SANDIA REPORT

SAND2012-0107
Unlimited Release
Printed January 2012

Experiences Using DAKOTA Stochastic
Expansion Methods in Computational
Simulations

Joseph R. Ruthruff and Jeremy A. Templeton

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online




SAND2012-0107
Unlimited Release
Printed January 2012

Experiences Using DAKOTA Stochastic Expansion
Methods in Computational Simulations

Joseph R. Ruthruff
Quantitative Modeling and Analysis
Sandia National Laboratories
P. O. Box 969
Livermore, CA 94551-0969
jruthru@sandia.gov

Jeremy A. Templeton
Thermal/Fluid Science and Engineering
Sandia National Laboratories
P. O. Box 969
Livermore, CA 94551-0969
jatempl@sandia.gov

Abstract

Uncertainty quantification (UQ) methods bring rigoroudistecal connections to the analysis of
computational and experiment data, and provide a basisrtdrapilistically assessing margins
associated with safety and reliability. The DAKOTA toolkliéveloped at Sandia National Labo-
ratories implements a number of UQ methods, which are beiorgasingly adopted by modeling
and simulation teams to facilitate these analyses. Thizrtejisseminates results as to the perfor-
mance of DAKOTA's stochastic expansion methods for UQ onpaiggentative application. Our
results provide a number of insights that may be of inteie$titure users of these methods, in-
cluding the behavior of the methods in estimating respoasearying probability levels, and the
expansion levels for the methodologies that may be needachieve convergence.
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Chapter 1

Introduction

As the United States has moved into a era of Science-Baself#®o&tewardship after the
moratorium on full system tests of nuclear weapons, SandigoNal Laboratories has brought
computational simulation efforts to bear on continuingeasments that seek to ensure the safety
and reliability of the nation’s nuclear deterrent. At Sandhese efforts are primarily supported by
the Advanced Simulation and Computing (ASC) program — foryndré Accelerated Strategic
Computing Initiative — and make use of Full System Models tieate been created for different
environments of interest. The problem we describe herenseammed with a model designed for
simulations concerning abnormal thermal environmentsh sis fuel fires.

Verification and validation (V&V) is an important methodghpthat supports quantification of
confidence in the predictive capability of a continuum pbgsnodel, and computational simula-
tions making use of that model [3, 5]. Verification is a prac&sconfirm that the model is correctly
computing results within the solution codes, while validais a process to confirm that modeling
results are consistent with real world phenomena. The Fysliegn Model (FSM) teams in the Nu-
clear Weapons program at Sandia National Laboratories resemsive use of V&V to confirm
the predictive capability of the modeling and computati@imulations used as a technical basis
for assessments regarding weapon safety and reliability.

An important process that must take place in the context of/\f&uncertainty quantification
(UQ). Uncertainty quantification seeks to quantitativetgess the effect of input uncertainty on
response metrics of interest [1]. In the context of modelihgse uncertainties can be aleatoric in
nature, meaning they derive from inherent and irreduciblgability that cannot be controlled in
the phenomena being modeled, or epistemic in nature, mgpamay derive from lack of knowl-
edge about the variables of interest, but are thereforeciiel@uf sufficient effort could be made
to better characterize and understand the uncertaintyerthioty quantification is important to
V&V from at least two standpoints: (1) it brings rigor to thesstical analysis of computational
and experiment data, and the comparison between the twogdilne validation process of V&V,
and (2) it provides a basis for quantifying the uncertaintg margin that is computed in the course
of a quantification of margins and uncertainty (QMU) study [3

One toolkit that provides a variety of uncertainty quandéifion methods is DAKOTA (Design
Analysis Kit for Optimization and Terascale Applicatioi8) 1], which is developed at Sandia in
conjunction with collaborators in academia. In additiontsomany other capabilities, DAKOTA
makes available a variety of uncertainty quantificationhds, including sampling methods, relia-
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bility methods, stochastic expansion methods, and episteom-deterministic methods [1]. Many
of these methods, however, have not been empirically eg@lasing problems other than the ex-
amples provided in the distribution of DAKOTA. This meanattsome facets of these methods,
such as the number of samples needed to achieve convergeresulits, are not as well under-
stood as we would like. Because our modeling problems arelaeyg, we would prefer to have
guidelines for using these methods that are supported byutaigle technical basis, such as their
performance on smaller yet non-trivial and representairoeblems.

This report explores the use of some of DAKOTAs UQ methodspecsically its stochastic
expansion methods — on an unclassified model of a Sandidegeceweapon subsystem. This
model, which will be described further in Chapter 2, is nawidt in nature yet representative of
other models seen in Full System Modeling work at Sandia.uf sthe primary contributions of
this report are results and insights regarding the perfoomaf some DAKOTA stochastic expan-
sion methods for a non-trivial problem instance that is\e&tifrom an important computational
simulation domain.

The remainder of this report is organized as follows: Chaptescribes the model on which
these UQ methods are explored, Chapter 3 provides a brievievenf the stochastic expansion
methods explored in this report, Chapter 4 outlines the stodglucted to exercise these methods,
Chapter 5 presents and discusses the results of using thedsath the model, and Chapter 6
offers concluding remarks.

14



Chapter 2

Modeling Problem

In this report, we make use of a nuclear weapon subsystem|rtiaatecontains limited but
complex geometric fidelity to the subsystem of interest, @s&igns a generic stainless steel mate-
rial property to the entire subsysténT.he solid geometry of this model was meshed using Sandia’s
CUBIT toolkit [6] into over 150,000 tetrahedral finite elemei86 element blocks), making this
is a non-trivial problem in terms of model size.

We exercise this weapon subsystem model using the CALORE @ddethe Sierra Mechan-
ics tool suite [7], which is also developed and maintainedbpdia. CALORE performs thermal
simulations as specified by input decks describing the ¢mmdi and parameters of a simulation.
These input decks are provided to CALORE along with the mesimie #lement model. The
present CALORE simulation with these artifacts takes less 8taminutes to complete, with the
time step control parameters we have specified, using 1@gsocs on Sandia’s capacity comput-
ing clusters. The resulting output of this simulation po®s temperature data for each node in the
model at various time steps, which is written using the Exsdthite element data model [9]. This
workflow is outlined in Figure 2.1.

For a FSM, we can use this temperature data over time to cemnawious measures of the
state of this subsystem in the abnormal thermal environieinterest. The response we measure

1Because this model is not approved for unlimited releasejaweot provide further details about its design in this

report.
EXODUS Tetrahedral
Model Mesh

Simulation
Input Deck

EXODUS
Model

Figure 2.1. Computational simulation workflow of modeling
problem.
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in this report is calculated by examining the temperaturevof components in the model at spe-
cific periods of time in order to create a weak-link/stromdlthermal race. Weak-link/strong-link
systems are a common and important safety characteristigbfconsequence systems, includ-
ing nuclear weapons. Strong-links (SLs) act as a barrieigtwats or energy that might trigger a
response from a high-consequence system. These stingihate from components designed to
fail before the strong-links in an unintended scenario whigom a safety perspective, the system
must remain non-operational (e.g., an accident condititthd components providing these sig-
nals or energy are therefore termed weak-links (WLs). In treext of the thermal race, failures
of both weak-links and strong-links are induced by theiretpe to extreme heat in an abnor-
mal thermal scenario, such as if a system were exposed to, affidecan be characterized by an
expected failure temperature for each component.

The failure of the weak-links ensures that the signals orggneequired to generate a system
are not present, thereby diffusing the system with respdming triggered by that component. (In
normal scenarios, the strong-links and weak-links musininguously agree about the instructions
for the system before the strong-links allow these signaésmergy to pass.) A thermal race margin
is the time-based safety margin in the “race” to ensure thekvieks fail before the strong-links
in abnormal thermal conditions. High-consequence systemdesigned to maximize this margin
in the direction of the weak-links failing before the strelimks. This thermal race is “lost” if the
strong-links fail before the weak-links (which would geater a negative margin less than 0.0).
Note that this does not mean that a system response will hgeted — only that the design
features preventing such a response have been disabled gatbty scenario.

The goal of this report is not to evaluate a representatifetysguestion or metric, but rather to
explore the use of DAKOTA for performing uncertainty quéinition on a non-trivial and repre-
sentative problem space. To generate this scenario imthestigation, we treat one component in
our subsystem model as a single strong-link and another aoem as a single weak-link, creating
a thermal race scenario that can be measured in the context cbmputational CALORE simu-
lations. We have specifically chosen components (and &ikmperatures for those components)
according to the following criteria:

1. The components will create an arbitrary thermal raceithabt representative of an evalua-
tion of the system from which this model was derived.

2. The arbitrary WL/SL thermal race is expected to ensuretkigatveak-link always fails well
before the strong-link (meaning the quantitative margiii alivays be greater than 0.0).
This does not consider any probabilities of events occgrtivat may be associated with
such margin calculations.

3. The selected failure criterion for each component wiltdraperatures that are not represen-
tative of the system, and attempt to ensure that the anpikér/SL thermal race will finish
in the time allotted to the CALORE simulations (meaning bothwleak-link and strong-link
reach their failing temperatures so that a margin can beileaéd). Otherwise, an inordi-
nately long simulation time might be needed to ensure welaesta generate a response for
each simulation in a stochastic expansion ensemble driy@AKOTA.

16



Chapter 3

Stochastic Expansion UQ Methods in
DAKOTA

A common approach to uncertainty quantification is to charaae and quantify the role of
uncertain variables contributing to one or more calculadésgonses of interest. DAKOTA provides
a number of methods to perform UQ, including sampling mesheeliability methods, stochastic
expansion methods, and epistemic non-deterministic rdstfig.

