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Abstract

Sandia’s parallel circuit simulator, Xyce, can address large scale neuron simulations in a
new way extending the range within which one can perform high-fidelity, multi-compartment
neuron simulations. This report documents the implementation of neuron devices in Xyce,
their use in simulation and analysis of neuron systems.

3



Acknowledgment

I would like to thank the Laboratory Directed Research Foundation at Sandia National
Laboratories for supporting this work under Proposal 12-1058.

4



Contents

Summary 11

1 Introduction 13

2 Formulation 15

Hodgkin-Huxley Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Connor-Stevens Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Cable Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Implementation in Xyce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Synapse Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Basic Synapse Model without plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Spike-Timing Dependent Plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Stochastic Transmission Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

w updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

nonzero Ipost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Example Netlists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Basic Synapse Model without plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Clopath-Gerstner Plasticity Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Transmission Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Network Simulations 35

Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Neuron properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



Synapse properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Network connectivity and external input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Simulation run times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Simulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Analysis of large scale neural network simulations 43

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Theoretical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Step 1: Pre-processing: temporal filtering of raw spiking data . . . . . . . . . . . . . 44

Step 2: Principle Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Step 3: Post-processing – projecting spiking data onto principal components . 46

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Different simulation runs share principal components . . . . . . . . . . . . . . . . . . . . 46

Projection of raw data into PCs allows clear identification of divergence point 49

Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Reduced-Order Modeling of Neuron 59

Reduced-order modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Fitting the parameters of neural models to biological data 63

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Biological Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Choice of Voltage Train Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Parameter Fitting Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6



Basic Strategy of Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Izhikevich Model Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

References 73

7



List of Figures

1.1 Hierarchy of neural structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 With presynaptic neuron fixed in time, the postsynaptic neuron varied its
relative timing from -80[ms] (post-before-pre) to 80[ms] (pre-before-post). 16
spike pairs at a given timing would be stimulated; the synaptic weight dif-
ference ∆w = w16 − w0 would be computed (where wn represents the weight
after the nth spike). The horizontal axis shows ∆t; the vertical axis shows ∆w. 23

2.2 16 spike pairs were stimulated at a given timing; this plot shows when it is
post-before-pre 80[ms] (which accounts for the observed long-term depression
of the synaptic weight,w) while the synaptic transmission reliability, P , is
100% (which accounts for the spiking of the postsynaptic neuron and the
updating of the synaptic weight after each presynaptic neural spike). The
plot shows various variables of interest that exhibit how the Clopath-Gerstner
STDP model works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 20 presynaptic spikes were stimulated. The postsynaptic neuron, if it spiked,
would do so after the presynaptic neuron as its only source of current was
in response to the presynaptic neural spike and delivered via the synapse de-
vice (which accounts for the observed long-term potentiation of the synaptic
weight, w) while the synaptic transmission reliability, P , is 50% (which ac-
counts for the spiking of the postsynaptic neuron and the updating of the
synaptic weight in response to about 50% of the presynaptic neural spikes). . . 27

3.1 Xyce Runs: Comparison of time integration methods and tolerances. The
x-axis is number of CPU’s and the y-axis is run time in seconds. . . . . . . . . . . . 38

3.2 Neuron Runs: Comparison of time integration options. The x-axis is number
of CPU’s and the y-axis is run time in seconds. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Comparison of spike traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Comparison of spike trances over longer times. . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Overall scaling for a 10,000 neuron, 2 million synapse simulation. . . . . . . . . . . 41

3.6 Breakdown of load, solve and setup time for a 10,000 neuron, 2 million synapse
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8



4.1 A simple filtering function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 PC1 - 1,000 ms; 4 runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Normalized Dot Product of PC1 between runs, 1,000ms . . . . . . . . . . . . . . . . . . 48

4.4 Normalized Dot Product of PC2 between runs, 1,000ms . . . . . . . . . . . . . . . . . . 48

4.5 Normalized Dot Product of PC3 between runs, 1,000ms . . . . . . . . . . . . . . . . . . 49

4.6 PC1 - 1,000 ms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Normalized Dot Product of PC1 between runs, 10,000ms . . . . . . . . . . . . . . . . . 50

4.8 Normalized Dot Product of PC2 between runs, 10,000ms . . . . . . . . . . . . . . . . . 51

4.9 Normalized Dot Product of PC3 between runs, 10,000ms . . . . . . . . . . . . . . . . . 51

4.10 Average normalized dot product between simulations . . . . . . . . . . . . . . . . . . . . 52

4.11 Average normalized dot product between simulations . . . . . . . . . . . . . . . . . . . . 52

4.12 Projection of the first 500 ms of a single simulation run into the combined PC1 54

4.13 Projection of the first 500 ms of a single simulation run into the combined PC1 54

4.14 Combined projection of single simulation runs of PC1 . . . . . . . . . . . . . . . . . . . 55

4.15 Combined projection form all Xyce simulations using method=6 for PC1 . . . . 55

4.16 Combined projection form all Xyce simulations using method=7 for PC1 . . . . 56

4.17 How PC dynamics change due to bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Transient comparison: the full model vs. the reduced models . . . . . . . . . . . . . . 62

6.1 Two examples of intracellular voltage recordings with current injection from
dentate gyrus hippocampus neurons. Each voltage ’wave’ (of which their are
15) corresponds to a current injection. The first wave is the increase in voltage
due to a current injection of 10 pA. The subsequent waves correspond to
current injections increasing in size of 10 pA. Notice that both of the neurons
start firing action potentials when 30 pA are injected. . . . . . . . . . . . . . . . . . . . 64

6.2 Normalized parameter values that yield a fit greater than 0.9 obtained by
running 1 million LHS samples. Solid lines connect one set of parameter values. 70

6.3 Normalized parameter values that yield a fit greater than 0.90 obtained by
running 1 million LHS samples. Solid lines connect one set of parameter values. 71

9



List of Tables

2.1 Neuron Model Level Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

10



Summary

Sandia’s parallel circuit simulator, Xyce, can address large scale neuron simulations in a
new way by greatly extending the range within which one can perform high-fidelity, multi-
compartment neuron simulations. This report documents the implementation of neuron
devices in Xyce, their use in simulation and analysis of neuron systems.
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Chapter 1

Introduction

Neurons and the interconnected networks they form are seen as a fundamental unit of
cognitive systems that can sense, decide and react to environmental stimuli. In even the
simplest neural systems, there is a great hierarchy of structure required to generate behavior
(see figure 1). At the sub-cellular level, genes control the activity ion-channels in the neurons
cellular membrane. Ion channel activity influences the membrane potential which intern
influences a neurons polarization state and ability to carry a signal. Neurons are connected
through synapses allowing them to convey signals from one neuron to another (or groups
of neurons). Likewise, very large groups of neurons form tissue types (i.e. striatum and
columns) believed to be integral in brain function [31, 13, 15, 7]

Advances in imaging and reconstruction technologies are driving many research projects
to map all of the neurons in some small animal brains (see Bohland et. al. [3]). While these
projects will produce detailed topology of their targeted subjects, the ability to then simulate
in detail the neural-physiology is limited to high-fidelity simulations of a few neurons, or
lower-fidelity simulations of thousands of neurons (i.e. multi-compartment neuron models
versus behavioral, integrate-and-fire neuron models).

Sandia’s parallel circuit simulator, Xyce, can address large scale neuron simulations in a
new way by greatly extending the range within which one can perform high-fidelity, multi-
compartment neuron simulations. With Xyce, we are creating a neuron-to-cognitive simu-
lator that can model detailed dynamics at the level of ion-channels of millions of neurons.
This is new science in that it greatly extends the range within which one can use detailed
neuron models for tissue and structural level simulations of neuron tissue (i.e. modeling the
top half of figure 1).

At the same time, we are enabling simulations where the uncertainty of modeling param-
eters can be quantified and inherent error can be bounded to better understand the stability
of these dynamic systems. Specifically, how does uncertainty in size, shape, ion-channel
density at the lowest level of figure 1 effect long term potentiation in coronal striatal brain
slices [2]. This enables researchers to better understand the dynamics of conditioning and
learning at a cellular level.
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Chapter 2

Formulation

To simulate the transient behavior of neurons, model equations are used to describe the
voltage potential of a neuron’s membrane as a function of the neurons state. Within Xyce
the equations that it solves are in the format of index-one differential algebraic equations
(i.e. index-1 DAE’s) [19]. The general form of an index-1 DAE is:

f(x) + B(t) +
d

dt
q(x, t) = 0 (2.1)

The function f(x) represents that part of the system that depends only on the state of the
system (i.e. x where x is the solution vector). The term B(t) is any purely transient elements
and generally can be ignored except in cases of external inputs into a system. Finally q(x, t)
represents the components whose time derivative contributes to the system.

Given a section of neuron membrane, the voltage potential across the membrane (i.e.
from inside to outside) is described by Koch [21] and Dayan [9].

Cm
dV

dt
= im +

Ie

A
(2.2)

where Cm is the membrane capacitance, V is the voltage difference, t is time, im is the
current through the membrane while Ie represents any externally applied current into the
cell and A is the surface area of the membrane.

A neuron membrane’s voltage potential is a function of the type and distribution of the
ion-channels active within the neuron. While there are many different models for ion-channels
and membrane dynamics, a good exemplar is the Hodgkin-Huxley formulation.

