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Abstract

Density Functional Theory (DFT) based Equation of State (EOS) construction is a
prominent part of Sandia’s capabilities to support engineering sciences. This capa-
bility is based on amending experimental data with information gained from compu-
tational investigations, in parts of the phase space where experimental data is hard,
dangerous, or expensive to obtain. A prominent materials area where such com-
putational investigations are hard to perform today because of limited accuracy is
actinide and lanthanide materials. The Science of Extreme Environment Lab Di-
rected Research and Development project described in this Report has had the aim
to cure this accuracy problem.

We have focused on the two major factors which would allow for accurate compu-
tational investigations of actinide and lanthanide materials: 1) The fully relativistic
treatment needed for materials containing heavy atoms, and 2) the needed improved
performance of DFT exchange-correlation functionals.

We have implemented a fully relativistic treatment based on the Dirac Equation
into the LANL code RSPt and we have shown that such a treatment is imperative
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when calculating properties of materials containing actinides and/or lanthanides. The
present standard treatment that only includes some of the relativistic terms is not
accurate enough and can even give misleading results. Compared to calculations pre-
viously considered state of the art, the Dirac treatment gives a substantial change in
equilibrium volume predictions for materials with large spin-orbit coupling. For ac-
tinide and lanthanide materials, a Dirac treatment is thus a fundamental requirement
in any computational investigation, including those for DFT-based EOS construction.

For a full capability, a DFT functional capable of describing strongly correlated sys-
tems such as actinide materials need to be developed. Using the previously successful
subsystem functional scheme developed by Mattsson et.al., we have created such a
functional. In this functional the Harmonic Oscillator Gas is providing the necessary
reference system for the strong correlation and localization occurring in actinides.
Preliminary testing shows that the new Hao-Armiento-Mattsson (HAM) functional
gives a trend towards improved results for the crystalline copper oxide test system we
have chosen. This test system exhibits the same exchange-correlation physics as the
actinide systems do, but without the relativistic effects, giving access to a pure testing
ground for functionals. During the work important insights have been gained. An
example is that currently available functionals, contrary to common belief, make large
errors in so called hybridization regions where electrons from different ions interact
and form new states.

Together with the new understanding of functional issues, the Dirac implementation
into the RSPt code will permit us to gain more fundamental understanding, both
quantitatively and qualitatively, of materials of importance for Sandia and the rest
of the Nuclear Weapons complex.
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Nomenclature

Dirac The Dirac Equation: The relativistic quantum mechanical wave equation de-
scribing electrons in relativistic matter, such as in heavy materials like actinides.

SE The Schrödinger Equation: The non-relativistic limit of the Dirac Equation,
sufficiently accurate to describe electrons in lighter materials.

DFT Density Functional Theory: The formally exact reformulation of the wave-
function based Shrödinger and Dirac Equations in terms of density and currents.

KS The Kohn-Sham Equations: A calculational approach derived from the Dirac/SE
using DFT. These are the equations implemented in DFT codes.

Functional A short name for an approximation for the Exchange-Correlation func-
tional which is the only part of DFT that needs to be approximated. The
functional sets the possible accuracy of DFT calculations.

NR Non relativistic treatment: A treatment based on the SE.

SR Scalar Relativistic treatement: An approximation derived from the Dirac Equa-
tion, taking some of the relativistic effects into account.

SO Spin-orbit coupling: Another relativistic term that can be included in DFT cal-
culations. It can be included on top of SR or NR based treatments.

LMTO Linear Muffin Tin Orbital: A calculational method used in the RSPt code
and in the new Dirac code.

LAPW Linear Augmented Plane Wave: Another calculational method. It is con-
sidered the implemetational method that gives the most accurat DFT results.
Other methods are usually verified against this method.

plane-wave code A code using plane waves as a basis set. This is the compu-
tationally most effective approach because Fourier Transforms can be used.
Calculations can also be systematically improved by increasing the number of
basis functions used, usually specified by the so called ’cut-off’. However, de-
scribing core electrons accurately requires a very large cut-off, leading to expen-
sive calculations. The plane-wave approach thus is mostly used together with
pseudo-potentials (see below).

all-electron code A code treating all electrons explicitly. LMTO and LAPW codes
are all-electron.
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pseudo-potential code The chemically inert core electrons are treated in a col-
lective way via pseudo potentials, which increase the computational efficiency
considerably. A number of different approaches exist, they all are verified by
comparing to all-electron, usually LAPW, results.

PAW Projected Augmented Wave: The pseudo potential technique today considered
the most accurate.

RSPt Relativistic Spin-Polarised test: The name of the LMTO code we have modi-
fied to include a Dirac treatment.

VASP Vienna Ab-initio Simulation Package: A plane wave, pseudo potential (PAW),
DFT code extensively used at Sandia.

core electron An electron close to the nuclei. In an LMTO or LAPW treatment
these electrons are considered inert and their properties only depends on the
closest nuclei. In a pseudo-potential code the effect of the core electrons on the
valence electrons are included via pseudo potentials.

semi-core electron An electron that is intermediate between a core and a valence
electron. It has the same angular momentum quantum number as some of the
valence electrons but has a lower principal quantum number (it is in a lower
shell). For the heavier nuclei these electrons need to be treated as valence
electrons.

valence electron The outermost electrons are valence electrons and their properties
are dependent on many nuclei. These electrons are forming bonds that hold a
solid or molecule together.
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Chapter 1

Introduction and Motivation

Density functional theory (DFT) is the preferred computational method for exploring
materials properties and Sandia scientists are at the forefront of DFT-based equation
of state (EOS) construction, where information from both experiments and compu-
tational investigations are used (See Figure 1.1). However, present DFT techniques
are not adequate for f -electron materials, hampering our ability to computationally
investigate many materials of high interest to DOE/NNSA, such as plutonium (Pu),
under conditions where experiments are hard and/or very expensive to perform.

DFT12,16 is a formally exact reformulation of the Schrödinger Equation (SE) for the
ground state of an electron system. Since the DFT equations are far easier to solve
than the SE, DFT has become the preferred computational method for exploring
properties of materials. One recent example of a Sandia effort in this area is the
resent use of DFT results combined with Z experiments to construct a new Quartz
standard leading to the resolution of a most important discrepancy between flyer
plate and laser driven shock data for deuterium.14 Another example is the same type
of work for Xenon,26 a material of importance for DOE. Here DFT results helped
both in showing that the available Equation of State (EOS) tables were insufficiently
accurate at high pressures and in the construction of a new, more accurate, EOS.

Despite the success of DFT in most of materials science, there are still areas where the
performance of DFT has been less satisfactory. The chemical and physical properties
of actinides form such an area. There are three main reasons for this:

1. The density functional that defines the mapping between the SE and DFT is
not known exactly, and the approximation used for the functional completely
governs the accuracy of DFT calculations. The functionals created to date all
perform equally badly for actinide properties. For example, the equilibrium
volume of Pu is underestimated by 10-20% with the best performing functional
(see e.g. Refs. 29 and 13).

