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Abstract 

The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, 
due to spherical wavefront spreading, atmospheric attenuation, and antenna beam 
illumination.  The antenna beam illumination will depend on antenna pointing.  
Calculations of geometry are complicated by the curved earth, and atmospheric 
refraction.  This report investigates optimizing antenna pointing to maximize the 
minimum SNR across the range swath. 
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Foreword 

This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
authors. 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction & Background 

In this report we concern ourselves with airborne radar systems intending to interrogate 
the earth’s surface.  Examples include Synthetic Aperture Radar (SAR) systems, Ground 
Moving Target Indicator (GMTI) radar systems, Wide Area Search (WAS) radar systems 
(maritime and other), and similar radar systems. 

Such radar systems typically want to interrogate some interval of ranges, termed a “range 
swath”.  However, signal quality, measured in terms of Signal to Noise Ratio (SNR) is 
generally not uniform across any range swath.  An examination of the radar equation 
shows that this is due to several factors, including the following1,2 

1. Elevation antenna beam pattern losses, 

2. Spherical wavefront curvature losses, often termed R4 losses, and 

3. Atmospheric attenuation losses, also generally a function of range. 

These factors conspire with the geometric effects of a curved earth, along with 
atmospheric refraction, to substantially complicate the calculation of how radar echo 
power is a function of range, particularly at long ranges and shallow angles.  Note that 
atmospheric refraction effectively makes antenna boresight calibration range-dependent.  
Even more complicated is calculating an antenna pointing direction that optimizes SNR 
across a range swath, or even maximizes such a range swath given some SNR criteria. 

Many radars ignore one or more of these factors, often simply pointing to some nominal 
center-swath range based on simple geometry and assuming straight-line propagation.  
This might by tolerable for relatively short ranges and narrow swaths, but becomes 
particularly problematic for long-range wide-swath operation. 

Some systems do allow for manual trimming of the antenna pointing to assist target 
detection. 

Other systems seek to mitigate antenna pattern effects by creating an antenna pattern to 
yield constant antenna gain as a function of range.  An example of this is the well-known 
Cosecant Squared antenna pattern.3  However, this comes at the expense of requiring a 
larger antenna aperture size to facilitate the requisite beam shaping.  In addition, such a 
pattern is typically not very ‘adjustable’ if the collection geometry changes. 

Some radar systems employ a Sensitivity Time Control (STC, or other ‘fast automatic 
gain control’.  These features address dynamic range issues, and are not related to 
optimizing SNR. 

In this report, we detail calculations to optimize antenna beam pointing and/or range 
swath given the factors described above.  Optimization is with respect to SNR. 
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2 Models and Metrics 

The purpose of antenna pointing is to bring antenna gain to bear for targets at the ranges 
and directions we want to interrogate.  Antenna pointing is necessarily an angular 
adjustment of the antenna orientation.  Herein this report we concern ourselves with 
choosing an optimum antenna depression angle for the ranges we wish to interrogate. 

We begin by presenting a summary of the relationship between depression angle and 
range for a curved earth and atmospheric refraction. 

Once this relationship is established, we can investigate the combined effects of range 
loss and antenna beam effects on Signal to Noise Ratio (SNR) across a range swath of 
interest, and various optimizations of swath versus SNR reduction. 

2.1 Curved Earth Geometry with Refraction 

The intent here is to derive useable functions that relate depression angle to range, for a 
curved earth and with a refractive atmosphere.  An extensive discussion of refraction is 
given in an earlier report.4 

2.1.1 The Basics 

We shall assume a spherical earth, with the following parameters identified as 

Re = radius of the earth, nominally 6378 km, 
ha = altitude of aircraft, 
hs = altitude of target, 
R = propagation path range from aircraft to surface target, 
e = earth surface angular change, 
d = depression angle at aircraft (positive below horizontal), and 
g = grazing angle at target (positive above horizontal). (1) 

From the earlier report we will presume that atmospheric refraction is adequately 
accounted for by suitably scaling the earth’s radius by a factor 

k = earth radius scale factor. (2) 

We stipulate that the propagation path range is in fact a distance measure along the 
curved propagation path that is not dependent on propagation velocity.  Radar range 
calculation errors due to non-constant velocity of propagation are beyond the scope of 
this report, but will be addressed in a future report. 

If the target surface is at a non-zero altitude above the surface of the spherical earth, then 
the various angles can be calculated from range and heights as 
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where  

gde   . (4) 

Furthermore, range can in turn be calculated from various angles and heights as 
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Note that for such a range to exist, we require depression angle to satisfy 
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The angle for which this is an equality is the minimum depression angle that will still 
yield a path to the target surface.  This defines the radar horizon.  More on this later. 

The arc length along the earth’s surface between nadir and the target is still given by 

    eseese hkRhRd   .  (7) 

Various models for k were given in the earlier report,4 but we shall use an average value 
for k calculated based on an average radius of curvature, specifically calculated as 
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This model may be tailored to trade accuracy versus altitude.  A reasonable set of 
parameters for 0 to 50 kft altitude is 

m 12192 kft 40 bh , and 

65.66bN  N-units. (10) 

In the absence of prior knowledge of these factors, we will assume a value for surface 
refractivity that is average for the continental United States, namely 

Ns = 313 m.  (11) 

Note that k = 1 yields the spherical earth model without any atmospheric refraction, and a 
flat earth is essentially the case where k . 

2.1.2 Radar Horizon 

We identify the radar horizon as the range at which the grazing angle goes to zero.  We 
calculate the radar horizon propagation path range as 

    22 sasasehorizon hhhhhkRR  .  (12) 

The target surface is not visible to the radar beyond this range.  The corresponding 
depression angle is 
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horizond hkR

hkR
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We do note that this calculation for radar horizon does rely on a model for the average 
atmosphere.  We also know that ‘average’ means exactly that, average.  Any given 
atmosphere may depart from this model, and it may be possible to at times see farther 
than the nominal radar horizon.  Consequently, it might be prudent when selecting radar 
parameter constraints to allow operation beyond the nominal radar horizon somewhat.  
That is, we may wish to allow ranges such that 

  horizonhorizon RR  1  , (14) 

where 

horizon  = radar horizon margin factor. (15) 
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A number like horizon  = 0.10 seems reasonable in absence of any other information. 