Each of these methods have their own advantages, makingah@mprovement on the state-
of-the-art for certain circumstances. For example, réltglmethods are often better at computing
statistics in the tails of response distributions (i.eerdgs with low probability) than traditional
sampling-based approaches. The stochastic expansiomasetre explore in this report express
their final solution as a random process, rather than a stigtecs as do many other nondetermin-
istic methodologies [1], making them particularly attreetfor the multi-physics applications in
our problem domains. However, there remains a need to exeatlithese methods on real-world
problems to both gauge their effectiveness in general ametier understand how to optimally
employ these methods to ensure a characterization of suffipedigree.

In this report, we explore the use of stochastic expansiaoaes for performing UQ on the
modeling problem presented in Chapter 2 because, as discaader, they are well-suited for
multi-physics applications. (Time and resource constsaave thus far prevented us from con-
sidering other methods.) In particular, we explore the dd@otynomial Chaos Expansion (PCE)
and Stochastic Collocation (SC) for characterizing respoo$énterest to this problem, such as
our arbitrary margin. Each of these two methods are destibéetail in [1], and we refer readers
to that source for a more complete account of these methodses$e chapter, we briefly overview
both PCE and SC to provide the necessary context for this work.

Stochastic expansion methods are useful when the resgduaseie system(s) of interest can
be characterized by a governing set of equations with stticheoefficients [1]: Because their
solutions are expressed as a random process, the methodelaseiited for the multi-physics
problem domain of interest in this work [1]. This is due to enént, aleatoric uncertainties in
aspects of multi-physics applications such as materigdgnees (i.e., the precise properties of each
material may slightly vary from system to system). As werdiscuss for future work, we hope to

1Because not all our uncertainties fall into this categadrys possible that other UQ methods may prove more
appropriate over time. We plan to investigate such methotisd future.
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explore in detail other UQ methods implemented by DAKOTApexsally the toolkit’s reliability
methods, as low-probability events are of particular inignace to designers of high-consequence
systems.

Polynomial Chaos Expansion (PCE) is the first stochastic estpamethod we explore. This
method models the effect of continuous random responsablas in terms of truncated finite-
dimensional series expansions taking place in standatdizelom variables [1] for the purpose of
estimating the stochastic coefficients. To do this, an esiparmethod (of which there are several
for PCE) is used to cast the problem into a mathematical spes=don known orthogonal polyno-
mial basis functions. From these functions, one can gemeeis of denumerable (i.e., countable)
random values for the uncertain variables of interest analsore the response of interest accord-
ingly. A problem solution is then generated from these olad@ns by estimating coefficients for
the basis functions alongside the rest of the expansionselbeefficients represent an approxi-
mated mapping between your selected response functiondétbe underlying random variables,
which provides a surrogate for the true simulation-baspdtioutput mapping.

Stochastic collocation (SC) is closely related to PCE. Theaary difference between the two
methods is that SC forms interpolation functions for knovaefticients, rather than estimating
coefficients for known basis functions as PCE does [1]. In trgext of SC, the expansion coef-
ficients are simply the response values at each collocabort within the interpolation function.
Thus, while PCE must define an expansion formulation and agticoefficients accordingly, SC
formulates an interpolation for known coefficients [1].

In the case of both approaches, a spectral projection agipieeequired to project the response
against the basis functions to generate the coefficientsexpore two different approaches that
are supported by DAKOTA for both polynomial chaos expansind stochastic collocation. The
first approach is to utilize a full tensor product quadratyirie. A nested abscissas approach is
used within this grid to identify evaluations (in terms ofues for the uncertain variables) that
are needed to generate the coefficients based on the resabmsg obtained for those evaluations
[1]. The expansion level of this approach can rise to in@ahe number of collocation points
in the tensor grid selected for the evaluations. Becausedime £xpansion level is used for all
random dimensions in our studies, this approach genendtdgnction evaluations, whenm is
the expansion level and is the ensemble’s dimensionality (i.e., number of uncertariables)
[1]. Furthermore, the number of function evaluations isnital when this method is used in
conjunction with both PCE and SC.

The second approach we evaluate is Smolyak sparse gridsh atiempt to reduce the num-
ber of collocation points while preserving accuracy in teaerated coefficients [1]. Stated sim-
ply, Smolyak sparse grids use linear combinations of thelymwbformulas used in tensor product
guadratures to generate collocation points. However,doage the number of needed evaluations,
they purposefully use isotropic products with only a smalinber of points. This offers isotropic
sparse grids a scaling rate mi°9", wherem is again the expansion level ands the ensemble
dimensionality, rather than th@” growth seen in tensor product quadrature grids [1]. An examp
depicting the growth of both full tensor product quadratame Smolyak sparse grids are depicted
in Figure 3.1; both plots are originally found in [1].
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Chapter 4

Case Study

For our investigation, we designed a case study to evalhaté®CE and SC stochastic ex-
pansion by examining the role of the generic stainless steétrial property assigned across the
model described in Chapter 2. In particular, in the contexarofibnormal thermal environment
simulated using CALORE, there are three material properfiseamless steel that may impact the
temperature response in the model: thermal conductixi}y lfeat capacitydp), and emissivity
(¢). We treat a scaling of these temperature dependent prepeitthe stainless steel as three
uncertain variables whose effect on a thermal responsée/ileparately examined by ensembles
of evaluations driven by DAKOTAs PCE (DAKOTA syntaxtond_pol ynom al _chaos) and SC
(nond_st och_col | ocati on) methods. We used a developmental release of DAKOTA 5.0#t, bu
on June 23, 2010 from Subversion revision 6835 to drive thasembles.

For a spectral projection method for DAKOTA, we used bothtémsor product grid (DAKOTA
syntax:quadr at ur e _or der ) and Smolyak sparse gridfar se_gri d_l evel ) methods overviewed
in Section 3. For each projection method, we explore exparisvels 1-7 for both PCE and SC,
resulting in a total of 28 DAKOTA ensembles. Each DAKOTA em$xe invokes multiple directed
CALORE simulations to explore the specified uncertainty space, cp, ande, with ensembles
driven by higher-level expansions of the grids resultingdditional CALORE simulations (i.e.,
increased cost).We expect that the highest expansion levels (e.g., a selerghexpansion) are
far more than is needed to adequately capture the diswibofithe response; in fact, experienced
DAKOTA developers suggested to us that third- to fourthelexpansions are generally sufficient
in most cases. However, the DAKOTA-based UQ ensemblesitesdcin this report are far less
expensive than the ensembles we plan to ultimately conduuis, we consider the higher-level
expansions in this report to help evaluate whether such éxglansion levels provide additional
value that is warranted their exorbitant cost, and to demnatesconvergence of quantities of inter-
est.

An example of an input deck for one of the 28 DAKOTA ensembtepresented in Figure
4.1. This input deck specifies the polynomial chaos expansiethod (line 7) with a third-level
expansion of Smolyak sparse grids (line 8). A seed of 1234%® random number generator
(line 10) was chosen for all DAKOTA ensembles in this casestu

The goal of each UQ study conducted in DAKOTA is to measureeffect of the uncertain

For the remainder of this chapter, we differentiate betwee®AKOTA “ensemble,” which consists of individual
evaluations of CALORE simulations and their associated-poscessing, and the case study that is the subject of this
report, which consists of 28 DAKOTA ensembles.
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31:

responses
numr esponse_functions 3
descriptors 'L2_norm ' Linf_norm ’'Margin
no_gradients
no_hessi ans

Figure 4.1. Example DAKOTA input deck specifying the PCE
methodology using a third-level expansion of Smolyak sparse

grids.
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variablesk, cp, and & on our arbitrary margin. To do this, we use thieobabi lity_l evels
method parameter to instruct DAKOTA to generate CumulatiwrDution Functions (CDFs) for
the response level for each ensemble. These CDFs help us tj@ugasge of possible values for
the response, and the probability of those values, givetluttions ink, cp, ande. To formulate
these CDFs, we began by instructing DAKOTA to compute theaesg level at 10% increments
for the probability levels (i.e., 10%, 20%.,., 90%). We then included the 1%, 5%, 95%, and 99%
probability levels, as these are levels that are commomgmenended by the statistical commu-
nity. Finally, for the actual margins we are ultimately irgsted in evaluating, we will be interested
in the behavior of our response at the lower end of the CDFstenthe calculated response might
approach zero (indicative of a smaller margin of safety)er€fore, we also included probability
levels of 103, 1074, 107°, and 10°%. The response levels at each probability level are computed
by DAKOTA by sampling the expansion after the stochastidfc@ents have been computed; in
these DAKOTA ensembles 1,000,000 samples were perfofmed.

We treat k, cp, and € as uniformly-distributed uncertain variables (DAKOTA s$gx
uni f ormuncert ai n). By this we mean that we instruct DAKOTA to uniformly expldhe ranges
for each uncertain variable, as specified by the lower andupgpunds for each variable in the input
deck (lines 15-16 in Figure 4.1). Although thermal condutgtiand heat capacity can be repre-
sented as constants, in this model these material propargedefined by temperature-dependent
piecewise linear functions to make them more represeptativactual problems of interest. The
specified lower and upper bounds for these variables scalefeaction by 50% in each direction
to provide a range fok andcp when treated as uniformly-distributed uncertain variabl&he
emissivity of the steel in the original CALORE input deck thaisaprovided to us by the model
designer was a constant value: 0.85. Scaling emissivitiffereint than for heat capacity or ther-
mal conductivity because, in addition to being a constahtey& must be between 0.0 and 1.0.
Therefore, we choose to scale it between 0.75 and 0.95 tg irneasonably close to its upper
bound, while scaling it no more severely in the oppositedtioa.

We post-process the Exodus data models that are created b@REBLlusing the ENCORE
application in the Sierra Mechanics suite [7]. Using ENCORE, extract the temperatures of
our arbitrarily weak-link and strong-link at various timeegs. We use customized Python scripts
to calculate the time of failure for each component by indéapng the temperatures between the
two time steps surrounding each component’s failure teatpex. These scripts then calculate
the thermal race margin by subtracting the weak-link failime from the strong-link failure time
(“Margin” in line 29 of Figure 4.1).

