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Abstract

I report the progress to date of my work on scaling the CPAPR algorithm and neces-
sary supporting code to enable processing large (gigabyte to 100 gigabyte) data sets
and benchmarking the same. Where possible, I also report background information
possibly of relevance in future modifications of the code. The results include: mi-
nor repairs and additions to the TTB library for portability, algorithmic improvements
relevant to both serial and multithreaded implementations, algorithmic improvements
taking advantage of multithreading hardware, support library additions (binary IO rou-
tines) needed for efficiently and reproducibly benchmarking the algorithms. For this
optimization work, no large scale data sets are available. Therefore, scalability of data
synthesis algorithms is addressed as well.
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1 Methodology and strategy

I translated the CPAPR algorithm [1] from Matlab code and applied the basic iterative
procedure for any optimization project starting from serial code:

1. Verify (in this case in a limited way) baseline code correctness and portability

2. Profile a reasonable case to verify performance bottlenecks

3. Examine bottlenecks for coding practices that defeat compiler-based optimizations
and repair them if needed

4. Examine bottlenecks for appropriate choice of algorithms/data structures and replace
if needed

5. Test various threading tactics impact on performance while verifying correctness

6. Ensure reproducibility of input, output, and performance at scale

Based on recent experiences with MPI, OpenMP , auto-parallelization with Intel and PGI
compilers, Intel Threaded building blocks, and a Sandia threadpool library, I selected
OpenMP as the threading system for this optimization project. For this application, the
choice of OpenMP in no way sacrifices performance relative to the other models listed; the
differences are primarily syntactic. As the goal of the project is to create a library which is
scalable in data set size, portable, compiler independent, hardware independent, and main-
tainable, OpenMP is the best standards-based choice. The inner loop arithmetic of CPAPR
is simple addition and multiplication, with some indirect addressing. As such, we expect
serial performance to be bounded by memory bandwidth and multicore performance to be
bounded by coordination costs.
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2 Code Development Results

2.1 Code Correctness and attendant build considerations

Testing revealed a few uninitialized memory uses; these were all patched. One such patch
revealed a logic problem in handling zero values down stream that was referred to Ballard
and Kolda for resolution. Several places in the code rely on the defined type ttb indx to be
an unsigned type, and a productized header should note that changing to signed type may
invalidate the code. The sort function in Sptensor relies on arithmetic that could fail on
large but reasonable data sets if the ttb indx is 4 instead of 8 bytes. This should also be
noted in productized headers.

Building across 4 compilers (Intel, PGI, 2 gcc versions) identified non-portable usages
which have been fixed or are noted here. For all the checks listed in the rest of this section,
checks are performed in select code areas, not comprehensively. A productized version
of the library would apply these checks comprehensively across the source code, and then
turn them on only for debugging and regression test builds.

Checks on file operations have been added in several IO routines; these checks should
prevent possible hangs in IO code loops, a common problem when processing large data
sets.

The generation of weighted random subscripts (coordinates) in the Sptensor is based on
a weak C pseudorandom number generator, rand(). Use of this function was discovered
to lead to cycling of the subscripts when generating data sets with more than 20 million
elements. The most portable and maintainable replacement for this function is to use a
Mersenne twister based algorithm from the boost::random package. Use of the boost gen-
erator is enabled by building the library with -D HAVE BOOST . Use of this flag option
is recommended for all builds. In addition, when boost is not available, a periodic bump
of the random number generator is applied to reduce the probability of cycling. Random
tensor generation can be time consuming at large scale, so standard thread-safe versions of
rand() are used when generation is done in parallel.

Support for detecting the appearance of IEEE infinity and NaN values in Ktensors has been
added; use of this feature is enabled by compiling the library with the -D TTB CK FINITE
flag. One customer reported that due to using an old, non-ISO-compliant compiler, the
standard C++ library functions for identifying non-finite numbers are not available on his
platform; in deference to this customer, the code continues to use GNU C’s finite() function.