Furthermore, if we wish to use avgk  for the value for k, then it depends on 

depression/grazing angle.  However, since the radar horizon is expected to be at very 
shallow angles, we may often assume for the calculation of avgk  that the depression 

angle is effectively zero. 

2.1.3 Useable Functions 

Our task here is to define functions that relate depression angle to range.   

Accordingly we define the range-to-angle function as 
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We then also define the angle-to-range function as 

        daesedaesad hkRhkRhkRhhR  2221 cossin,,   , 

  
  (17) 

subject to the constraint  

horizondd ,  .  (18) 

Hidden in these equations is the fact that if we employ avgkk  , then there is an implicit 

dependence of k on depression angle d .  While this works fine for calculating 

 sad hh ,,1  , it is somewhat more problematic for  sa hhR ,, , where d  appears 

on both sides of the equal sign.  Numerical techniques are likely required for best 
accuracy. 

One way to address this is iteratively, noting that avgk  is relatively insensitive to d .  

Our procedure is then the following. 

Step 1. Initialize 0d ,  

Step 2. Use d  to calculate avgk . 

Step 3. Use avgk  to calculate a new  sad hhR ,, . 
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Step 4. If convergence is achieved (the change in d  is sufficiently small),  

then  exit this procedure, 
else  go back to Step 2. 

In practice, a single iteration is often suitably accurate. 

2.1.4 Depression Angle Relative Offset 

Typical radar systems point their antennas based on geometry along, often accounting for 
earth curvature, but ignoring atmospheric refraction.  A useful quantity is then the 
angular offset or bias required to be applied the antenna boresight depression angle from 
the boresight direction otherwise assumed by the radar.  We then define the depression 
bias angle as the difference between the ‘best’ depression angle and the ‘default’ 
depression angle with whatever assumptions the radar otherwise makes.  That is, 

d  = depression bias angle. (19) 

If the radar normally compensates for a curved earth, then the bias angle is calculated as 

   
1

,,,, 
ksasad hhRhhR  = depression bias angle. (20) 

If the radar normally compensates for a flat earth, then the bias angle is calculated as 

    
ksasad hhRhhR ,,,,  = depression bias angle. (21) 

2.1.5 Comments 

We note that to some degree we might be able to perhaps calibrate the refraction by using 
an elevation IFSAR.  For example, by observing the direction of arrival information we 
might discern where the antenna beam center (e.g. monopulse null) falls onto the target 
surface, and calculate refraction from this.  In turn, we might be able to then say 
something about atmospheric characteristics such as humidity, and ultimately other 
characteristics like propagation velocity which might help in range calibration, and 
perhaps an expected atmospheric loss.  This is beyond the scope of this report. 
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2.2 Radar Signal Quality Dependencies 

The principal geometric parameters that influence the SNR of the scene being imaged 
include 

1. The loss due to range variations. 

2. The loss due to atmospheric attenuation 

3. The loss due to antenna illumination function. 

We address these in turn. 

2.2.1 Range Loss 

In general, range affects illumination by two mechanisms.  The first is spherical 
spreading of the wavefront with range, and the second is via atmospheric attenuation.  Of 
these, the spherical spreading is normally dominant.  We identify a normalized gain 
function due to spherical spreading as 

 RGrange  = two-way range gain. (22) 

For a monostatic radar, this can be calculated as1 

 
4





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




R

R
RG ref

range . (23) 

We assume and identify crude properties as 

 RGrange  = 1, when refRR  , and 

 RGrange  increases as range decreases. (24) 

Note that this has the effect of a spatial lowpass filter (with respect to range).  If we 
calculate a specific range loss 

 RGg range , (25) 

then we define the inverse function as 

 
4

1

g

R
gGR ref

range   , (26) 

with the stipulation that R is real and non-negative. 
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2.2.2 Atmospheric Loss 

While not insignificant at long ranges, atmospheric attenuation is more difficult to 
predict. Atmospheric loss models may be found in the literature, including in papers by 
Doerry.5,6   

We define here a function that is a relative loss function, namely 

 
 

1010
refRR

atm RG






 = two-way atmospheric loss, (27) 

where 

  = two-way atmospheric loss rate in dB per unit distance. (28) 

This loss rate is a positive number and depends on atmospheric conditions as well as 
geometry factors.  If we calculate a specific atmospheric loss 

 RGg atm , (29) 

then we define the inverse function as 

   


g
RgGR refatm

101 log10
  . (30) 

This of course assumes that 0 , meaning that there is indeed atmospheric loss. 

We note that a representative value for  in 50% relative humidity for Ku-band at 10 kft 
might be in the neighborhood of 

  = 0.05 dB/km. (31) 

Rain will increase this substantially.  Higher altitude will decrease this loss rate. 

2.2.3 Antenna Beam Loss 

Antenna illumination functions are unique to the electro-mechanical design of the 
antenna.  We identify a generic illumination function with normalized elevation-direction 
dependence as 

 el,antG  = one-way antenna elevation power-gain pattern, (32) 

where 

  = angle from antenna boresight (positive towards nadir). (33) 
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We assume and identify crude properties as 

  10 el,antG , 

   
2

1
12   el,antel,ant GG   for some 12   , such that 112  , and 

 el,antG  is real and non-negative. (34) 

This simply states that  el,antG  has unity maximum power gain, and unity 3 dB width, 

but need not be symmetrical in shape. 

As a practical matter,  el,antG  is merely a model for the real behavior of the antenna.  

As such, the model will usually be chosen to be accurate over some limited interval 
around the boresight of the antenna, and then usually limited to the mainlobe.  
Accordingly, we define the limits of this model with two parameters, 

limita,  = angle above antenna boresight at limit of antenna model, and 

limitb,  = angle below antenna boresight at limit of antenna model. (35) 

Both of these are normalized to a unit beamwidth. 

