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Abstract

Uncertainty quantification (UQ) methods bring rigorous statistical connections to the analysis of
computational and experiment data, and provide a basis for probabilistically assessing margins
associated with safety and reliability. The DAKOTA toolkitdeveloped at Sandia National Labo-
ratories implements a number of UQ methods, which are being increasingly adopted by modeling
and simulation teams to facilitate these analyses. This report disseminates results as to the perfor-
mance of DAKOTA’s stochastic expansion methods for UQ on a representative application. Our
results provide a number of insights that may be of interest to future users of these methods, in-
cluding the behavior of the methods in estimating responsesat varying probability levels, and the
expansion levels for the methodologies that may be needed toachieve convergence.

3



Acknowledgments

We thank the developers of the DAKOTA toolkit at Sandia National Laboratories who helped
educate us as to the use of these methods and exercising them within DAKOTA. We are especially
grateful to Mike Eldred for his assistance in using the methods, and Brian Adams and Bill Bohn-
hoff for their help in acquiring a developmental release of DAKOTA for use in these studies. We
also thank Jerry McNeish for his comments on an earlier draftof this report. Bill Erickson devel-
oped the model that we make use of in this report. This work wassupported by the Engineering
V&V Assessments project within the Advanced Simulation andComputing (ASC) program.

4



Contents

Nomenclature 12

1 Introduction 13

2 Modeling Problem 15

3 Stochastic Expansion UQ Methods in DAKOTA 17

4 Case Study 21

5 Results 27

Polynomial Chaos Expansion: Tensor Product Quadrature Grid. . . . . . . . . . . . . . . . 27

Response Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 27

L2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 29

L∞ Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 32

Probability-level Convergence Plots . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 36

Stochastic Collocation: Tensor Product Quadrature Grids . .. . . . . . . . . . . . . . . . . . 39

Polynomial Chaos Expansion: Smolyak Sparse Grids . . . . . . . . .. . . . . . . . . . . . . . 43

Response Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 43

L2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 45

L∞ Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 46

Probability-level Convergence Plots . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 48

Stochastic Collocation: Smolyak Sparse Grids . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 52

Response Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 53

5



L2 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . 53

L∞ Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 54

Probability-level Convergence Plots . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 54

6 Concluding Remarks 63

Probability Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 63

Convergence of Cumulative Distribution Functions . . . . . . . . .. . . . . . . . . . . . . . . . 63

Tensor Product Quadrature Grids versus Smolyak Sparse Grids . . . . . . . . . . . . . . . . 64

Improvements to DAKOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 64

Global Reliability Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 65

References 66

6



List of Figures

2.1 Computational simulation workflow of modeling problem. .. . . . . . . . . . . . . . . . . . 15

3.1 Example growth of full tensor product quadrature and Smolyak sparse grids, as
originally shown in the DAKOTA User’s Manual. . . . . . . . . . . . .. . . . . . . . . . . . . . 19

4.1 Example DAKOTA input deck specifying the PCE methodologyusing a third-level
expansion of Smolyak sparse grids. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 22

4.2 A DAKOTA ensemble workflow. The process of computing CDFs for each re-
sponse at the conclusions of the CALORE evaluations is not shown. . . . . . . . . . . . . 25

5.1 Polynomial Chaos Expansion: tensor product grid levels 2–7. . . . . . . . . . . . . . . . . . 30

5.2 Polynomial Chaos Expansion: tensor product grid levels 2–4. . . . . . . . . . . . . . . . . . 30

5.3 Polynomial chaos expansion, tensor product grid levels2–7: L2 norm for response
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 32

5.4 Polynomial chaos expansion, tensor product grid levels2–4: L2 norm for response
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 33

5.5 Polynomial chaos expansion, tensor product grid levels5–7: L2 norm for response
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 33

5.6 Polynomial chaos expansion, tensor product grid levels2–7:L∞ norm for response
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 35

5.7 Polynomial chaos expansion, tensor product grid levels2–4:L∞ norm for response
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 35

5.8 Polynomial chaos expansion, tensor product grid levels5–7:L∞ norm for response
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 36

5.9 Convergence of the calculated margins from PCE as the quadrature grid level in-
creases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 37

5.10 Convergence of the calculated margins from PCE, based on quadrature grids, as
the number of DAKOTA evaluations increases. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 37

7



5.11 Polynomial chaos expansion, sparse grid expansion levels 1–7: Response level
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 45

5.12 Polynomial chaos expansion, sparse grid expansion levels 1–7: L2 norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 47

5.13 Polynomial chaos expansion, sparse grid expansion levels 1–4: L2 norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 47

5.14 Polynomial chaos expansion, sparse grid expansion levels 5–7: L2 norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 48

5.15 Polynomial chaos expansion, sparse grid expansion levels 1–7: L∞ norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 50

5.16 Polynomial chaos expansion, sparse grid expansion levels 1–4: L∞ norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 50

5.17 Polynomial chaos expansion, sparse grid expansion levels 5–7: L∞ norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 51

5.18 Convergence of the calculated margins from PCE as the sparse grid level increases. 51

5.19 Convergence of the calculated margins from PCE, based on sparse grids, as the
number of DAKOTA evaluations increases. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 52

5.20 Polynomial chaos expansion, sparse grid expansion levels 1–7: Response level
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 54

5.21 Stochastic collocation, sparse grid expansion levels1–7: L2 norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 56

5.22 Stochastic collocation, sparse grid expansion levels1–4: L2 norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 56

5.23 Stochastic collocation, sparse grid expansion levels5–7: L2 norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 57

5.24 Stochastic collocation, sparse grid expansion levels1–7: L∞ norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 57

5.25 Stochastic collocation, sparse grid expansion levels1–4: L∞ norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 59

5.26 Stochastic collocation, sparse grid expansion levels5–7: L∞ norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 59

5.27 Convergence of the calculated margins from SC as the sparse grid level increases. . 60

8



5.28 Convergence of the calculated margins from SC, based on sparse grids, as the
number of DAKOTA evaluations increases. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 61

9



List of Tables

5.1 The 28 DAKOTA ensembles conducted to evaluate the UQ methods. . . . . . . . . . . . 27

5.2 Observed samples for PCE ensembles using tensor product quadrature grids. . . . . . 28

5.3 Polynomial chaos expansion, tensor product grid expansion levels 2–7: Response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 28

5.4 Polynomial chaos expansion, tensor product grid expansion levels 2–7:L2 norm
for response level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 31

5.5 Polynomial chaos expansion, tensor product grid expansion levels 2–7:L∞ norm
for response level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 34

5.6 Convergence of estimated response to a “true” solution atthe seventh-level quadra-
ture grid expansion using PCE. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 38

5.7 Observed samples for SC ensembles using tensor product quadrature grids. . . . . . . 39

5.8 Stochastic collocation, tensor product grid expansionlevels 2–7: Response level
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 40

5.9 Stochastic collocation, tensor product grid levels 2–7: L2 norm for response level. . 41

5.10 Stochastic collocation, tensor product grid expansion levels 2–7:L∞ norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 42

5.11 Observed samples for PCE ensembles using Smolyak sparsegrids. . . . . . . . . . . . . . 43

5.12 Polynomial chaos expansion, sparse grid expansion levels 1–7: Response level
values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 44

5.13 Polynomial chaos expansion, sparse grid expansion levels 1–7: L2 norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 46

5.14 Polynomial chaos expansion, sparse grid expansion levels 1–7: L∞ norm for re-
sponse level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 49

5.15 Convergence of estimated response to a “true” solution at the seventh-level sparse
grid expansion using PCE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 49

5.16 Observed samples for SC ensembles using Smolyak sparsegrids. . . . . . . . . . . . . . . 52

10



5.17 Stochastic collocation, sparse grid expansion levels1–7: Response level values. . . . 53

5.18 Stochastic collocation, sparse grid expansion levels1–7: L2 norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 55

5.19 Stochastic collocation, sparse grid expansion levels1–7: L∞ norm for response
level values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 58

5.20 Convergence of estimated response to a “true” solution at the seventh-level sparse
grid expansion using SC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 61

11



Nomenclature

ASC Advanced Simulation & Computing

CDF Cumulative Distribution Function

DAKOTA Design Analysis Kit for Optimization and Terascale Applications

FSM Full System Model

PCE Polynomial Chaos Expansion

QMU Quantification of Margins and Uncertainty

SC Stochastic Collocation

SL Strong-link

UQ Uncertainty Quantification

V&V Verification and Validation

WL Weak-link

12



Chapter 1

Introduction

As the United States has moved into a era of Science-Based Stockpile Stewardship after the
moratorium on full system tests of nuclear weapons, Sandia National Laboratories has brought
computational simulation efforts to bear on continuing assessments that seek to ensure the safety
and reliability of the nation’s nuclear deterrent. At Sandia, these efforts are primarily supported by
the Advanced Simulation and Computing (ASC) program — formerly the Accelerated Strategic
Computing Initiative — and make use of Full System Models thathave been created for different
environments of interest. The problem we describe here is concerned with a model designed for
simulations concerning abnormal thermal environments, such as fuel fires.

Verification and validation (V&V) is an important methodology that supports quantification of
confidence in the predictive capability of a continuum physics model, and computational simula-
tions making use of that model [3, 5]. Verification is a process to confirm that the model is correctly
computing results within the solution codes, while validation is a process to confirm that modeling
results are consistent with real world phenomena. The Full System Model (FSM) teams in the Nu-
clear Weapons program at Sandia National Laboratories makeextensive use of V&V to confirm
the predictive capability of the modeling and computational simulations used as a technical basis
for assessments regarding weapon safety and reliability.

An important process that must take place in the context of V&V is uncertainty quantification
(UQ). Uncertainty quantification seeks to quantitatively assess the effect of input uncertainty on
response metrics of interest [1]. In the context of modeling, these uncertainties can be aleatoric in
nature, meaning they derive from inherent and irreducible variability that cannot be controlled in
the phenomena being modeled, or epistemic in nature, meaning they derive from lack of knowl-
edge about the variables of interest, but are therefore reducible if sufficient effort could be made
to better characterize and understand the uncertainty. Uncertainty quantification is important to
V&V from at least two standpoints: (1) it brings rigor to the statistical analysis of computational
and experiment data, and the comparison between the two during the validation process of V&V;
and (2) it provides a basis for quantifying the uncertainty in a margin that is computed in the course
of a quantification of margins and uncertainty (QMU) study [3].