In addition the margin calculations, for every CALORE simidaf we compute thé? and
L* norms (“L2.norm” and “Linf_norm” in line 29) of the temperatures across the entire masel
compared to a “nominal” evaluation whetecy,, ande are not perturbed from their original values.
In general terms, ah? is a global metric representing what can be thought of asralatdized
average of the values in an arbitrary vector, whileltfiemorm is the maximum value in that vector.

20ne drawback of this approach is that performing 1,000,@00pdes is actually less than desired for the ®.0
probability level. This sampling is chosen due to limitasoin DAKOTA for storing data in memory from larger
sample sizes. However, 1,000,000 samples has the effeasirfgbthe response level for the PQorobability level on
only one data point.
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Specifically, for a vector:
X1
X2
X =

Xn

| X |oo = MaX(X1, X2, - .., Xn)

theL? norm is

while theL® norm is

In this case, th&2 norm is a measure of the average difference in observed tatopess between
each evaluation and the nominal case, whilelifigmorm is the maximum difference. Some areas
of the nominal model may have a higher temperature than a g@valuation, while other areas may
have a lower temperature, and we do not want such directibdscrepency to counteract each
other and indicate that the magnitude of temperature @ifiegs is less than it really is. Therefore,
the norms we compute do not take negative values: a norm ah@i€ates no temperature dif-
ferences between an evaluation and the nominal case, wiritesnincreasingly greater than zero
indicate increasingly greater temperature differenaesspective of whether the nominal model
has higher or lower temperatures, or a mix in each direction.

Both theL? andL* norms are computed using ENCORE. While extracting the weakalitd
strong-link temperatures for the margin calculation, ENCO&®Eputes these norms by post-
processing comparing the temperatures across the Exoddsl mesulting from each CALORE
evaluation to the nominal case.

This workflow is depicted in Figure 4.2. DAKOTA selects inparameters for each uncertain
variable, which are substituted into the CALORE simulatigouindeck. After an approximately
30-minute CALORE simulation using 16 processors, ENCORE begapost-processing step by
processing the resulting Exodus data model, and the Pythimipletes post-processing by calcu-
lating the thermal race margin from the resulting tempeeatiata. This margin, along with the
andL® norms calculated by ENCORE, are then provided back to DAKOT#Heyg can be used to
calculate the CDFs of each response at the conclusion of e&lKODA ensemble.
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Tetrahedral — EXODUS Temperature

Figure 4.2. A DAKOTA ensemble workflow. The process
of computing CDFs for each response at the conclusions of the
CALORE evaluations is not shown.
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Chapter 5

Results

In this chapter, we present the results for the 28 DAKOTA enides for the purposes of
uncertainty quantification. We divide these ensemblesfouosets for each UQ methodology and
spectral projection method combination (see Table 5.1).

Polynomial Chaos Expansion: Tensor Product Quadrature Grid

The first set of DAKOTA ensembles we present are those driygmobynomial chaos expan-
sion using tensor product quadrature grids. The numberalfiations required by DAKOTA to
generate the basis functions for each grid expansion lewakh are then sampled in order to
obtain the cumulative distribution functions, are providie Table 5.2.

Response Level

Table 5.3 presents the results for the polynomial chaosresipa ensembles using tensor prod-
uct quadrature grids, as well as providing the number ofuatadns needed for those ensembles
from Table 5.2. We present the results for only the ensembitssexpansion levels 2—7, as the
ensemble with a first-level expansion contains only onevatedn. (Recall that this methodology
requiresm” evaluations, whermis the expansion level antlis the number of uncertain variables.
As seen in Table 5.2, with an expansion level of ané= 13 = 1))

It is worth mentioning that there is some fluctuations in te@éneated response level values

Spectral Projection
UQ Methodology Quadrature Grid Soarse Grid
Polynomial Chaos Expansion | Expansion Levels 1-7 Expansion Levels 1-7
Sochastic Collocation Expansion Levels 1-7 Expansion Levels 1-7

Table 5.1.The 28 DAKOTA ensembles conducted to evaluate the
UQ methods.
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— patrticularly for the probability levels at the tails of tkiiDFs — at the lower expansion levels.
This is because the method is still converging to the actstahated distribution of the response.
In general, nothing should be read into these fluctuationsrahan the methods do not yet have
enough data upon which to base their estimations, and thuBKODA ensemble based on a

Observed
Evaluations
1
8
27
64
125
216
343

Expansion
Level
1

~NOoO oA WN

Table 5.2. Observed samples for PCE ensembles using tensor
product quadrature grids.

Probability | PCE- PCE- PCE- PCE- PCE- PCE-
Level QUAD2 | QUAD3 | QUAD4 | QUAD5 | QUAD6 | QUAD?

0.000001 | 256.0886 | 306.5850 | 290.6769 | 295.6303 | 294.3255| 294.5847
0.00001 257.8407 | 306.8070 | 291.9730 | 296.6318 295.4277| 295.6837
0.0001 261.4189 | 307.7672| 295.2509 | 298.9111| 298.0695| 298.1935
0.001 274.4286 | 313.0581 | 305.7019 | 307.3761 307.2024 | 307.2466
0.01 316.3085 | 337.8036 | 337.9673 | 337.3026 | 337.4439 | 337.4783
0.05 398.5474 | 401.1710 | 403.2651 | 403.3936 403.3421| 403.2890
0.1 464.4763 | 460.9952 | 461.5682 | 461.9706 | 462.0855| 462.0222
0.2 563.3894 | 559.9280 | 559.0895 | 559.0692 559.0980 | 559.0946
0.3 645.3881 | 646.2299 | 645.8927 | 645.7309 | 645.6514 | 645.6443
0.4 725.8265 | 727.3683 | 727.5404 | 727.5061 727.4863| 727.5075
0.5 807.9255 | 808.7758 | 809.0145 | 809.0269 | 809.0020 | 809.0106
0.6 900.6417 | 889.6241 | 890.2811 | 889.8611 889.9059 | 889.9160
0.7 1008.9456| 983.6282 | 985.4548 | 985.8844 | 985.6563 | 985.7250
0.8 1142.4200| 1127.4547| 1120.2338 1121.0794 1121.3338| 1121.2942
0.9 1324.3481| 1351.5760| 1345.0337| 1342.4166| 1342.3705| 1342.4607
0.95 1459.1637| 1531.8185 1537.3787| 1534.9826 1534.1477| 1534.0130
0.99 1644.9036| 1800.1327| 1838.4151| 1845.9102| 1846.8578| 1846.7348
Evaluations| 8 | 27 | 64 | 125 | 216 | 343 |

Table 5.3. Polynomial chaos expansion, tensor product grid ex-
pansion levels 2—7: Response level values.
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higher-level expansion is needed.

However, we are not particularly interested in the actusppomse levels shown in Table 5.3, as
the response is an arbitrary margin for a non-represeatatodel. However, we did note that in
the left tail of the CDF approaching the 1Dprobability level, there were notable changes in the
response level for the ensembles with lower expansiondear example, the ensemble with a
fourth-level grid expansiorPCE- QUAD4) saw the response level drop from 337.9673 at probability
level 0.01 (102) to 290.6769 at probability level 18. We take this to mean that there is possible
utility in actually calculating these ever-smaller respetevels in our actual models of interest, if
the consideration of such small levels is warranted.

We also observed that there is little change in the respansmd the middle of the CDF curve
as the expansion level of the ensemble increases and maevatisns are considered, while there
are notable changes in the response at both tails of the CDFexample, for probability level
0.5, the response level only increases from 807.9255 t@&08.as the expansion level rises from
two to seven — this despite the evaluations of the ensembteasing from 2= 8 to 77 = 343.
However, in the left tail at probability level 0.01, the resige level increases from 316.3085 to
337.4783; the change is even more pronounced in the ridlat faiobability level 0.99, where the
response level increases from 1644.9036 to 1846.7348. Adiswassed earlier, this is a strong
indication that higher-level expansions are needed fadlestimated responses to converge.

But perhaps our greatest interest for this work is how thesetéd@niques converge as the
expansion level is increased. That is, at what point doemtnease in the expansion level, and the
rise in the evaluations (and therefore cost) required feftd) method as a result of that increase,
result in little to no change in the estimated response? Tge@ahis, we plot all the CDFs for
the expansion level 2—7 ensembles in Figure 5.1. As can log Bege appears to be little change
to the response overall from a third-level expansion onywaote, for example, how the right-tail
of the CDF for the second-level expansion (blue) is to thedéthe CDF tail for the third-level
expansion (red), which is still slightly to the left of themaining CDFs, which are stacked on top
of each other. This is perhaps better seen in Figure 5.2 hyiats the CDFs for only the second-,
third-, and fourth-level expansions. There are small ckang the tails of the CDFs between the
third- and fourth-level expansions, but generally spegkire CDFs are quite similar, as can be
observed in Table 5.3. As such, there is a reasonable gquesito whether the small changes in
the CDF of fourth-level expansions and onward are worth thelmear increase in evaluations
that are required to generate those estimattons.

