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Abstract

This is a companion publication to the paper “A Matrix-Free Trust-Region SQP Algorithm
for Equality Constrained Optimization” [11]. In [11], we develop and analyze a trust-region
sequential quadratic programming (SQP) method that supports the matrix-free (iterative, in-
exact) solution of linear systems. In this report, we document the numerical behavior of the
algorithm applied to a variety of equality constrained optimization problems, with constraints
given by partial differential equations (PDEs).

3



Acknowledgments

Denis Ridzal thanks the DOE Office of Science Advanced Scientific Computing Research (ASCR)
and the DOE NNSA Advanced Simulation & Computing (ASC) programs for continuous support.
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1 Introduction

This is a companion publication to the paper “A Matrix-Free Trust-Region SQP Algorithm” [11]. In
[11], we develop and analyze a trust-region sequential quadratic programming (SQP) method that
supports the matrix-free (iterative, inexact) solution of linear systems. SQP methods compute an
approximate solution of the NLP by solving a sequence of quadratic subproblems which are built
from a quadratic model of the Lagrangian and a linear Taylor approximation of the constraints.
The solution of these subproblems requires the solution of linear systems in which the system matrix
involves the constraint Jacobian or its transpose. For large-scale problems, the direct solution of such
linear systems is prohibitively expensive. Often, constraint Jacobians are not even formed explicitly,
only their action and the action of their transpose on a vector are available. In these cases, iterative
linear system solvers have to be applied. Consequently, stopping criteria for the iterative linear
system solvers must be developed. The definition of the stopping criteria is a delicate matter,
because they directly affect the progress of the optimization algorithm.

This paper summarizes the selection of linear solver tolerances developed in [11] and examines the
computational performance of our matrix-free trust-region SQP algorithm. We document the nu-
merical behavior of the algorithm applied to a variety of equality constrained nonlinear programming
problems (NLPs), with constraints given by partial differential equations (PDEs).
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2 Background

We provide the background necessary to specify the matrix-free trust-region SQP algorithm and to
examine the numerical results. Additional background, results and the links to relevant literature
are given in [11]. Our SQP algorithm solves equality constrained NLPs of the form

min f(x) (2.1a)
s.t. c(x) = 0, (2.1b)

where f : X → IR and c : X → C for some Hilbert spaces X and C. We define the Lagrangian
functional L : X × C → IR for (2.1) as

L(x, λ) = f(x) + 〈λ, c(x)〉C .

We let xk be the k-th SQP iterate, λk the Lagrange multiplier estimate at xk, and Hk = H(xk, λk)
the Hessian ∇xxL(xk, λk) of the Lagrangian or a self-adjoint approximation thereof.

Trust-region SQP methods compute an approximate solution of (2.1) by approximately solving
a sequence of subproblems derived from

min 1
2 〈Hks, s〉X + 〈∇xL(xk, λk), s〉X + L(xk, λk) (2.2a)

s.t. cx(xk)s+ c(xk) = 0 (2.2b)
‖s‖X ≤ ∆k. (2.2c)

To deal with the possible incompatibility of the constraints (2.2b), (2.2c) we apply a Byrd-Omojokun-
like composite-step approach.

The trial step sk is computed as the sum of a quasi-normal step nk and a tangential step tk. The
role of the quasi-normal step nk is to reduce linear infeasibility. It is computed as an approximate
solution of

min ‖cx(xk)n+ c(xk)‖2C (2.3a)
s.t. ‖n‖X ≤ ζ∆k, (2.3b)

where ζ ∈ (0, 1) is a fixed constant.

Once the quasi-normal step nk is computed, the tangential step tk is computed as an approximate
solution of the subproblem

min 1
2 〈Hk(t+ nk), t+ nk〉X + 〈∇xL(xk, λk), t+ nk〉X + L(xk, λk) (2.4a)

s.t. cx(xk)t = 0 (2.4b)
‖t+ nk‖X ≤ ∆k. (2.4c)

This task is handled in two stages. In the first stage, we approximately solve the related problem

min 1
2

〈
Hk t̃, t̃

〉
X +

〈
W̃kgk, t̃

〉
X

(2.5a)

s.t. t̃ ∈ Range(W̃k) (2.5b)

‖nk + t̃‖X ≤ ∆k, (2.5c)

where gk
def= ∇xL(xk, λk) +Hknk. The operator W̃k : X → X is an inexact projection onto the null

space Null(cx(xk)) of the linearized constraints. It is defined implicitly via z = W̃kw, where z is
computed by iteratively solving the augmented system(

I cx(xk)∗

cx(xk) 0

)(
z
y

)
=
(
w
0

)
. (2.6)
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In the second stage, we compute the tangential step tk by applying an approximate null-space
projection to t̃k, the solution of (2.5). This additional projection, computed by solving another
augmented system, restores as much of the linear feasibility lost during the first stage as is needed
to ensure the global convergence of the SQP algorithm.

Figure 2.1 gives an illustration of the composite-step approach for two scenarios: exact linear
system solves (left pane) and inexact linear system solves (right pane).

ζ∆k ∆k

tk=etk
cx(xk)t = 0

cx(xk)s+ c(xk) = 0

nk

ζ∆k ∆k

nk

tk

cx(xk)t = 0

cx(xk)s+ c(xk) = 0

etk

Figure 2.1: An illustration of the composite-step approach. Left pane: the quasi-normal step
nk and the tangential step tk = t̃k computed using exact linear system solves. Right pane: the
quasi-normal step nk, the solution t̃k of the tangential subproblem (2.5) and the tangential step tk
computed using inexact linear system solves.

In a conventional trust-region SQP algorithm, once the trial step sk = nk + tk is computed, one
must decide whether to accept the step and how to update the trust-region radius ∆k. In order to
perform these tasks, one may use the augmented Lagrangian merit function

φ(x, λ; ρ) = f(x) + 〈λ, c(x)〉C + ρ‖c(x)‖2C = L(x, λ) + ρ‖c(x)‖2C . (2.7)

The step sk is accepted or rejected and the trust-region radius ∆k is updated based on the ratio
between the actual reduction

ared(sk; ρk) = φ(xk, λk; ρk)− φ(xk + sk, λk+1; ρk) (2.8)

and the predicted reduction

p̂red(sk; ρk) = φ(xk, λk; ρk)−
[
L(xk, λk) + 〈∇xL(xk, λk), sk〉X + 1

2 〈Hksk, sk〉X

+ 〈λk+1 − λk, cx(xk)sk + c(xk)〉C + ρk‖cx(xk)sk + c(xk)‖2C
]
. (2.9)

Here λk+1 is a Lagrange multiplier estimate corresponding to the trial iterate xk + sk. It can be
computed as an approximate solution of min ‖∇f(xk + sk) + cx(xk + sk)∗λ‖X∗ .

Defining
rtk = cx(xk)tk ,
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which can be interpreted as a gauge of the loss of linear feasibility, the predicted reduction (2.9) can
be split into two parts,

p̂red(sk; ρk) ≡ pred(nk, t̃k; ρk) + rpred(rtk; ρk),

with the following definitions:

pred(nk, t̃k; ρk)

= −
〈
W̃kgk, t̃k

〉
X
− 1

2

〈
Hk t̃k, t̃k

〉
X − 〈∇xL(xk, λk), nk〉X −

1
2 〈Hknk, nk〉X

−〈λk+1 − λk, cx(xk)nk + c(xk)〉C
+ρk

(
‖c(xk)‖2C − ‖cx(xk)nk + c(xk)‖2C

)
(2.10)

and
rpred(rtk; ρk) = −

〈
λk+1 − λk, rtk

〉
C − ρk‖r

t
k‖2C − 2ρk

〈
rtk, cx(xk)nk + c(xk)

〉
C . (2.11)

In our algorithm, we first compute a penalty parameter ρk satisfying

pred(nk, t̃k; ρk) ≥ ρk
2
(
‖c(xk)‖2C − ‖cx(xk)nk + c(xk)‖2C

)
,

and then apply an approximate projection to t̃k to compute a tangential step tk that satisfies the
requirement

|rpred(rtk; ρk)| ≤ η0 pred(nk, t̃k; ρk). (2.12)

Here η0 ∈ (0, 1− η1), and η1 ∈ (0, 1) is the smallest acceptable ratio of the actual reduction defined
in (2.8) and the predicted reduction pred(nk, t̃k; ρk) defined in (2.10).