2. It is critical to include electron spin and relativistic effects when calculating
properties of the actinides (see e.g. Refs. 13 and23). A full relativistic treatment
is required to obtain the needed precision for actinide properties. However, most
all-electron, full-potential codes only use a perturbative treatment of the spin-
orbit interaction, which gives even smaller equilibrium volume for, e.g. Pu.7
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3. Since actinides and lanthanides contain f-electrons that are interacting with
both core and valence electrons, it is crucial to use a full potential, all-electron
code for the calculations. All-electron codes are much slower than the pseudo-
potential codes usually used for complex materials science investigations. Going
beyond the basic properties of actinides and lanthanides thus requires a speed up
of the calculations by using state-of-the-art algorithms and advanced computer
science methods.

We have so far only been addressing the two fundamentally accuracy-limiting deficien-
cies mentioned above, the failure of existing density functionals and the perturbative
relativistic treatment. However, our focus on developing a simple functional via the
subsystem functional scheme has the potential to give a functional that is not only
accurate but also leads to calculations that are one to three orders of magnitude faster
to perform than using functionals developed with other techniques.

14



atomic scale 

(100 nm)

Molecular 

dynamics

dislocation 

scale ( m)

grain scale 

(100  m)

D
ir
a
c/
S
ch
rö
d
in
g
e
r 

E
q
u
a
ti
o
n

Exc

electronic 

scale (nm)

DFT codes

ALEGRA

component scale (cm)

Quantum 

Monte Carlo,

Quantum 

Chemistry

Dislocation 

Dynamics

Experimental

Data

Figure 1.1. The foundation of Science Based Engineering
is to build bridges from the fundamental Laws of Nature up
to the Engineering codes, bridging several length and time
scales. In this figure two different paths are depicted. The
upper one is quite complicated and illustrates the general
problem of bridging several different scales. The lower path is
already in use at Sandia. For Equation of State construction,
data provided by Density Functional Theory (DFT) based
calculations are used in addition to experimental data. The
DFT calculations are used in two ways, either directly or as
a provider of forces in a Molecular Dynamics scheme.
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Chapter 2

Density Functional Theory

Density Functional Theory (DFT) is an exact reformulation of the fundamental law
of nature governing the behavior of electrons. If electrons are in materials with heavy
ions, the fundamental law to use is the Dirac equation. For materials composed of
lighter ions, the non-relativistic limit of the Dirac equation, the Schrödinger equation,
might be used. We will discuss different levels of approximations to the Dirac equation
in the next chapter.

Density Functional Theory was first developed based on the Schrödinger equation.
Using the Hohenberg-Kohn theorem,12 the Shrödinger equation, which decide the
electronic properties of a material via many-body electronic wave-functions, can be
cast in the form of the Kohn-Sham (KS) equations, which instead decide the behavior
of ground state electrons via auxiliary non-interacting single particle Kohn-Sham
orbitals forming the true electron density of the material. The key point is that
solving for non-interacting single particles is a much less demanding task than solving
for many-body wave-functions.

Despite the theory in itself being exact, approximations for the Exchange-Correlation

functional still need to be done since the form of this object is unknown. The ac-
curacy of the approximation for the Exchange-Correlation functional is the factor
that decides the ultimately attainable accuracy of the calculations. No calculations
based on DFT can ever give better results than what this approximation allows. If
the ’divine’19 functional was known, however, the KS equations would yield the exact
same results as the fundamental law of nature, the Schrödinger Equation.

The KS equations are often interpreted as the equations of electrons moving in a
field formed by all the other electrons, so called mean-field theory. From a mean-
field theory perspective the KS orbitals can be interpreted as approximations for the
true many-body electron wave-functions. This alternative interpretation of the KS
equations can be very fruitful if handled correctly, but it also has created, and is
creating, a lot of confusion in the field. In Figure 2.1 we try to compare the two
views.

Density Functional Theory has later been extended to be based on the Dirac equation,
which we will discuss next.
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Chapter 3

The Dirac Kohn-Sham Equations

To properly account for relativistic effects in materials containing heavy ions, the
Dirac Kohn-Sham equations should be used, not the ordinary Schrödinger Equation
based Kohn-Sham equations. We discuss the various approximations to the full Dirac
KS scheme that are usually done, and their possible consequences. We also discuss
the prospects of eliminating a few of the approximations.

The Dirac Kohn-Sham Equations

The relativistic Kohn-Sham equations are discussed in Dreizler and Gross’s book
(Ref. 6). Transferring their Eqns. (8.16)-(8.17b) to the notation we will use in this
report we get:

(

cα ·
(

p − eAeff

c

)

+

(

I 0
0 I

)

Veff (r) + β mc2
)

ψn(r) = En ψn(r) (3.1)

with

Veff (r) = −e
(

A0
ext(r) +

∫

d3r′
J0 (r′)

|r − r′| +
δExc[J

µ]

δJ0 (r)

)

(3.2)

and

eAeff (r) = −e
(

Aext(r) +

∫

d3r′
J(r′)

|r − r′| +
δExc[J

µ]

δJ(r)

)

(3.3)

for all negative and positive energy orbitals. The matrices are defined as

αk =

(

0 σk

σk 0

)

β =

(

I 0
0 −I

)

I =

(

1 0
0 1

)

(3.4)
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and σk denotes the Pauli matrices. The Dirac 4-component spinors, ψn, can be
represented as single-row matrices:

ψn =









ψ1,n

ψ2,n

ψ3,n

ψ4,n









=

(

ψA,n

ψB,n

)

. (3.5)

The conserved current, Jµ = (J0 ,J), is analogous to the density in non-relativistic
DFT, and is thus the conserved current of the real system that can be calculated from
the above spinor solutions to the relativistic KS equations:

Jµ = (J0 ,J) = −e
∑

n

(

ψ†
nψn, ψ

†
nαψn

)

, (3.6)

Note that the energy includes the rest mass energy, and that the available energy for
bonding and kinetic energy is En −mc2.

It is well known that the vacuum expectation value of the current operator is non-
zero; pairs of electron-positrons can spontateously be created in vacuum, so called
vacuum polarization. If this vacuum polarization is neglected the current becomes:6

Jµ = −e
∑

−mc2<En<EF

(

ψ†
nψn, ψ

†
nαψn

)

. (3.7)

Neglecting the Orbital Current: From current func-

tionals to density functionals

However, in non-relativistic DFT, the currents J = −e∑ψ†
nαψn, that couple to the

effective vector potential Aeff in the Hamiltonian in Eqn. (3.1), are not used, and in
order to connect to, and be able to use functionals created for, NR DFT, we would
rather use the spin-density

S = −
∑

−mc2<En<EF

ψ†
n βΣψn . (3.8)

Here

Σk =

(

σk 0
0 σk

)

(3.9)

It can be shown that, for time-independent problems, J can be written as (Gordon
decomposition, see for example Sakurai, Ref. 27):

J = I + µB ∇× S (3.10)
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where

I =
e

2mc

∑

−mc2<En<EF

{

ψ†
n β

[(

p − eAeff

c

)

ψn

]

+

[(

p − eAeff

c

)

ψn

]†

β ψn

}

.

(3.11)
By neglecting the orbital current, I, and only using the spin-density current, the
eα · Aeff in the Hamiltonian in Eqn. 3.1 can be ’simplified’, and the Hamiltonian
becomes
(

cα · p + µB βΣ · Beff +

(

I 0
0 I

)

Veff (r) + β mc2
)

ψn(r) = En ψn(r) (3.12)

where B = ∇× A and µB is the Bohr magneton. Eqn. (3.3) should be replaced by

µBBeff (r) =

(

µBBext(r) +

∫

d3r′
M (r′)

|r − r′| +
δExc[J

0 ,M ]

δM (r)

)

, (3.13)

where M = µBS.

