBM Mixture Components.

Next, the sufficient statistics for the weights and mean vectors are computed using

ni =
T∑
t=1

Pr(i|xt)

Ei(x) =
1

ni

T∑
t=1

Pr(i|xt)xt (14)

These new estimates of the sufficient statistics are then used to update the statistics from the
GMM-UBM. The sufficient statistics for mixture i, utterance u, and speaker s are updated
by

µs,u,i = αm
i Ei(x) + (1− αm

i )ηi (15)

. The adaptation coefficient αm
i controls the degree to which the new statistics are used to

update the old statistics. The closer αm
i is to 1 the more the new statistics affect the MAP

adapted model. The adaptation coefficient is calculated using the sufficient statistics for the
weight, ni,

αm
i =

ni

ni + ρm
(16)

where ρm is a fixed scalar that is referred to as the relevance parameter. The superscript m
in αm

i and ρm is used to denote that the adaptation coefficient and relevance parameter are
those used for the mean vector–as opposed to relevance parameters for updating the weights
or covariance matrices. Often, the relevance parameter has been assigned the value of 16 in
literature [23].

Fig. 6 shows the how that MAP adaptation shifts the means of the mixture densities to
more closely match target speaker statistics.
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In general, the weights, wi, and covariance matrices, Σi could also be adapted but for
this supervector SVM based method we do not do so following [23].

It is assumed that we have several utterances available for each target speaker. This
assumption is necessary in order to adequately train the SVM system as described in Sec-
tion 2.3. If this is not the case, then it may be possible to split a larger utterance into several
smaller utterances for training.

Supervector Construction

Within the third step, Fig. 5(c), the adapted mean vectors µs,u,i are scaled

ms,u,i =
√
wiΣ

−1/2
i µs,u,i (17)

and then used to form GMM supervectors. There is a separate supervector for each speaker
and utterance

ms,u =

 ms,u,1
...

ms,u,M

 (18)

. Each supervector is essentially a mapping from a speaker’s utterance to a high-dimensional
vector.

SVM Training

In the fourth step, Fig. 5(d), a SVM is trained to discriminate the target speaker. SVMs have
several key characteristics. First, the SVM is a maximum boundary classifier. In training the
SVM, the decision boundary is found by maximizing the perpendicular distance between the
decision boundary and the data points closest to it. This perpendicular margin is depicted
in Fig. 7(a). A second key characteristic is that SVMs are sparse kernel classifiers. They are
sparse in that they use only a small subset of the training data points in a kernel function
to make classification decisions. Fig. 7(b) shows that support vectors–or the data points
retained in the kernel function–as well as the decision boundary that maximized the margin
for the data in the figure.

The SVM is trained using a linear kernel [6], with weight and bias parameters an and
b. Suppose we denote our kernel function as K(ua, ub) where ua and ub are two different
utterances to compare. The linear kernel is simply the inner product of the two vectors
K(ua, ub) = mt

u,amu,b where mu,a and mu,b represent the supervectors from each utterance.
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Figure 7. Support Vector Machine as a Sparse Maximum
Margin Classifier [4].

We have used a soft margin SVM–the SVM training algorithm allows for misclassification
of training data. Training the SVMs is accomplished by minimizing [4]

L̃(a) =
N∑

n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtntmK(mu,n,mu,m) (19)

constrained to

0 ≤ an ≤ C

N∑
n=1

antn = 0 (20)

where C controls the soft penalizing of points that lie on the wrong side of the margin. The
values an are the weights of the support vectors. Because SVMs are sparse machines, the
vast majority of an will be equal to 0.

The SVM training system uses supervectors from the target speaker as well as a significant
number of background non-target speakers. The supervectors for the target speaker are
labeled +1 (tn = +1 whereas the supervectors for all other background speakers are labeled
−1 (tn = −1). The resulting SVM speaker model is denoted νs = {as,n, bs} where as,n is the
weight of the n-th support vector, bs is the bias, and n ∈ S and S is set of indices of the
support vectors
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2.4 SV System Testing

In the SV test stage, we are given a speech utterance and an identity claim C. We must
decide whether to accept or reject the claim. To do so we extract the feature vectors from
the utterance as described in Section 2.2 and form a supervector mtest following the same
procedure as in Sections 2.3 and 2.3. The supervector, mtest, is evaluated against the model
SVM by computing

y(X) =
∑
n∈S

aC,ntC,nm
T
testmn + bC (21)

where tC,n denotes the labels associated with the support vectors and mn are the support
vectors (supervectors). The claim is accepted if y(X) ≥ 0.

This decision is a binary decision though some research has gone into quantifying the
quality (i.e. determining a confidence or probability) of the output [18]. It is also important
to note that the SVM is a two-class classifier. As such it is well suited for the SV system
(yes/no it is the claimant) but not as well suited for the SI system (choose one among many).
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3 GMM Component Clustering

3.1 Introduction

Within the testing stage, a significant portion of the processing load is required during the
calculation of the probabilistic alignment between the input feature vectors and the UBM
mixture components in (12) and the calculation of the sufficient statistics (14). This is
significant because this calculation which includes a mahanobis distance calculation must
be performed for each input feature vector into each of GMM-UBM component densities.
Clearly, one way to speed up the likelihood calculations is to not perform the calculation for
the entire set of mixture component densities. Effectively, we only calculate the probabilistic
alignments for a subset of mixture components, C, that we have chosen wisely.