Hodgkin-Huxley Model Equations

In the Hodgkin-Huxley model of membrane current, the current is described by:

im = ileak + iNa + iK (2.3)
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where ileak is the current that naturally leaks through the membrane, iNa is the current
associated with sodium ion channels and iK is the current associated with potassium ion
channels. This descriptive equation can be refined with algebraic expressions for the indi-
vidual currents as:

im = ḡL (V − EL) + ḡNam
3h (V − ENa) + ḡKn4 (V − EK) (2.4)

Parameters in this equation are: ḡL is the maximal membrane conductance, EL is the
membrane reversing potential, ḡNa is the sodium ion channel conductance, ENa is the sodium
channel reversing potential while ḡK and are the potassium channel maximal conductance
and reversing potential respectively. The variables, m, n and h are voltage dependent gating
variables that model the relative availability of the sodium and potassium channels. Gating
variables, m, n and h are described by the ordinary differential equations:

dm

dt
= αm(V ) · (1−m)− βm(V ) ·m (2.5)

dm

dt
= αh(V ) · (1− h)− βh(V ) · h (2.6)

dm

dt
= αn(V ) · (1− n)− βn(V ) · n (2.7)

The voltage dependent coefficients, α(V ) and β(V ) are described by:

αm(V ) =
0.1 (V + 40)

1− e−0.1(V +40)
(2.8)

βm(V ) = 4e−0.0556(V +65) (2.9)

αh(V ) = 0.07e−0.05(V +65) (2.10)

βh(V ) =
1

1 + e−0.1(V +35)
(2.11)

αn(V ) =
0.1 (V + 55)

1− e−0.1(V +55)
(2.12)

βn(V ) = 4e−0.0125(V +65) (2.13)

Note, in the equations for m, h and n, the voltage is given in units of milli-volts and time
in milli-seconds.
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Connor-Stevens Model Equations

To more accurately simulate the diverse set of currents that work in typical neurons, the
Connor-Stevens model adds two additional current terms to the membrane current equation:

im = ḡL (V − EL) + ḡNam
3h (V − ENa) + ḡKn4 (V − EK) + ḡAa3b (V − EA)

+ḡCaT M2H (V − ECa) + ḡKCac
4 (V − EK) (2.14)

where the maximal conductance and reversal potentials, ḡA, EA, ḡCaT , ECa, ḡKCa and EK

are for the A-current, transient calcium current and calcium dependent potassium current
respectively.

Gating variables for the additional current terms are described by the following.

Gating variable a:

da

dt
=

a∞(V )− a

τa(V )
(2.15)

and

a∞(V ) =

(
0.0761e0.0314(V +94.22)

1 + e0.0346(V +1.17)

) 1
3

(2.16)

τa(V ) = 0.3632 +
1.158

1 + e0.0497(V +55.96)
(2.17)

Gating variable b:

db

dt
=

b∞(V )− b

τb(V )
(2.18)

and

b∞(V ) =

(
1

1 + e0.0688(V +53.3)

)4

(2.19)

τb(V ) = 1.24 +
2.678

1 + e0.0624(V +50)
(2.20)

Gating variable M :

dM

dt
=

M∞(V )− a

τM(V )
(2.21)
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and

M∞(V ) =
1

1 + e
−(V +57)

6.2

(2.22)

τM(V ) = 0.612 +
1

e
−(V +132)

16.7 + e
(V +16.8)

18.2

(2.23)

Gating variable H:

dH

dt
=

H∞(V )− a

τH(V )
(2.24)

and

M∞(V ) =
1

1 + e
(V +81)

4

(2.25)

τM(V ) =

{
e

V +467
66.6 V < −80mV

28 + e
−(V +22)

10.5 V ≥ −80mV
(2.26)

Finally, gating variable c is described by:

dc

dt
=

c∞(V )− b

τc(V )
(2.27)

and

c∞(V ) =

(
[Ca2+]

[Ca2+] + 3µM

)
1

1 + e
−(V +28.3)

12.6

(2.28)

τb(V ) = 90.3− 75.1

1 + e
−(V +46)

22.7

(2.29)

As in the case of the Hodgkin-Huxley models gating variables, the gating variable equa-
tions stated above use voltage in milli-volts and time in milli-seconds and calcium ion con-
centration in micro-moles for unit consistency.
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model level Equation set
1 Hodgkin-Huxley on a patch of membrane
2 Connor-Stevens on a patch of membrane
3 Hodgkin-Huxley, cable-equation formulation
4 Connor-Stevens, cable-equation formulation
5 not used
6 Cable equation with dynamic membrane models
7 Izhikevich, point neuron model

Table 2.1. Neuron Model Level Numbers

Cable Model Equations

To model a section of a neuron process, such as an axon, a cable-equation formulation is
used. Here, the cable equation is specified as:

Cm
dVi

dt
= −imi +

IE
i

Ai

+ gi,i+1 (Vi+1 − Vi) + gi,i−1 (Vi−1 − Vi) (2.30)

where Cm is the membrane capacitance, Vi is the voltage in compartment i relative to an
external ground, t is time, imi is the current through the membrane in compartment i, IE

i

represents any externally applied current into the cell and Ai is the surface area of the
membrane in compartment i. The final two terms represent current flow into the adjoining
compartments, i − 1, for the previous compartment and i + 1 for the next compartment.
Conductance between the compartments, gi,i+1 and gi,i−1 can be calculated by:

gi,j =
aia

2
j

rLongLi

(
Lia2

j + Lja2
i

) (2.31)

where ai is the radius of compartment i, Li is the length of compartment i and rLong is the
longitudinal intracellular resistance.

Implementation in Xyce

Given that the previous equations are all first order, ordinary differential equations, it is
straightforward to cast them in DAE format. As DAE’s the equations were implemented in
Xyce as neuron devices with the following device-levels corresponding to specific equations
sets.
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Listed in table 2.1 are the model numbers used to connect specific neuron models in
Xyce to implemented equations.

For example, the following netlist models a patch of neuron using the Hodgkin-Huxley
equations. Details on the syntax of the netlist can be found in the Xyce Users’ Guide [20]

A single Neuron example

* This is a standard current pulse to start an activation

.tran 0 2.0e-2

.print tran V(a) i(iin) v(b) n(y%neuron%neuron1_m) n(y%neuron%neuron1_h)

+ n(y%neuron%neuron1_n)

Iin 0 a PULSE( 0 0.40e-9 1.0e-3 1.0e-4 1.0e-4 1.0e-3 1.0e10)

* standard area is 30x30xpi um2 = 30e-6 * 30e-6 * pi m^2

* = 3e-5 * 3e-5 * pi m^2 = 3e-3 * 3e-3 * pi cm^2

* scale GK, Gna, manebrane capacitance, membrane conductivity

.param area = {3.0e-3 * 3.0e-3 * 3.141529} ; [cm^2]

.param gks = {0.036 * area } ; [0.036 S/cm^2 * [area cm^2] ]

.param gnas = {0.120 * area } ; [0.120 S/cm^2 * [area cm^2] ]

.param memC = {1.0e-6 * area } ; [1.0uF/cm^2 * [area cm^2] ]

.param memG = {0.0003 * area } ; [0.0003 S/cm^2 * [area cm^2] ]

*

* Using the above neuron model

*

.model hhParams neuron level=1 cMem={memC} gMem={memG}

+ vRest=0.010613 eNa=0.115 gNa={gnas} eK=-0.012 gK={gks}

yneuron neuron1 a b hhParams

* this is here to provide a non-zero potential

* outside of the membrane for this demo. Typically

* one doesn’t need it.

rloader b 0 100

.end

and here is an example using the Hodgkin-Huxley equations in a cable-equation repre-
sentation of a neuron.
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A neuron cable example

*

* This is a simple test of simulating a neuron cable

* via the cable equation (6.29 in Theorteical Neuroscience,

* by P. Dayan and L. Abbot)

*

* units for model parameters

* cMem = F/cm^2

* gMem = S/cm^2

* vRest = V

* eNa = V

* gNa = S/cm^2

* eK = V

* gK = S/cm^2

* r = ohms cm

*

* NOTE: length scale is immaterial as long as it’s always a consistent unit

* parameters from Dayan’s book pg 173, 157, 155

*

* gMem = 0.003 mS/mm^2 => 0.000003 S/mm^2 => 0.0003 S/cm^2

* gK = 0.36 mS/mm^2 => 0.00036 S/mm^2 => 0.036 S/cm^2

* gNa = 1.2 mS/mm^2 => 0.0012 S/mm^2 => 0.12 S/cm^2

* vRest = -54.387 mV => -0.054387 V

* eK = -77 mV => -0.077 V

* eNa = 50 mV => 0.050 V

* cMem = 10 nF/mm^2 => 1.0e-8 F/mm^2 => 1.0e-6 F/cm^2

* r = 1 kOhm mm => 1000 Ohm mm => 100 Ohm cm

*

* Using the above neuron model

.model hhParams neuron level=3 cMem=1.0e-6 gMem=0.0003 vRest=-0.054387

+ eNa=0.050 gNa=0.12 eK=-0.077 gK=0.036

* This is a standard current pulse to start an activation

* pulse( initial_value pulse_value delay_time rise_time fall_time pulse_width period)

Iin a 0 PULSE( 0 0.40e-7 1.0e-3 1.0e-6 1.0e-6 1.0e-3 1.0e10)

* the parameters R (intra-cellular resistivity Ohm/cm), A= radius (cm), L = length (cm)

* can be specified in the .model statement or as part of the instance. Instance level

* parameters override model level ones. N = number of segments.

* intra cellular resistivity, rl, is typically 1-3 kOhm mm.

