
SANDIA REPORT
SAND2011-9324
Unlimited Release
Printed January, 2012

A Cooperative Control Algorithm for
Camera Based Observational
Systems

Joseph Young

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy‘s National
Nuclear Security Administration under contract DE-AC04-94AL85000.
Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

•
 •
U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-9324
Unlimited Release

Printed January, 2012

A Cooperative Control Algorithm for Camera

Based Observational Systems

Joseph Young
Numerical Analysis and Applications

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1320
josyoun@sandia.gov

Abstract

Over the last several years, there has been considerable growth in camera based observation
systems for a variety of safety, scientific, and recreational applications. In order to improve the
effectiveness of these systems, we frequently desire the ability to increase the number of observed
objects, but solving this problem is not as simple as adding more cameras. Quite often, there are
economic or physical restrictions that prevent us from adding additional cameras to the system.
As a result, we require methods that coordinate the tracking of objects between multiple cameras
in an optimal way.

In order to accomplish this goal, we present a new cooperative control algorithm for a camera
based observational system. Specifically, we present a receding horizon control where we model
the underlying optimal control problem as a mixed integer linear program. The benefit of this
design is that we can coordinate the actions between each camera while simultaneously respect-
ing its kinematics. In addition, we further improve the quality of our solution by coupling our
algorithm with a Kalman filter. Through this integration, we not only add a predictive compo-
nent to our control, but we use the uncertainty estimates provided by the filter to encourage the
system to periodically observe any outliers in the observed area. This combined approach allows
us to intelligently observe the entire region of interest in an effective and thorough manner.

3

4

1 Introduction and Background

In recent years, there has been large growth in the application of automated camera based observation
systems. The rate of the growth seems rivaled only by its breadth. For example, the wildlife and
conservation community has made great use of remotely placed cameras in order to track wildlife.
This includes using cameras to monitor the effectiveness of a highway underpass in Arizona [9], a
camera system to monitor bears in the arctic circle in order to gauge behavior responses to ecotourists
[29], and an automated system used to search for the critically endangered ivory-billed woodpecker
[27, 1].

Within the sports community, there has also been growth in automated camera based systems.
With respect to hockey, a camera based system tracks multiple players and attempts to classify their
actions [14]. In another, multiple cameras are used to track the position of the hockey puck [6]. In
baseball, multiple cameras are being used to collect a variety of new sports statistics [26].

In the public safety realm, there have been a variety of successful application of such systems.
Of course, one of the most ubiquitous places such systems arise is in traffic monitoring [23, 13].
Alternatively, there has been work on the automatic detection of fires using satellites [7, 8]. Finally,
there has been a vast amount of research on using automated closed circuit television systems
(CCTVs) to monitor people. This includes work on monitoring and predicting crowd flow [5],
tracking individual movements of people [11, 12], and a variety of other computer vision based
tracking research [16, 17].

The unifying thread between all of the above research papers is their use of optical surveillance
systems to gather and process information concerning their observations automatically. Generally,
these systems involve multiple observations between several cameras. In some situations, these
cameras move; in others, they do not. In either situation, we may ask ourselves whether or not our
cameras are optimally oriented so that they may observe the area of interest at hand. Certainly,
multiple cameras looking at the same location may not enhance the coverage of an area. In fact,
a few well oriented cameras may observe an area of interest better than several poorly positioned
devices. As a result, the proper placement and orientation of a set of cameras within some area is
critical to our ability to observe the area of interest. In order to narrow our discussion, we focus on
the situation of reorientable cameras mounted on pan/tilt devices and try to answer a very specific
question. Can we coordinate the motion between several cameras so that they observe an area of
interest more effectively according to some metric? In order to address this question, we investigate
an optimal control algorithm formulated as a mixed integer linear program (MILP).

The type of algorithm that we pursue is most related to a class of algorithms used in the control
of unmanned aerial vehicles (UAVs). In these algorithms, a receding horizon control applied to an
optimal control problem modeled as a mixed integer linear program. The advantage of this approach
is that certain discrete goals and constraints can be satisfied while simultaneously respecting the
kinematics of the system. As an example of this methodology, Richards et. al developed a control
algorithm for spacecraft where each craft coordinates with the others in order to avoid both collisions
as well any plume that arises from using the vehicle’s thrusters [22]. In a similar manner, Richards
and How also developed a method to coordinate between multiple UAVs and avoid collisions [21].
Later, they created relatively general guidelines to applying this methodology to more generic control
problems [20]. In a similar vein, Schouwenaars et. al developed a generic multivehicle path planning
algorithm formulated as a mixed integer linear program [25]. Later, this algorithm was improved
to coordinate the control of multiple helicopters that cooperate in order to insure a continuous line
of communication to some ground station [24]. Bellingham et. al devised similar algorithms for
coordinated action between fixed winged UAVs whose motion must respect a set of no fly zones [3].
Later, a stochastic element was added in order to account for the potential loss of multiple UAVs [4].
Also working on UAVs, Ademoye and Davari produced another mixed integer control algorithm for
the coordinated control between multiple air vehicles [2]. Likewise, Reinl and von Stryk produced

5

a slight variation on this general theme where they produced a mixed integer control for UAVs
while adding constraints that insure a continuous line of communication between aircraft [19]. In a
different application area, but using a similar approach, Earl and D’Andrea created a mixed integer
control algorithm for a series of robots competing in the RoboFlag competition [10]. Also working
with ground based robots, Thunberg and Ögren studied the pursuit evasion problem when modeled
as a mixed integer control [28]. Finally, as a summary of many of these approaches, Murray produced
a survey paper that discussed many of these results among others [18].

