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Abstract

Consumer electronics today such as cell phones often have one or more low-power FPGAs to
assist with energy-intensive operations in order to reduce overall energy consumption and increase
battery life. However, current techniques for programming FPGAs require people to be specially
trained to do so. Ideally, software engineers can more readily take advantage of the benefits FPGAs
offer by being able to program them using their existing skills, a common one being object-oriented
programming. However, traditional techniques for compiling object-oriented languages are at odds
with today’s FPGA tools, which support neither pointers nor complex data structures. Open until
now is the problem of compiling an object-oriented language to an FPGA in a way that harnesses
this potential for huge energy savings. In this paper, we present a new compilation technique
that feeds into an existing FPGA tool chain and produces FPGAs with up to almost an order
of magnitude in energy savings compared to a low-power microprocessor while still retaining
comparable performance and area usage.
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Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) offer a middle point between application-specific inte-
grated circuits (ASICs) and central processing units (CPUs). ASICs have the lowest power con-
sumption but also the lowest flexibility: they can be used for only one purpose. FPGAs, on the
other hand, typically exhibit at least an order of magnitude more power consumption than ASICs
[10], but they also provide greater flexibility: they can be programmed and reprogrammed. Tradi-
tionally, mobile consumer electronics such as cell phones have used ASICs to help increase battery
life time by offloading the more energy or computationally-intensive operations from the CPU to
the ASIC/FPGA. However, during the past decade, consumer electronics have increasingly used
FPGAs to allow, for example, easy adaptation to the many cell phone standards worldwide [1].
Furthermore, the reprogrammability of the FPGA also makes it an ideal choice for hardware that
needs to be upgraded or modified often.

Currently, the benefits that FPGAs offer come at a price. While CPUs are simple to program
and languages made to program CPUs are generally high-level and easy to learn, ASICs and FP-
GAs can only be programmed by those specially trained to use the tools and languages developed
specifically for designing digital circuits. FPGA designers typically use a hardware description
language (HDL) such as VHDL [13] or Verilog [2] to define the behavior of the FPGA. Although
recent developments have raised the level of abstraction by allowing HDL designs to be constructed
from programs written in C, the barrier of entry can be reduced even more by enabling software
engineers to start at an even higher level of abstraction and program FPGAs in a paradigm famil-
iar to many – object-oriented programming. The nascent boom in FPGA use further presses the
question of how this can be accomplished.

Some work has been done to approach this problem. For example, Huang, Hormati, Bacon,
and Rabbah [7] have designed a new object-oriented language aimed to target both CPUs and
FPGAs. A DES encryption benchmark, when written in this language, generated an FPGA design
that executed fourteen times slower than the same code running on a CPU. However, their project
did not consider energy usage; but we note that since energy = (power × time), longer running
times decrease the energy advantage that FPGAs offer.

Schoeberl [15] presented an implementation of a Java virtual machine in which bytecode was
executed by an FPGA; however, he did not compare the performance between the FPGAs and
CPUs.

Let us note that compiling an object-oriented language to an FPGA is different from specifying
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a hardware design in C++ using an embedded domain-specific language, as is done by Mencer,
Platner, Morf, Flynn [12].

Our approach is different from previous attempts; we wish to take an existing object-oriented
language that was designed without FPGAs in mind and compile programs written in this language
to C programs, which can be passed through an existing tool that converts C programs to HDL
designs, which can then be synthesized on an FPGA. In particular, we want to compile bare object-
oriented programs; that is, object-oriented programs that are written in the usual syntax without
any form of special annotations or pragmas to help the compiler. We want to do this in a way that
realizes a large part of the energy savings that is possible on an FPGA compared to a CPU, while
still attaining comparable performance and area usage.

At first, it seems straightforward to approach our goal: first compile an object-oriented lan-
guage to C, and then let the tool chain from C to FPGAs take over. However, traditional tech-
niques for compiling object-oriented languages are at odds with today’s FPGA tools that don’t
support pointers and complex data structures. Open until now is the problem of compiling an
object-oriented language to an FPGA in a way that realizes some of the huge potential for energy
savings.

Challenge: compile a bare object-oriented program to an FPGA with significant en-
ergy savings compared to a CPU, while still maintaining acceptable performance and
space usage.

As the starting point for our investigation, we chose the Virgil programming language and
the AutoPilot tool for mapping from C to FPGAs. In this paper, we present a new compilation
technique that compiles unmodified, bare Virgil programs in a way that AutoPilot can successfully
produce HDL designs meant for synthesis on FPGAs.

Titzer [16] designed Virgil with the purpose of programming embedded systems and device
drivers within small memory. Virgil is a strongly-typed, object-oriented language akin to Java
and C#. Virgil has several features that makes it an ideal language for our project. In particular,
Virgil divides computation into two phases — initialization and execution; the initialization phase
involves the compiler interpreting, starting with the components which contain entry point meth-
ods, the constructors in the program. Each constructor may allocate additional memory via the
new expression, which results in an additional constructor call. Memory allocation and the use of
new expressions to create objects and arrays are complementarily limited to constructors only. The
compiler, upon completion of the initialization phase, has a view of the entire heap of the program
and can then represent the generated objects and arrays in an efficient manner. Titzer, Auerbach,
Bacon, and Palsberg [17] have also explored the possibility of doing this on a full-fledged Java
virtual machine. The final execution of the program, whether on an FPGA or a CPU, constitutes
the execution phase.

The company AutoESL, Inc. (http://www.autoesl.com) created the AutoPilot tool for convert-
ing a subset of C into various hardware description languages for synthesis onto an FPGA chip. Au-
toPilot is a commercialization of the experimental xPilot system developed by Cong et al. [19, 5],
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and is more robust, stable, and reliable than xPilot. AutoPilot uses LLVM [11] as its frontend and
then outputs a hardware design in several hardware description languages, namely VHDL, Verilog,
and SystemC [3]. After further optimization for a specific FPGA brand and model, the output can
be directly imported into the FPGA manufacturer’s own synthesis and layout tool, which will do
the final HDL compilation, synthesis, routing, and other FPGA-specific layout tasks, after which
the design can be downloaded into the FPGA and executed.

AutoPilot’s subset of C excludes function pointers, and places severe limitations on regular
pointers, struct casting, and the contents of structs. These limitations rule out the traditional way
of representing objects as virtual method tables cannot be used (as there are no function pointers),
and structs cannot be used (as there is no support for casting).

Our compilation technique successfully translates bare, recursion-free Virgil programs to the
subset of C that AutoPilot accepts. We build on Titzer and Palsberg’s notion of vertical object
layout [18], and we use the idea of using type case to compile virtual method dispatch without use
of function pointers [4]. On top of that, we introduce two new techniques: grouped arrays that
overcome the other limitations of AutoPilot, and the hybrid object layout scheme for compression
of object tables. Our implementation, essentially, is:

OO to FPGA = typecase for method dispatch +
grouped arrays +
hybrid object layout.

