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Abstract 

The earth isn’t flat, and radar beams don’t travel straight. This becomes more noticeable 
as range increases, particularly at shallow depression/grazing angles. This report explores 
models for characterizing this behavior. 
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Foreword 

This report is an updated and enhanced version of a previous limited distribution report.1  
The distribution limitation of the earlier report was limited to “Internal Distribution” 
merely because of the publication vehicle being an Internal Memorandum, chosen at the 
time arbitrarily, with no other particular reason for restricting its Unlimited Release. 

This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
authors. 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1 Introduction 

The question that we ultimately seek to answer is “To see a given range, or range swath, 
just where exactly do we point the antenna?” Furthermore we ask “Just what exactly is 
the grazing angle at the target?” 

The typical assumption for many radar systems is that the earth is sufficiently flat so that 
the depression angle at the aircraft is the same as the grazing angle at the target. While 
this isn’t too bad for relatively low-flying aircraft and relatively near-range geometries, it 
falls apart as ranges approach the radar horizon from higher altitudes.  In space it is 
imperative to account for earth curvature. 

Ultimately, we expect the utility of this analysis to be in facilitating antenna pointing to 
optimize radar echo Signal-to-Noise Ratio (SNR) for a desired range swath, particularly 
at long ranges and shallow depression angles.  Herein we concern ourselves strictly with 
the refraction and curved earth phenomena.  Application to optimizing SNR for a 
particular range swath will be deferred to a future report. 

Another aspect of refraction is its influence on radar echo timing, and ultimately ranging 
accuracy via the velocity of propagation.  This aspect is beyond the scope of this report 
and will be deferred to a subsequent report. 
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2 The Basic Equations 

The modifications to geometry and trigonometry equations for including earth curvature 
aren’t too bad, especially when we consider the earth as spherical in nature, which is 
reasonable for the task at hand. Consider the situation in Figure 1. Parameters are defined 
as 

Re = radius of the earth, nominally 6378 km, 
ha = altitude of aircraft, 
R = range from aircraft to surface target, 
e = earth surface angular change, 
d = depression angle at aircraft (positive below horizontal), and 
g = grazing angle at target (positive above horizontal). (1) 

 

 

Figure 1.  Spherical earth geometry. 
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2.1 Line-of-sight Propagation 

Finding the appropriate angles from the various distance measures is an exercise in the 
application of the Law of Cosines for planar triangles. 

Assuming that propagation is line-of-sight, the appropriate angles are calculated to be 
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In addition, we know that for this trigonometry 

 gde   . (3) 

Furthermore, the range R can be calculated as 

    daeedae hRRhRR  222 cossin  , or 

222 2sinsin aaegege hhRRRR   . (4) 

The arc length along the earth’s surface between nadir and the target is given by 

eeRd  . (5) 

The presumption for all of this, of course, is that the radar beam propagates along the 
line-of-sight from aircraft to target. Unfortunately, this is wrong, or at best not quite right. 

A secondary presumption here is that the earth is spherical. This is also not strictly 
correct, but is good enough for the purposes of this report. It should be noted that typical 
radar systems presume an ellipsoidal earth for navigation and pointing, but with line-of-
sight propagation also for pointing the antenna. 
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2.2 Non-line-of-sight Propagation 

The atmosphere is not homogeneous and usually causes the radar energy to bend towards 
the earth, much like a lens. This refraction allows the radar to ‘see’ beyond the horizon 
somewhat. A common ‘trick’ is to account for this by presuming the earth possessing a 
larger radius than it really has, by some factor k.  Often a factor of k = 4/3 is used.  
Consequently, depression and grazing angles are calculated as 
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Note that k = 4/3 is merely a convenient approximation, and that the perfect value for k 
will change somewhat with altitude, atmospheric conditions, frequency, etc.2  Note also 
that a flat earth is essentially the case where k . 