For more details see the supplemental material to Ref. 5.

The radial equation: Dirac, scalar relativistic, vari-

ational spin-orbit, and non-relativistic treatments

The difference in the relativistic treatments is readily described in the radial equa-
tions. Assuming a spherically symmetric potential Veff (r) = V (r) and Beff = 0,
Equation 3.12 reduces to

cσ · p ψB,n(r) = (En − V (r) −mc2) ψA,n(r) (3.14)

cσ · p ψA,n(r) = (En − V (r) +mc2) ψB,n(r) . (3.15)

By separation of angular and radial variables in Eqns. 3.14 and 3.15 (for details see
for example Sakurai27) we arrive at the Dirac radial equations

−cd fκ

dr
− (1 − κ)c

r
fκ = (En − V (r) −mc2) gκ (3.16)

c
d gκ

dr
+

(1 + κ)c

r
gκ = (En − V (r) +mc2) fκ . (3.17)

Setting e = En −mc2 and M = m+ (e− V (r))/2c2 and eliminating fκ results in the
upper component radial equation
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− 1

2M

(

g
′′

κ +
2

r
g

′

κ −
ℓ(ℓ+ 1)

r2
gκ

)

−
(

g
′

κ +
(1 + κ)

r
gκ

)

d

dr

1

2M
+ V (r) gκ = e gκ , (3.18)

where we have also used that κ(κ+ 1) = ℓ(ℓ+ 1) for both signs of κ.

In the fully relativistic Dirac radial equation in 3.18 the spin and orbital momenta
are not independent constants of motion but coupled, a coupling represented by κ,
the eigenvalue of the operator K̂ = (σ · L + 1) β, where L is the ordinary orbital
momentum operator that squared gives eigenvalue ℓ(ℓ+ 1).

If the κ-dependent term is dropped, as suggested by Harmon and Koelling,15 the spin
and orbital momenta are decoupled and only ℓ is needed for the description of the
resulting solution:

− 1

2M

(

g
′′

ℓ +
2

r
g

′

ℓ −
ℓ(ℓ+ 1)

r2
gℓ

)

− g
′

ℓ

d

dr

1

2M
+ V (r) gℓ = e gℓ . (3.19)

This is the scalar relativistic (SR) treatment. The term neglected in the SR treatment
(as compared to the Dirac treatment) is the spin-orbit (SO) coupling.

In the RSPt code,1 as in other LMTO and LAPW codes, the SR treatment is used
to form the basis but the SO term can be included in the calculation variationally.
However, the SR basis is limited in its possibility to describe the SO term23 and this
is the motivation to this project’s focus on using the Dirac treatment for the basis
instead. The differences between a Dirac, a SR + SO, and a SR treatment for Th is
dicussed in an article to be published.31

In the non-relativistic limit, M → m and from Equation 3.18 (or 3.19) we obtain

− 1

2M

(

g
′′

ℓ +
2

r
g

′

ℓ −
ℓ(ℓ+ 1)

r2
gℓ

)

+ V (r) gℓ = e gℓ , (3.20)

the radial Schrödinger Equation (SE).

Summary of work

The Dirac treatment represented by Equations 3.12, 3.13, and 3.2, has been imple-
mented into a new code, diracRSPt, based on the RSPt code1 (for details on the
implementation, see Appendix A). DiracRSPt has been kept tied as closely as pos-
sible to the original RSPt code as to allow for accurate comparison between Dirac,
SR+SO, and SR treatments. Such a comparison has been done for Thorium (Th),
Gold (Au), and Aluminum (Al), described in Reference 31, with the important and
far-reaching result that a Dirac treatment is imperative for Th and other actinide and
rare-earths.
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Chapter 4

An Exchange-Correlation

Functional for actinides

We have been focusing on the subsystem functional (SSF) approach to new, better,
exchange-correlation functionals (see References 2, 17, and 20). The SSF scheme
differs from the two conventional approaches to functional construction. The first of
these uses exact constraints derived for the exact (but unknown) functional and has
resulted in for example the PBE24 functional. The other approach is prevailing in
the chemistry community and is based on fitting to experimental data. These have
been the approaches for many years and have resulted in a plentitude of different
functionals. This not only shows the important role that DFT calculations play in
science, but also that no single functional is working for all systems. And, as stated
above, none of them are working for actinides. Something new is required.

The sub-system functional scheme

The SSF scheme is a new and promising approach. We have explored what this scheme
can do for f -electron systems. We recently assessed the performance of several func-
tionals for solid state systems.21 This study shows that the AM05 functional,3 the
very first functional constructed by the SSF scheme, has the same performance as
the most accurate functionals constructed to date, but with a computational speed
faster by one to three order of magnitudes. AM05 can replace all other functionals
for these systems; the previously needed choice between LDA and PBE/PW91 is no
longer needed. Subsystem functionals are designed to model the exchange-correlation
energy of model systems that represent specific types of physics. LDA is a subsys-
tem functional in that it is modeled from the exact results for the uniform electron
gas. An improved global functional can be obtained by merging different subsystem
functionals. AM05 is built from two model-systems: the uniform electron gas and
the jellium surface/Airy Gas system. However, other types of physics also need to be
included in a functional for f -electrons. In Figure 4.1 this approach is depicted in a
schematic way. The SSF approach is thoroughly described in Reference 20.

While f -electrons has been our focus in this project it is important to remember that
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Figure 4.1. A new general functional combining three sub-
system functionals using an interpolation index. Each sub-
system functional is based on a different model system, the
uniform electron gas, the Airy gas, and the Mathieu gas,
describing three different physics situations. The additional
subsystem functional compared to AM05, based on the Math-
ieu gas, describes the exchange- correlation contribution from
a situation where the density is confined in space.
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a new functional that is accurate for f -electron systems still needs to have a similar
accuracy for all other materials of interest, like oxygen and water, in order to be truly
useful.

The Harmonic Oscillator Model system: Confine-

ment physics

In Reference 10 we describe our work on understanding how DFT functionals work
in confined systems. We use the Harmonic Oscillator (HO) model system for this
investigation. The HO system is the limiting case for the Mathieu gas (MG) depicted
in Figure 4.1, when the amplitude of the sinusoidal wave is large, or equivalently, the
chemical potential is small. For details on the HO model system see Reference 10.
We show that commonly used functionals makes large errors in the higher density
region in the center of the harmonic well, an error that is proportional to the degree
of confinement. In Figure 4.2 the lower panels show this error, and it is clearly seen
that the error is substantial in the strongly confined system.

The Electron Localization Function: Identifying con-

finement physics in real systems

In Reference11 we describe our work on identifying and correcting for the confinement
physics in a real system, a transition metal oxide, CuO. We have chosen the CuO
system because it has the same kind of confinement physics included as actinides, but
with no relativistic effects. This allows us to investigate the, for actinides, important
confinement physics without the issues related to the Dirac Equation discussed in
Chapter 3. The CuO system is also interesting in itself. From a functional perspective
since LDA, AM05, and PBE, all three, give too LARGE equilibrium volumes, contrary
to the usual trend of LDA too small, AM05 good, and PBE too large.9,21 From a
physics viewpoint CuO is interesting since it does not crystallize in the, for transition
metal oxides, usual rocksalt structure, and many signatures of physics of interest in
the cuprate high temperature superconductors are also present in this system.

