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Abstract

Decision makers increasingly rely on large-scale computational models to simulate
and analyze complex man-made systems. For example, computational models of na-
tional infrastructures are being used to inform government policy, assess economic
and national security risks, evaluate infrastructure interdependencies, and plan for the
growth and evolution of infrastructure capabilities. A major challenge for decision
makers is the analysis of national-scale models that are composed of interacting sys-
tems: effective integration of system models is difficult, there are many parameters to
analyze in these systems, and fundamental modeling uncertainties complicate analysis.
This project is developing optimization methods to effectively represent and analyze
large-scale heterogeneous system of systems (HSoS) models, which have emerged as
a promising approach for describing such complex man-made systems. These opti-
mization methods enable decision makers to predict future system behavior, manage
system risk, assess tradeoffs between system criteria, and identify critical modeling
uncertainties.
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1 Introduction

Decision makers increasingly rely on large-scale computational models of complex man-made
systems to inform decisions. For example, computational models of national infrastructures
are being used to inform government policy, assess economic and national security risks,
evaluate infrastructure interdependencies, and plan for the growth and evolution of infras-
tructure capabilities. A feature common to these complex man-made systems is the interac-
tion among related, yet conceptually distinct subsystems. While it is convenient to model
each subsystem separately, the overall system behavior relies on the effective integration
across all subsystems. One promising approach for describing such systems is as a “Hetero-

geneous System-of-Systems” (HSoS) model. These computational models typically have a
large number of parameters with significant uncertainty and complicated interactions among
the component subsystems.

While computational models of HSoS provide invaluable insight into the system behavior
and allow the decision makers to run “what if” scenarios, supporting the decision-making
process requires systematic analysis of the model. This analysis involves characterizing the
performance of the system across the space of all possible conditions, states, or events. Typi-
cal analyses include identifying designs or operating conditions that best meet certain goals,
understanding the range of solutions that represent the best trade-offs among competing
goals, and quantifying and mitigating risk inherent in any decision. Each of these analysis
activities can be expressed naturally as a form of optimization.

This report summarizes the results of a three-year Laboratory Directed Research and
Development (LDRD) project at Sandia National Laboratories. The project focused on the
development and application of numerical optimization methodologies as a unified approach
for exploring the operational space and providing analysis of complex HSoS systems. This
report will begin with a brief discussion of HSoS systems and the research space this project
operated in. We will then go on to summarize the key research areas, activities, and out-
comes: structured algebraic modeling, stochastic programming, hybrid optimization, and
mixed discrete-continuous surrogates. We will close with a summary of key project metrics.

1.1 Heterogeneous System-of-Systems

Computational models used to simulate complex man-made systems are increasingly being
described as “System of Systems” (SoS) models. Although many definitions of a SoS have
been proposed, “most agree that a system of systems arises when a set of needs are met
through a combination of several systems. Each system can operate independently, but each
also must interact effectively with other systems to meet the specified needs” [5]. A feature
of many SoS models is that they integrate a heterogeneous collection of constituent systems.
Heterogeneous system of systems (HSoS) models can leverage system domain expertise in
a modular fashion, so diverse aspects of man-made systems can be integrated into a single
model (e.g., economics, climate, and human behavior). The constituent system models can
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operate at different time scales and with different levels of resolution. Further, a HSoS
model can integrate systems that are modeled with very different mathematical techniques,
including systems dynamics, partial differential equations, and mathematical programs.

The classic example of a HSoS problem is aircraft design. An aircraft is a single complex
engineered system; however, we commonly think of it as the intersection of numerous dis-
ciplines: aerodynamics, structural mechanics, combustion mechanics, communications and
sensing, heating, ventilation, and air condition, electrical engineering, hydraulic engineering,
etc. During aircraft design, it is convenient and common to treat each discipline separately:
after all, the communications and radar systems do not depend on the details of the engine
design - only that the engine can generate sufficient electricity to power the equipment. Other
subsystems are more intimately coupled: the aerodynamic design may prefer the aircraft to
be as light and slender as possible, yet the structural mechanics may need stronger, thicker
wings to support loading. An added dimension is how the aircraft “fits” into an airline’s
existing fleet. In this case, critical parameters like range and capacity, which are usually
taken as givens in the design process, now become variables. The overall fleet integration
question becomes what new aircraft design (subsystem) will best enhance the operability or
profitability of the airline route system.