One toolkit that provides a variety of uncertainty quantification methods is DAKOTA (Design
Analysis Kit for Optimization and Terascale Applications)[8, 1], which is developed at Sandia in
conjunction with collaborators in academia. In addition toits many other capabilities, DAKOTA
makes available a variety of uncertainty quantification methods, including sampling methods, relia-
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bility methods, stochastic expansion methods, and epistemic non-deterministic methods [1]. Many
of these methods, however, have not been empirically explored using problems other than the ex-
amples provided in the distribution of DAKOTA. This means that some facets of these methods,
such as the number of samples needed to achieve convergence in results, are not as well under-
stood as we would like. Because our modeling problems are verylarge, we would prefer to have
guidelines for using these methods that are supported by a reputable technical basis, such as their
performance on smaller yet non-trivial and representativeproblems.

This report explores the use of some of DAKOTA’s UQ methods — specifically its stochastic
expansion methods — on an unclassified model of a Sandia-developed weapon subsystem. This
model, which will be described further in Chapter 2, is non-trivial in nature yet representative of
other models seen in Full System Modeling work at Sandia. As such, the primary contributions of
this report are results and insights regarding the performance of some DAKOTA stochastic expan-
sion methods for a non-trivial problem instance that is derived from an important computational
simulation domain.

The remainder of this report is organized as follows: Chapter2 describes the model on which
these UQ methods are explored, Chapter 3 provides a brief overview of the stochastic expansion
methods explored in this report, Chapter 4 outlines the studyconducted to exercise these methods,
Chapter 5 presents and discusses the results of using the methods on the model, and Chapter 6
offers concluding remarks.
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Chapter 2

Modeling Problem

In this report, we make use of a nuclear weapon subsystem model that contains limited but
complex geometric fidelity to the subsystem of interest, andassigns a generic stainless steel mate-
rial property to the entire subsystem.1 The solid geometry of this model was meshed using Sandia’s
CUBIT toolkit [6] into over 150,000 tetrahedral finite elements (86 element blocks), making this
is a non-trivial problem in terms of model size.

We exercise this weapon subsystem model using the CALORE code [2] in the Sierra Mechan-
ics tool suite [7], which is also developed and maintained bySandia. CALORE performs thermal
simulations as specified by input decks describing the conditions and parameters of a simulation.
These input decks are provided to CALORE along with the meshed finite element model. The
present CALORE simulation with these artifacts takes less than 30 minutes to complete, with the
time step control parameters we have specified, using 16 processors on Sandia’s capacity comput-
ing clusters. The resulting output of this simulation provides temperature data for each node in the
model at various time steps, which is written using the Exodus finite element data model [9]. This
workflow is outlined in Figure 2.1.

For a FSM, we can use this temperature data over time to compute various measures of the
state of this subsystem in the abnormal thermal environmentof interest. The response we measure

1Because this model is not approved for unlimited release, wedo not provide further details about its design in this
report.

Figure 2.1. Computational simulation workflow of modeling
problem.
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in this report is calculated by examining the temperature oftwo components in the model at spe-
cific periods of time in order to create a weak-link/strong-link thermal race. Weak-link/strong-link
systems are a common and important safety characteristic ofhigh-consequence systems, includ-
ing nuclear weapons. Strong-links (SLs) act as a barrier to signals or energy that might trigger a
response from a high-consequence system. These stimuli originate from components designed to
fail before the strong-links in an unintended scenario where, from a safety perspective, the system
must remain non-operational (e.g., an accident condition); the components providing these sig-
nals or energy are therefore termed weak-links (WLs). In the context of the thermal race, failures
of both weak-links and strong-links are induced by their exposure to extreme heat in an abnor-
mal thermal scenario, such as if a system were exposed to a fire, and can be characterized by an
expected failure temperature for each component.

The failure of the weak-links ensures that the signals or energy required to generate a system
are not present, thereby diffusing the system with respect to being triggered by that component. (In
normal scenarios, the strong-links and weak-links must unambiguously agree about the instructions
for the system before the strong-links allow these signals or energy to pass.) A thermal race margin
is the time-based safety margin in the “race” to ensure the weak-links fail before the strong-links
in abnormal thermal conditions. High-consequence systemsare designed to maximize this margin
in the direction of the weak-links failing before the strong-links. This thermal race is “lost” if the
strong-links fail before the weak-links (which would generate a negative margin less than 0.0).
Note that this does not mean that a system response will be triggered — only that the design
features preventing such a response have been disabled in this safety scenario.

The goal of this report is not to evaluate a representative safety question or metric, but rather to
explore the use of DAKOTA for performing uncertainty quantification on a non-trivial and repre-
sentative problem space. To generate this scenario in this investigation, we treat one component in
our subsystem model as a single strong-link and another component as a single weak-link, creating
a thermal race scenario that can be measured in the context ofour computational CALORE simu-
lations. We have specifically chosen components (and failure temperatures for those components)
according to the following criteria:

1. The components will create an arbitrary thermal race thatis not representative of an evalua-
tion of the system from which this model was derived.

2. The arbitrary WL/SL thermal race is expected to ensure thatthe weak-link always fails well
before the strong-link (meaning the quantitative margin will always be greater than 0.0).
This does not consider any probabilities of events occurring that may be associated with
such margin calculations.

3. The selected failure criterion for each component will betemperatures that are not represen-
tative of the system, and attempt to ensure that the arbitrary WL/SL thermal race will finish
in the time allotted to the CALORE simulations (meaning both the weak-link and strong-link
reach their failing temperatures so that a margin can be calculated). Otherwise, an inordi-
nately long simulation time might be needed to ensure we are able to generate a response for
each simulation in a stochastic expansion ensemble driven by DAKOTA.
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Chapter 3

Stochastic Expansion UQ Methods in
DAKOTA

A common approach to uncertainty quantification is to characterize and quantify the role of
uncertain variables contributing to one or more calculatedresponses of interest. DAKOTA provides
a number of methods to perform UQ, including sampling methods, reliability methods, stochastic
expansion methods, and epistemic non-deterministic methods [1].

Each of these methods have their own advantages, making theman improvement on the state-
of-the-art for certain circumstances. For example, reliability methods are often better at computing
statistics in the tails of response distributions (i.e., events with low probability) than traditional
sampling-based approaches. The stochastic expansion methods we explore in this report express
their final solution as a random process, rather than a set of statistics as do many other nondetermin-
istic methodologies [1], making them particularly attractive for the multi-physics applications in
our problem domains. However, there remains a need to exercise all these methods on real-world
problems to both gauge their effectiveness in general and tobetter understand how to optimally
employ these methods to ensure a characterization of sufficient pedigree.

In this report, we explore the use of stochastic expansion methods for performing UQ on the
modeling problem presented in Chapter 2 because, as discussed earlier, they are well-suited for
multi-physics applications. (Time and resource constraints have thus far prevented us from con-
sidering other methods.) In particular, we explore the use of Polynomial Chaos Expansion (PCE)
and Stochastic Collocation (SC) for characterizing responses of interest to this problem, such as
our arbitrary margin. Each of these two methods are described in detail in [1], and we refer readers
to that source for a more complete account of these methods. In these chapter, we briefly overview
both PCE and SC to provide the necessary context for this work.

Stochastic expansion methods are useful when the response(s) of the system(s) of interest can
be characterized by a governing set of equations with stochastic coefficients [1].1 Because their
solutions are expressed as a random process, the methods arewell-suited for the multi-physics
problem domain of interest in this work [1]. This is due to inherent, aleatoric uncertainties in
aspects of multi-physics applications such as material properties (i.e., the precise properties of each
material may slightly vary from system to system). As we later discuss for future work, we hope to

1Because not all our uncertainties fall into this category, it is possible that other UQ methods may prove more
appropriate over time. We plan to investigate such methods in the future.
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explore in detail other UQ methods implemented by DAKOTA, especially the toolkit’s reliability
methods, as low-probability events are of particular importance to designers of high-consequence
systems.

Polynomial Chaos Expansion (PCE) is the first stochastic expansion method we explore. This
method models the effect of continuous random response variables in terms of truncated finite-
dimensional series expansions taking place in standardized random variables [1] for the purpose of
estimating the stochastic coefficients. To do this, an expansion method (of which there are several
for PCE) is used to cast the problem into a mathematical space based on known orthogonal polyno-
mial basis functions. From these functions, one can generate sets of denumerable (i.e., countable)
random values for the uncertain variables of interest and measure the response of interest accord-
ingly. A problem solution is then generated from these observations by estimating coefficients for
the basis functions alongside the rest of the expansion. These coefficients represent an approxi-
mated mapping between your selected response function set and the underlying random variables,
which provides a surrogate for the true simulation-based input-output mapping.

Stochastic collocation (SC) is closely related to PCE. The primary difference between the two
methods is that SC forms interpolation functions for known coefficients, rather than estimating
coefficients for known basis functions as PCE does [1]. In the context of SC, the expansion coef-
ficients are simply the response values at each collocation point within the interpolation function.
Thus, while PCE must define an expansion formulation and estimate coefficients accordingly, SC
formulates an interpolation for known coefficients [1].

In the case of both approaches, a spectral projection approach is required to project the response
against the basis functions to generate the coefficients. Weexplore two different approaches that
are supported by DAKOTA for both polynomial chaos expansionand stochastic collocation. The
first approach is to utilize a full tensor product quadraturegrid. A nested abscissas approach is
used within this grid to identify evaluations (in terms of values for the uncertain variables) that
are needed to generate the coefficients based on the responsevalues obtained for those evaluations
[1]. The expansion level of this approach can rise to increase the number of collocation points
in the tensor grid selected for the evaluations. Because the same expansion level is used for all
random dimensions in our studies, this approach generatesmn function evaluations, wherem is
the expansion level andn is the ensemble’s dimensionality (i.e., number of uncertain variables)
[1]. Furthermore, the number of function evaluations is identical when this method is used in
conjunction with both PCE and SC.

The second approach we evaluate is Smolyak sparse grids, which attempt to reduce the num-
ber of collocation points while preserving accuracy in the generated coefficients [1]. Stated sim-
ply, Smolyak sparse grids use linear combinations of the product formulas used in tensor product
quadratures to generate collocation points. However, to reduce the number of needed evaluations,
they purposefully use isotropic products with only a small number of points. This offers isotropic
sparse grids a scaling rate ofmlogn, wherem is again the expansion level andn is the ensemble
dimensionality, rather than themn growth seen in tensor product quadrature grids [1]. An example
depicting the growth of both full tensor product quadratureand Smolyak sparse grids are depicted
in Figure 3.1; both plots are originally found in [1].