A first observation, shown in Figure 4.2, is that the error common functionals make
in the HO system is correlated to the largeness of the so called Electron Localization
Function (ELF). The ELF is describing the degree of localization of an electron.
Electrons are fermionic particles which means they cannot occupy the same quantum
state. The other type of fundamental particle, the boson, has no such restrictions, and
bosons can thus ’condensate’ into the same state, so called Bose-Einstein condensate.
In a uniform electron gas, all electrons have the same potential energy, and they
need to differentiate with the help of their kinetic energy. By construction the ELF
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(a) A strongly confined system (α = 0.06).
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(b) A less confined system (α = 5.40).

Figure 4.2. The ELF and the dimensionless exchange en-
ergy per particle lǫx for two HO systems, one strongly con-
fined and one less confined, as a function of the dimensionless
spatial coordinate z̄, with z̄ = 0 in the center of the harmonic
well. The green dash-dotted lines in the upper panels show
the ELF. In the lower panels the exact lǫx is shown in solid
black, the approximations by LDA and AM05 are represented
by dashed red and dotted blue lines, respectively.
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Figure 4.3. The contours are surrounding spacial regions
where the ELF value is larger than 0.83 (dark blue) and 0.77
(light blue). 4 Cu atoms (dark, brown) connect the one O
atom (light, gray) in the center.

has a value of 1/2 for such electrons. In Figure 4.2(b) it is seen that for the less
confined system the electrons in the center of the well become uniform electron gas
like, and LDA is a valid approximation for their exchange energy. A value close to 1,
as in Figure 4.2(a), instead indicates that electron has its own set of pure quantum
numbers and does not need to differentiate itself with the help of different kinetic
energies but can have a bosonic like kinetic energy. Such an electron is localized in
space while electrons in a uniform electron gas are spread out over the full system, thus
are de-localized. Figure 4.2(a) shows that for a localized electron common exchange
functionals give a poor description of the exact exchange energy.

Mapping the ELF in the CuO system shows that high ELF regions are located where
the oxygen and copper electrons are commonly understood to be hybridizing (creating
new states from the atomic oxygen and copper states), see Figure 4.3. Our analyse
thus indicates that presently available DFT functionals make errors in this region,
and not, as the common belief is, in the copper d-electron state. This is an important
insight since many empirical schemes for correcting the errors DFT functionals make
in these systems is based on the belief that the treatment of the d-electrons is at fault.
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A functional for confined systems

By using the ELF as an indicator of the degree of confinement and use the exchange
energy from the HO system in regions where the ELF is high, while using the AM05
(LAA) exchange in the rest of the system, we have the fundaments of a new func-
tional. Since we do not have any correlation for the HO system, we construct our
correlation so that it, together with the new exchange functional, reproduce the exact
total exchange-correlation of surface jellium systems, in the same way as AM053 is
constructed. The details of the construction of this Hao-Armiento-Mattsson (HAM)
functional is described in Appendix B.

Just as the ordinary gradient corrected GGA type functionals, such as AM05 and
PBE, the new HAM functional needs the density and the gradient of the density in
order to extract a value for the exchange-correlation energy per particle. However,
the HAM functional also needs the kinetic energy density and is thus classified as
a meta-GGA. The implementation of meta-GGAs into DFT codes is feasible but
substantially more elaborate than the implementation of a GGA functional. We
have thus proceeded by applying the HAM functional as a post-correction on LDA
results. In Figure 4.4 we show that the post-correction scheme we use reproduces the
AM05 and PBE self-consistent results reasonably well. In essence this means that
the LDA density compares well with the AM05 and PBE densities. In Figure 4.5
we show the result for the post-correction with the HAM functional. Indeed, the
inclusion of confinement physics into the HAM functional does make the equilibrium
volume smaller, and closer to the experimental value, for the CuO system. Further
testing is needed to confirm that the HAM functional generally provides a consistently
better or similar approximation for the exact exchange-correlation energy as existing
functionals.
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Figure 4.4. Test of the post-correction scheme we use for
preliminary testing of the HAM functional, shown in Fig-
ure 4.5.
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CuO.
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Chapter 5

Summary and Conclusion

As the codes available for use in Engineering Sciences become more and more sophis-
ticated, materials models used in these codes need to be increasingly accurate. Sandia
scientists are at the forefront of DFT-based EOS construction, where experimental
information is amended with information obtained in computational investigations,
in order to achieve improved accuracy.

We have implemented a fully relativistic treatment based on the Dirac Equation
into the LANL code RSPt and we have shown that such a treatment is imperative
when calculating properties of materials containing actinides and/or lanthanides. The
present standard treatment that only includes some of the relativistic terms is not
accurate enough and can even give misleading results. Compared to calculations pre-
viously considered state of the art, the Dirac treatment gives a substantial change in
equilibrium volume predictions for materials with large spin-orbit coupling. For ac-
tinide and lanthanide materials, a Dirac treatment is thus a fundamental requirement
in any computational investigation, including those for DFT-based EOS construction.

For a full capability, a DFT functional capable of describing strongly correlated sys-
tems such as actinide materials need to be developed. Using the previously successful
subsystem functional scheme developed by Mattsson et.al., we have attempted to
created such a functional. It is based on three model systems, the uniform electron
gas, the surface jellium/Airy gas, and the Harmonic Oscillator Gas. The Harmonic
Oscillator Gas is providing the necessary reference system for the strong correlation
and localization occurring in actinides. Preliminary testing shows that the new Hao-
Armiento-Mattsson (HAM) functional gives a trend towards improved results for the
crystalline copper oxide test system we have chosen. During the work important in-
sights have been gained. An example is that currently available functionals, contrary
to common belief, make large errors in so called hybridization regions where electrons
from different ions interact and form new states.

Together with the new understanding of functional issues, the Dirac implementation
into the RSPt code will permit us to gain more fundamental understanding, both
quantitatively and qualitatively, of materials of importance for Sandia and the rest
of the Nuclear Weapons complex.
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Appendix A

Implementational details for

DiracRSPt: The transition to full

Dirac bases in the framework of

RSPt

An electronic structure method capable of performing fully relativistic electronic
structure calculations has been developed within the framework of the full poten-
tial electronic structure code RSPt.1 The development necessary to accomplish this
includes the the calculation of the Dirac spinors around atom sites and in the inter-
stitial, the construction of a Hamiltonian and overlap matrix, and the construction
of the charge density. In this Appendix we discuss these changes in relation to the
already existing implementation of the RSPt code, described in Reference 30.

A.1 Introduction: the transition from RSPt to Dirac

In the discussion that follows, Rydberg units are used; i.e. h̄ = 1, the square of the
electron charge e2 = 2, and twice the electron mass 2m = 1. The designation “RSPt”1

refers to the scalar relativistic all electron electronic structure code that provides the
framework for DiracRSPt, the code discussed here.