L2 Norms

Our arbitrary margin metric provides a localized measusgudy in the context of uncertainty
quantification; it is highly relevant to a particular moaejiscenario (i.e., a safety question for a
high-consequence system), but does not directly cons@etline uncertain variables impact other

1This judgment is merely qualitative based on a visual inspeof the CDFs, which was suitable for our purposes
of better understanding these UQ methods. These diffesecmdd be quantified, but such rigor is beyond the scope
of what we sought out of these results.
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Figure 5.1. Polynomial Chaos Expansion: tensor product grid
levels 2—7.
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Figure 5.2. Polynomial Chaos Expansion: tensor product grid
levels 2—4.
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Probability [ PCE- | PCE- | PCE- | PCE- | PCE- | PCE-
Level QUAD2 | QUAD3 | QUAD4 | QUAD5 | QUAD6 | QUAD?
0.000001 | -0.1125] -0.1041| -0.0820 | -0.0622 | -0.0465 | -0.0343
0.00001 | -0.1110| -0.1013 | -0.0779 | -0.0569 | -0.0403 -0.0274
0.0001 -0.1078 | -0.0943 | -0.0677 | -0.0442 | -0.0259 | -0.0123
0.001 -0.0971 | -0.0721| -0.0375| -0.0111 | 0.0038  0.0048
0.01 -0.0726 | -0.0177 | 0.0062 | 0.0072 | 0.0074 | 0.0076
0.05 -0.0339 | 0.0075 | 0.0107 | 0.0113 | 0.0115 0.0113
0.1 -0.0078 | 0.0134 | 0.0151 | 0.0148 | 0.0142 | 0.0141
0.2 0.0247 | 0.0227 | 0.0219 | 0.0214 | 0.0217 = 0.0224
0.3 0.0457 | 0.0336 | 0.0312 | 0.0326 | 0.0340 | 0.0351
0.4 0.0600 | 0.0437 | 0.0446 | 0.0472 | 0.0490 0.0503
0.5 0.0688 | 0.0579 | 0.0613 | 0.0643 | 0.0661 | 0.0665
0.6 0.0775 | 0.0764 | 0.0809 | 0.0837 | 0.0840 0.0836
0.7 0.0920 | 0.0996 | 0.1033 | 0.1043 | 0.1030 | 0.1017
0.8 0.1131 | 0.1282 | 0.1293 | 0.1263 | 0.1246 0.1241
0.9 0.1458 | 0.1623 | 0.1579 | 0.1554 | 0.1558 | 0.1564
0.95 0.1723 | 0.1823 | 0.1807 | 0.1798 | 0.1796 0.1802
0.99 0.2121 | 0.2251 | 0.2207 | 0.2273 | 0.2273 | 0.2251
| Evaluations| 8 | 27 | 64 | 125 | 216 | 343 |

Table 5.4. Polynomial chaos expansion, tensor product grid ex-
pansion levels 2—7:% norm for response level values.

areas of the model. OWr® andL® norms seek to evaluate the degree of differences explored by
the evaluations in these UQ methodologies across the emtidel, based on a nominal case where
thek, cp, ande material properties are not perturbed. The distributiothe$e norms is also quite
different from a thermal race margin, which unlike the nowhogs not have a minimum value of
1.0 (or any minimum, for that matter). As such, studying éheariables provides possible insight
as to the behavior of these UQ methods on a different clasarahles.

Table 5.4 provides the estimations of the relati¢enorm, which measures the average differ-
ence between a given evaluation for PCE ensembles using ferushict quadrature grids. From
this table, it seems that these ensembles are slower torganfce higher levels of grid expansion
— even in the middle probability levels where we previouslyrid the response level to converge
quite quickly. This can be graphically seen quite cleady;dxample, the three CDF curves plotted
in Figure 5.2 line up much more closely than do the curveserufitoming figures. This indicates
that uncertainty quantification efforts based on relativeand L® norms may require additional
effort in terms of grid expansions in order for the calculat®rms to converge toward each other.

One potential issue that can be drawn from Table 5.4 is thaesof the estimated response
levels at the edge of the left tail are less than zero. Thegative estimates occur even for seventh-
level expansions of the PCE ensemble when over 300 obsersai@ gathered for only three
uncertain variables. These negative numbers foil_theorms are notable because the estimates
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Figure 5.3. Polynomial chaos expansion, tensor product grid lev-
els 2—7:L2? norm for response level.

should fall within the 0.0-1.0 range that is valid for a startizedL? norm metric. This suggests

that careful consideration should be given to results s@d@rin the left tail of the CDF, espe-

cially for the lower-level PCE ensembles where smaller nusibéevaluations are available upon
which to base estimations. These negative estimates mapaieflective of the limitations of the

stochastic expansion methods themselves, and may bereglay Gibbs’ phenomenon, which
would account for the oscillating of the negativenorm predictions.

Figure 5.3 illustrates how results according to this metrig slower to converge than with the
raw response level. In particular, Figure 5.4 reveals thatensembles for expansion levels 2—4
show notable differences among each other, while Figursiggests that levels 57 are generally
consistent with each other with respect to differencesdduom the nominal case. The fact that
differences still exist in the CDFs plotted in Figure 5.4

L® Norms

Table 5.5 provides the estimations of the relatienorm, which measures the maximum dif-
ference between a given evaluation and the nominal caseCfaréhsembles using tensor product
guadrature grids. This table suggests thatthaorm metric for the response is another case where
the PCE ensembles are slower to converge, at least when bassusor product quadrature grids,
than for the response itself.
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Probability [ PCE- | PCE- | PCE- | PCE- | PCE- | PCE-
Level QUAD2 | QUAD3 | QUAD4 | QUAD5 | QUAD6 | QUAD?
0.000001 | -0.0623| -0.0482 | -0.0160 | 0.0111 | 0.0214 | 0.0358
0.00001 | -0.0601| -0.0439 | -0.0112| 0.0154 | 0.0269 0.0397
0.0001 -0.0533 | -0.0338 | 0.0003 | 0.0254 | 0.0389 | 0.0504
0.001 -0.0397 | -0.0123| 0.0240 | 0.0465 | 0.0558 0.0579
0.01 -0.0056 | 0.0429 | 0.0584 | 0.0663 | 0.0595 | 0.0624
0.05 0.0381 | 0.0804 | 0.0751 | 0.0742 | 0.0705 0.0683
0.1 0.0661 | 0.0861 | 0.0823 | 0.0782 | 0.0750 | 0.0726
0.2 0.1006 | 0.0955 | 0.0903 | 0.0870 | 0.0850 0.0842
0.3 0.1227 | 0.1061 | 0.1007 | 0.1004 | 0.1009 | 0.1015
0.4 0.1379 | 0.1164 | 0.1160 | 0.1178 | 0.1189 0.1198
0.5 0.1472 | 0.1314 | 0.1348 | 0.1367 | 0.1385 | 0.1391
0.6 0.1565 | 0.1514 | 0.1560 | 0.1578 | 0.1586 0.1594
0.7 0.1714 | 0.1772 | 0.1795 | 0.1802 | 0.1809 | 0.1809
0.8 0.1933 | 0.2101 | 0.2107 | 0.2077 | 0.2091 0.2076
0.9 0.2274 | 0.2533 | 0.2512 | 0.2501 | 0.2501 | 0.2488
0.95 0.2548 | 0.2812 | 0.2820 | 0.2819 | 0.2799 0.2815
0.99 0.2951 | 0.3296 | 0.3225 | 0.3208 | 0.3221 | 0.3225
| Evaluations| 8 | 27 | 64 | 125 | 216 | 343 |

Table 5.5. Polynomial chaos expansion, tensor product grid ex-
pansion levels 2—7- norm for response level values.

It is notable that from a fifth-level grid expansion onward de not have any “erroneous”
estimates of & norm that are less than 0.0. This may be one indication reggatbe expansion
level needed for an ensemble to ensure accurate and releghléés. It is not surprising that®
norms were estimated to be greater than 0.0, for the lowebgpility levels, for expansion levels
whose same levels were consistently less than 0.04morms. This is becaude® norms take a
maximum and will naturally be greater thaA norms, so we would expetf® norm estimations
to more rapidly gravitate above 0.0 (perhaps due to this rimimg smoother near 0.0).

As with the previously presentdd norms, we plot the CDFs for tHé* norms for these PCE
ensemble using tensor product quadrature grids in Fig@eahd then divide those CDFs up
between expansion levels 2—4 and 5—7 in Figures 5.7 and 5.8.

Once again, in Figure 5.7 we see notable differences in thesC&dulting from the lower grid
expansion levels. These differences are much smaller ir&i5.8, although we can see from this
figure that differences can be seen in the left tails of the C@Fsch, as stated in Section 4, we
are especially interested in). Becauseltfiemorms aim to illustrate the maximum difference from
the nominal case, Figure 5.8 suggests these differencedegyeatest in magnitude within the
left tails of the CDFs. This is of key significance becausettefs (i.e., low probability events) are
often of special interest in safety-related questionslinag high-consequence systems.
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Probability-level Convergence Plots

The final analysis we perform for each stochastic expansiethoad explored is a verification
of whether increasing the expansion levels of the grids teaal quantifiable convergence of the
method. In this case, convergence is measured in terms diffteeences between each lower-level
evaluation and the highest-level evaluation performedHis case, the seventh-level expansion
of the tensor product quadrature grid), which is taken toasgnt the “true” solution to assess
convergence in the Cauchy sense [4].

Figure 5.9 presents the convergence of the differences ngimaalculations between the
seventh-level expansion of the tensor product quadratinle,daken to be the true solution, with
each of the first- to sixth-level grid expansions. These=d#fiices are plotted on a logarithmic scale
due to the wide numerical range of data. Figure 5.10 plotsdinge differences against the number
of DAKOTA evaluations performed for each expansion levéddalotted logarithmically). The
calculations plotted in this figures are offered in Table 3\& considered the predicted response
levels at the 10° probability level because those were the lowest probgibéiitel where DAKOTA
was able to conduct enough samples off the basis functigm®tade a reasonable estimate of the
response. The square of these differences between eactatstand the seventh-level estimate
is plotted to expand the space between estimates very ddbe solution and those that are not,
as well as to ensure the plotted differences are positivenahdensitive to the direction of the
difference from the seventh-level response.
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Expansion | DAKOTA | Response all0—> | Difference from | Square of the
Level Evaluations | Probability Level | 7"-level Response Difference

1 1 796.6431073 -500.9593939 | 250960.3144
2 8 257.8406706 37.84304285 1432.095892
3 27 306.8069935 -11.12328005 | 123.7273591
4 64 291.9729886 3.71072476 13.76947824
5 125 296.6318 -0.94808662 0.898868239
6 216 295.4276891 0.25602433 0.065548458
7 343 295.6837134 0.0 0.0

Table 5.6.Convergence of estimated response to a “true” solution
at the seventh-level quadrature grid expansion using PCE.