The propagation path range can be estimated from the angles as 

      daeedae hkRkRhkRR  222 cossin  , or 

  222 2sinsin aaegege hhkRkRkRR   . (7) 

We now define the increased earth-radius model earth-radius angular change as 

gde   , (8) 

and note that  
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We will assume that the surface distance of the increased earth-radius model is 
reasonably and acceptably equivalent to that of the actual earth-radius model.  
Consequently, the arc length along the earth’s surface between nadir and the target is 
given by 

eekRd  . (10) 
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2.3 Elevated Target Surface 

If the target surface is at a non-zero altitude above the surface of the spherical earth, then 
the equations are modified to 
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where hs = target surface altitude, and as before 

gde   . (12) 

Furthermore, 

      daesedae hkRhkRhkRR  222 cossin  , or 

        222 2sinsin sasasegsegse hhhhhkRhkRhkRR   .   

  (13) 

The arc length along the earth’s surface between nadir and the target, at the target 
altitude, is now given by 

  ese hkRd  .  (14) 
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2.4 The Radar Horizon 

The radar horizon is defined as that propagation path range R that yields a grazing angle 
0g .  If we assume an elevated target surface with height sh , then 

     aesasasehorizon hkRhhhhhkRR 22 2  . (15) 

The approximation is for aircraft altitudes much larger than target surface altitude.  Note 

that the propagation path range to the radar horizon will vary as nearly k . This 
equation is plotted for a  k = 4/3 earth model, with 0sh , in Figure 2. 

The corresponding depression angle is 
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Figure 2.  Radar horizon vs. altitude for 4/3 earth model. 
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2.5 Examples 

Consider a sea-level target as seen from an airborne radar at 10 kft altitude.  Figure 3 
plots the depression angle and grazing angle out to the radar horizon. We note that at the 
radar horizon, the 4/3 earth model’s depression angle differs from the flat earth model’s 
depression angle by about 0.8o, and differs from the geometric depression angle by only 
about 0.25o. At 10 km, these differences are 0.03o

 and 0.01o
 respectively. 

Consider a sea-level target as seen from an airborne radar at 25 kft altitude.  Figure 4 
plots the depression angle and grazing angle out to the radar horizon. We note that at the 
radar horizon, the 4/3 earth model’s depression angle differs from the flat earth model’s 
depression angle by about 1.2o, and differs from the geometric depression angle by only 
about 0.4o. 

Now consider a sea-level target as seen from an airborne radar at 65 kft altitude.  Figure 5 
plots the depression angle and grazing angle out to the radar horizon. For this geometry, 
at the radar horizon, the 4/3 earth model’s depression angle differs from the flat earth 
model’s depression angle by about 1.95o, and differs from the geometric depression angle 
by only about 0.65o. 
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Figure 3.  Depression and grazing angles vs. range from 10 kft altitude. 
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Figure 4.  Depression and grazing angles vs. range from 25 kft altitude. 
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Figure 5.  Depression and grazing angles vs. range from 65 kft altitude. 
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3 More on Refractivity 

A common rule of thumb is that atmospheric refractivity is taken care of by k = 4/3. 
While this is useful, it is sort of a ballpark, back-of-the-envelope, squinty-eyed, only sort-
of-ok, approximation.  It stems from the approximation that the refraction index of the 
atmosphere is linearly dependent on altitude h with a constant gradient of about 39.2 x 
10-9

 m-1. While reasonable for low altitudes, this isn’t quite good enough for typical 
airborne radar altitudes, not adequately taking into account atmospheric variations and 
corresponding altitude effects. 

We reasonably conclude “There has got to be a better way.” 

3.1 Refraction vs. Altitude 

What we need first is a better appreciation for the effects of the atmosphere, that is, a 
model for refractivity as a function of atmospheric parameters, including altitude.  We 
offer as general background references a paper by Bean,3 and a National Bureau of 
Standards Monograph by Bean and Dutton.4 

Much has been written in the literature about refraction in the atmosphere for microwave 
signals.  We begin by noting that the index of refraction is often described in terms of N-
units, where 

 6101  Nn   = index of refraction proper, and 
N = measure of refractivity in N-units. (17) 

Smith and Weintraub5 present the relationship of refraction at any particular altitude as a 
function of atmospheric constituents and their respective partial pressure, temperature, 
etc.  Bean and Thayer6 offer a model of how refractivity changes with altitude.  In their 
model, nature of refractivity is such that on the average it has a fairly linear height 
gradient to about 1 km above ground, then decays exponentially beyond that.  Below an 
altitude of 9 km, the refractivity depends on surface conditions, which varies with region, 
season, time of day, etc.  Above 9 km, the refractivity is relatively surface-condition 
independent.  We write their segmented model’s dependence of refractivity on altitude as 
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where 

