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Abstract 
 

 
Since the Polar Format Algorithm (PFA) was first introduced by Jack Walker 30 
years ago, digital processing and Moore’s law have provided the means by which to 
process an increasing amount of data, at finer resolutions, over a larger area, and in 
real-time.  Inherent in the polar format algorithm are assumptions that limit the 
focused scene size.  This report presents a development of PFA for a linear frequency 
modulated chirp pulsed radar utilizing stretch processing to illustrate how PFA 
approximations are used to form an image.  Also techniques to mitigate the errors 
resulting from the approximations are presented from a survey of literature sources. 
There are many techniques that are successful at increasing the focused scene size, 
these include image corrections made after image formation, subaperture processing, 
and careful selection of processing coordinates.  This report only considers methods 
that use the polar format algorithm.   
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1 Introduction 

Synthetic Aperture Radar (SAR) is a method by which to synthesize a larger antenna aperture 

from many measurements made with a small antenna.  This is desirable because resolution, 

particularly azimuth or cross-range resolution is proportional to the size of the antenna.  A larger 

antenna has a smaller main beam, so it is able to distinguish between objects placed closer 

together.  It turns out for most microwave radar wavelengths the antenna size for modest 

resolutions require an antenna so large that it would be bigger than most airplanes.  It is much 

easier to mount a small antenna to an airplane, resulting in the need to synthesize a larger 

antenna aperture to obtain fine azimuth resolution.  

Figure 1.1 shows an example of a fine resolution SAR image.  Objects such as trees can readily 

be identified while other objects are more difficult to interpret.  One can begin to see the 

advantage SAR imagery has over optical images when trying to image through clouds and rain.  

In the presence of weather the optical system is blind, however the SAR image remains 

unaffected because it is an active sensor and most microwave frequencies penetrate clouds and 

rain.   
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implementation and/or hardware.  Within this report only image formation methods and 

corrections that utilize the PFA are considered.   

Chapter 2 derives the polar format algorithm for a LFM chirp waveform for a digital radar 

receiver to establish a model of the received signal.  This received signal model is used to 

describe the polar format algorithm and the assumptions made in its development that enable it 

to resolve the scatterer locations within the image.  Classic image scene size limits and 

associated distortions are demonstrated.   

While PFA does not require the scene height to be assumed flat, it is a widely used assumption.  

Chapter 3 describes the resulting image distortion effects in terms of height of focus and layover. 

Higher order phase errors must be compensated to extend scene size beyond limits.  Chapter 4 

describes several techniques that have been developed to correct wavefront curvature errors.  

PFA assumes the radar wavefront is flat; this assumption breaks down under certain conditions.  

These higher order phase error terms arise from PFA’s assumption the radar wavefront is flat, 

where it is actually curved.  As will be shown later in this report, the degree of curvature varies 

with range, wavelength, and resolution.  A simple image domain resample can correct major 

displacement errors, however as the image size increases, there are higher order errors that need 

to be corrected to maintain image focus.  This chapter will present three main approaches and 

variations thereof that have been developed for higher order corrections, they include: space-

variant post filter, polar formatted subapertures, and dual format algorithm.  

Chapter 5 summarizes the assumptions made for PFA through this report.  Also this chapter 

suggests future work directions to further expand the scene size limit for PFA. 
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2 Polar Format Algorithm 

The polar format algorithm for synthetic aperture radar imaging was developed over 30 years 

ago by Jack Walker to overcome the resolution limits imposed by motion through resolution 

cells for the range-Doppler processing algorithms of the day [1].  The original implementation 

described by Walker was optically processed [1]; today in its digital implementation it is one of 

the most popular algorithms known for its image quality and processing efficiency. 

The polar format algorithm is essentially a method by which data is collected on a polar grid at 

constant angle increments [2,3].  To form an image a 2D Fourier transform is applied to the data 

[2,3].  To properly apply the Fast-Fourier Transform algorithm in the digital domain, the data is 

interpolated from a polar grid to a rectangular grid before the FFT is applied to the data [2,3].  

This coordinate transformation is also advantageous for most image display systems because 

they utilize a rectangular grid of pixels to display images.  There are many variations of the PFA 

processing sequence and a small set of alternatives can be found in [2,3,4,5]; each variation is 

suited for its particular application and/or processor efficiency.   

This chapter is organized into several sections.  First an expression for the phase history is 

developed for a digital, pulsed, LFM chirp radar system.  The phase history is the data that is 

starting point for image formation.  Next, the residual video phase error term in the phase history 

is addressed.  Then a detailed explanation is made for how the polar format algorithm is able to 

resolve the scatterer location.  The classic scene size limits for PFA are expressed and followed 

by examples of the defocus effects that arise when the classic limits are exceeded. 

2.1 Expression for Phase History Data  

The LFM chirp waveform expression and deramp process on receive is developed in several 

sources [1,2,3,5,6] but is repeated here for completeness to illustrate the assumptions made in the 

formulation, and serve as a reference for the error corrections in later chapters.  The phase 

history development and nomenclature in this section and succeeding sections 2.2, 2.3, and 2.4 

follow [6]. 