37



Indexing

In RSPt, indexing is by ℓ or ℓm, with limits ℓ ∈ [0, ℓm].30 The transition to Dirac
indexing is accomplished by

kp ∈ [0, 2ℓm]

ℓ =

[

kp + 1

2

]

κ = (−)k+1

([

kp

2

]

+ 1

)

2j = 2

[

kp

2

]

+ 1

To count kpm = ℓjm in the full list: kp ∈ [0, 2ℓm], 2mkp
∈ [−2[kp/2]−1, 2[kp/2]+1, 2]

[kp/2]−1
∑

i=0

4(i+ 1) + 2mod(kp, 2)([kp/2] + 1) + jm+ 1

= 2[kp/2]([kp/2] + 1) + 2(kp − 2[kp/2])([kp/2] + 1) + jm+ 1

= 2(kp − [kp/2])([kp/2] + 1) + jm+ 1

jm ≡ (j +m) ∈ [0, 2⌊kp/2⌋ + 1]

Somewhat more cumbersome that the simple ℓ2 + ℓ+m+ 1, but not too bad.

The transition to Dirac bases

A LMTO basis function is an envelope function, centered on a site τ in a unit cell,

Ki(µ; k, r) ≡
∑

R

exp(ik ·R)Ki(µ; |r − τ −R|)Ai(r − τ −R) (A.1)

joined to a basis of spherical waves,

ΦK(r − τ ′) =
∑

j

UT
j (r − τ ′)Sτ ′−τ

ji (µ; k) (A.2)

centered on each atomic site τ ′ in a unit cell, calculated from a wave equation appro-
priate to the spherically symmetric component of the DFT potential in a sphere (the
muffin-tin sphere) centered on that site. In a scalar relativistic (SR) calculation, the
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envelope functions are Hankel or Neumann functions (depending on the sign of the
kinetic energy µ2), with separable angular- and spin-angular-momentum components
Yℓm(r)χms

. In the fully relativistic calculation (Dirac) developed here, the envelope
functions are constant potential, positive energy Dirac spinors, with Hankel or Neu-
man upper components and kinetic energy E−mc2 =

√

µ2 + (mc)2−mc2, and angular
momentum components

〈

r
∣

∣κm
〉

for the upper component and
〈

r
∣

∣−κm
〉

for the lower
component, where

〈

r
∣

∣κm
〉

=
∑

mℓms

(

ℓ(κ) mℓ
1/2 ms

∣

∣ℓ(κ) 1/2 j(κ) m
)

Yℓmℓ
χms

.

The tasks of a DFT based electronic structure method are to create a basis, calculate
the Hamiltonian and overlap matrix in this basis, create an electron density from the
resulting eigenvectors, and use this density together with calculated eigenvalues to
calculate an output potential and total energy. The change from SR to Dirac bases
modifies all these tasks.

Bases in muffin tin spheres

The ”L” in LMTO stands for ”linearized”, so named because the LMTO basis set
was originally derived from a first-order expansion around band energies in the non-
linear KKR method. In RSPt, as in many other codes, the concept of linearization is
largely irrelevant; but the basis still consists of numerical scalar-Dirac or Dirac radial
functions and their derivatives with respect to one-electron energy. Let Gℓ = rgℓ,
Φℓ = rφℓ. The scalar-Dirac equation of Harmon and Koelling for the radial function
g(r) = G(r)/r and the subsidiary function Φ(r) = g′(r)/2Mrc with M ≡ m + (e −
V (r))/2c2 is

d

dr

(

Gℓ

Φℓ

)

=

(

1
r

2Mc
ℓ(ℓ+1)
2Mcr2 − (e−V )

c
−1

r

)(

Gℓ

Φℓ

)

. (A.3)

with the boundary condition at the origin

G → rµ, µ =
√

ℓ(ℓ+1) + 1 − (Ze2/c)2, r → 0

Φ

G
→ µ− 1

Ze2/c

Equation (A.3) is similar in structure to the Dirac equation for the radial basis func-
tion

ψκm(r) =
1

r

(

Gκ(r)
−iFκ(r)σr

)

∣

∣κm
〉

The radial Dirac equation for ψκm is

d

dr

(

Gκ

Fκ

)

=

(

−κ
r

2Mc
−1

c
(e− V ) κ

r

)(

Gκ

Fκ

)

(A.4)
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where e ≡ E − mc2, E including the rest energy. The boundary condition at the
origin, if V (r) → −Ze2/r, is

Gκ → rµ, mu =
√

κ2 − (Zα)2

Fκ

Gκ

→ µ+ κ

Zα

The similarity between equations (A.3) and (A.4) allows ready conversion from scalar-
relativistic to full Dirac bases.

Radial matrix elements

The structure of the matrix elements of the Hamiltonian and overlap matrices is
similar between scalar relativistic and Dirac bases, with one exception. The spin-
orbit interaction is built into the Dirac spinors, therefore no matrix elements of a
spin-orbit interaction, used in scalar relativistic treatments to include the spin-orbit
interaction variationally, are necessary in the full Dirac treatment.

Connecting the interstitial to muffin-tins: structure constants

The coefficients S in equation (A.2), connecting the envelope function in the inter-
stitial to muffin-tin basis functions, are known as structure constants. Because the
momentum operator is translationally invariant, a spherical Hankel function, centered
on point r, is a finite solution to the Helmholtz equation about any other site r′, and
therefore has an expansion in Bessel functions about r′. Equation (A.2) embodies this
observation which determines the structure constants for any given atomic site. In
reciprocal space, the part of the structure constant that expands the scalar-relativistic
envelope function about a site other than its parent site (τ ′ 6= τ) is given by

BL′,L(τ − τ , µ, k)δ(ms,m
′
s) (A.5)

= 4π
∑

L′′

(−)(−ℓ′+ℓ−ℓ′′)/2(µ2)(ℓ′+ℓ−ℓ′′)/2

√

2ℓ′′ +
1

4π
G(L′, L, L′′)DL′′(τ ′− τ ;κ; k)δ(ms,m

′
s)
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In equation (A.5), L is a composite index representing ℓ and mℓ, DL is a Bloch sum
of Hankel function spherical waves, and G is an angular matrix element:

G(L′, L, L′′) ≡
(

YL′

∣

∣CL′′

∣

∣YL

)

= (−)ℓ′−m′

(i)ℓ−ℓ′+ℓh

(

ℓ′ ℓh ℓ
−m′ mh m

)

(

ℓ′
∣

∣

∣

∣C(ℓh)
∣

∣

∣

∣ℓ
)

(

ℓ′
∣

∣

∣

∣C(ℓh)
∣

∣

∣

∣ℓ
)

=
√

(2ℓ+ 1)(2ℓ′ + 1)(−)ℓ′
(

ℓ′ ℓh ℓ
0 0 0

)

(A.6)

For a full Dirac basis, the envelope functions are spinors, Hankel solution to the
spherical Dirac equation for a constant potential. Because the upper component of
this spinor is a simple transformation of the scalar-relativistic envelope function via

vector coupling coefficients, the structure constant analogous to equation (A.5) for
the full Dirac envelope function is simply the same transform applied to the rows and
columns of equation (A.5):

Bκ′m′,κm(τ − τ , µ, k) (A.7)

= 4π
∑

L′′

(−)(−ℓ′+ℓ−ℓ′′)/2(µ2)(ℓ′+ℓ−ℓ′′)/2

√

2ℓ′′ +
1

4π
G(κ′m′, κm,L′′)DL′′(τ ′− τ ;κ; k)