As we have mentioned, the tangential step is computed in two stages. The approximate solution t̃k
of (2.5) can be computed immediately after the normal step has been computed. The final tangential
step tk, however, depends on pred(nk, t̃k; ρk), which in turn depends on the new Lagrange multiplier
estimate. Furthermore, to guarantee convergence of our algorithm, all computed substeps must
satisfy certain quality criteria. These are discussed in [11].

In the next section we state the complete algorithm and specify how the subproblems are being
solved.
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3 The Matrix-Free Trust-Region SQP Algorithm with
Inexact Linear System Solves

We begin with the specification of the master algorithm. We make forward references to several
subalgorithms, given in Sections 3.1–3.5.

Algorithm 1 [Trust-region SQP algorithm with inexact linear system solves]

1. Initialization: Choose initial point x0, initial trust-region radius ∆0, constants 0 < α1, η1 < 1,
0 < η0 < 1− η1, ρ−1 ≥ 1, ρ̄ > 0, and tolSQP > 0. Set ∆min,∆max so that 0 < ∆min < ∆max.
Set forcing parameters ξqn, ξpg, ξproj , ξtang, ξlmh ∈ (0, 1), ξlmg > 0 and ξ4 > 1. Choose initial
Lagrange multiplier λ−1 and compute λ0 by solving (3.12) with linear solver tolerance (3.13).

2. For k = 0, 1, 2, . . .

(a) Convergence Check: If ‖∇xL(xk, λk)‖X < tolSQP and ‖c(xk)‖C < tolSQP , then stop.

(b) Compute quasi-normal step nk using Algorithm 2 and linear solver tolerance (3.3).
Compute t̃k, t̃cpk using Algorithm 3 and linear solver tolerances (3.6), (3.8).

(c) For i = 0, 1, 2, . . .
i. For j = 0, 1, 2, . . .

A. Compute tangential step tk by solving (3.9) with linear solver tolerance (3.10).

B. Compute Lagrange multiplier estimate λk+1 at xk + nk + tk by solving (3.12) with
linear solver tolerance (3.13).

C. Update the penalty parameter: If

pred(nk, t̃k; ρk−1) ≥ ρk−1

2
(
‖c(xk)‖2C − ‖cx(xk)nk + c(xk)‖2C

)
then set ρk ← ρk−1. Otherwise set

ρk ←
−2 pred(nk, t̃k; ρk−1)

‖c(xk)‖2C − ‖cx(xk)nk + c(xk)‖2C
+ 2ρk−1 + ρ̄.

D. If |rpred(cx(xk)tk; ρk)| > η0 pred(nk, t̃k; ρk), set ξtang ← 10−3 ξtang, else break.

End For
Reset ξtang to its value at outer iteration i prior to Step 2(c)i.

ii. If ‖t̃k‖X > ξ4‖nk + tk‖X and t̃k = t̃cpk
Set ξqn ← 10−1 ξqn, ξpg ← 10−1ξpg, ξproj ← 10−1ξproj , ξtang ← 10−1 ξtang.
Recompute nk using Algorithm 2 and linear solver tolerance (3.3).
Recompute t̃k, t̃cpk using Algorithm 3 and linear solver tolerances (3.6), (3.8).

Else If ‖t̃k‖X > ξ4‖nk + tk‖X and t̃k 6= t̃cpk
Set t̃k ← t̃cpk .

Else

Optional: Reset ξqn, ξpg, ξproj and ξtang to their values from Step 1.
break

End For

(d) Acceptance Test:

i. Compute trial step sk ← nk + tk.

ii. Compute ratio θk ← ared(sk; ρk)/pred(nk, t̃k; ρk).

iii. If θk ≥ η1, set xk+1 ← xk + sk, and choose ∆k+1, via Algorithm 4, such that

max{∆min,∆k} ≤ ∆k+1 ≤ ∆max.

Otherwise set xk+1 ← xk, λk+1 ← λk, and ∆k+1 ← α1‖sk‖X .

End For
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3.1 Computation of the Quasi-Normal Step

We use a dogleg method to compute an approximate solution of (2.3). Let ncpk be the Cauchy point,
i.e. the solution of min

{
‖cx(xk)n+ c(xk)‖2C : n = −αcx(xk)∗c(xk), α ≥ 0

}
. It is easy to verify that

ncpk = − ‖cx(xk)∗c(xk)‖2X
‖cx(xk)cx(xk)∗c(xk)‖2C

cx(xk)∗c(xk). (3.1)

If ‖ncpk ‖X ≥ ζ∆k, then we set the quasi-normal step to nk = ζ∆kn
cp
k /‖n

cp
k ‖X .

If ‖ncpk ‖X < ζ∆k, we compute an approximate minimum-norm solution nNk of min ‖cx(xk)n +
c(xk)‖2C and compute the quasi-normal step by moving from ncpk as far as possible toward nNk while
staying within the trust region with radius ζ∆k. The vector nNk can be computed by solving the
augmented system (

I cx(xk)∗

cx(xk) 0

)(
nNk
y

)
=
(

0
−c(xk)

)
.

If iterative solvers are used, we instead solve for δnk = nNk − n
cp
k :(

I cx(xk)∗

cx(xk) 0

)(
δnk
y

)
=
(

−ncpk + e1

−cx(xk)ncpk − c(xk) + e2

)
. (3.2)

The size of the residual
(
e1 e2

)
∈ X × C is restricted via

‖e1‖2X + ‖e2‖2C ≤ (ξqn)2 ‖cx(xk)ncpk + c(xk)‖2C , (3.3)

where 0 < ξqn ≤ 1. Our algorithm for computing the quasi-normal step is given as follows.

Algorithm 2 [Dogleg method for the quasi-normal subproblem]

1. Compute ncpk as defined in (3.1).

2. If ‖ncpk ‖X ≥ ζ∆k, then set nk ← ζ∆kn
cp
k /‖n

cp
k ‖X .

3. Else compute δnk via (3.2) such that e1 and e2 satisfy (3.3).
If ‖ncpk + δnk‖X ≤ ζ∆k, then set nk ← nNk .
Else compute θk ∈ (0, 1) such that ‖ncpk + θkδnk‖X = ζ∆k, and set nk ← ncpk + θkδnk.

3.2 Solution of the Tangential Subproblem

The tangential subproblem (2.5) is solved using a modified truncated Steihaug-Toint conjugate
gradient (STCG) method. Aside from handling the nonstandard objective function in (2.5), our
modifications involve a full orthogonalization of search directions (i.e. the conventional three-term
recurrence relation enjoyed by CG is lost), several subtle yet crucial tunings of the STCG truncation
criteria and the related exit computations, and a special termination condition related to an estimate
of the null-space error accumulated by our STCG variant. The latter is discussed next.

Our algorithm for the solution of the tangential subproblem (2.5), Algorithm 3, repeatedly applies
an inexact null-space projector W̃k by iteratively solving augmented systems of type (2.6). We note
that W̃k is not explicitly available; only the results of its action on the vector gk and its action on
the STCG residuals r̃i used in Algorithm 3 are known.1 We introduce the operator Ri : IRi+1 → X ,
given by

Ri = [gk, r̃1, ..., r̃i] ,
1Only the scope of the index k extends from Algorithm 1 to Algorithm 3 – indices i and j are independent, i.e.

their scope is local to each algorithm.
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the operator Ỹi : IRi+1 → X , given by

Ỹi = [W̃kgk, W̃kr̃1, ..., W̃kr̃i] ,

and the diagonal matrix

Di = diag(‖W̃kgk‖X , ‖W̃kr̃1‖X , . . . , ‖W̃kr̃i‖X ).

Finally, we define the matrix
Ŝi = D−1

i (Ỹi
T
Ri −D2

i )D
−1
i . (3.4)

In [11], it is shown that ‖Ŝi‖2 can be used to control the cumulative effect of inexactness in the
projections W̃k. Our modified STCG algorithm is specified next.

Algorithm 3 [STCG method with inexact null-space projections]

0. Given relative tolerance tolCG ∈ (0, 1). Given iteration maximum iCGmax. Let t̃k,0 = 0 ∈ X .

Compute r̃0 ← W̃kgk by solving (3.5) with the linear solver tolerance (3.6). If ‖r̃0‖X = 0, stop.

