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ABSTRACT 
 

For teams working in complex task environments, instilling effective communication between 
team members is a primary goal during task training.  Presently, responsibility for evaluating 
team communication abilities resides with instructors and outside observers who make 
qualitative assessments that are shared with the team following a training exercise. Constructing 
technologies to automate these assessments has historically been prohibitive for two reasons.  
First, the financial cost of instrumenting the environment to collect team communication data at 
the necessary fidelity has been too high for an operational setting.  Second, past research on 
using team communication as a proxy for team performance assessment has relied on defining 
communication through traditional algorithmic design, an approach which does not properly 
capture the varied nature of communication strategies amongst different teams. 
 
Recent scientific research in team dynamics provides a theoretical framework leading to a data-
driven solution for analyzing the effectiveness of team communication. By framing team 
communication as an emergent data stream from a complex system, one may employ machine 
learning or other statistical-analysis tools to highlight communication patterns and variance, both 
shown as effective means for assessing team adaptability to novel scenarios.  Furthermore, low-
cost wearable computers (e.g., smartphones) have opened new possibilities for observing 
people’s interactions in natural settings to better analyze and improve team performance. 
 
This report summarizes research conducted by Sandia National Laboratories in developing a 
data-driven approach to analyzing team communications within the context of Surfaced Piloting 
and Navigation (SPAN) training for submariners. Using Dynamic Bayesian Networks (DBN’s), 
this approach created predictive models of communication patterns that emerge from the team in 
different contexts. Based upon data collection conducted in the lab and within live submarine 
crew training, our results demonstrate the robust nature of DBN’s by still identifying key 
communication events even when teams altered their speaking patterns during these events to 
accommodate for novel changes in the scenario. 
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INTRODUCTION 
 
Complex tasks that demand a coordinated effort benefit from the capacity of a team to pool 
resources via an exchange of information and coordinated action, though the effectiveness of a 
team may be contingent on a variety of factors [1]. Team effectiveness has particular impact 
within a military setting, as within combat situations the performance of a group has a direct 
bearing on the survival of the group and those dependent on them [2], situation that holds true 
when considering the success of naval operations [3]. In an attempt to determine the critical 
elements that make up an effective team in a military setting, variables related to team 
effectiveness have been examined from a variety of perspectives, including team cohesiveness 
(i.e., shared interpersonal closeness and group goal-orientation) [4], [5] collective orientation [1], 
shared mental models (i.e., synthesis of input from individual team members) [6], [7], [8], team 
selection and composition (e.g., the skills possessed by the individual team members, how long 
the members have been working together) [5], [6], [9], quality of decisions made by commanders  
[10], [11], cognitive readiness and adaptive decision making at the group level [12], training 
adequacy [5], the workload involved [13], and even neurophysiologic synchrony between team 
members, as assessed via electroencephalogram [14]. 
 
In the context of naval operations, assessment of the quality of teamwork has proven difficult, 
with such assessments relying on the observations of subject matter experts, skilled instructors, 
or a self-evaluation within teams during live or simulated exercises [3]. These judgments are 
subjective by their very nature, leading to a potential lack of consistency with regard to the 
quality of assessment. This issue has been recognized, and there have been attempts to resolve it, 
such as through outcome-based assessments that use goal-attainment as an objective measure of 
team effectiveness, with goal-attainment defined using Hierarchical Task Analysis for teams [3].  
Historically, methods such as this that attempt to create a more quantifiable way of assessing 
team effectiveness have proven prohibitive such that while they achieve some success in 
ameliorating the issue of subjectivity they are time consuming and costly enough to make wide 
implementation infeasible.  
 
Teamwork has been defined as "the interdependent components of performance required to 
effectively coordinate the performance of multiple individuals" [15], with the authors going on to 
note the critical role of communication in team performance. It is precisely this aspect of team 
effectiveness—communication—that the current work focuses on. Previous research in this 
domain has shown that the ability of a team to adapt to situational demands is reflected by the 
variance in their communication patterns [13],[16], a finding that the current work exploits in an 
attempt to yield an automated, quantitative measure of team communication, which would allow 
instructors and teams to assess changes in communication patterns in correlation with scenario 
events.  
 