Ns = a measure of refractivity in N-units at the surface, 
N1 = a measure of refractivity in N-units at 1000 m above the surface, 

N  = refractivity linear decay constant in N-units per meter, and 
H = refractivity exponential decay constant in meters.  (19) 

A minor point is that in this model, height h is with respect to mean sea level.  Bean and 
Thayer offer that the refractivity decay constants can be calculated by 

sNeN 005577.000732.0  , and 



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
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105
ln

8000

1N

h
H s  . (20) 

Note that the model for height dependence depends pretty much on surface refractivity.  
We stress that this is an average model, stipulating that any given atmospheric column 
might contain significant departures from this, including sharp gradients.7  Furthermore, 
optimal calculations for decay constants will vary somewhat regionally. 

Surface refractivity varies regionally, and with season and time of day.  Various 
publications by Bean,3,8 Bean and Dutten,4 and Bean et al.,9 show maps that even in the 
continental US, surface refractivity Ns varies from less than 250 in the mountain west 
during dry months to over 400 along the south Texas coast in the summer months.  An 
average value for Ns for the continental US is given by Bean as 313.3  Altshuler10 reports 
that his data shows that “the average global surface refractivity is 324.8 N-units and that 
the standard deviation of [his] sample is 30.1 N-units.”  Bean and Thayer’s segmented 
model is plotted for several surface refractivity values in Figure 6. 

Bean and Thayer also propose a somewhat simpler model for refractivity versus height as 
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They stipulate “This model of atmospheric refractivity is a close representation of the 
average refractivity structure within the first 3 km.”  We note, however, that at 30 kft and 
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for 400sN  this model differs from the earlier segmented model by 30 N-units.  We 

postulate that a closer approximation over a larger range of altitudes can be found by 
giving up some accuracy at lower altitudes to gain accuracy at higher altitudes. 

We propose to modify the simpler model somewhat, and offer this as 
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In this model, a breakpoint is chosen above 9 km altitude to which the curves converge 
and pass through.  This point is chosen to limit the error between this model and the 
segmented Bean and Thayer model over some desired range of altitudes.  The choice of 
this point will need to be cognizant of some limited altitude range of interest.  For 
example, over an altitude range of 0 to 50 kft, we might choose 

m 12192 kft 40 bh , and 

65.66bN  N-units. (25) 

If we were interested in only a range of altitudes between 0 and 30 kft, then we might 
choose 

m 9144 kft 30 bh , and 

9.102bN  N-units. (26) 

We do not imply that these models are not useful outside of the ranges of interest used in 
selecting their parameters, and make no comments on the significance of errors at various 
altitudes.  Furthermore, we stipulate that other factors might at times drive adjustment of 
these parameters.  Nevertheless, we plot the relative error between the simpler Bean and 
Thayer and the earlier segmented Bean and Thayer model, as well as the relative error 
between this new simpler model (designed for the altitude range 0-50 kft) and the earlier 
segmented Bean and Thayer model, in Figure 7.  Note that the new simpler model loses 
some accuracy at the lowest altitudes compared to the simpler Bean and Thayer model, 
but gains especially above 6 kft or so.  

Note that all of this also ignores ‘ducting’, horizontal gradients, boundary layers, and 
other fine-structure atmospheric phenomena.  Furthermore, space-based radars need to 
include other refraction sources, such as the ionosphere. 
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Figure 6.  Bean and Thayer’s segmented refractivity versus height model. 
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Figure 7.  Relative error between simpler models and the segmented Bean and Thayer model, for 
various surface refractivity values. 
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3.2 Effective Earth’s Radius Models 

The radius of curvature for the refraction of a ray is given by11
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where 

= instantaneous depression/grazing angle.  (28) 

