
SANDIA REPORT 
SAND2011-9011 
Unlimited Release 
Printed November 2011 
 
 
 

Ota City: Characterizing Output 
Variability from 553 Homes with 
Residential PV Systems on a 
Distribution Feeder 
 
 
Matthew Lave, Joshua S. Stein, Abraham Ellis, Clifford W. Hansen, Eichi Nakashima, 
and Yusuke Miyamoto 
 
 
 
 
 
 
Prepared by 
Sandia National Laboratories 
Albuquerque, New Mexico  87185 and Livermore, California  94550 
 
Sandia National Laboratories is a multi-program laboratory managed and operated 
 by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, 
for the U.S. Department of Energy’s National Nuclear Security Administration under 
contract DE-AC04-94AL85000. 
 
Approved for public release; further dissemination unlimited. 
 
 
 
 
 
 
 
 
 
 

 
  



2 

 
 
 
 

Issued by Sandia National Laboratories, operated for the United States Department of Energy 
by Sandia Corporation. 
 
NOTICE:  This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government, nor any agency thereof, 
nor any of their employees, nor any of their contractors, subcontractors, or their employees, 
make any warranty, express or implied, or assume any legal liability or responsibility for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represent that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government, any agency thereof, or any of 
their contractors or subcontractors.  The views and opinions expressed herein do not 
necessarily state or reflect those of the United States Government, any agency thereof, or any 
of their contractors. 
 
Printed in the United States of America. This report has been reproduced directly from the best 
available copy. 
 
Available to DOE and DOE contractors from 
 U.S. Department of Energy 
 Office of Scientific and Technical Information 
 P.O. Box 62 
 Oak Ridge, TN  37831 
 
 Telephone: (865) 576-8401 
 Facsimile: (865) 576-5728 
 E-Mail: reports@adonis.osti.gov 
 Online ordering: http://www.osti.gov/bridge 
 
Available to the public from 
 U.S. Department of Commerce 
 National Technical Information Service 
 5285 Port Royal Rd. 
 Springfield, VA  22161 
 
 Telephone: (800) 553-6847 
 Facsimile: (703) 605-6900 
 E-Mail: orders@ntis.fedworld.gov 
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online 
 
 

 
  

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


3 

SAND2011-9011 
Unlimited Release 

Printed November 2011 
 
 
 
 

Ota City: Characterizing Output Variability from 
553 Homes with Residential PV Systems on a 

Distribution Feeder 
 
 

Matthew Lave, Joshua S. Stein,  
Abraham Ellis, and Clifford W. Hansen 

Sandia National Laboratories 
P.O. Box 5800 

Albuquerque, New Mexico  87185-1033 
 

Eichi Nakashima and Yusuke Miyamoto 
Kandenko 

2-7-14, Jonan, Mito City 
Ibaraki, Japan 

 
 
 
 

Abstract 
 

This report describes in-depth analysis of photovoltaic (PV) output variability in a high-
penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan.  Pal 
Town is a unique test bed of high-penetration PV deployment.  A total of 553 homes 
(approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all 
are on a common distribution line.  Power output at each house and irradiance at several 
locations were measured once per second in 2006 and 2007.  Analysis of the Ota City data 
allowed for detailed characterization of distributed PV output variability and a better 
understanding of how variability scales spatially and temporally. For a highly variable test day, 
extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an 
increase in the number of houses at all timescales, but the reduction became negligible after a 
certain number of houses. Wavelet analysis resolved the variability reduction due to geographic 
diversity at various timescales, and the effect of geographic smoothing was found to be much 
more significant at shorter timescales. 
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1. INTRODUCTION 
 
The Pal Town neighborhood of Ota City, Japan, is a unique test bed of high-penetration, 
distributed solar energy. The Japanese government’s New Energy and Industrial Technology 
Development Organization (NEDO) installed solar photovoltaic (PV) panels on 553 rooftops in 
Pal Town (approximately 80% of the neighborhood), in a project titled, “Demonstrative research 
on clustered PV systems.” All PV systems were grid-interconnected to a single distribution line 
to examine their influence on the line and to determine proper technologies to resolve potential 
grid issues. Over 2 MW of distributed rooftop solar PV were installed in the roughly 0.4 km2 
neighborhood. Each rooftop PV system recorded its power output once per second in the years 
2006 and 2007, and so this makes for an excellent location at which to study solar power 
variability. 
 
1.1 Goals 
 
1.1.1 Characterize Solar Power Variability at Various Timescales 

The variability of solar power is an obstacle to high penetration, as it can lead to flicker, voltage 
fluctuations, and balancing problems. Variability is especially a problem at very short timescales 
(less than 1 hour), as expensive, fast-ramping spinning reserve must be used to counteract short-
term fluctuations. Long-term fluctuations can be easier to predict, and can be countered by 
slower ramping and hence cheaper power sources, but the often large magnitude of long-term 
fluctuations means they can also add cost to PV integration. Due to the importance of both short 
and long timescales, we examine solar power variability in Pal Town at multiple timescales 
using ramp rate and wavelet-based analysis. 