For the subsequent discussion we reference Figure 1.  The principal relevant geometric 
parameters are identified as 

ah  = radar height, 

sh  = target surface height, 

d,ant  = antenna boresight depression angle, 

0d,n  = near range depression angle, 

0d,f  = far range depression angle, 

g,ant  = antenna boresight grazing angle, 

0g,n  = near range grazing angle, 

0g,f  = far range grazing angle, 

antcr ,0  = reference slant range in direction of antenna boresight,  

0fr  = maximum slant range of interest, and 

0nr  = minimum slant range of interest, 

el,nom  = nominal elevation beamwidth (3 dB) of the antenna. (36) 
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Figure 1.  Geometry definitions for usable antenna beam illumination. 

We define positive depression angles as below the horizontal (towards nadir), and 
positive grazing angles as above the horizontal (towards zenith). 

Generally, the relationship between range and depression/grazing angles is dependent on 
the altitude of the radar and the topography of the scene, and includes effects of earth 
curvature and atmospheric refraction.  That is, range R is a function of depression angle 

d  as modeled in the previous sections. 

With respect to our geometry, the antenna gain function with respect to depression angle 

d  is 










 

el,nom

d,antd
el,antG




 = one-way antenna elevation power-gain pattern. (37) 

For monostatic radar systems, the data from a single pulse will exhibit the square of this 
gain, due to combined effects of transmission and reception. 

Note that this has the effect of a spatial bandpass filter. 

We also observe that other things equal, any particular gain value can typically be 
achieved with at least two different depression angles, one above boresight, and one 
below boresight.  This complicates slightly the calculation of an inverse function. 

If we calculate a specific antenna pattern loss factor as 

 antelGg , , (38) 

then we define the inverse function as having two results, namely 
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 gG antel
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b
1
,

  = the angle below boresight. (39) 

Note that a  is negative, whereas b  is positive.  Implicit are that these angles are within 

the interval where the antenna gain model is valid, that is, both angles are within 
 limitblimita ,, , . 

It is quite likely that a closed form expression is unobtainable for all but the most simple 
antenna gain models.  Consequently, numerical techniques such as iterative techniques 

should be considered.  Using Appendix C, an iterative technique to find  gG antel
a

a
1
,

  

might be as follows. 

Step 1.   Initialize the angle estimate 

limitaa ,)95.0(ˆ   . (40) 

Step 2.   Select sample angles for estimating the derivative 
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Step 3.   Calculate the angle step 
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where the constituent values are 

    gG antel  1,1  , 

     
12

1,2,
1 







 antelantel GG

m , and 

0.1 . (43) 

Step 4.   Calculate the updated angle estimate 11
ˆ  a . 

11
ˆ  a . (44) 
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Step 5. If convergence criteria are met,  

then exit iteration loop assuming aa  ˆ , 

else return to step 2. 

The iterative technique for finding  gG antel
b

b
1
,

  can be similarly derived. 

2.2.3.1 Simple Antenna Model 

For a uniformly illuminated antenna aperture in elevation, we model the elevation beam 
pattern as 

    884.0sinc 2el,antG , (45) 

where 

   
x

x
x


sin

sinc  . (46) 

Limits for this model might be the first null on either side of the mainlobe, that is 

13.1488.01, limita , and 

13.1488.01, limitb . (47) 

2.2.3.2 Simpler Antenna Model 

A somewhat simpler antenna elevation beam pattern is a simple quadratic given by 

    









2
rect21 2 el,antG , (48) 

where 

 


 


else

z
z

0

5.01
rect , (49) 

Limits for this model might be where the gain goes to zero, that is 

2, limita , and 

2, limitb . (50) 
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2.2.3.3 Polynomial Antenna Model 

Some radar systems employ a polynomial model for the antenna gain.  For example, the 
model might be 

  m
M

m
mel,ant cG  




0

, (51) 

where 

mc  = the polynomial coefficients,  

m  = polynomial index, and 
M  = the order of the polynomial. (52) 

Often, 4M  is quite adequate.  Coefficients will be based on a fit to the actual antenna 
pattern. 

Limits for this model will also need to be based on how well the model fits the actual 
antenna pattern.  We simply state here 

limita,  = model limit above boresight, and 

limitb,  = model limit below boresight (towards nadir). (53) 

2.2.3.4 Electronically Steered Array 

We note that for an Electronically Steered Array (ESA) antenna, whether an Active ESA 
(AESA) or a Passive ESA (PESA), the beam pattern depends on depression angle, and 
perhaps even squint angle.  This of course means that the gain function is not adequately 
a simple function of angle off boresight alone, and therefore complicates calculation of 
both  antelG ,  and its inverse(s).  Dealing with this complication is beyond the scope of 

this report. 

Hereafter in this report we will assume a simpler mechanically-steered antenna, and defer 
analysis of ESA systems for a future rainy day. 

2.2.4 Combined Radar Signal Effects Model 

The combined gain due to antenna illumination and range variations is given by 

     RGRGGG atmrange
el,nom

d,antd
el,antd,antcombined

2

d,




















 





 . (54) 

We make several important observations as follows. 
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 The depression angle d  and range R  are related by geometry that takes into 

account earth curvature and refraction, as discussed in an earlier section. 

 Antenna pointing d,ant  clearly influences gain. 

 The maximum gain for any specific range R is in the ‘bent’ boresight direction 
where a refracted ray of length R intersects the target surface.  This is the case 
where dd,ant   . 

 For a specific antenna boresight depression angle d,ant , the maximum combined 

gain across a swath is ‘not’ necessarily in the geometric boresight direction of 
where a ray of length R intersects the target surface, nor is it necessarily in the 
‘bent’ boresight direction where a refracted ray of length R intersects the target 
surface. 

 There is nothing magical about the 3 dB antenna beamwidth.  Useable data can 
be collected from outside this region, as long as the minimum required gain is 
provided. 

For later convenience, we have written the combined gain function as specifically a 
function of depression angle d , but could have just as easily made it a function of slant 

range R.  An example of the combined gain as well as its constituents is shown in  
Figure 2. 