18



Figure 3.1. Example growth of full tensor product quadrature
and Smolyak sparse grids, as originally shown in the DAKOTA
User’s Manual.
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Chapter 4

Case Study

For our investigation, we designed a case study to evaluate the PCE and SC stochastic ex-
pansion by examining the role of the generic stainless steelmaterial property assigned across the
model described in Chapter 2. In particular, in the context ofan abnormal thermal environment
simulated using CALORE, there are three material properties of stainless steel that may impact the
temperature response in the model: thermal conductivity (κ), heat capacity (cp), and emissivity
(ε). We treat a scaling of these temperature dependent properties of the stainless steel as three
uncertain variables whose effect on a thermal response willbe separately examined by ensembles
of evaluations driven by DAKOTA’s PCE (DAKOTA syntax:nond polynomial chaos) and SC
(nond stoch collocation) methods. We used a developmental release of DAKOTA 5.0+, built
on June 23, 2010 from Subversion revision 6835 to drive theseensembles.

For a spectral projection method for DAKOTA, we used both thetensor product grid (DAKOTA
syntax:quadrature order) and Smolyak sparse grid (sparse grid level) methods overviewed
in Section 3. For each projection method, we explore expansion levels 1–7 for both PCE and SC,
resulting in a total of 28 DAKOTA ensembles. Each DAKOTA ensemble invokes multiple directed
CALORE simulations to explore the specified uncertainty spacefor κ, cp, andε, with ensembles
driven by higher-level expansions of the grids resulting inadditional CALORE simulations (i.e.,
increased cost).1 We expect that the highest expansion levels (e.g., a seventh-level expansion) are
far more than is needed to adequately capture the distribution of the response; in fact, experienced
DAKOTA developers suggested to us that third- to fourth-level expansions are generally sufficient
in most cases. However, the DAKOTA-based UQ ensembles described in this report are far less
expensive than the ensembles we plan to ultimately conduct.Thus, we consider the higher-level
expansions in this report to help evaluate whether such highexpansion levels provide additional
value that is warranted their exorbitant cost, and to demonstrate convergence of quantities of inter-
est.

An example of an input deck for one of the 28 DAKOTA ensembles is presented in Figure
4.1. This input deck specifies the polynomial chaos expansion method (line 7) with a third-level
expansion of Smolyak sparse grids (line 8). A seed of 12345 for the random number generator
(line 10) was chosen for all DAKOTA ensembles in this case study.

The goal of each UQ study conducted in DAKOTA is to measure theeffect of the uncertain

1For the remainder of this chapter, we differentiate betweena DAKOTA “ensemble,” which consists of individual
evaluations of CALORE simulations and their associated post-processing, and the case study that is the subject of this
report, which consists of 28 DAKOTA ensembles.
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1: strategy
2: tabular graphics data
3: tabular graphics file = ’PCEWizard.dat’
4: single method
5:

6: method
7: nond polynomial chaos
8: sparse grid level 3
9: samples 1000000

10: seed 12345
11: probability levels .000001 .00001 .0001 .001 .01 .05 .1 .2 .3 .4 .5

.6 .7 .8 .9 .95 .99 .000001 .00001 .0001 .001 .01 .05 .1 .2 .3 .4 .5 .6

.7 .8 .9 .95 .99 .000001 .00001 .0001 .001 .01 .05 .1 .2 .3 .4 .5 .6 .7

.8 .9 .95 .99 .000001 .00001 .0001 .001 .01 .05 .1 .2 .3 .4 .5 .6 .7 .8

.9 .95 .99 .000001 .00001 .0001 .001 .01 .05 .1 .2 .3 .4 .5 .6 .7 .8 .9

.95 .99 .000001 .00001 .0001 .001 .01 .05 .1 .2 .3 .4 .5 .6 .7 .8 .9 .95

.99
12:

13: variables
14: uniform uncertain 3
15: lower bounds 0.5 0.5 0.75
16: upper bounds 1.5 1.5 0.95
17: descriptors ’k’ ’cp’ ’e’
18:

19: interface
20: fork
21: analysis driver = ’calore driver.sh’
22: parameters file ’calore.in’
23: results file ’calore.out’
24: file tag
25: file save
26:

27: responses
28: num response functions 3
29: descriptors ’L2 norm’ ’Linf norm’ ’Margin’
30: no gradients
31: no hessians

Figure 4.1. Example DAKOTA input deck specifying the PCE
methodology using a third-level expansion of Smolyak sparse
grids.
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variablesκ, cp, and ε on our arbitrary margin. To do this, we use theprobability levels
method parameter to instruct DAKOTA to generate Cumulative Distribution Functions (CDFs) for
the response level for each ensemble. These CDFs help us gaugethe range of possible values for
the response, and the probability of those values, given perturbations inκ, cp, ande. To formulate
these CDFs, we began by instructing DAKOTA to compute the response level at 10% increments
for the probability levels (i.e., 10%, 20%,. . . , 90%). We then included the 1%, 5%, 95%, and 99%
probability levels, as these are levels that are commonly recommended by the statistical commu-
nity. Finally, for the actual margins we are ultimately interested in evaluating, we will be interested
in the behavior of our response at the lower end of the CDFs, where the calculated response might
approach zero (indicative of a smaller margin of safety). Therefore, we also included probability
levels of 10−3, 10−4, 10−5, and 10−6. The response levels at each probability level are computed
by DAKOTA by sampling the expansion after the stochastic coefficients have been computed; in
these DAKOTA ensembles 1,000,000 samples were performed.2

We treat κ, cp, and ε as uniformly-distributed uncertain variables (DAKOTA syntax:
uniform uncertain). By this we mean that we instruct DAKOTA to uniformly explorethe ranges
for each uncertain variable, as specified by the lower and upper bounds for each variable in the input
deck (lines 15–16 in Figure 4.1). Although thermal conductivity and heat capacity can be repre-
sented as constants, in this model these material properties are defined by temperature-dependent
piecewise linear functions to make them more representative to actual problems of interest. The
specified lower and upper bounds for these variables scale each function by 50% in each direction
to provide a range forκ andcp when treated as uniformly-distributed uncertain variables. The
emissivity of the steel in the original CALORE input deck that was provided to us by the model
designer was a constant value: 0.85. Scaling emissivity is different than for heat capacity or ther-
mal conductivity because, in addition to being a constant value, ε must be between 0.0 and 1.0.
Therefore, we choose to scale it between 0.75 and 0.95 to bring it reasonably close to its upper
bound, while scaling it no more severely in the opposite direction.

We post-process the Exodus data models that are created by CALORE using the ENCORE
application in the Sierra Mechanics suite [7]. Using ENCORE, we extract the temperatures of
our arbitrarily weak-link and strong-link at various time steps. We use customized Python scripts
to calculate the time of failure for each component by interpolating the temperatures between the
two time steps surrounding each component’s failure temperature. These scripts then calculate
the thermal race margin by subtracting the weak-link failure time from the strong-link failure time
(“Margin” in line 29 of Figure 4.1).

In addition the margin calculations, for every CALORE simulation, we compute theL2 and
L∞ norms (“L2 norm” and “Linf norm” in line 29) of the temperatures across the entire modelas
compared to a “nominal” evaluation whereκ, cp, andε are not perturbed from their original values.
In general terms, anL2 is a global metric representing what can be thought of as a standardized
average of the values in an arbitrary vector, while theL∞ norm is the maximum value in that vector.

2One drawback of this approach is that performing 1,000,000 samples is actually less than desired for the 10−6

probability level. This sampling is chosen due to limitations in DAKOTA for storing data in memory from larger
sample sizes. However, 1,000,000 samples has the effect of basing the response level for the 10−6 probability level on
only one data point.
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while theL∞ norm is
| x |∞ = max(x1,x2, . . . ,xn)

In this case, theL2 norm is a measure of the average difference in observed temperaturess between
each evaluation and the nominal case, while theL∞ norm is the maximum difference. Some areas
of the nominal model may have a higher temperature than a given evaluation, while other areas may
have a lower temperature, and we do not want such directions of discrepency to counteract each
other and indicate that the magnitude of temperature differences is less than it really is. Therefore,
the norms we compute do not take negative values: a norm of 0.0indicates no temperature dif-
ferences between an evaluation and the nominal case, while norms increasingly greater than zero
indicate increasingly greater temperature differences, irrespective of whether the nominal model
has higher or lower temperatures, or a mix in each direction.

Both theL2 andL∞ norms are computed using ENCORE. While extracting the weak-link and
strong-link temperatures for the margin calculation, ENCOREcomputes these norms by post-
processing comparing the temperatures across the Exodus model resulting from each CALORE
evaluation to the nominal case.

This workflow is depicted in Figure 4.2. DAKOTA selects inputparameters for each uncertain
variable, which are substituted into the CALORE simulation input deck. After an approximately
30-minute CALORE simulation using 16 processors, ENCORE beginsthe post-processing step by
processing the resulting Exodus data model, and the Python completes post-processing by calcu-
lating the thermal race margin from the resulting temperature data. This margin, along with theL2

andL∞ norms calculated by ENCORE, are then provided back to DAKOTA sothey can be used to
calculate the CDFs of each response at the conclusion of each DAKOTA ensemble.

24



Figure 4.2. A DAKOTA ensemble workflow. The process
of computing CDFs for each response at the conclusions of the
CALORE evaluations is not shown.
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Chapter 5

Results

In this chapter, we present the results for the 28 DAKOTA ensembles for the purposes of
uncertainty quantification. We divide these ensembles intofour sets for each UQ methodology and
spectral projection method combination (see Table 5.1).

Polynomial Chaos Expansion: Tensor Product Quadrature Grid

The first set of DAKOTA ensembles we present are those driven by polynomial chaos expan-
sion using tensor product quadrature grids. The number of evaluations required by DAKOTA to
generate the basis functions for each grid expansion level,which are then sampled in order to
obtain the cumulative distribution functions, are provided in Table 5.2.