G(κ′m′, κm,L′′) ≡
(

κ′m′
∣

∣CL′′δ(m′
s,ms)

∣

∣κm
)

= (−)ℓ′−m′

(i)ℓ−ℓ′+ℓh

(

ℓ′ ℓh ℓ
−m′ mh m

)

(

κ′
∣

∣

∣

∣C(ℓh)
∣

∣

∣

∣κ
)

(

ℓ′1/2j
′
∣

∣

∣

∣C(ℓ′′)
∣

∣

∣

∣ℓ1/2j
)

= (−)ℓ′+1/2+j+ℓ′′
√

(2j′ + 1)(2j + 1)

{

ℓ′ j′ 1/2
j ℓ ℓ′′

}

(

ℓ′
∣

∣

∣

∣C(ℓ′′)
∣

∣

∣

∣ℓ
)

(A.8)

A.2 Matrix Elements

The Hamiltonian and overlap matrix elements are used to obtain eigenvalues and
eigenvectors with which to construct the electron density, potential, and total en-
ergy. The steps in constructing these matrices, in this formalism are: muffin tin
spherical Hamiltonian and overlap, and the muffin-tin non-spherical potential, the
interstitial kinetic energy and overlap, and the interstitial potential. In RSPt, a spin-
orbit Hamiltonian contribution is added. In the transition to Dirac, apart from the
expanded structure constants, the essential differences occur in the three interstitial
contributions and in the contribution from the non-spherical muffin-tin potential.
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The non-spherical potential in the muffin-tin

This section is limited to a discussion of spin-independent potentials. The potential
in a muffin tin sphere takes the form

Vns(rτ ) =
∑

h

v(ht; rτ )Dht(r̂τ )

Dht(rτ ) =
∑

mh

α(ht;mh)Cℓhmh
(r̂τ (A.9)

where h labels symmetric harmonics Dh of the symmetry group surrounding the
atomic site at τ . The contribution of Vns to the Hamiltonian matrix consists of a
sum of radial matrix elements of vh times angular matrix elements of Dh. These last
are symmetric sums of the scaled Gaunt coefficients defined in equations (A.6) and
(A.8). For the Dirac case,

(

κ′m′
∣

∣Dh

∣

∣κm
)

=
∑

mh

α(ht;mh)G(κm, κ′m′, ℓhmh) (A.10)

The interstitial kinetic energy and overlap

The interstitial kinetic energy and overlap matrices are obtained by integrating over
the surface of the muffin-tin spheres. The difference between scalar relativistic and
Dirac bases is to be found in the continuity conditions imposed by the corresponding
equations. With Dirac bases, (HD −mc2)K = (cα · p+ (β − 1)mc2)K = (µ2/2Mµ)K
in the interstitial.

If e = E −mc2 = µ2/2M(µ) with 2M(µ) ≡ m(1 +
√

1 + (µ/mc)2),

(eb − ea)

∫

I

ψ†
aψb =

∫

I

(

ψ†
aHDψb −

(

HDψa

)†
ψb

)

= cαµν ·
∫

I

(

ψ⋆
aµpψbν − (pψaµ)⋆ψbν

)

= −icαµν ·
∫

I

∇

(

ψ⋆
aµψbν

)

= ic
∑

τ

S2
t

∫

dΩψ†
aα · r̂ψb

To make equation (A.2) explicit, the envelope function for basis a, centered on τa,
expanded on the sphere at τ , is

ψa(Sτ ) =
∑

κm

Kκm(µa, Sτ )Sτκm,τaκama
(µa, k) (A.11)
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where K is a row vector of dirac spinors:

Kκm(µ, r) =
(

Kκm(µ, r) Jκm(µ, r)
)

The overlap matrix element becomes

(eb − ea)

∫

I

ψ†
aψb

= ic
∑

τ

S2
τ

∑

κm

S†
τκm,τaκama

(µa,k)

∫

dΩK†
κm(µa, Sτ )α · r̂Kκm(µb, Sτ )Sτκ′m′,τbκbmb

(µb,k)

After some manipulation, this reduces to

∫

I

ψ†
aψb =

√

1

2Ma

1

2Mb

∑

τκm

S†
τκm,τaκama

(µa,k)
(

wκm(t; a, b) +
S2

τW0

eb − ea

)

Sτκm,τbκbmb
(µb,k)

(A.12)

where

w̄κm(t; a, b) ≡ S2
t

(

√

2MaW
(

K†
κm(µa, Sτ ),Kκm(µb, Sτ )

)
√

2Mb −W0

)

/(eb − ea)

(A.13)

W (f, g) ≡ f (1)cg(2) − cf (2)g(1) (A.14)

S2
tW0 ≡

(

0 1
−1 0

)

When ea = eb, equation (A.13) vanishes and the remainder is a difference of structure
constants divided by a difference of energies, which becomes the derivative ∂S/∂e as
ea → eb. The full Hamiltonian is explicitly symmetrized, so that the kinetic energy
is obtained from the overlap through

Tab =
1

2

∫

(

ψ†
aHDψb + (HDψa)

†ψb

)

=
1

2
(ea + eb)

∫

ψ†
aψb

The interstitial potential matrix

In the muffin tins, where the radial gradients around a site are large, and the evolution
is from spherical symmetry, the one-electron potential is expressed in spherical waves,
as in equation (A.9). The muffin-tins and interstitial are evaluated separately, so that
to obtain matrix elements of the interstitial potential, any potential that matches the
true potential in the interstitial may be used. In the region between the spheres, the
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interstitial, the potential is “nearly” constant, so the freedom to choose this alternate
potential may be used to obtain a rapidly convergent Fourier series

Ṽ (r) =
∑

S

ṽ(S)
∑

g∈S

exp(ig · r) (A.15)

(

Ṽ (r) − V (r)
)

Θ(r ∈ I) = 0 (A.16)

The sums in equation(A.15) are over stars S of the reciprocal lattice and vectors g
belonging to each star, respectively.

In practice, the “pseudizing” is accomplished by choosing pseudo basis functions with
rapidly convergent Fourier series and matching the true basis functions in the inter-
stitial. The density in the interstitial thus matches the true density, and a similar
construction of a pseudo density giving the correct Coulomb potential in the in-
terstitial results in a “pseudo-potential” that agrees with the true potential in the
interstitial.