1. For i = 0, 1, 2, ..., iCGmax

(a) If i = 0 set z̃0 ← r̃0, else compute z̃i ← W̃kr̃i via (3.7) with the linear solver tolerance (3.8).
If ‖z̃i‖X ≤ tolCG‖r̃0‖X and i > 0, return t̃k ← t̃k,i and t̃cpk ← t̃k,1, and stop.

(b) Compute Ŝi defined in (3.4). If ‖Ŝi‖2 > 1/2, return t̃k ← t̃k,i and t̃cpk ← t̃k,1, and stop.

(c) Set p̃i ← −z̃i +
∑i−1
j=0

〈ezi,Hk epj〉X
〈epj ,Hk epj〉X

p̃j .

(d) If 〈r̃i, p̃i〉X 6= 0 and 〈p̃i, Hp̃i〉X ≤ 0, compute θ such that sign(θ) = sign(−〈r̃i, p̃i〉X ) and

‖nk + t̃k,i + θp̃i‖X = ∆k, and return t̃k ← t̃k,i+1 ← t̃k,i + θp̃i and t̃cpk ← t̃k,1, and stop.

If 〈r̃i, p̃i〉X = 0 and 〈p̃i, Hp̃i〉X < 0, compute θ such that ‖nk + t̃k,i+ θp̃i‖ = ∆k, and return

t̃k ← t̃k,i+1 ← t̃k,i + θp̃i and t̃cpk ← t̃k,1, and stop.

(e) If 〈r̃i, p̃i〉X = 0, return t̃k ← t̃k,i and t̃cpk ← t̃k,1, and stop.

(f) Set α̃i ← −
〈eri,epi〉X
〈epi,Hk epi〉X

.

(g) Set t̃k,i+1 ← t̃k,i + α̃ip̃i.

(h) If ‖nk+ t̃k,i+1‖X ≥ ∆k, compute θ such that sign(θ) = sign(α̃i) and ‖nk+ t̃k,i+θp̃i‖X = ∆k,
and return t̃k ← t̃k,i+1 ← t̃k,i + θp̃i and t̃cpk ← t̃k,1, and stop.

(i) Set r̃i+1 ← r̃i + α̃iHkp̃i.

End For

The augmented system residuals related to the application of the inexact projector W̃k are
controlled as follows. In Step 0 of Algorithm 3 the inexact projected gradient r̃0 = W̃kgk is computed.
The iterative linear system solver returns r̃0 satisfying(

I cx(xk)∗

cx(xk) 0

)(
r̃0

y

)
=
(
gk
0

)
+
(
e1

e2

)
. (3.5)

The residual
(
e1 e2

)
∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ ξpg min {‖r̃0‖X ,∆k, ‖gk‖X } , (3.6)

where 0 < ξpg ≤ 1. In Step 1a in Algorithm 3 we compute z̃i =Wk(r̃i) = W̃kr̃i. The iterative linear
system solver returns z̃i satisfying(

I cx(xk)∗

cx(xk) 0

)(
z̃i
y

)
=
(
r̃i
0

)
+
(
e1
i

e2
i

)
, (3.7)
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where the residual
(
e1
i e2

i

)
∈ X × C is controlled by the condition

‖e1
i ‖X + ‖e2

i ‖C ≤ ξproj min {‖z̃i‖X , ‖r̃i‖X } , (3.8)

with 0 < ξproj ≤ 1.

3.3 Computation of the Tangential Step

Once the approximate solution t̃k of the tangential subproblem (2.5) has been obtained, the tangen-
tial step tk is computed. The goal is to restore some of the linear feasibility lost in Algorithm 3. To
this end, we perform another inexact null space projection,(

I cx(xk)∗

cx(xk) 0

)(
tk
y

)
=
(
t̃k
0

)
+
(
e1

e2

)
, (3.9)

where the residual
(
e1 e2

)
∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ ∆k min
{

∆k, ‖nk + tk‖X , ξtang‖t̃k‖X /∆k

}
, (3.10)

for 0 < ξtang ≤ 1.

3.4 Computation of the Lagrange Multipliers

Let x̂k = xk + nk + tk. The Lagrange multiplier estimate λk+1 is computed by approximately
minimizing ‖∇f(x̂k) + cx(x̂k)∗λ‖X∗ , which can be accomplished by solving the augmented system(

I cx(x̂k)∗

cx(x̂k) 0

)(
z

λk+1

)
=
(
−∇xf(x̂k)

0

)
. (3.11)

If iterative solvers are used, we instead solve for ∆λ = λk+1−λk, where λk is the previous Lagrange
multiplier estimate, as follows:(

I cx(x̂k)∗

cx(x̂k) 0

)(
z

∆λ

)
=
(
−∇xf(x̂k)− cx(x̂k)∗λk + e1

e2

)
. (3.12)

The residual
(
e1 e2

)
∈ X × C must satisfy

‖e1‖X + ‖e2‖C ≤ min
{
ξlmg, ξlmh‖∇xf(x̂k) + cx(x̂k)∗λk‖X

}
, (3.13)

for 0 < ξlmh ≤ 1 and a fixed ξlmg > 0 independent of k.

3.5 Trust-Region Update

Whenever the trial step sk is accepted, the radius ∆k+1 of the trust region is computed as follows.

Algorithm 4 [Trust-region update for accepted trial steps]

0. Given actual to predicted reduction ratio θk, current trust-region radius ∆k, trial step sk.

1. If θk ≥ 0.9, set
∆k+1 ← min {max {7 ‖sk‖X ,∆k,∆min} ,∆max}

Else If θk ≥ 0.8, set
∆k+1 ← min {max {2 ‖sk‖X ,∆k,∆min} ,∆max}

Else set
∆k+1 ← max {∆k,∆min}.
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4 Example Problems

We study the performance of Algorithm 1 on six problems in PDE-constrained optimization. This
study updates some of our previously published results, see [14, 10, 9]. Four problems come from
optimal design and control, while two involve parameter identification. We label them as follows:

• distributed control of the Burgers equation,

• boundary control of the Navier-Stokes equations,

• boundary control of the scalar Ginzburg-Landau equation,

• distributed control of the Poisson-Boltzmann equation,

• parameter identification in the Poisson equation, and

• parameter identification in linear elastodynamics.

The problems are defined in this section. We limit the exposition to their formal statements using the
strong form of the governing PDEs. For the implementation and solution, we follow the discretize-
then-optimize approach. All problems are implemented in Matlab R©. A few select solution plots are
included in this section, for illustrative purposes only. The numerical study of the performance of
the matrix-free trust-region SQP algorithm, our primary objective, is presented in Section 5.

4.1 Distributed Control of the Burgers Equation

We consider an optimal control problem involving the steady-state Burgers equation in one dimen-
sion. The infinite-dimensional problem formulation as well as the problem discretization are identical
to those in [14]. Let Ω = [0, 1], ∂Ω = {0, 1}. The problem is given by

minimize
u,g

1
2

∫
Ω

(u− û)2 dx+
α

2

∫
Ω

g2 dx (4.1a)

subject to

−νuxx + uux = g in Ω (4.1b)
u = 0 on ∂Ω . (4.1c)

Here u and g are the state and control variables, respectively, α = 10−5 is a control penalty pa-
rameter, ν = 10−2 is the viscosity parameter, and û = û(x) = sin(2πx) is the desired state. The
domain Ω is divided into 100 intervals of equal length. We discretize the Burgers equation using
linear finite elements. The solution of the optimal control problem is shown in Figure 4.1.