Support for array bounds checking within Sptensors has been added; use of this feature is
enabled by compiling the library with -D TTB USE BOUND CHECKS=1 .

Support for parallel quick sorting of generated Sptensors is implemented with OpenMP
3.0 task directives; use of this feature is enabled by compiling with -D TTB OMP TASK
which signifies that the compiler is known to have a reliable implementation of the task
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directive. It appears there is no compile time way of detecting which OpenMP features are
available and reliable. Literature review suggests OpenMP 2.0 syntax (known as nested par-
allel regions) is ineffective for parallelizing sorting of random data. The performance of the
parallel quicksort implementation is optionally affected by another flag, -D TTB SP SORT MAGIC=k
where k is a strictly positive integer; the meaning of this flag is discussed later.

Support for debugging parallel sorting and compression of randomly generated Sptensors
is enabled by compiling the library with -D TTB DEBUG SORT .

Support for multi-architecture binary IO has not been implemented; binary data files are
platform specific. On little-endian machines, the data will be little-endian and on big-
endian machines the data will be big-endian. Moving binary data files from x86 to Pow-
erPC architectures is not supported. The binary data file format includes endian check data
that are verified before additional data are read; misuse of a foreign formatted binary file
will be detected and an error issued. The binary format includes data enabling a precision
check; an error is issued if data is not of the precision expected. A productized version of
the code might use some binary data portability library. Checksum verification is unimple-
mented for both binary and text data files; application level checksums need to be added
to ensure reliable processing with large data of high consequence, as even self-checking
server storage systems have been shown to have a high rate (> 5% of drives) of undetected
bit errors.

None of the code tested in this project depends on portable BLAS or LAPACK interfaces,
so the selection of these libraries made during build has no impact on performance.

2.2 Serial algorithm changes

Selective support for vectorizing fine-grained operations has been added by applying the
C restrict keyword in relevant locations. Unfortunately, C++ compiler support of this C
standard is very uneven (varying syntax, varying performance improvements), so we define
the macro RESTRICT in a new header, TTB portability.h based on the compiler detected
with preprocessor directives. Currently restrict is used if PGI, Intel, or GNU compilers are
detected; if the library is ported to other compilers, TTB portability.h should be updated.
If a supported compiler is not detected, the RESTRICT macro becomes empty and the
keyword disappears from the code during preprocessing.

The initial scheme for weighted generation of random tensors depended on a linear search
of an array of cumulative sums with the length of a tensor dimension. For large dimensions,
this search dominates the generation time. I replaced it with a binary search, making the
time for generating unsorted, nonunique tensors essentially negligible.

Loop unrolling and vectorization in the Sptensor cp apr pi operation are defeated by the
object-oriented code organization (by function calls in the inner loop). Inlining is not a re-
liable way to obtain performance in this case. The most efficient of the parallelized variants
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eliminates these function calls by applying knowledge of the library data structures. The
original inefficient version is retained and is the default mode of computation when thread-
ing is not used. The optimization friendly inner loop rewrites could be made the default
for non-threaded code; if this is done, the original version should be retained for regression
checks because the optimized version depends on storage layout choices made in Sptensor,
FacMatrix and other classes.

2.2.1 A quick overview of key memory traffic patterns in array and tensor based
codes

Kolda, Ballard, and Chi chose data structures algorithms with the intent to enable effi-
cient inner loops and cache data motion for key steps in CPAPR. To aid understanding the
descriptions of algorithms given further on, we define a few key terms and data motion
patterns. We do not aim to be comprehensive or tutorial here.

• A streaming calculation is the sequential flow of a contiguous chunk of the array
through a calculation, with the same operations being applied to each data element
and no dependence of the output to one element on the data in any other element.

• A streaming read or write is the sequential flow of a contiguous chunk of elements
from one hardware unit (cache, processor, storage) into another.

• A gather is when a large number of elements (at random or stenciled locations) con-
tribute to a computation but are not overwritten; also known as a reduction.