Sandia National Laboratories has made several investments within the Automated Expert 
Modeling for Automated Student Evaluation (AEMASE) technology [17] which implements 
statistical machine-learning techniques for identifying behaviors of interest within spatio-
temporal data streams of individuals/teams operating within a live or simulated environment.  
Instructors using debrief tools with AEMASE integration may generate behavior models through 
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a programming-by-example approach [18] by flagging positive and negative examples of desired 
behavior.  These models can observe the behaviors of other individuals/teams and provide a 
measure of similarity that could serve as an assessment metric.  
 
Through funding from the Office of Naval Research, Sandia National Laboratories conducted a 
study on utilizing AEMASE for the US Navy Submarine fleet within their Surfaced Piloting and 
Navigation (SPAN) trainers.   Through the use of Dynamic Bayesian Networks as the underlying 
machine-learning approach, this technology shows promise for identifying vocal communication 
patterns and providing valuable feedback for instructors and teams.  
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MODELING TEAM COMMUNICATION 
 
In devising machine-learning algorithms for representing models of effective team 
communication, one must consider the multiple modalities of data available for analysis. 
Potential kinds of data that might be used by such a system include: trainee verbal 
communication, physical actions of the trainees (e.g. movement or control actuation), static 
factors such as team history or features of the specific training scenario being conducted, along 
with data available from the training scenario and actions taken in response by the team.  As 
there were time-consuming engineering or social hurdles associated with this research, we 
ultimately settled on recognizing patterns in trainee verbal communications. To further 
streamline our approach, we chose not to rely on automated speech recognition technology. 
Thus, the data stream we chose to analyze indicated who was speaking at any given time during 
a group training exercise, and the challenge was to use this data to recognize domain-relevant 
activity patterns. 
 
Dynamic Bayesian Networks 
 
Bayesian Networks [19] are graphical models that represent conditional dependencies between 
random variables. For example, the simple Bayesian network in the example below indicates that 
the availability of downtown parking is conditionally dependent upon both (a) whether or not the 
time is prior to 8AM and (b) whether or not the day is a weekend. The same network further 
implies that whether or not it is before 8 AM is independent of whether or not it is a weekend. 
 
 
 
 
 
 
 
 
 

 
	
  

Figure	
  1:	
  Simple	
  example	
  of	
  a	
  Bayesian	
  Network 

Associated with each node is a Conditional Probability Table (CPT). An example CPT for 
downtown parking availability is shown in Table 2. Note that knowing whether it is before or 
after 8AM and whether or not it is a weekend isn’t sufficient information to completely 
determine whether or not it’s possible to find a parking space downtown. Rather, as shown in the 
CPT, the probability of finding a parking space is affected by these two conditions. 
 
 
 
 
 
 

Before 8AM 

Weekend 

Before 8AM 



10 

Before 8AM Weekend T F 
F F 0.05 0.95 
F T 0.5 0.5 
T F 0.4 0.6 
T T 0.9 0.1 

 
Table	
  1:	
  A	
  Conditional	
  Probability	
  Table	
  for	
  Downtown	
  Parking	
  Available	
  

 
Dynamic Bayesian Networks [20] are a particular variety of Bayesian networks that represent 
conditional dependencies over time. For example, the DBN shown in Figure 2 indicates that the 
presence of an infection on a given day is conditionally dependent upon the presence of an 
infection on the previous day and whether or not the potentially infected individual took 
antibiotics on the previous day (a full specification of this DBN would require CPT’s for each 
node). 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure	
  2:	
  	
  Example	
  of	
  a	
  DBN 

Bayesian Networks are models, i.e. abstract, simplified descriptions of aspects of the world. The 
task of devising a DBN may be broken into two subtasks: (1) devising the structure of the model, 
and (2) populating the associated CPT’s. One valid way to devise the model structure is for a 
human to employ knowledge of the target domain to create a suitable structure by hand. 
Alternatively, the structure can be created in an automated fashion, typically via a search process 
that evaluates possible structures to find the best one (as defined with respect to some specified 
criteria). Once a structure is identified, CPT’s can be populated straightforwardly, simply by 
using the observed frequencies of joint events. For instance, in the CPT shown in Table 2 the 
probabilities of 0.9 and 0.1 indicated in the row corresponding to before 8AM on weekends may 
be derived from data in which parking spaces were found to be available downtown 9 out of 10 
times among observations that were made before 8AM on weekends. 
 