Our approach produces HDL designs that, when executed on an FPGA, exhibit up to almost an
order of magnitude in energy savings over a low-power microprocessor, and with decent perfor-
mance and competitive area usage compared with HDL designs written directly in C.

The structure of the rest this paper is as follows: in the next section, we take a closer look
at AutoPilot’s subset of C and the motivation behind our approach. Chapters 3–5 detail how we
compile objects, arrays, and methods, respectively. In Chapter 6 we discuss further optimizations,
and in Chapter 7 we give our experimental results.
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Chapter 2

An FPGA-oriented subset of C

AutoPilot places several limitations on the extent of C’s features that are supported that dramati-
cally change the way object references and array references are compiled, as well as requiring a
completely different approach to handling virtual method dispatch. The way that we implement
these three form the core of our compilation technique. Traditionally, all three areas have been
solved by using scalar and function pointers. We will show that usage of pointers in AutoPilot is
significantly hampered and, as a result, we cannot use them at all. Thus, the driving force behind
our approach is to represent references and virtual methods without using pointers of any kind.

This section reviews the traditional methods of compiling objects, arrays, and references to the
C programming language, and how the restrictions imposed by AutoPilot make these approaches
infeasible.

2.1 Memory Model

The crux of the problem lies in the fundamental difference of the memory architecture of an FPGA
versus that found on CPUs. The hallmark of the FPGA memory model which separates it from that
of the CPU is that the memory requirements must be known beforehand; the amount of memory
allotted to a design is precisely the amount of memory that the design requires; no more is given
than requested. Furthermore, this memory is fragmented into many subunits, into which data is
distributed and stored. This is in stark contrast to that of CPU-based computers, where memory
is a single vast, allocatable, and addressable area that can be managed by the application itself;
additional memory can be requested during execution.

Because of this difference in design philosophies, a program fed through AutoPilot cannot uti-
lize dynamic memory allocation; i.e. calls to malloc and free. The reason behind this is twofold:
primarily, as stated before, FPGAs themselves limit the amount of memory available to the synthe-
sized design. ROMs and RAMs are allocated on an as-needed basis during the design and synthesis
phase; additional memory blocks cannot be requested during runtime. Also, dynamic memory al-
location and other managed memory models generally have a negative impact on performance and
therefore are not ideal for hardware programming.

As a result, AutoPilot is strongly suited for programs that have statically known memory re-
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quirements. Virgil is an ideal programming language to target AutoPilot because all Virgil pro-
grams have this exact property. The initialization phase explained earlier allows the Virgil compiler
to know the memory footprint of the program in its entirety. We encode this memory footprint in
an way that works with AutoPilot, and emit C code for the rest of the program.

2.2 C Pointers

A language construct in C that is inseparably linked to the memory model of the underlying plat-
form is the pointer. AutoPilot performs a series of transformations on the program itself that even-
tually removes all pointers from the program. It relies heavily on various static analysis techniques
in order to accomplish the illusion of pointers that it offers the programmer. However, dynamic
pointers, or pointers that are re-assigned to point to different data during runtime, have always
represented a challenging static analysis task; it is very difficult to determine to which data various
pointers will point to at various points during execution if they are passed around and re-assigned.
Because of this difficulty, there are several quite hefty restrictions placed on pointers by AutoPilot.

The transformation away of pointers is a necessary step taken by AutoPilot because pointers,
in their traditional sense, cannot be easily implemented on FPGAs for architectural reasons. On-
chip FPGA memory is not a single, large, addressable memory space like those on computers.
Instead, the memory space is fragmented into many small ’blocks’. These blocks, called BRAMs
in standard FPGA terminology, each have their own input/output pins, which allow for parallel
reads and writes over multiple blocks. This memory architecture, while good for performance, is
the reason why pointers are so hard to emulate on FPGAs.

This is compounded by the fact that each memory block has its own address space; when a
pointer pointing to data residing on one block is re-assigned to data residing on another block,
AutoPilot must be able to determine the correct block that holds the new data. The hardware
design explicitly reflects this, as there must be a connection made in the form of a bus between
the entity and the memory blocks to which it accesses. It is AutoPilot’s job, then, to determine
statically to which data each pointer points and route the electrical signals to the correct block
when dereferenced. Pointer arithmetic, too, must also be transformed away and converted to direct
data accesses as well. Therefore, pointers that are dynamically re-assigned or those whose data
cannot be determined statically are not supported in AutoPilot. The end product of this operation
is a program that is left without pointers at all. Any use of pointers that cannot produce this end
state cannot be handled by AutoPilot. structs are also limited in this fashion; they cannot contain
pointers.

2.2.1 Function pointers

The standard execution model on a computer involves execution of instructions stored in the main
memory. Each instruction has a corresponding address; moving between areas of code is accom-

14



class A { class B extends A { class C {
field child : A; field other: C; field a : int;
field value : int; field b : int;

method bar() : void
method foo() : void { } method f() : void
{ } { }

method arg() : void }
method bar() : void { }
{ } }

}

Figure 2.1. A set of classes written in Virgil.

plished using jumps to different addresses. Calling a function involves first copying arguments
onto the stack then transferring execution to the address of the first instruction of the function.

AutoPilot takes a completely different approach to converting functions onto an FPGA. Each C
function in the program is converted into a design entity, a language construct present in all HDLs
that provides a level of abstraction. Like functions, which group together code and provide a black-
box interface, entities also group together circuitry and logic and provide a black-box interface in
the form of input and output pins. Copies of the entity, called instances, can be placed onto the
chip, each occupying a certain amount of area. An HDL design consists of an interconnected
network of entity instances.

Unlike functions on a computer, any function call rendered in this scheme requires a direct,
physical connection of wires between the caller instance and the callee instance. If AutoPilot can-
not determine the entity instance to which a call is made, it cannot handle that function call. This
is apparent in the case of function pointers. If a AutoPilot cannot determine during compilation
which function a function pointer is pointing to, it is unable to create the necessary connections
that implement the call. In fact, AutoPilot at this time has no support for function pointers, even
those that can be statically reasoned about.

This limitation creates substantial problems for the way the semantics of virtual methods are
implemented. The traditional technique of handling virtual dispatch is the use of virtual method
tables. Virtual method tables are lists of function pointers that point to the correct function to be
called when a virtual method is invoked. The cell representing the virtual method is read, and
the address stored within is then jumped to and executed. Because of the dependence of this
approach upon the function pointer, we are forced to use a different mechanism to accomplish
similar functionality and semantics.
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2.3 Functions and Recursion

As stated earlier, each function is converted into design entities, of which instances are created;
wires linking instances together reflect calls between different entities. This paradigm for repre-
senting functions precludes the need for stack frames to be set up in memory; here, the closest
concept of a ’stack’ is the area available on the FPGA chip.

FPGA tools are able to minimize the number of instances needed of each entity by allowing
reuse of instances. As long as the instance is used only by one call at a time, the instance may
be used over and over again. However, there are scenarios where the instance cannot be reused,
such as parallel calls to the same entity. The general solution for these scenarios is to place another
copy of the entity on the chip, thereby resulting in two instances of the same entity allowing for
two simultaneous calls. Of course, this then leaves less remaining free area on the FPGA chip for
other logic.