* Resistance along the long axis (longitudinal resistance Rl = rl L / (pi a^2)
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* 1 kOhm mm = 1000 Ohm mm = 100 Ohm cm

yneuron neuron1 a b hhParams R=1.0e1 A=1.0e-4 L=0.4 N=100

+ RPS=1.0e2 APS=1.0e-4 LPS=4.0e-3 RNS=1.0e2 ANS=1.0e-4 LNS=4.0e-3

.tran 0 2.0e-2

.options timeint method=7 newlte=1 newbpstepping=1 reltol=1e-3

.print tran i(iin) V(a) n(y%neuron%neuron1_V1) n(y%neuron%neuron1_n1)

+ n(y%neuron%neuron1_m1) n(y%neuron%neuron1_h1) n(y%neuron%neuron1_V10)

+ n(y%neuron%neuron1_V50) n(y%neuron%neuron1_V90)

.end

Synapse Modeling

For state-of-the-art research into spiking neuron population dynamics and learning, it is
critical to have a synapse device that captures some of the primary experimentally observed
features. Thus, we implemented a synapse device with conductance-based dynamics, spike-
timing dependent plasticity (with long-term potentiation (LTP) and long-term depression
(LTD)), and a stochastic synaptic transmission reliability modulator. The details of each
are discussed in the sections that follow.

Basic Synapse Model without plasticity

The model used is based on NEURON simulators Exp2Syn mechanism [24, 16]. With w
representing the Clopath-Gerstner plasticity scheme outlined in the next section (set to 1 in
the case where no learning occurs), B.V the momentary postsynaptic voltage, and Erev the
reversal potential (set to −85× 10−3 [V ]), the postsynaptic current is the following:

Ipost = wgMAX(B.V − Erev)

where gMAX, the maximal conductance, is defined as follows:

gMAX = fnorm

(
exp

(
−t

τdecay

)
− exp

(
−t

τrise

))
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where fnorm is a normalizing factor that ensures the peak is 1, τrise is the rise time set at
2× 10−4 [s], and τdecay is the decay time set to 1× 10−2 [s] (making sure that τdecay > τrise).
To run a simulation testing the basic synapse model without plasticity, see Netlist 2.

Spike-Timing Dependent Plasticity
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Figure 2.1. With presynaptic neuron fixed in time, the
postsynaptic neuron varied its relative timing from -80[ms]
(post-before-pre) to 80[ms] (pre-before-post). 16 spike pairs
at a given timing would be stimulated; the synaptic weight
difference ∆w = w16 − w0 would be computed (where wn

represents the weight after the nth spike). The horizontal
axis shows ∆t; the vertical axis shows ∆w.

We have adapted the Clopath-Gerstner model [5, 6] to be used in a real-time fashion
within a Xyce circuit device that interacts with Hodgkin-Huxley spiking neuron devices
(the particular model is the standard Hodgkin-Huxley membrane patch model [21]). This
well-known phenomenological model captures a number of the important experimentally
observed behaviors of plasticity in synapses. Additionally, it is easily tunable to exhibit a
variety of STDP curves. The curve we want to generate is shown in Figure 2.1. With the
following variables

S = voltagethresholdforaspikeevent
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R = voltagevalueforarestingevent

w = weight/strengthofsynapse

A.V = momentarypresynapticmembranevoltage

VL3 = aLPFversionofA.Vwithrateτ3

B.V = momentarypostsynapticmembranevoltage

VL1 = aLPFversionofB.Vwithrateτ1

VL2 = aLPFversionofB.Vwithrateτ2

and the Boolean operator on variables x1 and x2 defined as follows:

x1 > x2 = 1

x1 < x2 = 0

the modified Clopath/Gerstner equation that updates the synaptic weight is as follows:

dw

dt
=

(
dwLTD

dt
+

dwLTP

dt

)
(w > wmin)(w < wmax)

where the changes in w due to LTD and LTP are:

dwLTD

dt
= −ALTD(A.V > S)(VL1 > R)(VL1 −R)

dwLTP

dt
= ALTPVL3(B.V > S)(B.V − S)(VL2 > R)(VL2 −R)

while the changes in the LPF voltages are:

dVL1

dt
=

B.V − VL1

τ1

dVL2

dt
=

B.V − VL2

τ2

dVL3

dt
=

(A.V > S)− VL3

τ3
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The parameters are set as follows (note that some parameter values are different from
the Clopath-Gerstner papers; this was necessary to obtain the desired behavior):

S = −45.3× 10−3 [V ]

R = −72.655× 10−3 [V ]

wmin = 0.0

wmax = 1.6

w = 1(initialvalue)

ALTD = 5× 10−2
[
V −1

]
ALTP = 8.5

[
V −2

]
τ1 = 23× 10−3 [s]

τ2 = 7× 10−3 [s]

τ3 = 46× 10−3 [s]

For an example of the pair of spiking neurons, as well as the different LPF voltages, and
the synaptic dynamics over time, see Figure 2.2. Additionally, to run the simulation, see
Netlist 2.

Stochastic Transmission Reliability

In experimental studies, action potentials generated in presynaptic neuron, only released
neurotransmitter to postsynaptic neurons about 10% of the time [36]. This value can vary
depending on the species of neurons, synapses, etc. However, it is evident that being able
to adjust the synaptic transmission reliability is imperative. In fact, we conjecture that
stochastic transmission failure at the single synapse level plays a critical role in enabling
the generation of population-level attractor dynamics that could serve as the basis for a
multi-modal associative memory [11, 12].

Therefore, having such functionality in a Xyce device is important. Specifically, this
behavior functions as follows (when a given presynaptic neural spike event occurs):

• with probability P , the synapse will work as usual

• with probability (1− P ), w will not be updated and no synaptic current will be gen-
erated

In order to confirm functionality, two experiments were conducted to test that there were
the expected number of: (1) synaptic weight updates N (∆w) and (2) nonzero postsynaptic
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Figure 2.2. 16 spike pairs were stimulated at a given tim-
ing; this plot shows when it is post-before-pre 80[ms] (which
accounts for the observed long-term depression of the synap-
tic weight,w) while the synaptic transmission reliability, P ,
is 100% (which accounts for the spiking of the postsynaptic
neuron and the updating of the synaptic weight after each
presynaptic neural spike). The plot shows various variables of
interest that exhibit how the Clopath-Gerstner STDP model
works.

currents, N (Ipost 6= 0). In both experiments, P was fixed at a given value and the simulation
was run 100 times; this was carried out for P ∈ {0, 0.1, 0.2, . . . , 1}. For the purposes of the
experiments, it sufficed to fix the timing between presynaptic and postsynaptic neurons. In
particular, it was set to 10 [ms] difference, pre-before-post. The results of the experiments
are summarized below.

w updates

For each P value, the actual average E [N (∆w)] was computed and compared to the
theoretically expected number Ê [N (∆w)]. The results are as follows:
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Figure 2.3. 20 presynaptic spikes were stimulated. The
postsynaptic neuron, if it spiked, would do so after the presy-
naptic neuron as its only source of current was in response to
the presynaptic neural spike and delivered via the synapse de-
vice (which accounts for the observed long-term potentiation
of the synaptic weight, w) while the synaptic transmission
reliability, P , is 50% (which accounts for the spiking of the
postsynaptic neuron and the updating of the synaptic weight
in response to about 50% of the presynaptic neural spikes).

P Ê [N (∆w)] E [N (∆w)]
0% 0 0
10% 2 1.8416
20% 4 4.0594
30% 6 6.2178
40% 8 8.1584
50% 10 10.1188
60% 12 11.9901
70% 14 14.0594
80% 16 16.2574
90% 18 18.2475
100% 20 20
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The actual agree well with the expected, confirming the proper function.

nonzero Ipost

For each P value, the actual average E [N (Ipost 6= 0)] was computed and compared to

the theoretically expected number Ê [N (Ipost 6= 0)]. The results are as follows:

P Ê [N (Ipost 6= 0)] E [N (Ipost 6= 0)]
0% 0 0
10% 2 1.8416
20% 4 4.0594
30% 6 6.2178
40% 8 8.1584
50% 10 10.1188
60% 12 11.9901
70% 14 14.0594
80% 16 16.2574
90% 18 18.2475
100% 20 20

The actual agree well with the theoretical, confirming the proper function. The astute
observer will notice that the actual values are the same in the second experiment as in the
first experiment; clearly, this is what one would expect. For an example of the pair of spiking
neurons, as well as the different LPF voltages, and the synaptic dynamics over time, when
P = 0.50 for a single simulation, see Figure 2.3. Additionally, to run the simulation, see
Netlist 2.

The device appears to work as desired. It will be used in the generation of a model
intended to investigate the extent to which the dynamics of a population of spiking neurons
can be used as the basis for an associative memory. Of particular interest is the role that
synaptic transmission failure plays in the generation of stable states far-from-equilibrium, as
they appear to evolve in actual neocortical regions. We conjecture that such transmission
failure is critical to encoding multi-sensory memories that are robust to noise and exhibit a
high degree of associativity. In fact, we posit that dynamical distributed information encod-
ing within a population of spiking neurons depends on modulating the synaptic transmission
reliability. A number of large-scale real-time experiments will be designed to investigate these
theories.
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Example Netlists

Basic Synapse Model without plasticity

Test Synapse Level 3 device by Alex Duda

*No learning, perfectly reliable.

*13 August 2012

.options timeint method=7 newlte=1 newbpstepping=1 reltol=1e-4

.GLOBAL_PARAM TIMING=410e-3

.param AMP={3.14159*.1825e-12}

.param WIDTH={1e-3}

.param PERIOD = {400e-3}

*FIRST WE NEED TO SEND A CURRENT INPUT to HH1 and see its effect on HH2.

In11 0 a1 PULSE( 0 {AMP} {400e-3} 1.0e-6 1.0e-6 {WIDTH} {PERIOD} )

*SECOND WE NEED TO ADD HH1 TO RECEIVE INPUT.