Response Level

Table 5.3 presents the results for the polynomial chaos expansion ensembles using tensor prod-
uct quadrature grids, as well as providing the number of evaluations needed for those ensembles
from Table 5.2. We present the results for only the ensembleswith expansion levels 2–7, as the
ensemble with a first-level expansion contains only one evaluation. (Recall that this methodology
requiresmn evaluations, wherem is the expansion level andn is the number of uncertain variables.
As seen in Table 5.2, with an expansion level of one,mn = 13 = 1.)

It is worth mentioning that there is some fluctuations in the estimated response level values

Spectral Projection
UQ Methodology Quadrature Grid Sparse Grid

Polynomial Chaos Expansion Expansion Levels 1–7 Expansion Levels 1–7
Stochastic Collocation Expansion Levels 1–7 Expansion Levels 1–7

Table 5.1.The 28 DAKOTA ensembles conducted to evaluate the
UQ methods.
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— particularly for the probability levels at the tails of theCDFs — at the lower expansion levels.
This is because the method is still converging to the actual estimated distribution of the response.
In general, nothing should be read into these fluctuations other than the methods do not yet have
enough data upon which to base their estimations, and thus a DAKOTA ensemble based on a

Expansion Observed
Level Evaluations

1 1
2 8
3 27
4 64
5 125
6 216
7 343

Table 5.2. Observed samples for PCE ensembles using tensor
product quadrature grids.

Probability PCE- PCE- PCE- PCE- PCE- PCE-
Level QUAD2 QUAD3 QUAD4 QUAD5 QUAD6 QUAD7
0.000001 256.0886 306.5850 290.6769 295.6303 294.3255 294.5847
0.00001 257.8407 306.8070 291.9730 296.6318 295.4277 295.6837
0.0001 261.4189 307.7672 295.2509 298.9111 298.0695 298.1935
0.001 274.4286 313.0581 305.7019 307.3761 307.2024 307.2466
0.01 316.3085 337.8036 337.9673 337.3026 337.4439 337.4783
0.05 398.5474 401.1710 403.2651 403.3936 403.3421 403.2890
0.1 464.4763 460.9952 461.5682 461.9706 462.0855 462.0222
0.2 563.3894 559.9280 559.0895 559.0692 559.0980 559.0946
0.3 645.3881 646.2299 645.8927 645.7309 645.6514 645.6443
0.4 725.8265 727.3683 727.5404 727.5061 727.4863 727.5075
0.5 807.9255 808.7758 809.0145 809.0269 809.0020 809.0106
0.6 900.6417 889.6241 890.2811 889.8611 889.9059 889.9160
0.7 1008.9456 983.6282 985.4548 985.8844 985.6563 985.7250
0.8 1142.4200 1127.4547 1120.2338 1121.0794 1121.3338 1121.2942
0.9 1324.3481 1351.5760 1345.0337 1342.4166 1342.3705 1342.4607
0.95 1459.1637 1531.8185 1537.3787 1534.9826 1534.1477 1534.0130
0.99 1644.9036 1800.1327 1838.4151 1845.9102 1846.8578 1846.7348

Evaluations 8 27 64 125 216 343

Table 5.3. Polynomial chaos expansion, tensor product grid ex-
pansion levels 2–7: Response level values.
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higher-level expansion is needed.

However, we are not particularly interested in the actual response levels shown in Table 5.3, as
the response is an arbitrary margin for a non-representative model. However, we did note that in
the left tail of the CDF approaching the 10−6 probability level, there were notable changes in the
response level for the ensembles with lower expansion levels. For example, the ensemble with a
fourth-level grid expansion (PCE-QUAD4) saw the response level drop from 337.9673 at probability
level 0.01 (10−2) to 290.6769 at probability level 10−6. We take this to mean that there is possible
utility in actually calculating these ever-smaller response levels in our actual models of interest, if
the consideration of such small levels is warranted.

We also observed that there is little change in the response around the middle of the CDF curve
as the expansion level of the ensemble increases and more observations are considered, while there
are notable changes in the response at both tails of the CDF. For example, for probability level
0.5, the response level only increases from 807.9255 to 809.0106 as the expansion level rises from
two to seven — this despite the evaluations of the ensemble increasing from 23 = 8 to 73 = 343.
However, in the left tail at probability level 0.01, the response level increases from 316.3085 to
337.4783; the change is even more pronounced in the right tail at probability level 0.99, where the
response level increases from 1644.9036 to 1846.7348. As wediscussed earlier, this is a strong
indication that higher-level expansions are needed for these estimated responses to converge.

But perhaps our greatest interest for this work is how these UQtechniques converge as the
expansion level is increased. That is, at what point does theincrease in the expansion level, and the
rise in the evaluations (and therefore cost) required for the UQ method as a result of that increase,
result in little to no change in the estimated response? To gauge this, we plot all the CDFs for
the expansion level 2–7 ensembles in Figure 5.1. As can be seen, there appears to be little change
to the response overall from a third-level expansion onward; note, for example, how the right-tail
of the CDF for the second-level expansion (blue) is to the leftof the CDF tail for the third-level
expansion (red), which is still slightly to the left of the remaining CDFs, which are stacked on top
of each other. This is perhaps better seen in Figure 5.2, which plots the CDFs for only the second-,
third-, and fourth-level expansions. There are small changes in the tails of the CDFs between the
third- and fourth-level expansions, but generally speaking the CDFs are quite similar, as can be
observed in Table 5.3. As such, there is a reasonable question as to whether the small changes in
the CDF of fourth-level expansions and onward are worth the non-linear increase in evaluations
that are required to generate those estimations.1

L2 Norms

Our arbitrary margin metric provides a localized measure tostudy in the context of uncertainty
quantification; it is highly relevant to a particular modeling scenario (i.e., a safety question for a
high-consequence system), but does not directly consider how the uncertain variables impact other

1This judgment is merely qualitative based on a visual inspection of the CDFs, which was suitable for our purposes
of better understanding these UQ methods. These differences could be quantified, but such rigor is beyond the scope
of what we sought out of these results.
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Figure 5.1. Polynomial Chaos Expansion: tensor product grid
levels 2–7.

Figure 5.2. Polynomial Chaos Expansion: tensor product grid
levels 2–4.
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Probability PCE- PCE- PCE- PCE- PCE- PCE-
Level QUAD2 QUAD3 QUAD4 QUAD5 QUAD6 QUAD7
0.000001 -0.1125 -0.1041 -0.0820 -0.0622 -0.0465 -0.0343
0.00001 -0.1110 -0.1013 -0.0779 -0.0569 -0.0403 -0.0274
0.0001 -0.1078 -0.0943 -0.0677 -0.0442 -0.0259 -0.0123
0.001 -0.0971 -0.0721 -0.0375 -0.0111 0.0038 0.0048
0.01 -0.0726 -0.0177 0.0062 0.0072 0.0074 0.0076
0.05 -0.0339 0.0075 0.0107 0.0113 0.0115 0.0113
0.1 -0.0078 0.0134 0.0151 0.0148 0.0142 0.0141
0.2 0.0247 0.0227 0.0219 0.0214 0.0217 0.0224
0.3 0.0457 0.0336 0.0312 0.0326 0.0340 0.0351
0.4 0.0600 0.0437 0.0446 0.0472 0.0490 0.0503
0.5 0.0688 0.0579 0.0613 0.0643 0.0661 0.0665
0.6 0.0775 0.0764 0.0809 0.0837 0.0840 0.0836
0.7 0.0920 0.0996 0.1033 0.1043 0.1030 0.1017
0.8 0.1131 0.1282 0.1293 0.1263 0.1246 0.1241
0.9 0.1458 0.1623 0.1579 0.1554 0.1558 0.1564
0.95 0.1723 0.1823 0.1807 0.1798 0.1796 0.1802
0.99 0.2121 0.2251 0.2207 0.2273 0.2273 0.2251

Evaluations 8 27 64 125 216 343

Table 5.4. Polynomial chaos expansion, tensor product grid ex-
pansion levels 2–7:L2 norm for response level values.

areas of the model. OurL2 andL∞ norms seek to evaluate the degree of differences explored by
the evaluations in these UQ methodologies across the entiremodel, based on a nominal case where
theκ, cp, andε material properties are not perturbed. The distribution ofthese norms is also quite
different from a thermal race margin, which unlike the normsdoes not have a minimum value of
1.0 (or any minimum, for that matter). As such, studying these variables provides possible insight
as to the behavior of these UQ methods on a different class of variables.

Table 5.4 provides the estimations of the relativeL2 norm, which measures the average differ-
ence between a given evaluation for PCE ensembles using tensor product quadrature grids. From
this table, it seems that these ensembles are slower to converge for higher levels of grid expansion
— even in the middle probability levels where we previously found the response level to converge
quite quickly. This can be graphically seen quite clearly; for example, the three CDF curves plotted
in Figure 5.2 line up much more closely than do the curves in the upcoming figures. This indicates
that uncertainty quantification efforts based on relativeL2 andL∞ norms may require additional
effort in terms of grid expansions in order for the calculated norms to converge toward each other.

One potential issue that can be drawn from Table 5.4 is that some of the estimated response
levels at the edge of the left tail are less than zero. These negative estimates occur even for seventh-
level expansions of the PCE ensemble when over 300 observations are gathered for only three
uncertain variables. These negative numbers for theL2 norms are notable because the estimates
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Figure 5.3.Polynomial chaos expansion, tensor product grid lev-
els 2–7:L2 norm for response level.

should fall within the 0.0–1.0 range that is valid for a standardizedL2 norm metric. This suggests
that careful consideration should be given to results so farout in the left tail of the CDF, espe-
cially for the lower-level PCE ensembles where smaller numbers of evaluations are available upon
which to base estimations. These negative estimates may also be reflective of the limitations of the
stochastic expansion methods themselves, and may be explained by Gibbs’ phenomenon, which
would account for the oscillating of the negativeL2 norm predictions.

Figure 5.3 illustrates how results according to this metricare slower to converge than with the
raw response level. In particular, Figure 5.4 reveals that the ensembles for expansion levels 2–4
show notable differences among each other, while Figure 5.5suggests that levels 5–7 are generally
consistent with each other with respect to differences found from the nominal case. The fact that
differences still exist in the CDFs plotted in Figure 5.4

L∞ Norms

Table 5.5 provides the estimations of the relativeL∞ norm, which measures the maximum dif-
ference between a given evaluation and the nominal case for PCE ensembles using tensor product
quadrature grids. This table suggests that theL∞ norm metric for the response is another case where
the PCE ensembles are slower to converge, at least when based on tensor product quadrature grids,
than for the response itself.
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Figure 5.4.Polynomial chaos expansion, tensor product grid lev-
els 2–4:L2 norm for response level.