Starting with an expression for the transmitted signal from a LFM chirp, pulsed radar [6] 
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      2,
, ,, exp

2
T nn

T T T n T n n n

t t
X t n A rect j t t t t

T


 
        

   
  (2.1) 

Where: 

TA  = amplitude of the transmitted pulse 

t  = time 

n  = index value of pulse number, / 2 / 2N n N     

nt  = reference time of nth pulse 

T  = transmitted pulse width 

,T n  = transmit waveform reference phase of nth pulse 

,T n  = transmit waveform reference frequency of nth pulse 

,T n  = transmit waveform chirp rate of nth pulse 

The received echo from a point scatterer [6] 

      2, ,
, , , ,, exp

2
n s n T n

R R T n T n n s n n s n

t t t
X t n A rect j t t t t t t

T


 

    
        

   
  (2.2) 

Where 

RA  = amplitude of received pulse 

,s nt  = echo delay time of the received echo for the nth pulse 

By definition stretch processing mixes the received signal with a copy of the transmitted signal 

generated by the local oscillator [6] 

      2, ,
, , , ,, exp

2
n m n L n

L L n L n n m n n m n
L

t t t
X t n rect j t t t t t t

T
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 
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Where 
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,m nt  = reference delay time of nth LO pulse 

LT  = LO pulse width 

,L n  = LO waveform reference phase of nth LO pulse 

,L n  = LO waveform reference frequency of nth LO pulse 

,L n  = LO waveform chirp rate of nth LO pulse 

Which yields a baseband video signal [6] 

      *, , ,V R LX t n X t n X t n   (2.4) 

For the magnitude of  ,VX t n , the rectangle functions illustrate this is a pulsed radar system, and 

the magnitude of the return RA  is a function of the target RCS.  The phase of  ,VX t n  is of 

particular importance because it contains a differential time term between the scatterer and the 

Motion Compensation Point (MCP).  The MCP is usually located at the center of the image.   

      , , ,V R Lt n t n t n     (2.5) 

Assuming the phase offset, center frequency and chirp rates are the same for receive and LO 

signal, , ,L n T n  , , ,L n T n  , , ,L n T n  , the phase can be expressed as 

 
     

     

2,
, , , ,

2,
, , , ,

,
2

,
2

T n
R T n T n n s n n s n

T n
L T n T n n m n n m n

t n t t t t t t

t n t t t t t t


 


 

       

       
  (2.6) 

Expanding all the time terms reveals many terms can be cancelled. To simplify, recognize the 

relations 

 
  

 

2
, , , , , , , , , ,

22 2
, , , , , ,2

n m n m n s n m n s n n m n n s n m n m n s n

s n m n s n m n m n s n

t t t t t tt tt t t t t t t t

t t t t t t

        

   
 (2.7) 

That produces 
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          2,
, , , , , , , ,, 2

2
T n

V T n m n s n n m n m n s n m n s nt n t t t t t t t t t


           (2.8) 

Expanding the chirp term and applying the following transforms from time to range following 

[6] 

 

   

, ,

, ,

, ,

2

2

 for / 2 / 2

m n c n

s n s n

n m n s n

t r
c

t r
c

t t t iT I i I





     

  (2.9) 

Where 

,c nr  = position vector of the radar with respect to the scene center 

,s nr  = position vector of the radar with respect to the scatterer point 

i  = intra-pulse sampling index 

,s nT  = intra-pulse sampling interval 

I  = number of fast-time samples 

Now the video phase can be described as 

        2,
, , , , , , ,2

22
, T n

V T n T n s n c n s n c n s nt n iT r r r r
c c


         

 
  (2.10) 

Defining the distance from the scene center to the scatterer, as measured by the radar, [6]  

 , , , cs n c n s nr r r   (2.11) 

The video phase can now be expressed as 

        2,
, , , , ,2

22
, T n

V T n T n s n cs n cs nt n iT r r
c c


       

 
 (2.12) 

The complete expression for the video signal is  
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        2,
, , , , ,2

22
, exp T n

V R T n T n s n cs n cs nX i n A j iT r r
c c


 

      
  

 (2.13) 

Equation 2.13 is an exact expression for the signal received in terms of the differential range of 

the scatter from the center of the scene for an LFM chirp radar.  The next task is to resolve the 

scatterer’s range and cross-range location from this expression.   

2.2 Residual Video Phase Error 

The second phase term in equation 2.13,  2,
,2

2 T n
cs nr

c


, is called the Residual Video Phase Error 

(RVPE).  The original PFA [1] ignored the RVPE, though this error does vary with scene size 

and under certain conditions will be noticeable in imagery.  This error is a direct result of the de-

chirp on receive operation for a radar system using stretch processing; it is not a result of the 

polar format algorithm [2].  For instance, if the radar system used matched filtering instead of 

stretch processing, this error term would not be present in the video phase [2].  Because this is an 

error introduced by stretch processing, it is a system dependent error not the result of PFA.  Its 

correction will not be covered in this report.  In appendix C of [2] an analytical pre-processing 

method is described where the residual video phase is completely removed.  Also, [6] provides a 

similar method to remove the residual video phase error.   

2.3 Recover Scatterer Coordinates 

The first phase term in equation 2.13, specifically ,cs nr , represents an indirect measurement by 

the radar.  Radar systems can only measure time, and only within a certain precision; the radar 

must use an estimate of the speed of light to calculate ranges.  Nonetheless, the time measured by 

the radar is dependent on the actual ranges and for scatterers in the same scene the speed of light 

can be assumed constant.  Using this differential range measurement, ,cs nr , of range in each pulse 

it is the task of image formation to resolve a X, Y, and Z location for each scatterer to create an 

image of the scene.  The imaging geometry for the scene is shown in Figure 2.1 below to relate 

the radar flight path and image coordinates. 
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Figure 2.1: Imaging Geometry [6] 

The range term ,cs nr  is a differential range between the scatterer distance to the radar, ,s nr  and 

the scene center distance to radar, ,c nr  

 , , ,cs n c n s nr  r r   (2.14) 

From geometry in figure 2.1, ,s nr  can be expressed as 

 , ,s n c n r r s  (2.15) 

Following the methodology in [1], the Law of Cosines can be applied to vectors such that 

 
2 2

, , ,2c n c n c n    r s r s r s   (2.16) 

Rearranging to 
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2

,
, , 2

,

2
1 c n

c n c n

c n

 
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s r s
r s r

r
 (2.17) 

Generalizing the square root term to 

  1
n

x   (2.18) 

A Taylor Series expansion of the following standard form can be applied to 2.18 

        0 0

0 !

i i

i

x x f x
f x

i






   (2.19) 

Expanding about the point 0 0x   results in this expression 

    1 2 21
1 1 1 1 1 ...