An alternative view of the HSoS paradigm is managing the electric power grid. In the
grid, there is a collection of independent generating companies, each with a fleet of generating
units (power plants). Each generating unit has its own unique capabilities and operating
parameters. Each generating company operates its fleet of generating units ostensibly to
maximize its own net profitability. Opposite the generating companies are the consumers,
ranging from individual households to large corporate or industrial sites. Linking them all
together is the system operator, which commits individual generating units to produce or idle
in order to meet the anticipated demands and transmission constraints. In this system, the
decomposition into subsystems is along control boundaries instead of discipline boundaries.

After considering these and other applications considered “canonical” HSoS systems, we
realized that the unifying characteristic among HSoS applications was not necessarily the
way in which the systems were decomposed, but rather that the approach to modeling or
analyzing the application relied on decomposition in order to make the model or analysis

tractable. Further, there are many possible axes across which we could decompose the sys-
tem. The two examples above highlight functional decomposition and control decomposition,
which, along with spatial decomposition, are the most prevalent simulation decomposition
approaches appearing in literature. However, it became readily apparent that there are
numerous other decomposition strategies that could be employed when performing HSoS
analysis. In particular, the systems could be decomposed in time, uncertainty space, and
algorithmic space. This realization subtly shifted the focus of the project away from ex-
ploiting the characteristics of decompositions specific to individual applications and toward
the more general identification and exploitation of the general “axis of decomposition” most
appropriate to the desired analysis.

10



1.2 Optimization as a unifying approach

Optimization is a natural paradigm for analyzing HSoS models because it can readily be
tailored to address many of a decision maker’s analysis questions. This can range from clas-
sical optimization (“find the solution that yields the best value of a goal”) to multi-criteria
optimization (“quantify the best possible trade-off among multiple competing goals”) to
stochastic optimization (“identify the solution that best manages risk in some quantifiable
manner”). In particular, several prevalent features in HSoS analysis applications motivate
the optimization research in this project: (1) The core modeling components and the deci-
sions facing the decision-maker are naturally discrete. (2) There is fundamental uncertainty
in the data, which comes from a diverse range of sources, (3) HSoS models often describe
how systems evolve over time, and (4) There are many criteria for assessing the performance
of HSoS systems.

While the HSoS moniker is relatively new, models of complex systems that could easily be
classified as HSoS models have long been used in many applications. However, optimization
techniques are infrequently used to analyze these models. There are several characteristics
of HSoS models that inhibit the effective application of optimization. First, these models are
large and simulation alone can be computationally challenging; naively wrapping the simula-
tion with an optimization algorithm quickly becomes computationally prohibitive. Second,
the analysis of SoS models often requires a combination of both integer and continuous
decision variables, and optimization has not been widely applied to general mixed integer-
continuous applications. Third, there are no robust, scalable, general-purpose optimization
packages that can directly handle many of the HSoS optimization analyses (in particular
stochastic programming and multi-objective analysis).

This work sought to overcome these barriers and provide the foundational capabilities
to support the direct analysis of HSoS models through the application of general-purpose
optimization algorithms and approaches. A central focus of this project is a deliberate focus
on incorporating both integer and continuous decisions into the optimization processes. To
accomplish this, we focused on several key research ideas:

Structured algebraic modeling: Through this project, we explored new environments
for expressing and manipulating structured algebraic models. The availability of an
open, extensible, and manipulable algebraic representation of the HSoS model proved
to be the key cornerstone upon which we could base our algorithmic research.

Multi-Stage Stochastic Optimization: Explicitly capturing and understanding how model
uncertainties evolve with time is critical to generating any actionable analysis for HSoS
systems. In this work, we sought to represent and manage uncertainty in the context
of multi-stage stochastic optimization. We developed a general-purpose stochastic
programming environment that provides a standard form for expressing multi-stage
optimization problems. We then focused on developing scalable parallel stochastic
programming solvers based on the Progressing Hedging decomposition algorithm [16].
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Risk Management: Although expected value and worst-case risk analysis is commonly
used to analyze man-made systems, it is well-known that these measures can yield
undesirable solutions. The expected value discounts rare but high-consequence events,
whereas the worst case results in solutions that tend to be excessively conservative. In
this project, we adapted risk management measures from finance (notably the Con-
ditional Value-at-Risk (CVaR)) and applied them within the context of multi-stage
stochastic optimization of large-scale HSoS applications.