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4
Control

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
State

 

 
computed state
desired state

Figure 4.1: Distributed control of the Burgers equation. Left pane: Control solution g∗. Right
pane: Computed state solution u∗ and desired state û.
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4.2 Boundary Control of the Navier-Stokes Equations

Let Ω ∈ IR2 be the channel with a backward facing step shown in Figure 4.2. We consider an optimal

Γin

Γout

DΓc

1.0

0.5

1.0 3.0 8.0
0 x1

x2

Figure 4.2: Geometry of the backward–facing step channel.

control problem governed by the Navier-Stokes equations formally stated as follows:

minimize
u,p,g

1
2

∫
D

(∂x1u2 − ∂x2u1)2 dx+
α

2

∫
Γc

|g|2 ds, (4.2a)

subject to

−ν∆u + (u · ∇)u +∇p = 0 in Ω, (4.2b)
∇ · u = 0 in Ω, (4.2c)

(ν∇u− pI)n = 0 on Γout, (4.2d)

(ν∇u− pI)n +
1
δ
u =

1
δ
g on Γc, (4.2e)

u = b on Γin, (4.2f)
u = 0 on ∂Ω \ (Γin ∪ Γc ∪ Γout). (4.2g)

The infinite-dimensional problem formulation as well as the problem discretization are identical
to those in [12]. Here u is the flow velocity, p is the pressure, g is the control, α = 10−1 is
the control penalty parameter and ν = 5 × 10−3 is the viscosity parameter. By n we denote the
unit outward normal; the flow at the inflow boundary Γin = {0} × [0.5, 1] is given by b(x1, x2) =
8(x2 − 0.5)(1 − x2). The boundary condition (4.2e) is a penalized form of the Dirichlet condition
u = g on Γc = {1} × [0, 0.5], with penalty parameter δ = 10−5. To control the flow, we only apply
suction and blowing in wall-normal direction. That is, g = gn. The computational domain is divided
into 352 triangles with a finer mesh across the area in which recirculation occurs. We discretize the
Navier-Stokes equations using Taylor-Hood finite elements. The uncontrolled and controlled flows
are depicted in Figure 4.3.
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Figure 4.3: Boundary control of the Navier-Stokes equations. Left pane: Plot of the velocity field
for the uncontrolled flow, i.e. the solution of the PDEs (4.2b)-(4.2g) for g = 0. Right pane: Plot of
the velocity field for the controlled flow, i.e. the velocity solution u∗ of the optimal control problem.
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4.3 Boundary Control of the Scalar Ginzburg-Landau Equation

Let Ω = [0, 1]2. We consider an optimal control problem governed by a simplified scalar Ginzburg-
Landau equation, stated as follows:

minimize
u,g

1
2

∫
Ω

(u− û)2 dx+
1
2

∫
∂Ω

g2 ds (4.3a)

subject to

−∆u+ u3 − u = f in Ω,
∂u

∂n
= g on ∂Ω. (4.3b)

See, e.g., [7, 15, 10]. Here u is the state, g is the control, û = û(x) = cos(πx1) cos(πx2) is the
desired state and f(x) = cos(πx1) cos(πx2)(2π2 + cos2(πx1) cos2(πx2) − 1) is the forcing function.
The domain Ω is subdivided into 2048 triangles by first subdividing it first into squares of size
1/32 × 1/32 and then subdividing each square into two triangles. The problem (4.3) is discretized
using piecewise linear finite elements for states and controls. We omit the plots of the solution.

4.4 Distributed Control of the Poisson-Boltzmann Equation

We consider a distributed control problem related to the design of semiconductor devices. In such
applications, a common objective is to match the current measured at an Ohmic contact Γo of
the device to a prescribed value, by modifying a reference doping profile ĝ, see [6]. We consider a
simplified model problem, governed by the Poisson–Boltzmann potential equation. We solve

minimize
u,g

α

2

∫
Γo

(∇u · ν −∇û · ν)2 ds+
β

2

∫
Ω

(g − ĝ)2 dx+
γ

2

∫
Ω

|∇g|2 dx (4.4a)

subject to

−∆u = exp(u)− exp(−u)− g in Ω, (4.4b)
u = 0 on ΓD, (4.4c)

∇u · ν = 0 on ΓN , (4.4d)

where α, β, γ > 0, ν is the outward unit normal, u is the potential, and g is the doping. The
infinite-dimensional problem formulation as well as the problem discretization are identical to those
in [9]. Our computational domain is Ω = (0, 12)× (0, 6). We let ΓD = ((0, 2)∪ (5, 7)∪ (10, 12))×{6}
(source, gate, drain, see Fig. 4.4), ΓN = ∂Ω \ ΓD, and Γo = (10, 12) × {6} (drain). We attempt to
match the flux ∇û · ν = 0 on Γo. The problem is discretized using piecewise linear finite elements
on a regular mesh with 4096 (64×32×2) triangles. We solve (4.4) for a target doping profile ĝ,
characterized by two positive numbers a and b. A target doping (a, b) means that ĝ(x) = a for
x ∈ ([0, 2]× [3, 6])∪([10, 12]× [3, 6]), and ĝ(x) = b elsewhere, see Fig. 4.4. Cost functional parameters
are α = b, β = b ·10, and γ = b ·10−5. We set a = 103 and b = 10−3. The problem (4.4) is discretized
using piecewise linear finite elements. We omit the plots of the solution.

SOURCE DRAINGATE

aa
b

Figure 4.4: Sketch of a MESFET semiconductor device and the corresponding doping profile (a, b).
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4.5 Parameter Identification in the Poisson Equation

A prototypical parameter identification (inverse) problem is to estimate the coefficient κ from mea-
surements û related to the solution u of the elliptic boundary value problem

−∇ · (κ∇u) = f in Ω, (4.5a)
u = 0 on ∂Ω . (4.5b)

Here Ω ⊆ Rd, d ∈ {1, 2, 3}, is the computational domain with boundary ∂Ω. For a steady-state
heat equation, κ is the coefficient of thermal diffusion, u is the temperature distribution, û are the
temperature measurements and f is a given heat source.

We let Ω = (−1, 1)2. We consider the problem

minimize
{u,κ}∈ U×K

1
2

∫
Ω

(u− û)2 dx + R(κ) (4.6a)

subject to

−∇ · (κ∇u) = f in Ω, (4.6b)

where U = {u : u ∈ H1(Ω), u = 0 on ∂Ω}, K = {κ : κ ∈ L2(Ω), κ > 0} and R(·) denotes a
regularization functional. For simplicity of implementation, we restrict the search space for the
diffusion coefficient κ to H1(Ω). This enables the use of the total variation regularization functional

R(κ) =
α

2

√
|∇κ|2 + β . (4.7)

We set α = 10−7, β = 10−10. We do not enforce the constraint κ > 0 explicitly, but verify that
it is satisfied, in the discrete sense, after the inverse problem is solved numerically. The problem is
discretized using piecewise linear finite elements on a regular grid with 2048 (32×32×2) triangles.
We call this grid the computational grid. We use a sinusoidal heat source, f(x) = sin(πx1) sin(πx2).
The measurements û are synthesized from the target coefficient given in Figure 4.5 (left pane). To
synthesize û we use a finer grid, with 32768 (128×128×2) triangles, and project the result onto the
computational grid. The result of parameter identification is shown in Figure 4.5 (right pane), albeit
for a slightly different problem setup.

Figure 4.5: Parameter identification in the Poisson equation. Left pane: Target diffusion coeffi-
cient; κ = 2 within a circle of radius 0.3 centered at (−0.25,−0.25), and κ = 1 everywhere else. Right
pane: Computed diffusion coefficient, i.e. the solution κ∗ of the inverse problem; for this illustration
we used a finer computational grid, 128×128, a finer synthetic grid, 512×512, and α = 10−10.
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4.6 Parameter Identification in Linear Elastodynamics

In this example we want to identify the shear modulus and the bulk modulus from measurements of
the displacements in linear elastodynamics.

Let Ω ⊆ Rd, d ∈ {1, 2, 3}, be the computational domain with boundary ∂Ω, and Γu ⊂ ∂Ω and
Γτ ⊂ ∂Ω are the regions where Dirichlet and Neumann conditions are applied, respectively. In the
following we use standard tensor notation with Einstein summation for elasticity equations given
in frequency domain. The indices i, j and k take on the values 1, . . . , d. Partial differentiation is
denoted by a comma.

We consider the PDEs of linear elastodynamics in frequency domain. Here ui is the (complex-
valued) displacement in the i-th direction and τi is the surface traction in the i-th direction. Mass
density is denoted by ρ, while ω stands for the angular frequency. The shear modulus is µ and the
bulk modulus is κ.