For the simplified exponential model this leads to the expression for the radius of 
curvature as 
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We know that depends on altitude, but we also know that it doesn’t vary too much 
around some nominal value from aircraft to target. Consequently, this expression can be 
reasonably simplified to either of the following approximations 
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Now, the instantaneous value for k is calculated from the instantaneous value of as 
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What we really need, however, is some single average value for k.  Once we have this 
value for k, we can use the relationships between range, depression angle, and grazing 
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angle presented in earlier sections.  We specifically recall the calculation of depression 
and grazing angles from propagation path range, repeated here as 
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We do note that these angle equations depend on k, which in turn depends on radius of 
curvature , which in turn depends on the angles again.  Since we often will desire to 
calculate these angles, or some other geometric parameter based on them, an acceptable 
solution for k may need to accommodate this.   

One option for the calculation of k is to assume that in the absence of any further 
information, we simply assume a negligibly small angle that allows substituting the 
cosine term with unity for the calculation of radius of curvature .  This, of course, will 
induce ever larger errors as the angles become more steep.  The tolerance to these errors 
will have to be assessed. 

Alternately, we may iterate between calculating k and the angle, until convergence to a 
mutually satisfactory solution. 

3.2.1 The Constant 4/3 Earth Model 

At lower altitudes, the segmented Bean and Thayer model degenerates to merely a linear 
dependence of refractivity on altitude.  Near the surface, for a value of Ns = 300, we 
calculate 

3

4
k .  (33) 

While this is an oft-quoted approximation, it was developed for terrestrial essentially 
ground-to-ground transmission, and not necessarily airborne radar systems, or radar 
systems designed for airborne targets. 

But even for this atmosphere, for significant h and g , and non-nominal Ns, the 

approximation k = 4/3 becomes less and less tenable. 
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3.2.2 Estimation Method 1  Average k 

As stated, the instantaneous value for k is calculated as 

 
b

s

H

hh

b

egse
e

H

RNR
k 
































cos10

1

1

1

1

6
.  (34) 

Our first idea is to compute an average value for k, over the altitudes of propagation, as 
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This expression is certainly more complicated, but at least we have a dependence on 
aircraft height and surface atmospheric conditions. The question remains “How good is 
it?” We defer the answer to this for the moment. 

3.2.3 Estimation Method 2  Average Radius of Curvature 

If instead we first calculate the average radius of curvature as 
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we can then use it to calculate 
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Here we have a similar dependence on aircraft height and surface atmospheric conditions.  
We still have the question “How good is it?” which we also defer. 

These equations for kavg are plotted for 0sh , and the sN = 313 in Figure 8. 
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Figure 8.  Estimate of variation of kavg with aircraft altitude. 

While these two methods give different results, they nevertheless are very similar. 
Clearly, as altitude increases, both show that the refraction is less, that is, the radius of 
ray curvature increases and bending decreases, resulting in less modification to the 
earth’s radius. This is good. 

We still, however, reasonably ask “Is this any better than the 4/3 earth model?” and “By 
how much?” We also want to know “Is it worth it?” 

3.3 Numerical Integration 

Solving for the exact bending vs. range is pretty tough, even if the atmosphere is known, 
and is typically handled by numerical integration. Following the development in Bean 
and Dutton, for a spherically stratified atmosphere, we may state Snell’s law for polar 
coordinates with the equation 
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where is the instantaneous elevation angle, and h is the instantaneous altitude above 
nominal earth’s radius.  We observe that there is a term that is due to the spherical earth, 
and a term that is due to refraction itself. 
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By integrating both sides, we may arrive at the expression  
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Completing the integration of the refractivity term may require numerical integration, 
especially for the most accurate models.   Once completed, however, we have a 
relationship between dcos  and gcos .  This is done using the segmented Bean and 

Thayer model in Figure 9, which plots the difference in depression angle and grazing 
angle as a function of height for various reference atmospheres and grazing angles.  Note 
that from the plot we see that the worst conditions are for the shallowest grazing angles.  
Clearly some of this is due to the curved earth, and some due to refraction. 

If we use the single exponential model for refractivity, this yields 
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These equations may be combined to yield the relationship 
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While this neatly relates depression angle to grazing angle as a function of altitude, it 
relates neither one to the actual propagation path range. 