If we calculate a specific combined loss factor as 

 d,antdcombinedGg  , , (55) 

then we define the inverse function as having two results, namely 

 d,antcombined
a

ad gG  ,1
,

  = the depression angle above boresight, and 

 d,antcombined
b

bd gG  ,1
,

  = the depression angle below boresight. (56) 

These are rather difficult to calculate.  The inverse function depends on antenna pointing 
and both grazing angle and range, which are of course related in a fairly complicated 
way.  Essentially, we wish to solve for either ad ,  or bd ,  in the respective equations 

 



- 22 - 

 

0 5 10 15
-40

-30

-20

-10

0

10

20

depression angle - deg.

ga
in

 -
 d

B

 

 

G
el,ant
2

G
range

G
atm

G
combined

 

Figure 2.  Example of combined gain and constituent values for ha=10 kft, hs = 0,  = 0.05 dB/km, 
el,nom = 5 deg, d,ant = 5 deg, and reference range at beam center.  Atmospheric refraction assumes 
average values for the continental United States.  Note that positive angles are towards nadir. 

 

    gRGRGG atmrange
el,nom

d,antad
el,ant 





















 
2

,




, or 

    gRGRGG atmrange
el,nom

d,antbd
el,ant 





















 
2

,




. (57) 

It is expected that numerical techniques will be required to solve these.  Solving these 
with an iterative technique is discussed in Appendix A. 

The remainder of this report seeks to optimize the relationship between antenna pointing 

d,ant  and the swath of ranges that the radar desires to process, that is, some set of ranges 

defined to be between 0nr  and 0fr . 
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2.2.5 Hardware and Software Constraints 

As a practical matter, antenna pointing will be limited to within some set of boundary 
depression angles.  This may be due to hardware gimbal stops in the case of a 
mechanically steered antenna, or due to some signal fidelity requirements in the case of 
an AESA antenna.  We define these limits as 

maxmin d,d,antd,   , (58) 

where 

min,d  = the minimum (most shallow) depression angle limit, and 

max,d  = the maximum (most steep) depression angle limit. (59) 

Later, we will also desire to limit the allowable gain reduction across some range swath 
with respect to the gain at some reference range.  We accordingly define 

minG  = the minimum acceptable combined gain factor. (60) 

This will ultimately place limits on range swath due to antenna characteristics and 
pointing parameters.  That is, we desire generally that 

  mind, GG d,antcombined  for 00 d,nd,antd,f   . (61) 

The ranges that correspond to 0d,f  and 0d,n  define the allowable swath. 

As a final note, we observe that using iterative techniques to solve equations means that 
even with convergence we get answers that are very close, and often good enough, but 
are not exact.  This means that precision is limited.  Consequently, practical calculations 
may need to consider this, and allow for degraded precision, especially where boundary 
conditions apply (e.g. radar horizon, etc.).  We need to be able to deal with “close 
enough”. 
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“It is much more difficult to measure nonperformance than performance.” 
-- Harold S. Geneen  
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3 Optimization Strategies 

There are several different strategies that can be employed in selecting an optimum range 
swath.  These differ in the constraints imposed onto the search, or calculations.  We 
present several in the following sections. 

3.1 Best Swath for Fixed Far Range 

For this modality, the range swath is not fixed, and we desire to aim the antenna in 
elevation such that the minimum gain across the swath is some specified value, but the 
swath is maximized accordingly.  This will occur when the combined gain at near range 
equals the combined gain at far range, and both are acceptable.   

Our inputs will include 

ha = altitude of aircraft, 
hs = altitude of target, and 

desiredfr ,0  = maximum slant range of interest. (62) 

Our constraints are 

minG  = the minimum acceptable combined gain factor, 

min,d  = the minimum (most shallow) depression angle limit, 

max,d  = the maximum (most steep) depression angle limit, 

horizon  = radar horizon margin factor. (63) 

Our assumptions (in the absence of further information) are 

Ns = 313, and 
 = 0.05 dB/km (Ku-band at 10 kft, 50% RH). (64) 

In addition, we have a model for our antenna beam shape that is valid over the interval 
defined by the normalized angles 

limita,  = angle above antenna boresight at limit of antenna model, and 

limitb,  = angle below antenna boresight at limit of antenna model, (65) 

with 

nomel,  = nominal beamwidth of the antenna. (66) 
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Our outputs are the achievable near and far ranges that define the swath, 0nr  and 0fr .  

An ancillary output is the antenna depression angle antd , . 

Although we have stated a desire for the maximum range to be desiredfr ,0 , this may not 

be feasible due to other factors.  Consequently, we need to identify the actual achievable 
far range subject to the constraints 

desiredff rr ,00  , 

  horizonhorizonf Rr  10 , and 

   saantel
a

el,nomdf hhGGr ,,min
1
,min,

1
0

   ,  (67) 

where angle arguments are limited to positive depression angles, and the ranges exist.  In 
addition, we will also want to force a minimum range such that 

   saantel
a

el,nomdf hhGGr ,,min
1
,max,

1
0

   .  (68) 

In the unlikely event that the minimum exceeds the maximum constraint, we will choose 
the minimum constraint. 

With 0fr  now chosen, we may calculate the actual depression angle to this range to be 

 saffd hhr ,,00,  . (69) 

In addition, we now assume that the reference range is 

0fref rR  .  (70) 

This implies that the only element of the combined gain we need to worry about for 
selecting antenna boresight depression angle is due to the antenna beam pattern itself. 

Actual antenna boresight depression angle is then calculated as 

 min
1
,0,, GG antel

a
el,nomfdantd

  .  (71) 

Recall that the sign of  min
1
, GG antel

a   is negative.  This antenna boresight depression 

angle should be within the limits previously identified. 

With antenna boresight depression angle calculated, we now wish to find 0,nd  such that 

 d,antcombined
b

nd GG  ,min
1

0,
 . (72) 
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This is the angle below boresight that yields the minimum acceptable combined gain, 
which is the same as for the far range.  As discussed in earlier sections, a closed form 
solution is generally not at all easy to calculate.  Appendix A discusses an iterative 
technique for calculating this. 

With the near edge angle calculated, we may then calculate the near range itself as 

 sandn hhr ,,0,
1

0  .  (73) 

With 0nr  and 0fr  now calculated, as well as antd , , we are finished. 

Example 

We illustrate these calculations with an example. 