The principle behind the hash GMM [2] is that it attempts to model the same probabilistic
features that the GMM-UBM models except that it does so with fewer component densities.
A shortlist is created that maps clusters of components within the GMM-UBM to component
densities within the hash GMM. This shortlist is formed by assigning components with the
GMM-UBM to components of the hash GMM using a statistical divergence measure.

In Section 3.2 the general concept of using hash GMMs and a shortlist to improve com-
putational efficiency is described. This is followed by Sections 3.3-3.3 in which three different
methods are proposed for creating hash GMMs. These methods include training hash GMMs
using EM on the original training data used to train the UBM, k-Means clustering of the
GMM-UBM densities, and GMM reduction as described by Runnalls [24].

3.2 Hash GMMs for Improved Scoring

The goal of using a hash GMM with shortlists mappings to components within the GMM-
UBM is ultimately to reduce to total number of component likelihood calculations and the
number of components used to update the sufficient statistics for each feature vector. Figure 8
shows the principle of clustering components of the GMM-UBM as depicted in blue on the
left hand side of the figure and forming new components of the hash GMM as depicted in
red on the right hand side.

Within the GMM-UBM there are M multivariate Gaussian component densities each
having the model parameters {wi, ηi,Σi}–the weight, mean vector, and covariance matrix
parameters respectively. A hash GMM is formed with Mc components where Mc < M with
model parameters {wh

i , η
h
i ,Σ

h
i }, where the superscript h is used to denote that they are the

hash parameters.

A mapping associating components within the GMM-UBM to the hash GMM is found
by selecting the mapping that minimizes the Kullback-Leibler (KL) divergence between the
components in the UBM and the components in the hash GMM. The KL divergence is
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Figure 8. Clustering the components of a GMM-UBM with
a large number of components (blue) into a hash GMM with
a smaller number of components (red)

a measure of the dissimilarity between two probability distributions. The KL divergence
between two probability distributions f and g is

dKL(f, g) =

∫
f log

f

g
(22)

One of the issues with using the KL divergence as a distance metric is that it is not
symmetric, that is to say that dKL(f, g) 6= dKL(g, f). Often a symmetrized version of the
KL divergence is used such that dKLS(f, g) ≡ dKLS(g, f). This symmetrized KL divergence
is given by

dKLS(f, g) =

∫
f log

f

g
+

∫
g log

g

f
(23)

For multivariate normal distributions, this symmetrized KL divergence can be simplified
to

d(f, g) =
1

2
trace

[(
Σ−1f + Σ−1g

)
(µf + µg) (µf + µg)

T +ΣfΣ
−1
g + Σ−1f Σg − 2I

]
(24)

It should be stressed that this is not the divergence between the GMM-UBM and hash
GMM–for which there is no simple closed form solution–rather it is the divergence between
individual component densities.

The adjusted MAP-adaptation using clustering is described in the following steps.
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1. Calculate feature vectors as described in Section 2.2.

2. Calculate probabilistic alignment of feature vectors into UBM

(a) Calculate probabilistic alignment of feature vectors into hash GMM using (12)
with hash model parameters {wh

i , η
h
i ,Σ

h
i } for 1 ≤ i ≤Mc.

(b) Choose Nmax highest scoring components of the hash GMM for current feature
vector

(c) Calculate probabilistic alignment of feature vectors into GMM-UBM using only
clusters of components of the GMM-UBM associated with the Nmax highest scor-
ing components of the hash GMM. As an example refer to Figure 8. Suppose that
Nmax = 1 and for the current feature vector the highest scoring component within
the hash GMM was that with model parameters {wh

1 , η
h
1 ,Σ

h
1}, we would now eval-

uate (12) using only the components with parameters {w1, η1,Σ1}, {w2, η2,Σ2},
and {w3, η3,Σ3} that were mapped to {wh

1 , η
h
1 ,Σ

h
1} as shown in the figure.

3. Update sufficient statistics (14) calculation using current feature vector and only those
clustered components of the GMM-UBM that were found in the previous step. Fol-
lowing the previous example, we would update ni and Ei(x) where i ∈ {1, 2, 3}.

4. MAP adapt as usual (15)

It is important to note that the majority of the SV system using clustering has not
diverged from the system described in Chapter 2. The feature vectors have not changed, the
formation of supervectors has not changed, and the SVM classification has not changed.

Of interest is the choice of whether or not to implement clustering within the training
stage. Ultimately, the system makes decisions based on supervectors. These supervectors
have the same form (dimensions and position of associated mean vectors) whether or not
clustering is done within training. It is the reduction of the computational complexity of the
test stage that is our ultimate goal. Though we are using clustering in the test stage, we
are not necessarily constrained to do so in the training stage. One benefit of not clustering
within the training stage is that we could make use of previously trained SVM models of our
target speakers. One potential disadvantage to not clustering the training stage is that the
processes for creating the supervectors would not be identical–which because linear kernel
measures similarity–might reduce classification performance accuracy. We have implemented
both cases and present results for both.

3.3 Methods for Forming Hash GMMs

This section describes several methods for determining hash GMMs. The first described
in Section 3.3 is formed using the same data that was used to train the GMM-UBM while
those described in Sections 3.3 and 3.3 rely on information about the GMM-UBM itself. One
advantage of these latter methods is that the hash GMM can be formed after the GMM-UBM
has been trained and without the original speech feature vectors.
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Training Reduced Sized GMM-UBM Using EM and Original Feature Vectors

Ideally, we would like the hash GMM to capture similar features as those modeled by the
GMM-UBM. As such, we propose training a hash GMM using the same MFCC vectors used
to train the UBM except with a reduced number of components. For instance, if our UBM
consisted of 1024 component densities we would train a hash GMM with perhaps only 32
mixture components.