2

n n n nx xn x n n         (2.20) 

If 
1

2
n   the expansion becomes 

 21 1
1 1 ...

2 8
x x x       (2.21) 

Using the Taylor Series expansion 2.21 in 2.17 results in the expression  

 

2
2 2

, ,
, , 2 2

, ,

2 21 1
1 ...

2 8
c n c n

c n c n

c n c n

                   
     

s r s s r s
r s r

r r
 (2.22) 

Walker [1] makes the assumption that the object (or distance from scene center s ) is much less 

than the distance of the radar from the scene center thereby eliminating the 
2

s  term and 

approximates equation 2.22 as  

 ,
, , 2

,

1 c n
c n c n

c n

    
 
 

r s
r s r

r
 (2.23) 
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Using a spherical to rectangular coordinate conversion with the geometry defined in figure 2.1, 

expressions for ,c nr  and s are 

 
, , , , , , ,cos sin , cos cos , sin

, ,

c n c n c n n c n c n n c n c n

x y zs s s

     r r r r

s =
  (2.24) 

Computing the dot product as 

 , , , , ,cos sin cos cos sinc n c n x c n n y c n n z c ns s s        r s r  (2.25) 

Equation 2.23 becomes 

 , , , , ,cos sin cos cos sinc n c n x c n n y c n n z c ns s s          r s r  (2.26) 

Substituting equation 2.26 into equation 2.15 then into equation 2.14 yields 

 , , , ,cos sin cos cos sincs n x c n n y c n n z c nr s s s          (2.27) 

This is an expression of the differential range in terms of the scatterer location from using the 

first two terms of the Taylor series expansion.  The objective for image formation is to recover 

the position of s .  A flat scene can be assumed, forcing 0zs  , where the implications of this 

assumption is discussed later in chapter 3  

 , , ,cos sin cos coscs n x c n n y c n nr s s      (2.28) 

Using 2.28 in the expression for the signal phase  

     , , , , ,

2
, exp cos sin cos cosV R T n T n s n x c n n y c n nX i n A j T i s s

c
         

 
 (2.29) 

The separation of ,cs nr  into xs  and ys  allows the position of the scatterer to be described by two 

complex sinusoids.  This means that a Fourier transform can not only be used to resolve the 

scatterer location by the frequency of the sinusoid, but the Fourier transform can operate 

independently on each data dimension.  Why not use more Taylor series terms in image 

formation?  Adding more terms to the differential range introduces, effectively, more sinusoids 
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that are functions of both xs  and ys ; the separability is lost.  Because of this approximation, the 

Fourier transform does not ideally resolve the location of the individual scatterers and noticeable 

errors are noticeable under certain conditions.  The focused scene size limit is dependent on the 

difference between the actual differential range and the Taylor series approximation of the 

differential range.   

2.4 Scene Size Limits 

Scene size limits can be set by the amount of phase error that is deemed tolerable from 

neglecting terms in equation 2.22.  To find the phase error, one simply needs to include more 

terms from the differential range expansion in the expression for video phase.  Walker [1] chose 

the two dominant terms from the differential range expansion in equation 2.22, they are 
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From these terms, Walker [1] expresses them in terms of their xs  and ys  image coordinates and 

uses a two dimensional Taylor series expansion at the scene center to express these differential 

range terms in linear, quadratic, and higher order terms.  The linear terms result in a shift in 

image coordinates, while the quadratic terms cause an astigmatic focus error and degrade 

resolution [1].  Since the linear terms only distort the image, they don’t impact focus so Walker 

[1] uses the single dominant quadratic term from the Taylor series expansion of the two 

differential range terms to establish the focused scene diameter as 

 ,0 ,max

0

2
4 c qper

D





  (2.31) 

Where 

D  is the cross-range or range scene diameter 

  is resolution 

,0cr  is the range from scene center to the radar at the center of the aperture 
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For a radar with center frequency of 16.8 GHz, figure 2.2 shows the classic scene diameter limits 

using equation 2.31 over a range up to 50 km with an allowable quadratic phase error of 
2


 

radians.  Notice that finer resolution and shorter ranges result in smaller focused scene limits.  

Figure 2.3 shows the scene size limit for an UHF radar with the same allowable phase error, 

resolution, and range is much less than the Ku radar allowable scene size.  It is up to the radar 

system designer to evaluate these limits with their system to determine if PFA is the best image 

formation choice for their system.   

 

Figure 2.2: Scene Diameter Limit for Ku Radar 
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Figure 2.3: Scene Diameter Limit for UHF Radar 
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2.5 Image Defocus Effects 

In this section, the resulting image distortions from PFA approximations will be demonstrated by 

simulation of point targets in a SAR scene.  A Ku band radar was selected for these simulations.  

Figure 2.4 below shows a 100m by 100m field of point targets with 1 m resolution at a range of 

5km.  According to figure 2.2 a 100m scene size is well within the 2100m focus scene size limits 

for 1m resolution and it can be seen the point targets appear to be evenly spaced. 