Infrastructures for Multi-Objective Optimization: Analysis of trade-offs between mul-
tiple criteria is well-known to be challenging for optimization, and few researchers have
considered multi-objective optimization with uncertain objectives. One of the central
challenges is a lack of robust, scalable multi-objective optimization algorithms. One
alternative to relying on single algorithms is to use of numerous single- and multi-
objective algorithms in a collaborative hybrid environment. Unfortunately, currently
no optimization environments support the construction of such hybrid systems. In this
project, we developed a new optimization infrastructure for expressing and construct-
ing optimization processes.

Mixed discrete-continuous surrogates: A central challenge in developing computationally-
tractable (and optimizable) models of HSoS problems is the transition from a nomi-
nally simulation-based model to an explicit algebraic model. Typically this is a manual
process requiring the participation of both a domain expert and an optimization practi-
tioner. Ideally, we would also like to be able to generate simplified (algebraic) surrogate
models either automatically or with minimal supervision. The key challenge is devel-
oping surrogate methods for capturing the discrete components of a HSoS model.
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2 Algebraic modeling

As we were forming the research thrusts of this LDRD, a central issue that we first had to
address was how we should represent the optimization problem. The Discrete Mathematics
group has a history of successes using AMPL [1, 6] to model and solve large-scale integer
programs. Our previous application experience highlighted the value of Algebraic Modeling
Languages (AML) for solving real-world optimization applications. These systems provide
a structured environment for expressing optimization problems in a form that is readily
amenable to optimization with state-of-the-art optimization algorithms. However, the strict
syntax and closed nature of widely-used commercial AMLs did not provide a sufficient degree
of structure, flexibility, and extensibility to support the algorithmic research that we intended
to pursue in this project. In contrast, other open-source AML (and AML-like) environments
(e.g., APLEpy [2, 10], CVXOPT [4], PuLP [13], PyMathProg [14], or OpenOpt [12]) lack
the expressiveness and features that we felt would be necessary (notably, nonlinear modeling
and remote computation).

Instead, we elected to base our work in this project on the prototype results of a 2007
Late-Start LDRD that explored modeling environments that could expose explicit algebra
for programmatic interrogation and manipulation. Under the auspices of this project, the
Python Optimization Modeling Objects (Pyomo) matured from a prototype modeling con-
cept to a broadly-used full-featured AML. Pyomo is a collection of classes and services that
support the direct formulation and manipulation of algebraic models within the Python
programming environment.

Key features of Pyomo include:

• Embedded in a high-level, full-featured programming language

• Access to extensive third-party library functionality

• Abstract and Concrete modeling

• Support for linear and nonlinear problems

• Integrated support for distributed computation

• Cross-platform deployment capabilities

• Integrated support for obtaining data from numerous external sources

• Extensibility through component-based software architecture

• Advanced application scripting capabilities

For more detailed discussion of Pyomo, please see the manuscript [9]:

W.E. Hart, J.P. Watson, and D.L. Woodruff. Pyomo: modeling and solving
mathematical programs in Python. Mathematical Programming Computation,
3(3), 2011.
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and the forthcoming book [8]:

W.E. Hart, C.D. Laird, J.P. Watson, and D.L. Woodruff. Pyomo: Optimiza-

tion Modeling in Python. Springer Optimization and Its Applications. Springer,
2012. ISBN 978-1-4614-3225-8.

2.1 AML extensions

A central challenge in developing explicit algebraic models of Heterogeneous Systems-of-
Systems is the discrepancy between the structured and often separable subsystems in an
HSoS and the more uniform, regular modeling supported by traditional AMLs. While mod-
eling constructs like sparse multidimensional sets can support constructing HSoS models
directly, this process is arduous, time consuming, and error prone. Instead, we leveraged the
extensible nature of Pyomo to develop new AML modeling constructs that can better and
more intuitively capture the special structures common in HSoS models.