.param segLength = 1e-4 ; [cm]

.param segDiameter = 1e-4 ; [cm]

.param segSurfaceArea = { 3.14159 * segDiameter * segLength }

* specific membrane capacitance 1uF/cm^2

.param memC = { 1.0e-6 * segSurfaceArea } ; [F]

* leak current has membrane resistivity of 40,000 ohm cm^2,

* with reversal potential of -65mV

.param rm = { 4.0e4 / segSurfaceArea } ; [ohm]

.param memG = { 1 / rm } ; [1/ohm]

.param revE = -0.065 ; [V]

* active conductances

* Na specific conductance is 1200 S/m^2 = 1.2e-1 S/cm^2

.param gnas = { 0.12 * segSurfaceArea } ; [S]

.param ErevNa = 0.05 ; [V]

* K specific conductance is 360 S/m^2 = 3.6e-2 S/cm^2

.param gks = { 0.036 * segSurfaceArea } ; [S]

.param ErevK = -0.077 ; [V]

* neuron model

.model HH_Params neuron level=1 cMem={memC} gMem={memG}
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+ eLeak={revE} gNa={gnas} gK={gks}

+ eNa={ErevNa} eK={ErevK} vRest={revE}

*CREATE THREE NEURON INSTANCES

yneuron HH1 a1 0 HH_Params

yneuron HH2 a2 0 HH_Params

.ic v(a1)=-72.655e-3

.ic v(a2)=-72.655e-3

*THIRD WE NEED TO ADD A SYNAPSE TO GO BETWEEN HH1 AND HH2.

*(express all params in [A], [V], [s], etc.)

*Tune maximal conductance, gMax, properly!

*Let gRheo be roughly the least amount of conductance

*that allows a single presyn neuronal spike to cause a postsyn neuronal spike.

.param gRheo=1.318e-12

*Tune N_Neu parameter such that it takes the desired number of presynaptic

*spiking neurons to make a postsynaptic neuron spike.

.param N_Neu=1

.model synParams synapse level=3 vThresh={-45.3e-3} delay={1e-4}

+ gMax={gRheo/N_Neu} eRev={0} tau1={1e-4} tau2={5e-3}

+ ALTD={5e-2} ALTP={8.5} L1TAU=23e-3 L2TAU=7e-3 L3TAU= 46e-3

+ R=-72.655e-3 S=-45.3e-3 WINIT=1 WMAX=1 WMIN=1

*The P parameter represents the synapse success probability.

*With probability P it will work as usual,

*With probability (1-P) it will fail to generate a synaptic current

*and the w will fail to update.

ysynapse syn12 a1 a2 synParams P={1}

.tran 0 8.4

.print tran i(In11) v(a1) v(a2) n(y%synapse%syn12_w) n(y%synapse%syn12_vl1)

+ n(y%synapse%syn12_vl2) n(y%synapse%syn12_vl3)

.end

Clopath-Gerstner Plasticity Modulator

Test Synapse Level 3 device by Alex Duda
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*Learning turned on but perfectly reliable.

*Confirming STDP learning curve.

*13 August 2012

.options timeint method=7 newlte=1 newbpstepping=1 reltol=1e-4

.GLOBAL_PARAM TIMING=320e-3

.STEP TIMING 320e-3 480e-3 1e-3

.param AMP={3.14159*.1825e-12}

.param WIDTH={1e-3}

.param PERIOD = {400e-3}

*FIRST WE NEED TO SEND A CURRENT INPUT TO HH1 AND HH2.

In11 0 a1 PULSE( 0 {AMP} {400e-3} 1.0e-6 1.0e-6 {WIDTH} {PERIOD} )

In22 0 a2 PULSE( 0 {AMP} {TIMING} 1.0e-6 1.0e-6 {WIDTH} {PERIOD} )

*SECOND WE NEED TO ADD HHs TO RECEIVE INPUT.

.param segLength = 1e-4 ; [cm]

.param segDiameter = 1e-4 ; [cm]

.param segSurfaceArea = { 3.14159 * segDiameter * segLength }

* specific membrane capacitance 1uF/cm^2

.param memC = { 1.0e-6 * segSurfaceArea } ; [F]

* leak current has membrane resistivity of 40,000 ohm cm^2,

* with reversal potential of -65mV

.param rm = { 4.0e4 / segSurfaceArea } ; [ohm]

.param memG = { 1 / rm } ; [1/ohm]

.param revE = -0.065 ; [V]

* active conductances

* Na specific conductance is 1200 S/m^2 = 1.2e-1 S/cm^2

.param gnas = { 0.12 * segSurfaceArea } ; [S]

.param ErevNa = 0.05 ; [V]

* K specific conductance is 360 S/m^2 = 3.6e-2 S/cm^2

.param gks = { 0.036 * segSurfaceArea } ; [S]

.param ErevK = -0.077 ; [V]

* neuron model

.model HH_Params neuron level=1 cMem={memC} gMem={memG} eLeak={revE}

+ gNa={gnas} gK={gks} eNa={ErevNa} eK={ErevK} vRest={revE}

31



*CREATE TWO NEURON INSTANCES

yneuron HH1 a1 0 HH_Params

yneuron HH2 a2 0 HH_Params

.ic v(a1)=-72.655e-3

.ic v(a2)=-72.655e-3

*THIRD WE NEED TO ADD A SYNAPSE TO GO BETWEEN HH1 AND HH2.

*(express all params in [A], [V], [s], etc.)

*Tune maximal conductance, gMax, properly!

*Let gRheo be roughly the least amount of conductance

*that allows a single presyn neuronal spike to cause a postsyn neuronal spike.

.param gRheo=1.318e-12

*Tune N_Neu parameter such that it takes the desired number of presynaptic

*spiking neurons to make a postsynaptic neuron spike.

.param N_Neu=20

*In order to have a smooth curve, we need to decrease ALTD, ALTP.

.model synParams synapse level=3 vThresh={-45.3e-3} delay={1e-4}

+ gMax={gRheo/N_Neu} eRev={0} tau1={1e-4} tau2={5e-3}

+ ALTD={5e-2} ALTP={8.5} L1TAU=23e-3 L2TAU=7e-3 L3TAU= 46e-3

+ R=-72.655e-3 S=-45.3e-3 WINIT=1 WMAX=1.6 WMIN=0

*The P parameter represents the synapse success probability.

*With probability P it will work as usual.

*With probability (1-P) it will fail to generate a synaptic current and

*the w will fail to update.

ysynapse syn12 a1 a2 synParams P={1}

*.tran 0 31.6

.tran 0 6.5

.print tran i(In11) v(a1) i(In22) v(a2) n(y%synapse%syn12_w) n(y%synapse%syn12_vl1)

+ n(y\%synapse\%syn12_vl2) n(y\%synapse\%syn12_vl3)

.end

Transmission Probability

Test Synapse Level 3 device by Alex Duda

*(adjusted parameters and plasticity with access to internal states/variables)

32



*Configured so one spiking presynaptic neuron will make one postsynaptic neuron spike

*ALTP and ALTD tuned for somewhat smooth stdp curve

*13 August 2012

.options timeint method=7 newlte=1 newbpstepping=1 reltol=1e-4

.GLOBAL_PARAM TIMING=410e-3

*.STEP TIMING 390e-3 410e-3 1e-3

.GLOBAL_PARAM TEST=0

.STEP TEST 0 1 0.01

.param S=0.50

.param AMP={3.14159*.1825e-12}

.param WIDTH={1e-3}

.param PERIOD = {400e-3}

*FIRST WE NEED TO SEND A CURRENT PAIR of INPUTS to HH1 and HH2.

In11 0 a1 PULSE( 0 {AMP} {400e-3} 1.0e-6 1.0e-6 {WIDTH} {PERIOD} )

*SECOND WE NEED TO ADD HH1 TO RECEIVE INPUT.

.param segLength = 1e-4 ; [cm]

.param segDiameter = 1e-4 ; [cm]

.param segSurfaceArea = { 3.14159 * segDiameter * segLength }

* specific membrane capacitance 1uF/cm^2

.param memC = { 1.0e-6 * segSurfaceArea } ; [F]

* leak current has membrane resistivity of 40,000 ohm cm^2,

* with reversal potential of -65mV

.param rm = { 4.0e4 / segSurfaceArea } ; [ohm]

.param memG = { 1 / rm } ; [1/ohm]

.param revE = -0.065 ; [V]

* active conductances

* Na specific conductance is 1200 S/m^2 = 1.2e-1 S/cm^2

.param gnas = { 0.12 * segSurfaceArea } ; [S]

.param ErevNa = 0.05 ; [V]

* K specific conductance is 360 S/m^2 = 3.6e-2 S/cm^2

.param gks = { 0.036 * segSurfaceArea } ; [S]

.param ErevK = -0.077 ; [V]
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* neuron model

.model HH_Params neuron level=1 cMem={memC} gMem={memG}

+ eLeak={revE} gNa={gnas} gK={gks}

+ eNa={ErevNa} eK={ErevK} vRest={revE}

*CREATE THREE NEURON INSTANCES

yneuron HH1 a1 0 HH_Params

yneuron HH2 a2 0 HH_Params

.ic v(a1)=-72.655e-3

.ic v(a2)=-72.655e-3

*THIRD WE NEED TO ADD A SYNAPSE TO GO BETWEEN HH1 AND HH2.

*(express all params in [A], [V], [s], etc.)

*Tune maximal conductance, gMax, properly!

*Let gRheo be roughly the least amount of conductance

*that allows a single presyn neuronal spike to cause a postsyn neuronal spike.

.param gRheo=1.318e-12

*Tune N_Neu parameter such that it takes the desired number of presynaptic

*spiking neurons to make a postsynaptic neuron spike.

.param N_Neu=1

.model synParams synapse level=3 vThresh={-45.3e-3} delay={1e-4}

+ gMax={gRheo/N_Neu} eRev={0} tau1={1e-4} tau2={5e-3}

+ ALTD={5e-2} ALTP={8.5} L1TAU=23e-3 L2TAU=7e-3 L3TAU= 46e-3

+ R=-72.655e-3 S=-45.3e-3 WINIT=1 WMAX=1.6 WMIN=0

*The P parameter represents the synapse success probability.