 

 

Figure 2.4: Ku Radar Small Scene Size 
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Here the increased scene size is not beyond the scene size limit expressed in figure 2.2; that limit 

is for quadratic phase errors which appear as spatially-variant defocus effects.  The image shows 

every point target well-focused.  Expanding the scene size to 850m produces figure 2.5.  Despite 

the point target field is square and evenly spaced, the point target field in figure 2.5 appears 

curved.  This curvature is known as geometric distortion and its correction is discussed later in 

section 4.1. 

 

Figure 2.5: Ku Radar Large Scene Size 
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An example of higher order defocus effects is shown below in Figure 2.6.  This scene was 

simulated for a Ku band radar with 0.3m resolution for a 900m swath in cross-range at a range of 

5km.  According to figure 2.2, the focused scene size limit for this resolution and range is 635m.  

Notice the point targets at the edge of the scene appear bigger and brighter than the point targets 

at the center; this is a result of the higher order phase errors defocusing the point targets.  This 

distortion can be hard to notice in this report because figure 2.6 has more pixels (therefore the 

point targets appear smaller in this report) to cover the same overall cross-range swath as figure 

2.5.   

 

Figure 2.6: Ku Radar Large Scene and Fine Resolution 
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To better illustrate the defocus effects, figure 2.7 below enlarges the lower left quadrant of figure 

2.6.  Notice the upper-most right reflector is perfectly focused while the lowest left reflector is 

not only translated from its true position, it is defocused.   

 

Figure 2.7: Lower Left Quadrant from Figure 2.6 

2.6 Summary of PFA Approximations 

PFA makes two approximations: Taylor series expansion of differential range to enable Fourier 

transform to resolve scatterer location, and another Taylor series expansion of the residual range 

term expressed as phase to establish scene size limits.  These approximations simplify the 

mathematics such that a Fourier transform can be applied to collected data to form an image.  

When Walker [1] published PFA, optical image processing systems used lenses to compute 

Fourier transforms very efficiently.  Today, the Fast-Fourier Transform algorithm makes PFA an 

efficient implementation for digital signal processing radars. 
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Over the years, radars have increased image size, decreased resolution, and decreased stand-off 

distance; all of which stress the simplifying assumptions inherent in PFA.  Accordingly, 

corrections to PFA to increase the focused scene size have been developed to correct errors from 

using these approximations at various costs including increases in processing time and 

complexity.  These corrections will be discussed in the remainder of this document. 
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3 Zero Scatterer Height Assumption 

In the above development (section 2.3), the target plane (or image) was assumed to have no 

height.  That is not the case for nearly all SAR data collections; the scene has some height.  By 

keeping zs  in equation 2.28, equation 2.29 becomes 
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 (3.1) 

In this form a three-dimensional Fourier transform can resolve the scatterer location in xs , ys , 

and zs .  Further details on applying PFA in three-dimensions can be found in the literature, 

including [2, 3, 5]. 

3.1 Resolving Scatterer Height 

There is a certain number and spacing of samples required in the z direction to achieve the 

desired height resolution.  Because the number of samples in the z dimension is limited by the 

number of collections, many samples in z would require many data collections over the same 

area.  For most practical radar applications this is undesirable.   

There is another method to get height information from radar images.  Radar systems with at 

least two phase centers (or with as few as two collections on the same area) can utilize a 

monopulse-like method to estimate the height (via angle of arrival) of the scatterers in the scene.  

This type of three-dimensional processing is called Interferometric SAR (IFSAR); it is not part 

of this report and it is explained in many sources, including [3]. 

3.2 Height of Focus 

By assuming a flat target scene, equation 3.1 shows that if a scatterer does have height above the 

focus plane, an additional phase error in the data could result in undesirable image artifacts in the 

final image.  The height limit by which scatterers above or below the focus plane are well 

focused is called height of focus [2].  According to [2], the height of focus is affected by out-of-

plane acceleration (acceleration orthogonal to the slant plane).  Significant out-of-plane motion 
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will decrease the height of focus in the final image.  Carrara [2] provides the following 

expression to quantify the height of focus for a particular motion described as a ‘vertical pop-up 

maneuver’ as   
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  (3.2) 

Where 

xaV  is the velocity component in the x direction (direction of travel) 

c  is the squint angle at the center of the aperture 

c  is the grazing angle at the center of the aperture 

acR  is the range from the center of the scene to the Antenna Phase Center at the center of the 

aperture 

zoa  is the out of slant plane acceleration 

a  is the azimuth resolution 

c  is the radar wavelength at the center frequency 

aK  is the azimuth broadening factor from using a window function to control sidelobes 

Equation 3.2 shows that height of focus increases with coarser resolution, increasing velocity in 

x direction, squinting closer to broadside, and smaller grazing angle.  It can be seen there is an 

inverse relationship between out-of-plane acceleration, zoa , and height of focus.  Throughout a 

single aperture the most dominant term is going to be out-of-plane acceleration, zoa .  The out-of-

plane acceleration is primarily a function of the platform motion; it can be due to erratic motions 

induced by weather or the pilot.   

A technique described in [15] has been developed for satellite implementation of PFA for very 

large scene sizes (>1 million square kilometers) to account for the fact that the surface of the 

Earth curves away from PFA’s flat plane at large distances from the scene center (if the target 

plane is at the scene center point elevation).  The image is sub-divided into regions where a 
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single target plane height results in tolerable height of focus errors.  This process is conceptually 

similar to other wavefront curvature correction techniques discussed later in that it subdivides the 

data into regions where PFA works well.   