• A scatter is when a large number of elements (at random or stenciled locations) are
overwritten with the result of a computation.

• A random read or write is arbitrarily ordered access to array elements; it is generally
associated with indirect addressing schemes and gather or scatter operations.

• A cache miss is when data is needed which is not in the current level of cache being
queried for the data.

• Hardware locality is the degree of closeness of bulk memory hardware to the proces-
sor accessing it. In the multi-socket machines (e.g. Dell T7500, SGI Ultraviolet, and
most of the recent Sandia cluster nodes), memory directly attached to the processor
socket (local memory) is faster to access than remote memory attached to another
socket on the same board. As applications allocate and use memory, placement of
the data can affect bandwidth available for streaming operations. Control of memory
placement is not well standardized, so functions needed to manage placement well
are non-portable and complex.

Streaming operations are the simplest to parallelize, but most interesting algorithms are
a combination of streaming and gather/scatter. With care, most reductions can be paral-
lelized, but locking or intermediate result caching is always required. Gathers that require
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access outside cache induce significant delays in the absence of expensive arithmetic that
overlaps the memory traffic. Sparse tensor arithmetic invariably requires indirect address-
ing for some subset of operations, depending on the storage scheme selected. Sorting a
sparse tensor may reduce delays due to cache misses in some algorithms. When multiple
threads used to decompose a single streaming task are also using the same cache, the result
is a shortened cache residence time. If there is no data reuse, this shortened residence time
has little impact on efficiency. Scatters from multiple threads require locking or some other
method to eliminate race conditions and data corruption resulting from conflicting writes.

2.3 Code threading

I applied and studied threading support in three high-level functions of Sptensor: cp apr pi
, cp apr phi , and quicksort. These present an interesting fraction of the spectrum of the
challenges inherent in threading and optimizing numerical code on x86-based processors.
Fortunately for the functions in question, the code is compact and we have little reason to be
concerned with the performance of the processor instruction cache system unless the code
is ported to a processor with little or no instruction cache. The serial throughput of the code
depends on the amount of arithmetic needed per tensor element, the available bandwidth
of the read and write operations, and the access patterns of the read and write operations
that drive cache behavior. The parallel throughput of the code depends additionally on the
assignment of calculations to threads and the choice of algorithms and data structures used
to eliminate race conditions.

2.3.1 A quick overview of threading as used in this work

The interested reader can find numerous tutorial and reference resources for thread pro-
gramming online. Here we describe briefly the three standardized threading patterns we
applied, so that those unfamiliar with OpenMP can examine and understand the source
code.

The first two patterns apply to simple loops. Consider a loop of length L where each trip
performs some roughly fixed amount of work. When assigning the work of this loop to a
fixed number of threads, P, there are two common work patterns. These are identified in
the OpenMP standard as ’static scheduling’ and ’dynamic scheduling’. Static scheduling
divides the work into P contiguous chunks within the range [0,L) sized as evenly as pos-
sible. Dynamic scheduling dispatches work in fixed size chunks no bigger than L to each
thread as the thread becomes available. Dynamic scheduling is typically preferred when
the cache architecture of the machine is such that for a large or small L, static chunks of
size L/P result in unfavorable cache behavior and lowered throughput. OpenMP 2.0 and
later support both these work patterns. Code written following these pattern as expressed
in OpenMP is portable across all the compilers we tested and is reported to be portable to
Microsoft compilers.
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The third pattern handles arbitrary workloads. Consider an algorithm where there is no
fixed work quantity associated with inner iterations or recursions. This is typical of cer-
tain graph algorithms and most sorting algorithms. These workloads can be threaded by
splitting at iteration or recursion points and processing the resulting subtasks with a task
queue. Identification of effective task splitting methods is heuristic and algorithm depen-
dent. Manually implementing a task queue and guaranteeing its correctness and termination
is nontrivial. Fortunately, OpenMP 3.0 and later provide a simple way to assign tasks to
code regions.