One significant case where this approach fails, however, is in the case of general recursion.
Because the entity then needs to call itself, the existing instance is not reusable. This creates an
irreconcilable case for AutoPilot: because it cannot conclude how many times the recursive call
will be performed, it then assumes an infinite number of instances would be needed. However;
the area on a chip is far from infinite, and thus AutoPilot rejects the input program. The design of
Virgil, however, allows recursion; we do not attempt to resolve this problem in this paper. While it
is possible in some cases to eliminate recursion through program transformations, it is beyond the
scope of this paper and thus is relegated to future work. Other than recursion, however, functions
are fully supported in AutoPilot’s subset of C.
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Chapter 3

Objects

We now turn to presenting our approach to compiling Virgil. Our chief concern is the represen-
tation of objects and object references. The representation method is particularly important in the
case of Virgil because, like Java, programmers must use the object-oriented paradigm. Objects are
instances of classes declared in Virgil and are allocated and instantiated in the constructors. Object
references are pointer-like constructs that provide a level of indirection to objects; like Java, all
manipulations done with objects in Virgil are through the use of references. Object references are
passed, by value, to methods; object references are used in all local variables, arrays, and fields
which are typed as being an object instance.

Virgil classes are relatively simple compared to their counterparts in Java, C#, or C++. Fields
and methods can only be marked as public or private, while all classes can only be public. Static
fields and methods are not supported, but the functionality is present via the use of singleton
components. All classes are single-inheritance with methods being virtual by default; interfaces
and abstract methods are not supported. Another important distinction between Java’s and Virgil’s
class semantics is that not all of the classes in Virgil ultimately inherit from a common Object
class as they do in Java. Instead, a program can consist of a set of disjoint class hierarchies, each
with its own unique root class. To illustrate this, a small set of classes have been declared in Virgil
syntax in Figure 2.1. We have described two distinct class families: that of A and B, and a single-
member family C. Because the two do not ultimately inherit from a common type, they are wholly
independent of each other.

The next few sections will build examples off of this sample class hierarchy. To give a quick
summary of the way these classes are structured: both the fields child in A and other in B are
references to other objects. Polymorphism rules allow the recursive child field in A to refer to
either an instance A or an instance of B. Two methods are defined in A: foo and bar. B provides an
overridden implementation for bar, but not foo; it also adds another method arg.

With this in mind, in the following sections we discuss and review various object layout strate-
gies, culminating with the representation we use in our compiler that tries to minimize space while
at the same time attempting to incur a minimal amount of performance overhead on an FPGA.
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a1: vmt

vmt

vmt a b

f()

foo() bar() arg()

child value other

child value

foo() bar()

b1:

c1:

Figure 3.1. Memory layout of A, B, and C in the Horizontal Object
Model.

3.1 Horizontal Object Layout

We term the traditional method of compiling objects to C as the ”horizontal object layout”. It
is the most straightforward approach to representing objects using C language constructs, and is
considered well-known; thus, we will simply provide a cursory review of this approach. The
horizontal object model converts each class into a struct; the struct is composed of, in this
order: (1) a pointer to a virtual method table, (2) the fields of the parent class, and (3) the fields
defined in the class itself. As a result, each class’ struct include its parent class’ struct as a
prefix.

In this scheme, references to objects are rendered as pointers which point to instances of
the struct. Polymorphism is accomplished by exploiting the property stated earlier that the in-
memory layout of a child class is compatible with that of its parent; a pointer typed as the struct
of the child class can be casted to a pointer typed as pointing to an instance of the parent class’
struct; all accesses to the fields and entries in the virtual method table would be compatible. A
type cast is implemented in a similar fashion: a pointer typed as pointing to an instance of the
parent struct may in reality be pointing to an instance of the child struct; thus, a cast can be
performed in the C code on the pointer itself to cast it back to a reference of the child class.

Figure 3.1 illustrates how one instance of A, one instance of B, and one instance of C from
our example class hierarchy would be laid out in memory using the horizontal object model. The
field called vmt is a pointer to the virtual method table, which contains the collection of function
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pointers that refer to the virtual methods. A field access is easily translated using the horizontal
object model. We show a translation of a small Virgil method to C in the following code snippet.
It is a simple dereference of the object pointer, coupled with a field access:

method f(obj : A) : int { return obj.value; }

int f(struct A* obj) { return obj->value; }

Although this is the most straightforward way to represent objects on a computer, it uses point-
ers profusely to accomplish the various traits required for inheritance and polymorphism. This
object representation breaks down when AutoPilot is involved in a number of ways: function
pointers like the ones used in virtual method tables are not allowed, structs containing pointers
are prohibited, and the casting of structs, done here to accomplish subtype polymorphism and type
casting, cannot be used. It is therefore clear that we cannot use this form of object representation
when targeting AutoPilot.

3.2 Vertical Object Layout

The first step forward is to first remove the necessity of the pointer in the representation of an
object reference. A strategy that accomplishes this goal, and the basis for our approach, is the
”vertical” object layout [18]. We work here with the concept of the uncompressed vertical object
model, which omits the compression scheme performed in Titzer’s work.

The vertical object layout re-organizes all of the objects in a program into a large table, where
the rows are the class fields, and the columns are the individual objects. There is thus one row
for every field defined in the program. The virtual method table is also encoded as rows; one row
for every virtual method defined. Therefore, an object in this model is a single column across all
the rows. References to objects, then, do not use pointers — a reference is an integer that refers
to the column index in the table where the values reside. Instead of pointers, this integer is used
anywhere that an object reference is expected. A field lookup using the uncompressed vertical
object is shown in the code snippet below. We show a translation of a small method into C:

method f(obj : A) : int { return obj.value; }

int f(int obj) { return Row_A_Value[obj]; }

The emitted C code is achieved from the following steps:

1. Given the field, the compiler determines the correct row to access in the object table: Row A Value.

2. The row is accessed given the object identifier: obj.
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Figure 3.2. Visualization of in-memory layout of the uncom-
pressed vertical object model.

3. The field is accessed by indexing into the field array.

Fields are no longer grouped into structs to reflect how they were declared in classes; instead,
the vertical object model flattens the structure of the program from a set of classes to instead a set
of fields. Field accesses and encapsulation are instead guaranteed by the Virgil type-checker, and
such traits of the program are not reflected in the C code. Because of this property of the vertical
object model, both polymorphism and casting are trivial and require no special treatment. No type
information is retained in the C code, as all object references are now an int.

Figure 3.2 illustrates how the vertical object model would lay out 2 instances of A, two instances
of B, and one instance of C from our example class hierarchy shown earlier. The virtual method
table’s entries are also rendered as rows in the object table; they are typed as arrays of function
pointers.