To understand how DBNs may be used for classification, consider the case of the DBN in the 
example above. Imagine we built two versions of the model: One with data from cases with 
bacterial infections and the other with data from cases with viral infections. We would then 
expect that probabilities in the two models should be different: For viral infections, the 

Infection present 
on day n 

Infection present on 
day n+1 

 
Took antibiotics 

on day n 
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probability of an infection being present on day n+1 would be essentially unaffected by whether 
or not the infected individual took antibiotics on day n. These two DBN models would thus 
reflect two different underlying situations. Then, when presented with data for a new case, we 
could calculate the likelihood of each DBN generating the data in question. If the new data 
reflects a case where the presence of the infection appears conditionally dependent upon taking 
antibiotics the day before, the likelihood scores should indicate that DBN built from bacterial 
infection is a better model of the data. Similarly, if the course of infection appears independent of 
antibiotic use, the viral infection model should appear more likely. 
 
DBN’s hold a distinct advantage in their ease of interpretation as opposed to other modeling 
algorithms (e.g. distance-based clustering approaches). This is partly due to their graphical 
representation, which succinctly represents conditional dependence. Ease of interpretation is 
further enhanced by the straightforward probability calculations underlying DBN application.  
The relative transparency of DBN’s may offer a particular advantage for this challenging 
domain. Human judgment of team dynamics in general and team adaptability in particular is 
largely intuitive and hard to express in objective form. Data-driven, automated systems may be 
of help, but the best performance is likely to emerge from leveraging human knowledge and 
insight in addition to data-driven analysis. One possibility along these lines is that human 
inspection of DBN’s may lead to critical insights about what is or is not being captured at the 
data level, which may then lead to favorable adjustments in how DBN’s are trained and/or used 
in the application at hand. More directly, humans may potentially recognize and eliminate 
spurious dependencies that arise in DBN structure search, or similarly, insert dependencies 
known to be significant. 
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EXPERIMENTS 
 
Over the course of the study we conducted two separate experiments.  We first conducted a 
laboratory-based study using a simplified SPAN training environment for testing the feasibility 
of Dynamic Bayesian Networks for accurately classifying speech patterns based upon human 
annotated labels.  Following our laboratory study, we collected live training data from the Naval 
Submarine School in Groton, CT to classify known communication patterns that transpired 
during the exercise..  
 
Laboratory Experiment 
 
For our laboratory experiment, we built a facsimile representation of SPAN trainer using 
SubSkillsNet, a submarine simulator created by the US Navy for use on PCs within a classroom 
setting.  For the study we generated scenarios that required a three-person team:  a radar 
operator, periscope operator, and helmsman who also served as a bearing recorder.  The scenario 
had the submarine following a fixed course, with the team making periodic cyclic routine calls 
for waypoints along the path.  The cyclic routine, known colloquially as “rounds of contacts”, 
involves having the team follow an orchestrated pattern where sensor operators (e.g., radar, 
periscope) provide information on specific contacts requested by the bearing recorder.  This test 
was conducted with two separate teams who had no prior training on the simulator or performing 
the cyclic routine task.  During the test, each team member wore a lapel microphone to record his 
or her utterances for analysis of team communication. 
 

!  
Figure	
  3:	
  	
  Timeline	
  of	
  utterances	
  captured	
  during	
  laboratory	
  experiments	
  

 
Discrimination Between Good and Bad Rounds with DBN’s 
 
The above figure shows a graphical view of a segment of vocalization data from the in-lab 
sessions. In the top three rows, each yellow bar indicates an interval during which one of the 
three participants was determined to be speaking, with the helmsman labeled as “DM”, the 
periscope operators as “SCOPE”, and the radar operator as “RADAR”. In the bottom row, each 
yellow bar indicates an interval during which the participants were engaged in a cyclic routine. 
There were 26 such intervals identified over all recorded sessions. A single human evaluator 
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designated each of these intervals as either a good or bad instance according to cyclic routine 
doctrine. 
 
Because DBN’s work on discrete random variables and represent time as progressing in discrete 
steps of fixed duration, it was thus necessary to sample the audio traces at a fixed rate. In all 
cases, we settled on a minimum time-step of either 0.5 or 1.0 secs, chosen to permit properly 
representing the shortest meaningful utterance (e.g. along the lines of “yes” or “OK”).  To further 
discretize the data, all audio samples were passed through a threshold function to yield a binary 
value indicating speaking or not-speaking at each time-step.. 
 