Effectively, this approach entails running the EM algorithm that is used to form the
UBM twice. This process was described in Section 2.3. Ultimately, we will have trained
two different UBMs, one with a large number of component densities and another with a
signicantly reduced number of component densities. Within this approach we refer to this
reduced size GMM-UBM as our hash GMM.

The shortlist between the components of the larger GMM-UBM and the components of
the hash GMM is determined minimizing the symmetrized KL divergence as described in
Section 3.2.

k-Means Clustering of Components using KL Divergence

One disadvantage of calculating a hash GMM using the EM algorithm in the same manner
that the UBM is calculated is that it requires access to the original training data and requires
us to go through the time consuming EM algorithm again. Another option is to use k-means
to cluster the component densities of the UBM. In particular, we have implemented the
k-means algorithm using the symmetric KL as in (24) as a distance measure.

While k-means typically is used to calculate a centroid vector–such as a mean vector–
we have extended it to calculate several parameters for each centroid. Each centroid is a
multivariate Gaussian distribution so it is necessary to calculate a mean vector, covariance
matrix, and a weight parameter. We have chosen to calculate our centroids using expectation
centroids as described in [15].

After assigning the various mixture components to the clusters based on minimizing the
divergence, the mean and covariance of each centroid are calculated for each cluster using
its N component members as

µc =
1

N

N∑
n=1

E [xn]

=
1

N

N∑
n=1

µn (25)
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and

Σc =
1

N

N∑
n=1

E
[
(xn − µc) (xn − µc)

T
]

=
1

N

N∑
n=1

Σn + µnµ
T
n − µcµ

T
c (26)

.

We update the component weights by simply summing the individual weights of the
components within the cluster

wc =
N∑

n=1

wn (27)

.

The k-means algorithm with KL-divergence is summarized in the following listing steps.

1. Initialize k-means. In this case we are initializing the centroids by randomly selecting
Mc of the component densities of the GMM-UBM. As such each of the centroids will
have the model parameters {wc, µc,Σc} which are the weights, mean vectors, and
diagonal covariance matrices of the randomly selected component densities.

2. Iterate the two step process of assignment and update until either the assignments
longer change, some convergence criteria on the total distance is met, or some maximum
number of iterations has occurred.

(a) Assignment step: Each component density within the GMM-UBM is assigned
to the “closest” cluster. Each is assigned to the cluster for which the KL-
divergence (24) between the centroid and the component density is minimized.

(b) Update step: New centroids are determined for each cluster by updating the
centroid weights, means, and covariances according to (25)-(27) using only the
component members that were assigned to that cluster in the previous step.

3. After the stopping criterion has been reached (through convergence or maximum iter-
ations), the k-means centroids are used as the component densities of the hash GMM.

KL GMM Reduction

Recently, Runnalls [24] proposed a KL based approach to GMM reduction–that is to say
reduction in the number of mixture component densities. His approach was to successively
merge pairs of mixture components, replacing the pairs with a single Gaussian component
that matched the merged pair up to a second order. Runnalls’ criterion for selecting pairs to

24



merge was based on minimizing the KL divergence between the GMM before the merge and
the GMM after the merge. Although a closed form solution does not exist for calculating
the KL divergence between two GMMs, the author does present an upper bound on the
divergence between the pre-merger and post-merger GMMs and it is this upper bound that
he attempts to minimize. He shows that the KL divergence of the mixture following the
merge from the mixture before the merge is bounded by

B((wi,µi,Σi), (wj,µj,Σj)) =
1

2
[(wi + wj) log det (Σij)

−wi log det (Σi)− wj log det (Σj)] (28)

where B[(wi,µi,Σi), (wj,µj,Σj)] is computed for every pair of component members with
i 6= j within the premerged GMM.

The two components that minimize B((wi,µi,Σi), (wj,µj,Σj)) are selected for merger
and are replaced by the moment-preserving merge

wij = wi + wj

µij = wi|ijµi + wj|ijµj (29)

Σij = wi|ijΣi + wj|ijΣj + wi|ijwj|ij (µi + µj) (µi + µj)
T

where the component weights have been normalized such that wi|ij = wi/(wi + wj) and
wj|ij = wj/(wi + wj).

Our process of iteratively selecting components to merge and calculating the moment
preserving merge is continued until the merged GMM is reduced to contain the desired
number of reduced mixture components. At each stage of the merging process, a record is
kept of which components are merged to later be used as a shortlist between the reduced
(hash) GMM and the components of the GMM-UBM.

The summarized process of GMM reduction according to Runnalls is as follows.

1. Iterate the following steps M −Nc times until only Nc merged components remain.

2. Calculate bound: Calculate the upper bound (28) on the divergence for all pairs of
components i and j within the merged GMM from the last iteration.

3. Merge Pairs: Choose the two pairs of components with indices i and j that minimized
the bound and merge the pair using the moment preserving merger of their weights,
mean vectors, and covariance matrices (29).
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Normalized Mean Vector Based Clustering

Here we describe another clustering method that normalizes the component mean vectors
before using the traditional k-means algorithm with Euclidean distance to cluster them. In
this method, we are normalizing our mean vectors for unit variance and weighting according
to the component weights

µ̄n = wnΣ
−1
c µn (30)

. It should be noted that because we are using diagonal matrices, (30) amounts to element
by element dividing the mean by the covariance in each dimension and multiplying by the
component weight.

