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Abstract 

Proper waveform parameter selection allows collecting Synthetic Aperture Radar (SAR) 
phase history data on a rotated grid in the Fourier Space of the scene being imaged. 
Subsequent image formation preserves the rotated geometry to allow SAR images to be 
formed at arbitrary rotation angles without the use of computationally expensive 
interpolation or resampling operations. This should be useful where control of image 
orientation is desired such as generating squinted stripmaps and VideoSAR applications, 
among others. 
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Foreword 
This report is an updated and enhanced version of a previous limited distribution report 
[“Forming Rotated SAR Images by Real-time Motion Compensation”, Sandia Report 
SAND 2001-1740P, Internal Distribution Only].  The distribution limitation of the earlier 
report was merely because of the publication vehicle being an Internal Memorandum, 
chosen at the time arbitrarily, with no other particular reason for restricting its Unlimited 
Release. 

This report details the results of an academic study.  It does not presently exemplify any 
modes, methodologies, or techniques employed by any operational system known to the 
authors. 

The specific mathematics and algorithms presented herein do not bear any release 
restrictions or distribution limitations. 

This distribution limitations of this report are in accordance with the classification 
guidance detailed in the memorandum “Classification Guidance Recommendations for 
Sandia Radar Testbed Research and Development”, DRAFT memorandum from Brett 
Remund (Deputy Director, RF Remote Sensing Systems, Electronic Systems Center) to 
Randy Bell (US Department of Energy, NA-22), February 23, 2004.  Sandia has adopted 
this guidance where otherwise none has been given. 

This report formalizes preexisting informal notes and other documentation on the subject 
matter herein. 
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1. Introduction

The most natural image display geometry for a Synthetic Aperture Radar (SAR) is fo
imagey-axis to be in a direction away from the SAR synthetic aperture center and thro
the image scene center (as projected on the ground). Thex-axis would of course be
perpendicular to this and also on the ground. With this definition, the actual squint a
employed for data collection corresponds to the orientation of the synthetic aperture i
which is irrelevant to the image orientation (layover effects notwithstanding), since only
aperture center and scene center define the image orientation.

However, occasions exist where it would be useful to rotate the image to a new orienta
where the physical directions of thex andy axes do not depend on the location of the
aperture center. While rotations of multiples of 90 degrees are trivial, arbitrary rotations
considerably more difficult. The following list presents some applications and other rea
for such a capability,

• forming a squinted stripmap in a “push-broom” fashion,

• maintaining constant scene orientation for Video-SAR,

• creating conventional “North-up” maps,

• creating registered image pairs for easier stereoscopic analysis, and

• some customers just want it that way.[1,2]

Some of these are illustrated in figure 1.

Typically, a reoriented SAR image is first formed in the most natural way as describe
above, and then rotated by resampling to a new grid. This is computationally expensiv
prone to image distortion from inadequate interpolators, especially if the image is com
(with I and Q values).

The confluence of several ideas indicate how an arbitrarily oriented SAR image may
formed without overt image interpolations. These are

• the recognition that a translation in Fourier space is equivalent to a linear pha
change in the image,

• the recognition thatanyarea in the Fourier space of the scene will render an ima
of the scene,

• the recognition that a rotated image scene will have a similarly rotated Fourier s
representation, consequently rotating the Fourier space of a scene will allow
forming rotated images, and

• the unprecedented ability to accurately place phase history data samples in Fo
space with great control via real-time motion compensation with high-performa
waveform generators and radar timing.

The remainder of this report will discuss how this might be achieved.
- 7 -



(a) push-broom stripmap

(b) Video-SAR

N

(c) Oriented Maps

Figure 1. Useful applications for rotated images.
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2. Background

We begin with a brief reintroduction of basic SAR imaging concepts of an unrotated sc
largely taken from an earlier report.[3]

Consider a 3-D world with the radar geometry of figure 2. In this geometry we define

s = the spatial location of a point target, with coordinates (sx, sy, sz),
rc = the location of the radar, with coordinates (rx, ry, rz), and

 = relation of radar location to the point target location. (1)