Should OpenMP prove unacceptable as an implementation choice for bulk threading on
some future platform, the threading directives in the code give clear documentation of the
information and control flows which must be maintained in any alternative threading im-
plementation. Folklore exists which suggests OpenMP implementations manage threads
inefficiently, creating and destroying threads each time a parallel region is entered. I veri-
fied that this is not true for our usage of the current OpenMP implementations tested; all the
implementations create a pool of threads on entry to the first parallel region and schedule
or idle them as needed.

Enabling a CMake based build with OpenMP requires compiler-specific flags, as listed by
compiler here. These flags should be set in the environment when CMake is run. A variety
of examples are provided in TTB cpp/example builds/.* of the source code.

• GCC: CFLAGS=-fopenmp; CXXFLAGS=-fopenmp; LDFLAGS=”-fopenmp -lgomp”

• Intel: CFLAGS=-openmp; CXXFLAGS=-openmp

• PGI: CFLAGS=-mp; CXXFLAGS=-mp

For Intel and PGI compilers, the same flags used for compiling objects must be used for
linking executables.

The effects of hardware locality on threaded performance are often noticeable, as the data
for a thread may be almost entirely in memory non-local to the processor. Ideal memory
placement for one step of a complex algorithm may be very non-ideal for another even
though they use the same object classes. Most Linux kernels apply a first-touch principle in
assigning virtual memory pages to hardware. It is difficult to guarantee the effectiveness of
this strategy without reengineering the code to make separate allocations for each thread, as
the Linux kernel is free to migrate pages as needed. The widely available program wrapper
numactl provides a limited ability to guide Linux kernel page assignment policy, but it is
not suitable for a general application-oriented user.

For good performance on large numeric data sets, the default Linux page size of 4 kilobytes
is widely regarded as far too small, sometimes entailing performance reductions of 50%
and more. Threaded programs can be particularly sensitive to this. However, making use
of larger page sizes (2MB or 1GB) requires system administration support and is not a
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viable option for most users. I did not yet run any experiments to determine performance
sensitivity to page size.

2.3.2 The Pi calculation

The cp apr pi algorithm applied to an Nd dimensional sparse tensor X computes an update
of Nd-1 components of Pi. Pi is an array proportional in size to the number of nonzeros
in X and the update is to scale an element of Pi by the corresponding current values in the
approximant M being computed. This amounts in memory traffic terms to a gather from a
random read of M and a streaming read/write of Pi. The read location in M is determined
from the subscripts of the nonzeros in X, thus sorting X may somewhat improve the cache
performance of this algorithm.

The Pi calculation algorithm is parallelized by splitting the work into contiguous chunks
of non-zeros from X. Several parallelizations of the algorithm are coded, and at present the
scheduling directive used is runtime which in the absence of user intervention defaults to
”dynamic,1” for GNU OpenMP and vendor dependent policies on other compilers. Perfor-
mance behavior with varying dynamic schedules is easily tested by setting the environment
variable OMP SCHEDULE =dynamic,chunksize where chunksize is a strictly positive in-
teger. When productized, this directive should be converted to static or a large dynamic
chunk size, as the default behavior with GCC performs very poorly.

The first parallelization applies a simple omp parallel for directive to the serial version
of the code. This version performs unscalably, as the threads all compete for write ac-
cess to a temporary (subs) used to query the indices of elements of X. In the absence
of OpenMP , this parallelization degenerates to the serial version of the code. Using the
parallel version of this can be tested by compiling with OpenMP enabled and the flag -
D TTB OMP CPAPR PI=kpi where kpi is 1.

The second parallelization eliminates the conflicting write and locking of subs. Using this
version can be tested by compiling with OpenMP enabled and the flag -D TTB OMP CPAPR PI=kpi
where kpi is 2.

The third parallelization extends the second and eliminates barriers to instruction level
parallelism by applying knowledge of the data structure of X and of M. This version is the
default if OpenMP is used.