The PDEs of linear elastodynamics in frequency domain are given by

σij,j = −ω2ρui in Ω, (4.8a)
ui = 0 on Γu, (4.8b)

σijnj = τi on Γτ . (4.8c)

The stress tensor σij is given by

σij = 2µ(εij −
1
3
εkkδij) + κεkkδij , (4.9)

where δij is the Kronecker delta and where the strain tensor εij is defined to be the symmetric part
of the displacement gradient, as follows,

εij =
1
2

(ui,j + uj,i). (4.10)

We let Ω = (−1, 1)2. Furthermore, let ûi be the displacement measurements in the i-th direction
We consider the problem

minimize
{u1,u2,µ,κ}∈ U1×U2×G×B

1
2

∫
Ω

2∑
i=1

(ui − ûi)(ui − ûi) dx + R(µ) + R(κ) (4.11a)

subject to

σij,j = −ω2ρui in Ω, (4.11b)
σijnj = τi on Γτ , (4.11c)

where i, j, k ∈ {1, 2}, Ui = {ui : ui ∈ H1(Ω), ui = 0 on Γu}, G = {µ : µ ∈ L2(Ω), µ > 0},
B = {κ : κ ∈ L2(Ω), κ > 0} and the overline denotes complex conjugation. We note that the
L2 inner product in Ui is defined by

(ui, vi) :=
∫

Ω

ui(x)vi(x)dx.

To simplify the implementation, we restrict the search spaces for µ and κ to H1(Ω). This enables the
use of the total variation regularization functional defined in (4.7). We set α = 5 · 10−7, β = 10−10.
We do not enforce the constraints µ > 0 and κ > 0 explicitly, but verify that they are satisfied, in
the discrete sense, after the inverse problem is solved numerically. We define Γu = [−1, 1] × {−1}
and Γτ = [−1, 1]×{1}, in other words Dirichlet and Neumann conditions are applied on the bottom
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and top boundaries of the domain, respectively. To generate an elastic response, we use a constant
surface traction on Γτ , with values τ1 = 1 + i and τ2 = 10 + 10i. We set ρ = 1 and ω = 1.

The problem is discretized using piecewise linear finite elements on a regular grid with 32768
(128×128×2) triangles. We call this grid the computational grid. The measurements {ûi} are
synthesized from the target shear and bulk moduli given in Figure 4.6 (top left and bottom left
panes, respectively). The target values, in both cases, are 1 for the blue region (layer 1), 2 for the
green region (layer 2), 2.4 for the yellow region (layer 3), 2.7 for the orange region (square) and 3
for the red region (circle). The straight lines separating layer 1 from layer 2 and layer 2 from layer 3
are given by

y(x) = 0.25x and y(x) = 0.6x− 0.3 ,

respectively. We note that the lines intersect near the point (0.86, 0.21). The square is centered at
(0.33,−0.37), with side length 0.7. The circle is centered at (0.53,−0.53), with radius 0.25.

To synthesize {ûi} we use a finer grid, with 524288 (512×512×2) triangles, and project the result
onto the computational grid. The result of parameter identification is shown in Figure 4.6 (top right
and bottom right panes).

Figure 4.6: Parameter identification in linear elastodynamics. Top left pane: Target shear mod-
ulus. Bottom left pane: Target bulk modulus. Top right pane: Computed shear modulus, i.e. the
parameter solution µ∗ of the inverse problem. Bottom right pane: Computed bulk modulus, i.e. the
parameter solution κ∗ of the inverse problem.
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5 Numerical Results

In this section we study the application of our trust-region SQP algorithm with inexact linear system
solves, Algorithm 1, to the example problems defined in Section 4. We point out that the only linear
systems that need to be solved in our implementation of Algorithm 1 are of the type(

I cx(xk)∗

cx(xk) 0

)(
z
y

)
=
(
b1

b2

)
. (5.1)

These are Karush-Kuhn-Tucker (KKT) systems that correspond to convex quadratic programs

min 1
2 〈z, z〉X −

〈
b1, z

〉
X

s.t. cx(xk)z = b2.

Hence, iterative KKT solvers such as those discussed in [1, 2, 3, 4, 5, 13] can be safely used. This is
true even if the subproblems

min 1
2 〈Hks, s〉X + 〈∇xL(xk, λk), s〉X + L(xk, λk)

s.t. cx(xk)s+ c(xk) = 0, ‖s‖X ≤ ∆k

are not convex!

5.1 Linear System Solvers

In our numerical examples all instances of (5.1) are solved using a left-preconditioned GMRES al-
gorithm. The GMRES stopping tolerances (3.3), (3.6), (3.8), (3.10) and (3.13) are imposed on the
true (unpreconditioned) residual. The computation of the true residual at every GMRES iteration
necessitates the solution of the projected least-squares problem (to obtain the iterate) and an addi-
tional application of the augmented system matrix (to compute the residual). In practice, one may
perform the convergence checks less frequently — for instance, every third GMRES iteration. Right
preconditioning may be used as well, however the cost of applying the preconditioner at every (or
even every third) GMRES iteration to recover the iterate may be undesirable. We note that the
augmented system matrices are symmetric. Thus if a symmetric positive definite preconditioner is
used, GMRES can be replaced by MINRES or SYMMLQ.

For examples discussed in Sections 4.1, 4.2, 4.4 and 4.5 we use an incomplete-LU preconditioner.
For the example discussed in Section 4.3 we report results with an incomplete-LU preconditioner and
a domain-decomposition preconditioner related to [1, 8]. For the example discussed in Section 4.6 we
use an approximate Schur preconditioner that is built as follows. Assuming a splitting of optimization
variables x into state variables u and control variables (parameters) g, with xk = (uk, gk), the
augmented system matrices may be written as 3×3 block matrices I 0 cu(xk)∗

0 I cg(xk)∗

cu(xk) cg(xk) 0

 .

Further assuming the existence of (cu(xk))−1, our approximate Schur preconditioner is given by I 0 0
0 I 0
0 0 cu(xk)−∗cu(xk)−1

 .
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5.2 Algorithm Parameters

To examine the benefits of inexactness control in Algorithm 1, we compare it to a closely related
conventional trust-region SQP algorithm in which the direct solves of augmented systems (5.1) are
replaced by preconditioned GMRES solves with a fixed relative tolerance τ . In other words, for
the solution of systems (5.1) that arise in the conventional SQP method, GMRES is stopped if
the preconditioned residual is below τ(‖b1‖ + ‖b2‖). Here τ is a tolerance that is fixed throughout
the SQP iterations. This is what one may do when forced to retrofit an existing NLP code with
iterative linear system solves. It is important to point out that in addition to the static treatment
of linear solver tolerances, the conventional SQP algorithm contains none of the global convergence
safeguards of Algorithm 1 to deal with inexactness.

For brevity, we use the label I-SQP for our matrix-free algorithm with inexactness control,
Algorithm 1, and the label C-SQP for the conventional algorithm described above. The algorithm
parameters shared between I-SQP and C-SQP are2:

tolSQP tolCG iCGmax ζ ∆0 ∆min ∆max α1 η1 η0 ρ−1 ρ̄

10−6 10−2 200 0.8 102 10−10 108 0.5 10−8 0.5 1 10−8

We introduce a nominal relative linear solver tolerance, tolLS , which is varied in our experiments.
Given tolLS , the remaining I-SQP parameters are set to

ξqn = ξpg = ξproj = ξtang = ξlmh = tolLS , ξ4 = 2 and ξlmg = 104 .

The fixed relative solver tolerance used in C-SQP is set to τ = tolLS .

For the initial guesses x0 and λ−1 we use constants3. To build incomplete-LU preconditioners
we use the Matlab R© function luinc with drop tolerances lut, applied to shifted augmented systems
with the diagonal shift lus×I. The corresponding values are:

Burgers N.-Stokes G.-Landau P.-Boltzmann Inverse Poisson Inverse Elasticity

x0 = −1 x0 = 0 x0 = 1 x0 = 0 κ0 = 0.5 µ0 = κ0 = 1.8

λ−1 = 0 λ−1 = 0 λ−1 = 0 λ−1 = 0 λ−1 = 0 λ−1 = 0

lut = 6×10−3 lut = 5×10−5 lut = 1×10−2 lut = 1×10−3 lut = 1×10−2 N/A

lus = 1×10−2 lus = 1×10−7 lus = 0 lus = 1×10−4 lus = 1×10−4 N/A

For the example discussed in Section 4.3 (Ginzburg-Landau), where we also exercise a domain-
decomposition preconditioner, the computational domain is divided uniformly into 64 (8×8) subdo-
mains. The preconditioner is of the two-level balancing Neumann-Neumann type [8].

5.3 Reporting of Results for Individual Test Problems

In Section 5.5 below we summarize the performance of the inexact SQP method on the examples
introduced in Section 4, in the form of tables and figures. Here we describe how to read the tables
and figures.