Block-oriented modeling

Classically, optimization problems fall into the following general form:

min fi(x, y) ∀ i ∈ 1, . . . , F (1)

s.t. gj(x, y) ≤ 0 ∀ j ∈ 1, . . . , G

hk(x, y) = 0 ∀ k ∈ 1, . . . , H

{x ∈ R
m | xL ≤ x ≤ xU}

{y ∈ Z
n | yL ≤ y ≤ yU}

While very general, this form removes or hides much of the structure that is present in the
original problem. Instead of thinking about the model as a “flat” collection of equations and
constraints, HSoS models are more intuitively modeled as a collection of blocks of equations
and constraints coupled together by a high-level model:

min fi(x, y) ∀ i ∈ 1, . . . , F (2)

s.t. gj(x, y) ≤ 0 ∀ j ∈ 1, . . . , G

hk(x, y) = 0 ∀ k ∈ 1, . . . , H












gr(x, y, xb, yb) ≤ 0 ∀ r ∈ 1, . . . , Gb

hs(x, y, xb, yb) = 0 ∀ s ∈ 1, . . . , Hb

[ · · · ] ∀ t ∈ 1, . . . , Bb

{xb ∈ R
mb | xL

b ≤ xb ≤ xU
b }

{yb ∈ Z
nb | yL

b ≤ yb ≤ yU
b }













∀ b ∈ 1, . . . , B

{x ∈ R
m | xL ≤ x ≤ xU}

{y ∈ Z
n | yL ≤ y ≤ yU}
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In this framework, individual blocks correspond to distinct subsystems, allowing the subsys-
tems to maintain their integrity within the model. Note that blocks, can contain sub-blocks,
which can in turn contain sub-sub-blocks, et cetera. This hierarchical structure both ex-
plicitly captured and maintains the decomposable structure of an HSoS system and greatly
simplifies the construction and reuse of (sub)system models. It also provides a significant
degree of encapsulation (i.e. variable scoping), and directly associates variables with their
corresponding constraints. From a modeling system design standpoint, it is also important
to note that blocks are not a special sub-component of an optimization model. Rather, the
optimization model itself is a special case of a block; that is, the optimization model is simply
a block that also contains one or more objective functions.

Connecting blocks

A disadvantage of the general block-oriented model structure presented in Equation 2 is
that the integrating constraints (gj(x, y) and hk(x, y)) that bind the various subsystems
together are specific to the actual subsystem models. This forces subsystem models to
“promote” variables that would otherwise be local to that subsystem into the global model
space. Consider the example of the electric power grid: the various components (generators,
customers, system operators) are all interconnected through transmission lines that can be
modeled logically as blocks. However, the coupling constraints necessary for “hooking up”
the overall network are a function of the transmission model employed within the individual
blocks: current and node angles for the DC approximation, and real flow, reactive flow, and
node angles for the AC approximation. Ideally, to the extent possible, we could separate
the connectivity of the overall HSoS model from the detailed modeling within the subsystem
blocks.

To address this, we introduced a new modeling construct: the connector. A connector is
logically a labeled “bag of named variables” that can be used within constraints as if it were
a single variable. Individual subsystem blocks declare standard connectors for representing
their interface to the other subsystems in the HSoS model, but populate the connectors with
the variables that are specific to their internal model. The overall system integration (HSoS)
model can then be recast into a series of (nominally equality) constraints coupling various
block (subsystem) connectors together. When Pyomo generates the optimization model,
it “expands” the constraints formed over connectors by duplicating the constraint for each
variable within the connector, matching variables from multiple connectors based on their
associated name.

Disjunctive programming

As we noted in section 1.2, discrete decisions naturally arise in HSoS models. These decisions
frequently take the form of switching decisions that indicate the presence or absence of
a component or capability in the model; for example, the unit is on or off, we build a
new facility or not, a transmission line exists or it does not. This translates into a logical
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(Boolean) variable that “turns on” or “turns off” a series of constraints. The key challenge
is correctly implementing these switching decisions within the context of an AML. The
standard approach is to relax the constraint(s) in question by adding a “Big-M” term (the
binary switching variable multiplied by a suitably large constant, M) so that when the
binary is false, the constraint can not become active. This is both tedious and potentially
error-prone as each constraint must be systematically edited and an appropriate value of M

calculated.

An alternative approach is to pose the switching decisions as disjunctions and then apply
a transformation to convert the disjunctive program into a mathematical program that is
solvable with a standard optimization algorithm [3]. To support this within Pyomo, we
developed a Generalized Disjunctive Programming [15] extension based on Pyomo’s block
modeling concept. Here, disjuncts are specialized blocks that include a binary switching
(or indicator) variable that dictates whether the block of constraints is active or not. We
then provide standard, automated transformations for converting the disjunctive program
into a mathematical program using either a Big-M [15] or Convex Hull [11] relaxation. This
capability greatly simplifies the generation of complex HSoS models.
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3 Stochastic Programming

A key aspect of HSoS analysis is to quantify how system uncertainties evolve over time and
their resulting impact of that risk on the overall anticipated system behavior. However,
although stochastic programming is a powerful tool for modeling decision-making under
uncertainty, various impediments have historically prevented its widespread use. One factor
involves the ability of non-specialists to easily express stochastic programming problems as
extensions of their deterministic counterparts, which are typically formulated first. A second
factor relates to the difficulty of solving stochastic programming models, particularly in
the mixed-integer, non-linear, and/or multi-stage cases. Intricate, configurable, and parallel
decomposition strategies are frequently required to achieve tractable run-times on large-scale
problems.