*With probability P it will work as usual.

*With probability (1-P) it will fail to generate a synaptic current and

*the w will fail to update.

ysynapse syn12 a1 a2 synParams P={S}

*.tran 0 31.6

.tran 0 8.4

.print tran i(In11) v(a1) v(a2) n(y%synapse%syn12_w) n(y%synapse%syn12_vl1)

+ n(y%synapse%syn12_vl2) n(y%synapse%syn12_vl3)

.end
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Chapter 3

Network Simulations

Model Description

Our network simulations were based on a benchmark published in [27], specifically, bench-
mark 2, which uses a variant of Hodgkin-Huxley neurons. We varied network sizes, but in all
cases the network consisted of 80% excitatory neurons and 20% inhibitory neurons connected
randomly with a probability of 2%.

A primary characteristic of these networks is that when random external spike inputs
are provided to 2% of the excitatory neurons for the first 100 ms of the simulation, spiking
activity continues to propagate through the network after the external stimulation stops.

Neuron properties

The model neurons in these simulations were based on a neuron model originally pub-
lished in [34]. This form is somewhat different than the form we used in the level 1 Xyce
neuron device, described in chapter 2. The differences are important, as they are necessary to
get the sustained activity mentioned above. So we implemented these equations in the level
9 neuron device. We tested the response of this device to current injection as in the Neuron
implementation’s test of intrinsic properties and verified that we got the same results.

The form used by the Brette benchmark is:

Cm
dV

dt
= −gL(V − EL)− gNam

3h(V − ENa)− gKdn
4(V − EK) + G(t) (3.1)

dm

dt
= αm(V )(1−m)− βm(V )m (3.2)

dh

dt
= αh(V )(1− h)− βh(V )h (3.3)

35



dn

dt
= αn(V )(1− n)− βn(V )n (3.4)

where gNa = 100 mS/cm2 and gKd = 30 mS/cm2 are the maximal conductances of the
sodium current and delayed rectifier with reversal potentials of ENa = 50 mV and EK =
−90 mV . m, h, and n are the activation variables which time evolution depends on the
voltage-dependent rate constants αm, βm, αh, βh, αn and βn. G(t) represents synaptic input,
described below. The voltage-dependent expressions of the rate constants were modified
from the model described by [34]:

αm = 0.32− (13− V + V T )

e
13−V +V T

4 − 1
(3.5)

βm = 0.28− (V − V T − 40)

e
V−V T−40

5 − 1
(3.6)

αh = 0.128− e
17−V +V T

18 (3.7)

βh =
4

1 + e
40−V +V T

5

(3.8)

αn = 0.032− (15− V + V T )

e
15−V +V T

5 − 1
(3.9)

βn = 0.5− e
10−V +V T

40 (3.10)

where VT = -63 mV adjusts the threshold (which was around -50 mV for the above param-
eters).

Synapse properties

A presynaptic spike generates a current in the postsynaptic neuron after a delay D. The
conductance G is of the form

G(t) = g(t)(V − E) (3.11)

where V is the postsynaptic voltage, E is the reversal potential: 0 mV for excitatory synapses
and -80 mV for inhibitory synapses. The benchmark description calls for an instantaneous
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change in synaptic conductance g at the start of the postsynaptic response, followed by an
exponential decay. The Xyce synapse device (level 4, or level 3 with plasticity disabled) uses
a double exponential implementation of synaptic dynamics rather than the discontinuous
change, so we used a very small time constant, 1e-7 s, for the rise time to approximate
the instantaneous change. Maximum conductance was 6 nS for excitatory synapses and 67
nS for inhibitory synapses; decay time constant was 5 ms for excitatory synapses and 10
ms for inhibitory synapses. The original benchmark actually specified no delay D between
presynaptic spike and postsynaptic response; we followed the Neuron implementation in
introducing a delay of 0.1 ms between neurons in the network and 1 ms after external input
spikes.

Network connectivity and external input

Network connectivity and external input are both random in this model. Since one of our
purposes was to compare Xyce performance to that of the Neuron simulator, we wanted to
use the same connectivity and external stimuli in both simulators. We ran the simulations
initially in Neuron, saving the connectivity and stimulus info, and then used those files to
generate the corresponding Xyce netlist.

Simulation run times

The Xyce simulation tool uses implicit methods to solve the set of DAEs generated as
a result of the network models and connectivity. This creates a solver loop that has a time
integration method as the outer loop, Newton’s method is used as a nonlinear solver, and
the inner-most loop is a linear solver. The computational cost of simulation is dominated by
either the device update and Jacobian matrix / residual vector load for Newton’s method or
the solution method for the linearized system (linear solver). For small networks, the device
update is the more dominant computational cost, while the linear solver becomes the more
dominant as the networks size increases.

The benchmark calls for a network with 4000 neurons. Run times for Xyce and Neuron
using a variety of integration and solver options are shown in the figures below. Note that
the 4000-neuron network has 16,248 unknowns, which is smaller than the size for which Xyce
parallelization is expected to pay off.

For the Xyce runs (c.f. figure 3.1), m7 refers to time integration method 7, variable order
Trapezoid; rtol refers to the relative tolerance used for time integration; klu indicates the
use of the serial [linear] solver; btf indicates the use of the parallel [iterative linear] solver
with these options:

.options linsol type=aztecoo tr partition=0 tr amd=0 tr global btf=2
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Figure 3.2. Neuron Runs: Comparison of time integration
options. The x-axis is number of CPU’s and the y-axis is run
time in seconds.
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!
Figure 3.3. Comparison of spike traces.

+ tr global btf verbose=1 use ifpack factory=0

For the Neuron runs (c.f. figure 3.2), dt=1e-4 indicates a fixed-time step integration
using a time step of .1 microseconds (1e-4 ms); atol=1e-7, 2nd indicates that the variable
time step integration scheme was used with an absolute tolerance of 1e-7; the 2nd refers to
condition order, and means that spike times were interpolated within the time step interval.

Simulation Accuracy

We found that different simulations of the same network between simulators or even with
the same simulator using different integration options did not produce the same voltage
traces for each neuron, or even the same number of spikes in the network. For this model,
with its very sensitive neurons and large synaptic inputs, the time course and stability of the
simulation is very sensitive to tiny differences (see figures 3.3 and 3.4). For both simulators,
tightening the time integration tolerances increased the time over which the voltage traces
remained consistent, but we did not find complete convergence. This is illustrated by the
next two figures, showing sample voltage traces for the first neuron in the network for 100
ms and then 1000 ms.

This lack of ground truth simulation results led us to explore other means of analyzing
the overall network behavior, described in chapter 4.
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!
Figure 3.4. Comparison of spike trances over longer times.

Scaling

To better understand how Xyce scales in parallel for neuron inspired problems, the same
style of network described by Brette [27] was simulated on a cluster using 1 to 32 processors.
As shown in figure 3.5 and 3.6, a two million neuron device simulation scales well to 16
or 32 processors. Significantly, the load solve time decreases as more processors are added
indicating that the fundamental partitioning of the problem is efficient.
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synapse simulation.
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Chapter 4

Analysis of large scale neural network
simulations

Introduction

The ability to simulate large scale neural networks provides a new problem. Even if sim-
ulations can be performed with a desired number of neurons for a desired length of time, the
next consideration is how to analyze these results [14]. The foremost purpose for developing
a sophisticated analysis approach is extracting insight about the modeled system. However,
as shown in the previous chapter, since even identical networks can show considerable dif-
ferences in behavior when different integration options are used, more sophisticated analysis
approaches are necessary in order to quantify the effects of simulation conditions themselves.

Spiking neural output is a challenge to interpret for several reasons. The primary chal-
lenge is the large dimensionality; each individual neuron is an independent - but not neces-
sarily orthogonal - measure of whatever the network is encoding or computing. An additional
challenge is the temporal nature. A given neuron’s code is typically sparse over time - the
majority of the time the neuron is silent, but periodically it produces spikes if the inputs are
sufficient to generate one. Spikes can therefore be considered highly informative about the
neurons inputs, but typically only if time is taken into account. Simple analysis approaches,
such as averaging over time using firing rate approaches, eliminate much of this information.

Here, we propose that a transformation of the temporal spiking data into a new reference
basis to facilitate interpretation of network activity. The method of choice here is principal
components analysis (PCA) [29], more generally known as singular value decomposition
(SVD). PCA and SVD are widely-used dimensionality reduction methods, typically used to
find an orthogonal basis set that compresses the most of a given parameter (variability in
PCA’s case) into as few of dimensions as possible. It is important to note that PCA is a
linear technique, essentially rotating and stretching the coordinate system from “neuron-
space” to “PCA-space”. Although there are reasons to think that a simple linear reduction
is not ideal (neurons themselves are highly non-linear), the use of PCA here is informative
and may lead to further exploration on non-linear alternatives.
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Figure 4.1. A simple filtering function.

Theoretical Approach

Assume X is the collection of spiking events from a population of neurons. X can be
constructed as an N x D matrix, where N is the number of observations over time (time
dimension) and D is the number of neurons. Our approach is fairly simple: a pre-processing
step, implementing PCA or SVD, and a post-processing step.

Step 1: Pre-processing: temporal filtering of raw spiking data

As mentioned previously, the temporal structure of neuronal responses is critical to un-
derstanding their function. Because PCA treats all observations as independent and because
spikes are essentially digital delta functions, it is thereby necessary to temporally smooth
the spiking events in order to preserve the temporal relationship between observations. This
temporal relationship is important to preserve since the subsequent analysis is based on the
temporal correlations between neurons.

A simple linear filter, as illustrated in figure 4.1, is sufficient for our purposes. The linear
filtering can be described as:

χfilt(n, d) =
1

τ
Σn

ε=η−τχ(ε, d) (4.1)

Where d is the neuron, n is the current observation (i.e., time), τ is the length of the filter,
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χ is the original spiking matrix, and χfilt is the filtered matrix.