3.3 Layover  

As a consequence of the flat target plane assumption, objects with height are flattened in the 

imagery; this type of distortion is called layover.  Layover occurs in a SAR image where the top 

of a tall object (i.e. a building) is at a closer range than the base of the object.  In effect, the top 

of the object lays over the ground in front of it.  Figure 3.1 shows a ray diagram illustrating 

layover of a building.  The red arcs represent constant range contours.  The reflected energy from 

scatterers along the same range contour will combine together and be indistinguishable from 

each other.   

 

 

Figure 3.1: Illustration of Layover 
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than the radar, in the direction orthogonal to the flight line.  How this layover manifests itself in 

the imagery is not just shifting the top of the object to the left or right; depending on the object 

and flight trajectory, an image could show a bend in a road when actually the road is straight, or 

vice versa.  An example of this can be found in [3] on page 86. 

3.4 Summary 

Although the assumption of zero scatterer height is made in PFA developed by Walker [1], there 

is not any part of PFA that precludes scatterer height from being used.  Often it is operational 

and practical considerations that are eased by setting the height to zero.  One practical reason to 

make a 2D image is that today’s (and historically) image display technology is well-suited for 

displaying 2D images; this may change in the future with the proliferation of 3D viewing 

technologies.  Although, if a radar could collect a sufficient amount of data in the z direction 

within a single pass, the height of focus would still be limited by the platform’s amount of out-

of-plane acceleration.   

For most applications, IFSAR techniques are preferable to 3D Fourier transforms because they 

tend to require less data collections (i.e. fly-bys) of the same scene.  However, each application 

and radar system is unique and there is a trade-space of techniques that are best suited to meet 

the end-user’s needs. 
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4 Wavefront Curvature Correction 

One of the simplifications made in PFA is the truncation of Taylor series expansion terms, 

expressing the range from scene center to each scatterer ( ,cs nr  from equation 2.14).  The first two 

terms of the Taylor series expansion allow a Fourier transform to convert the frequency domain 

data into spatial domain data, however the truncated terms do contribute additional phase errors 

that appear as undesirable artifacts in the imagery under certain conditions.  In practice, scene 

sizes are limited by a certain amount of phase error such that resulting image artifacts are not 

noticeable in the image [1, 3].   

The truncation of Taylor series expansion terms to the first two terms effectively assumes the 

wavefront is flat, when actually the wavefront has curvature to a degree that depends on several 

factors.  Wavefront curvature is the curvature of the phase front of the transmitted wave from the 

radar as the transmitted wave propagates through space; it is least apparent when range >> scene 

size.  As radars get closer in range and finer azimuth resolution, the wavefront is more curved 

and the neglected terms produce noticeable image distortions.  When viewing the final radar 

image, wavefront curvature can be expressed in three categories of Taylor series expansion 

terms: linear, quadratic, and higher order.  Linear terms cause straight objects appear curved [2, 

7].  This is also called a geometric distortion and the correction can be a simple interpolation 

operation on the final image product that is discussed in section 4.1.  The quadratic term 

defocuses the image by an amount that varies with each scatterer’s location in the image (it is not 

constant with range and said to be spatially-variant) [7].  Higher order terms defocus the entire 

image [7].   

The quadratic term has been the limiting factor of the focused scene size limit in PFA [1].  There 

have been a few distinct methods proposed to correct the quadratic wavefront curvature errors 

with PFA: Space-Variant Post-Filter, polar formatted subapertures, and dual format algorithm.  

Most methods for wavefront curvature are variations upon the Space-Variant Post Filter by 

Doren (section 4.2) adapted for a different flight geometry and/or radar application.   

All of these methods seek to reduce or minimize the residual range error for data collected on a 

polar grid while using the Fourier transform.  There are literally infinite ways to implement these 

corrections given the differences in radars, flight platforms, and processing hardware.  In section 
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4.2 an inefficient matched filter implementation becomes efficient in section 4.2.3 by changing 

the flight geometry, application, and technology advances over 12 years.     

A survey of the existing methods to compensate for wavefront curvature distortions is presented 

in the succeeding sections of this chapter.  First, corrections for the geometric distortion from the 

linear terms of the Taylor series expansion are discussed; these corrections are well understood 

and utilized by nearly all implementations of PFA and its derivatives.  Then Doren’s Space-

Variant Post Filter is presented followed by variations thereof in succeeding subsections.  

Section 4.3 discusses a different approach to wavefront curvature correction by polar formatted 

subapertures.  Finally, section 4.4 describes a unique approach called dual format algorithm. 

4.1 Geometric Distortion from Range Curvature 

After forming the image with PFA, depending on the radar system parameters, a geometric 

distortion could be noticeable within the image.  A geometric distortion is noticeable when a 

straight object, such as a road, appears curved within the image, and vice-versa, depending on 

the curvature of the object relative to the radar.   