We simultaneously address both of these factors through the PySP software package for
formulating and solving large-scale stochastic programming problems in Python. To for-
mulate a stochastic program in PySP, the user specifies both the deterministic base model
(supporting linear, non-linear, and mixed-integer components) and the scenario tree model
(defining the problem stages and the nature of uncertain parameters) in the Pyomo open-
source algebraic modeling language. Given these two models, PySP provides two paths for
solution of the corresponding stochastic program. The first alternative involves writing the
extensive form and invoking a standard deterministic solver. For more complex stochastic
programs, we provide an implementation of Rockafellar and Wets’ Progressive Hedging algo-
rithm [16]. Our particular focus is on the use of Progressive Hedging as an effective heuristic
for obtaining approximate solutions to multi-stage stochastic programs. By leveraging the
combination of a high-level programming language (Python) and the embedding of the base
deterministic model in that language (Pyomo), we are able to provide completely generic
and highly configurable solver implementations.

For more detailed discussion of PySP, see the manuscript [22]:

J.-P. Watson, D. L. Woodruff, and W. E. Hart. PySP: Modeling and solving
stochastic programs in Python. Mathematical Programming Computation, (to
appear), 2012.

A central challenge to leveraging Progressive Hedging as a general-purpose heuristic for
solving large-scale multi-stage stochastic optimization problems is that it was originally de-
vised for problems possessing only continuous variables. Extending Progressive Hedging to
multi-stage stochastic programs with integer variables leads to a variety of critical issues,
especially in the context of very difficult or large-scale mixed-integer problems. Failure to
address these issues properly results in either non-convergence of the heuristic or unaccept-
ably long run-times. We investigated these issues and developed algorithmic innovations
that have been integrated within the PySP framework.

For more detailed discussion, see the manuscript [21]:
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J.-P. Watson and D. L. Woodruff. Progressive hedging innovations for a
class of stochastic mixed-integer resource allocation problems. Comp.Mgmt.Sci,
8(4):355–370, 2011.

Finally, a critical issue when applying stochastic programming for decision making under
uncertainty is exactly how to quantify risk. A common approach observed in the literature
is to optimize a function of the the expected (mean) value of the system performance. While
optimizing the expected value is relatively straightforward to pose and solve, it ignores the
variability in the system performance and can be adversely biased for systems exhibiting
non-normally distributed outcomes. Mean-variance metrics address this by penalizing the
expected value with the resulting variance. However, in our experience the key risk of
interest to decision-makers is not deviation from the average system performance, but rather
managing extreme events on one side of the average. That is, a one-sided tail-conditioned
risk metric. To address this, we developed general-purpose extensions to PySP for expressing
Conditional Value at Risk (CVaR) objectives. We also explored computational procedures
for decomposing and effectively solving problems with chance constraints [20].

For more detailed discussion, see the manuscript [20]:

J.-P. Watson, R. J.-B. Wets, and D. L. Woodruff. Scalable heuristics for a
class of chance-constrained stochastic programs. INFORMS Journal on Com-

puting, 22(4):543–554, 2010.
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4 Hybrid Multi-objective Optimization

Analysis of trade-offs among multiple criteria is well-known to be challenging for optimiza-
tion, and few researchers have considered multi-objective optimization with uncertain objec-
tives. One of the central challenges is a lack of robust, scalable multi-objective optimization
algorithms. Previous research [18] suggests that good approximations of the multi-objective
surface can be obtained through the use of numerous single- and multi-objective algorithms
in a collaborative hybrid environment. Unfortunately, currently no optimization environ-
ments support the construction of such hybrid systems. In this project, we developed a new
conceptual optimization framework for expressing and constructing hybrid optimization pro-
cesses as part of the Common Optimization Library INterface (COLIN) library.