In the toy example shown, the top neuron fires 5 ms before the bottom neuron. From a
neuroscience perspective, a temporal offset of this duration is interesting; it may be that the
top neuron’s spike caused the bottom neuron to spike; or it may be that the two neurons
receive similar, but not identical, inputs. Regardless of the underlying cause, it is this
temporal relationship we want to retain in our analysis. However, the correlation of the
non-filtered signals (the single spikes) is very low; -0.0345 in the illustrated case. Providing
each signal with a 10ms uniform filter, essentially spreading the spike equivalently over that
window, yields a correlation of 0.25. Notably, the filter allows relative spike times to influence
the correlational structure directly; neurons that reliably fire within a few milliseconds of
one another will obtain stronger correlations than pairs of neurons whose activity is typically
further apart in time.

While in our example we use a filter of 10ms, we typically used 25ms filters in our analysis.

Step 2: Principle Component Analysis (PCA)

PCA was then performed on the filtered spiking matrix. The PCA process used was
the standard approach of zero-meaning the filtered matrix (χfilt) and normalizing to the
standard deviation of each dimension.

χfilt,norm(n, d) =
χfilt(n, d)− µd (χfilt(n, d))

σd (χfilt(n, d))
(4.2)

Next, the covariance matrix of the normalized filtered firing array is taken

C = χf,nχ
T
f,n (4.3)

Next, the dxd matrices of eigenvectors (V ) and eigenvalues (D) of the covariance matrix C
are determined, such that

V −1CV = D (4.4)

The columns of the eigenvector and eigenvalue matrix are then re-sorted such that the
eigenvalues (which exist along the diagonals in D) are in decreasing order. At this point, the
orthogonal eigenvectors represented in V represent the new basis set for the data in χ, and
the dimensions are ordered by the extent of variability of χ that they explain. V contains
the set of principal component vectors (PCx’s), and can be considered as

V = {PC1, PC2, PC3, . . . , PCk} (4.5)
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These PCs are the first result that we will use to examine the structure of dynamics. A
reduced matrix W can be constructed of only the top k PCs that are desired for further
analysis.

W = {PC1, PC2, PC3, . . . , PCk} (4.6)

Step 3: Post-processing – projecting spiking data onto principal
components

The eigenvectors obtained by PCA represent a basis set that is simply a transformation
(through linear rotating and stretching) of our original space (neuron space). While the
original data was used to determine which space is best suited to represent the original
spiking data, the data itself is not represented in the basis description. To obtain this final
piece, the original data is then projected into the new PCs. For the nxd matrix χ and a PC
basis given by the kxd matrix W (which is the reduced matrix (from V ) of the top k PCs),
the nxk projection of the data Y is given by

Y = XW T (4.7)

For the purposes of our analysis, we used the unfiltered spiking matrix χ here, and then
we passed Y through a comparable uniform filter to smooth the projections for visualization.

Yfilt(n, k) =
1

τ
Σn

ε=n−τY (ε, k) (4.8)

The filtered Yfilt matrix can be considered the path through the PCs that the simulation
takes over time, and is our second result.

Results

Different simulation runs share principal components

The observation that the same model simulated with different tools or even with the same
tool under different integration conditions yield markedly different behaviors (Chapter 3) is
both disconcerting regarding our confidence in numerical simulations as well as problematic
from an analytics point of view. Put simply, if an identical network shows qualitatively
different behavior under different simulation conditions, how can we derive insight from the
differences in behavior between two different networks?
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Figure 4.2. PC1 - 1,000 ms; 4 runs

We hypothesized that even though the raw spiking output of the networks differs ex-
tensively that there may be a commonality between the PCs of the spiking output. This
would be the case if the underlying correlational structure between the neurons is unchanged
even if noise due to simulation caused diverging network behavior. To assess this, we ran an
identical simulation through Xyce (same netlist) for 10 seconds using different integration
tolerances (1e-3 through 1e-9) and methods (m6 and m7). Over the first 1000 ms, there is
some similarity between the primary PC across simulation methods, however there remain
some differences.

Across all the runs, there was an average normalized dot product (NDP) of 0.72; while
several of the runs shared much of the first PC, a couple of the runs did not.

This overlap of PC strong between many of the simulations, and weak between a couple,
is still striking, as the first 1000ms show drastically different dynamics between runs. After
the top PC, the similarity breaks down somewhat. Shown below are the NDP scatter plots
of the next two principal components (PC2, 0.5622; PC3, 0.45).

The indication that the first PC is conserved and the subsequent PCs are still loosely
related between simulation runs was promising and indicates that the PC space is more
robust to simulation conditions than the raw output. However, the lower similarities between
higher PCs suggest that the approach is limited at the amount of time examined. Notably,
1000 ms is not very much time for understanding the correlation structure of 250 dimensions
(neurons). We hoped that looking at longer simulations would provide a stronger relationship
between the PC bases.
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Indeed, investigating 10000 ms (10x longer) yielded an incredible similarity (PC1 NDP =
0.99) between the primary principal components of runs. This is notable, because it suggests
that even though the networks had longer to diverge from their initial similar starting points,
the correlation structure of the dynamics converges.

This similarity holds up across all simulation runs and through the first several PCs
(PC2, 0.98, PC3, 0.96; PC4, 0.90).

Notably, the relationships between higher PCs (which explain less of the overall variance
in the dynamics and are thus more susceptible to noise) do eventually break down even in
the 10 second runs. However, overall the longer the simulation runs, the more stable the
PCs.

Projection of raw data into PCs allows clear identification of diver-
gence point

Although it is clearly evident that network behavior diverges in simulations using differ-
ent integration options, the identification of a precise time when this divergence occurs is
challenging. Quantifying a divergence time is useful because this can help better identify
how different integration schemes relate to one another. Observing single neurons allows this
to some extent (see Chapter 3), but with progressively larger systems it is not clear that a
single neuron or a subset of neurons will be representative of when the population begins to
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behave differently.

Our observation that the different simulation runs share a common principal component
basis set is useful in this regard, as it reduces a large fraction of the network behavior into
a handful of dimensions. The behavior of the simulation as viewed through the top PCs
enables us to observe when the populations begin to diverge and how they relate to each
other in general.

As described in the methods, the principal components of the total spiking data for that
network were determined. To do this, we simply combined all the different simulation runs
into the equivalent of a really long simulation. Notably, as described above, the top PCs
of the individual runs were shared across simulations, so it was not surprising that the top
PCs of combined data set were highly similar to the PCs of the individual runs (Combined
PC1 had approximately an NDP of 0.995 to each single simulation PC1). Projecting the
raw spike output from each individual simulation provides the path in PC-space that that
simulation took.

Figures 4.12 and 4.13 show the projection of the first 500 ms of a single simulation run into
the combined PC1. Both the unfiltered (raw spike train projected into PCs) and a filtered
version are shown. Subsequent plots will show only the filtered version of the projection. In
this particular simulation, after an initial quiescent period, the model experienced a small
movement in the negative PC1 direction, and then experienced a prolonged displacement
in the positive PC1 direction. In contrast, the right figure shows a second simulation run
(identical network, different integration tolerance (1e-4 vs 1e-3)). The networks’ behavior
initially appears similar, however after about 100 ms, the second simulation returns towards
0 in the PC1 dimension, while the first simulation moves further in in the positive direction
in PC1.

Combining the figures (see 4.14), it is clear that the first evidence of divergence occurs
around only 84ms.

Combining all of the simulation runs in which the m6 Xyce solver was used, it appears
that while some simulations held together for roughly 100 ms (a pair even stayed together
until 150ms), the runs diverged as early as 70ms. Notably, the propensity for runs to stay
consistent with one another did not appear to be related to their relative tolerances; while
one would expect that higher tolerances should approach a ground truth with runs staying
together for longer, that does not appear to be the case here.

Looking at the m7 Xyce runs, there is a similar trend. The jobs begin to diverge at
different times, some as early as 75ms. Unlike the m6 runs, it does appear that there is
a progression to when they diverge, it appears that the looser tolerance jobs progressively
diverge earlier than the tighter tolerances. For instance, the 1e-9 and 1e-8 simulations, which
were the two tightest, are aligned in PC1 for almost 175ms, whereas 1e-3 and 1e-4 diverge
very early in the simulation run.
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Figure 4.12. Projection of the first 500 ms of a single
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Figure 4.13. Projection of the first 500 ms of a single
simulation run into the combined PC1
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Figure 4.15. Combined projection form all Xyce simula-
tions using method=6 for PC1
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Figure 4.16. Combined projection form all Xyce simula-
tions using method=7 for PC1

Discussion

As described in the above results, the observation that simulation runs with rapidly
divergent behavior share PCs has a direct value in quantitatively assessing when comparable
simulations diverge. However, it is interesting to consider the broader ramifications of this
observation. At one level it is not entirely surprising. Shared principal components imply
a shared covariance matrix and correlational structure of the entire data set. The fact that
correlations between neurons appear to be time independent is likely an indicator that the
correlational structure of the data has more to do with the network architecture than the
state of the network at any given time. Even if neurons happen to be co-activated at a
given time by chance, one would expect that over long simulations random co-activations
will cancel one another out. Whereas when neurons are co-activated due to common inputs
or mutual connectivity, one would expect that their correlations will persist regardless of the
simulation duration. Notably, neurons downstream of such networks in the brain typically
will sample a large number of neurons and are likely tuned through learning mechanisms
over long periods of time. Thus, we would then expect that downstream neurons over time
become sensitive to higher order correlational structures in the source networks dynamics,
not the more unpredictable patterns of behavior observed acutely in the raw simulations. For
instance, in the networks described above, one could imagine a downstream neuron sampling
many of the neurons that are positively represented in PC1, and another preferentially
sampling those neurons that are negatively represented in PC1. Now, these neurons would
be activated at different times in each simulation (whenever PC1 is strongly positive or
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Figure 4.17. How PC dynamics change due to bias.

negative), but over a given amount of time the expectation would be that these neurons
would be activated fairly often. Such a mechanism becomes particularly interesting if, for
whatever reason, the relevant PCs of the network were to change. As mentioned above, the
PCs are likely due to the network architecture and intrinsic rules governing the dynamics of
the components and connections. If the network were to shift in a fundamental way, either
through a bias provided by an upstream region, or through learning or neuromodulation,
then it would be expected that the PCs would shift accordingly. Take the example of a
bias to the network, which could just be tonic input from a set of upstream neurons. This
bias would change the correlational structure of the dynamics; for example, two otherwise
uncorrelated neurons now may receive a similar bias input. (Note: the extent of this effect
would depend on the strength of the bias (external input) relative to the influence of the
internal connectivity.) Now, because the correlational structure of the network is different,
the proper PC basis would be rotated to become somewhat different (see Figure).