We remind ourselves that our aim is to calculate grazing angle and depression angle for a 
specified range, and given radar and target heights.  We state here the results from Bean 
and Dutton4 that the “slant range”, which is actually the range (line integral) along the 
curved propagation path, is calculated from the instantaneous angles as 
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Figure 9.  Relationship of depression angle to grazing angle, as function of aircraft altitude for 
various grazing angles and atmospheres.  Curves are labeled with grazing angle in degrees. 

 

where, most precisely the instantaneous angle is related to the refractivity versus height 
and earth curvature as 
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Of course we actually want to begin with radar height, target height, and slant range, and 
therefrom calculate grazing angle and depression angle. 

Furthermore, the ground distance at the altitude of the target is calculated as 
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3.3.1 Iterative Numerical Integration 

The above development allows us to begin with a grazing angle, and therewith calculate a 
range and depression angle, albeit with numerical integration techniques to achieve the 
greatest accuracy.  We in fact desire to begin with range and respective radar and target 
altitudes, and therefrom calculate the depression and grazing angles.   

One way to do this is to begin with the proper input altitudes, and guess at a set of 
grazing angles in the neighborhood of the final answer, and calculate corresponding 
ranges.  With such a set, we can then interpolate to the final answer. 

Another way to converge arbitrarily close to the final answer is with iterative techniques.  
We present as example the following algorithm, wherein we will use numerical 
integration to calculate a relationship between grazing angle and depression angle, and 
then more numerical integration to calculate range along the curved ray path.   

Step 1.  

We enter the calculations with input values for 

sN  = surface refractivity, 

ah  = radar altitude, 

sh  = target altitude, and 

R  = desired propagation path range. (45) 

We also select a model for refractivity as a function of height, that is 

 hN  = model of refractivity as a function of altitude. (46) 

We also select some iteration parameters as 

g  = grazing angle offset for derivative estimation, and 

  = convergence parameter. 

Step 2. 

We estimate an initial grazing angle as 
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where k is estimated in some fashion, perhaps from either method 1 or method 2.  Even a 
constant in the range of 1.0 to 1.3 should work. 
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Step 3. 

Calculate the ratio of cosines as a function of altitude as 
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This calculation is the first numerical integration. 

Step 4. 

We calculate the instantaneous ray angles as a function of altitude as 
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Furthermore, we calculate the corresponding ranges as 
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This group is the second numerical integration.  This allows us to calculate the iteration 
parameters as 

g

RR
m




 12 , and  

RR  0 . (51) 

Step 5. 

We now update our estimate of the grazing angle as 

mgg
  ˆˆ . (52) 
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Step 6. 

With the new estimate for grazing angle we need to test for convergence. 

If we have converged to a solution,  
then move forward to Step 7, 
else return to Step 4. 

A reasonable convergence criterion is that the range error  is less than some acceptable 
limit. 

Step 7. 

The final step is to calculate the depression angle at the radar as 

   gad hG  ˆcosˆcos  . (53) 

This ends the procedure. 

At this point we should have converged to a grazing angle, and therewith a corresponding 
depression angle, for the input ranges and altitudes/heights. 

3.3.2 Iterative Numerical Integration with Approximations 

The previous algorithm using multiple numerical integrations can be modified somewhat 
by substituting a model for the refractivity profile that allows a closed form integration in 
the calculation of the ratio of cosines in step 3.  Using a simple exponential model, this 
allows the substitution of the following for step 3. 

Step 3. 

Calculate the ratio of cosines as a function of altitude as 

   







































b

s

H

hh

s

s

e

se

eN

N

hR

hR
hG

6

6

101

101
.  (54) 

This calculation is an approximation to the first numerical integration. 
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3.4 A Comparison of Models and Methods 

In this section we compare the several techniques discussed previously. We recall the 
different models as follows. 

Iterative numerical integration 

This technique will be our baseline or truth to which we compare the other 
techniques.  It uses the segmented model for refractivity versus height proposed 
by Bean and Thayer.  It then iterates to find the grazing angle best suited to the 
input propagation path range, and calculates depression angle from the result. 