4.1 Conceptual Optimization Frameworks

The central challenge in developing a general-purpose hybrid environment is identifying a
suitable optimization framework for coupling the various algorithms to the underlying op-
timization model. Ideally, optimization frameworks exist to provide standardized interfaces
that simplify the construction of complex optimization applications. They provide stan-
dardized access to common functionality, especially interfaces for evaluating the optimiza-
tion model and then storing and retrieving the subsequent results. By defining standardized
access points, optimization frameworks facilitate the integration and reuse of modeling, al-
gorithmic, and infrastructure components.

Unfortunately, optimization frameworks also rely on a rigid application programming
interface (API). This API dictates both the concepts that the framework aims to support
(e.g., organization, functions, methods) as well as the semantics for how we interact with the
concepts (i.e. parameters and data types). This places a certain burden on consumers of the
framework to “wrap” their algorithms, models, and components to fit the framework’s API.
In particular, this requires numerous conversions of data to and from the form required by
the API. The real limitation is that the components become constrained to the framework’s
data types: a framework that uses a search domain of (Rm, Zn) (by far the most prevalent
framework domain) explicitly excludes applications that use other data representations such
as complex numbers, sequence pairs, and graph expressions. The reverse is also true: in an
attempt to provide a general framework, the API often offers a superset of the functionality
that a specific component can use (e.g., a linear programming solver cannot handle discrete
variables). This requires each framework component to verify that it is being called with
a compatible subset of the API. This also means that augmenting the framework API to
include new features (e.g., an extended modeling domain) requires modifying every client
component, at a minimum to augment the API verification to include validity checks for the
extended API.

Instead of a full, rigid API, developing optimization applications only requires a “concep-
tual framework.” The conceptual framework specifies overall organization, core components

19



and services, and methods; the actual data type used to interact with framework is, for the
most part, irrelevant. Put a different way, many fundamental operations within an optimiza-
tion algorithm rely on conceptual services like “perform a function evaluation,” “evaluate
constraint violation,” or “store this solution.” The actual domain data type passed to the
optimization model or the representation of the solution stored in a cache or database is a
contract between the optimization algorithm and the model or cache and should not involve
the framework.

4.2 Concrete Variant Type Systems

Implementing a conceptual optimization framework in a strongly-typed language requires a
complete infrastructure for storing and manipulating variant data; that is, concrete variables
that may contain arbitrary data. For this project, we elected to build the variant type
infrastructure on a derivative of the Boost1 “Any” class. The Boost Any class supports
a type-safe mechanism for storing and retrieving arbitrary data within a single concrete
type. Our extensions to the standard Boost Any provide the option to store by value or
reference, convert the Any type into a reference-counted object to improve performance and
simplify memory management, and provide implicit coercion of arbitrary data into an Any.
This allows us to implement an efficient conceptual optimization API by defining general
interface methods that take and return Any objects.

The main challenge with working with variant data is how to retrieve data from the vari-
ant object. For the Any class (and indeed for any variant in a strict type-safe language), the
consumer of the data must anticipate the data type stored in the variant before attempting
to retrieve the data. This fundamentally limits the utility of the Any class, as all clients
must check for (and convert) all possible incoming data types. To address this, we developed
a general Any-based type management system. The Type Manager contains a registry of
known conversions from one data type to another in the form of a cast graph. When a client
wishes to retrieve data from an Any, the client passes the Type Manager the source Any
and the destination data type. The Type Manager then identifies a feasible path through
the cast graph and applies the necessary conversions and returns the data to the client as
the requested type.

To support storage, retrieval, and transmission of Any objects we developed a serialization
system based on the registry concepts in the Type Manager. The Serialization Manager
contains two registries: the first is the database of serialization/deserialization functions and
the second contains registered constructors for generating new instances of serializable types.
Combined, these registries allow the Serialization Manager to retrieve arbitrary data from
a serialized stream directly into Any objects without the need to anticipate the type of the
next object in the stream.

1Boost C++ Library: http://www.boost.org/
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4.3 Problem Transformations

The two central challenges in developing hybrid optimization algorithms are to ensure that
the target optimization model is compatible with the individual optimization solvers and to
facilitate the transmission of results from one solver to another. Our approach in COLIN
is to declare concrete types (through C++ templates) for each fundamental classification of
optimization problem (e.g., Linear Program, Nonlinear Program without derivatives, Non-
linear Program with first derivatives, Mixed Integer Program, etc.). Reformulations of one
problem type to another can then be considered “type casts”. For example, to convert a gen-
eral Nonlinear Program (NLP) to an Unconstrained Nonlinear Program (UNLP), you would
cast the NLP into an UNLP by applying a Penalty Function Reformulation, which wraps the
original NLP problem within a UNLP problem that maps the constraint residuals from the
original problem into a penalized objective in the new problem. By registering these default
problem transformations with the Type Manager, we can support the automatic mapping of
raw optimization models into reformulated models that are specific to and appropriate for
each optimization algorithm in the hybrid optimization algorithm.