An obvious drawback of the uncompressed vertical object model is the amount of wasted mem-
ory incurred when rendering the object table. All the crossed boxes in the figure are cells present
in the table, but are unused. For example, an instance of A gets allocated all the memory needed for
the fields of B and C as well. Therefore, as larger programs are created with more complex object
hierarchies, the amount of wasted memory will grow. This design choice allows faster lookups and
simpler object reference representation, at the expense of an increased memory footprint.

Nevertheless, the vertical object model solves one of the major obstacles presented in the pre-
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vious section to representing objects in FPGAs and AutoPilot: it allows us to create references to
objects without pointers. However, the vertical object model alone is not enough to satisfy all the
limits of AutoPilot: it still employs function pointers to implement virtual dispatch, and the amount
of wasted memory is not ideal for hardware, where increased area directly translates to increased
costs. In the next sections, we address both of these issues by modifying the uncompressed vertical
object model.

3.3 Space Minimization

The vertical object model employs a compression scheme which we do not explore in this paper.
Instead, we present a compression scheme which fits well with the unique architectural properties
of FPGAs.

Our aim is to compress the object table while still finding a way to represent an object reference
that retains the simplicity of the vertical object model. To accomplish this, we totally restructure
both the object table and the object reference. The section describes this approach.

3.3.1 The Object Table

While we retain the concept of the object table from the vertical object model, we restructure
it in such a way the leaves no wasted space. Originally, every object in the object table shown in
Figure 3.2 was the same size in memory — each object occupied an entire column. By compressing
the object table and removing the unused cells, as shown in figure 3.3, the unused space is gone,
but objects are now no longer at a single index. For example, the third column in the table, an
instance of B, occupies the third cell in the row for A, but occupies the first cell in the row for B.
Such an object table requires us to store offset information for the different rows.

One approach is to introduce another table, which maps single integers to a collection of offsets.
This scheme would preserve the single-integer property of the vertical object model, while allowing
us to remove the wasted space. However, this would have adverse effects on performance. A field
lookup in this scheme would entail the following steps:
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Figure 3.3. The hybrid object layout’s object table format.

method f(obj : A) : int { return obj.value; }

int f(int obj) { return Row_A_value[Objects[obj][1]]; }

1. Given an index obj, a lookup is done into the second table to retrieve the correct offsets
corresponding to the given object instance index: Objects[obj].

2. Given the field being accessed, the compiler determines which row is the correct row that
corresponds to the field: Row A Value.

3. The compiler determines which offset is the correct one that corresponds to the row. Here,
we assume the offset at index 1 refers to the A row.

4. The row is then accessed, being given the correct offset retrieved from the first step. Since it
is a field array, the access is simply an array access.

Two new steps are introduced: first, an additional lookup to retrieve the set of offsets; second,
a determination must be made as to which offset corresponds to which row. While the latter is
accomplished within the compiler, the former must occur at runtime. For traditional computer
programming, such a design would be a tradeoff of performance in favor of memory. The memory
minimization comes at the cost of the additional lookup for every field access.

Surprisingly, we find that this extra lookup can actually be eliminated when targeting FPGAs
because of a unique optimization that can be performed. If we eliminate the second table altogether,
but pass along the set of offsets directly instead of an integer to the second table, no additional
lookup is needed. An object reference then would not a single integer, but instead would be the
tuple of offsets that point into the object table directly. Thus, field accesses in our model consist
only of steps 2-4.
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To see why this is discouraged on microprocessor-based systems but a perfectly valid design
choice when programming FPGAs, one must re-examine the implications of the differences in the
way function calls are implemented on the FPGA by AutoPilot and the way they are traditionally
done on a microprocessor. Normally, passing large data structures (larger than the register size of
the platform) as arguments for function calls is discouraged. Calls such as these will both require a
larger stack frame to hold the data, as well as additional copy operations to copy the data structure
into into the stack frame before the function can be called. Furthermore, this is compounded by
the fact that when dealing with data larger than the multiprocessor’s register size, multiple loads
and stores are required to move the data. Because of this, functions with complex parameters have
traditionally been represented indirectly by pointers to mitigate this problem; a pointer always fits
into the register and can be copied in one operation.

In the hardware world, however, no such difficulty exists in function calling. A large data struc-
ture being passed by value is just synthesized as a wider bus between the caller and the callee. Data
is passed along this bus in a single parallel write operation regardless of bit width. Because of this
unique property of an FPGA, widening the bitwidth of an object reference from a single integer
to multiple integers incurs nearly no performance overhead. In fact, we find that for larger pro-
grams with big class hierarchies, this actually offers increased performance over the uncompressed
model, as will be discussed in our benchmarks section.

The next subsections discuss in more detail our usage of tuples as pointers, as well as outline
the other difference in our object table format versus that of the vertical object model.

3.3.2 Table Layout and Inheritance

We call our object model the hybrid object model because we retain the struct concept from the
horizontal scheme, but apply it to the design philosophy of the vertical scheme. Like the horizontal
object model, we take each class and convert it to a struct. However, instead of prefixing the
struct with that of its parent, we omit the parent’s layout altogether, and just include the fields
immediately declared in the class itself. Thus, unlike the horizontal object model, inheritance is
not encoded within the struct itself.

Each class struct forms a row in our object table. Because we group by structs instead of
fields, our object table has a fewer number of rows than that of the vertical object model. Virtual
method information is also omitted from the table. Objects are placed into the rows that correspond
to their inheritance chain as illustrated in figure 3.3: the table layout consists of two instances of
A, two instances of B, and one instance of C. An instance of A only has an entry in the row that
corresponds to A, whereas an instance of B, because its parent class is A, consists of an entry the
A row as well as an entry in the B row. Finally, an instance of C has only one entry in the row
for C. Boxes represent actual elements in the row; empty spaces do not use any memory and are
present to make the diagram easier to understand. Each column in a diagram represents one object
instance; the text underneath shows the tuple of offsets required to accurately reference the object.

Another thing to note is that while in the horizontal object model, inheritance is apparent in
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struct Ptr {
char null;
int comp1;
int comp2;

}

Figure 3.4. The general structure of the pseudopointer.

the layout of the struct itself: the parent class’ fields prefix those of the class itself, resulting in
a memory layout that is compatible with that of the parent. The vertical object model, similarly,
makes the class hierarchy visible in the table itself. A class instance contains fields for itself as
well as its parent (and all the other classes in the hierarchy, too). For our hybrid object model,
however, inheritance is shown neither in the structs nor the object table. Instead, inheritance is
handled in the object references; the tuple contains offsets for each node in the chain from the root
class to leaf class. The root class of any object will always be at the first element in the reference
tuple, and child classes follow, forming the complete chain from root to leaf.

3.3.3 Structs as Pointers

These tuples of offsets which are used as references to objects we call pseudopointers. Though they
perform the function of pointers and provide a means of indirection to objects similar to pointers,
the semantics are very different.

The pseudopointer is rendered as a struct in C. The general structure of the pseudopointer
is shown in figure 3.4. It consists of a null flag to indicate a reference to null. If nonzero, it
is understood to be a null reference. Following the null flag are a series of integer fields comp1
... compN, which we call component offsets. These component offsets point to various cells in the
object table. The set of cells that these component offsets point to comprise the object instance.
Each component points to an element in a unique row in the table.