These normalized mean vectors are then fed into the typical k-means algorithm. After
this clustering, we calculate a hash GMM using the expectation centroid as in (25)-(27).

Clustering Based on a posteriori Probabilities of Training Feature Vectors

The previous methods assumed only the availability of the GMM-UBM and not the feature
vectors used to train the GMM-UBM. Here we describe a method that forms a hash GMM
by analyzing the a posteriori probabilities that each feature vector produces when analyzed
with the GMM-UBM. Using the same feature vectors that were used to train the UBM, for
each MFCC feature vector we calculate the likelihood that the feature vector came from
each of the component densities using (12). As such, for a UBM consisting of M component
densities, each training MFCC feature vector will be used to generate a vector of component
probabilities of length M , PMFCC = [Pr(1|xt), . . . , P r(M |xt)]. We calculate one of these
alignment vectors for each training feature vector. These vectors of probabilistic alignment
are then fed into the traditional k-means algorithm for clustering.

It is straight forward to calculate the cluster centroids using the indices returned from
the k-means algorithm and the MFCC feature vectors. The centroids are calculated as

µc =
N∑

n=1

E [xn] (31)

and

Σc =
1

N

N∑
n=1

E
[
(xn − µc) (xn − µc)

T
]

(32)

. The weight for each cluster is calculated as the point probability of each cluster from the
k-means output. More precisely the weight is calculated by taking the number of MFCC
feature vectors assigned to a cluster and dividing by the total number of MFCC vectors.

The output centroids of the k-means algorithm are vectors representing the likelihood
outputs for different classes of MFCC inputs. Each centroid is going to be length M . In
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general, the centroids are sparse meaning that for a given class of MFCC input vector, only a
subset of the component densities will have a significant response. As such, for each cluster,
we only assign components that have a significant likelihood response. For each clustered
centroid, we have chosen to keep the most likely components whose sum likelihood is greater
than 65%–which have have chosen arbitrarily to control trade of between computational
performance and classification accuracy.

This is significantly different than the previous algorithms described. Previously, each
and every component would be uniquely identified with one cluster. With this approach, it
is possible that a component density will be used in multiple clusters. It is also possible that
some components may not be used at all which would imply that we are not capturing all
the information contained in the original GMM.
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4 Results of GMM Component Clustering

4.1 Introduction

This chapter describes the simulation parameters and the results obtained in those simula-
tions.

4.2 Data Sets and Simulation Parameters

The UBM was trained by using data from both the Switchboard II Phase 1 corpus [10] and
the Switchboard Cellular Part 2 corpus [11]. Two GMMs were trained for each corpus–one
for male speakers and one for female speakers. A single speech utterance was chosen for each
speaker so as not to bias the statistics for speakers with more utterances. After training
the four GMMs using the EM algorithm, the GMMs from the subpopulations were merged
and weights were adjusted accordingly. We have performed our experiments using the NIST
2002 speaker recognition evaluation (SRE) corpus [14]–in particular the single speaker cel-
lular data. Each training file within NIST2002 was segmented into 10 individual training
sequences and subsequently into 10 supervectors for each speaker. For front end processing,
we calculated a 19-dimensional MFCC vector every 10 ms using a 25 ms Hamming win-
dow. The frequency content was limited to the range 300-3140 Hz. The MFCC vectors were
processed with RASTA filtering. ∆-MFCCs were then calculated using a 5 sample window
length. These 19 delta-cepstral coefficients were concatenated to the cepstra vector to gen-
erate a 38-dimensional vector. Finally these cepstral/delta-cepstral vectors were processed
with feature warping [17] to generate the sequence of feature vectors.

The system was evaluated using GMM-UBMs with 256 member components and 1024
member components.

4.3 Performance Metric

In order to evaluate the efficiency performance of our algorithms it is necessary to choose
metrics to do so. We have chosen to use the average number of a posteriori probability
calculations (12). In the case of no clustering, the average number of a posteriori probability
calculations per MFCC vector is simply the number of mixture components within the GMM-
UBM. When clustering is used, the number of a posteriori probability calculations includes
both the number of clusters and the number of components within each cluster selected.

This metric is useful because it allows us to compare our clustering to the case where
we would simply use a GMM-UBM system trained with a reduced number of mixture com-
ponents. For example if the average number of a posteriori probability calculations for a
particular clustering scheme was 32, we could compare the EER achieved with this system
to a GMM-UBM system with 32 mixture components.
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4.4 Experiments and Results

In our experiments, we simulated systems with of 4, 8, 16, and 32 clusters. Further, we
simulated scenarios of 1, 2, and 4 maximum likelihood clusters chosen for further process-
ing. Finally, for all cases, we implemented the clustering during the testing stage and also
simulated the training stage with and without clustering. Thus, when clustering is done in
both testing and training, then the processing steps match whereas when clustering is not
done in training the processing is mismatched.

The following subsections present the results for the systems based on GMM-UBMs with
256 and 1024 component densities. It is vital to note that in our simulations, a baseline
simulation of the typical system without clustering resulted lower EER results with the
256 component UBM than the 1024 component system. This is counter to what is often
presented in literature where systems are usually implemented with 1024 or 2048 mixture
components for better performance. Because the baseline system with 1024 components has
degraded performance with respect to the 256 component system, our results for clustering
the 1024 component system will already be at a disadvantage to systems trained without
clustering but with fewer components.