An image domain resampling process is all that is needed to remove the effects of this geometric 

distortion.  Carrara [2] gives details and the transformation equations to implement the 

resampling process.  It is a mapping from the apparent location of a scatterer in the image to the 

scatterer’s true location within the image.  This location difference arises from the fact PFA 

collects the fast and slow-time data on a polar grid in the frequency domain.  To use the FFT, the 

polar grid points (data samples) are interpolated to a regularly spaced grid.  At this point the data 

for the entire image does not change its values, only there are new sample locations.  The left 

image in figure 4.1 shows a polar arrangement of samples super-imposed on the constant range 

lines for a scene in a polar arrangement.  The right image in figure 4.1 shows the resampled 

locations as being an evenly spaced rectangular grid, however the underlying data values are still 

curved.  Therefore, a constant range line is still curved across the aperture according to the 

wavefront curvature for that collection geometry.   
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From the expression for the demodulated, sampled video signal of a flat target scene and 

considering the RVPE term has been neglected or corrected (similar to equation 2.13) 

     , , , , ,

2
, r rV T n T n s n c n s ni n T i

c
      (4.1) 

The above expression indicates the sampled video phase for a particular intra-pulse index i  and 

pulse index n .  From assuming a linear (or straight) flight path, Doren is able to create an 

expression of the Fourier domain phase history in terms of the scatter location  ,x ys s  expressed 

as the following range terms consistent with geometry defined in figure 2.1 [7].   
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Where  

,0cr  = the range from the scene center to the center of the aperture.   

X  and Y  are the frequency domain phase history coordinates 

The scatter location is expressed as 
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Doren expands the phase expression about the origin of the frequency domain with a Taylor 

series of the form  
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  (4.4) 

This process is similar to the Taylor expansion used by [1] in that it is the phase expression that 

is approximated with the Taylor expansion.  Doren’s approach is different in that he considers 
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the full phase expression whereas Walker had only used the dominant terms for expansion (see 

equation 2.30).  The straight flight path data collection scenario creates a straight-forward 

coordinate transformation between the scatter location in the image and the phase history 

domain.  Why use the coordinate transformation?  By using the coordinate transformation, Doren 

is calculating the frequency domain correction vector based on the scatterer location in the 

image.  The location of the scatter in the image is used, to calculate the amount of quadratic 

phase error expected for that particular location.  Without the image location of the scatterer the 

phase correction could not be calculated.  Given there are other phase errors in the data from a 

multitude of sources, including platform position errors, the Taylor series expansion allows the 

calculation of the proper amount of correction only due to the quadratic term.   

In [7], Doren is able to construct a correction vector that accounts for the uncompensated 

geometric distortion while correcting the spatially-variant errors.  First the image is subdivided 

into regions called chips.  For each chip, the correction vector is the complex conjugate of the 

calculated quadratic and linear phase at the center point of an image chip [7].  The correction 

vector is efficiently applied as a multiply operation in the frequency domain after applying a FFT 

to the image chip.  Then an Inverse FFT operation is applied to obtain the corrected chip.  The 

corrected chips are stitched together until processing on the whole image is complete.  The size 

of the chip selected from the image is such that the residual phase error is tolerable, and depends 

on parameters for a particular radar system and application; details to select chip size can be 

found in [7]. 

Doren’s method can be applied to correct for more phase errors by including more terms of the 

Taylor series expansion in the correction vector calculation.  By correcting for the wavefront 

curvature, the scene size limits can increase by the amount of correction (or number of terms 

from Taylor expansion) applied.  Doren’s method is limited to use by systems that collect data 

along a straight line, however we will later see others have applied this technique, with some 

modifications, for non-linear flight geometries. 

4.2.1 Wavefront Curvature for Arbitrary Flight Paths 

Doerry [6] describes a method to correct for wavefront curvature for arbitrary flight paths 

including circle, straight line, and squinted straight line.  The particular correction expressions 
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are dependent on the specific flight geometry, and they are applied to the image product in a 

similar method to Doren’s SVPF by subdividing the image into chips and applying the correction 

in the frequency domain via FFT and IFFT operations [6].   

Doerry takes a unique approach in starting with data that has completed the range interpolation 

operation.  Range interpolation can be accomplished by a direct data interpolation after data is 

collected, or it could be implemented in real-time as the radar collects the data [6].  After the 

range dimension is resampled the spacing between azimuth samples is constant in tan n [6].  

Where n  is the angle at the scene center between the sample location and the center of the 

synthetic aperture.  Doerry constructs an expression of the video phase after the range 

interpolation from the expression for video signal (equation 2.29 above) 
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Real-time motion compensation can be applied by compensating the center frequency and chirp 

rate by [6] 
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Resulting in the following video expression with real-time motion compensation applied, and the 

first few terms of the Taylor series expansion and additional terms are shown as ,pe n   
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Where ,pe n   is approximated as 
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It should be noted that these are the same phase terms that Walker used to develop focused scene 

size limits via two-dimensional Taylor series expansion [1].  Doerry recognized that the motion 

compensated phase history can be expressed as a function of tan n  [6]   
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From the above equation, Doerry shows that same scene limits established by Walker hold for a 

circular flight path [6].  Furthermore, Doerry shows the focused scene limits have a dependence 

on grazing angle [6].  The correction expression comes from recognizing the phase expression 

above in equation 4.9 can be expressed as a Taylor series expansion of the phase as a function of 

tan n  [6] 
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The Taylor series expansion (equation 2.19) using phase function from 4.10 above results in [6] 

      2
0 0 ,0 2

, ,0 2

0 01
cos 0 tan tan ...

tan 2 tan
s

pe n c n n
n n

T i d d

c d d

   
    

 
           

    
  (4.11) 

Doerry goes on to identify the terms of the expansion as contributing to defocusing, azimuth 

shift, and range shift [6].  The nice thing about this approach is that you can increase your 

corrections by adding additional terms from the Taylor series expansion, and the complexity 

scales with increased multiplies; the image has already been chipped and the FFT/IFFT applied. 

Another nice result of this approach, when compared to Doren’s, is the linear wavefront 
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curvature terms are corrected at the same time as the other terms, so the phase correction terms 

do not have to account for the position shift from geometric correction that is done later in the 

image processing chain. 