All objects in our program use this struct definition as the canonical object reference; it is
used wherever an object reference is expected — local variables, fields in classes and components,
elements in arrays of objects, and parameters to functions. The struct is passed by value into any
functions that take object references as parameters. One example of this is shown in figure 3.5,
which in particular demonstrates how the references to other classes (fields child and other) are
rendered in C.

The interpretation of the component offsets is dependent on the static type of the object ref-
erence during compilation. Each class is broken down into multiple components; a component is
a node in the class’ inheritance chain. These components are then ordered from root class to leaf
class.
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struct A {
struct Ptr child;
int value;

};

struct B {
struct Ptr other;

}

struct C {
int a, b;

}

Figure 3.5. Our class hierarchy in this class encoding scheme.

The number of component offsets stored in the pseudopointer struct is determined by class with
the greatest number of components — that is, the class with the longest path to the root class of
its family. All objects which have a shorter path to the root node will use the same pseudopointer
struct, but some of the component offsets will be unused.

This scheme results in an absolute ordering of components for every class: each class’ ordering
is prefixed by that of its parent. This property is exploited in order to accomplish polymorphism.
When a reference of type B is assigned to a reference for A, it still results in a compatible pseudo-
pointer, because the component ordering for A is a subset of that of B; all the component offsets
still correspond to the correct rows.

With our sample class hierarchy, B has the longest chain with a length of two – the chain from
B to the root is {A, B}. Thus, the program written using our sample hierarchy will require a pseu-
dopointer with two component offsets, as shown in figure 3.4. All pseudopointers for references to
B will have its two component offsets pointing to the rows for {A, B}, respectively. References to C
will use one component out of the two {C, -1}, where -1 is used to indicate an unused component
in the pseudopointer. Figure 3.6 illustrates how the pseudopointer is interpreted for a reference to
a B.

A field access in this scheme is translated into C as shown in the code snippet below. We
convert the same mini-method that we have been using throughout this paper to show how a field
is accessed:

method f(obj : A) : int { return obj.value; }

int f(struct Ptr obj) { return Row_A[obj.comp1].value; }

The generation of this code involves several steps:
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Figure 3.6. An illustration of the pseudopointer, pointing to an
instance of B.

1. Given the field that is being accessed, the compiler determines the class that defines this
field: A.

2. The compiler gets the position of the class within the class hierarchy. This ordering deter-
mines which offset to use in the pseudopointer: obj.comp1.

3. Code is emitted accessing the row that corresponds to the class using the correct offset from
the pseudopointer: Row A.

4. The field can then be accessed: value.

A component ordering for every class is created during compilation. We use this ordering also
to implement polymorphism. The horizontal object model implements polymorphism through a
form of structural subtyping – a child class’ struct contains all the methods and fields, in the
same order, of its parent. This allows pointers to the structs to be casted and still compatible.
We use the class ordering itself to implement polymorphism. A child class’ offset ordering is a
superset of that of its parent.

As stated earlier, the compiler must create a mapping from offset position within the pseu-
dostruct to a certain row. This mapping differs for each class family; the first offset in the pseudo-
pointer for a reference to an instance of B would refer to the row for A; however, for a reference to
an instance of C, the first offset refers to an element in the row for C. We order these components
in such a way that the orderings for a subclass is always compatible with the ordering of the parent
class; this way, subtype polymorphism is allowed. A reference to a B can be passed to method
expecting a reference of type A as a parameter. Compatibility between parent and child class is ac-
complished by ensuring that the order of the parent class is a subset of that of the child. This way,
when code expecting a reference to A received instead a reference to B, the offsets still correspond
to the same rows. By this same design choice, casting is possible and requires no additional code.
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3.4 Runtime Type Information

Augmenting this object layout model is the runtime type information field TYPEID that is placed
into each root class’ struct in order to supply Virgil’s type query operator, instanceof, with the
needed information. This field also allows us to check for incompatible type casts. The TYPEID
field is an unique integer that is assigned during compile time to each class.

The way in which these values are ordered allow us to optimize the work needed for comparing
two types for compatibility: each class knows both the minimum value of its subtree (itself) and the
maximum value assigned to its children. The implementation of instanceof is straightforward
— given an object type id, checking to see that it is greater than the id of the target class and less
than the maximum value for that class will yield the correct result.

In our example, the compiler would assign a class identifier of 1 for A, 2 for B, and 3 for C.
The instanceof operator querying whether an instance of C is compatible with A, then, would be
rendered as follows:

return Row_C[obj.f0].TYPEID >= 1 &&
Row_C[obj.f0].TYPEID <= 2;

Similarly, a type cast can be validated by checking the class identifier of the target object to
make sure it falls into the target class’ interval.
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Figure 4.1. Array model.

Chapter 4

Arrays

Virgil’s notions of arrays is similar to that of Java. The programmer can always check the length
of an array by accessing the length field, and reads and writes are checked at runtime for being
outside of the bounds of the array. What the programmer actually deals with are references to the
arrays themselves; like objects, all fields, variables, and parameters which are typed in Virgil as
an array are actually treated as references to arrays. These references are then passed by value in
methods.

Array references normally would be implemented in C, again, via the use of pointers. Arrays
would be converted to global variables, and pointers would in turn point to these global variables.
Virgil takes an additional step by also including with the pointer a field indicating the length of the
array. These two items would be wrapped into a struct, which would then be passed around. Of
course, because of the same reasons why the traditional object representation doesn’t work, this
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strategy does not work either. Aside from the fact that we cannot use pointers, they cannot be
included as members of structs either.

4.1 Array Grouping

Arrays in Virgil also fall under the rules for object allocation: arrays can only be created using the
new operator with a constant-sized length inside constructors for classes or components. Once the
initialization phase is complete, the compiler will know the total number of arrays in the program
and their lengths. This information allows us to perform our array grouping technique.

In order to successfully represent references to arrays without pointers, we approach the prob-
lem in much the same way as with objects. We use the type information known during compilation
to create canonical global variables for each type of an array, demarcated by the element type.
All arrays which have the same element type are then grouped together and concatenated to form
one long array. The original arrays as defined in the Virgil program are now subsets of this one
canonical array.

This approach is illustrated in figure 4.1. The heap shown here consists of two arrays typed as
char[], two int arrays, and two arrays holding objects of different types, A[] and C[]. Although
the classes A and C are incompatible, i.e. they do not intersect at all in the class hierarchy, we
consider them both to be the same array type, as all objects are represented by one struct in C. The
arrays are grouped and concatenated, forming one canonical array for each array type.

Array grouping accomplishes the prerequisites needed to successfully encode references to
arrays without the need for pointers.