Our inputs and constraints will be 

ha = 20 kft, 
hs = 0, 

desiredfr ,0  = 100 km, 

minG  = 6 dB, and 

horizon  = 0.1. (74) 

Our antenna parameters and constraints will be consistent with a sinc() function pattern, 
with 

min,d  = 5 deg., 

max,d  = 60 deg., 

limita,  = 1.1312,  

limitb,  = 1.1312, and  

nomel,  = 7 degrees. (75) 

Our outputs are then calculated to be 

0fr  = 100 km, 

0nr  = 24.8 km, and
 

antd ,  = 7.37 deg. (76) 
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3.2 Best Pointing for Fixed Swath 

For this modality, the range swath is fixed, and we desire to aim the antenna in elevation 
such that the minimum combined gain over the entire swath is maximized.  We then wish 
to adjust the antenna boresight depression angle to make the combined gain at the near 
and far ranges equal and maximum. 

Our inputs will include 

ha = altitude of aircraft, 
hs = altitude of target, 

desiredfr ,0  far range of swath, and 

desirednr ,0  = near range of swath. (77) 

Our constraints are 

minG  = the minimum acceptable combined gain factor, 

min,d  = the minimum (most shallow) depression angle limit, 

max,d  = the maximum (most steep) depression angle limit, 

horizon  = radar horizon margin factor. (78) 

Our assumptions (in the absence of further information) are 

Ns = 313, and 
 = 0.05 dB/km (Ku-band at 10 kft, 50% RH). (79) 

In addition, we have a model for our antenna beam shape that is valid over the interval 
defined by the normalized angles 

limita,  = angle above antenna boresight at limit of antenna model, and 

limitb,  = angle below antenna boresight at limit of antenna model, (80) 

with 

nomel,  = nominal beamwidth of the antenna. (81) 

Our outputs are the achievable near and far ranges that define the swath, 0nr  and 0fr .  

An additional output is the actual antenna depression angle antd , . 
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Although we have specified near and far ranges, we might ensure that they fall within the 
ranges allowed by antenna pointing limits.  Consequently, we require 

desiredff rr ,00  , 

  horizonhorizonf Rr  10 , and 

   saantel
a

el,nomdf hhGGr ,,min
1
,min,

1
0

   , (82) 

where angle arguments are limited to positive depression angles, and the ranges exist.  In 
addition, we will also want to force a minimum range such that 

   saantel
a

el,nomdf hhGGr ,,min
1
,max,

1
0

   .  (83) 

In the unlikely event that the minimum exceeds the maximum constraint, we will choose 
the minimum constraint. 

We might additionally require that the limits on near range satisfy 

desirednn rr ,00  ,  and 

 sandn hhr ,,min,0,
1

0  , (84) 

where the nearest range is limited by the steepest allowable antenna depression angle 
given as 

 maxmin
1

min,0, , d,combined
b

nd GG   , (85) 

and the reference range for this particular angle calculation is also at the steepest antenna 
depression angle, namely 

 sadref hhR ,,max,
1  .  (86) 

With final edges of the swath now chosen, we may calculate the actual depression angles 
to these edges to be 

 saffd hhr ,,00,  , and 

 sannd hhr ,,00,  . (87) 

In addition, we now also assume that for subsequent calculations, the reference range is 
the far edge of the swath, namely 

0fref rR  .  (88) 
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The task at hand is to find the antenna boresight angle antd ,  that allows the following 

equation to be true, namely 

   d,antd,ncombinedd,antd,fcombined GG  ,, 00  , (89) 

where both are greater than minG , which we will presume is guaranteed during the 
prerequisite swath selection process. 

An iterative technique is presented in Appendix B. 

With 0nr  and 0fr  now specified or calculated, as well as antd , , we are finished. 

Example 

We continue with the example of the previous section, and now refine our swath to the 
desired limits 

desiredfr ,0  = 100 km, and 

desirednr ,0  = 40 km, (90) 

with other parameters the same. 

Our outputs of the procedure in this section are then calculated to be 

0fr  = 100 km, 

0nr  = 40 km, and
 

antd ,  = 5.0 deg. (91) 

Note that the antenna is pointed at its minimum depression angle.  We observe that the 
combined gains at the range swath edges are then 

 d,antd,fcombinedG  ,0  = 0.6 dB, and
 

 d,antd,ncombinedG  ,0  = 11.3 dB. (92) 

Note further that because the antenna depression angle is against a limit, the gains at the 
swath edges are not equal, but both are nevertheless greater than the 6 dB minimum. 

Were it not for the hard limit on antenna depression angle, the optimum antd ,  for these 

conditions would be 3.85 degrees (pointed at the far range), providing 0.6 dB gain 
improvement at the far range.  This is about 0.1 degrees above the geometric angle if 
atmospheric refraction were ignored. 
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3.3 Best Swath for Fixed Center-Beam Range 

For this modality, the range swath is not fixed, and we desire to aim the antenna in 
elevation such that the combined gain is maximum at some specified range.  We then 
wish to maximize swath around this range, but keeping this range centered, and satisfying 
some minimum allowable combined gain reduction. 

Our inputs will include 

ha = altitude of aircraft, 
hs = altitude of target, and 

desiredcr ,0  = desired swath-center slant range of interest. (93) 

Our constraints are 

minG  = the minimum acceptable combined gain factor, 

min,d  = the minimum (most shallow) depression angle limit, 

max,d  = the maximum (most steep) depression angle limit, 

horizon  = radar horizon margin factor. (94) 

Our assumptions (in the absence of further information) are 

Ns = 313, and 
 = 0.05 dB/km (Ku-band at 10 kft, 50% RH). (95) 

In addition, we have a model for our antenna beam shape that is valid over the interval 
defined by the normalized angles 

limita,  = angle above antenna boresight at limit of antenna model, and 

limitb,  = angle below antenna boresight at limit of antenna model, (96) 

with 

nomel,  = nominal beamwidth of the antenna. (97) 

Our outputs are the achievable near and far ranges that define the swath, 0nr  and 0fr .  

An additional output is the actual antenna depression angle antd , . 

Although we have stated a desire for the reference range to be desiredcr ,0 , this may not be 

feasible due to other factors.  Consequently, we need to identify the actual achievable 
center range subject to the constraints 
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desiredcc rr ,00  , 

  horizonhorizonc Rr  10 , and 

 sadc hhr ,,min,
1

0  , (98) 

where angle arguments are limited to positive depression angles below the horizon, and 
the ranges exist.  In addition, we will also want to force a minimum range such that 

 sadc hhr ,,max,
1

0  .  (99) 

In the unlikely event that the minimum exceeds the maximum constraint, we will choose 
the minimum constraint. 