Figure 5.5.Polynomial chaos expansion, tensor product grid lev-
els 5–7:L2 norm for response level.

33



Probability PCE- PCE- PCE- PCE- PCE- PCE-
Level QUAD2 QUAD3 QUAD4 QUAD5 QUAD6 QUAD7
0.000001 -0.0623 -0.0482 -0.0160 0.0111 0.0214 0.0358
0.00001 -0.0601 -0.0439 -0.0112 0.0154 0.0269 0.0397
0.0001 -0.0533 -0.0338 0.0003 0.0254 0.0389 0.0504
0.001 -0.0397 -0.0123 0.0240 0.0465 0.0558 0.0579
0.01 -0.0056 0.0429 0.0584 0.0663 0.0595 0.0624
0.05 0.0381 0.0804 0.0751 0.0742 0.0705 0.0683
0.1 0.0661 0.0861 0.0823 0.0782 0.0750 0.0726
0.2 0.1006 0.0955 0.0903 0.0870 0.0850 0.0842
0.3 0.1227 0.1061 0.1007 0.1004 0.1009 0.1015
0.4 0.1379 0.1164 0.1160 0.1178 0.1189 0.1198
0.5 0.1472 0.1314 0.1348 0.1367 0.1385 0.1391
0.6 0.1565 0.1514 0.1560 0.1578 0.1586 0.1594
0.7 0.1714 0.1772 0.1795 0.1802 0.1809 0.1809
0.8 0.1933 0.2101 0.2107 0.2077 0.2091 0.2076
0.9 0.2274 0.2533 0.2512 0.2501 0.2501 0.2488
0.95 0.2548 0.2812 0.2820 0.2819 0.2799 0.2815
0.99 0.2951 0.3296 0.3225 0.3208 0.3221 0.3225

Evaluations 8 27 64 125 216 343

Table 5.5. Polynomial chaos expansion, tensor product grid ex-
pansion levels 2–7:L∞ norm for response level values.

It is notable that from a fifth-level grid expansion onward wedo not have any “erroneous”
estimates of aL∞ norm that are less than 0.0. This may be one indication regarding the expansion
level needed for an ensemble to ensure accurate and reliableresults. It is not surprising thatL∞

norms were estimated to be greater than 0.0, for the lowest probability levels, for expansion levels
whose same levels were consistently less than 0.0 forL2 norms. This is becauseL∞ norms take a
maximum and will naturally be greater thanL2 norms, so we would expectL∞ norm estimations
to more rapidly gravitate above 0.0 (perhaps due to this normbeing smoother near 0.0).

As with the previously presentedL2 norms, we plot the CDFs for theL∞ norms for these PCE
ensemble using tensor product quadrature grids in Figure 5.6, and then divide those CDFs up
between expansion levels 2–4 and 5–7 in Figures 5.7 and 5.8.

Once again, in Figure 5.7 we see notable differences in the CDFs resulting from the lower grid
expansion levels. These differences are much smaller in Figure 5.8, although we can see from this
figure that differences can be seen in the left tails of the CDFs(which, as stated in Section 4, we
are especially interested in). Because theL∞ norms aim to illustrate the maximum difference from
the nominal case, Figure 5.8 suggests these differences maybe greatest in magnitude within the
left tails of the CDFs. This is of key significance because lefttails (i.e., low probability events) are
often of special interest in safety-related questions involving high-consequence systems.
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Figure 5.6.Polynomial chaos expansion, tensor product grid lev-
els 2–7:L∞ norm for response level.

Figure 5.7.Polynomial chaos expansion, tensor product grid lev-
els 2–4:L∞ norm for response level.
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Figure 5.8.Polynomial chaos expansion, tensor product grid lev-
els 5–7:L∞ norm for response level.

Probability-level Convergence Plots

The final analysis we perform for each stochastic expansion method explored is a verification
of whether increasing the expansion levels of the grids leadto a quantifiable convergence of the
method. In this case, convergence is measured in terms of thedifferences between each lower-level
evaluation and the highest-level evaluation performed (inthis case, the seventh-level expansion
of the tensor product quadrature grid), which is taken to represent the “true” solution to assess
convergence in the Cauchy sense [4].

Figure 5.9 presents the convergence of the differences in margin calculations between the
seventh-level expansion of the tensor product quadrature grids, taken to be the true solution, with
each of the first- to sixth-level grid expansions. These differences are plotted on a logarithmic scale
due to the wide numerical range of data. Figure 5.10 plots thesame differences against the number
of DAKOTA evaluations performed for each expansion level (also plotted logarithmically). The
calculations plotted in this figures are offered in Table 5.6. We considered the predicted response
levels at the 10−5 probability level because those were the lowest probability level where DAKOTA
was able to conduct enough samples off the basis functions toprovide a reasonable estimate of the
response. The square of these differences between each estimate and the seventh-level estimate
is plotted to expand the space between estimates very close to the solution and those that are not,
as well as to ensure the plotted differences are positive andnot sensitive to the direction of the
difference from the seventh-level response.
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Figure 5.9. Convergence of the calculated margins from PCE as
the quadrature grid level increases.

Figure 5.10. Convergence of the calculated margins from PCE,
based on quadrature grids, as the number of DAKOTA evaluations
increases.

37



Expansion DAKOTA Response at10−5 Difference from Square of the
Level Evaluations Probability Level 7th-level Response Difference

1 1 796.6431073 -500.9593939 250960.3144
2 8 257.8406706 37.84304285 1432.095892
3 27 306.8069935 -11.12328005 123.7273591
4 64 291.9729886 3.71072476 13.76947824
5 125 296.6318 -0.94808662 0.898868239
6 216 295.4276891 0.25602433 0.065548458
7 343 295.6837134 0.0 0.0

Table 5.6.Convergence of estimated response to a “true” solution
at the seventh-level quadrature grid expansion using PCE.

As can be seen in this figures, there is still demonstrable progress toward converging to this
“solution” even up to the sixth-level expansion. This actually runs contrary to some of the visual
trends we observed in Figures 5.1 and 5.2, where it appeared the CDFs were virtually identical
from the fourth-level expansion onward. However, this progress that is being made is very small
— in some cases less than a second — and may not be justified by the expense of these higher-level
ensembles.
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Stochastic Collocation: Tensor Product Quadrature Grids

The second set of ensembles we present are those driven by SC using tensor product quadrature
grids. The observed number of evaluations to generate the basis functions in these ensembles are
provided in Table 5.7. Note that these numbers are the same asthose previously presented in Table
5.2 for the polynomial chaos expansion results based on tensor product quadrature grids.

In fact, when either the polynomial chaos or stochastic collocation methods are based on tensor
product quadrature grids, the expansion levels result in the same 3n samples being selected for the
three uncertain variables being studied. This means that the results for each method are the same.
Tables 5.8–5.10 are presented below for comparison againstthe results using the polynomial chaos
expansion based on tensor product quadrature expansion levels, previously presented in Tables
5.3–5.5. Because these results are the same, we do not presentthe duplicate figures or convergence
plots as well.

Expansion Observed
Level Evaluations

1 1
2 8
3 27
4 64
5 125
6 216
7 343

Table 5.7. Observed samples for SC ensembles using tensor
product quadrature grids.
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Probability SC- SC- SC- SC- SC- SC-
Level QUAD2 QUAD3 QUAD4 QUAD5 QUAD6 QUAD7
0.000001 256.0886 306.5850 290.6769 295.6303 294.3255 294.5847
0.00001 257.8407 306.8070 291.9730 296.6318 295.4277 295.6837
0.0001 261.4189 307.7672 295.2509 298.9111 298.0695 298.1935
0.001 274.4286 313.0581 305.7019 307.3761 307.2024 307.2466
0.01 316.3085 337.8036 337.9673 337.3026 337.4439 337.4783
0.05 398.5474 401.1710 403.2651 403.3936 403.3421 403.2890
0.1 464.4763 460.9952 461.5682 461.9706 462.0855 462.0222
0.2 563.3894 559.9280 559.0895 559.0692 559.0980 559.0946
0.3 645.3881 646.2299 645.8927 645.7309 645.6514 645.6443
0.4 725.8265 727.3683 727.5404 727.5061 727.4863 727.5075
0.5 807.9255 808.7758 809.0145 809.0269 809.0020 809.0106
0.6 900.6417 889.6241 890.2811 889.8611 889.9059 889.9160
0.7 1008.9456 983.6282 985.4548 985.8844 985.6563 985.7250
0.8 1142.4200 1127.4547 1120.2338 1121.0794 1121.3338 1121.2942
0.9 1324.3481 1351.5760 1345.0337 1342.4166 1342.3705 1342.4607
0.95 1459.1637 1531.8185 1537.3787 1534.9826 1534.1477 1534.0130
0.99 1644.9036 1800.1327 1838.4151 1845.9102 1846.8578 1846.7348

Evaluations 8 27 64 125 216 343

Table 5.8. Stochastic collocation, tensor product grid expansion
levels 2–7: Response level values.
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Probability SC- SC- SC- SC- SC- SC-
Level QUAD2 QUAD3 QUAD4 QUAD5 QUAD6 QUAD7
0.000001 -0.1125 -0.1041 -0.0820 -0.0622 -0.0465 -0.0343
0.00001 -0.1110 -0.1013 -0.0779 -0.0569 -0.0403 -0.0274
0.0001 -0.1078 -0.0943 -0.0677 -0.0442 -0.0259 -0.0123
0.001 -0.0971 -0.0721 -0.0375 -0.0111 0.0038 0.0048
0.01 -0.0726 -0.0177 0.0062 0.0072 0.0074 0.0076
0.05 -0.0339 0.0075 0.0107 0.0113 0.0115 0.0113
0.1 -0.0078 0.0134 0.0151 0.0148 0.0142 0.0141
0.2 0.0247 0.0227 0.0219 0.0214 0.0217 0.0224
0.3 0.0457 0.0336 0.0312 0.0326 0.0340 0.0351
0.4 0.0600 0.0437 0.0446 0.0472 0.0490 0.0503
0.5 0.0688 0.0579 0.0613 0.0643 0.0661 0.0665
0.6 0.0775 0.0764 0.0809 0.0837 0.0840 0.0836
0.7 0.0920 0.0996 0.1033 0.1043 0.1030 0.1017
0.8 0.1131 0.1282 0.1293 0.1263 0.1246 0.1241
0.9 0.1458 0.1623 0.1579 0.1554 0.1558 0.1564
0.95 0.1723 0.1823 0.1807 0.1798 0.1796 0.1802
0.99 0.2121 0.2251 0.2207 0.2273 0.2273 0.2251