4.2 Array Referencing

With the array groups created, an array can be uniquely identified by its start offset, and its length.
We solve this problem in much the same way as the object references; we create a single struct
which holds the necessary information to identify an array. This array reference struct’s basic
structure is shown in figure 4.2. Because an array reference can be null like object references,
we reserve a special flag for null. The other two fields indicate the start of the array within the
canonical array, as well as the length of the array, respectively. The length information is used on
all element accesses during runtime to ensure that accesses are valid and in the bounds of the array,
similar to array accesses in Java or C#.

These array references are, like our object pseudopointer, passed by value into functions. Given
an array reference and a expression evaluating to an index within the array, an element access would
entail the following steps:
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struct Array {
char null;
int start;
int length;

}

Figure 4.2. Array reference struct.

method f(arr : int[], x : int) : int { return arr[x]; }

int f(struct Array arr, int x) { return int_array[arr.start + x]; }

1. Determine the overall index by summing the result of the index expression together with the
start field of the array reference : arr.start + x.

2. The compiler determines the correct global array to access based on the static type of the
array. All objects are considered to be one array type: int array.

3. Perform the array access.

Although all array accesses are checked to ensure they are within bounds, because currently Virgil
has no exception handling mechanism, the case where an invalid array access occurs will result in
undefined behavior.

Array grouping allows us to determine the correct array to access during compile time based
solely on the known type information of the array being accessed. Grouping all arrays of the same
time to one canonical array eliminates the need for pointers, and allows us to represent references
to arrays in a straightforward way with minimal performance overhead.
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Chapter 5

Methods

The final area of major concern is virtual method dispatch without the use of tables or function
pointers. The general approach for this is the use of typecase to examine the runtime type of
an object in order to determine the correct function to invoke. To accomplish this, we create
intermediate dispatcher functions. In general, each method call will be re-routed to a dispatcher
function, which switches on the object’s type identifier and then calls the correct function directly.
This section will provide an overview of this approach.

5.1 Type Case for Method Dispatch

Our dispatcher method relies on several features of our object representation to successfully dis-
patch a call to the correct function: the runtime type information field, TYPEID, in the root class
struct; the fact that the pointer offsets are ordered in such a way that the root class’ component
index will always be the first field in the pointer; and the fact that all classes are known during
compile time in order to create a complete class hierarchy.

The dispatcher consists primarily of a switch statement on the TYPEID of the object, and calls
the appropriate function for the class. If the method has a non-void return type, the dispatcher
will return the result of the called function. One case statement will be placed for every class in
the class hierarchy. We employ fall-through cases for classes that share a common method. An
example of the dispatcher method for foo as defined in class A of our example hierarchy is shown
in figure 5.1.

The dispatcher strategy incurs the highest performance penalty in our object representation
model, since each method call will have to go through an intermediate dispatcher function before
the correct code is executed. However, through static analysis and optimizations described later,
we can skip the dispatcher for many method calls to which the destination method is definitely
known during compile-time.
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void Foo_dispatch(struct Pointer __this) {
switch(Row_A[__this.f0]) {
case 1: // B

B_bar(__this);
return;

default: // A
A_bar(__this);
return;

}
}

Figure 5.1. Dispatcher function in C.

5.2 Delegates

Virgil supports the notion of delegates, which behave similarly to function pointers. Normally,
they are compiled in C as function pointers, which then are passed around in the place of delegates.
However, because AutoPilot does not support function pointers, we do not allow delegates in the
Virgil programs at this time. It is possible to extend the concept of dispatchers and create a large
dispatcher that switches between all functions that have the same signature, however we have not
implemented this at this time. We therefore relegate the implementation of delegates to future
work.
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Chapter 6

Optimizations

The approaches we have just demonstrated represents the generalized model of how we implement
the various language constructs of Virgil targeted for hardware compilation. However, we perform
several additional optimizations to further reduce area needed and improve performance. Our
optimizations fall into several categories, which will be discussed in this chapter.

6.1 Method Call Optimizations

Although all methods are virtual in Virgil, we again take advantage of the fact that all classes are
known at compile time in order to replace some dispatcher calls with direct method calls. Some
virtual methods may never be overridden by other classes in the class hierarchy; calls to these
methods do not need a dispatcher, as it is known in complete certainty which method is being
called. We are able to then remove the call to the dispatcher, instead replacing it with a direct call
the function. This minimizes the impact to performance of using dispatchers.

In our example, the arg method in B and the foo method in A both exhibit the property of
never being overridden by a child class. Calls to these functions elsewhere in the program, then,
are replaced with direct calls to the C functions that represent the methods.

6.2 Bitwidth Optimization

Our compiler generates a variety of data structures and special integer values throughout the model
presented. Special values such as the array lengths, object identifiers, array offsets, object table
offsets, all are constant values generated during compilation time whose minimum and maximum
values are known. Because of this fact, our compiler can optimize the sizes of the integer types
needed to store these values.

AutoPilot allows for arbitrary bit-width integer types in C. It accomplishes this through various
typedefs that hook into AutoPilot’s own libraries. This feature is exposed in C via types such
as int6, which represents a 6-bit signed integer. AutoPilot supports arbitrary bit integers from
1 bit to 1,024 bits. We take advantage of this feature to minimize the bit widths of all of the
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compiler-generated data structures.

To illustrate this approach, let us use the heap layout as shown in figure 3.3. The pseudopointer
consists of two components. Classes that use the first component are A, B, and C; the second
component is used only by B. The widest row that is pointed to by the first component is the row
for A, which consists of four elements. The row for B, on the other hand, only has two cells. Our
compressed pseudopointer is then:

struct Ptr {
uint1 null;
uint2 comp1;
uint1 comp2;

}

Our pseudopointer, as a result, is only 4 bits wide. One bit is required for the null flag, while 2
bits are needed to represent the last index in row A, 3, and one bit to encode1, the last index in row B.
This optimization, although minor, serves two purposes: it saves area to a small extent by reducing
the bus widths; it also increases performance by a small amount by reducing the probability of
wires of uneven lengths (due to routing).

Variables, fields, and parameters defined as type int within the Virgil program itself by the
programmer are not modified. Because the compiler cannot determine the range of values that will
be stored within these, their size will always be 32 bits. However, Virgil has another feature that
allows the programmer to take advantage of this bitwidth optimization feature by using the raw
types within Virgil. Raw types are unsigned types which can be defined as any number of bits
between 1 and 64. Normally, we map these to one of the primitive unsigned integer types in C;
however, when compiling with AutoPilot as the target, we can convert them into the exact number
of bits that the programmer defined them to be.