We will presume a linear frequency modulated (LFM) transmitted pulse given by

. (2)

where

ωn = center frequency of the transmitted pulse,
γn = chirp rate of the transmitted pulse,

n = an index of pulse number such that

AT = amplitude of the transmitted pulse, and
T = duration of transmitted pulse. (3)

x

y

z

s

rc

rs

radar track

αn

ψn

Figure 2. Data collection geometry in a 3-D world.
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The received echo will be a scaled and time delayed version of the transmitted signa
namely

,

(4)

where

AR is the nominal amplitude of the received echo, and
σ(s) is the reflectivity of the target ats. (5)

The echo delay time with respect to the target depends on the distance to the target a
speed of wave propagation, and is

. (6)

The echo delay time with respect to the scene center is given by

. (7)

De-chirping this (stretch processing) and using quadrature demodulation yields a vid
signal of the approximate form

. (8)

We are ignoring the residual video phase error term. If we completely sample this inte
with an Analog to Digital converter at times

(9)

where

i = sample index such that , and

Ts = T/I = ADC sample spacing, (10)

then the sampled video signal becomes

. (11)

Note that each sample indexi represents a different instantaneous frequency

The time difference quantity  can be related to ranges and expanded to

. (12)

This expression does ignore some higher-order error terms that account for wavefro
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XV i n,( ) ARσ s( )expj ωn γnTsi+[ ] tc ts–( ){ }≈
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c
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 is

-axis
y any
curvature, but is sufficient for the task at hand. Typically we also assume .
Nevertheless, this can be inserted into the video signal expression and rearranged t

. (13)

The subscript indexn reflects the quantities that can (including those that we allow to)
change from pulse to pulse during a data collection (synthetic aperture). This model
reasonably accurate over small scenes (compared to range).

The usual and customary presumption has been that , which implies that the y
runs beneath the synthetic aperture center. A natural image display after processing b
of a variety of algorithms would typically be as illustrated in figure 3.

The question now is “What about a rotated image?”

sz 0=

XV i n,( ) ARσ s( )expj
2
c
--- ωn γnTsi+[ ] ψncos sx αnsin sy αncos–( )

 
 
 

≈

α0 0=

sx

sy

x

y

Figure 3. Typical image orientation.

aperture center

image boundary
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3. Forming a Rotated SAR Image

Consider the coordinates of a target location in a rotated image geometry, as illustra
figure 4. in the primed coordinate frame we observe the following

(14)

and furthermore

(15)

where  is the desired rotation angle.

sx

sy

x

y

Figure 4. Rotated image geometry definitions.
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 data
Plugging this into the equation for the video data yields

(16)

which can be simplified to

. (17)

Clearly, the rotated image coordinate frame is tantamount to collecting phase history
NOT centered over the y’ axis, but with some angular offset.

3.1. Real-time Motion Compensation

Now consider adjusting SAR chirp waveform parameters such that

. (18)

This might be accomplished by setting

, and

(19)

although adjusting ADC sampling times and rates could also achieve this.

In either case, such adjustments allow the data to be modeled by

. (20)

We select sampling positions such that

(21)

which forces

. (22)

Doing so allows the phase history data to be modeled by
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The only real pesky term here is which geometrically warps the image. Howe
signal processing can remove this, as we shall see shortly.

In the Fourier space of the rotated scene, the phase history data sample locations d
an aperture that is offset from theky’ axis, but still somewhat oriented with thekx’ axis, as
illustrated in figure 5.

Note: The shape of the entire aperture in Fourier space indicates that if we use the e
data set without cropping, then we can expect the sidelobe structure to be dependent o
While cropping the Fourier space could control sidelobe dependence on , losing Fo
space data would necessarily coarsen the resolution as well.[4]
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Figure 5. Locations of motion compensated data in Fourier space
of rotated image.
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3.2. Image Formation

Following the lead of the earlier report, we employ Polar Format processing using th
Chirped Z-Transform (CZT).[3]

3.2.1. Azimuth Processing using CZT

We apply the CZT to achieve the first intermediate processing goal as follows

(24)

If we force  to vary with indexi, that is we scale frequency spacing to

(25)

then we have

. (26)
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Performing the summation yields

(27)

where the impulse response shape is given by

. (28)

This clearly offers a peak response when

(29)

with location that is independent of indexi. This allows us to estimate  as

. (30)

To complete the image formation, we need to transform across indexi. But first we need to
correct for the problematic  term.