Results for 256 Component GMM-UBM

Fig. 9 and 10 show the results of the different clustering algorithms when the initial UBM
consisted of 256 component densities. In the plots, the solid line represents the case of
simply implementing a GMM-UBM system with fewer component densities–for which case
the average number of likelihood calculations is simply equal to the number of component
densities. Clearly, for the majority of cases, the clustering methods did not perform as
well as simply implementing the reduced size GMM-UBM since the EERs are greater. The
exception was implementing the clustering using the GMM reduction method as described
by Runnalls [24].

The results for clustering the 256 component UBM are presented in Tables 1-5. Of most
interest are the results achieved using the reduction method proposed by Runnalls. These
results are tabulated in Table 5. The table lists the number of clusters implemented, the
number top clusters to use, Nmax, reduction factor of the average a posteriori probability
calculations calculated per feature vector, the degradation (increase) in EER as a relative per-
cent when clustering was done only in testing, and the degradation of EER when clustering
was done in both training and testing. The results demonstrate that substantial reduction in
the number of likelihood calculations has been achieved with minimal degradation in EER.

In general performance is degraded when clustering is used only for testing (as opposed
to training and testing). In particular, the clustering based on a posteriori probabilities of
training feature vectors and k-means based clustering methods incurred substantial degra-
dations when deviating from matched processing. Of particular interest is that the Runnalls
GMM reduction method appears to be robust to the case of unmatched processing. In fact,
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Clusters Nmax

Computational
Reduction
Factor
Cluster Test

EER
Rise %
Cluster
Test

Computational
Reduction
Factor
Cluster Test
and Train

EER
Rise %
Cluster
Test
and
Train

2 1 1.9758 10.3641 2.0665 7.0028
4 1 1.9617 9.2437 2.7817 13.4454
8 1 3.1829 15.1261 2.6082 15.4062
16 1 3.1785 21.5686 3.1697 21.7367
32 1 3.98 30.7563 3.2322 19.6078
4 2 1.9417 7.563 1.8523 4.6499
8 2 1.9745 5.042 1.916 3.3613
16 2 2.3476 5.042 2.323 8.6835
32 2 2.2482 7.563 2.4141 11.4846
8 4 1.7874 6.7227 1.6975 1.9328
16 4 1.7301 1.9608 1.7267 3.3613
32 4 2.0882 4.4818 2.1155 4.3697

Table 1. Results for Clustering based on a posteriori Prob-
abilities of Training Vectors with a UBM of 256 Components
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Clusters Nmax

Computational
Reduction
Factor
Cluster Test

EER
Rise %
Cluster
Test

Computational
Reduction
Factor
Cluster Test
and Train

EER
Rise %
Cluster
Test
and
Train

2 1 42.6255 311.3725 1.0094 0
4 1 6.0123 256.3025 7.0151 129.972
8 1 8.1028 193.5574 6.0281 143.4174
16 1 7.6179 81.7927 7.1523 115.1261
32 1 6.3894 82.7731 6.1599 41.4566
4 2 1.387 22.9692 2.1146 3.6415
8 2 4.2699 88.6835 3.7647 23.2493
16 2 4.3996 11.7647 4.8229 27.451
32 2 5.2319 35.5742 5.0645 33.6134
8 4 2.1142 39.4958 1.9086 6.4426
16 4 2.9512 34.1737 3.2988 15.6863
32 4 3.8173 30.2521 3.8101 11.2045

Table 2. Results for K-Means Clustering with a UBM of
256 Components
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Clusters Nmax

Computational
Reduction
Factor
Cluster Test

EER
Rise %
Cluster
Test

Computational
Reduction
Factor
Cluster Test
and Train

EER
Rise %
Cluster
Test
and
Train

2 1 2.0317 61.0644 2.0317 16.1345
4 1 12.1905 283.3333 12.8 112.8571
8 1 12.7956 298.3193 17.0641 82.0728
16 1 13.5646 291.8768 11.1824 91.5966
32 1 7.4007 271.0924 7.4184 85.1541
4 2 7.3143 246.7787 9.1429 81.7927
8 2 9.8459 266.1064 9.8448 86.8067
16 2 8.0477 240.056 8.5105 56.3025
32 2 6.8004 235.8543 6.7869 67.7871
8 4 3.2405 120.6723 3.1605 26.0504
16 4 5.4849 176.1905 5.8123 50.1401
32 4 5.7428 203.0812 6.0007 65.2661

Table 3. Results for Normalized Mean Clustering with a
UBM of 256 Components

Clusters Nmax

Computational
Reduction
Factor

EER
Rise %
Cluster Test

EER
Rise %
Cluster Test
and Train

4 1 2.5947 35.5742 22.6891
8 1 5.6497 44.2577 26.8908
16 1 7.1419 57.423 39.7759
32 1 6.2446 52.6611 31.9328
4 2 1.7502 18.4874 10.3361
8 2 3.2335 27.1709 14.2857
16 2 4.8742 22.1289 15.9664
32 2 5.161 30.8123 19.6078
8 4 1.76 9.1597 1.8487
16 4 2.8839 13.7255 5.6022
32 4 3.9471 17.619 10.084

Table 4. Results for Smaller UBM Mapping with a UBM
of 256 Components
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Figure 9. Results for Applying Clustering Method to a 256
Component UBM for both Training and Testing

as shown in Table 5, when we used 16 clusters and processed the 4 clusters with maximum
likelihood, we were able to achieve an EER of 11.87% with on average 92.4 a posteriori
probability calculations. This actually surpassed our baseline EER of 11.97% with a 256
component UBM. So for this particular case, not only were we able to reduce the average
number of likelihood calculations by a factor of 2.77 but we also improved our EER by 0.84%.