Evaluations 8 27 64 125 216 343

Table 5.9.Stochastic collocation, tensor product grid levels 2–7:
L2 norm for response level.
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Probability SC- SC- SC- SC- SC- SC-
Level QUAD2 QUAD3 QUAD4 QUAD5 QUAD6 QUAD7
0.000001 -0.0623 -0.0482 -0.0160 0.0111 0.0214 0.0358
0.00001 -0.0601 -0.0439 -0.0112 0.0154 0.0269 0.0397
0.0001 -0.0533 -0.0338 0.0003 0.0254 0.0389 0.0504
0.001 -0.0397 -0.0123 0.0240 0.0465 0.0558 0.0579
0.01 -0.0056 0.0429 0.0584 0.0663 0.0595 0.0624
0.05 0.0381 0.0804 0.0751 0.0742 0.0705 0.0683
0.1 0.0661 0.0861 0.0823 0.0782 0.0750 0.0726
0.2 0.1006 0.0955 0.0903 0.0870 0.0850 0.0842
0.3 0.1227 0.1061 0.1007 0.1004 0.1009 0.1015
0.4 0.1379 0.1164 0.1160 0.1178 0.1189 0.1198
0.5 0.1472 0.1314 0.1348 0.1367 0.1385 0.1391
0.6 0.1565 0.1514 0.1560 0.1578 0.1586 0.1594
0.7 0.1714 0.1772 0.1795 0.1802 0.1809 0.1809
0.8 0.1933 0.2101 0.2107 0.2077 0.2091 0.2076
0.9 0.2274 0.2533 0.2512 0.2501 0.2501 0.2488
0.95 0.2548 0.2812 0.2820 0.2819 0.2799 0.2815
0.99 0.2951 0.3296 0.3225 0.3208 0.3221 0.3225

Evaluations 8 27 64 125 216 343

Table 5.10.Stochastic collocation, tensor product grid expansion
levels 2–7:L∞ norm for response level values.

42



Polynomial Chaos Expansion: Smolyak Sparse Grids

The third set of ensembles we present are those driven by polynomial chaos expansion, but this
time using Smolyak sparse grids. The observed number of evaluations to generate the basis func-
tions in these ensembles are provided in Table 5.11. Note that these numbers are much larger than
those previously presented in Table 5.2, despite the fact that sparse grids are generally supposed
to result in slower growth rates than do tensor product quadrature grids. This is because having
only three uncertain variables in this formative case studyslows themn growth of the quadrature
grid methodology. If the number of uncertain variables weremuch larger (such as 10 or 20), the
quadrature grid growth would rapidly eclipse that of the sparse grids.

Response Level

Table 5.12 presents the results for the PCE ensembles using Smolyak sparse grids. For this
set of ensembles, we also present the results from the first-level sparse grid expansion, which for
stochastic collocation contains seven evaluations instead of one, in addition to the second- through
seventh-level ensembles. We also provide the observed number of evaluations to generate the basis
functions in this table.

As before, we are not particularly concerned with the actualresponses shown in Table 5.12, as
they come from an arbitrary margin. We did notice for this setof ensembles that the convergence of
those response values, however, occurred quite rapidly. InFigure 5.11, the CDF plots converged by
the second-level expansion, even at the left-tail that was sometimes slower to converge in previous
ensembles. This can also be seen from Table 5.12, where the values are already quite close to each
other from the PCE-SGRID2 column and onward to the right side ofthe table. This more rapid
convergence could be at least in part due to the increased number of evaluations that were required
for the sparse grids (due to the small number of uncertain variables that were studied).

Expansion Observed
Level Evaluations

1 7
2 31
3 111
4 303
5 687
6 1375
7 2335

Table 5.11.Observed samples for PCE ensembles using Smolyak
sparse grids.
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Probability PCE- PCE- PCE- PCE- PCE- PCE- PCE-
Level SGRID1 SGRID2 SGRID3 SGRID4 SGRID5 SGRID6 SGRID7
0.000001 215.1997 282.4075 294.3085 294.8279 294.3912 294.5794 294.4411
0.00001 215.4527 283.9526 295.4558 295.8747 295.5438 295.6950 295.5937
0.0001 216.8676 287.5845 298.0398 298.3399 298.1524 298.2592 298.2137
0.001 224.7357 299.8211 307.2737 307.2833 307.2309 307.2553 307.2478
0.01 260.7595 337.1567 337.4329 337.4517 337.4691 337.4618 337.4817
0.05 351.2758 405.2467 403.2915 403.3420 403.2973 403.2892 403.2659
0.1 432.8379 462.1477 461.9964 462.0257 462.0323 462.0257 462.0102
0.2 562.5460 557.9411 559.0494 559.1181 559.0891 559.1130 559.0758
0.3 670.3572 644.7116 645.6414 645.6487 645.6729 645.6890 645.6827
0.4 767.1856 727.4888 727.5009 727.5024 727.5140 727.5232 727.5390
0.5 856.2118 809.0351 808.9883 809.0080 809.0088 808.9969 808.9794
0.6 939.3272 889.7840 889.9094 889.9101 889.9169 889.9230 889.9130
0.7 1019.2579 984.8884 985.7016 985.7002 985.6932 985.7191 985.7254
0.8 1130.3803 1123.1665 1121.2531 1121.2539 1121.2792 1121.2813 1121.2882
0.9 1297.6923 1347.1099 1342.4779 1342.4507 1342.4532 1342.4596 1342.5075
0.95 1424.8485 1535.7407 1533.8969 1533.9950 1534.0185 1533.9955 1534.0297
0.99 1604.9770 1833.5808 1846.6070 1846.6492 1846.6357 1846.6175 1846.6890

Evaluations 7 31 111 303 687 1375 2335

Table 5.12. Polynomial chaos expansion, sparse grid expansion
levels 1–7: Response level values.
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Figure 5.11.Polynomial chaos expansion, sparse grid expansion
levels 1–7: Response level values.

L2 Norms

The observedL2 norms depicting the average differences seen in each evaluation a “nominal”
simulation are shown in Table 5.13, with Figure 5.12 providing the plots of the CDFs for the seven
expansion levels for the sparse grids, Figure 5.13 splitting out the first- through fourth-level plots,
and Figure 5.14 showing the fifth- through seventh-level plots.

Figure 5.12 shows that the CDFs for the first- through fourth-level grid expansions vary quite
noticeably. This is even more clear in Figure 5.13, which provides only these four cumulative
distribution functions. However, as can be seen in Figure 5.14, the CDFs for theseL2 norms settle
in relatively nicely by the fifth-level expansion, althoughthere are still slight differences seen in
the left tail of the functions. This behavior with Smolyak sparse grids mimics what we saw for the
early sets of ensembles that utilized tensor product quadrature grids. It appears that a fifth-level
expansion is needed for less smooth metrics such asL2 andL∞ norms, based on this result as well
as the previous sets of ensembles.

In Table 5.13, we again observed estimatedL2 values that were less than zero, which should not
be possible since the relative norms must have values greater than zero. In this set of ensembles,
a sixth-level grid expansion was required before these negative values were not seen at our lowest
probability levels. Also, recall that we only sampled the generated expansions 1,000,000 times due
to limitations in DAKOTA with keeping so many samples in memory in order to predict responses
at each probability level. This means that only one data point is used to generate the estimated
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Probability PCE- PCE- PCE- PCE- PCE- PCE- PCE-
Level SGRID1 SGRID2 SGRID3 SGRID4 SGRID5 SGRID6 SGRID7
0.000001 0.0046 -0.1196 -0.0075 -0.0533 -0.0004 0.0018 0.0015
0.00001 0.0047 -0.1159 -0.0074 -0.0446 0.0004 0.0019 0.0016
0.0001 0.0048 -0.1100 -0.0067 -0.0225 0.0026 0.0023 0.0020
0.001 0.0055 -0.0921 -0.0040 -0.0020 0.0054 0.0033 0.0035
0.01 0.0076 -0.0446 0.0074 0.0043 0.0090 0.0065 0.0067
0.05 0.0144 0.0085 0.0163 0.0111 0.0133 0.0111 0.0111
0.1 0.0229 0.0211 0.0241 0.0156 0.0176 0.0145 0.0145
0.2 0.0398 0.0403 0.0348 0.0248 0.0261 0.0252 0.0252
0.3 0.0567 0.0524 0.0436 0.0370 0.0365 0.0377 0.0377
0.4 0.0736 0.0589 0.0535 0.0518 0.0501 0.0505 0.0505
0.5 0.0905 0.0673 0.0669 0.0678 0.0653 0.0654 0.0651
0.6 0.1075 0.0826 0.0842 0.0837 0.0818 0.0824 0.0823
0.7 0.1257 0.1061 0.1043 0.1002 0.1014 0.1014 0.1015
0.8 0.1483 0.1353 0.1247 0.1236 0.1256 0.1251 0.1249
0.9 0.1788 0.1621 0.1523 0.1572 0.1560 0.1564 0.1564
0.95 0.2056 0.1838 0.1801 0.1805 0.1802 0.1798 0.1801
0.99 0.2529 0.2191 0.2272 0.2239 0.2272 0.2259 0.2263

Evaluations 7 31 111 303 687 1375 2335

Table 5.13. Polynomial chaos expansion, sparse grid expansion
levels 1–7:L2 norm for response level values.

response value at the 10−6 probability level. Thus, it is probably more reasonable to note that a
fifth-level expansion was required to eliminate these negative estimates, rather than a sixth-level
expansion where the only negative estimated response was based on an insufficient number of
samples.

L∞ Norms

The results for theL∞ norms, provided in Table 5.14, closely resemble those for the L2 norms
in that there are significant differences in the CDFs until we reach a fifth-level grid expansion; this
can be seen in both Figures 5.15 and 5.16. At this point, as canbe seen in Figure 5.17, the functions
are quite close together. However, there are still slight differences in the left tails for the fifth-level
expansion as compared to the rest of the higher-level expansions.