In the following sections, we develop a receding horizon control that coordinate actions between
several different cameras working together to observe some area of interest. In order to accomplish
this, we model our system as a mixed integer linear program which allows us to correctly model the
kinematics of our cameras while accurately modeling a discrete number of observable objects in the
area of interest. In addition, we augment our approach by integrating our model with a Kalman
filter which not only improves the predictive capability of the approach, but assists in helping the
cameras periodically observe outliers to the system so that the entire area is completely observed.
Then, we verify the efficacy of our approach with a numerical experiment. Our contribution to the
literature is the use of a mixed integer control to a new application area, a new formulation of a goal
based optimization problem, and the integration of a Kalman filter with the mixed integer control.

6

2 Formulation of the Optimal Control

In the following formulation, we model a system where we have multiple cameras observe multiple
objects. In this system, the cameras may be stationary or move as long as we assume that we
know the position of each camera with respect to some global coordinate system. In addition to
spatial movement, each camera may change its orientation via a pan/tilt unit. With respect to the
objects of interest, each object may move, but we assume that we have an external mechanism that
identifies the position of each object as well as predicts the path that it takes. One example of such
a predictive system is a Kalman filter. Finally, our model and schedule remains discrete in time.
Although the control of an individual camera is continuous in nature, we place constraints on the
kinematics of the pan/tilt unit so that our discrete schedule may be realized in a continuous system.

Within a pan/tilt unit, the elevation angle describes how far up or down the camera points
whereas the azimuth angle describes how far the camera has rotated to the left or right. Let c

(i)
φ

and c
(i)
θ denote initial elevation and azimuth angles of camera i. Although we allow the cameras

to rotate, we use these angles to fix a local coordinate system. In order to model the change in
orientation, let φ(i)[k] and θ(i)[k] denote the offset in orientation. In this way, we determine the
current orientation of camera i at time k with the quantity (c(i)

φ + φ(i)[k], c(i)
θ + θ(i)[k]).

Each camera also possesses a field of view angle which determines how much the camera can see.
Let ν

(i)
φ and ν

(i)
θ denote the vertical and horizontal field of view angles respectively. Using the above

notation, at time step k, each camera may view objects that lie between c
(i)
φ + φ(i)[k] − ν

(i)
φ /2 and

c
(i)
φ + φ(i)[k] + ν

(i)
φ /2 vertically as well as c

(i)
θ + θ(i)[k]− ν

(i)
θ /2 and c

(i)
θ + θ(i)[k] + ν

(i)
θ /2 horizontally

when considered from a local coordinate system.

Due to the physical limitations of a pan/tilt unit, we place constraints on how fast each unit
may move. Let v

(i)
φ [k], v

(i)
θ [k], a

(i)
φ [k], and a

(i)
θ [k] denote the velocity and acceleration of camera i

at time step k. Since a pan/tilt unit can not start and stop instantaneously, we place restrictions
on the position, velocity, and acceleration of the units. Let φ

(i)
L , φ

(i)
U , θ

(i)
L , θ

(i)
U denote the lower and

upper bounds on how far the camera may rotate. Similarly, let v
(i)
φL, v

(i)
φU , v

(i)
θL, and v

(i)
θU denote the

lower and upper bounds on the velocity of the pan/tilt unit. In addition, let a
(i)
φL, a

(i)
φU , a

(i)
θL, and

a
(i)
θU denote bounds on the acceleration of the unit. Finally, based on these quantities, we relate the

position, velocity, and acceleration of camera i using simple Newtonian physics and the equations

φ(i)[k + 1] = φ(i)[k] + ∆tv
(i)
φ [k] +

∆t2

2
a
(i)
φ [k] (1)

θ(i)[k + 1] = θ(i)[k] + ∆tv
(i)
θ [k] +

∆t2

2
a
(i)
θ [k] (2)

v
(i)
φ [k + 1] = v

(i)
φ [k] + ∆ta

(i)
φ [k] (3)

v
(i)
θ [k + 1] = v

(i)
θ [k] + ∆ta

(i)
θ [k] (4)

where ∆t denote the size of the time step. In order to define the base terms for the above equations,
we denote the initial state of the system as

φ(i)[1] = φ
(i)
0 v

(i)
φ [1] = v

(i)
φ,0 a

(i)
φ [1] = a

(i)
φ,0

θ(i)[1] = θ
(i)
0 v

(i)
θ [1] = v

(i)
θ,0 a

(i)
θ [1] = a

(i)
θ,0.

(5)

Next, we consider the position of objects. As we mentioned before, we assume we have some
external mechanism that tells us the position of each object such as a Kalman filter. Typically, this
is a set of Cartesian coordinates in a global coordinate system. Based on this, we need to transform
each of these coordinates into a local coordinate system based on the elevation and azimuth angles

7

Figure 1. The above diagram indicates how the global coordinates
are translated into a local spherical coordinate system. We denote the
camera by the blue circle and the object in question as the yellow star.
Then, we project the position of the object onto the unit sphere denoted
in black. The green lines denote how much the camera would need to
rotate in order to center its field of view on the object.

relative to each camera. We transform into a local coordinate system because this allows us to
determine whether we can view a particular object using a system of linear inequalities. If we use
a global coordinate system for our problem, the constraints become nonlinear and more difficult to
solve. Based on this scheme, let us denote the position of the ith camera at the kth time step as
the triple (c(i)

x [k], c(i)
y [k], c(i)

z [k]). In a similar manner, let us describe the position of the jth object
at the kth time step as the triple (o(j)

x [k], o(j)
y [k], o(j)

z [k]). This allows us to determine the position
of object j relative to camera i at time step k using the formulas