Results for 1024 Component GMM-UBM

In addition to evaluating our method with a 256 component UBM we also evaluated it with a
1024 component UBM. It should be noted that without clustering, in our testing conditions
we actually achieved lower EER with 256 components rather than 1024 in our baseline
system. This is shown in Fig. 11 in which the blue solid line represents implementing the
standard SV system without any clustering with different number of component densities. It
can be seen in the figure that EER is lowest at 256 component densities then EER increases
with increasing number of components at 512 and 1024 components.
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Figure 10. Results for Applying Clustering Method to a
256 Component UBM for Testing Only

Essentially, this means that if we are clustering a 1024 component UBM we are already
at a disadvantage when the system is compared to the 256 component baseline. In this case,
we are not able to match the performance of a smaller UBM with the clustered method,
neither for matched processing nor for unmatched processing.

Though clustering a suboptimal 1024 component UBM does not allow us to match the
performance of the 256 component UBM, we can still analyze the degradation with respect
to the 1024 component UBM. Again, the GMM reduction method proposed by Runnalls [24]
appears to provide the best results as shown in Fig. 11 and Fig. 12. The Runnalls method
works well for both matched and unmatched processing. Starting with the 1024 component
UBM we are able to achieve a factor of 5 reduction with no loss and a factor of 10 reduction
with less than 2.4% loss in relative performance.
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Clusters Nmax

Computational
Reduction
Factor

EER
Rise %
Cluster Test

EER
Rise %
Cluster Test
and Train

2 1 1.7438 2.2409 1.9608
4 1 2.6391 3.9216 6.7227
8 1 6.3162 7.2829 13.7255
16 1 7.466 6.1625 9.5238
32 1 6.3008 6.1625 12.3249
4 2 1.6267 1.6807 0
8 2 3.4736 2.521 2.521
16 2 4.8215 0.84034 2.9972
32 2 5.1547 3.8095 5.042
8 4 1.8643 0.84034 0.28011
16 4 2.7702 -0.84034 1.1204
32 4 3.7584 1.3725 1.3725

Table 5. Results for Runnalls GMM Reduction with a UBM
of 256 Components
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Figure 11. Results for Applying Clustering Method to a
1024 Component UBM for both Training and Testing
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Figure 12. Results for Applying Clustering Method to a
1024 Component UBM for Testing Only
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Clusters Nmax

Computational
Reduction
Factor
Cluster Test

EER
Rise %
Cluster
Test

Computational
Reduction
Factor
Cluster Test
and Train

EER
Rise %
Cluster
Test
and
Train

4 1 2.6898 10.3733 2.6898 8.8
8 1 2.6676 10.6667 2.6676 10.6667
16 1 3.3268 15.2 3.3268 16.5333
32 1 3.9454 17.52 3.9454 19.7333
64 1 3.9368 12.5333 3.9368 20.2667
4 2 2.1201 2.9067 2.1201 0.53333
8 2 2.0906 2.1067 2.0906 -0.8
16 2 2.3938 2.1333 2.3938 1.6
32 2 2.5098 6.1333 2.5098 5.4933
64 2 3.954 11.68 3.954 17.3333
8 4 2.1132 3.4667 2.1132 -1.0667
16 4 2.0201 2.1333 2.0201 -0.26667
32 4 2.0926 2.9333 2.0926 1.3333
64 4 2.4105 3.4667 2.4105 1.8667
16 8 1.911 1.8667 1.911 -0.26667
32 8 1.9354 0.8 1.9354 -1.3333
64 8 1.9698 0.53333 1.9698 0.53333

Table 6. Results for Clustering based on a posteriori Prob-
abilities of Training Vectors with a UBM of 1024 Components
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Clusters Nmax

Computational
Reduction
Factor
Cluster Test

EER
Rise %
Cluster
Test

Computational
Reduction
Factor
Cluster Test
and Train

EER
Rise %
Cluster
Test
and
Train

4 1 7.6311 92.2667 3.9522 74.9333
8 1 4.9513 106.4 4.5882 183.7333
16 1 9.9557 87.2 10.7367 41.3333
32 1 12.4062 21.52 11.5402 117.6
64 1 11.4068 45.0667 11.9784 173.3333
4 2 1.3488 6.6667 1.3029 4.72
8 2 4.2554 53.2 4.5345 48.2667
16 2 6.6737 31.4667 4.7177 19.7333
32 2 6.3231 12.8 6.4615 29.0133
64 2 10.28 14.4 8.6699 20.2667
8 4 1.5335 9.2533 1.8739 4
16 4 3.4882 13.8667 2.8853 5.8133
32 4 5.2993 10.4 4.9198 10.2667
64 4 6.1011 9.6 6.569 8.5333
16 8 1.3167 2.4 1.4207 -0.53333
32 8 2.4953 1.6 2.5455 6.6133
64 8 3.6003 3.4667 3.7348 4.5333

Table 7. Results for K-Means Clustering with a UBM of
1024 Components
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Clusters Nmax