2For the parameter identification examples, Examples 4.5 and 4.6, the SQP solution tolerance tolSQP = 10−8 is
used in order to allow for sufficiently accurate solutions when the regularization parameters α are very small.

3For the parameter identification examples, Examples 4.5 and 4.6, we use constant initial guesses for the parameters
κ and (µ, κ), respectively, and compute the initial PDE states by solving the governing PDEs. We note that the initial
optimization iterates will therefore satisfy the constraints. At the same time, our SQP algorithm need not (and does
not, for Examples 4.5 and 4.6) maintain feasibility of the subsequent iterates.
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Table 5.1 is an example of a table that summarizes the performance of the inexact SQP algorithm
(I-SQP), Algorithm 1, as the linear system solver tolerance tolLS is changed. For each column in
Table 5.1 we report:

• GMRES iters: This is the total number of GMRES iterations executed in I-SQP. For our exam-
ples, the computational cost of running I-SQP is typically proportional to the total number of
GMRES iterations.

• GMRES calls: This is how often GMRES is called, i.e., how many augmented systems (5.1) are
solved during an I-SQP run. Typically the total number of GMRES calls decreases as tolLS

decreases.

• GMRES iters/call: This is the average number of GMRES iterations executed, where the average
is taken over the total number of GMRES iterations and the total number of GMRES calls
during an I-SQP run.

• GMRES prec builds: This is how often the preconditioner is constructed. The preconditioner
for (5.1) can be reused as long as xk is unchanged.

• STCG iters: The total number of Steihaug-Toint CG iterations executed during an I-SQP run.

• SQP iters: The total number of I-SQP iterations executed. Note that we increase the iteration
count also when an iteration is unsuccessful, i.e., xk+1 = xk. Typically the total number of
I-SQP iterations decreases as tolLS decreases.

• a posteriori refine: Number of times during an I-SQP run the condition “‖t̃k‖X > ξ4‖nk + tk‖X
and t̃k = t̃cpk ” in Step 2(c)ii of I-SQP Algorithm 1 is true. If this condition is true, the quasi-
normal step, the tangential steps, and the Lagrange multipliers have to be recomputed with a
finer linear solver tolerance.

• nonconvex QP: How often the Steihaug-Toint CG method for solving the tangential subproblem
terminated because negative curvature was detected (Algorithm 3, Step 1d). Note that be-
cause inexact projections are used, negative curvature may occur even if the exact tangential
subproblem is strictly convex, or negative curvature may not be detected even if the exact
tangential subproblem is not convex.

Table 5.1: Performance of the inexact SQP algorithm (I-SQP) for varying linear system solver
tolerance tolLS .

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 3809 3889 2255 2355 2704 2865 2990 3132 3273
calls 407 471 188 173 186 188 188 188 188
iters/call 9.4 8.3 12.0 13.6 14.5 15.2 15.9 16.7 17.4
prec builds 109 106 26 21 21 21 21 21 21

STCG iters 163 240 130 124 135 137 137 137 137

SQP iters 78 76 19 15 15 15 15 15 15

a posteriori refine 2 0 0 0 0 0 0 0 0

nonconvex QP 3 6 7 7 7 7 7 7 7

In addition to a table, like Table 5.1, that summarizes the performance of the I-SQP Algorithm 1
as the linear system solver tolerance tolLS is changed, we also provide a figure, like Figure 5.1, for
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Figure 5.1: Plots of linear solver residuals in I-SQP run

a specific nominal solver tolerance. For every call to GMRES within the I-SQP Algorithm 1 this
figure shows the relative linear system residuals recorded at the final GMRES iteration. Figure 5.1
corresponds to an I-SQP run with tolLS = 10−3. Table 5.1 shows that for tolLS = 10−3 GMRES
was called 173 times. Figure 5.1 shows the achieved relative residuals for each of the 173 GMRES
calls. The different colors indicate in which subproblem the GMRES call occurs.

• The red squares denote quasi-normal step computations with tolerance (3.3). Note that if the
For-Loop in Step 2c of I-SQP Algorithm 1 is always executed with i = 0, then nNk and δnk are
computed at the beginning of every SQP iteration. For tolLS = 10−3, Table 5.1 shows that
a posteriori refine equals 0, i.e., that each red square denotes the beginning of an SQP iteration.

• The red asterisks correspond to the first STCG iterations with tolerance (3.6). If the For-Loop
in Step 2c of I-SQP Algorithm 1 is always executed with i = 0, then STCG is only called once
per SQP iteration and the figure shows one red asterisk for each SQP iteration.

• The blue asterisks denote the subsequent STCG iterations with tolerance (3.8).

• The black crosses correspond to tangential step computations with tolerance (3.10). The
tangential step tk is computed in Step 2(c)iA of I-SQP Algorithm 1. Hence, if there is only
one tangential step computation per I-SQP iteration (one black cross between red squares),
then the For-Loop in Step 2c and the For-Loop in Step 2(c)i of I-SQP Algorithm 1 are executed
with i = 0 and j = 0, respectively. This is the case in Figure 5.1.

• The green circles denote Lagrange multiplier computations with tolerance (3.13). The La-
grange multiplier λk is computed in Step 2(c)iB of I-SQP Algorithm 1. Hence, if there is
only one Lagrange multiplier computation per I-SQP iteration (one green circle between red
squares), then the For-Loop in Step 2c and the For-Loop in Step 2(c)i of I-SQP Algorithm 1
are executed with i = 0 and j = 0, respectively. This is the case in Figure 5.1.

In Section 5.5 below we also include figures with absolute linear system residuals. The marker colors
and styles in those plots are identical to the ones in the relative residual plots.

We also note that each relative residual plot includes a number on the right vertical axis, which
denotes the median value of the residuals on the logarithmic scale. This number is a good indication
of how accurately, on average, the augmented systems (5.1) are solved for a given nominal tolerance
tolLS . The absolute residual plots do not include this number.
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5.4 Summary of Results

All computations are performed using Matlab R© Version 7.11.0.584 (R2010b) 64-bit, on a Dual Six
Core Intel Xeon X5680 3.33GHz platform. Our results are summarized in Tables 5.2-5.13 and in
Figures 5.2-5.7.

Tables 5.2, 5.4, 5.6, 5.8, 5.10, 5.12 and 5.14 document the performance of the I-SQP algorithm
as the nominal relative linear solver tolerance tolLS is decreased from 0.5 to 10−8. First, we observe
that I-SQP is extremely robust. All nominal tolerances yield successful runs, for all examples. As
reported in Figures 5.2-5.8 the algorithm dynamically chooses linear solver tolerances as it makes
progress toward a solution. The nominal tolerances tolLS can be interpreted as upper bounds on the
relative augmented system residuals used by I-SQP. At the same time, the median relative residuals
are not significantly smaller than tolLS , which means that our algorithm keeps the oversolving of
linear systems in check.

Second, in contrast, C-SQP exhibits lack of robustness, shown in Tables 5.3, 5.5, 5.7, 5.9, 5.11,
5.13 and 5.15. The nominal linear solver tolerances required for convergence can be extremely small.
In three cases, Table 5.11 (Poisson-Boltzmann), Table 5.13 (inverse Poisson) and Table 5.15 (inverse
elasticity) none of the nominal tolerances yield successful runs. This very clearly demonstrates the
importance of inexactness control.

Third, focusing on the rows GMRES iters/call and SQP iters in Tables 5.2, 5.4, 5.6, 5.8, 5.10 and
5.12, it is evident that I-SQP enables tradeoffs between the accuracy of linear system solves and the
number of optimization iterations. This is especially pronounced in Table 5.8 (Ginzburg-Landau,
domain decomposition), with values 2.0/17 and 9.2/8 for tolLS = 0.5 and tolLS = 10−8, respectively,
Table 5.10 (Poisson-Boltzmann), with values 1.7/34 and 13.3/18 for tolLS = 0.5 and tolLS = 10−8,
respectively, and Table 5.12 (inverse Poisson), with values 4.8/323 and 22.7/10 for tolLS = 0.5 and
tolLS = 10−8, respectively.

Fourth, it is clear that using very fine nominal linear solver tolerances tolLS is unnecessary.
Instead, the nominal tolerance tolLS = 10−3 is an excellent choice, for all examples.