δ
(ij)
l [k] = o

(j)
l [k]− c

(i)
l [k] for l ∈ {x, y, z} (6)

l(ij)[k] =
√

δ
(ij)
x [k]2 + δ

(ij)
y [k]2 + δ

(ij)
z [k]2 (7)

∆(ij)
l [k] = δ

(ij)
l [k]/l for l ∈ {x, y, z} (8)

o
(ij)
φ [k] = arcsin(∆(ij)

y [k])− c
(i)
φ (9)

o
(ij)
θ [k] = arctan2(∆(ij)

z [k],∆(ij)
x [k])− c

(i)
θ (10)

where the notation δ
(ij)
l [k] for l ∈ {x, y, z} allows us to abbreviate nearly identical formulas for

δ
(ij)
x [k], δ

(ij)
y [k], and δ

(ij)
z [k]. Another way to view these equations is that the point

(δ(ij)
x [k], δ(ij)

y [k], δ(ij)
z [k]) represents the position of some object in space where the origin lies at the

camera. Then, we project this point onto the unit sphere which gives the new point
(∆(ij)

x [k],∆(ij)
y [k],∆(ij)

z [k]). Once we have this point on the unit sphere, we determine the amount
a camera would need to rotate in order to center on this object if the camera were pointing directly
to the right down the positive part of the x-axis. Then, we modify these angles based on the fixed
mount orientation of the camera. Figure 1 illustrates this scheme. We denote the object in question
by a star and project it using a red line onto an outline of the unit sphere in black. Next, we denote
the camera as a blue circle and draw a red line from the camera down the positive x-axis until we

8

intersect the unit sphere. Then, we denote the amount the camera would need to rotate in order to
center on the object in green. These angles give the position of the object relative to the camera.

Based on these local coordinates, we have a simple scheme to determine whether or not a camera
is facing an object. Simply, we denote the amount the camera i needs to rotate in order to center
on an object j at time step k with the equations

ε
(ij)
φ [k] = o

(ij)
φ [k]− φ(i)[k] (11)

ε
(ij)
θ [k] = o

(ij)
θ [k]− θ(i)[k]. (12)

When these quantities are zero, the object is centered with the field of view of the camera. Hence,
camera i may view the object j at the time step k when the following inequalities are satisfied

|ε(ij)φ [k]| ≤ ν
(i)
φ /2 (13)

|ε(ij)θ [k]| ≤ ν
(i)
θ /2. (14)

As a minor point, since we are working within a spherical coordinate system, we also look directly
at an object every time our camera makes a full revolution. In fact, there are infinitely many ways
to center on an object due to the periodicity of the coordinate system and this is not reflected in the
quantities ε

(ij)
φ [k] and ε

(ij)
θ [k] above. In general, ignoring these extra positions does not negatively

impact the system performance unless the pan/tilt unit completes a full revolution during a single
planning phase. In this case, we can address this difficulty directly with additional inequalities of
the form

|ε(ij)φ [k]− 2πm| ≤ ν
(i)
φ /2 (15)

|ε(ij)θ [k]− 2πn| ≤ ν
(i)
θ /2. (16)

As long as these inequalities are satisfied for some combination of m,n ∈ Z, where Z denotes the
set of all integers, we say that an object lies within the field of view of some camera.

Of course, the field of view inequalities may or may not be satisfied for a particular combination
of camera and object. This causes difficulty when introducing these inequalities directly into an
optimal control formulation since the problem becomes infeasible when an object drops out of the
field of view. As a result, we require a mechanism that denotes when a camera can see an object,
but relaxes the above inequality when this is not possible. In order to accomplish this, we introduce
a series of binary variables b(ij)[k] that denote whether camera i can see an object j at a time step
k. Then, we modify the above field of view inequalities into

|ε(ij)φ [k]| ≤ M + b(ij)[k](ν(i)
φ /2−M) (17)

|ε(ij)θ [k]| ≤ M + b(ij)[k](ν(i)
θ /2−M) (18)

where M denotes some sufficiently large number that ε could never attain. For example, if we assume
that the most a camera could rotate is 2π, a quantity of M = 10 should be sufficient. Let us consider
these inequalities more closely. When camera i can not view object j at time step k, b(ij)[k] = 0.
Then, the inequalities become

|ε(ij)φ [k]| ≤ M (19)

|ε(ij)θ [k]| ≤ M. (20)

Essentially, since M is sufficiently large, the distance we need to rotate to center on the object is
unrestricted. Alternatively, when camera i can view object j at time step k we have that b(ij)[k] = 1
and the inequalities become

|ε(ij)φ [k]| ≤ v
(i)
φ /2 (21)

|ε(ij)θ [k]| ≤ v
(i)
θ /2. (22)

9

Thus, the distance necessary to center on a object must be half the view angle. As a final note, the
absolute value function is nonlinear which increases the complexity of the model. We can linearize
the above constraints by splitting the constraints into two pieces each where

ε
(ij)
φ [k] ≤ M + b(ij)[k](ν(i)

φ /2−M) (23)

−ε
(ij)
φ [k] ≤ M + b(ij)[k](ν(i)

φ /2−M) (24)

ε
(ij)
θ [k] ≤ M + b(ij)[k](ν(i)

θ /2−M) (25)

−ε
(ij)
θ [k] ≤ M + b(ij)[k](ν(i)

θ /2−M). (26)

As a final comment, even if we introduce these inequalities into an optimal control problem, we have
not yet provided incentive for the system to satisfy them. The simplest way to accomplish this is
to maximize the sum of the b(ij)[k]. In order to achieve a value of one, rather than zero, for each
variable forces the system to satisfy the field of view constraints. Of course, there are other, better
ways to also accomplish this goal that we discuss below.