In the scalar-relativistic RSPt, the pseudo-bases are obtained by constructing solu-
tions to

(

∇2 + µ2
)

ψ̃τℓ(rτ )Yℓm(rτ ) = −cτℓx
ℓ
(

1 − x2
)nτℓ Yℓm(rτ ) (A.17)

x ≡ rτ

Sτ

ψ̃τℓ(Sτ ) = Kℓ(µ, Sτ ) (A.18)

The boundary condition equation (A.18) is satisfied by choosing the constant cτℓ.
Equation (A.17) has a closed form solution, but the solution itself, given that it
exists, is irrelevant since the Fourier transform is obtained from the equation (A.17)
through

∫

exp(−i(K · r))ψ̃ = − 1

K2 − µ2

∫

(

(∇2 − µ2) exp(−iK · r)
)

ψ̃

= − 1

K2 − µ2

∫

exp(−iK · r)
(

(∇2 − µ2)ψ̃
)

where K = k + g. The fourier transform of the scalar-relativistic envelope function
Kℓmχms

centered on site τ is

K̃ℓm(µ, Sτ , K) =
4π

Vc

exp(−iK · τ)
K2 − µ2

KℓYℓm(K)
JN(K,Sτ )

JN(µ, Sτ )
(A.19)

where N is a constant greater than ℓm + 1.
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A similar construction could be made for the Dirac envelope, but since upper and
lower components have radial dependence Kℓ and Kℓ±1, the functional form equation(A.19),
transformed according to

(

K
∣

∣κm
)

=
∑

mℓms

(

ℓmℓms

∣

∣κm
)

Yℓmℓ
(K)χms

(A.20)
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Appendix B

Details of an exchange-correlation

functional for confined systems

B.1 Kinetic Energy density of HO gas

For electron gas confined in one dimension, the normalized eigenfunctions of the KS
equation is:

Ψν(r) =
1

A1/2
ei(kxx+kyy)φj(z) (B.1)

Thus, the kinetic energy density of the electron gas reads,

τ(r) =
∑

ν

|∇Ψν(r)|2 =
∑

j

[ |µ− ǫj|2
2π

φ2
j(z) +

|µ− ǫj|
2π

φ′2
j(z)

]

(B.2)

For the HO gas, let z̄ = z/l,

φj(z) = φ̃j(z̄)/l
1/2 (B.3)

φ̃j(z̄) =

(

1√
π2jj!

) 1
2

Hj(z̄)e
−z̄2/2 (B.4)

ǫj =
1

l2
(j + 1/2) (B.5)

Take derivative of φ(z),

φ′
j(z) = φ̃′

j(z̄)/l
3/2 (B.6)

φ̃′
j(z̄) =

(

√

j

2
φ̃j−1(z̄) −

√

j + 1

2
φ̃j+1(z̄)

)

(B.7)

and substitue above equations in Eq. B.2, the kinetic energy density(dimensionless)
of the HO is:

(l5τ(z̄)) =
1

2π

N
∑

j=0

[

(α− j)2φ̃2
j(z̄) + (α− j)φ̃′2

j (z̄)
]

(B.8)
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B.2 parameterization of the exchange energy per

particle for HO gas

We assume the exchange energy per particle of the HO gas ǫx could be expressed in
the following form:

ǫx(r) = ǫLDA
x (n(r))Fx(s(r), q(r)) (B.9)

There are two steps to find the anaytical form of the enhancement factor Fx(s(r), q(r)).
In the HO gas, ǫx is a function of α and z̄. First, we need to know the value of α
and z̄ from the local density information s and q. Also we need to have an analytical
expression of the Fx(α, z̄). As shown in previous studies, the confinement physics
mainly appears for systems with α < 1, therefore, for simplicity, we will focus on
these systems. If α < 1,

(l3n(z̄)) =
1

π3/2
e−z̄2

α, (B.10)

thus, we can derive the expression for s and q as following:

s =
|∇n|

2(3π2)1/3n4/3
=

|2z̄|
2(3π1/2αe−z̄2)1/3

(B.11)

q =
∇2n

4(3π2)2/3n5/3
=

4z̄2 − 2

4(3π1/2αe−z̄2)2/3
(B.12)

Solve above equations, the expression of α and z̄ may be written as,

α =

[

1

2(s2 − q)

]3/2

/(3π1/2e
− s2

2(s2−q) ) (B.13)

z̄2 =
s2

2(s2 − q)
(B.14)

For α < 2, The density took the following form:

(l3n(z̄)) =
1

π3/2
e−z̄2

[α + 2(α− 1)z̄2], (B.15)

So in such a case, the s and q will be:

s =
|∇n|

2(3π2)1/3n4/3
=

|(α− 2)z̄ − 2(α− 1)z̄3|
(3π1/2e−z̄2)1/3[α + 2(α− 1)z̄2]4/3

(B.16)

q =
∇2n

4(3π2)2/3n5/3
=

2(α− 1)z̄4 + (−4α+ 5)z̄2 + α/2 − 1

(3π1/2e−z̄2)2/3[α+ 2(α− 1)z̄2]5/3
(B.17)
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Another way to derive α and z̄ is via dimensionless gradient s and the dimensionless
kinetic energy t, which we defined as following:

t =
τ

τunif
=

τ

(3/10)(3π2)2/3n5/3
(B.18)

For the HO with α < 1,

t =
5

3

α+ z̄2

(3π1/2αe−z̄2)2/3
(B.19)

Combined with the Eq.(B.11), the α and z̄2 could be solved as function of s and t:

z̄2 =
1

2
W

[

18π(
3

5
t− s2)2s2

]

(B.20)

α = z̄2

(

3

5

t

s2
− 1

)

(B.21)

where W (x) is the Lambert W function.

Next, we are trying to derive the anaytical form of the exchange energy per particle
of the HO gas for α < 1.

(lǫx(z̄)) = − 1

2π2(l3n(z̄))

∫

dz̄′e−(z̄2+z̄′2)(∆z̄)−3g(
√

2α∆z̄,
√

2α∆z̄) (B.22)

= − 1√
π

∫ ∞

−∞

dz̄′e−z̄′2(∆z̄)−1

[

1/2 − I1(2
√

2α∆z̄)

2
√

2α∆z̄
+
L1(2

√
2α∆z̄)

2
√

2α∆z̄

]

Let x = |z̄′ − z̄|, above integration now takes the form:

(lǫx(z̄)) = − 1√
π

∫ ∞

0

dx
1

x

[

1/2 − I1(2
√

2αx)

2
√

2αx
+
L1(2

√
2αx)

2
√

2αx

]

[

e−(z̄+x)2 + e−(z̄−x)2
]

(B.23)

In the following we derive the asymptotic behavior for lǫx(z̄) when z̄ → +∞. First
we have two approximations:

∫ ∞

0

dx
1

x
e−(x−z̄)2 ≈

√
π

z̄
(z̄ → +∞) (B.24)

∫ ∞

0

dx
1

x2
e−(x−z̄)2 ≈

√
π

z̄2
(z̄ → +∞)

∫ ∞

0

dx
1

x4
e−(x−z̄)2 ≈

√
π

z̄4
(z̄ → +∞)
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Also notice that,

L1(2
√

2αx) − I1(2
√

2αx) ≈ − 2

π
+

1

4παx2
(x→ +∞) (B.25)

then in the limit of z̄ → +∞, the Eq. (B.23) now becomes:

(lǫx(z̄)) = − 1√
π

∫ ∞

0

dx
1

x
(1/2 − 1

π
√

2αx
+

1

8πα
√

2αx3
)e−(x−z̄)2 (B.26)

= − 1

2z̄
+

1

π
√

2αz̄2
− 1

8πα
√

2αz̄4

Next we derive the limit of lǫx(z̄) for z̄ → 0. Consider z̄ is small, and expand
e−(x+z̄)2 + e−(x−z̄)2 around x, we have e−(x+z̄)2 + e−(x−z̄)2 ≈ e−x2

[2 + (4x2 − 2)z̄2 +
(4

3
x4 − 4x2 + 1)z̄4 + ( 8

45
x6 − 4

3
x4 + 2x2 − 1

3
)z̄6]. Let

A = − 1√
π

∫ ∞

0

dx
1

x

[

1/2 − I1(x)

x
+
L1(x)

x

]

e−
x2

8α (B.27)