Even if OpenMP is enabled, passing -D TTB OMP CPAPR PI=kpi where kpi is 0 or 4
will generate a serial version of the Pi calculation. Version 0 is the original serial code
and version 4 is the serial code with all inner-loop functions eliminated in favor of pointer
arithmetic; the pointer arithmetic is brittle in that a change in the storage conventions of
FacMatrix or Ktensor will invalidate it.

In the event that a library builder specifies an invalid value of kpi, the build of cp apr pi will
exit with an error message. Independent of the specific parallelization option chosen is the
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option to apply a first-touch scheme to Pi memory allocation. Passing -D TTB DISTRIBUTE PI
to the C++ compiler will enable statically parallelized initialization of the Pi data array.

2.3.3 The Phi calculation

The cp apr phi algorithm applied to an Nd dimensional sparse tensor X computes a factor
phi as a sum of count-weighted, scaled products of Pi and the approximant M computed
in cp apr pi . This amounts in memory traffic terms to a streaming read of Pi, a streaming
read of X, a random read of M with addressing driven by the subscripts of elements of X,
and a random read/write of Phi also driven as M.

The Phi calculation algorithm is parallelized by splitting the work into contiguous chunks
of non-zeros from X. Four implementations of the algorithm are coded, and at present the
scheduling directive used for all is static, as preliminary studies indicated no benefit from
dynamic scheduling. Note that unlike the Pi calculation, random writes are involved and
care must be taken to eliminate race conditions. Each thread uses a temporary, private Phi
FacMatrix, tmpPhi, to accumulate partial results. TmpPhi dominates the memory usage
when large numbers of threads are used. For example, on a 10000i3 tensor with 7.7x108

nonzeros, the tensor X is 24GB and the total memory used is 310GB.

The first implementation is the original serial code. It is compiled if OpenMP is not de-
tected at compile time or if the user builds with -D TTB OMP CPAPR PHI=kphi with
kphi is 0. No parallelization is used in this case.

The second implementation uses an OpenMP critical section (a lock) to serialize the adding
each tmpPhi to the output Phi. Using this version can be tested by compiling with OpenMP
enabled and -D TTB OMP CPAPR PHI=kphi where kphi is 1. This serialization strongly
dominates the phi cost as the number of threads grows.

The third implementation streams the sum over tmpPhi operation using a new operator
added to FacMatrix, plusAll. The implementation of plusAll is parallelizable. One paral-
lelization has been implemented, decomposing the loop over the data array index and sum-
ming elements across all the tmpPhi elements for a given index. This reduction scheme,
while far more scalable than the serialized version, is unlikely to scale well (in naive
form) across multiple ultraviolet nodes. Using this version can be tested by compiling
with OpenMP enabled and -D TTB OMP CPAPR PHI=kphi where kphi is 2.

The fourth implementations is as the third, but modified to eliminate barriers to instruction
level parallelism by eliminating pointer lookup calls in the inner loop. This change provides
a 15% decrease in runtime for the function as a whole compared to the third version. This
is the default version and corresponds to kphi = 3.

In the event that a library builder specifies an invalid value of kphi, the build of cp apr phi
will exit with an error message.
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2.3.4 Tensor generation

Generating test tensors to model sparse count data is done by generating random integer
subscripts (within the size range of each tensor dimension) which may be redundant, sorting
the entire tensor by subscript indices, and then merging redundant entries. Subscripts which
appear once will have a value of 1, merging 2 redundant entries yields a value of 2, and so
on.

Large scale random number generation in serial has difficulties which are addressed in
the earlier code correctness section. Parallel subscript generation adds the requirement
of generator thread safety and distinct seeds for each thread, but is essentially an easily
threaded streaming write. I parallelized the generation phase for loop with the runtime
directive, as was the case with the cp apr pi calculation. The generator seed (or set of
seeds) is reused each time a generate call is made. This seed choice guarantees that for a
given dimension, size, and number of threads, the same tensor will always be generated, an
appropriate choice for benchmark work. A choice less likely to produce duplicate tensors
if multiple random tensors are needed in the same run would include using the system time
or the bits of the tensor object pointer for the seed base.