6.3 Array and Object Initialization

One final required step that we must do is assign all the initialization data – the initial values of
all arrays and objects — into a separate variables in C which are marked with const. AutoPilot
recognizes this property and puts the data in a special ROM. Upon startup, this ROM data is copied
into the RAM slots. This step comprises the runtime initialization phase when the hardware is
executed. The overhead introduced by this operation is measured in the benchmarks section; it
depends primarily on the amount of data that needs to be copied from ROM to RAM.
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Chapter 7

Experimental Results

7.1 Benchmarks

We wrote four Virgil benchmark applications to measure and compare the performance of our
compiler. Three were translations of cryptographic benchmark programs authored in C found in
the CHStone benchmark suite [6], a well-known suite benchmark programs written in C designed
to be synthesized to FPGAs. These benchmarks, because they are translated from C, a non-object
oriented language, lack the use of most of the object-oriented features that are available in Virgil.
They primarily showcase the raw computational veracity of the compiler. To make up for this
deficiency, a fourth benchmark, the Richards benchmark, was also translated into Virgil [14]. The
Richards benchmark simulates the task dispatcher in the kernel of an operating system, and was
translated from an object-oriented Java/C++ implementation. The Richards benchmark does little
in the way of raw computation, but exercises many features of the language that were not covered
by our cryptographic benchmarks. Richards uses many Virtual methods which require dispatchers,
and there is a nontrivial amount of objects allocated during the initialization phase. We chose
Richards to enable comparison of Virgil and C++.

The following list describes in more detail the various benchmarks that we have chosen to
use. They have been specifically chosen because they do not use any floating point arithmetic, as
Virgil does not have floating-point primitive types. The first three in the list are our cryptographic
benchmarks from the CHStone suite. The last one is the object-oriented Richards benchmark.

• AES — An implementation of the Advanced Encryption Standard, a popular and modern
encryption cipher.

• Blowfish – An implementation of the Blowfish block cipher algorithm.

• SHA – An implementation of the cryptographic hash function, SHA-1.

• Richards – Simulation of a task-dispatcher component of an operating system kernel.

Figure 7.1 shows the various sizes of each benchmark program in line numbers for both the
original source code and our Virgil translation.
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Lines of code
Original Virgil

Originally in C:
AES 791 669
Blowfish 1320 1548
SHA 1349 1187
Originally in C++:
Richards 705 437

Figure 7.1. Benchmark code length.

CPU (xeon) CPU (atom) FPGA
Benchmark Time Energy Time Energy Time Energy Slices FlipFlops BRAM

(us) (mJ) (us) (mJ) (us) (mJ)
AES
C 23 1.9 92 0.37 34 0.04 4,803 6,641 54
Virgil/wide 83 6.7 317 1.27 103 0.14 6,199 8,198 51
Virgil/hybrid 85 6.8 317 1.27 106 0.14 6,575 8,253 51
Blowfish
C 222 17.7 834 3.34 1,144 1.52 6,795 8,962 63
Virgil/wide 877 70.2 1,786 7.15 2,092 2.74 4,689 6,031 69
Virgil/hybrid 889 71.1 2,587 10.35 2,040 2.65 4,700 6,029 69
SHA1
C 319 25.4 1,093 4.37 1,565 2.07 5,715 8,409 65
Virgil/wide 1,070 85.6 2,131 8.52 1,525 1.98 4,858 6,595 64
Virgil/hybrid 1,074 85.9 2,630 10.52 1,525 2.04 4,890 6,598 64
Richards
C++ 10,065 805.2 39,900 159.60 N/A N/A N/A N/A N/A
Virgil/wide 11,164 893.1 36,331 145.32 16,065 21.21 4,330 5,519 68
Virgil/hybrid 29,135 2,330.8 61,622 246.49 14,433 18.91 4,317 5,355 67

Figure 7.2. Experimental results.

7.2 Platform

The performance of our compiler was compared with that of two different CPUs: an Intel Xeon
CPU, which is Intel’s high-performance CPU offering, and an Intel Atom CPU, which is the low-
power mobile offering. The Xeon’s heftiness offers speed at a cost of power consumption, while
the Atom’s leanness ensures that its power consumption will be very low compared to the Xeon,
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sacrificing computational performance. The Xeon processor gives us an idea of the computational
veracity of our benchmark applications that can be achieved on ordinary, off-the-shelf server and
workstation machines, while the Atom gives us a better idea of how the lowest-power x86 CPUs
compare to the FPGA in terms of both performance and power consumption. The Xeon E5430,
upon which our Xeon platform is based, has a TDP (Thermal design power) of 80 Watts [9].
On the other hand, our Atom 230 CPU boasts a TDP of only 4 Watts [8]. Because the Atom’s
target market overlaps significantly with that of FPGAs, we believe that the Atom will be a more
interesting comparison than the Xeon.

The TDP of a processor indicates its maximum designed power consumption. We use these
figures in our estimates of the power consumed when our benchmark applications are executed
on the respective CPUs. While additional power is consumed by the support devices needed to
facilitate a CPU — memory, storage drives, and other peripheral devices — we are only interested
in the power directly consumed by the CPU in this paper. FPGA power consumption can be
measured in a more accurate way; each FPGA vendor usually provides a tool that can precisely
estimate the amount of power consumed by a particular design when it is turned on. Both of these
figures, the TDP of a CPU and the estimated power consumption of an FPGA in watts, which
can be multiplied by the execution time to give a estimated figure of the power consumed by the
program in joules.

CPU benchmarks were performed via an x86 64 gcc compiler running on Ubuntu Linux, ker-
nel 2.6.32. The benchmarks were run 200,000 times, with the overall run time being divided by
200,000 to obtain the average per-execution time. FPGA measurement was done via the GHDL
VHDL compiler, which converts FGPAs designs into an x86 program, which can be run from
within Linux. This gave us the ability to have a better view of the internal timings and signal data.
The simulation results were confirmed by re-executing the design on an Xilinx Virtex-II FPGA
chip. The FPGA vendor (Xilinx) tools were used for synthesis and layout.

The Intel Xeon E5430 processor contains 4 cores, each running at 2.66 GHz. It has a 6 MB
shared cache. The system was further equipped with 32 GB of DDR2 RAM, although the bench-
mark programs never used more than 500MB of memory. The benchmarks were compiled using
GCC 4.4.3 on Ubuntu “Lucid Lynx” 10.04.

The Intel Atom 230 is a single-core, hyper-threaded CPU running at 1.6 GHz with 512KB
of cache. 1 GB of DDR2 memory is also installed on the system. Again, the benchmarks were
compiled using GCC 4.4.3 on Ubuntu “Lucid Lynx” 10.04.

The FPGA simulation platform is primarily the GHDL VHDL compiler version 0.28dev run-
ning, again, on Ubuntu Linux 10.04. The hardware specifications of the simulation system are not
important, as the simulator executes the design at a specified clock speed (100MHz in our case)
regardless of the underlying hardware.
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Benchmark Initialization (us)
AES 23us
Blowfish 231us
SHA1 330us
Richards 2us

Figure 7.3. Runtime initialization periods.