Fifth, we note that only for the very coarse nominal tolerance of tolLS = 0.5 the safeguard
“‖t̃k‖X > ξ4‖nk + tk‖X and t̃k = t̃cpk ” is activated in Algorithm 1. Moreover, this happens only
once or twice per run, and only for three of the seven studies (Burgers, Navier-Stokes and Ginzburg-
Landau with incomplete-LU preconditioning), see the a posteriori refine rows of Tables 5.2, 5.4 and
5.6. In other words, there are virtually no recomputations of optimization substeps. Additionally,
we observed that for the nominal tolerances tolLS < 10−1 the For-Loop in Step 2c and the For-Loop
in Step 2(c)i of I-SQP Algorithm 1 are executed consistently with i = 0 and j = 0. This means
that I-SQP automatically selects, a priori, adequate solver tolerances for augmented systems. We
also remark that for simplicity we used a single nominal tolerance tolLS for ξqn, ξpg, ξproj , ξtang

and ξlmh. Better individual choices of nominal tolerances are possible for increased computational
performance; in particular, setting ξtang → 10−1ξproj executes the For-Loop in Step 2(c)i of I-SQP
Algorithm 1 with j = 0 for all experiments and reduces the total number of GMRES iterations.

Sixth, nonconvexity in the quadratic subproblems is common. It can be present regardless of
the accuracy of linear system solves, see e.g. the last rows of Table 5.2 (Burgers), Tables 5.6 and 5.8
(Ginzburg-Landau), Table 5.10 (Poisson-Boltzmann) and Table 5.14 (inverse elasticity). Further-
more, nonconvexity may be induced by inexact linear system solves, as evidenced by the last row of
Table 5.4, tolLS = 10−2, or magnified, see the last row of Table 5.14, tolLS = 10−1. Therefore, for
the chosen studies in PDE-constrained optimization, it is important that the optimization algorithm
handle nonconvexity in the quadratic models. The I-SQP algorithm, Algorithm 1, does this robustly
and efficiently.

This concludes our study.
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5.5 Results for Individual Test Problems

5.5.1 Distributed Control of the Burgers Equation

Table 5.2: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to the distributed control of the
Burgers equation. Note: all numbers are totals across the entire SQP run; prec builds denotes the
number of times the incomplete-LU preconditioner for augmented systems is computed; a posteriori
refine denotes the number of times the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is activated in Algorithm 1;
nonconvex QP denotes the number of times zero or negative curvature is encountered in STCG,
Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 3809 3889 2255 2355 2704 2865 2990 3132 3273
calls 407 471 188 173 186 188 188 188 188
iters/call 9.4 8.3 12.0 13.6 14.5 15.2 15.9 16.7 17.4
prec builds 109 106 26 21 21 21 21 21 21

STCG iters 163 240 130 124 135 137 137 137 137

SQP iters 78 76 19 15 15 15 15 15 15

a posteriori refine 2 0 0 0 0 0 0 0 0

nonconvex QP 3 6 7 7 7 7 7 7 7

Table 5.3: Conventional SQP algorithm (C-SQP) applied to the distributed control of the Burgers
equation. Failure is reported if the number of SQP iterations exceeds 100.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F F S S S S S

GMRES iters — — — — 3940 11861 9312 7090 6114

SQP iters — — — — 16 18 16 15 15

Figure 5.2 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied
to the distributed control of the Burgers equation. First and second pane: tolLS = 10−1 (yielding
the smallest number of iters/call). Third and fourth pane: tolLS = 10−3. Note: the red squares
denote quasi-normal step computations with tolerance (3.3); the red asterisks correspond to the first
STCG iterations with tolerance (3.6); the blue asterisks denote the subsequent STCG iterations with
tolerance (3.8); the black crosses correspond to tangential step computations with tolerance (3.10);
the green circles denote Lagrange multiplier computations with tolerance (3.13). Median (log scale)
relative residuals are marked by bold lines on the right vertical axes of relative residual plots.
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Figure 5.2: Plots of linear solver residuals; distributed control of the Burgers equation.
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5.5.2 Boundary Control of the Navier-Stokes Equations

Table 5.4: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to the boundary control of
the Navier-Stokes equations. Note: all numbers are totals across the entire SQP run; prec builds
denotes the number of times the incomplete-LU preconditioner for augmented systems is computed;
a posteriori refine denotes the number of times the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is activated in
Algorithm 1; nonconvex QP denotes the number of times zero or negative curvature is encountered
in STCG, Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 2568 3186 2493 2352 2250 2600 2924 3304 3603
calls 310 474 287 193 176 176 176 176 176
iters/call 8.3 6.7 8.7 12.2 12.8 14.8 16.6 18.8 20.5
prec builds 29 34 21 11 9 9 9 9 9

STCG iters 243 389 231 156 143 143 143 143 143

SQP iters 17 28 16 9 8 8 8 8 8

a posteriori refine 2 0 0 0 0 0 0 0 0

nonconvex QP 0 0 2 0 0 0 0 0 0

Table 5.5: Conventional SQP algorithm (C-SQP) applied to the boundary control of the Navier-
Stokes equations. Failure is reported if the number of SQP iterations exceeds 100.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F F F F F S S

GMRES iters — — — — — — — 2906 3180

SQP iters — — — — — — — 8 8

Figure 5.3 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied to
the boundary control of the Navier-Stokes equations. First and second pane: tolLS = 10−1 (yielding
the smallest number of iters/call). Third and fourth pane: tolLS = 10−3. Note: the red squares
denote quasi-normal step computations with tolerance (3.3); the red asterisks correspond to the first
STCG iterations with tolerance (3.6); the blue asterisks denote the subsequent STCG iterations with
tolerance (3.8); the black crosses correspond to tangential step computations with tolerance (3.10);
the green circles denote Lagrange multiplier computations with tolerance (3.13). Median (log scale)
relative residuals are marked by bold lines on the right vertical axes of relative residual plots.
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Figure 5.3: Plots of linear solver residuals; boundary control of the Navier-Stokes equations.
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5.5.3 Boundary Control of the Scalar Ginzburg-Landau Equation

Incomplete-LU Preconditioner

Table 5.6: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to the boundary control of
the scalar Ginzburg-Landau equation, with an incomplete-LU preconditioner. Note: all numbers
are totals across the entire SQP run; prec builds denotes the number of times the incomplete-LU
preconditioner for augmented systems is computed; a posteriori refine denotes the number of times
the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is activated in Algorithm 1; nonconvex QP denotes the number
of times zero or negative curvature is encountered in STCG, Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 1206 1224 1038 990 1094 1180 1262 1340 1412
calls 115 109 75 64 64 64 64 64 64
iters/call 10.5 11.2 13.8 15.5 17.1 18.4 19.7 20.9 22.1
prec builds 23 22 17 16 16 16 16 16 16

STCG iters 65 64 36 29 29 29 29 29 29

SQP iters 14 14 11 10 10 10 10 10 10

a posteriori refine 1 0 0 0 0 0 0 0 0

nonconvex QP 3 6 6 6 6 6 6 6 6

Table 5.7: Conventional SQP algorithm (C-SQP) applied to the boundary control of the scalar
Ginzburg-Landau equation, with an incomplete-LU preconditioner. Failure is reported if the number
of SQP iterations exceeds 100.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F F S S S S S

GMRES iters — — — — 935 996 1110 1171 1233

SQP iters — — — — 9 9 9 9 9

Figure 5.4 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied
to the boundary control of the scalar Ginzburg-Landau equation, with an incomplete-LU precondi-
tioner. First and second pane: tolLS = 0.5 (yielding the smallest number of iters/call). Third and
fourth pane: tolLS = 10−3. Note: the red squares denote quasi-normal step computations with tol-
erance (3.3); the red asterisks correspond to the first STCG iterations with tolerance (3.6); the blue
asterisks denote the subsequent STCG iterations with tolerance (3.8); the black crosses correspond
to tangential step computations with tolerance (3.10); the green circles denote Lagrange multiplier
computations with tolerance (3.13). Median (log scale) relative residuals are marked by bold lines
on the right vertical axes of relative residual plots.
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Figure 5.4: Plots of linear solver residuals; boundary control of the scalar Ginzburg-Landau equa-
tion; incomplete-LU preconditioning.
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Domain-Decomposition Preconditioner.