With 0cr  now chosen, we may calculate the actual antenna boresight depression angle to 

this range to be 

 sacantd hhr ,,0,  . (100) 

In addition, we now assume that  

0cref rR  .  (101) 

With antenna boresight depression angle calculated, we now wish to find the limits of 
useable angles as 

 d,antcombined
a

tempfd GG  ,min
1

,0,
 , and 

 d,antcombined
b

tempnd GG  ,min
1

,0,
 , (102) 

where these angles are limited to positive depression angles below the horizon.  These are 
the angles above and below boresight that yields the minimum acceptable combined gain.  
However these are not yet final selections.  As discussed in earlier sections, these angles 
are generally not at all easy to calculate.  An iterative technique for doing so is given in 
Appendix A. 

In the event that convergence is not achieved, or the inverse is otherwise not calculable, 
then we might use one or more of the following default calculations 

2,,0,,0, nomeld,antdefaultfdtempfd   , and 

2,,0,,0, nomeld,antdefaultndtempnd   , (103) 

but again limited by the radar horizon.  With appropriate temporary depression angles 
calculated, we may then calculate the corresponding temporary ranges as 
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 satempfdtempf hhr ,,,0,
1

,0  , and 

 satempndtempn hhr ,,,0,
1

,0  . (104) 

An issue now results from the observation that the reference range 0cr  is not necessarily 

centered between these two temporary ranges. This means that quite possibly, in fact very 
likely 

tempncctempf rrrr ,000,0  . (105) 

With this observation, we now ask “What should be the final near and far ranges?”  We 
offer three reasonable choices as answers to this, as follows. 

1. Offset Swath with Minimum Gain Degradation 

2. Center Beam at Center Swath – Inscribed Swath 

3. Center Beam at Center Swath – Circumscribed Swath 

We examine these in turn.  Whichever we choose, in all cases, with 0nr  and 0fr  

therewith calculated, as well as antd , , we are finished. 

3.3.1 Offset Swath with Minimum Gain Degradation 

In this option we allow the swath to not be centered at 0cr .  Consequently, we choose 

tempnn rr ,00  , and  

tempff rr ,00  . (106) 

3.3.2 Center Beam at Center Swath – Inscribed Swath 

In this option, we insist that the swath is centered at 0cr , and all ranges within the swath 

meet the minimum gain requirement.  Consequently, we choose 

If   tempncctempf rrrr ,000,0  , 

then tempnn rr ,00   , and 000 2 ncf rrr   , 

else tempff rr ,00   , and 000 2 fcn rrr   . (107) 

3.3.3 Center Beam at Center Swath – Circumscribed Swath 

In this option, we insist that the swath is centered at 0cr , and all ranges that meet the 

minimum gain requirement are within the swath.  Consequently, we choose 
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If   tempncctempf rrrr ,000,0  , 

then tempff rr ,00   , and 000 2 fcn rrr  ,  

else tempnn rr ,00   , and 000 2 ncf rrr  . (108) 

Example 

We illustrate these calculations with an example. 

Our inputs and constraints will be 

ha = 20 kft, 
hs = 0, 

desiredcr ,0  = 70 km, 

minG  = 6 dB, and 

horizon  = 0.1. (109) 

Our antenna parameters and constraints will be consistent with a sinc() function pattern, 
with 

min,d  = 5 deg., 

max,d  = 60 deg., 

limita,  = 1.1312,  

limitb,  = 1.1312, and  

nomel,  = 7 degrees. (110) 

Our outputs are then calculated to be 

0cr  = 70 km, 

tempfr ,0  = 91.8 km, 

tempnr ,0  = 31.4 km, and
 

antd ,  = 5.25 deg. (111) 

Specific swath calculations can be made from these parameters as previously indicated. 
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Conclusions 

We repeat the following observations. 

 SNR is affected by spherical wavefront spreading with range, atmospheric 
attenuation, and antenna beam illumination.  Antenna beam illumination is a 
function of antenna boresight pointing. 

 Geometry and trigonometric calculations are complicated by the curved earth, and 
atmospheric refraction of the radar signal. 

 The aforementioned characteristics affect a combined signal gain model. 

 The combined gain model can be used to calculate a maximum swath width that 
meets some minimum gain criteria with respect to a reference range, allowing 
antenna pointing to float. 

 The combined gain model can be used to calculate an optimum antenna pointing 
angle for a fixed range swath. 

 The combined gain model can be used to calculate a maximum swath width that 
meets some minimum gain criteria with respect to a reference range, for a fixed 
antenna pointing angle. 

 Several of the various calculations involved in optimizing swaths and pointing 
require function inversions that require numerical techniques to solve. 

 Several hardware and software limits will also complicate the various 
optimizations. 
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“In business, words are words; explanations are explanations, promises are promises, 
but only performance is reality.” 

-- Harold S. Geneen  
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Appendix A – Calculating Depression Angles for 
Specified Gain 

We desire to calculate a depression angle d  that corresponds to a particular combined 

gain.  That is, we desire to find the depression angle d  that satisfies 

  gG d,antdcombined  , , (A1) 

where g is a constant. 

The nature of this function for values for g of interest is that there are at least two values 
for d  that satisfy this.  We are interested in the first value above the antenna boresight, 

and the first value below the antenna boresight. 

We define the inverse function to be 

 d,antcombined
a

ad gG  ,1
,

  = the depression angle above boresight, and 

 d,antcombined
b

bd gG  ,1
,

  = the depression angle below boresight. (A2) 

These are rather difficult to calculate directly.  The inverse function depends on antenna 
pointing and both depression angle and range, which are of course related in a fairly 
complicated way.  Essentially, we wish to solve for either ad ,  or bd ,  in the respective 

equations 

      gRGRGGG atmrange
el,nom

d,antad
el,antd,antadcombined 




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

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



 


2
,

, ,



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      gRGRGGG atmrange
el,nom

d,antbd
el,antd,antbdcombined 





















 


2
,

, ,



 . (A3) 

The nature of  d,antdcombinedG  ,  is that at the antenna boresight direction, 

 d,antdcombinedG  ,  is decreasing with decreasing d , and increasing with increasing 

d .  Moreover,  d,antdcombinedG  ,  is a fairly smooth function, and even typically 

fairly linear in the interesting neighborhoods where   gG d,antdcombined  , . 