To facilitate the transmission of results from one solver (operating on one reformulation)
to another (potentially operating on a different reformulation), we implement ideas from
Polymorphic Optimization [17]. Each reformulation supports 3 data transformations (or
maps). Mapping a reformulated search domain to the base search domain and mapping the
base result to the reformulated result support the general optimization information flow.
Reading results from another solver context requires a third approximate mapping of the
base search domain into the reformulated search domain.

4.4 Solution Management

The final critical component for multi-objective hybrid optimization environments is a system
for managing collections of candidate solutions to the problem. To provide this capability,
we developed a unique multi-model solution caching system. This system implements an
annotated database of solutions stored in the original model context. Any reformulated
problem context can query the database, and through the reformulation mapping capability,
automatically receives the data in the appropriate reformulated form. In addition, the cache
supports constructing views of the data within the database. A view is a “window” into a
subset of the data in the cache. Through the use of event callbacks, views automatically
maintain consistency with the underlying cache. As views implement the full cache inter-
face, they can be treated as standalone caches and nested arbitrarily. This capability has
found widespread use within COLIN. Algorithms receive initial starting points and return re-
sults through subset views, allowing for seamless integration of both single-point algorithms
(e.g., pattern search) and population-based algorithms (e.g., genetic algorithms). For multi-
objective optimization, we maintain the current set of non-dominated solutions through a
“Pareto view”. By defining multiple nested Pareto view instances, we can automatically
track both the complete high-dimensional non-dominated set as well as lower-dimensional
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projections. Indeed, automatically tracking the best solution identified in single-objective
optimization is simply the special case of a Pareto view over a single objective.

4.5 Solver Implementation

We implemented coliny, a general-purpose hybrid solver environment based on the COLIN
optimization library. This solver combines interfaces to optimization solvers developed within
the Acro project2 with a general-purpose XML-based language for configuring and executing
optimization work flows. This provides users with a flexible environment for specifying and
executing arbitrary hybrid optimization algorithms. We demonstrated the utility of this
system through the design and multi-objective analysis of sensor placement subsystems for
water distribution systems [7].

2Acro: A Common Repository for Optimizers: https://software.sandia.gov/acro
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5 Mixed Discrete-Continuous Surrogate Models

Much of the success or failure of numerical optimization stems from the ability of the op-
timization algorithm to identify and exploit special structure in the target problem. To
that effect, many optimization environments require problems to be formulated as algebraic
models to facilitate the detection of key characteristics (e.g., linearity, convexity, and gradi-
ent/Jacobian information). However, many HSoS models are implemented as a combination
of multiple interacting computationally expensive simulations. In this case, algebraic rep-
resentations are simply unavailable. Further, the computational expense of the constituent
simulations may preclude directly embedding the simulation within the optimization algo-
rithm. One common approach for optimizing “expensive” simulation-based models is to
construct an approximate (algebraic) surrogate model of the simulation response surface
based on a limited number of simulations, and then optimizing the surrogate model.

A significant challenge in applying surrogate optimization techniques to HSoS models
is the aforementioned prevalence of discrete decisions. Typically, in surrogate models con-
structed over continuous variables, there is the assumption of continuity: as a continuous
variable varies by a small amount, the response is assumed to vary smoothly. This is not al-
ways the case, and there are surrogate methods that can handle discontinuities in responses,
but most surrogates (e.g. polynomial regression, splines, Gaussian process models, etc.) rely
on assumptions of continuity.

In this project, we investigated the utility of several approaches for constructing mixed
discrete-continuous surrogate models, focusing on the Adaptive COmponent Selection and
Smoothing Operator (ACOSSO), Gaussian Processes with special correlation functions, treed
Gaussian Processes, and categorical regression. For more detailed discussion, see the tech-
nical report [19]:

L. P. Swiler, P. D. Hough, P. Qian, X. Xu, C. Storlie, and H. Lee. Surro-
gate models for mixed discrete-continuous variables. SAND 2012-0491, Sandia
National Laboratories, 2012.
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6 Project Summary and Outcomes

The following is a brief summary of the technical and programmatic achievements over the
course of this three-year project.