Parallel sorting requires irregularly sized work chunks and is discussed separately below.
Detection and merging of the redundant entries after sorting can be parallelized at the cost
of redundant shifts of the separately compressed sections. As the serial cost of this opera-
tion is presently negligible relative to the parallel sorting cost, this parallelization is not yet
implemented.

2.3.5 Tensor sorting

Parallel sorting is a widely studied topic, as the irregular workload of divide and conquer
algorithms leads to a many heuristic variations. The failure of the OpenMP 2.0 standard to
adequately support irregular benchmarks including quicksort lead directly to inclusion of
the task queue in OpenMP 3.0. The serial quicksort originally implemented for Sptensor
makes an arbitrary partitioning of the unsorted data and recursively continues partitioning
and moving data until all partitions are size 1 and the data is therefore sorted. On large
random data, these partitions are usually very imbalanced.

To parallelize this algorithm, after a review of several public attempts in the literature, I
added the function quicksort p which introduces a thread task for each subrange defined af-
ter the partition operation. This ultimately adds very many very small tasks to the OpenMP
queue unless one places a minimum partition size below which the recursion continues in
serial only. The size cutoff is arbitrary and heuristic and dependent on the processor hard-
ware. A brief check of performance on a large test tensor on ultraviolet suggests that a
good cutoff is in the range between 20,000 and 2,000,000. The default set in the code is
100,000; it can be tuned at build time as mentioned in the earlier correctness discussion
with -D TTB SP SORT MAGIC=k .
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3 Performance Results

In the following results, the platforms are noted as:

• 2x4, a dual socket Dell T7500 workstation with two Intel Xeon E5640 quad core @
2.67GHz, 24GB RAM, Ubuntu Linux 10.04.3 x86 64 kernel 2.6.32-33-generic, and
the following 64 bit compilers: GCC 4.6.2, Intel XE icpc 12.0.1.07, Portland Group
pgCC 11.7-0.

• 4x8, a quad socket SGI Ultraviolet server node (not connected to other nodes) with
4 Intel Xeon X7550 oct core @ 2.0 GHz, 512 GB RAM, SGI provided SUSE Linux
Enterprise Server 11.1 x86 64 kernel 2.6.32.43-0.4-default, and the following 64 bit
compilers: GCC 4.6.2, Intel XE icpc 12.1.0.233 Build 20110811, Portland Group
pgCC 11.7-0.

Both platforms run in NUMA mode with hyperthreading disabled. Timing data presented
are elapsed wallclock times collected from benchmarks executed with user-exclusive use
of the machine, but the normal complement of multi-user services idling (and periodi-
cally waking up) in the background. Thus the numbers here may have some value in es-
timating practical time requirements for similar problems, but they are not the absolute
best that the hardware could achieve by further tuning the code and the operating sys-
tem. At present timing data are collected with boost timing functions. OpenMP timing
routines could, with some rewrites, replace boost if it is unavailable. For all loops using
directive schedule(runtime), static scheduling was specified via the environment variable
OMP SCHEDULE .

3.1 CPAPR computation

In Figure 1 are the results of scaling tests on the 4x8 machine, marching from 8 to 32 pro-
cessor in steps of 4. Comparisons can be made among lines of the same color across these
plots to understand the effect of problem size on a particular function and compiler combi-
nation. In each data line of the plots, a spike at 8 threads shows the comparison between
using 8 cores in the same socket and 8 cores selected round-robin across all 4 sockets; the
end of the spike is the single-socket value. At small sizes (24k,48k) the processors are
clearly starved for work and multithreading is at best a break-even choice for the commer-
cial compilers. At larger sizes, the phi operation scales well, leaving the pi operation to
dominate runtime for high thread counts.