As can be seen in this figures, there is still demonstrablgrpss toward converging to this
“solution” even up to the sixth-level expansion. This alfueuns contrary to some of the visual
trends we observed in Figures 5.1 and 5.2, where it appehee@DFs were virtually identical
from the fourth-level expansion onward. However, this pesg that is being made is very small
—in some cases less than a second — and may not be justified bypknse of these higher-level

ensembles.
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Stochastic Collocation: Tensor Product Quadrature Grids

The second set of ensembles we present are those driven kgirg@ensor product quadrature
grids. The observed number of evaluations to generate tis fumctions in these ensembles are
provided in Table 5.7. Note that these numbers are the sathesespreviously presented in Table
5.2 for the polynomial chaos expansion results based oot@nsduct quadrature grids.

In fact, when either the polynomial chaos or stochasticmeallion methods are based on tensor
product quadrature grids, the expansion levels resultarséime 3 samples being selected for the
three uncertain variables being studied. This means teatesults for each method are the same.
Tables 5.8-5.10 are presented below for comparison aghastsults using the polynomial chaos
expansion based on tensor product quadrature expansiels,I@reviously presented in Tables
5.3-5.5. Because these results are the same, we do not gresduaplicate figures or convergence
plots as well.

Expansion | Observed
Level Evaluations
1 1

8

27

64
125
216
343

~NOoO oA WN

Table 5.7. Observed samples for SC ensembles using tensor
product quadrature grids.
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Probability SC- SC- SC- SC- SC- SC-

Level QUAD2 | QUAD3 | QUAD4 | QUAD5 | QUAD6 | QUAD7

0.000001 | 256.0886 | 306.5850 | 290.6769 | 295.6303 | 294.3255| 294.5847
0.00001 257.8407 | 306.8070 | 291.9730 | 296.6318 | 295.4277 | 295.6837
0.0001 261.4189 | 307.7672| 295.2509 | 298.9111 | 298.0695| 298.1935
0.001 274.4286 | 313.0581| 305.7019| 307.3761  307.2024 | 307.2466
0.01 316.3085 | 337.8036 | 337.9673 | 337.3026 | 337.4439| 337.4783
0.05 398.5474 | 401.1710| 403.2651 | 403.3936 403.3421 | 403.2890
0.1 464.4763 | 460.9952 | 461.5682 | 461.9706 | 462.0855| 462.0222
0.2 563.3894 | 559.9280 | 559.0895 | 559.0692 559.0980 | 559.0946
0.3 645.3881 | 646.2299 | 645.8927 | 645.7309 | 645.6514 | 645.6443
0.4 725.8265 | 727.3683| 727.5404 | 727.5061 727.4863| 727.5075
0.5 807.9255 | 808.7758 | 809.0145| 809.0269 | 809.0020 | 809.0106
0.6 900.6417 | 889.6241 | 890.2811 | 889.8611 889.9059 | 889.9160
0.7 1008.9456| 983.6282 | 985.4548 | 985.8844 | 985.6563 | 985.7250
0.8 1142.4200| 1127.4547| 1120.2338| 1121.0794 1121.3338| 1121.2942
0.9 1324.3481| 1351.5760| 1345.0337| 1342.4166| 1342.3705| 1342.4607
0.95 1459.1637| 1531.8185| 1537.3787| 1534.9826/ 1534.1477| 1534.0130
0.99 1644.9036| 1800.1327| 1838.4151 1845.9102| 1846.8578| 1846.7348
 Evaluations | 8 \ 27 | 64 | 125 | 216 | 343 |

Table 5.8. Stochastic collocation, tensor product grid expansion
levels 2—7: Response level values.
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Probability | SC- SC- SC- SC- SC- SC-

Level QUAD2 | QUAD3 | QUAD4 | QUAD5 | QUAD6 | QUAD?
0.000001 | -0.1125] -0.1041| -0.0820 | -0.0622 | -0.0465 | -0.0343
0.00001 | -0.1110| -0.1013 | -0.0779 | -0.0569 | -0.0403 -0.0274
0.0001 -0.1078 | -0.0943 | -0.0677 | -0.0442 | -0.0259 | -0.0123
0.001 -0.0971 | -0.0721| -0.0375| -0.0111 | 0.0038  0.0048
0.01 -0.0726 | -0.0177 | 0.0062 | 0.0072 | 0.0074 | 0.0076
0.05 -0.0339 | 0.0075 | 0.0107 | 0.0113 | 0.0115 0.0113
0.1 -0.0078 | 0.0134 | 0.0151 | 0.0148 | 0.0142 | 0.0141
0.2 0.0247 | 0.0227 | 0.0219 | 0.0214 | 0.0217 = 0.0224
0.3 0.0457 | 0.0336 | 0.0312 | 0.0326 | 0.0340 | 0.0351
0.4 0.0600 | 0.0437 | 0.0446 | 0.0472 | 0.0490 0.0503
0.5 0.0688 | 0.0579 | 0.0613 | 0.0643 | 0.0661 | 0.0665
0.6 0.0775 | 0.0764 | 0.0809 | 0.0837 | 0.0840 0.0836
0.7 0.0920 | 0.0996 | 0.1033 | 0.1043 | 0.1030 | 0.1017
0.8 0.1131 | 0.1282 | 0.1293 | 0.1263 | 0.1246 0.1241
0.9 0.1458 | 0.1623 | 0.1579 | 0.1554 | 0.1558 | 0.1564
0.95 0.1723 | 0.1823 | 0.1807 | 0.1798 | 0.1796 0.1802
0.99 0.2121 | 0.2251 | 0.2207 | 0.2273 | 0.2273 | 0.2251
| Evaluations| 8 | 27 | 64 | 125 | 216 | 343 |

Table 5.9. Stochastic collocation, tensor product grid levels 2—7:

L2 norm for response level.
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Probability SC- SC- SC- SC- SC- SC-

Level QUAD2 | QUAD3 | QUAD4 | QUAD5 | QUAD6 | QUADY
0.000001 | -0.0623| -0.0482| -0.0160| 0.0111 | 0.0214 | 0.0358
0.00001 -0.0601 | -0.0439 | -0.0112| 0.0154 | 0.0269 A 0.0397
0.0001 -0.0533 | -0.0338 | 0.0003 | 0.0254 | 0.0389 | 0.0504
0.001 -0.0397 | -0.0123 | 0.0240 | 0.0465 | 0.0558 @ 0.0579
0.01 -0.0056 | 0.0429 | 0.0584 | 0.0663 | 0.0595 | 0.0624
0.05 0.0381 | 0.0804 | 0.0751 | 0.0742 | 0.0705 0.0683
0.1 0.0661 | 0.0861 | 0.0823 | 0.0782 | 0.0750 | 0.0726
0.2 0.1006 | 0.0955 | 0.0903 | 0.0870 | 0.0850  0.0842
0.3 0.1227 | 0.1061 | 0.1007 | 0.1004 | 0.1009 | 0.1015
0.4 0.1379 | 0.1164 | 0.1160 | 0.1178 | 0.1189 0.1198
0.5 0.1472 | 0.1314 | 0.1348 | 0.1367 | 0.1385 | 0.1391
0.6 0.1565 | 0.1514 | 0.1560 | 0.1578 | 0.1586 0.1594
0.7 0.1714 | 0.1772 | 0.1795 | 0.1802 | 0.1809 | 0.1809
0.8 0.1933 | 0.2101 | 0.2107 | 0.2077 | 0.2091 @ 0.2076
0.9 0.2274 | 0.2533 | 0.2512 | 0.2501 | 0.2501 | 0.2488
0.95 0.2548 | 0.2812 | 0.2820 | 0.2819 | 0.2799 = 0.2815
0.99 0.2951 | 0.3296 | 0.3225 | 0.3208 | 0.3221 | 0.3225
| Evaluations| 8 | 27 | 64 | 125 | 216 | 343 |

Table 5.10.Stochastic collocation, tensor product grid expansion
levels 2—7:L* norm for response level values.
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Polynomial Chaos Expansion: Smolyak Sparse Grids

The third set of ensembles we present are those driven by@oiial chaos expansion, but this
time using Smolyak sparse grids. The observed number afi@vahs to generate the basis func-
tions in these ensembles are provided in Table 5.11. Notertege numbers are much larger than
those previously presented in Table 5.2, despite the fattsiparse grids are generally supposed
to result in slower growth rates than do tensor product catade grids. This is because having
only three uncertain variables in this formative case s&ldws them growth of the quadrature
grid methodology. If the number of uncertain variables werech larger (such as 10 or 20), the
quadrature grid growth would rapidly eclipse that of therspayrids.

Response Level

Table 5.12 presents the results for the PCE ensembles usioty&@asparse grids. For this
set of ensembles, we also present the results from thedust-$parse grid expansion, which for
stochastic collocation contains seven evaluations idstéane, in addition to the second- through
seventh-level ensembles. We also provide the observedenwhbvaluations to generate the basis
functions in this table.

As before, we are not particularly concerned with the aatesphonses shown in Table 5.12, as
they come from an arbitrary margin. We did notice for thissf&tnsembles that the convergence of
those response values, however, occurred quite rapidiiglre 5.11, the CDF plots converged by
the second-level expansion, even at the left-tail that wasesimes slower to converge in previous
ensembles. This can also be seen from Table 5.12, whereltles\ae already quite close to each
other from the PCE-SGRID2 column and onward to the right sidéh@ftable. This more rapid
convergence could be at least in part due to the increasetdenuohevaluations that were required
for the sparse grids (due to the small number of uncertaiaigs that were studied).