In order to obtain maximum coverage, we want to determine how many unique objects are viewed
by all cameras and not just how many objects total are viewed. In order to determine this, let us
introduce a set of new binary variables b̃(j)[k] that denote whether the object j can be viewed by
any camera at time step k. Then, we introduce the relationship

b̃(j)[k] ≤
∑

i

b(ij)[k]. (27)

By maximizing some linear combination of the b̃, where we use positive weights, we create incentive
for the system to satisfy the field of view inequalities, but we don’t receive additional benefit when
more than one camera views a particular object.

Finally, we have all the necessary pieces in order to formulate the problem in an optimal control
formulation. In order to do this, we apply a receding horizon control which means that we plan
ahead for a certain number of time steps and then execute the control for some number less than
this. Each time we do this, we say we complete one plan and execution cycle. In order to determine

10

the control for the planning period, we solve the following optimization problem

max
φ,θ,vφ,vθ,aφ,aθ,b,b̃

n∑
j=1

p∑
k=1

w(j)[k]b̃(j)[k]

st b̃(j)[k] ≤
∑
i

b(ij)[k]

o
(ij)
φ [k]− φ(i)[k] ≤ M + b(ij)[k](ν(i)

φ /2−M)
−(o(ij)

φ [k]− φ(i)[k]) ≤ M + b(ij)[k](ν(i)
φ /2−M)

o
(ij)
θ [k]− θ(i)[k] ≤ M + b(ij)[k](ν(i)

θ /2−M)
−(o(ij)

θ [k]− θ(i)[k]) ≤ M + b(ij)[k](ν(i)
θ /2−M)

φ(i)[k + 1] = φ(i)[k] + ∆tv
(i)
φ [k] + ∆t2

2 a
(i)
φ [k]

θ(i)[k + 1] = θ(i)[k] + ∆tv
(i)
θ [k] + ∆t2

2 a
(i)
θ [k]

v
(i)
φ [k + 1] = v

(i)
φ [k] + ∆ta

(i)
φ [k]

v
(i)
θ [k + 1] = v

(i)
θ [k] + ∆ta

(i)
θ [k]

φ(i)[1] = φ
(i)
0 v

(i)
φ [1] = v

(i)
φ,0 a

(i)
φ [1] = a

(i)
φ,0

θ(i)[1] = θ
(i)
0 v

(i)
θ [1] = v

(i)
θ,0 a

(i)
θ [1] = a

(i)
θ,0

φ
(i)
L ≤ φ(i)[k] ≤ φ

(i)
U θ

(i)
L ≤ θ(i)[k] ≤ θ

(i)
U

v
(i)
φL ≤ v

(i)
φ [k] ≤ v

(i)
φU v

(i)
θL ≤ v

(i)
θ [k] ≤ v

(i)
θU

a
(i)
φL ≤ a

(i)
φ [k] ≤ a

(i)
φU a

(i)
θL ≤ a

(i)
θ [k] ≤ a

(i)
θU

(28)

where m denotes the number of cameras, n denotes the number of objects, and p denotes the number
of time steps. We specify the domain of our variables as

φ∈Rm×p Elevation position θ∈Rm×p Azimuth position
vφ ∈Rm×p Elevation velocity vθ ∈Rm×p Azimuth velocity
aφ ∈Rm×p Elevation acceleration aθ ∈Rm×p Azimuth acceleration
b∈Bm×n×p Viewed by this camera b̃∈Bn×p Viewed by some camera.

(29)

Similarly, we specify the domain of our constants as

oφ ∈Rm×n×p Local obj. elevation oθ ∈Rm×n×p Local obj. azimuth
νφ ∈Rm View angle νθ ∈Rm View angle
M ∈R Sufficiently large ∆t∈R Time step
φL ∈Rm Position bound φU ∈Rm Position bound
θL ∈Rm Position bound θU ∈Rm Position bound

vφL ∈Rm Velocity bound vφU ∈Rm Velocity bound
vθL ∈Rm Velocity bound vθU ∈Rm Velocity bound
aφL ∈Rm Acceleration bound aφU ∈Rm Acceleration bound
aθL ∈Rm Acceleration bound aθU ∈Rm Acceleration bound
φ0 ∈Rm Initial orientation θ0 ∈Rm Initial orientation

vφ,0 ∈Rm Initial velocity vθ,0 ∈Rm Initial velocity
aφ,0 ∈Rm Initial acceleration aθ,0 ∈Rm Initial acceleration

w∈Rn×p
++ Observation weights

(30)

where R++ denotes the positive real numbers. Finally, in order to calculate the object positions

11

above, we require a preprocessing step where we compute

δ
(ij)
l [k] = o

(j)
l [k]− c

(i)
l [k] for l ∈ {x, y, z} (31)

l(ij)[k] =
√

δ
(ij)
x [k]2 + δ

(ij)
y [k]2 + δ

(ij)
z [k]2 (32)

∆(ij)
l [k] = δ

(ij)
l [k]/l for l ∈ {x, y, z} (33)

o
(ij)
φ [k] = arcsin(∆(ij)

y [k])− c
(i)
φ (34)

o
(ij)
θ [k] = arctan2(∆(ij)

z [k],∆(ij)
x [k])− c

(i)
θ (35)

where we have

ow ∈Rn×p Global object position cw ∈Rn×p Global camera position
cφ ∈Rm Fixed camera orientation cθ ∈Rm Fixed camera orientation (36)

and l ∈ {x, y, z}.