Azimuth Resolution

We note that the concept of azimuth resolution is somewhat altered by this processing
now depends on . Specifically, azimuth resolution is calculated to be nominall

(31)

where nominal wavelength .

This indicates a coarsening of resolution as  departs from 0. This could be
accommodated by increasingN correspondingly.
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3.2.2. Warp Error Correction

We now have the information that we need to correct the problematic warping. We do
by correcting each partially processed data sample in with a phase error corre
term given by

. (32)

Consequently, the corrected data is given by

(33)

which can be rearranged to

(34)

if we ignore the inconsequential fluctuation in the width of the azimuth IPR due to indei.
Note that the phase is linear in index i.
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3.2.3. Range Processing with FFT

Performing a FFT across indexi yields

(35)

This represents the 2-D complex IPR of a point target in a 3-D geometry, and clearly o
a peak response when

(36)

as well as when

. (37)

Note that the residual phase perturbation is inconsequential to a magnitude detected i
but could be compensated if so desired.

Range Resolution

As with azimuth resolution, ground range resolution is now coarsened to nominally

(38)
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4. Simulations

4.1. Scene Fly-by

Consider a fly-by of a target scene as illustrated in figure 6. Successive spotlight ima
would normally show a rotating scene as the aircraft’s aspect changed with time.

The following sequence of images are stabilized (all effectively rotated to a common
orientation) using the real-time motion compensation procedure of this report. Howe
note the variations in the sidelobe structure.

The images simulate a nominal 1-m resolution at Ku-band, and are processed witho
employing any window functions so as to high-light the sidelobe structure variations
function of .

Figure 6. Illustration of scene fly-by.

αR
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Figure 7. Simulated images from scene fly-by, rotated to common
orientation using real-time motion compensation.

(a) squint −50 degrees

(from velocity vector - on the ground)

(b) squint −70 degrees

(c) squint −90 degrees (Broadside)

(d) squint −110 degrees

(e) squint −130 degrees
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4.2. Scene Orientation

Consider a broadside imaging geometry of a target scene as illustrated in figure 8.
Typically, the image orientation would be a broadside viewing perspective from the
aircraft’s position at the center of the synthetic aperture.

The following sequence of images are formed using the exact same imaging geome
Differences in orientation are due to phase history data rotation using the real-time m
compensation procedure of this report.

The images simulate a nominal 1-m resolution at Ku-band, and are processed witho
employing any window functions so as to high-light the sidelobe structure variations
function of .

Figure 8. Broadside imaging geometry of scene.
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Figure 9. Simulation of effect of image rotation using different real-
time motion compensation with same collection geometry.

(a) rotated −40 degrees

(b) rotated −20 degrees

(c) rotated 0 degrees (unrotated)

(d) rotated +20 degrees

(e) rotated +40 degrees
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5. Discussion and Conclusions

We observe the following.

• A variety of applications call for SAR images rotated from their ‘natural’
orientation to some other perhaps more useful orientation. Such rotation angles
not be limited to the relatively easy multiples of 90 degrees, but might need to
any real angle.

• Rotated images can be formed from rotated Fourier-space data, i.e., phase-h
data.

• Proper real-time motion compensation via waveform parameter manipulation (
or perhaps ADC sample positioning) can place Fourier-space samples on a ro
grid. This eliminates the need for computationally expensive overt data resamp
or interpolation.

• Rotation angles beyond  degrees can be accomplished by combinations 
rotation angle less than  along with perhaps multiple 90-degree rotations

• Sidelobe structure within the SAR image will, however, vary with rotation ang

• Image resolution (inxandydirections) will coarsen proportionately with the secan
of the rotation angle out to  degrees. This can, however, be compensated
increasing synthetic aperture length and data bandwidth.

45±
45±

45±
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