Doerry’s SAND Report details the technique [6], while a paper from Linnehan [8] implements 

this wavefront correction technique for real SAR data. 

4.2.2 Spatially Variant Post-Filter for Image Formed in Ground Plane 

For an application where repeated collections are made for Interferometric SAR (IFSAR) 

processing, Preiss describes a modification to the spatially variant post-filter for when the image 

is formed on the ground plane, not the slant plane [16].  Preiss recomputes the Taylor series 

expansion of the residual phase error for ground plane geometry and in the process identifies an 

additional range dependent term that the slant plane formulation does not include [16].  With this 

additional term, and the straight flight path trajectory, Doren’s SVPF can be modified to 

successfully apply corrections.  SAR imagery is shown to demonstrate improvement from using 

the modified SVPF over standard PFA processing [16]. 

4.2.3 Polar Formatting with Spatially Variant Post-Filtering 

This technique by Garber and Hawley [9] extends Doren’s work [7] by correcting for wavefront 

curvature for circular flight geometries, and it also combines height data to correct the defocus 

due to terrain height differences in the image.  The specific application of wide-area persistent 

surveillance in [9] results in many implementation details that diverge from [6,7].  These include 

circular flight path, rotation of images to the same orientation, and incorporating height data to 

improve focus for out of plane scatterers [9].  Height data could be available from the sensor 

though parallel processing methods, or it could be provided prior to radar data collection [9].   

Fundamentally [9] is using a Taylor series expansion of the differential range to create phase 

error correction terms, similar to [6,7].  However, Garber uses the complete expression for the 

differential range phase expansion, rather than expanding the dominant terms as done in [1, 6, 7].  

Garber’s technique, unlike [6, 7], uses a matched filter in the image domain to apply the 

wavefront curvature correction for every pixel in the image.  For the persistent surveillance 

application, the final image rotation, curvature correction, and layover correction (when height 



 

43 

data is available) can all be combined into one resampling step for computational efficiency [9].  

It is interesting to note that Doren and others split the image into chips and avoided the matched 

filter operation on every pixel for computational efficiency [6, 7]. 

4.2.4 Space-Variant Post Filter Modified to Use Complete Range Expression  

A paper by Mao, et al, [10] extends Doren’s Spatially-Variant Post Filter (SVPF) to correct the 

complete residual range phase error.  Mao is able to calculate the complete differential range ,cs nr  

by knowing the position of the radar at each pulse [10]; whereas Doren assumed a linear flight 

path [7].   

First, the image is subdivided into chips, like Doren’s SVPF, such that a constant phase 

correction can be applied across the entire chip from using the center coordinate location such 

the phase error at the chip edges are within some allowable amount of phase error [10].  Next, 

the wavefront curvature phase error is calculated from the radar position and the location of the 

center of the chip [10].  Since radar position is known in the slow-time (pulse-to-pulse) 

coinciding with the data collection geometry, the resulting phase error corrections are defined on 

a polar grid.  This polar grid is interpolated into a rectangular grid so the conjugate of the phase 

can be directly applied to the frequency domain chip [10].  All chips are processed and 

mosaicked together to produce a final image product [10]. 

This technique works well only if you have a certain amount of precision for the radar’s actual 

position at each pulse.  Any position errors will either reduce the amount of correction needed or 

introduce errors and artifacts into the imagery.  The author [10] acknowledges this method’s 

dependence on motion precision, but does not quantify the level required.  This is not a fault as 

the required location/motion precision would be directly related to the allowable phase error in 

imagery.  

Also, the author did not specifically discuss the overall performance impact from using an 

additional interpolation step beyond Doren’s SVPF.  Interpolations can be fast, but they can 

introduce errors, too.  Doren has studied the overall performance impacts of his SVPF to 

maximize efficiency, so there may be a performance efficiency increase by using only a few 

terms of the differential range expansion.   



 

44 

4.2.5 Wavefront Curvature for Bistatic SAR 

In papers by Wang and Zhu [17, 18] they develop a Taylor series expansion of the differential 

range phase for bistatic radar geometry.  The bistatic development follows Doren’s SVPF [7] 

algorithm through constructing the phase corrections and implementing the corrections on the 

image via chips [17].  Through simulated data it is shown that wavefront curvature corrections 

can be applied for bistatic case [17]. 

Wang and Zhu [17] also formulate scene size limit expressions using the two cubic range-only 

dependent phase error terms from the Taylor series expansion of the differential range phase 

error.  Other sources, including Doren, have not attempted to quantify additional scene size 

limits from the remaining phase terms.  It remains to be shown that these new scene size limits 

apply. 

4.3 Polar Formatted Subapertures 

Doerry, in addition to the technique described in section 4.2.1, developed another technique to 

expand the focused scene size limit imposed by the planar wavefront assumption in PFA.  

Expanding upon a previous technique employing subaperture processing in [11], Doerry 

describes a method to utilize multiple subapertures of subapertures, or tiers, to increase focused 

scene size limits [12].  Doerry’s technique is part of this report because it does use polar format 

processing on the subapertures to form the image, while the technique in [11] is very similar, it 

does not use polar format processing.  

The subaperture technique, as described by [12] divides the phase history data into smaller sets 

of data called subapertures, each subaperture overlaps (includes data values) with adjacent 

subapertures; Figure 4.4 illustrates this concept.  The amount of overlap and size of the 

subaperture is determined by system parameters to limit scatterer migration (or range walk) to 

within a tolerable amount [11].   
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Figure 4.4: Subaperture Division 

A subaperture of the phase history once the FFT is applied is a coarse resolution image for a 

small region of the image.  With the coarse resolution image, since the location of the 

subaperture itself is known and scatterers within the image are resolved (even at a coarse 

resolution), phase corrections for the residual range error can be applied; this is done at each 

level of subaperture processing [12].  Within each level of subaperture processing, resolution 

improves and errors are corrected [12].   