12

3 Integration with a Kalman Filter

As mentioned before, we assume that we have an external mechanism that tells us the position of
each object within the system. Certainly, technologies exist that reasonably locate objects moving
within a system, but our model actually requires a prediction as to where these objects will move
over the next planning step. In order to accomplish, we employ a Kalman filter. We use a Kalman
filter for two reasons. First, their design and implementation is straight forward, fast, and well
understood. Second, a Kalman filter gives us an estimate of the uncertainty in its prediction. We
use this uncertainty in order to improve our model from before.

During the course of tracking an object j at time step k, a Kalman filter produces an a priori
estimate covariance matrix, P (j)[k] ∈ R3×3. As the amount of uncertainty in an estimate grows, this
matrix grows as well. In order to distill this uncertainty into a single number, we have two options.
First, we may compute

κm det(P (j)[k]−1/2) (37)

where κm denotes the area of the unit sphere in m dimensions. This quantity denotes the area of
the uncertainty ellipsoid {x ∈ Rm : xT P (i)[k]x ≤ 1}. Hence, as the a priori estimate covariance
matrix grows, this ellipse of uncertainty grows as well. As an alternative metric, we may compute
the largest eigenvalue of the covariance matrix,

λmax(P (j)[k]). (38)

This quantity denotes the maximum distance from the origin to the edge of the ellipsoid described
above. From a practical point of view, the second metric typically provides more valuable informa-
tion. The largest eigenvalue of a matrix provides a bound on the determinant, and hence the area
of the ellipsoid, but the converse is not true. Hence, in degenerate situations when the ellipsoid
is very flat, but stretched in other directions, the largest eigenvalue still provides information that
uncertainty in an object’s position exists, but looking at the determinant does not. Finally, the
largest eigenvalue is computationally cheaper to calculate than the determinant.

Based on the a priori estimate covariance matrix, we can immediate integrate information from
the Kalman filter into the optimal control problem if we set the weights in the above problem to

w(j)[k] = λmax(P (j)[k]). (39)

In this way, the system has more incentive to observe objects whose uncertainty is higher, or, more
simply, objects that we have not viewed for some time. In affect, this scheme creates incentive for
the cameras to observe all objects rather than focus on a select few.

Although this scheme improves the quality of our optimal control, it possesses a few problems
that must be addressed. First, since we require an estimate of the uncertainty for all time steps
in future, the weights above increase monotonically with time. If we solve the control problem for
a large number of time steps, the problem may be poorly scaled and a solution more difficult to
find. One possible resolution to this problem is to renormalize the above weights according to some
scheme. For example, we could take the logarithm of the above weights. Alternatively, we could
simply use the largest eigenvalue of the covariance matrix obtained at the last time step. In this way,
objects not observed during previous plan and execution cycles would increase their observational
weight between cycles, but not within the time scale of a single optimal control problem.

Second, since the Kalman filter and the optimal control problem are solved separately, the
above model does not correctly account for when the system makes an observation. For example,
if we observe an object at the third time step in our algorithm, we would expect the uncertainty
corresponding to this object to be reduced. In the current formulation, this is not the case and
there may be increased incentive to view this object at successive time steps. In fact, our current
formulation only accounts for observations and updates the Kalman filter between the plan and

13

execution cycles. In order to address this concern, we modify the above formulation by introducing
additional constraints of the form

p∑
k=1

b̃(j)[k] ≤ 1 (40)

where p denotes the total number of time steps. This states that we receive benefit from observing
an object only once during a particular plan and execution cycle. In addition, in conjunction with
our above discussion on the weights derived from the Kalman filter, we set our weighting scheme to
be

w(j)[k] = (p + 1− k)λmax(P (i)[p]). (41)

This creates increased incentive to observe objects with greater uncertainty in their position sooner
in the planning cycle rather than later. It also avoids the scaling issues discussed above.

As a result, we see that the Kalman filter satisfies two desires. It not only allows us to predict
the position of each object in the system, but it gives an indication of which objects have not been
observed recently.

When we combine the MILP based control with the Kalman filter, we obtain a receding horizon
control based on the following steps

1. Predict the position and the uncertainty in the position of each object for p time steps using
the Kalman filter.

2. Solve the MILP described in the previous section using the weights

w(j)[k] = (p + 1− k)λmax(P (j)[p]).

This gives a control for p time steps.

3. Execute the control for some number of time steps smaller than p.

4. During the execution of the control, continually update the a posteriori estimate of all objects
in the system when possible.

5. Based on the current a posteriori estimates, return to step 1.

14

4 Algorithmic Complexity

Ideally, we would like to use our scheduling method within a real-time system. Therefore, we have
three requirements of our algorithm in decreasing order of importance. First, it must always return
a feasible solution. In other words, we can never accept a solution that violates the kinematics of
our pan/tilt units. Second, we desire a solution that gives us good coverage of all objects found
within our area of interest. Finally, we desire a solution that gives us optimal coverage of all objects
found within our area of interest. We separate our last two requirements since, as we see below, it
is very difficult to obtain an optimal solution within the time constraints that we require.

Our original formulation contains, 6mnp real variables and (m + 1)np binary variables where
m denotes the number of cameras, n the number of objects, and p the number of time steps.
Furthermore, we have np+4mnp+n linear inequality constraints, (p−1)m linear equality constraints,
12m(p − 1) bound constraints, and 6m fixed variables. Since our problem contains a combination
of discrete and continuous variables, but all functions involved are linear, we have modeled our
scheduling problem as a mixed integer linear program (MILP.)