=
1 − γ − ln(−2α) − Γ(0,−2α)

4
√
π

− 2
√

2α

3π
+

1 − e2α

8
√
πα

− 8
√

2α3/2
2F2

(

1, 3
2
; 5

2
, 7

2
; 2α
)

45π

B = − 1√
π

∫ ∞

0

dx
1

x

[

1/2 − I1(x)

x
+
L1(x)

x

]

x2e−
x2

8α

=
e2αerfc(

√
2α) − 1 − 2α√
π

+
2
√

2α

π

C = − 1√
π

∫ ∞

0

dx
1

x

[

1/2 − I1(x)

x
+
L1(x)

x

]

x4e−
x2

8α

=
16α2[e2αerfc(

√
2α) − 1]√

π

D = − 1√
π

∫ ∞

0

dx
1

x

[

1/2 − I1(x)

x
+
L1(x)

x

]

x6e−
x2

8α

=
128α3[2(1 + α)e2αerfc(

√
2α) −

√

2α/π − 2]√
π

where γ is the Euler’s constant, Γ(0,−2α) is an upper incomplete gamma function,

2F2

(

1, 3
2
; 5

2
, 7

2
; 2α
)

is a generalized hypergeometric function, and erfc(
√

2α) is the com-
plementary error function. So in the limit of z̄ → 0,

(lǫx(z̄)) = 2A+(
B

2α
−2A)z̄2+(

C

48α2
− B

2α
+A)z̄4+(

D

2880α3
− C

48α2
+
B

4α
−A

3
)z̄6 (B.28)

Since we know the expansion of lǫx(z̄) at both z̄ → 0 and z̄ → ∞, we could apply the
two-point padé approximation28 to find a good parameterization of the lǫx.
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The two-point padé approximation of lǫx can be expressed as the quotient of two
(m+1) by (m+1) determinants detP (z̄) and detQ(z̄) as:

(lǫx(z̄)) =
detP (z̄)

detQ(z̄)
+
a0

2
(B.29)

Here we choose m = 6, and we use an expansion up to z̄6 at z̄ → 0 and the expansion
at z̄ → ∞ up to 1

z̄5 , so the two matrix has the following form.

Q(z̄) =





















1 z̄ z̄2 z̄3 z̄4 z̄5 z̄6

a6 0 a4 0 a2 0 a0

0 a4 0 a2 0 a0 a−1

a4 0 a2 0 a0 a−1 a−2

0 a2 0 a0 a−1 a−2 0
a2 0 a0 a−1 a−2 0 a−4

0 a0 a−1 a−2 0 a−4 0





















(B.30)

P (z̄) =





















S5 z̄S4 z̄2S3 z̄3S2 z̄4S1 z̄5S0
a0

2
z̄6

a6 0 a4 0 a2 0 a0

0 a4 0 a2 0 a0 a−1

a4 0 a2 0 a0 a−1 a−2

0 a2 0 a0 a−1 a−2 0
a2 0 a0 a−1 a−2 0 a−4

0 a0 a−1 a−2 0 a−4 0





















(B.31)

where a6, a4, ... a−4 are from the equations (B.26,B.28), and

Sk =
a0

2
+ a1z̄ + ...+ akz̄

k (B.32)

Note: we found when α ≈ 0.001 ∼ 0.01, there is a sigularity showing up for z̄ ≈
20 ∼ 80. This may have no effect for our final purpose of functional construction.

we record it here for future possible problems. The problem may be solved by using an

odd m padé approximation.

Overall, we have a parameterization of lǫx based on density information, lǫx(s, q),
which can be converted to a function of auxilliary variables α and z̄, lǫx(α(s, q), z̄(s, q)).
The expression of lǫx(α, z̄) can be found in Eq.(B.29), and α(s, q) and z̄(s, q) can
be found in Eq.(B.13,B.14). The α and z̄ can also be derived from s and t using
Eqs. (B.21,B.21). The will use s and t as basic ingredient for our functional in the
following.

We need to get rid of the l for real application, hence we need the refinement factor
Fx. For the HO with α ≤ 1.0, we have

(lǫLDA
x (α, z̄)) = − 3

4π
(3π1/2e−z̄2

α)1/3 (B.33)
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So we our final form of refinement factor is:

Fx(s, t) = Fx(α(s, t), z̄(s, t)) =
lǫx(α, z̄)

lǫLDA
x (α, z̄)

(B.34)

where lǫx(α, z̄) and lǫLDA
x (α, z̄) are respectively from Eq.(B.29) and Eq.(B.33).

For HO gas with α > 1.0, the above parameterizations can not be applied directly.
The main concern is that at z̄ = 0, Eq.(B.34) will not work for α > 1. We know
as α increases, the region around z̄ will gradually approach the uniform electron gas
(UEG) limit. For UEG, we have t = 1 and s = 0. According to Eq.(B.21) and (B.21),
the mapped z̄ and α are respectively 0 and 243π/125. In such a case, we obtain a
refinement factor Fx = 1/1.01798, which we should be 1. Thus to recover the proper
description of the UEG situation, an extra term is multiplied to the original Fx, and
the new refinement factor becomes:

FHO
x (s, t) = Fx(α(s, t), z̄(s, t)) = (1 +

0.03596

1 + e(243π/125−α)
)
lǫx(α, z̄)

lǫLDA
x (α, z̄)

(B.35)

Now when we have a UEG situation, correct Fx = 1 is obtained, and as α < 1, the
original equation (B.34) is recovered.

Above parameterization works fine in the HO systems. However, in practical calcu-
lations, it occurs that ELF and s can be both small simultaneously, which leads to
very large α. This situation can not find its counterpart in the HO model systems.
Therefore to let the functional able to treat such situations, the α is reformulated to
prevent too large α:

α =
α

1 + e(α−
243π
125

)
+

243π
125

1 + e(
243π
125

−α)
; (B.36)

This modification is applied to the α obtained through Eq. B.21.

When applying the above functionals on HO gas with α > 1, over the edge regions,
there is discrepancy between the results from current functional and the exact values
for the ǫx. These regions can be well described by AM05, so we need an interpolation
index to combine the AM05 and current functional. The interpolation index we choose
is based on the ELF, which take the form of f(ELF ) = 1

1+ea(b−ELF ) . Empirically
parameters a = 15 and b = 0.65 are obtained. So the final form for the refinement
factor is:

FHAM
x =

FHO
x

1 + e15(0.65−ELF )
+

FAM05
x

1 + e15(ELF−0.65)
(B.37)

In the last the correlation energy functional need to be determined. We pick the
similar form as the AM05, and the parameters are obtained by fitting to the Jellium
surface exchange-correlation energy.

ǫHAM
c = ǫLDA

c

1 + 0.0545s2

1 + 0.5196s2
(B.38)
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Figure B.1. The exchange energy for a strongly confined
system. The AM05 exchange functional (red) gives a large
error compared to the exact results (black). This error is
mostly eliminated by the use of the HAM exchange functional
(green). The HAM functional uses a parametrisation of the
exact exchange which in this figure is shown in blue.

In Figure B.1 we see that the exchange part of the HAM functional reproduces the
exact exchange energy in the high density parts of a strongly confined HO system
reasonably well.
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