Computational
Reduction
Factor
Cluster Test

EER
Rise %
Cluster
Test

Computational
Reduction
Factor
Cluster Test
and Train

EER
Rise %
Cluster
Test
and
Train

4 1 15.2836 223.7333 15.2836 65.6
8 1 17.6552 223.2 22.2609 84
16 1 41.9241 289.3333 35.3093 44.2667
32 1 24.4105 269.0667 25.0387 85.0667
64 1 15.3869 274.9333 14.9298 72.2667
4 2 7.1111 187.4667 7.1111 62.4
8 2 7.1608 102.1067 9.8462 64.8
16 2 17.0667 231.1467 17.3556 56
32 2 20.1216 232.8 20.121 46.1333
64 2 13.8695 237.76 14.127 53.0667
8 4 4.0797 85.6 4.1967 36
16 4 10.1386 167.6 7.9642 22.8
32 4 14.7336 196.8 13.8362 37.6
64 4 12.1724 193.2533 12.5053 45.0667
16 8 3.5643 22.9067 3.8352 15.4667
32 8 8.8614 102.1333 7.5829 25.0667
64 8 9.0329 117.0667 9.3759 34.9333

Table 8. Results for Normalized Mean Clustering with a
UBM of 1024 Components
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Clusters Nmax

Computational
Reduction
Factor

EER
Rise %
Cluster Test

EER
Rise %
Cluster Test
and Train

4 1 2.6269 10.9333 15.4667
8 1 6.1905 28 24
16 1 10.6756 25.0667 28.8
32 1 14.7624 25.6 27.9733
64 1 12.4148 20 25.28
4 2 1.7165 2.9333 9.0667
8 2 3.4452 16.6933 13.0667
16 2 6.1693 11.7333 14.1333
32 2 9.9497 8.8 14.08
64 2 10.209 6.6667 16
8 4 1.8027 0.8 0.8
16 4 3.1623 3.4667 6.6667
32 4 5.939 1.6 6.1333
64 4 7.5256 2.2667 6.4
16 8 1.7298 0.26667 1.3333
32 8 3.3493 -0.53333 1.6
64 8 4.9724 0.26667 3.7333

Table 9. Results for Smaller UBM Mapping with a UBM
of 1024 Components
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Clusters Nmax

Computational
Reduction
Factor

EER
Rise %
Cluster Test

EER
Rise %
Cluster Test
and Train

4 1 2.5442 2.1067 5.52
8 1 6.5393 5.3333 10.9333
16 1 11.1469 5.3333 12.2667
32 1 14.1382 8.5333 12
64 1 12.531 8.8 15.36
4 2 1.5961 0.8 1.3333
8 2 3.2246 0.26667 4.2667
16 2 5.9666 0.96 3.7333
32 2 8.8987 2.4 6.6667
64 2 10.2276 2.4 6.4
8 4 1.7317 -0.26667 0.26667
16 4 3.1251 -0.53333 1.6
32 4 5.169 0.8 1.0667
64 4 7.399 1.3333 2.9333
16 8 1.6445 -0.53333 0.53333
32 8 2.9248 0 0.53333
64 8 4.7554 0.18667 1.0667

Table 10. Results for Runnalls GMM Reduction with a
UBM of 1024 Components
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5 Conclusions and Future Work

5.1 Conclusions

In this dissertation proposal, we presented a method for reducing the computational load of
the GMM-UBM SV system by clustering the component densities of the GMM-UBM. We
compared the results to systems based on GMM-UBMs with a reduced number of component
densities. We have shown that in some cases we were able to achieve lower EER with less
computational burden than systems with smaller GMMs by clustering a larger GMM-UBM.
Further we have demonstrated that we can achieve promising results even in the case when
clustering is not performed in the training stage but only in the testing stage. This opens the
possibility that we might be able to throttle the amount of processing that we are performing
in real time by adjusting the number of clusters, Nmax, that we adapt.

5.2 Future Work

Additional research to carryout along these lines include the addition of the mixture weights
in the divergence calculation used in the k-means clustering algorithm. In such a system,
components with low weight would be more likely to be merged into clusters [16]. Second,
in our analysis, we fixed the number of clusters for adaptation, improved gains might be
achieved by intelligently adjusting the number of clusters to adapt based on the likelihood
scores of the clusters. For example, for some feature vectors only one or two hash GMM
components might have a significant probability whereas with others perhaps more compo-
nents would be significant. On a feature vector by feature vector basis a decision could be
made as to how many clusters to use.

A third possibility for improvements is to use a tree based hash GMM. Currently the
hash GMM in this research has used a single layer GMM that maps directly to the GMM-
UBM. The components are not equally distributed among the clusters of the hash GMM so it
might be worthwhile to perform clustering with the hash clusters which contain a significant
number of component members.

Finally, a fourth potential area of research is in the feature warping algorithm. Feature
warping helps us achieve improved EER but it comes at a significant computational burden.
It would be worthwhile to determine whether there might be other ways of achieving similar
effects but with reduced computation cost.

43



References

[1] V.R. Apsingekar and P.L. De Leon. Speaker model clustering for efficient speaker iden-
tification in large population applications. Audio, Speech, and Language Processing,
IEEE Transactions on, 17(4):848 –853, may 2009.

[2] Roland Auckenthaler and John S. Mason. Gaussian selection applied to text-
independent speaker verification. In In Proc. Speaker Odyssey 2001, pages 83–88, 2001.

[3] J. Benesty, M.M. Sondhi, and Y. Huang. Springer handbook of speech processing.
Springer Handbook Of Series. Springer, 2008.