7.3 Measurements

Figure 7.2 show our measurements. On each execution platform, the original C benchmark was
first compiled and executed to establish “original” performance. Our compiler then compiles the
benchmark programs in two specific modes for comparison: first, the notion of the “uncompressed”
vertical object model, which contains wasted space, and our “hybrid” object model which was
described in this paper. The uncompressed model is measured in order to show that our table
compression and object reference representation does not have an adverse effect on the overall
performance when run on an FPGA, although it may result in slower run times on the CPU. Finally,
area measurements were gathered from the synthesis reports generated by the Xilinx synthesis tool.
We report three numbers for area usage:

1. Slices – a quantitative measurement which represents the size of the logic of the design.

2. Flip-flops – Flip-flops are the on-chip ROM, which reflects the amount of read-only memory
needed by the design.

3. BRAM units – On-chip RAM is split into subunits called BRAMS.

7.3.1 Runtime Initialization

As discussed in the optimization section, an additional step that must be taken is the runtime
initialization phase. This step is a one-time operation that occurs at the beginning of execution that
copies all the initialization data stored in the ROM into the RAM that takes up a nontrivial amount
of time. The table in figure 7.3 shows the time taken for this required initialization phase for the
different benchmarks. This number was gathered during simulation of the FPGA design.

These numbers are already included in the performance numbers included in figure 7.2. How-
ever, the amount of time spent purely on the logic of the Virgil benchmarks can be obtained by
subtracting this number from the total execution time.
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7.4 Microbenchmarks

The scalability factor of our object model was also tested in order to ensure that it supports large
programs with many objects and/or deep class hierarchies. Two benchmarks were written: one
to test the effect of the dispatcher on large class hierarchies, and the other to test the the impact
of large amounts of objects upon method calls. For the former, class hierarchies of three, six,
and twelve were benchmarked, and for the latter, programs consisting of one class and ten, one
hundred, and one thousand objects were measured. In all cases, one million method calls were
issued.

We found that there was no significant difference in performance between the various bench-
marks; all performed within 3-5% of each other. This strongly indicates that there should be
minimal scalability issues with large programs and our object model.

7.5 Assessment

We approached the performance assessment from three different perspectives: energy, run time,
and physical size. Primarily, we were interested in the amount of energy consumed by the various
designs during execution. Admittedly, energy savings may be less attractive if the run time were to
degrade significantly when switched to an FPGA. Thus, secondly, we performed overall measure-
ments of run time across platforms. Thirdly, we also analyzed the physical size of the hardware
designs created by our compiler, as fabrication cost for an FPGA chip is primarily driven by the
physical size of the design.

Time and Energy. As can be expected, the Xeon platform is the fastest and uses the most
energy. The Xeon processor executed the benchmarks 2 to 4 times faster than the Atom processor,
but consumed 5 to 10 times more energy doing it.

For the three cryptographic benchmarks, C on the Atom processor executed 1.2 to 2.4 times
faster than Virgil on the FPGA, but consumed 1.3 to 2.6 times more the energy doing it. In contrast,
for the object-oriented Richards benchmark, the FPGA is better in both dimensions: C++ on the
Atom processor executed 2.8 times slower than Virgil on the FPGA, and consumed 8.4 times more
energy doing it. Thus, for the object-oriented benchmark we can get the best of both worlds by
switching from C++ on Atom to Virgil on the FPGA: faster execution and almost an order of
magnitude energy savings.

Remarkably, Richards in C++ on Xeon executes within 2x faster than Virgil on the FPGA, but
consumes more than 42x more energy doing it.

For the Richards benchmark, when we compare Virgil/wide to Virgil/hybrid, we see a big jump
in run time and energy consumption for both Xeon and Atom, but a significant drop for the FPGA.
The reason is that the hybrid object model is a better fit for the FPGA than the wide object model,
but is wasteful on a CPU.
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For SHA1, the execution time and energy consumption of Virgil on the FPGA is even lower
than of C on the FPGA.

If initialization time is omitted from the result, then the AES benchmark executes slightly faster
in Virgil on the FPGA than in C on the Xeon! For an informal comparison, Huang et al. reported
that DES on an FPGA ran 14 times slower than DES on a Core 2 Duo processor with a frequency
of 2.66 GHz. We believe that our Virgil compiler is a significant improvement over the previous
work on marrying object-oriented programming paradigms with hardware synthesis toolchains.

Physical Size. For each of the three cryptographic benchmarks, we can compare the slices,
FlipFlops, and BRAM in C and in Virgil. We find that our area usage numbers are comparable. We
have managed to occupy less area than that of even the original C program’s design in two out of
three cases. In both of these cases, our version of the benchmark occupied significantly less area.
The AES benchmark, however, occupied a similar margin more area.

The interpretation of the Richards benchmark results must be approached differently. Because
the original program cannot be synthesized through AutoPilot as it uses many of the language
constructs, especially pointers, in such a way that is disallowed by AutoPilot, we do not have
a comparison on the FPGA for the equivalent non-Virgil version. Furthermore, Virgil provides a
way to write the Richards benchmark that would be impossible otherwise to do (short of replicating
our model by hand in C). Therefore, our sole comparison available is the execution time of the C++
version running on the CPUs. It is also the only benchmark in which we have a significant number
of objects and classes; the computational CHStone benchmarks are not implemented in a object-
oriented fashion. Here, we see the advantages of our object compression scheme. We used a
smaller number of both flip-flops and BRAMs, as well as gain a significant performance boost
over the non-compressed version.

The Virgil Compiler. The measurements show significant variation across the cryptographic
benchmarks. For example, AES in C on the Atom is 1.2 times faster than in Virgil on the FPGA,
while Blowfish in C on the Atom is 2.4 times faster than in Virgil on the FPGA. It is difficult to
pinpoint the exact causes of the performance difference because optimizations are done at multiple
points through the compilation process: our Virgil compiler attempts to produce optimized C code,
the AutoPilot tool itself aims to emit optimized HDL design code, and the final FPGA vendor-
specific synthesis tool aims to produce an optimal physical layout of the design on the FPGA chip,
so In future work we will investigate further how to optimize C code for AutoPilot.
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Chapter 8

Conclusion

The compiler that we have introduced, which enables a full tool chain that leads from high-level
object-oriented Virgil code to low-level VHDL designs, allows software engineers to easily reap
the enormous energy consumption benefits that FPGAs have to offer while still exhibiting reason-
able performance and competitive area.

This system is still a preliminary investigation, and much work can be done to further improve
the experience of the programmer. In particular, work can be done to better extend Virgil to some
domains of hardware programming is currently out of reach. Examples of such domains are that of
streaming data models, floating-point arithmetic, and designs that interact with external hardware.
All three of these can be achieved elegantly with well-designed extensions to Virgil. Further static
analysis, or an explicit modifier to make certain arrays and objects read-only, would help to shorten
runtime initialization by reducing the amount of data that must be copied from ROM to RAM.

Furthermore, improvements can be made to overall programmer experience in terms of design-
ing programs with the paradigms which already exist. A big notion that Virgil is currently lacking
is support for user exceptions; currently, any attempts at dereferencing a null reference or accessing
an array out of bounds leads to undefined behavior. By implementing an exception system as well
as a way in hardware to handle these exceptions would greatly ease the task of designing hardware
that gracefully exits when error conditions are encountered.

Finally, several features currently allowed in Virgil are not supported in our representation.
These include:

• Recursion

• Delegates (function pointers)

• Generics

The support for these features, along with the various improvements that could be made listed
above, would make Virgil a truly powerful platform on which to program FGPAs.
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