We will use this to advantage in an iterative technique to solve for either ad ,  or bd , .  

The basics of the iterative technique that we will use are given in Appendix C. 
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Above Boresight 

The key to convergence to ad ,  is to start with a good initial guess.  Recall that we 

generally expect a monotonic slope for  d,antcombinedG  ,  over the interval 

 d,antad  ,, , and indeed somewhat beyond in both directions.  Consequently, we can 

start with something near the edge of the useful beam, namely an initial estimate of 

  limitael,nomd,antad ,, 95.0ˆ   . (A4) 

We must ensure that all new depression angle estimates remain within the valid interval 
of the antenna model and perhaps even on the correct side of boresight. In addition, it 
would be prudent to place a limit on the maximum number of iterations, and define 
convergence to be perhaps within 10% of the desired gain value.   

These are combined in the iterative procedure given as follows. 

Step 1. First we check if the answer is even within the limits of the antenna beam 
model by calculating and checking the gain at the edge of the antenna 
model, namely 

If d,horizonlimitael,nomd,ant   , , and  

    gG d,antlimitael,nomd,antcombined   ,, , 

then we assume limitael,nomd,antad ,,   , and we are finished, 

else we go on to Step 2. (A5) 

Step 2.  Initialize the seed angle to an angle near the edge of the antenna beam 
model, limited by the horizon, as 

  d,horizonlimitael,nomd,antad  ,95.0maxˆ ,,  ,  (A6) 

and exit criteria 

maxN  = maximum number of iterations, and 

econvergencS  = convergence threshold. (A7) 

Step 3.  Calculate the sample points and update parameters as 

ad ,1 ̂  , 

2012 el,nom  , a reasonable offset, 

maxmax,1 Nel,nom  , a reasonable maximum step size, and 

1 . (A8) 
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Step 4.  Calculate the step 

 
 
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1
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mmm
, (A9) 

where the constituent values are 

     
12

12
1

,,








 d,antcombinedd,antcombined GG
m ,  

    gG d,antcombined   ,11 . (A10) 

Step 5.  Calculate the updated estimate,  

11,ˆ  ad , (A11) 

and constrain it to 

 d,horizonlimitael,nomd,antadad  ,,ˆmaxˆ ,,,   , and 

 d,antadad  ,ˆminˆ ,,  . (A12) 

Step 6.  Check on exit criteria, which we choose to be when the combined gain is 
perhaps close enough to the desired value, that is 

If   econvergencd,antadcombined SgG 1,ˆ ,  , 

then  we are finished, and we assume adad ,, ̂  , 

else if we have exceeded the maximum number of iterations, 
then proceed to Step 7. 
else  go back to Step 3. (A13) 

Step 7.  In the event of failed convergence, decide if we still have a useable answer 

If   gG d,antadcombined  ,ˆ , , 

then  we are finished, and we assume adad ,, ̂  , 

else  we have failed to achieve a useable answer, and  
  we finish with a default assignment 2, el,nomd,antad   .  

   (A14) 
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Below Boresight 

As with the ‘Above Boresight’ case, the key to convergence to bd ,  is to start with a 

good initial guess.  However, we do expect to not have a monotonic slope for 
 d,antcombinedG  ,  over the interval  bdd,ant ,, . Therefore, our initial guess needs to 

be far enough beyond the ‘hump’ so that the combined gain is monotonic between the 
initial guess and the actual angle bd , .  Consequently, we can start with something near 

the edge of the useful beam, namely an initial estimate of 

  limitbel,nomd,antnd ,0, 95.0ˆ   . (A15) 

We must ensure that all new depression angle estimates remain within the valid interval 
of the antenna model and perhaps even on the correct side of boresight. In addition, it 
would be prudent to place a limit on the maximum number of iterations, and define 
convergence to be perhaps within 10% of the desired gain value.   

These are combined in the iterative procedure given as follows. 

Step 1.  First we check if the answer is even within the limits of the antenna beam 
model by calculating and checking the gain at the edge of the antenna 
model, namely 

If   min, , GG d,antlimitbel,nomd,antcombined   , 

then we assume limitbel,nomd,antnd ,0,   , and we are finished, 

else we go on to Step 2. (A16) 

Step 2.  Initialize the seed angle to an angle near the edge of the antenna beam 
model as 

  limitbel,nomd,antnd ,0, 95.0ˆ   ,  (A17) 

and exit criteria 

maxN  = maximum number of iterations, and 

econvergencS  = convergence threshold. (A18) 

Step 3.  Calculate the sample points and update parameters as 

0,1 ˆ nd  , 

2012 el,nom  , a reasonable offset, 
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maxmax,1 Nel,nom  , a reasonable maximum step size, and 

1 . (A19) 

Step 4.  Calculate the step 
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, (A20) 

where the constituent values are 

     
12

12
1

,,








 d,antcombinedd,antcombined GG

m ,  

    gG d,antcombined   ,11 . (A21) 

Step 5.  Calculate the updated estimate,  

11,ˆ  bd , (A22) 

and constrain it to 

 limitbel,nomd,antbdbd ,,, ,ˆminˆ   , and 

 d,antbdbd  ,ˆmaxˆ ,,  . (A23) 

Step 6.  Check on exit criteria, which we choose to be when the combined gain is 
perhaps close enough to the desired value, that is 

If   econvergencd,antbdcombined SgG 1,ˆ ,  , 

then  we are finished, and we assume bdbd ,, ̂  , 

else if we have exceeded the maximum number of iterations, 
then proceed to Step 7. 
else  go back to Step 3. (A24) 

Step 7.  In the event of failed convergence, decide if we still have a useable answer 

If   gG d,antbdcombined  ,ˆ , , 

then  we are finished, and we assume bdbd ,, ̂  , 

else  we have failed to achieve a useable answer, and  
  we finish with a default assignment 2, el,nomd,antbd   .  