6.1 Manuscripts, Reports, Presentations, and Software

This project directly supported the following manuscripts and reports:

W. E. Hart and J. D. Siirola. The PyUtilib Component Architecture. SAND
2010-2516 J, Sandia National Laboratories, 2010. Submitted to The Python Pa-

pers.

W. E. Hart, J.-P. Watson, and D. L. Woodruff. Pyomo: modeling and solving
mathematical programs in Python. Mathematical Programming Computation,
3:219–260, 2011.

J. D. Siirola. Current trends in parallel computation and the implications for
modeling and optimization. In Proc. 10th International Symposium on Process

Systems Engineering. 2009.

L. P. Swiler, P. D. Hough, P. Qian, X. Xu, C. Storlie, and H. Lee. Surrogate
models for mixed discrete-continuous variables. SAND 2012-0491, Sandia Na-
tional Laboratories, 2012.

J.-P. Watson, W. E. Hart, D. L. Woodruff, and R. Murray. Formulating and
Analyzing Multi-Stage Sensor Placement Problems. In Proc. Water Distribution

System Analysis Conference 2010, 2010.

J.-P. Watson, R. J.-B. Wets, and D. L. Woodruff. Scalable heuristics for a
class of chance-constrained stochastic programs. INFORMS Journal on Com-

puting, 22(4):543–554, 2010.

J.-P. Watson and D. L. Woodruff. Progressive hedging innovations for a
class of stochastic mixed-integer resource allocation problems. Comp.Mgmt.Sci,
8(4):355–370, 2011.

The project supported 37 presentations (including one keynote address) by team members
at numerous national and international conferences and workshops, including:

• IMA Workshop on Mixed-Integer Nonlinear Programming
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• 2009 INFORMS Computing Society

• 2009 Conference on Engineering Risk Control and Optimization

• 2009 INFORMS Western Regional Conference

• 2009 INFORMS Annual Meeting

• 10th International Symposium on Process Systems Engineering (PSE’09)

• 2010 ALIO-INFORMS Joint International Meeting

• 2010 Water Distribution Systems Analysis (WDSA) Conference

• 2010 INFORMS Practice Conference

• 2010 ICiS Optimization in Energy Systems Workshop

• 2010 AIChE Annual Meeting

• 2010 INFORMS Annual Meeting

• 12th International Conference on Stochastic Programming

• 19th Triennial Conference of the International Federation of Operational Research
Societies (IFORS2011)

• 2011 SIAM Conference on Computational Science and Engineering

• 2011 SIAM Conference on Optimization

• 2011 Constraint Programming and Decision Making Workshop

• 2011 Annual Conference of the Production and Operations Management Society

• 2011 World Environmental & Water Resources Congress

• 2011 INFORMS Computing Society Conference

This project supported numerous software releases, including:

• PyUtilib 3.0-3.6

• Coopr 2.3-3.0

• Acro/Coliny 3.0-3.1

• UTILIB 4.1-4.2

• FAST 2.1-2.6

• PageMarkup 0.1-0.3
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• TicketModerator 0.2-0.6.2.

There have been over 12,000 unique downloads and checkouts of software packages developed
and supported by this project.

6.2 Programmatic Impact

The research supported by this project has gone on to form the basis of several follow-on
projects:

• Research into stochastic programming and the PySP package provided the foundational
basis for Optimization of Complex Systems (2010, ASCR) and Electric Grid Security
(2011, LDRD). In turn, these projects have led to additional research into manage-
ment of high-penetration solar generation (CRADA) and advanced grid management
(ARPA-E).

• Research into structured algebraic modeling and hybrid optimization algorithms was
a cornerstone of a renewed inter-agency agreement with the Environmental Protection
Agency.

• Research in hybrid environments and integrated surrogate / optimization approaches
led to research on surrogate-based co-optimization for uncertainty quantification (2012,
Advanced Simulation & Computing).

Technology and tools developed through this project have been integrated into numer-
ous software projects, including the COIN-OR project3, Acro4, DAKOTA5, Coopr6, DGM,
TEVA-SPOT7, and the Water Security Toolkit8.

3http://www.coin-or.org
4http://software.sandia.gov/acro
5http://dakota.sandia.gov
6https://software.sandia.gov/coopr
7http://software.sandia.gov/trac/spot
8http://software.sandia.gov/trac/wst
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