The advantage of modeling the scheduling problem as a MILP is that, given enough time, we can
quantitatively measure the ideal performance of method. In other words, we have modeled not a
heuristic, but a precise description of what we desire and the constraints involved. The disadvantage
of this approach is that solving a MILP to optimality is an NP-hard problem. Furthermore, the
large number of constraints involved mean that we have a very large NP-hard problem. As a result,
it is unlikely that we can find an optimal solution during each planning steps.

Fortunately, the problem has good structure that we can exploit. The standard algorithm to
solve a MILP is a process called branch, bound, and cut. The branch and bound process involves
an intelligent combinatorial search over all possible integer solutions. By obtaining upper and
lower bounds for the optimal solution, it becomes possible to prove that searching over certain
combinations will never lead to an optimal solution. In this way, we search far fewer solutions than
a full combinatorial search requires. A key part to this algorithm is the ability to obtain upper and
lower bounds. An upper bound can always be obtained by solving a linear programming relaxation
of the above problem. This can be done quickly. The lower bound generally requires a relatively
expensive search for a feasible integer solution that we call an incumbent. In our case, we can obtain
the incumbent for free. Simply, when b and b̃ are set to zero and all cameras do not move, we
always have a feasible solution. Furthermore, the ability to quickly generate incumbent solutions
means that we can always estimate the optimality gap. This gives us an estimate of how close our
solution is to optimality. Based on these estimates, we can terminate the search for optimal solutions
early and have an estimate for how good our schedule is. Finally, in addition to always having an
incumbent solution, the search for an optimal solution is parallelizable. Therefore, we can devote
considerable computational resources to the problem should it become necessary.

15

5 Computational Results

In the following numerical experiment, we track a variable number of objects with two cameras.
Our goal in this exercise is to determine whether or not the error between the expected and actual
object positions remains bounded or diverges. This gives us an idea of the robustness of the control
algorithm.

We begin by placing two cameras randomly on a plane 100 units above the observation area
where the position on this plane follows a two-dimensional normal distribution with mean (0, 0) and
variance (30, 30). Then, we set the view angle for each camera to be a narrow π/12 radians (15
degrees). In terms of rotational speed, we set the maximum elevation and azimuthal angles to be
±5π, the maximum rotational velocities to be ±10, and the maximum accelerations to be ±100.
We use dimensionless units, so these quantities represent the maximum the camera can rotate in a
single unit of time.

Next, we create either 5, 10, 15, or 20 objects on a plane at 0 units above the observational
area where the position of the objects are this plane follows a two-dimensional normal distribution
with mean (0, 0) and variance (20, 20). Then, set set the objects to move along ballistic trajectories
where the initial velocity of the object is given by (vx, vy, vz). In this vector, vx and vz are normally
distributed with mean 0 and variance 15. The quantity vy is uniformly distributed between 30 and
60. In this way, each object initially moves in a random direction, but always up toward the cameras.
In addition to the initial velocity, we apply an initial (0,−9.8, 0) acceleration in order to simulate
gravity.

Based on the above description, we represent the state of each object as

s =



x position
x velocity
x acceleration
y position
y velocity
y acceleration
z position
z velocity
z acceleration


. (42)

This allows us to describe the state of each object at time k with the equation

s[k + 1] = Ks[k] +
3∑

i=1

Kixi (43)

where

K =



1 ∆t 1
2∆t2 0 0 0 0 0 0

0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 1

2∆t2 0 0 0
0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 1

2∆t2

0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1


(44)

K1 =
[
1
2∆t2 ∆t 1 0 0 0 0 0 0

]T (45)

K2 =
[
0 0 0 1

2∆t2 ∆t 1 0 0 0
]T (46)

K3 =
[
0 0 0 0 0 0 1

2∆t2 ∆t 1
]T

, (47)

16

xi are normally distributed random variables with mean 0 and variance 0.1, and ∆t is 0.02. As a
result, the objects move in standard ballistic trajectories, but the acceleration of the object is varied
randomly in all directions. Finally, once an object reaches an elevation of 0, we remove the object
and create a new object according to the scheme described above.

With respect to the Kalman filter, we assume that we can only observe each object’s position,
not its velocity and acceleration. As a result, we use an observation matrix

O =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

 . (48)

In addition, we assume that we contain errors in our observations that are normally distributed with
mean 0 and variance 10−3.

Finally, we implement a receding horizon control based on the mixed integer linear programming
formulation above. In this control, we plan for 30 time steps, but execute the control for only 15.
In order to solve the MILP, we use GLPK [15] where we limit the time to solve the integer program
to 10 seconds. When 10 second are completed, we take the best known incumbent solution as the
control.

In the experiment, we simulate the system for a total of 500 time steps. A visualization of this
experiment can be seen in Figure 2. Then, at each time step, we collect four metrics. First, we
measure the average error in the predicted and actual object positions measured by

1
n

n∑
i=1

‖x(pred)
i − x

(actual)
i ‖2

1 + ‖x(actual)
i ‖2

. (49)

where xi denotes the position of the ith object in global (x, y, z) coordinates. Next, we measure the
maximum error in the position at each time step measured by

max
i=1,...,n

{‖x(pred)
i − x

(actual)
i ‖2}. (50)

In a similar manner, we measure the average over the maximum eigenvalue of the a priori estimate
of the covariance matrices from the Kalman filter

1
n

n∑
i=1

λmax(Pi) (51)

where Pi denotes the a priori estimate of the covariance matrix of the ith object. We also measure
the maximum eigenvalue over all covariance matrices

max
i=1,...,n

{λmax(Pi)}. (52)

Then, we can see the performance of our simulation according to the above metrics in Figures 3, 4,
5, and 6.