   (A25) 
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"Everything depends upon execution; having just a vision is no solution."  
-- Stephen Sondheim  
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Appendix B – Calculating Depression Angle for Equal 
Gain at Swath Edges 

We desire to find the single antenna boresight angle antd ,  that allows the following 

equation to be true, namely 

   d,antd,ncombinedd,antd,fcombined GG  ,, 00  . (B1) 

To solve this numerically, we create a new error function that is overtly dependent on 

antd ,  and write this as 

     d,antd,ncombinedd,antd,fcombinedantd GG  ,, 00,  . (B2) 

The task at hand is to find the antd ,  that minimizes  antd , , ideally allowing 

  0, antd , (B3) 

acknowledging that real antenna pointing limits might not allow us to achieve perfect 
equality. 

We must ensure that all new depression angle estimates remain within the valid interval 
of acceptable angles. In addition, it would be prudent to place a limit on the maximum 
number of iterations, and define convergence to be gains perhaps within 10% of each 
other.   

An iterative solution might be calculated as follows 

Step 1. Select an initial antenna depression angle as perhaps the midpoint of the 
two swath edges 

2
ˆ 00

,
d,nd,f

antd





 , (B4) 

and exit criteria 

maxN  = maximum number of iterations,  

econvergencS  = convergence threshold, and 

minG  = minimum tolerable gain. (B5) 
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Step 2. Calculate the sample points and update parameters as 

antd ,1 ̂  , 

2012 el,nom  , a reasonable offset, 

maxmax,1 Nel,nom  , a reasonable maximum step size, and 

1 . (B6) 

Step 3.   Calculate the step 
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, (B7) 

where the constituent values are 

     
12

12
1 





m ,  

     10101 ,,  d,ncombinedd,fcombined GG  , and 

     20202 ,,  d,ncombinedd,fcombined GG  . (B8) 

Step 4. Calculate the updated estimate 11,ˆ  antd . 

11,ˆ  antd , (B9) 

and constrain it to with pointing limits, and swath edge limits, namely 

max,,min, ˆ dantdd   , and if additionally possible 

0,,0, ˆ ndantdfd   . (B10) 

Step 5. Check on exit criteria, which we choose to be when the respective 
combined gains are close enough to each other, that is 

If     econvergencd,antd,ncombinedd,antd,fcombined SGG 1ˆ,ˆ, 00  , 

then  we are finished, and we assume antdantd ,, ̂  , 

else if we have exceeded the maximum number of iterations, 
then proceed to Step 6. 
else  go back to Step 2. (B11) 
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Step 6. In the event of failed convergence, decide if we still have a useable answer 

If   min0 ˆ, GG d,antd,fcombined   and   min0 ˆ, GG d,antd,ncombined  , 

then  we are finished, and we assume antdantd ,, ̂  , 

else  we have failed to achieve a useable answer, and  
  we finish with a default assignment   200 d,nd,fd,ant   .  

   (B12) 

 



- 46 - 

 

 

 

 

 

 

 

 

 

 

 

 

"To aim is not enough, you must hit!” 
--  German Proverb 
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Appendix C – Solving Equations with Basic Iterative 
Calculations 

Consider an equation where a not quite arbitrary function is set equal to some constant, as 
in the equation 

  fF  , (C1) 

where 

 F  = not quite arbitrary function of  , 
  = the independent argument within the domain of the function, and 

f = a constant within the range of  F . (C2) 

The inverse function is described as 

 fF 1 . (C3) 

When we are unable to find a closed-form solution for  fF 1 , then iterative techniques 
might get us arbitrarily close. 

We stipulate that over the domain of interest,  F  is smooth and monotonic.  That is 

not to say that  F  is entirely smooth and monotonic, but rather that  F  is smooth 
and monotonic over some limited interval of   in which we will search for an answer. 

To facilitate the development, we create a new error function.  That is 

    fF   . (C4) 

We desire to find the value for   which causes the error function to equal zero, that is, 

some specific 0  that causes 

    000  fF  . (C5) 

Consider two seed values for   in the vicinity of the solution, and the respective error 
function values, that is 

 1  = first function point, and 

 2  = second function point. (C6) 

If these values are sufficiently close together, then we may estimate the slope of the 
function in this region as 
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In general, the slope  1m  may be of either sign. 

If the function is sufficiently linear in the vicinity of the solution, then we can estimate a 
value for 0  that is closer to the solution.  We do this by calculating 

 
 1

1
10ˆ





m

 . (C8) 

More generally, we calculate 

110ˆ   , (C9) 

where 

 
 1

1
1 


m

  = the step from 1  to the estimate 0̂ . (C10) 

The iteration is accomplished by subsequent to this calculation, updating 01 ̂  , 

selecting a new 2 , and repeating to find a new 0̂ .  This is repeated until some exit 

criterion is met.  This is detailed in the following procedure 

Step 1. Select an initial 0̂ . 

Step 2. Select 01 ̂   and accordingly a 2 . 

Step 3. Calculate 1 . 

Step 4. Calculate the new estimate 110ˆ   . 

Step 5. If convergence criteria is met,  
then exit iteration loop, 
else return to step 2. 

The update equation given above attempts to jump to the answer in a single iteration.  In 
attempting to do so, it is fairly sensitive to nonlinearities in the vicinity of the solution as 
well as seed values.  This sensitivity can be reduced at the expense of slower convergence 
by introducing a convergence factor, and letting 
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 
 1

1
1 


m

 , (C11) 

where 

 = convergence factor, with typically 10   . (C12) 

We might also employ heuristics that adjust  as a function of something, like perhaps 
even iteration number. 

Another technique might be to limit the step size 1 .  For example, we might calculate 
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, (C13) 

where 

max,1  = the maximum allowable step size. (C14) 

A reasonable step size limit might be one guaranteed to keep 0̂  in the same interval of 

  such that there is no slope change in between  0̂F  and  0F . 

Additionally, we stipulate that heuristics might be developed and implemented that limit 
the magnitude of  1m , 0̂ , or both.   
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"Performance, and performance alone, dictates the predator in any food chain."  
-- SEAL Team saying 
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