Similar to the previous polynomial chaos expansion ensembles using tensor product quadrature
grids, we find few instances in Table 5.14 of negative estimatedL∞ norms, which in practice should
not be seen. Another interesting observation from Table 5.14 is column PCE-SGRID4, where the
estimated response values at the lower probability levels of the CDF’s left tail are quite different
from those in the third- and fifth-level expansions. It is notclear to us why this was the case, other
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Figure 5.12.Polynomial chaos expansion, sparse grid expansion
levels 1–7:L2 norm for response level values.

Figure 5.13.Polynomial chaos expansion, sparse grid expansion
levels 1–4:L2 norm for response level values.
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Figure 5.14.Polynomial chaos expansion, sparse grid expansion
levels 5–7:L2 norm for response level values.

than it being evidence that the fourth-level grid expansionwas not sufficient.

Probability-level Convergence Plots

Figure 5.18 presents the logarithmic convergence plot showing differences in margin calcu-
lations between the seventh-level expansion of the Smolyaksparse grids — once again taken to
represent a “true” solution — with each of the first- to sixth-level expansions, while Figure 5.19
plots the same information against the number of DAKOTA evaluations performed for each expan-
sion level. These figures are based on calculations offered in Table 5.15.

Perhaps the most interesting characteristic of Figures 5.18 and 5.19 is the oscillation that occurs
in the convergence plots beginning at the fourth-level expansion. This suggests that the DAKOTA
ensembles have hit a point of diminishing returns where the estimates provided by the higher-level
PCE ensembles are not improved in accuracy from the lower-level ensembles. In this particular
case, given that the fourth-level ensemble’s estimates areless accurate than the third-level en-
semble’s estimates (as measured by the seventh-level ensemble), a third-level ensemble is likely
sufficient — especially from a cost-benefit criterion.
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Probability PCE- PCE- PCE- PCE- PCE- PCE- PCE-
Level SGRID1 SGRID2 SGRID3 SGRID4 SGRID5 SGRID6 SGRID7
0.000001 0.0757 -0.0499 0.0411 0.0039 0.0384 0.0412 0.0411
0.00001 0.0758 -0.0441 0.0420 0.0108 0.0387 0.0415 0.0412
0.0001 0.0762 -0.0352 0.0433 0.0306 0.0396 0.0423 0.0418
0.001 0.0775 -0.0104 0.0441 0.0482 0.0424 0.0453 0.0454
0.01 0.0815 0.0444 0.0492 0.0551 0.0493 0.0525 0.0531
0.05 0.0891 0.0689 0.0628 0.0644 0.0608 0.0615 0.0608
0.1 0.0968 0.0787 0.0710 0.0718 0.0682 0.0693 0.0686
0.2 0.1122 0.0924 0.0843 0.0846 0.0834 0.0869 0.0866
0.3 0.1276 0.1010 0.0980 0.1010 0.1027 0.1037 0.1039
0.4 0.1431 0.1115 0.1140 0.1189 0.1225 0.1204 0.1206
0.5 0.1600 0.1264 0.1340 0.1385 0.1413 0.1388 0.1389
0.6 0.1788 0.1474 0.1561 0.1595 0.1590 0.1591 0.1589
0.7 0.1987 0.1776 0.1794 0.1822 0.1802 0.1809 0.1807
0.8 0.2195 0.2140 0.2065 0.2082 0.2055 0.2057 0.2061
0.9 0.2475 0.2529 0.2496 0.2480 0.2511 0.2509 0.2509
0.95 0.2747 0.2778 0.2837 0.2805 0.2820 0.2813 0.2820
0.99 0.3265 0.3349 0.3268 0.3225 0.3202 0.3213 0.3207

Evaluations 7 31 111 303 687 1375 2335

Table 5.14. Polynomial chaos expansion, sparse grid expansion
levels 1–7:L∞ norm for response level values.

Expansion DAKOTA Response at10−5 Difference from Square of the
Level Evaluations Probability Level 7th-level Response Difference

1 7 215.45274 80.14093221 6422.569015
2 31 283.9525515 11.64112077 135.5156928
3 111 295.4558495 0.13782275 0.01899511
4 303 295.8746728 -0.28100052 0.078961292
5 687 295.5437537 0.04991855 0.002491862
6 1375 295.6949642 -0.101292 0.010260069
7 2335 295.5936722 0.0 0.0

Table 5.15.Convergence of estimated response to a “true” solu-
tion at the seventh-level sparse grid expansion using PCE.

49



Figure 5.15.Polynomial chaos expansion, sparse grid expansion
levels 1–7:L∞ norm for response level values.

Figure 5.16.Polynomial chaos expansion, sparse grid expansion
levels 1–4:L∞ norm for response level values.
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Figure 5.17.Polynomial chaos expansion, sparse grid expansion
levels 5–7:L∞ norm for response level values.

Figure 5.18. Convergence of the calculated margins from PCE
as the sparse grid level increases.
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Figure 5.19. Convergence of the calculated margins from PCE,
based on sparse grids, as the number of DAKOTA evaluations in-
creases.

Stochastic Collocation: Smolyak Sparse Grids

The final set of ensembles we present are those driven by stochastic collocation using Smolyak
sparse grids. The observed number of evaluations to generate the basis functions in these ensem-
bles are provided in Table 5.16. These numbers are the same asthose seen in Table 5.11 showing
the evaluations using polynomial chaos expansion driven bySmolyak sparse grids.

Expansion Observed
Level Evaluations

1 7
2 31
3 111
4 303
5 687
6 1375
7 2335

Table 5.16.Observed samples for SC ensembles using Smolyak
sparse grids.
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Probability SC- SC- SC- SC- SC- SC- SC-
Level SGRID1 SGRID2 SGRID3 SGRID4 SGRID5 SGRID6 SGRID7
0.000001 215.1997 282.0272 294.5557 294.7355 294.3713 294.4860 294.4860
0.00001 215.4527 283.6524 295.6558 295.7960 295.5427 295.6197 295.6197
0.0001 216.8676 287.4172 298.1725 298.3573 298.1440 298.2376 298.2376
0.001 224.7357 299.7396 307.2922 307.2480 307.2669 307.2667 307.2667
0.01 260.7595 337.1838 337.4512 337.4404 337.4778 337.4576 337.4576
0.05 351.2758 405.2556 403.2983 403.3370 403.2968 403.2940 403.2940
0.1 432.8379 462.1519 461.9793 462.0225 462.0265 462.0376 462.0376
0.2 562.5460 557.9495 559.0601 559.1064 559.0883 559.1044 559.1044
0.3 670.3572 644.7091 645.6418 645.6468 645.6724 645.6817 645.6817
0.4 767.1856 727.5014 727.5031 727.5075 727.5117 727.5266 727.5266
0.5 856.2118 809.0456 808.9890 809.0090 809.0131 809.0023 809.0023
0.6 939.3272 889.7782 889.9113 889.9093 889.9239 889.9229 889.9229
0.7 1019.2579 984.8661 985.6989 985.6995 985.6995 985.7096 985.7096
0.8 1130.3803 1123.1674 1121.2601 1121.2550 1121.2817 1121.2884 1121.2884
0.9 1297.6923 1347.0931 1342.4535 1342.4377 1342.4662 1342.4729 1342.4729
0.95 1424.8485 1535.7777 1533.9106 1533.9889 1534.0031 1533.9975 1533.9975
0.99 1604.9770 1833.6019 1846.6140 1846.6518 1846.6336 1846.6646 1846.6646

Evaluations 7 31 111 303 687 1375 2335

Table 5.17. Stochastic collocation, sparse grid expansion levels
1–7: Response level values.

Response Level

Table 5.17 shows the estimated responses for the specified probability levels that make up the
CDFs plotted in Figure 5.20. The estimated responses for the first-level SC grid expansion are the
same as those for the first-level PCE grid expansion. The estimated responses using SC for the
remaining grid expansion levels very closely resemble those using polynomial chaos expansion.
Thus, using Smolyak sparse grids, the same trends we earlierobserved for PCE hold here for SC.
Namely, estimations for the margin converged by the third-level expansion. Although we would
expect this convergence to take longer with a more complicated model where a larger number of
uncertain variables might be studied, the early convergence of these CDFs is encouraging because
it suggests we may be able to get accurate estimates from the UQ methods using relatively low-
level studies that are not exorbitantly expensive.

L2 Norms

The results from this set of ensembles with respect to theL2 norms, summarized in Table 5.18
and Figure 5.21, also closely resemble those from previous ensembles. For the first four expansion
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Figure 5.20.Polynomial chaos expansion, sparse grid expansion
levels 1–7: Response level values.

levels for the grids, the CDFs generated from stochastic collocation with Smolyak sparse grids do
not converge particularly well, as can be seen in Figure 5.22. However, by the fifth-level expansion,
the CDFs converge quite well except at the left-most tails, which can be seen in Figure 5.23.

Table 5.18 also shows negative estimates for theL2 norms for the first- through fourth-level
grid expansions. These negative estimates disappear by thefifth-level expansion, which is approx-
imately the same point where they no longer appeared in the previous sets of ensembles.

L∞ Norms

The L∞ norms for this set of ensembles, shown in Table 5.19 and Figure 5.24, also resemble
those in previous ensembles. Negative estimates are seen inTable 5.19 in the column for the
second-level grid expansion (SC-SGRID2), but no where else inthe table. It can be seen in Figure
5.25 that the cumulative distribution functions for the first four expansion levels vary noticeably,
but converge quite well by the fifth-level expansion (see Figure 5.26).