These results indicate that the overall error and uncertainty between the predicted position of
the objects in the system and the actual position remains small and bounded for 5, 10, and 15
objects, but not for 20. At 20 objects, both the error and the uncertainty in the objects’ position
becomes unbounded. Of course, this does not mean that we can not adequately observe a system
with 20 objects. Rather, at 20 objects, 10 seconds is not enough time for the integer programming
solver to improve the initial incumbent solution. If we allow the algorithm to run for more time, or
use a higher performance integer programming solver, we observe the objects better.

17

Figure 2. A visual depiction of the numerical experiment. Here, we
use 2 cameras to track 15 objects moving in random ballistic trajectories.
The translucent red pyramids denote the field of view of the two cameras
whereas the red spheres denote observed objects, blue denote actual
object positions, and black denote predicted object positions.

18

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12
Average Error in the Object Positions

5 Objects
10 Objects
15 Objects
20 Objects

Figure 3. Average error in the objects’ position measured by

1
n

nP
i=1

‖x
(pred)
i −x

(actual)
i ‖2

1+‖x
(actual)
i ‖2

. Here, we see that the error remains relatively

small and bounded for 5, 10, and 15 objects. However, the error grows
unacceptably high for 20 objects.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Maximum Error in the Object Positions

5 Objects
10 Objects
15 Objects
20 Objects

Figure 4. Maximum error in the objects’ position measured by

max
i=1,...,n

{‖x(pred)
i −x

(actual)
i ‖2}. These results mirror those from the aver-

age error in the objects’ position, which indicates that the overall error
in the system is dominated by a small number of outliers. When these
outliers become observed, the error in the system drops.

19

0 100 200 300 400 500
0

500

1000

1500

2000

2500
Average Uncertainty in the Object Positions

5 Objects
10 Objects
15 Objects
20 Objects

Figure 5. Average uncertainty in the objects’ position measured by

1
n

nP
i=1

λmax(Pi) As with the average error in the objects’ position, we see

that the uncertainty in the system remains bounded for 5, 10, and 15
objects, but does not for 20 objects.

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

12000

14000

16000
Maximum Uncertainty in the Object Positions

5 Objects
10 Objects
15 Objects
20 Objects

Figure 6. Maximum uncertainty in the objects’ position measured by
max

i=1,...,n
{λmax(Pi)}. These results mirror those from the average uncer-

tainty in the objects’ position. This indicates that a small number of
outliers dominate the uncertainty in the system.

20

6 Conclusion

During the course this report, we have described an algorithm for the cooperative control of several
cameras that are used to observe some area. This algorithm consists of three parts. First, we use a
Kalman filter to predict the motion of all objects of interest as well as estimate the uncertainty in
their position. Second, we solve a mixed integer linear program in order to determine the camera’s
optimal control. This formulation depends both on the kinematics of the cameras as well as the
uncertainty estimates provided by the Kalman filter. Finally, we execute our control which allows
us to make actual observations of the objects in the system. This allows us to update the Kalman
filter and then solve for a new control.

Although seemingly difficult to solve, we have also discussed the algorithmic difficulties of the
problem and discovered that it possesses good structure. Specifically, we can always generate an
incumbent solution to the mixed integer linear program which gives us the ability to generate both
upper and lower bounds to the solution in a quick and efficient manner. This allows us to not only
find good controls quickly, but allows us to estimate the quality of these solutions.

In practice, the algorithm appears to perform well. The objects of interest are well observed and
the number of outliers remains small. When the performance of the algorithm deteriorates, the lack
of performance is directly due to not solving the integer program to optimality. Simply, we limit the
amount of time used to solve the integer program and the amount of time required increases with
the number of objects we track. If we increase the amount of computational effort in solving the
integer program, the system performs better.

In short, our algorithm possesses the following three advantages. First, the algorithm is not
heuristic; it models and solves a formal optimization problem. Second, we combine our overall
goal of observation with the kinematics of our system into a single formulation that simultaneously
considers all goals and constraints. Finally, we provide a tight coupling between our predictive
mechanism, the Kalman filter, and our control algorithm which must account for future action. In
this manner, we can effectively coordinate the actions between multiple cameras in order to observe
an area of interest.

21

References

[1] Project ACONE: Automated birdwatching, 2007. http://www.c-o-n-e.org/acone/.

[2] T.A. Ademoye and A. Davari. Trajectory planning for multiple autonomous systems using mixed
integer linear programming. In System Theory, 2006. SSST ’06. Proceeding of the Thirty-Eighth
Southeastern Symposium on, pages 175 –179, 2006.

[3] J. Bellingham, A. Richards, and J.P. How. Receding horizon control of autonomous aerial
vehicles. In American Control Conference, 2002. Proceedings of the 2002, volume 5, pages 3741
– 3746 vol.5, 2002.

[4] J.S. Bellingham, M. Tillerson, M. Alighanbari, and J.P. How. Cooperative path planning
for multiple uavs in dynamic and uncertain environments. In Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, volume 3, pages 2816 – 2822 vol.3, December
2002.

[5] B.A. Boghossian and S.A. Velastin. Motion-based machine vision techniques for the manage-
ment of large crowds. In Electronics, Circuits and Systems, 1999. Proceedings of ICECS ’99.
The 6th IEEE International Conference on, volume 2, pages 961 –964 vol.2, September 1999.