Now consider our hypothetical downstream neurons. The neurons that responded to the
original PC1 would not typically be activated under the new situation. Whereas if there are
any neurons tuned to the biased network’s PCs, they could now be preferentially activated.
As a result, different inputs can activate a different correlational structure in the recurrent
network, a change that can be detected by output neurons that are tuned (through learning
at synapses) to the relevant high-dimensional components. It is important to note that while
we used PCA, there is nothing special about this approach beyond its practical use as an
analysis approach. Indeed, it is likely that the most relevant combinations of neurons in
neural coding (the equivalent of PCs in this case) are not actually orthogonal.
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Chapter 5

Reduced-Order Modeling of Neuron

The reduced-order modeling (ROM) techniques have been used to accelerate simulations
of dynamical systems. In this chapter, a Krylov subspace based ROM technique is presented
to effectively reduce complexity of large dentrites in multi-compartment neuron models. The
experimental results show that simulation with ROMs can achieve large speedup over the
full model with the same accuracy.

Reduced-order modeling

The reduced-order modeling techniques for linear time invariant systems (LTI) have been
successfully applied to circuit simulations. There are a variety of well established LTI ROM
techniques. These techniques are often based on projection of a LTI system into lower
dimension subspaces.

A linear circuit can be described by differential algebraic equations:

Cdx
dt

=−Gx(t) + Bu(t)
y(t) =LTx(t),

(5.1)

where C ∈ Rn×n,G ∈ Rn×n, B ∈ Rn×p and L ∈ Rn×p and x(t) is the state, u(t) the input
and y(t) the output of the system. Also, n is the size of the original system and p the number
of inputs (outputs). If p = 1, then (5.1) is referred to as a single-input-single-output (SISO)
system and, if p > 1, it is a multiple-input-multiple-output (MIMO) system.

For model order reduction, one constructs two projection matrices W ∈ Rn×k and V ∈
Rn×k such that WTV = Ik, where k is the desired size of the reduced system (k � n). The
reduced system is now Σ̂ ≡ (Ĉ, Ĝ, B̂, L̂) governed by the following set of first-order LTI
differential equations

Ĉdx̂
dt

=−Ĝx̂(t) + B̂u(t)

ŷ(t) = L̂T x̂(t),
(5.2)
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where Ĉ = WTCV, Ĝ = WTGV, B̂ = WTB, L̂T = LTV.

The frequency input-output relationships of the original (5.1) and reduced (5.2) systems
are determined by their corresponding transfer functions:

H(s) = LT (sC + G)−1B,

Ĥ(s) = L̂T (sĈ + Ĝ)−1B̂.
(5.3)

In Xyce, a Krylov subspace based ROM technique is developed. The algorithm, PRIMA
(passive reduced-order interconnect macromodeling algorithm) is proposed by Odabasioglu
et al. [26] in 1998. The algorithm utilizes the block Arnoldi procedure. Note that for
PRIMA, W = V. The resulting reduced system Σ̂ is proven to be passive and hence, stable.
The number of matched moments is equal to the desired size of the reduced system Σ̂ divided
by the number of inputs, i.e., l = k/p.

However, the experiments show that transient simulation with the reduced models can
be slower than the simulation of full models. The transient simulation with ROMs can take
more time steps and linear solve for each step can be more expensive. To accelerate the
transient simulation with ROMs, we developed scaling and sparsification techniques. These
techniques make ROM algorithm much more efficient and robust.

The method

In this section, the neuron simulation using ROM technique is described. A neuron
can be accurately modeled as multiple compartments. A compartment can be modeled as
equivalent circuit models. This makes it possible to apply circuit simulation techniques for
neuron simulation.

The main idea of ROM for multi-compartment neuron model is to separate the nonlinear
parts from the neuron cell and then apply ROM to the pssive dendrites. The nonlinear parts
are the compartments that have active ion channels. For example, the soma is modeled
by the Hodgkin-Huxley model described in the previous Chapters and is highly nonlinear.
The synaptic input is modeled as a synaptically activited ion channel described previously
and is also nonlinear. The linear parts are the passive dendrites. They are modeled as an
equivalent multiport linear RC network and can be reduced by an efficient Krylov subspace
based MOR technique described in the previous section. The nonlinear parts and linear parts
are connected by ports. The ROM technique in Xyce not only generates a smaller model
which matches both the frequency domain and time domain responses of the full model, it
also preserves the passivity of the full model.

The proposed method is very efficient for neuron model reduction. First, the dendrites
in neuron is modeled by RC network which is more suitable for reduction than RLC network
in circuits. Second, the frequency range of neuron activities is band limited and it has a
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significant low frequency component. This makes the size of the reduced systems smaller.
The proposed method is very efficient with a small number of ports and can be easily extend
to reduce the quasi-active systems.

Example

In this section, we apply the proposed method to neuron simulation and show large
speedup over the full model simulation. The neuron in our test has a nonlinear soma and
the passive branched structure for dendrites that are similar to rallpack2. A positive current
is injected to the soma and spiking trains of action potentials are generated due to the
somatic current injection.

The original neuron model has about 10000 unknowns. The reduced model has 100 un-
knowns. The transient simulation with reduced model takes longer time than the simulation
of the full model. With sparsification technique, the simulation of ROM has more than
30 times speedup over the simulation of the full model. The transient simulation perfor-
mance of the reduced model is further improved by using both the scaling and sparsification
techniques. We obtain a speedup of 50 times over the full model. Figure 5 compares the
transient simulation among the full model and reduced models. As can be seen in the figure,
the results from reduced models match that of the full model well.
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Chapter 6

Fitting the parameters of neural
models to biological data

Introduction

There are a variety of mathematical models that have been developed to simulate the
activity of spiking neurons. These models range from very simple phenominalogical models
such as the integrate and fire model, to complex models such as Hodgkin-Huxley models
which aim to recreate the actual biological mechanisms involved in creating the voltage
spikes in neurons. Different models vary in their ability to recreate biologically realistic
spiking behavior. Simple models are computationally much faster but cannot recreate many
aspects of biological behavior. More complicated, biologically realistic models can recreate
biological firing patterns but are computationally very expensive.

Due to the trade off between computational load and realistic behavior, the model a
researcher chooses to implement will depend on the specific phenomena that is under in-
vestigation and the computational resources available. However, what is common to the
modeling process is that all models have parameters. Regardless of the specific model, these
parameters will have to be tuned in order to produce the desired behavior.

Because of the non-linear nature of neural models, parameter fitting of neural data has
been a notoriously arduous process [35]. It has been shown that tiny fluxuations in param-
eters can drastically affect the spiking behavior of neurons [25]. Many researchers attempt
to hand tune the model parameters. Occasionally hand tuning works for simple models,
but often becomes impossible with biologically realistic models. As a result researchers have
turned to established parameter fitting techniques. Many techniques are available such as
simulated annealing, genetic algorithms, particle swarm methods, and complete sampling
regimes [35, 28]. In order to use any of these methods, first and fitness function (often
referred to as and error function or a cost function) must be chosen. The fitness function
quantifies how similar (or dissimilar) the model behavior is to the desired, or what we will
refer to as the ”target” behavior.

In the following text, we will describe the biological data we are aiming to fit, define our
choice of fitness function, and demonstrate the parameter fitting methods we have pursued.
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Figure 6.1. Two examples of intracellular voltage record-
ings with current injection from dentate gyrus hippocampus
neurons. Each voltage ’wave’ (of which their are 15) corre-
sponds to a current injection. The first wave is the increase in
voltage due to a current injection of 10 pA. The subsequent
waves correspond to current injections increasing in size of
10 pA. Notice that both of the neurons start firing action
potentials when 30 pA are injected.

Biological Data

In order to collect intracellular current clamp electrophysiology data, an electrode is
inserted into a live neuron. Then, current is injected into the neuron in pulses (often causing
the neuron to spike) and the resulting voltage within the neuron is recorded. An example of
this data is shown in Figure 6

Choice of Voltage Train Characteristics

Before a fitness function by which the quantify the similarity between the model produced
spike train and target spike train can be chosen, one needs to define the aspects of the spike
train that are important. For example, often researchers can characterize a neuron in terms
of its frequency of firing. Other general measures include how ’bursty’ versus tonically a
neuron fires. For example, in the lower voltage plot of Figure 6, in the 11th voltage wave
(starting at approximately 200 sec) the neuron fires a burst of spikes, followed by a period
of quiescence followed by another burst of spikes. Yet another measure involves the amount
of adaptation a neuron shows. Adaptation refers to the behavior where a neuron initially
fires quickly and then slows down over time as it ’adapts’ to the stimulus. Evidence of this
phenomena can be seen in both of the voltage traces in Figure 6.