Iterative numerical integration with approximation 

This is identical to the iterative numerical integration technique except that a 
simple single-exponential model is used for refractivity versus height.  
Specifically, we will use the simple model with a convergence point at 40 kft. 

Geometric earth model 

This model presumes no refraction at all. It merely assumes straight-line 
propagation over a spherical earth. This is (nearly) the present model presumed by 
many radars for pointing the antenna. 

4/3 earth model 

This is the common technique initially discussed whereby refraction is 
compensated by presuming a geometry where the earth’s radius is increased  
by a constant factor  k = 4/3. 

Method 1  average k – Bean and Thayer simple model 

This was discussed as method 1.  Specifically, for this case, we will use the 
simple single-exponential model proposed by Bean and Thayer for refractivity as 
a function of altitude, and calculate an average value of k that corresponds to this. 

Method 1  average k 

This was discussed as method 1.  Specifically, for this case, we will use the 
simple single-exponential model for refractivity as a function of altitude, but with 
the convergence point at 40 kft, and calculate an average value of k that 
corresponds to this. 

Method 2  Average radius of curvature 

This was discussed as method 2.  It averages the refraction radius of curvature 
over altitude using the simple single-exponential model for refractivity as a 
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function of altitude, but with the convergence point at 40 kft, and then uses the 
average curvature to calculate an appropriate earth radius factor k. 

The next several figures show the error in computed depression angle for a variety of 
atmospheres and propagation path ranges.  Several points become obvious. 

• Depression angle inaccuracies are worse for shallow grazing angles. 

• The 4/3 earth model is only better than assuming no refraction at all for steeper 
depression angles, lower altitudes, and more refractive atmospheric conditions. 
Especially at the higher altitudes and shallower depression angles, the 4/3 earth 
model yields a worse depression angle estimate. 

• The average radius of curvature model (method 2) is generally better than the 
average k model (method 1).  Either one of these is usually better than the 4/3 
earth model. 

• The iterative numerical integration with approximation technique matched the 
presumed truth the best. (No surprise there.)  Usually not far behind is the average 
radius of curvature model (method 2). 

Clearly, which model to use depends on the pointing accuracy desired for the antenna, as 
well as the availability of atmospheric model parameters.  
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Figure 10.  Depression angle error vs. altitude. 
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Figure 11.  Depression angle error vs. altitude. 
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Figure 12.  Depression angle error vs. altitude. 
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Figure 13.  Depression angle error vs. altitude. 
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Figure 14.  Depression angle error vs. altitude. 
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What if we don’t know the atmosphere, or we don’t know Ns? 

If we know the exact nature of the atmosphere for all altitudes, we could determine all 
angles and ranges with maximum accuracy and precision. Since we don’t know the 
atmosphere that accurately, we must rely on models, based perhaps on averages 
calculated from surface conditions. We have done this up to now in this report. 

But now we ask “What if we don’t even know the surface conditions?” 

The reasonable answer might be to presume some average surface condition, and the 
attendant average atmosphere, say the Ns = 313 reference atmosphere. This leads to the 
question “Well, how good is that?” 

The next several plots show the effect of guessing a wrong Ns. 

Based on these plots, several comments come to mind. 

• Guessing a wrong reference atmosphere will generally (but not absolutely always) 
degrade those depression angle estimates that depend on atmospheric parameter 
inputs.  Duh. 

• Even the degraded models and methods that presume some nominal reference 
atmosphere will normally perform better over a larger parameter space than the 
4/3 earth model, or the strictly geometric model. 

• Among the models that presumed the nominal reference atmosphere, the iterative 
numerical integration with approximation technique performed roughly 
comparable to the average radius of curvature technique (method 2), both of 
which generally performed better than the average k technique (method 1). 
 

In other words, even if we guess wrong about atmospheric parameters, those techniques 
and methods that depend on atmospheric parameters will still generally perform better 
than those methods that do not.  Furthermore, the best techniques are generally the same 
techniques that are best whether we guess right or guess wrong (probably as long as our 
wrong guess is not too wrong). 
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Figure 15.  Depression angle error vs. altitude. 
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Figure 16.  Depression angle error vs. altitude. 
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Figure 17.  Depression angle error vs. altitude. 
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Figure 18.  Depression angle error vs. altitude. 
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3.5 Recommendations 

So, the question becomes “Which model do we use when?” 