Using this data encoding, our initial experiments in classifying good vs. bad rounds were not 
successful. Although it was important to conduct these experiments to establish a baseline, poor 
performance was not unexpected due to the fact that the initial encoding didn’t provide DBN’s 
with sufficient temporal context to support pattern recognition. With the selected time-step, 
models could only capture probabilities relative to what happened in the last second or less. 
 
Our solution was to extend the simple binary encoding from speaking vs. not-speaking to include 
a third value indicating when a speaker was not currently speaking, but had been speaking 
recently. Via an examination of the distribution of lengths between speech events in the data, we 
made a heuristic choice to define “recently” as less than or equal to 7 seconds. 
 
 

Time Step (sec) Helmsman Radar Operator Periscope Operator 
1 Speaking  Spoke > 7 secs ago Spoke > 7 secs ago 
2 Spoke ≤ 7 secs ago Spoke > 7 secs ago Spoke > 7 secs ago 
3 Spoke ≤ 7 secs ago Spoke > 7 secs ago Spoke > 7 secs ago 
4 Spoke ≤ 7 secs ago Speaking Spoke > 7 secs ago 
5 Spoke ≤ 7 secs ago Speaking Spoke > 7 secs ago 
6 Spoke ≤ 7 secs ago Speaking Spoke > 7 secs ago 
7 Spoke ≤ 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
8 Spoke ≤ 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
9 Spoke > 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
10 Spoke > 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
11 Spoke > 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
12 Spoke > 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
13 Spoke > 7 secs ago Spoke ≤ 7 secs Spoke > 7 secs ago 
14 Spoke > 7 secs ago Spoke > 7 secs ago Spoke > 7 secs ago 

 
Table	
  2:	
  	
  Encoding	
  DBN	
  features	
  of	
  when	
  team	
  members	
  spoke	
  during	
  exercise	
  

 
The above table shows a 14 second excerpt of an encoded round which begins with the 
helmsman speaking for approximately one second, followed 2 seconds later by the radar operator 
speaking for 3 seconds. 
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Figure	
  4:	
  	
  DBN	
  prediction	
  graph	
  of	
  which	
  team	
  member	
  will	
  speak	
  in	
  timestep	
  t	
  +	
  1	
  	
  

We used the SBNet1
 software tool for DBN training. The above figure shows an example of a 

trained DBN multinet (a superposition of three DBN’s each trained to predict one of the three 
speakers). For the purpose of classification, we opted to conduct DBN structure search to 
optimize Approximate Class-conditional Likelihood (ACL, Burge & Lane 2005). Use of ACL 
favors dependencies in the data that emphasize the differences between two sets of data over 
regularities with each set, and thus increases discrimination power. 
 
To make maximal use of our data, we employed leave-one-out validation. That is, for each of the 
26 good and bad rounds, we applied SBNet to build two DBNs—one model of vocalizations 
over time in good rounds and a parallel model for bad rounds—based upon the other 25 runs. 
We then derived log-likelihood ratio scores for each observed round by calculating the ratio 
between the likelihood of these two corresponding DBN’s with respect to the round in question. 
The distribution of the results for all 26 rounds is shown in the figure below. 
 

 
 
 
 

Figure	
  5:	
  	
  DBN	
  classification	
  scores	
  for	
  laboratory	
  experiment	
  

As a well-chosen classification threshold would result in 88.4% of these rounds being properly 
classified, we considered these results encouraging of this approach. 
 
Second Experiment 
 
The data collection event at Navy Submarine School took place in early February 2012, 
observing over four hours from two teams within the SPAN trainer.  For the data collection event 
experimenters used the Sociometric Badges [21] developed by MIT Media Lab.  A wearable 

                                                
1	
  SBNet was created by Dr. John Burge. SBNet software currently available for download at 
http://www.cs.unm.edu/~lawnguy/sbnet/index.html	
  

“Good” round “Bad” round 
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computing device, the Sociometric Badge collects data through an onboard sensor array on the 
interactions of users within a group setting. The badges periodically sample the fundamental 
frequency of speech utterances by a wearer, along with using Bluetooth pings and infrared 
sensors to measure relative spatial proximity between all people wearing these badges.  The 
audio sampling proved advantageous for this environment given the security concerns in 
collecting communication data within a classified training facility.  However, the lack of a full 
audio recording meant we could not rely on analyzing speech content for generating our DBNs 
communication pattern models.   
 