[4] C.M. Bishop. Pattern recognition and machine learning. Springer, 2009.

[5] W.M. Campbell, D.E. Sturim, and D.A. Reynolds. Support vector machines using gmm
supervectors for speaker verification. Signal Processing Letters, IEEE, 13(5):308 – 311,
may 2006.

[6] S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. Svm and kernel methods
matlab toolbox. Perception Systmes et Information, INSA de Rouen, Rouen, France,
2005.

[7] D.G. Childers, D.P. Skinner, and R.C. Kemerait. The cepstrum: A guide to processing.
Proceedings of the IEEE, 65(10):1428 – 1443, oct. 1977.

[8] S. Davis and P. Mermelstein. Comparison of parametric representations for monosyl-
labic word recognition in continuously spoken sentences. Acoustics, Speech and Signal
Processing, IEEE Transactions on, 28(4):357 – 366, aug 1980.

[9] P.L. De Leon, M Pucher, J. Yamagishi, I. Hernaez, and I Saratxaga. Evaluation of
speaker verification security and detection of synthetic speech. in review IEEE Trans.
Audio, Speech, and Language Proc., oct 2011.

[10] David Graff, Alexandra Canavan, and Zipperlen. Switchboard-2 Phase I. Linguistic
Data Consortium, Phildelphia, 1998.

[11] David Graff, Kevin Walker, and David Miller. Switboard Cellular Part 2 Audio. Lin-
guistic Data Consortium, Phildelphia, 2004.

[12] H. Hermansky and N. Morgan. Rasta processing of speech. Speech and Audio Processing,
IEEE Transactions on, 2(4):578 –589, oct 1994.

[13] T. Kinnunen, E. Karpov, and P. Franti. Real-time speaker identification and verification.
Audio, Speech, and Language Processing, IEEE Transactions on, 14(1):277 – 288, jan.
2006.

[14] Alvin Martin and Mark Przybocki. 2002 NIST Speaker Recognition Evaluation. Lin-
guistic Data Consortium, Phildelphia, 2004.

44



[15] T.A. Myrvoll and F.K. Soong. Optimal clustering of multivariate normal distributions
using divergence and its application to hmm adaptation. In Acoustics, Speech, and Sig-
nal Processing, 2003. Proceedings. (ICASSP ’03). 2003 IEEE International Conference
on, volume 1, pages I–552 – I–555 vol.1, april 2003.

[16] A. Ogawa and S. Takahashi. Weighted distance measures for efficient reduction of
gaussian mixture components in hmm-based acoustic model. In Acoustics, Speech and
Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 4173
–4176, 31 2008-april 4 2008.

[17] Jason Pelecanos and Sridha Sridharan. Feature warping for robust speaker verification.
In In Proc. Speaker Odyssey 2001, 2001.

[18] John C. Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS,
pages 61–74. MIT Press, 1999.

[19] L.R. Rabiner and R.W. Schafer. Theory and Applications of Digital Speech Processing.
Pearson, 2010.

[20] Douglas A. Reynolds. An overview of automatic speaker recognition technology. In
Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Confer-
ence on, volume 4, pages IV–4072 –IV–4075, may 2002.

[21] Douglas A. Reynolds. Universal background models. In Encyclopedia of Biometrics,
number v. 1. Springer, 2008.

[22] Douglas A. Reynolds. Gaussian mixture models. In Encyclopedia of Biometrics, number
v. 1. Springer, 2009.

[23] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker verification
using adapted gaussian mixture models. In Digital Signal Processing, page 2000, 2000.

[24] A.R. Runnalls. Kullback-leibler approach to gaussian mixture reduction. Aerospace and
Electronic Systems, IEEE Transactions on, 43(3):989 –999, july 2007.

[25] G. Sarkar and G. Saha. Analysis of distance measures for pre-quantization before feature
extraction in automatic speaker recognition. In India Conference (INDICON), 2009
Annual IEEE, pages 1 –4, dec. 2009.

[26] Gourav Sarkar and Goutam Saha. Real time implementation of speaker identification
system with frame picking algorithm. Procedia Computer Science, 2(0):173 – 180, 2010.
Proceedings of the International Conference and Exhibition on Biometrics Technology.

[27] Bing Xiang and T. Berger. Efficient text-independent speaker verification with struc-
tural gaussian mixture models and neural network. Speech and Audio Processing, IEEE
Transactions on, 11(5):447 – 456, sept. 2003.

45



DISTRIBUTION:

1 Prof. Phillip L. De Leon
New Mexico State University
Klipsch School of Elect & Comp Eng
Box 30001, Department 3-O
Las Cruces, New Mexico 88003-8001

1 MS 0429 Tedd Rohwer, 02120

1 MS 0509 Dahlon Chu, 05330

1 MS 0509 Robert Spulak, 05331

1 MS 0519 Greg Haschke, 05332

5 MS 0348 Richard McClanahan, 05332

1 MS 0519 Richard Ormesher, 05332

1 MS 0519 Silpan Patel, 05332

1 MS 0519 Kenneth Plummer, 05332

1 MS 0529 David Wiegandt, 05333

1 MS 0529 Joel Darnold, 05335

1 MS 0348 Doug Mangum, 05350

1 MS 0348 John Moser, 05352

1 MS 0529 David Steele, 05932

1 MS 0899 RIM-Reports Management, 9532 (electronic copy)

46



v1.36