Everything depends, of course, on the pointing accuracy required. 

It seems reasonable that if computing time and horsepower exists, the best choice is the 
iterative numerical integration technique.  If a single formula is required, the next best 
calculation is the average radius of curvature technique (method 2).  In both cases, we 
should use the best guess of the atmospheric parameters.  In the absence of specific 
atmospheric parameters, we should use nominal values, say, the reference atmosphere. 

The 4/3 earth model should be used only at very low altitudes. 

3.6 More Discussion 

Velocity of propagation 

The refractivity of the atmosphere also leads to range measurement errors due to the 
diminished velocity of propagation. To do justice to this topic is beyond the scope of this 
report, although we will offer here that a radar range measurement is more affected by the 
‘slowing’ of the velocity of propagation than by the ‘bending’ of the propagation path.   
We expect to address this in a future report, and consequently won’t mention it anymore 
here. 

Measuring the required depression angle 

Picking the right depression angle to point an antenna means figuring out the proper 
direction of arrival of the reflected wavefronts. This can be done at least two different 
ways. The first is acquiring a detailed atmospheric profile of the region of operation, and 
calculating the exact bending to be compensated or mitigated. The second way is to 
actually measure the arrival direction of energy from the range of interest, by means of 
some sort of interferometric technique (e.g. monopulse). The idea is to lock the 
depression angle to the direction of the clutter return. Of course, if the elevation 
beamwidth is wide enough, all this is moot. 

Which angle to use when 

There are two angles to consider in the propagation path. The first is the depression 
angle, and the second is the grazing angle. Many radars presume these to be equal, both 
to each other, and to the geometric grazing angle. As this report indicates, both of these 
presumptions are in error to various extents. 

The depression angle is important to pointing the antenna, as we have indicated. Getting 
this right may be the difference between collecting useable radar data, and no useable 
radar data at all. 
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The grazing angle is also important, but to different aspects of the radar, as follows. 

• Both clutter reflectivity, as well as clutter RCS, depend on the actual grazing 
angle. 

• The mapping of slant-range resolution and distances to ground-range resolution 
and distances depends on the actual grazing angle. 

• Proper motion compensation, which attempts to stabilize the wavenumber 
projection onto the ground, also depends on actual grazing angle. 

Getting the grazing angle right is more of a data quality issue. 
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4 Conclusions 

The following comments are offered. 

• Long range radars especially should include the effects of earth curvature in 
calculating depression angle and grazing angle. These two will be increasingly 
different at increasing ranges, mainly because of shallower angles. 

• Earth curvature and atmospheric refraction impact not only antenna pointing, but 
maximum ranges, range scaling, and perhaps clutter reflectivity calculations. Of 
the two, earth curvature usually has a greater effect than refraction. 

• Although many radar systems account for earth curvature, fewer accommodate 
atmospheric refraction. This amounts to presuming that k = 1.0 instead of 
something larger, say, k = 4/3. This hasn’t bothered many radar systems in the 
past because the pointing error tends to be a small fraction of the typical antenna 
elevation beamwidth. 
 
In addition, a number of current radar systems use the geometric grazing angle for 
all motion compensation tasks. Errors because of this are picked up and 
compensated by autofocus. 

• Better models and methods exist to compensate and mitigate the effects of 
refraction than the k = 4/3 earth radius model. These are given in this report. 

• IFSAR absolute height accuracy probably needs to account for atmospheric 
refraction, even at relatively short ranges. Estimates (or presumptions) of local 
atmospheric conditions (especially surface temperature, pressure, and humidity) 
should at least be recorded in IFSAR auxiliary data. 

• Local atmospheric conditions can cause all sorts of weird anomalous propagation, 
such as ducting. This was ignored in this report. 

• Accurately pointing a high-gain, narrow-beamwidth antenna, especially from 
space, probably requires a more rigorous analysis that includes other factors such 
as the ionosphere, etc. 
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“We all live under the same sky, but we don't all have the same horizon” 
-- Konrad Adenauer 
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