Expansion | Observed
Level Evaluations
7

31

111
303
687
1375
2335

~NOoO O hAs WN B

Table 5.11.0bserved samples for PCE ensembles using Smolyak
sparse grids.
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Probability | PCE- PCE- PCE- PCE- PCE- PCE- PCE-
Level SGRID1 | SGRID2 | SGRID3 | SGRID4 | SGRID5 | SGRID6 | SGRID7
0.000001 | 215.1997 | 282.4075| 294.3085| 294.8279 | 294.3912 | 294.5794 | 294.4411
0.00001 215.4527 | 283.9526 | 295.4558 | 295.8747 | 295.5438 | 295.6950 295.5937
0.0001 216.8676 | 287.5845| 298.0398 | 298.3399 | 298.1524 | 298.2592 | 298.2137
0.001 224.7357 | 299.8211| 307.2737 | 307.2833| 307.2309 | 307.2553 307.2478
0.01 260.7595 | 337.1567 | 337.4329 | 337.4517 | 337.4691 | 337.4618 | 337.4817
0.05 351.2758 | 405.2467 | 403.2915 | 403.3420 | 403.2973| 403.2892 403.2659
0.1 432.8379 | 462.1477 | 461.9964 | 462.0257 | 462.0323 | 462.0257 | 462.0102
0.2 562.5460 | 557.9411| 559.0494 | 559.1181 | 559.0891 | 559.1130 559.0758
0.3 670.3572 | 644.7116 | 645.6414 | 645.6487 | 645.6729 | 645.6890 | 645.6827
0.4 767.1856 | 727.4888 | 727.5009 | 727.5024 | 727.5140| 727.5232 727.5390
0.5 856.2118 | 809.0351 | 808.9883 | 809.0080 | 809.0088 | 808.9969 | 808.9794
0.6 939.3272 | 889.7840 | 889.9094 | 889.9101 | 889.9169 | 889.9230 889.9130
0.7 1019.2579| 984.8884 | 985.7016 | 985.7002 | 985.6932 | 985.7191 | 985.7254
0.8 1130.3803| 1123.1665 1121.2531| 1121.2539| 1121.2792 1121.2813 1121.2882
0.9 1297.6923| 1347.1099| 1342.4779| 1342.4507| 1342.4532| 1342.4596| 1342.5075
0.95 1424.8485| 1535.7407| 1533.8969| 1533.9950| 1534.0185| 1533.9955 1534.0297
0.99 1604.9770| 1833.5808) 1846.6070| 1846.6492| 1846.6357| 1846.6175 1846.6890
| Evaluations | 7 31 | 111 | 303 | 687 | 1875 | 2335

Table 5.12. Polynomial chaos expansion, sparse grid expansion
levels 1-7: Response level values.
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Figure 5.11.Polynomial chaos expansion, sparse grid expansion
levels 1-7: Response level values.

L2 Norms

The observed.? norms depicting the average differences seen in each ¢adw‘nominal”
simulation are shown in Table 5.13, with Figure 5.12 pravipthe plots of the CDFs for the seven
expansion levels for the sparse grids, Figure 5.13 sgithuit the first- through fourth-level plots,
and Figure 5.14 showing the fifth- through seventh-levelsplo

Figure 5.12 shows that the CDFs for the first- through fouetrel grid expansions vary quite
noticeably. This is even more clear in Figure 5.13, whichvgles only these four cumulative
distribution functions. However, as can be seen in Figutd,Bhe CDFs for thes? norms settle
in relatively nicely by the fifth-level expansion, althoutitere are still slight differences seen in
the left tail of the functions. This behavior with Smolyakasge grids mimics what we saw for the
early sets of ensembles that utilized tensor product guadrgrids. It appears that a fifth-level
expansion is needed for less smooth metrics sudif andL® norms, based on this result as well
as the previous sets of ensembles.

In Table 5.13, we again observed estimdtéaalues that were less than zero, which should not
be possible since the relative norms must have values grbaie zero. In this set of ensembles,
a sixth-level grid expansion was required before thesetivegealues were not seen at our lowest
probability levels. Also, recall that we only sampled thegeted expansions 1,000,000 times due
to limitations in DAKOTA with keeping so many samples in maymm order to predict responses
at each probability level. This means that only one datatgsinsed to generate the estimated
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Probability [ PCE- | PCE- | PCE- | PCE- | PCE- | PCE- | PCE-
Level SGRID1 | SGRID2 | SGRID3 | SGRID4 | SGRID5 | SGRID6 | SGRID7
0.000001 | 0.0046 | -0.1196 | -0.0075 | -0.0533 | -0.0004 | 0.0018 | 0.0015
0.00001 0.0047 | -0.1159 | -0.0074 | -0.0446 | 0.0004 | 0.0019 | 0.0016
0.0001 0.0048 | -0.1100 | -0.0067 | -0.0225 | 0.0026 | 0.0023 | 0.0020
0.001 0.0055 | -0.0921 | -0.0040 | -0.0020 | 0.0054 | 0.0033 | 0.0035
0.01 0.0076 | -0.0446 | 0.0074 | 0.0043 | 0.0090 | 0.0065 | 0.0067
0.05 0.0144 = 0.0085 | 0.0163 | 0.0111 | 0.0133 | 0.0111 | 0.0111
0.1 0.0229 | 0.0211 | 0.0241 | 0.0156 | 0.0176 | 0.0145 | 0.0145
0.2 0.0398 = 0.0403 | 0.0348 | 0.0248 | 0.0261 | 0.0252 | 0.0252
0.3 0.0567 | 0.0524 | 0.0436 | 0.0370 | 0.0365 | 0.0377 | 0.0377
0.4 0.0736 | 0.0589 | 0.0535 | 0.0518 | 0.0501 | 0.0505 | 0.0505
0.5 0.0905 | 0.0673 | 0.0669 | 0.0678 | 0.0653 | 0.0654 | 0.0651
0.6 0.1075 | 0.0826 | 0.0842 | 0.0837 | 0.0818 | 0.0824 | 0.0823
0.7 0.1257 | 0.1061 | 0.1043 | 0.1002 | 0.1014 | 0.1014 | 0.1015
0.8 0.1483 | 0.1353 | 0.1247 | 0.1236 | 0.1256 | 0.1251 | 0.1249
0.9 0.1788 | 0.1621 | 0.1523 | 0.1572 | 0.1560 | 0.1564 | 0.1564
0.95 0.2056 = 0.1838 | 0.1801 | 0.1805 | 0.1802 | 0.1798 | 0.1801
0.99 0.2529 | 0.2191 | 0.2272 | 0.2239 | 0.2272 | 0.2259 | 0.2263
| Evaluations| 7 | 31 | 111 | 303 | 687 | 1375 | 2335 |

Table 5.13. Polynomial chaos expansion, sparse grid expansion
levels 1-7:L2 norm for response level values.

response value at the 19 probability level. Thus, it is probably more reasonable dberthat a
fifth-level expansion was required to eliminate these negaistimates, rather than a sixth-level
expansion where the only negative estimated response veasl lmm an insufficient number of
samples.

L® Norms

The results for th&® norms, provided in Table 5.14, closely resemble those ot fmorms
in that there are significant differences in the CDFs until ach a fifth-level grid expansion; this
can be seenin both Figures 5.15 and 5.16. At this point, abeaaen in Figure 5.17, the functions
are quite close together. However, there are still sligiiéginces in the left tails for the fifth-level
expansion as compared to the rest of the higher-level eiqgass

Similar to the previous polynomial chaos expansion ensesiming tensor product quadrature
grids, we find few instances in Table 5.14 of negative estalat norms, which in practice should
not be seen. Another interesting observation from Tablé & tolumn PCE-SGRID4, where the
estimated response values at the lower probability levieliseoCDF's left tail are quite different
from those in the third- and fifth-level expansions. It is aletar to us why this was the case, other
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Figure 5.14.Polynomial chaos expansion, sparse grid expansion
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than it being evidence that the fourth-level grid expansuas not sufficient.

Probability-level Convergence Plots

Figure 5.18 presents the logarithmic convergence plot sigpdifferences in margin calcu-
lations between the seventh-level expansion of the Smalpakse grids — once again taken to
represent a “true” solution — with each of the first- to siktliel expansions, while Figure 5.19
plots the same information against the number of DAKOTA e&tbns performed for each expan-
sion level. These figures are based on calculations offergdble 5.15.