[6] Rick Cavallaro. The foxtrax hockey puck tracking system. IEEE Computer Graphics and
Applications, 17:6–12, March 1997.

[7] Evaristo Cisbani, Antonio Bartoloni, Marco Marchese, Gianluca Efisei, and Antonello Salvati.
Early fire detection system based on multi-temporal images of geostationary and polar satellites.
In Geoscience and Remote Sensing Symposium, 2002. IGARSS ’02. 2002 IEEE International,
volume 3, pages 1506 – 1508 vol.3, 2002.

[8] Mario Costantini, Massimo Zavagli, Evaristo Cisbani, and Bruno Greco. A technique for auto-
matic fire detection from geostationary optical sensors and its validation on msg seviri data. In
Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006. IEEE International Confer-
ence on, pages 4153 –4156, August 2006.

[9] Norris L. Dodd, Jeffrey W. Gagnon, Amanda L. Mazo, and Raymond E. Schweinsburg. Video
surveillance to assess highway underpass use by elk in arizona. Journal of Wildlife Management,
71(2):637–645, 2007.

[10] M.G. Earl and R. D’Andrea. Modeling and control of a multi-agent system using mixed integer
linear programming. In Decision and Control, 2002, Proceedings of the 41st IEEE Conference
on, volume 1, pages 107 – 111 vol.1, December 2002.

[11] L.M. Fuentes and S.A. Velastin. From tracking to advanced surveillance. In Image Processing,
2003. ICIP 2003. Proceedings. 2003 International Conference on, volume 3, pages III – 121–4
vol.2, September 2003.

[12] D. M. Gavrila. The visual analysis of human movement: A survey. Computer Vision and Image
Understanding, 73(1):82 – 98, 1999.

[13] V. Kastrinaki, M. Zervakis, and K. Kalaitzakis. A survey of video processing techniques for
traffic applications. Image and Vision Computing, 21(4):359 – 381, 2003.

[14] Wei-Lwun Lu, Kenji Okuma, and James J. Little. Tracking and recognizing actions of multiple
hockey players using the boosted particle filter. Image and Vision Computing, 27(1-2):189 –
205, 2009. Canadian Robotic Vision 2005 and 2006.

[15] Andrew Makhorin. GNU linear programming kit, version 4.44, 2010. http://www.gnu.org/
software/glpk/glpk.html.

22

[16] Thomas B. Moeslund and Erik Granum. A survey of computer vision-based human motion
capture. Computer Vision and Image Understanding, 81(3):231–268, 2001.

[17] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances in vision-based
human motion capture and analysis. Computer Vision Image and Understanding, 104:90–126,
November 2006.

[18] Richard M. Murray. Recent research in cooperative control of multivehicle systems. Journal of
Dynamic Systems, Measurement, and Control, 129(5):571–583, 2007.

[19] Christian Reinl and Oskar von Stryk. Optimal control of multi-vehicle-systems under commu-
nication constraints using mixed-integer linear programming. In Proceedings of the 1st inter-
national conference on Robot communication and coordination, RoboComm ’07, pages 3:1–3:8,
Piscataway, NJ, USA, 2007. IEEE Press.

[20] A. Richards and J. How. Mixed-integer programming for control. In American Control Con-
ference, 2005. Proceedings of the 2005, pages 2676 – 2683 vol. 4, June 2005.

[21] A. Richards and J.P. How. Aircraft trajectory planning with collision avoidance using mixed
integer linear programming. In American Control Conference, 2002. Proceedings of the 2002,
volume 3, pages 1936 – 1941 vol.3, 2002.

[22] Arthur Richards, Jonathan How, Tom Schouwenaars, and Eric Feron. Plume avoidance ma-
neuver planning using mixed integer linear programming. In Proceedings of AIAA Guidance
Navigation and Control Conference, 2001. AIAA-2001-4091.

[23] E. Rowe. The Los-Angeles automated traffic surveillance and control (atsac) system. Vehicular
Technology, IEEE Transactions on, 40(1):16 –20, February 1991.

[24] T. Schouwenaars, E. Feron, and J. How. Multi-vehicle path planning for non-line of sight
communication. In American Control Conference, 2006, page 6 pp., June 2006.

[25] Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer programming
for multi-vehicle path planning. In Proceedings of the European Control Conference, pages 2603–
2608, September 2001.

[26] Alan Schwarz. Digital eyes will chart baseball’s unseen skills. The New York Times, July 2009.
http://www.nytimes.com/2009/07/10/sports/baseball/10cameras.html.

[27] Dezhen Song, Ni Qin, Yiliang Xu, Chang Young Kim, D. Luneau, and K. Goldberg. System and
algorithms for an autonomous observatory assisting the search for the ivory-billed woodpecker.
In Automation Science and Engineering, 2008. CASE 2008. IEEE International Conference on,
pages 200 –205, August 2008.

[28] J. Thunberg and P. Öandgren. An iterative mixed integer linear programming approach to
pursuit evasion problems in polygonal environments. In Robotics and Automation (ICRA),
2010 IEEE International Conference on, pages 5498 –5503, May 2010.

[29] Jens Wawerla, Shelley Marshall, Greg Mori, Kristina Rothley, and Payam Sabzmeydani.
Bearcam: automated wildlife monitoring at the arctic circle. Machine Vision and Applica-
tions, 20:303–317, 2009. 10.1007/s00138-008-0128-0.

23

DISTRIBUTION:

1 MS 0899
RIM-Reports Management, 9532
(electronic copy)

24

v1.25