 
Figure	
  6:	
  A	
  diagram	
  of	
  a	
  Sociometric	
  Badge	
  (left),	
  a	
  person	
  wearing	
  a	
  Sociometric	
  Badge	
  (center),	
  downloading	
  

data	
  from	
  the	
  Sociometric	
  Badge	
  (right)	
  

 
Prior to the data collection we provided all members of the piloting party with a Sociometric 
Badge, along with instrumenting stations with badges to capture spatial proximity information of 
crewmembers within the trainer.   During the exercise, subject matter experts would record 
observations of interest to compare against the measured communications.  These observations 
included: start/stop times of cyclic routines, events injected by the instructor (e.g., instrument 
failures), and key course corrections made by the crew.   As well, cross-track error was 
periodically sampled at five-minute intervals.    
 
Recognizing Cyclic Routines with Real Training Data 
 
Our initial plan was to apply the same DBN modeling procedure to the data acquired from the 
SPAN trainer to generate models of “good” and “bad” cyclic routines.  This metric seemed 
useful given that US Navy Submarine Doctrine defines the cyclic routine to be conducted by 
crewmembers, yet no automated assessment presently exists to monitor and report a crew’s 
ability to follow this procedure.  However, the data acquired from the SPAN trainer does not 
provide enough fidelity information to replay and assess the quality of each cyclic routine (e.g., 
no audio recording, no information on data available from different sensors).  In absence of 
being able to subjectively evaluate each observed cyclic routine instance, we attempted to apply 
the DBN modeling algorithms for detecting when the crew was simply engaged or not engaged 
in a cyclic routine based upon the communication data. 
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Figure	
  7:	
  	
  DBN	
  classification	
  scores	
  for	
  SPAN	
  trainer	
  experiment	
  

 
In Figure 7 we observe that the DBN can provide a high classification accuracy discerning when 
the team is engaged in a cyclic routine.  Again creating a post-hoc threshold for the proportion 
value, we observe the DBN accurately classifying with 85.7% accuracy between defined cyclic 
routines and all other audio segments.  We achieve a higher accuracy of 92.9% if the “not round” 
segments are equally partitioned into the average time elapsed between cyclic routines. 
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DISCUSSION  
 
Though the DBN modeling proves effective at identifying when crews are engaged in this 
doctrinal behavior, these results provide little feedback that could yield diagnostic measures on 
team performance.  To better tailor debrief for crewmembers, we propose to explore alternative 
methods besides machine learning models to characterize the observed team communication 
data.   Psychologists in the area of team performance have begun analyzing team communication 
as a dynamical system, where changes in communication can be monitored in real-time 
concurrently with the performance of the team.   
 

 
	
  

Figure	
  8:	
  	
  System	
  Dynamics	
  Representation	
  of	
  Submarine	
  Piloting	
  Party	
  Operations	
  

Figure 8 provides a dynamical system representation of a submarine piloting party.  In this 
representation, i(t) signifies the input the team can receive at any given moment from their sensor 
suite (e.g., periscope, radar, GPS, fathometer, visual from deck, etc).  The output of the system, 
o(t), represents where the submarine will navigate to reach its targeted destination.  As the team 
receives input, the piloting party must conduct operations (cyclic routine) to process this 
information and provide feedback to adjust operations (communication between routines) to 
maintain or better clarify their situational awareness.  At this moment, we have not sufficiently 
explored a dynamical system analysis to confirm or violate our expectations.   
 
Our present research does show promise in devising a capability for discerning expected 
communication within multiple streams. From this information, one may generate visualizations 
that allow instructors or teams to pinpoint key points when critical communication within the 
team did or did not take place.   Quantifying these communications would bring us substantially 
closer to a repeatable, measured approach for team communication assessment.  Future research 
possibilities include devising these assessment systems in conjunction with an instructor or team 
lead to determine the most effective measures one would want to generate.  As well, 
incorporating more simulation information would even further clarify the appropriateness of 
certain communication patterns observed given the context of the situation. 
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