Probability-level Convergence Plots

The convergence plots for the stochastic collocation ensembles driven by Smolyak sparse grids,
presented in Figures 5.27 and 5.28 show a similar trend as seen for the sparse-grid-based PCE
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Probability SC- SC- SC- SC- SC- SC- SC-
Level SGRID1 SGRID2 SGRID3 SGRID4 SGRID5 SGRID6 SGRID7
0.000001 0.0046 -0.1286 -0.0058 -0.0355 0.0039 0.0050 0.0051
0.00001 0.0047 -0.1239 -0.0054 -0.0295 0.0045 0.0051 0.0051
0.0001 0.0048 -0.1171 -0.0041 -0.0145 0.0059 0.0051 0.0054
0.001 0.0055 -0.0947 -0.0011 0.0058 0.0067 0.0054 0.0058
0.01 0.0076 -0.0438 0.0080 0.0081 0.0095 0.0076 0.0074
0.05 0.0144 0.0107 0.0161 0.0126 0.0135 0.0111 0.0112
0.1 0.0229 0.0222 0.0238 0.0163 0.0175 0.0144 0.0145
0.2 0.0398 0.0400 0.0351 0.0245 0.0256 0.0249 0.0249
0.3 0.0567 0.0517 0.0437 0.0361 0.0365 0.0376 0.0377
0.4 0.0736 0.0581 0.0535 0.0507 0.0502 0.0508 0.0507
0.5 0.0905 0.0672 0.0665 0.0672 0.0655 0.0653 0.0651
0.6 0.1075 0.0830 0.0839 0.0842 0.0820 0.0823 0.0822
0.7 0.1257 0.1061 0.1044 0.1011 0.1012 0.1017 0.1016
0.8 0.1483 0.1347 0.1252 0.1236 0.1252 0.1251 0.1250
0.9 0.1788 0.1623 0.1523 0.1566 0.1562 0.1563 0.1564
0.95 0.2056 0.1839 0.1793 0.1800 0.1802 0.1799 0.1799
0.99 0.2529 0.2185 0.2260 0.2256 0.2264 0.2261 0.2261

Evaluations 7 31 111 303 687 1375 2335

Table 5.18. Stochastic collocation, sparse grid expansion levels
1–7: L2 norm for response level values.
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Figure 5.21.Stochastic collocation, sparse grid expansion levels
1–7: L2 norm for response level values.

Figure 5.22.Stochastic collocation, sparse grid expansion levels
1–4: L2 norm for response level values.
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Figure 5.23.Stochastic collocation, sparse grid expansion levels
5–7: L2 norm for response level values.

Figure 5.24.Stochastic collocation, sparse grid expansion levels
1–7: L∞ norm for response level values.
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Probability SC- SC- SC- SC- SC- SC- SC-
Level SGRID1 SGRID2 SGRID3 SGRID4 SGRID5 SGRID6 SGRID7
0.000001 0.0757 -0.0467 0.0416 0.0070 0.0423 0.0463 0.0464
0.00001 0.0758 -0.0412 0.0421 0.0152 0.0426 0.0466 0.0468
0.0001 0.0762 -0.0327 0.0431 0.0351 0.0434 0.0473 0.0472
0.001 0.0775 -0.0094 0.0454 0.0500 0.0457 0.0490 0.0496
0.01 0.0815 0.0440 0.0497 0.0566 0.0517 0.0539 0.0541
0.05 0.0891 0.0688 0.0630 0.0653 0.0618 0.0617 0.0611
0.1 0.0968 0.0786 0.0714 0.0721 0.0685 0.0691 0.0684
0.2 0.1122 0.0926 0.0844 0.0844 0.0832 0.0865 0.0862
0.3 0.1276 0.1012 0.0977 0.1005 0.1021 0.1037 0.1040
0.4 0.1431 0.1115 0.1138 0.1188 0.1217 0.1206 0.1208
0.5 0.1600 0.1263 0.1338 0.1386 0.1411 0.1388 0.1389
0.6 0.1788 0.1473 0.1562 0.1594 0.1595 0.1591 0.1590
0.7 0.1987 0.1775 0.1795 0.1818 0.1803 0.1806 0.1804
0.8 0.2195 0.2140 0.2065 0.2081 0.2059 0.2060 0.2062
0.9 0.2475 0.2528 0.2494 0.2488 0.2506 0.2504 0.2508
0.95 0.2747 0.2775 0.2837 0.2807 0.2820 0.2814 0.2820
0.99 0.3265 0.3347 0.3269 0.3218 0.3206 0.3209 0.3208

Evaluations 7 31 111 303 687 1375 2335

Table 5.19. Stochastic collocation, sparse grid expansion levels
1–7: L∞ norm for response level values.
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Figure 5.25.Stochastic collocation, sparse grid expansion levels
1–4: L∞ norm for response level values.

Figure 5.26.Stochastic collocation, sparse grid expansion levels
5–7: L∞ norm for response level values.
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Figure 5.27. Convergence of the calculated margins from SC as
the sparse grid level increases.

ensembles: it is not clear that ensembles beyond a third-level expansion add precision to the es-
timates made concerning the margin. The fact that this was seen for both types of stochastic
expansion DAKOTA ensembles, and not for the quadrature-grid-based ensembles, is illuminating
and suggests that sparse grid ensembles may achieve measurable convergence around third-level
grid expansions. Of course, the ensembles explored in this work considered only three uncertain
variables, and it is likely that higher-dimension ensembles with additional uncertain variables may
require a higher grid expansions to achieve convergence.
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Figure 5.28. Convergence of the calculated margins from SC,
based on sparse grids, as the number of DAKOTA evaluations in-
creases.

Expansion DAKOTA Response at10−5 Difference from Square of the
Level Evaluations Probability Level 7th-level Response Difference

1 7 215.45274 80.15192573 6422.569015
2 31 283.6524202 11.9522456 135.5156928
3 111 295.6557654 -0.05109963 0.01899511
4 303 295.7960191 -0.19135333 0.078961292
5 687 295.5427226 0.06194315 0.002491862
6 1375 295.6197297 -0.01506397 0.010260069
7 2335 295.6046658 0.0 0.0

Table 5.20.Convergence of estimated response to a “true” solu-
tion at the seventh-level sparse grid expansion using SC.
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Chapter 6

Concluding Remarks

This report explored the use of the DAKOTA toolkit’s polynomial chaos expansion and stochas-
tic collocation methods, using both tensor product quadrature and Smolyak sparse grids, for a
model with a mesh containing over 150,000 tetrahedral finiteelements. From these four sets of UQ
ensembles, a number of observations can be drawn and appliedto future uses of these DAKOTA
methodologies.

Probability Levels

First, although our response metric was arbitrary in nature, we consistently saw noticeable
fluctuations in the estimated response levels for increasingly lower probability levels. For example,
the PCE ensembles using tensor product quadrature grids witha fourth-level expansion saw the
response level drop from 337.9673 at probability level 0.01(10−2) to 290.6769 at probability
level 10−6. Similar observations can be seen for the other methodologies. Because we observed
non-trivial differences in the predicted response levels for probability levels such as 10−2 versus
10−6, we believe there is potential benefit to considering these ever-smaller probability levels in
other scenarios for high-consequence systems (if it makes sense to predict responses at such small
probability levels for the problem in question).

We also observed that there is less change in the estimated responses around the middle of
the CDF curves as the grid expansion level of the ensembles increase and more observations are
considered, while there are notable changes in the responseat both tails of the CDF; we can say this
especially for the left tails where we focused our attentionin this work. Investigators can use these
lessons to help determine how rapidly areas of a CDF that are ofinterest to them will converge for
ensembles with higher-level grid expansions. In many (but presumably not all) cases, investigators
will have interest in their responses at the tails of a CDF, andmore expensive ensembles will likely
be needed for the cumulative distribution functions in those areas to converge.

Convergence of Cumulative Distribution Functions

On the subject of convergence of cumulative distribution functions, we noticed that there was
often little change in the CDFs of our thermal race margin response for ensembles with third-
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level grid expansions and onward. As such, it may not be necessary to conduct ensembles larger
than third- or fourth-level expansions on larger problem sizes. Further analysis on this topic is
warranted.

This work also found evidence that the needed grid expansionlevel for CDF convergence may
also depend on the region of a cumulative distribution function that is of interest to investigators.
As mentioned earlier, for the problem we investigated, we found that convergence was generally
slowest in the tails of the CDFs, especially the left tail. However, we caution that we did not invest
the effort to conduct statistical analyses to quantitatively measure the differences in these CDFs.
A rigorous quantitative analysis of these functions was beyond the scope of this work. Instead, the
judgments we have made with respect to regions of the CDF that converged were qualitative, and
therefore limited, in nature.

Finally, we observed that convergence of CDFs was generally slower for theL2 norms andL∞

norms than for the response itself. We found that for these norms, the grid expansion level may
need to be taken as high as a fifth-level expansion before realconvergence is seen in the cumulative
distribution functions. This was observed for both polynomial chaos expansion and stochastic
collocation methods, using both tensor quadrature grids and Smolyak sparse grids, and contrasts
with margin estimations, where third- and fourth-level expansions were generally sufficient.

Tensor Product Quadrature Grids versus Smolyak Sparse Grids

We observed that the growth of the sparse grids was not necessarily slower than for tensor
product quadrature grids in our ensembles. The reason for this was that we only had three uncertain
variables available to study due to the limited nature of ourmodel. We expect sparse grids will
be much more efficient than quadrature grids for the larger ensembles with many more uncertain
variables. However, it is notable that sparse grids may not necessarily be the most cost-effective
choice for all cases.

We also found little difference between the convergence of the CDFs generated by either the
PCE or SC methods, for either quadrature grids or sparse grids. In fact, the estimated response lev-
els between methods were generally either the same, or very close to the same for the problem we
studied. The goal would be to utilize the methodology whose expected growth rates are anticipated
to be the most cost effective for the problem under study.

Improvements to DAKOTA

One possible improvement to DAKOTA that became apparent to us throughout the course of
this work was the ability to generate probability density functions. Although cumulative distri-
bution functions are often more useful in terms of things like probability of exceeding threshold
values, in work we have in mind for the future it would be useful to have the ability to generate
probability density functions at given locations with specified parameters, as well as projecting
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data onto the basis functions. The DAKOTA developers have acted on our request for this capabil-
ity, and probability distribution function output will be available for both PCE and SC methods in
the next release of DAKOTA.

Another potential improvement to DAKOTA would be the ability hold more samples in mem-
ory when predicting response levels for specified probability levels. We have also been recently
advised that there will be modest improvements to this capability in the next release of DAKOTA.

Global Reliability Methods

Finally, our next anticipated step in future work will be to explore the use of DAKOTA’s global
reliability methods for uncertainty quantification. One common trend throughout the results pre-
sented in this work is that both stochastic expansion methods tended to converge better and more
quickly in the middle of the CDF than at the tails (particularly the left tails where we focused our
attention). We first focused on stochastic expansion methods because of their potential synergy
with multi-physics applications due to their ability to express final solutions as random processes.
Now that we better understand the benefits and limitations ofthese methods, we will explore global
reliability methods, which are expected to be more efficientat predicting responses at the tails of
the probability distributions.
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