Perhaps the most interesting characteristic of Figuresdndl 5.19 is the oscillation that occurs
in the convergence plots beginning at the fourth-level agm. This suggests that the DAKOTA
ensembles have hit a point of diminishing returns where stienates provided by the higher-level
PCE ensembles are not improved in accuracy from the lowel-Evsembles. In this particular
case, given that the fourth-level ensemble’s estimatedeaseaccurate than the third-level en-
semble’s estimates (as measured by the seventh-level blegemn third-level ensemble is likely
sufficient — especially from a cost-benefit criterion.
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Probability PCE- PCE- PCE- PCE- PCE- PCE- PCE-
Level SGRID1 | SGRID2 | SGRID3 | SGRID4 | SGRID5 | SGRID6 | SGRID7
0.000001 0.0757 | -0.0499 | 0.0411 | 0.0039 | 0.0384 | 0.0412 | 0.0411
0.00001 0.0758 | -0.0441 | 0.0420 | 0.0108 | 0.0387 | 0.0415 | 0.0412
0.0001 0.0762 | -0.0352 | 0.0433 | 0.0306 | 0.0396 | 0.0423 | 0.0418
0.001 0.0775 | -0.0104 | 0.0441 | 0.0482 | 0.0424 | 0.0453 | 0.0454
0.01 0.0815 | 0.0444 | 0.0492 | 0.0551 | 0.0493 | 0.0525 | 0.0531
0.05 0.0891 = 0.0689 | 0.0628 | 0.0644 | 0.0608 | 0.0615 | 0.0608
0.1 0.0968 | 0.0787 | 0.0710 | 0.0718 | 0.0682 | 0.0693 | 0.0686
0.2 0.1122 @ 0.0924 | 0.0843 | 0.0846 | 0.0834 | 0.0869 | 0.0866
0.3 0.1276 | 0.1010 | 0.0980 | 0.1010 | 0.1027 | 0.1037 | 0.1039
0.4 0.1431 @ 0.1115 | 0.1140 | 0.1189 | 0.1225 | 0.1204 | 0.1206
0.5 0.1600 | 0.1264 | 0.1340 | 0.1385 | 0.1413 | 0.1388 | 0.1389
0.6 0.1788 @ 0.1474 | 0.1561 | 0.1595 | 0.1590 | 0.1591 | 0.1589
0.7 0.1987 | 0.1776 | 0.1794 | 0.1822 | 0.1802 | 0.1809 | 0.1807
0.8 0.2195 @ 0.2140 | 0.2065 | 0.2082 | 0.2055 | 0.2057 | 0.2061
0.9 0.2475 | 0.2529 | 0.2496 | 0.2480 | 0.2511 | 0.2509 | 0.2509
0.95 0.2747 0.2778 0.2837 0.2805 0.2820 0.2813 0.2820
0.99 0.3265 | 0.3349 | 0.3268 | 0.3225 | 0.3202 | 0.3213 | 0.3207
| Evaluations| 7 | 31 | 111 | 303 | 687 | 1375 | 2335
Table 5.14. Polynomial chaos expansion, sparse grid expansion
levels 1-7:L” norm for response level values.
Expansion| DAKOTA | Response afl0> | Difference from | Square of the
Level Evaluations | Probability Level | 7"-level Response  Difference

1 7 215.45274 80.14093221 6422.569015

2 31 283.9525515 11.64112077 135.5156928

3 111 295.4558495 0.13782275 0.01899511

4 303 295.8746728 -0.28100052 0.078961292

5 687 295.5437537 0.04991855 0.002491862

6 1375 295.6949642 -0.101292 0.010260069

7 2335 295.5936722 0.0 0.0

Table 5.15. Convergence of estimated response to a “true” solu-
tion at the seventh-level sparse grid expansion using PCE.
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Stochastic Collocation: Smolyak Sparse Grids

The final set of ensembles we present are those driven byasttickeollocation using Smolyak
sparse grids. The observed number of evaluations to gentabasis functions in these ensem-
bles are provided in Table 5.16. These numbers are the sathesesseen in Table 5.11 showing
the evaluations using polynomial chaos expansion driveBrhglyak sparse grids.

Expansion | Observed
Level Evaluations
7
31
111
303
687
1375
2335

~NOoO O hAs WN B

Table 5.16.Observed samples for SC ensembles using Smolyak
sparse grids.
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Probability Ssc- SsC- SC- SsC- SC- SC- SC-
Level SGRID1 | SGRID2 | SGRID3 | SGRID4 | SGRID5 | SGRID6 | SGRID7

0.000001 | 215.1997 | 282.0272| 294.5557 | 294.7355| 294.3713 | 294.4860 | 294.4860
0.00001 215.4527 | 283.6524 | 295.6558 | 295.7960 | 295.5427 | 295.6197 295.6197
0.0001 216.8676 | 287.4172 | 298.1725| 298.3573 | 298.1440 | 298.2376 | 298.2376
0.001 224.7357 | 299.7396 | 307.2922 | 307.2480| 307.2669 | 307.2667 307.2667
0.01 260.7595 | 337.1838 | 337.4512 | 337.4404 | 337.4778 | 337.4576 | 337.4576
0.05 351.2758 | 405.2556 | 403.2983 | 403.3370 | 403.2968 | 403.2940 403.2940
0.1 432.8379 | 462.1519 | 461.9793 | 462.0225| 462.0265| 462.0376 | 462.0376
0.2 562.5460 | 557.9495| 559.0601 | 559.1064 | 559.0883 | 559.1044 559.1044
0.3 670.3572 | 644.7091 | 645.6418 | 645.6468 | 645.6724 | 645.6817 | 645.6817
0.4 767.1856 | 727.5014 | 727.5031| 727.5075| 727.5117 | 727.5266 727.5266
0.5 856.2118 | 809.0456 | 808.9890 | 809.0090 | 809.0131| 809.0023 | 809.0023
0.6 939.3272 | 889.7782| 889.9113 | 889.9093 | 889.9239 | 889.9229 889.9229
0.7 1019.2579| 984.8661 | 985.6989 | 985.6995 | 985.6995 | 985.7096 | 985.7096
0.8 1130.3803| 1123.1674) 1121.2601| 1121.2550| 1121.2817| 1121.2884 1121.2884
0.9 1297.6923| 1347.0931| 1342.4535| 1342.4377| 1342.4662| 1342.4729| 1342.4729
0.95 1424.8485| 1535.7777) 1533.9106| 1533.9889| 1534.0031| 1533.9975 1533.9975
0.99 1604.9770| 1833.6019 1846.6140| 1846.6518| 1846.6336| 1846.6646| 1846.6646
| Evaluations | 7 31 | 111 | 303 | 687 | 1875 | 2335

Table 5.17. Stochastic collocation, sparse grid expansion levels
1-7: Response level values.

Response Level

Table 5.17 shows the estimated responses for the specibedlulity levels that make up the
CDFs plotted in Figure 5.20. The estimated responses forrgtddivel SC grid expansion are the
same as those for the first-level PCE grid expansion. The attthresponses using SC for the
remaining grid expansion levels very closely resembleghgsng polynomial chaos expansion.
Thus, using Smolyak sparse grids, the same trends we ealtberved for PCE hold here for SC.
Namely, estimations for the margin converged by the thengl expansion. Although we would
expect this convergence to take longer with a more complitatodel where a larger number of
uncertain variables might be studied, the early convergenthese CDFs is encouraging because
it suggests we may be able to get accurate estimates from@hméthods using relatively low-
level studies that are not exorbitantly expensive.

L2 Norms

The results from this set of ensembles with respect td.theorms, summarized in Table 5.18
and Figure 5.21, also closely resemble those from previossrables. For the first four expansion
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Figure 5.20.Polynomial chaos expansion, sparse grid expansion
levels 1-7: Response level values.

levels for the grids, the CDFs generated from stochastiocation with Smolyak sparse grids do
not converge particularly well, as can be seen in Figure.342&vever, by the fifth-level expansion,
the CDFs converge quite well except at the left-most tailscivban be seen in Figure 5.23.

Table 5.18 also shows negative estimates forltheorms for the first- through fourth-level
grid expansions. These negative estimates disappear hifthievel expansion, which is approx-
imately the same point where they no longer appeared in thequs sets of ensembles.

L Norms

TheL* norms for this set of ensembles, shown in Table 5.19 and &i§L24, also resemble
those in previous ensembles. Negative estimates are sembla 5.19 in the column for the
second-level grid expansion (SC-SGRID2), but no where el#gitable. It can be seen in Figure
5.25 that the cumulative distribution functions for thetfiigur expansion levels vary noticeably,
but converge quite well by the fifth-level expansion (seaiFeg.26).

Probability-level Convergence Plots

The convergence plots for the stochastic collocation eb&Eswriven by Smolyak sparse grids,
presented in Figures 5.27 and 5.28 show a similar trend asfee¢he sparse-grid-based PCE
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Probability [ SC- SC- SC- SC- SC- SC- SC-

Level SGRID1 | SGRID2 | SGRID3 | SGRID4 | SGRID5 | SGRID6 | SGRID7
0.000001 | 0.0046 | -0.1286 | -0.0058 | -0.0355 | 0.0039 | 0.0050 | 0.0051
0.00001 0.0047 | -0.1239 | -0.0054 | -0.0295 | 0.0045 | 0.0051 | 0.0051
0.0001 0.0048 | -0.1171 | -0.0041 | -0.0145 | 0.0059 | 0.0051 | 0.0054
0.001 0.0055 | -0.0947 | -0.0011 | 0.0058 | 0.0067 | 0.0054 | 0.0058
0.01 0.0076 | -0.0438 | 0.0080 | 0.0081 | 0.0095 | 0.0076 | 0.0074
0.05 0.0144  0.0107 | 0.0161 | 0.0126 | 0.0135 | 0.0111 | 0.0112
0.1 0.0229 | 0.0222 | 0.0238 | 0.0163 | 0.0175 | 0.0144 | 0.0145
0.2 0.0398 | 0.0400 | 0.0351 | 0.0245 | 0.0256 | 0.0249 | 0.0249
0.3 0.0567 | 0.0517 | 0.0437 | 0.0361 | 0.0365 | 0.0376 | 0.0377
0.4 0.0736 = 0.0581 | 0.0535 | 0.0507 | 0.0502 | 0.0508 | 0.0507
0.5 0.0905 | 0.0672 | 0.0665 | 0.0672 | 0.0655 | 0.0653 | 0.0651
0.6 0.1075 & 0.0830 | 0.0839 | 0.0842 | 0.0820 | 0.0823 | 0.0822
0.7 0.1257 | 0.1061 | 0.1044 | 0.1011 | 0.1012 | 0.1017 | 0.1016
0.8 0.1483 | 0.1347 | 0.1252 | 0.1236 | 0.1252 | 0.1251 | 0.1250
0.9 0.1788 | 0.1623 | 0.1523 | 0.1566 | 0.1562 | 0.1563 | 0.1564
0.95 0.2056 = 0.1839 | 0.1793 | 0.1800 | 0.1802 | 0.1799 | 0.1799
0.99 0.2529 | 0.2185 | 0.2260 | 0.2256 | 0.2264 | 0.2261 | 0.2261
| Evaluations | 7 31 | 111 | 303 | 687 | 1375 | 2335 |