Using tiers of subapertures, Doerry is able to go beyond the scene diameter limit set by Walker 

as (setting ,max 2qpe

  ) [1] 
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where  

sN  is the number of levels or tiers of subapertures 

Doerry’s dissertation [13] provides further details on the tier processing technique and its scene 

size limit expression. 

4.4 Dual Format Algorithm 

The Dual Format Algorithm (DFA) is not a correction to typical PFA processing; it processes 

data in a different, novel order. DFA is included in this report because it corrects for the residual 

range phase error that is a result of PFA while processing data on a polar grid; the method by 

which this is done is fairly unique.  Typically for PFA processing data is interpolated from a 

polar grid to a rectangular grid, then the FFT is applied.  DFA applies the FFT on the data first, 

then resamples the data to a rectangular grid for display [14].   

An advantage to DFA over previous methods, such as Doren [7] and Doerry [6], comes from the 

expression for the differential range in polar coordinates.  It turns out that in polar coordinates, 

the quadratic phase error is only a function of range and independent of azimuth position.  The 

range is well known and the correction can be efficiently applied across all slow-time samples 

after the range FFT is applied.  In comparison to other methods [6, 7, 8, 9, 10, 14] correcting 

quadratic wavefront curvature have had an image domain x and y dependence and/or needed the 

flight geometry to estimate the location of frequency domain data to apply a correction after the 

image is formed. 

Another advantage for DFA comes from the efficiency that can be gained from a single 

interpolation within the image formation process. Typical PFA requires a geometric distortion 
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correction (section 4.1) to remove linear phase errors; this is an image domain resampling.  DFA 

combines the geometric distortion correction with the polar to rectangular interpolation into one 

interpolation operation [14]. 
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5 Summary 

This report has presented a development of the Polar Format Algorithm (PFA) to illustrate the 

location and type of assumptions and approximations that are embedded; they are ignoring 

residual video phase, flattening target scene height, and assuming planer wavefronts.  Residual 

video phase can be completely corrected [2, 6], and is not a consequence of PFA.  The image 

effects from setting scene height to zero were discussed in chapter 3; these image effects can be 

either ignored or exploited.  While corrections for geometric distortions are straight-forward 

resample operation [2], correcting the quadratic and higher order distortions are not as straight-

forward to correct because they depend on the location of the scatterer.  Furthermore, Section 2.3 

shows how the planer wavefront approximation is necessary to apply the Fourier transform to 

resolve scatterer location.  Chapter 4 showed three distinct methods and several variations 

thereof to mitigate the quadratic and higher order errors.   

Radar designers will always be balancing performance trade-offs for their particular system and 

application.  It should not be expected that any one method can be ‘taken off the shelf’ and 

applied to their system; inevitably there are changes that must be made to apply the algorithm 

and changes can be made to improve the algorithm.  With improvements in digital signal 

processing technology and variations in radar hardware over time, the subject of wavefront 

curvature correction will remain an active research area. 

5.1 Future Work 

5.1.1 Determining Residual Phase Error 

While Walker and others have used dominant terms in the Taylor series expansion of the 

differential range phase expression to bound the application of corrections, it is really the 

difference between the true differential range and the approximate value of the differential range.  

Instead of an analytical bound of one or two terms, one could study the phase from the true 

differential range phase value and compare it to the corrections that are available to determine if 

the residual phase error is within tolerable limits.  This method could be particularly useful in the 

case of modeling total phase error budget for a system, and the radar designer needs to know at 

what point the residual terms contribute non-negligible distortions into image products.  For a 

radar designer, there are many reasons to want to quantify the phase error throughout an entire 
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radar system.  Many components of a practical synthetic aperture radar system contribute to the 

total phase error. Quantifying the contributions from image formation can help develop a phase 

error margin for the entire system. 

5.1.2 Taylor Series Expansion Point and Chip Selection 

The Taylor series expansion approximates a function at a specific point, or function value.  

Taylor series terms most accurately describe the function near the expansion point.  This 

expansion point could be moved to other locations.  Some techniques use the center of the image 

while others use a chip (or subimage) to center the Taylor series expansion.  There could be a lot 

more study devoted to selecting optimal chip size, shape, and location.  For instance, little 

correction is needed near the scene center, so determine how far from scene center has an 

acceptable level of error and do not apply corrections within that region. Further study could 

look at selecting a chip shape and location based on the correction being applied.  An azimuth 

correction could be applied in chips divided only in the azimuth dimension.  There are many 

questions to be answered for selecting chips in an image, these include: 

 Is there a more efficient or accurate (or both) place to center the chip?   

 Do image chips need to all be the same size?   

 Is there a particular dimension of the image chip that is more sensitive to phase errors?   

 Do image chips need to be resized and relocated based on the phase correction?   

 Do all image chips need the same number of corrections?  

 Perhaps only certain chips need particular corrections.   

 Do chips need to be rectangular in shape, is there a benefit from overlapping chips? 

5.1.3 Iterative Correction 

An analytical model can be developed for the image based on radar parameters and the size of 

the scene to estimate the differential range phase that should be expected from a particular 

location within the image.  Use this analytical model to iteratively apply phase error corrections 

to the image to only the region of the image where it is needed until the analytical model has a 

reasonable amount of residual phase error.  For example, first a geometric correction is made, 

then, a quadratic modification could be applied to regions of the image where it is needed.   
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