Table 5.8: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to the boundary control of the
scalar Ginzburg-Landau equation, with a domain-decomposition preconditioner. Note: all num-
bers are totals across the entire SQP run; prec builds denotes the number of times the domain-
decomposition preconditioner for augmented systems is computed; a posteriori refine denotes the
number of times the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is activated in Algorithm 1; nonconvex QP
denotes the number of times zero or negative curvature is encountered in STCG, Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 359 203 203 254 318 374 447 491 551
calls 181 86 60 60 60 60 60 60 60
iters/call 2.0 2.4 3.4 4.2 5.3 6.2 7.5 8.2 9.2
prec builds 27 15 12 12 12 12 12 12 12

STCG iters 119 52 33 33 33 33 33 33 33

SQP iters 17 10 8 8 8 8 8 8 8

a posteriori refine 0 0 0 0 0 0 0 0 0

nonconvex QP 3 3 3 3 3 3 3 3 3

Table 5.9: Conventional SQP algorithm (C-SQP) applied to the boundary control of the scalar
Ginzburg-Landau equation, with a domain-decomposition preconditioner. Failure is reported if the
number of SQP iterations exceeds 100.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F S S S S S S

GMRES iters — — — 296 370 437 512 560 637

SQP iters — — — 10 10 10 10 10 10

Figure 5.5 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied
to the boundary control of the scalar Ginzburg-Landau equation, with a domain-decomposition
preconditioner. First and second pane: tolLS = 0.5 (yielding the smallest number of iters/call).
Third and fourth pane: tolLS = 10−3. Note: the red squares denote quasi-normal step computations
with tolerance (3.3); the red asterisks correspond to the first STCG iterations with tolerance (3.6);
the blue asterisks denote the subsequent STCG iterations with tolerance (3.8); the black crosses
correspond to tangential step computations with tolerance (3.10); the green circles denote Lagrange
multiplier computations with tolerance (3.13). Median (log scale) relative residuals are marked by
bold lines on the right vertical axes of relative residual plots.
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Figure 5.5: Plots of linear solver residuals; boundary control of the scalar Ginzburg-Landau equa-
tion; domain-decomposition preconditioning.
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5.5.4 Distributed Control of the Poisson-Boltzmann Equation

Table 5.10: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to the distributed control of
the Poisson-Boltzmann equation. Note: all numbers are totals across the entire SQP run; prec builds
denotes the number of times the incomplete-LU preconditioner for augmented systems is computed;
a posteriori refine denotes the number of times the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is activated in
Algorithm 1; nonconvex QP denotes the number of times zero or negative curvature is encountered
in STCG, Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 381 380 514 671 844 1032 1218 1408 1601
calls 223 136 120 120 120 120 120 120 120
iters/call 1.7 2.8 4.3 5.6 7.0 8.6 10.2 11.7 13.3
prec builds 42 29 24 24 24 24 24 24 24

STCG iters 117 68 59 59 59 59 59 59 59

SQP iters 34 21 18 18 18 18 18 18 18

a posteriori refine 0 0 0 0 0 0 0 0 0

nonconvex QP 2 2 2 2 2 2 2 2 2

Table 5.11: Conventional SQP algorithm (C-SQP) applied to the distributed control of the Poisson-
Boltzmann equation. Failure is reported if the number of SQP iterations exceeds 100.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F F F F F F F

GMRES iters — — — — — — — — —

SQP iters — — — — — — — — —

Figure 5.6 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied
to the distributed control of the Poisson-Boltzmann equation. First and second pane: tolLS = 0.5
(yielding the smallest number of iters/call). Third and fourth pane: tolLS = 10−3. Note: the red
squares denote quasi-normal step computations with tolerance (3.3); the red asterisks correspond
to the first STCG iterations with tolerance (3.6); the blue asterisks denote the subsequent STCG
iterations with tolerance (3.8); the black crosses correspond to tangential step computations with
tolerance (3.10); the green circles denote Lagrange multiplier computations with tolerance (3.13).
Median (log scale) relative residuals are marked by bold lines on the right vertical axes of relative
residual plots.
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Figure 5.6: Plots of linear solver residuals; distributed control of the Poisson-Boltzmann equation.
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5.5.5 Parameter Identification in the Poisson Equation

Table 5.12: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to parameter identification in
the Poisson equation. Note: all numbers are totals across the entire SQP run; prec builds denotes the
number of times the incomplete-LU preconditioner for augmented systems is computed; a posteriori
refine denotes the number of times the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is activated in Algorithm 1;
nonconvex QP denotes the number of times zero or negative curvature is encountered in STCG,
Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 8623 10166 9474 5267 4270 3113 3389 3538 3997
calls 1778 1660 1042 356 256 171 172 166 176
iters/call 4.8 6.1 9.1 14.8 16.7 18.2 19.7 21.3 22.7
prec builds 442 389 275 32 15 10 10 10 12

STCG iters 612 625 444 289 213 134 135 129 137

SQP iters 323 342 199 22 12 9 9 9 10

a posteriori refine 0 0 0 0 0 0 0 0 0

nonconvex QP 0 0 0 0 0 0 0 0 0

Table 5.13: Conventional SQP algorithm (C-SQP) applied to parameter identification in the Pois-
son equation. Failure is reported if the number of SQP iterations exceeds 1000.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F F F F F F F

GMRES iters — — — — — — — — —

SQP iters — — — — — — — — —

Figure 5.7 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied
to parameter identification in the Poisson equation. First and second pane: tolLS = 0.5 (yielding
the smallest number of iters/call). Third and fourth pane: tolLS = 10−3. Note: the red squares
denote quasi-normal step computations with tolerance (3.3); the red asterisks correspond to the first
STCG iterations with tolerance (3.6); the blue asterisks denote the subsequent STCG iterations with
tolerance (3.8); the black crosses correspond to tangential step computations with tolerance (3.10);
the green circles denote Lagrange multiplier computations with tolerance (3.13). Median (log scale)
relative residuals are marked by bold lines on the right vertical axes of relative residual plots.
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Figure 5.7: Plots of linear solver residuals; parameter identification in the Poisson equation.
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5.5.6 Parameter Identification in Linear Elastodynamics

Table 5.14: Inexact SQP algorithm (I-SQP), Algorithm 1, applied to parameter identification in
linear elastodynamics. Note: all numbers are totals across the entire SQP run; prec builds denotes
the number of times a factorization of the approximate Schur preconditioner for augmented systems
is computed; a posteriori refine denotes the number of times the safeguard ‖t̃k‖X > ξ4‖nk + tk‖X is
activated in Algorithm 1; nonconvex QP denotes the number of times zero or negative curvature is
encountered in STCG, Algorithm 3.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure S S S S S S S S S

G
M

R
E

S iters 259938 92370 140080 83298 53030 58834 64265 69334 79837
calls 13780 4256 5566 2780 1584 1591 1591 1593 1594
iters/call 18.9 21.7 25.2 30.0 33.5 37.0 40.4 43.5 50.1
prec builds 1743 539 277 128 114 114 114 114 114

STCG iters 9720 3021 4860 2494 1323 1332 1332 1334 1335

SQP iters 945 270 235 96 87 87 87 87 87

a posteriori refine 0 0 0 0 0 0 0 0 0

nonconvex QP 4 8 7 7 7 7 7 7 7

Table 5.15: Conventional SQP algorithm (C-SQP) applied to parameter identification in linear
elastodynamics. Failure is reported if the number of SQP iterations exceeds 1000.

Nominal Tol tolLS 0.5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8

(S)uccess/(F)ailure F F F F F F F F F

GMRES iters — — — — — — — — —

SQP iters — — — — — — — — —

Figure 5.8 (next page):
Relative and absolute residuals for all augmented systems solved by the I-SQP algorithm, applied
to parameter identification in linear elastodynamics. First and second pane: tolLS = 0.5 (yielding
the smallest number of iters/call). Third and fourth pane: tolLS = 10−3. Note: the red squares
denote quasi-normal step computations with tolerance (3.3); the red asterisks correspond to the first
STCG iterations with tolerance (3.6); the blue asterisks denote the subsequent STCG iterations with
tolerance (3.8); the black crosses correspond to tangential step computations with tolerance (3.10);
the green circles denote Lagrange multiplier computations with tolerance (3.13). Median (log scale)
relative residuals are marked by bold lines on the right vertical axes of relative residual plots.
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Figure 5.8: Plots of linear solver residuals; parameter identification in linear elastodynamics.
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