Table 5.18. Stochastic collocation, sparse grid expansion levels

1-7:12 norm for response level values.
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Figure 5.21. Stochastic collocation, sparse grid expansion levels
1-7: L2 norm for response level values.
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Figure 5.22. Stochastic collocation, sparse grid expansion levels
1-4:1.2 norm for response level values.
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Figure 5.23. Stochastic collocation, sparse grid expansion levels
5-7:L2 norm for response level values.
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Figure 5.24. Stochastic collocation, sparse grid expansion levels
1-7:L* norm for response level values.
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Probability [ SC- SC- SC- SC- SC- SC- SC-

Level SGRID1 | SGRID2 | SGRID3 | SGRID4 | SGRID5 | SGRID6 | SGRID7
0.000001 | 0.0757 | -0.0467 | 0.0416 | 0.0070 | 0.0423 | 0.0463 | 0.0464
0.00001 0.0758 | -0.0412 | 0.0421 | 0.0152 | 0.0426 | 0.0466 | 0.0468
0.0001 0.0762 | -0.0327 | 0.0431 | 0.0351 | 0.0434 | 0.0473 | 0.0472
0.001 0.0775 | -0.0094 | 0.0454 | 0.0500 | 0.0457 | 0.0490 | 0.0496
0.01 0.0815 | 0.0440 | 0.0497 | 0.0566 | 0.0517 | 0.0539 | 0.0541
0.05 0.0891 = 0.0688 | 0.0630 | 0.0653 | 0.0618 | 0.0617 | 0.0611
0.1 0.0968 | 0.0786 | 0.0714 | 0.0721 | 0.0685 | 0.0691 | 0.0684
0.2 0.1122 = 0.0926 | 0.0844 | 0.0844 | 0.0832 | 0.0865 | 0.0862
0.3 0.1276 | 0.1012 | 0.0977 | 0.1005 | 0.1021 | 0.1037 | 0.1040
0.4 0.1431 = 0.1115 | 0.1138 | 0.1188 | 0.1217 | 0.1206 | 0.1208
0.5 0.1600 | 0.1263 | 0.1338 | 0.1386 | 0.1411 | 0.1388 | 0.1389
0.6 0.1788 | 0.1473 | 0.1562 | 0.1594 | 0.1595 | 0.1591 | 0.1590
0.7 0.1987 | 0.1775 | 0.1795 | 0.1818 | 0.1803 | 0.1806 | 0.1804
0.8 0.2195 = 0.2140 | 0.2065 | 0.2081 | 0.2059 | 0.2060 | 0.2062
0.9 0.2475 | 0.2528 | 0.2494 | 0.2488 | 0.2506 | 0.2504 | 0.2508
0.95 0.2747 | 0.2775 | 0.2837 | 0.2807 | 0.2820 | 0.2814 | 0.2820
0.99 0.3265 | 0.3347 | 0.3269 | 0.3218 | 0.3206 | 0.3209 | 0.3208
| Evaluations | 7 31 | 111 | 303 | 687 | 1375 | 2335 |

Table 5.19. Stochastic collocation, sparse grid expansion levels

1-7:L* norm for response level values.
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Figure 5.26. Stochastic collocation, sparse grid expansion levels
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Figure 5.27. Convergence of the calculated margins from SC as
the sparse grid level increases.

ensembles: it is not clear that ensembles beyond a thied-eypansion add precision to the es-
timates made concerning the margin. The fact that this was & both types of stochastic

expansion DAKOTA ensembles, and not for the quadraturd-ggised ensembles, is illuminating
and suggests that sparse grid ensembles may achieve ni@asimavergence around third-level

grid expansions. Of course, the ensembles explored in ik wsonsidered only three uncertain
variables, and it is likely that higher-dimension enseralh additional uncertain variables may
require a higher grid expansions to achieve convergence.
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Figure 5.28. Convergence of the calculated margins from SC,
based on sparse grids, as the number of DAKOTA evaluations in-

creases.
Expansion | DAKOTA Response afl0 > | Difference from | Square of the
Level Evaluations | Probability Level | 7\"-level Response Difference

1 7 215.45274 80.15192573 6422.569015
2 31 283.6524202 11.9522456 135.5156928
3 111 295.6557654 -0.05109963 0.01899511
4 303 295.7960191 -0.19135333 0.078961292
5 687 295.5427226 0.06194315 0.002491862
6 1375 295.6197297 -0.01506397 0.010260069
7 2335 295.6046658 0.0 0.0

Table 5.20.Convergence of estimated response to a “true” solu-
tion at the seventh-level sparse grid expansion using SC.

61




This page intentionally left blank.



Chapter 6

Concluding Remarks

This report explored the use of the DAKOTA toolkit’s polyn@irchaos expansion and stochas-
tic collocation methods, using both tensor product quadeaand Smolyak sparse grids, for a
model with a mesh containing over 150,000 tetrahedral feléments. From these four sets of UQ
ensembles, a number of observations can be drawn and applietlire uses of these DAKOTA
methodologies.

Probability Levels

First, although our response metric was arbitrary in natwe consistently saw noticeable
fluctuations in the estimated response levels for incrgaslawer probability levels. For example,
the PCE ensembles using tensor product quadrature gridsawdhbrth-level expansion saw the
response level drop from 337.9673 at probability level QDA 2) to 290.6769 at probability
level 10°°. Similar observations can be seen for the other methodesoddecause we observed
non-trivial differences in the predicted response levetspfobability levels such as 18 versus
10-6, we believe there is potential benefit to considering these-emaller probability levels in
other scenarios for high-consequence systems (if it makesesto predict responses at such small
probability levels for the problem in question).

We also observed that there is less change in the estimatpdnges around the middle of
the CDF curves as the grid expansion level of the ensemblesase and more observations are
considered, while there are notable changes in the respbhséh tails of the CDF; we can say this
especially for the left tails where we focused our attentiotiis work. Investigators can use these
lessons to help determine how rapidly areas of a CDF that areewést to them will converge for
ensembles with higher-level grid expansions. In many (besygmably not all) cases, investigators
will have interest in their responses at the tails of a CDF,rance expensive ensembles will likely
be needed for the cumulative distribution functions in thaseas to converge.

Convergence of Cumulative Distribution Functions

On the subject of convergence of cumulative distributiamctions, we noticed that there was
often little change in the CDFs of our thermal race margin sasp for ensembles with third-
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level grid expansions and onward. As such, it may not be sacg$o conduct ensembles larger
than third- or fourth-level expansions on larger problezesi Further analysis on this topic is
warranted.

This work also found evidence that the needed grid expanei@hfor CDF convergence may
also depend on the region of a cumulative distribution fiemcthat is of interest to investigators.
As mentioned earlier, for the problem we investigated, wentbthat convergence was generally
slowest in the tails of the CDFs, especially the left tail. Ho®er, we caution that we did not invest
the effort to conduct statistical analyses to quantitativeeasure the differences in these CDFs.
A rigorous quantitative analysis of these functions wasobeythe scope of this work. Instead, the
judgments we have made with respect to regions of the CDF tmaecged were qualitative, and
therefore limited, in nature.

Finally, we observed that convergence of CDFs was geneilallyes for theL? norms and_®
norms than for the response itself. We found that for theseapthe grid expansion level may
need to be taken as high as a fifth-level expansion beforeoeakrgence is seen in the cumulative
distribution functions. This was observed for both polym@inchaos expansion and stochastic
collocation methods, using both tensor quadrature gridsSanolyak sparse grids, and contrasts
with margin estimations, where third- and fourth-level axpions were generally sufficient.

Tensor Product Quadrature Grids versus Smolyak Sparse Grids

We observed that the growth of the sparse grids was not reedgsslower than for tensor
product quadrature grids in our ensembles. The reasonifonts that we only had three uncertain
variables available to study due to the limited nature of model. We expect sparse grids will
be much more efficient than quadrature grids for the largsembles with many more uncertain
variables. However, it is notable that sparse grids may soessarily be the most cost-effective
choice for all cases.

We also found little difference between the convergencéef@DFs generated by either the
PCE or SC methods, for either quadrature grids or sparse gnifisct, the estimated response lev-
els between methods were generally either the same, or la=g t the same for the problem we
studied. The goal would be to utilize the methodology whogeeted growth rates are anticipated
to be the most cost effective for the problem under study.

Improvements to DAKOTA

One possible improvement to DAKOTA that became apparenstihoughout the course of
this work was the ability to generate probability densitpdtions. Although cumulative distri-
bution functions are often more useful in terms of thinge lgcobability of exceeding threshold
values, in work we have in mind for the future it would be useéfuhave the ability to generate
probability density functions at given locations with siied parameters, as well as projecting
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data onto the basis functions. The DAKOTA developers hatedaan our request for this capabil-
ity, and probability distribution function output will bevailable for both PCE and SC methods in
the next release of DAKOTA.

Another potential improvement to DAKOTA would be the alyilitold more samples in mem-
ory when predicting response levels for specified probghdivels. We have also been recently
advised that there will be modest improvements to this céipaim the next release of DAKOTA.

Global Reliability Methods

Finally, our next anticipated step in future work will be ixpéore the use of DAKOTA's global
reliability methods for uncertainty quantification. Onawoon trend throughout the results pre-
sented in this work is that both stochastic expansion methetled to converge better and more
quickly in the middle of the CDF than at the tails (particwatie left tails where we focused our
attention). We first focused on stochastic expansion methedause of their potential synergy
with multi-physics applications due to their ability to egps final solutions as random processes.
Now that we better understand the benefits and limitatiotisesfe methods, we will explore global
reliability methods, which are expected to be more efficariredicting responses at the tails of
the probability distributions.
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