64



All of the above mentioned characteristics are commonly used to characterize the spiking
behavior of neurons. These are general descriptions, however, their are other aspect of firing
behavior that these do not describe: mainly the specific timing of the spikes and the shape
of the spikes. It is hotly debated in the neuroscience field whether the exact timing of spikes
is important for computation. However, there is substantial evidence that the exact timing
of spikes may indeed have an impact [8, 32, 33, 4]. The shape of a spike refers to the height
and width of a spike as well as the subthreshold dynamics (shape of the voltage trace before
the neuron reaches the voltage after which it is guaranteed a spike will be fired). While
it is possible that attributes of shape may be important for computation, it is likely that
these attributes are a by-product of the ion channels needed to produce the correct, obvious
binary spiking behavior that indicates whether a neuron has been adequately stimulated to
reach voltage threshold. Therefore, we focused our efforts on the patterns and timing of
the spiking behavior and neglected to consider the spike shape. We chose to use a method
that measures the similarity between the timing of the spike trains. The exact timing of the
spikes is a more precise measure of spiking behavior than the general descriptors above. In
addition, they are essentially included ’for free’ in spike timing measures. I. e. if the behavior
of a neuron is bursty, by fitting the times of the spikes, the obtained model behavior will
also have to be bursty to achieve an adequate similarity.

There are various quantitative methods that can be used to evaluate the timing similarity
of spike trains [22]. We chose to use a correlation based method developed by Schreiber and
colleagues [30] described in the next section.

Fitness Function

We used a correlation-based method developed by Schreiber and colleagues [30]. The
correlation measure is defined as

Rcorr =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

~si · ~sj

|~si||~sj|
(6.1)

Where Rcorr varies between 0 and 1; 1 would correspond to two identical spike trains,
0 is equivalent to a poor fit. ~si and ~sj are the filtered spike trains. ~si and ~sj are obtained
by convolving the binary spike trains with a Gaussian function. The width of the Gaussian
will define how much jitter versus missing and additional spikes are allowed. I.e. if a sharp
Gaussian is used, the timing of the spikes will need to be precise in order to obtain a value
of Rcorr close to 1. In general, we used a σ = 5 ms.
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Parameter Fitting Methods

The objective, is to tune model parameters in order to recreate the spiking behavior of
the target, experimental voltage trace. With this goal in mind, we chose to explore one
optimization method and one sampling method available in the Sandia DAKOTA software
package: evolutionary algorithms and latin hyper square sampling. These methods and the
results are described below:

Basic Strategy of Testing Methods

To test the efficacy of the fitting methods we first made a test target trace with known
parameter values from the model itself. We then attempted to fit the test target trace.

Evolutionary Algorithms

Evolutionary or genetic algorithms are are a set of generic population-based metahuristic
optimization algorithms. The algorithms use mechanisms inspired by biological evolution
to find a solution. Evolutionary algorithms are global optimization algorithms that are less
likely to ’get stuck’ in local minima. There are a many evolutionary algorithms available with
many different parameters to be set. Two genetic algorithms exist in Dakota: colony ea and
JEGA. Here we used colony ea as the algorithm is a bit simpler and we did not yet have a
need for multiobjective optimization as is offered by the JEGA method. Genetic algorithms
have proven to be an effective method to fit neural data in the past [10]. In order to test
the effectiveness of the colony ea method on Hodgkin-Huxley like equations we tried to fit
the conductance based models of Mainen and Sejnowski [23]. It had been shown previously
that the Matlab genetic algorithm could find parameters that would yield a fitness better
than 0.9 (Teeter and Chan, in preparation).

The model equations can be found in the original article [23]. An example DAKOTA
input file using colony ea is below:

strategy,

single_method

tabular_graphics_data

method,

coliny_ea

max_iterations = 500

max_function_evaluations = 1000000

population_size = 50

initialization_type unique_random
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fitness_type merit_function

mutation_type offset_normal

mutation_scale=.5

mutation_rate = 1

crossover_type uniform

crossover_rate 0.8

replacement_type elitist = 2

solution_target=.1 #target below which target will stop

non_adaptive

model,

single

variables,

continuous_design = 10

lower_bounds 10*0.0

upper_bounds 200 2000 3 1 30 200 1 30 3 200

descriptors

’gna_soma’

’gkv_soma’

’gca_soma’

’gkm_soma’

’gkca_soma’

’gna_dend’

’gkm_dend’

’gkca_dend’

’gca_dend’

’gkv_dend’

interface,

fork #like a matlab system call

analysis_driver = ’runneuron.sh’

parameters_file ’params.in’

results_file ’results.out’

work_directory named ’workdir’

directory_tag

template_files

’MainenGaL4Stellate.hoc’

’conductances.dat.template

’x86_64’

’MainenL4StellateDefaultConddt0p05T.dat’

’MainenL4StellateDefaultConddt0p05V.dat’

’cells’

’peaks.py’

’calcfitness.py’
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responses,

objective_functions = 1

no_gradients

no_hessians

Here we had variable levels of success fitting our test target trace. There were four
example target traces in the Mainen article. The above DAKOTA input file could do a
reasonable job of finding a set of parameters that would yield a fitness greater than 0.9 for
the small Aspiny neuron (colony ea could find a solution about 1 of 5 times the algorithm
was run). However the success dropped of to approximately 1 in 50 for the slightly larger
L4 Stellate cell and could not find appropriate parameters for the larger neurons. There
are several differences between the Matlab genetic algorithm and the algorithms available
in DAKOTA. Due to the difficulty in altering the original DAKOTA code to implement
additional feature we did not pursue this method. However if DAKOTA genetic algorithms
are used to pursue neural modeling in the future, Matlab features could be added.

Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a statistical method for generating a distribution
of plausible collections of parameter values from a multidimensional distribution [1, 17].
Because of the highly non linear nature of neural models, a very large number of samples
are required to find a set of parameters that adequately represent the space. In this case, it
is unlikely that LHS gives an advantage over Monte Carlo methods.

Initially we were curious how many samples would yield a fit greater than 0.9 to a test
target spike train. We took 1 million samples (the memory on the Redsky super computer
will not hold more than a couple million samples). Below is example DAKOTA input file
using LHS to sample the Izhikevich model described at the end of this chapter.

strategy,

single_method

tabular_graphics_data

model,

single

method,

sampling,

samples = 1000000

sample_type = lhs

variables,

uniform_uncertain = 11
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# C Vt Vr k a1 b1 c1 d1 a2 b2 d2

lower_bounds 0 -75 -90 0 0 -4 -75 0 0 -4 0

upper_bounds 500 -20 -20 1 1 4 0 1000 1 4 1000

descriptors

’C’

’Vtin’

’Vrin’

’k’

’a1’

’b1’

’c1’

’d1’

’a2’

’b2’

’d2’

interface,

fork #like a matlab system call

analysis_driver = ’runC.sh’

parameters_file ’params.in’

results_file ’results.out’

work_directory named ’workdir’

directory_tag

template_files

’testTraceMakeWithC100Vt-45Vr-75k0p1a0p1b-0p1c-60d100a0p005b0d50a0b0d0.dat’

’single_Izy_proto_multiu.o’

’parameters.dat.template’

’peaks.py’

’calcfitness.py’

responses,

objective_functions = 1

no_gradients

no_hessians

The test target trace was made with C = 100, Vt = −45, Vr = −75, k = 0.1, a1 = 0.1, b1 =
−0.1, c1 = −60, d1 = 100, a2 = 0.005, b2 = 0, and d2 = 50. Figure 6 shows the normalized
parameters that yielded a fit better than 0.9 using a Gaussian filter value of σ=5 ms. The
variables were allowed to vary between the values listed in the example DAKOTA input file
above and on the figure heading. 198 parameter sets yielded a better than 0.9 fit. Notice
how there doesn’t seem to be structure to the parameter values that yield a sufficient fit.
This suggests that there is not a region of the parameter space that fits the target behavior,
instead there seems to be a diverse set of solutions to the problem. This speaks to the highly
non-linear nature of the space.
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Figure 6.2. Normalized parameter values that yield a fit
greater than 0.9 obtained by running 1 million LHS samples.
Solid lines connect one set of parameter values.
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Figure 6.3. Normalized parameter values that yield a fit
greater than 0.90 obtained by running 1 million LHS samples.
Solid lines connect one set of parameter values.

To further explore this issue, we looked at how many of the parameters would yield a
fitness larger than 0.99 (Figure 6. Again there are not any obvious patterns between the
sets of parameters that yield a fit of 0.99.

Given the number of parameter sets we found yielding a sufficient fit for the test target
trace, we moved onto a target trace consisting of real current clamp data. Unfortunately
using the same method, we were unable to find any fits that yielded a fit greater than 0.9.
There could be several reasons for this result. 1. real neural data is somewhat probabilistic
and our fitness function does not take this into account. 2. The model is not sufficient to fit
real biological data. To get to the heart of this matter, it would be ideal to compare several
different current clamp voltage traces from the same neuron in order to access the statistical
deviations firing patterns within neurons.

Izhikevich Model Neuron

A computationally simple model that recreates many biological spiking patterns was
created by Eugene Izhikevich [18].
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The simplest equations for the model can be found in [18]. The equations we use here
are an alteration on the original Izhikevich model which allow for more biologically realistic
behavior. The equations we use follow:

v′ = (kvrvt(k1 + k2tanh(vt))− u1 − u2 + Isyn) + Icomp)/C (6.2)

u′1 = a1(b1vr − u1) (6.3)

u′2 = a2(b2vr − u2) (6.4)

Where

vr = v − vr (6.5)

vt = v − vt (6.6)

With after-spike resetting

ifv ≥ 30mV, then

{
v ← c

u1 ← u1 + d1u2 ← u2 + d2
(6.7)
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