The number of nonzeros used in the cube tests is slightly less than the number requested
and listed on the plot, due to the generation process used. The actual counts for the four
plots are, respectively: 23926, 47667, 231509, and 447608. The data for all cases were
generated off-line and reloaded from files for each test.
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Figure 1: Overall timing and breakdown on small and midsized cubic tensors

In the cube tests, the Intel compiler substantially outperforms the others for midsized ten-
sors. This result holds for the huge cube in Figure 2, but is less evident in the lopsided
tensor shown in Figure 3. In both these large tensor tests, the Pi operation scales poorly,
and it becomes the dominant cost beyond 16 threads in the large cube test.
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Figure 2: Large cube on 16-32 threads, stepping by 8.
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Figure 3: Lopsided tensor on 8-32 threads, stepping by 4.
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3.1.1 CPAPR Pi

Here we present the Pi performance data separately for clarity, though it is the same data
that appears on the previous plots. The Pi function is an example of the general claim
that scalable performance is not portable. The time available did not permit a detailed
examination of the generated assembly code to better understand what strategy the PGI
compiler took that lead to a performance breakdown or why the GCC compiler at 32 cores is
worse than the Intel on 8 cores. The Pi data of the large cube test overall plot is sufficiently
clear that it is not plotted separately here. The amount of arithmetic and number of memory
writes in the inner loop of the Pi calculation is so small at a decomposition rank of 10 or
50 that this kernel gets little benefit from the multicore hardware.
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Figure 4: Pi performance on small and midsized cubes
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Figure 5: Pi performance on a lopsided tensor, 1.3E7 nonzeros
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3.1.2 CPAPR Phi

Here we present the same Phi data seen in the overall plots, but separately and on linear
axes for clarity. Clearly in the midsized cubes, the spike down at 8 threads shows that dis-
tribution of threads over sockets improves the performance for all the compilers, relieving
cache contention somewhat.
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Figure 6: Phi performance on small and midsized cubes
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Figure 7: Phi performance on a lopsided tensor
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3.2 Data generation

Data generation on ultraviolet follows the trends shown in the smaller 2x4 hardware study
of Figure 8. Random generation of elements is a small fraction of the total data synthesis
cost. Sorting and merging elements for large data is adequately scaled by handing off
independent contiguous chunks to single threads. For thread counts up to four, both single
socket (local) and round-robin thread allocation data are plotted. Unlike previous plots, the
vertical axis is the log rate of nonzeros processed. Sorting clearly dominates the cost.
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For the largest data set generated on ultraviolet, we obtained the data in Table 1.

Table 1: Summary of largest data synthesis (32 core), 100003, Rank 50

requested elements 2x109

resulting elements 0.771x109

total seconds 793
generation seconds 88
sorting seconds 705
nz/sec/core 78000

3.3 IO

Binary IO streams numeric data to memory, while readable text IO requires complex format
conversions and error checking. Text based IO is far slower than binary IO for numeric data.
IO performance for large files is expected to scale roughly linearly in data size, absent a
parallel IO library, so I present no scaling data. When generating the largest model (24
GB), data write time was about one minute out of 14 minutes total generator runtime.
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4 Drivers

Three drivers have been created in TTB cpp/TTB parallel, gen cp apr input, dump cp apr input,
and test cp apr special. All three respond to the command line argument –help with a us-
age message. Generating large data test models (a paired Sptensor and Ktensor in separate
files) is done with gen cp apr input. Identifying the contents of a binary data file or dump-
ing the contents to text format is done with dump cp apr input. Loading (or generating
anew) test models and running the cp apr algorithm is done with test cp apr special. Each
driver has a correspondingly named single C++ source file that links with the TTB libraries.

Presently all the drivers are built with a Makefile independent of the CMake build system.
Care must be taken when using the makefile, as its compiler selection and compiler flags
do not automatically track those used when building the TTB libraries.
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5 Conclusions and recommendations

On 32 cores, overall wallclock cost for decomposing a large tensor is less than 10% of
the serial decomposition cost. This improvement comes at a memory cost for localized
temporaries which scales linearly in the number of processors. In testing of sorted tensor
decomposition with cp apr, the sum of Pi and Phi operations accounts for over 91% of
runtime on 32 cores, and a higher percentage on fewer cores, meaning further paralleliza-
tion without significant data structure changes cannot be expected to substantially improve
overall performance. The optimal memory layout for the Pi computation may be different
from that for the Phi computation. The current code is tuned to the memory traffic pattern
of the Phi operation, attempting with first-touch and thread-local allocation to reduce the
amount of off-socket data handled by the Phi computation.

As the code is currently organized, it is likely that advanced multicore technologies (e.g.
Intel MIC) would provide additional benefit for large models only if memory bandwidth is
expanded to keep the cores fed and the amount of memory connected to a single socket is
sufficient to hold the entire Pi and M factor matrices.

Here is a list of secondary operations that present immediate opportunities for further par-
allelism, but that have not yet been threaded. In porting to hardware supporting a larger
number of remote threads, these functions may be expected to appear as bottlenecks. In
many of them, adding naive thread support will be optimizing for large data sets and pes-
simizing for small data sets. Here small data, for 2010 Xeon processors, is data such that
the product of the tensor decomposition rank and the size of the largest individual dimen-
sion of the approximated tensor X is less than 1000. Each operation is expected to exhibit
linear improvement when handling large data, based on inspection, although several of
them are reduction operators.

• FacMatrix::times (both scalar and vector versions)

• FacMatrix::cp apr kkt

• Ktensor::normalize

• Ktensor::distribute

• Array::norm

5.1 Recommendations

1. Extract the CPAPR logic used in the test driver and move it into a function on the
Sptensor class. Alternatively, move it into a separate class with the core algorithm
and several methods for setting options that control parallelism strategies, allocation
strategies, and collection of performance data. The latter approach would facilitate
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rapid experimentation on future platforms. It would also provide an appropriate class
to contain the factor match scoring algorithms.

2. The effect of the first-touch implementation on both Pi and Phi computations should
be better studied. Now that basic threading approaches have been established, ad-
vanced performance instrumentation to characterize cache performance and remote
vs local memory access is appropriate. When OpenMP is present, first-touch oriented
initialization of the data and index arrays in Sptensor is applied, independent of the
argument parallel passed to the resize operations during construction; this needs to
be fixed for thread-locally allocated Sptensors to work as expected.

3. The memory overhead of tmpPhi can most likely be reduced in the case where indices
of X are sorted. A scan of the sparse index data for each thread will reveal what
portion of its temporary factor matrix will be written, and only that chunk of the
temporary factor need be allocated.

4. More instruction-level parallelism and better cache use could be extracted by shifting
the implementation from 8 byte to 4 byte data storage. Care must be taken that
loops over arrays are written over indices of type size t and not ttb indx, or integer
wrap-around will lead to silently incorrect algorithms. It seems unlikely that the
multiplicative update scheme is sensitive to the errors induced by single precision
floating point in a few hundred to a few thousand steps.

5. Care should be taken to include at least the Intel compiler, as the scaling studies
for a single compiler (particularly GCC) can be misleading regarding the possible
total performance of the code on a given hardware. If the latest generation of AMD
processors (Bulldozer) is tested, the PGI and AMD compilers should be included in
the testing. For Sandia Linux users, PGI and Intel compilers are available on host
compilers.sandia.gov.

6. Users on single-core platforms or otherwise determined to use the code in serial mode
should compile with -D TTB OMP CPAPR PI=kpi where kpi = 4.

7. Until the OpenMP 3.0 task implementations become more reliable, the data genera-
tion and sorting application should be built with GCC 4.6.2 (or later) and a separate
build with Intel compilers for solving (with no -D TTB OMP TASK ).
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