 
1.1.2 Determine How Solar Power Variability Scales With the Number of Houses 

A key factor for solar power variability is geographic smoothing. While solar power at one site 
(i.e., one house) may be highly variable, the relative variability (variability relative to power 
capacity) will be reduced when many sites are added together (i.e., one neighborhood). This 
benefit will increase as more sites are added and as the correlation between sites is decreased. In 
this study, we determine the relationship between the relative variability and the number of sites 
for the Pal Town neighborhood. 
 
1.2 Previous Works 
 
1.2.1 Benefits of Geographic Smoothing 

Many previous studies have shown reductions in variability of solar irradiance by adding 
multiple sites. Otani et al. (1997) use a fluctuation factor, defined as the root mean squared 
(RMS) value of a high-pass filtered 1-min time series of solar irradiance, to demonstrate a 2 to 5 
times reduction in variability when considering nine sites located within a 4 km by 4 km grid. 
Curtright and Apt (2008) and Lave and Kleissl (2010) used 1-min timeseries to show reductions 
in the mean, maximum, and standard deviation of ramp rates (RRs) when considering the 
average of three or four sites (spread across Arizona and Colorado, respectively) versus only one 
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site. Power spectral densities (PSDs) presented in Otani et al. (1997), Curtright and Apt (2008), 
and Lave and Kleissl (2010) all show strong reductions in power content of fluctuations of the 
average of multiple sites versus the power content of fluctuations at one site. 
 
Wiemken et al. (2001) examined 5-min normalized output from 100 PV sites spread throughout 
Germany, and found the standard deviation of the average of 100 sites to be reduced by a factor 
of 1.64 compared to 1 site for the month of June. They also discovered that 5-min fluctuations of 
±5% of power output at nameplate capacity are virtually nonexistent in the average, yet single 
sites have fluctuations larger than ±50%. 
 
1.2.2 Timescale Dependent Decorrelation 

Murata et al. (2009) analyzed 1-min data from 52 PV systems spread across Japan to determine 
the “smoothing effect” of aggregating multiple systems. They found that over 1 min, sites more 
than about 50 to 100 km apart were uncorrelated, and thus there was a limit reached whereby 
adding more PV sites had no effect on reducing variability. For times greater than 10min, 
however, they reject the hypothesis that sites within 1000 km are independent, though some of 
the dependence may be due to diurnal solar cycles and could be eliminated by using a 
normalized solar radiation.   
 
Mills and Wiser (2010) computed step changes (deltas) in clear-sky index for timeseries from the 
Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) Program to test their 
model for solar irradiance variability as a function of distance across the plain. Fluctuations of 1 
and 5 min showed nearly zero correlation between all 23 sites in the SGP network (sites range 
from 20 to 440 km apart), but deltas for times longer than 5 min increased in correlation with 
decreasing distance. The authors simulate a distributed PV plant consisting of 100 sites in a 
uniform 20 km by 20 km grid, and determine that six times less reserve resources are required to 
mitigate fluctuations for this distributed plant than would be required for a central plant of the 
same power capacity. 
 
Perez et al. (2011) used 24 irradiance sensors – 17 stations in the ARM network and 7 stations in 
the SURFRAD network – to create virtual networks of irradiance sensors for studies of 
correlation. They find that 20-sec, 1-min, 5-min, and 15-min fluctuations become uncorrelated at 
500 m, 1 km, 4 km, and 10 km, respectively. They extrapolate the found correlation relationships 
to model a homogeneously dispersed solar resource over a 40 by 40 km grid, and find variability 
to be reduced  by a factor of 80, 40, 10, or 4 over the variability of a single site for timescales of 
20 sec, 1 min, 5 min, or 15 min. 
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2. DATA 
 
2.1 Description of Data 
 
The Pal Town neighborhood of Ota City, Japan, contains 553 houses with rooftop PV systems 
(about 80% of the total houses in the neighborhood), ranging from 3 to 5 kWp, making a total of 
2.13 MWp installed. The vast majority of houses (about 400 of the 553) had a 4 kWp PV system. 
Most of the PV panels are either single or polycrystalline silicon. A map of Pal Town detailing 
the layout of houses with PV is shown in Figure 1. Since the PV panels are installed on domestic 
rooftops, the tilt and azimuth of the panels varies widely, as seen in Figure 2. The typical tilt of 
the PV panels is approximately 25° (more than half of the systems are between 23° to 27°), and 
the typical azimuth is south. The spacing between houses in Pal Town is large enough that 
shading from neighboring houses is not expected to be an issue. 
 
In Pal Town, all household load and PV are connected to the same feeder, though there are also 
other loads on the feeder. The Pal Town feeder is a 6.6 kV overhead feeder, 3.26 km long from 
substation to Pal Town. The feeder connects to Pal Town near sensor 3 in Figure 1. Because all 
of the PV is on the same feeder, geographically concentrated, and the PV capacity is large 
relative to the household load, PV variability dominates net load variability of the Pal Town 
neighborhood (Figure 3). To help counter variability, batteries of 9 kWh were installed to all 
residences with PV systems in Pal Town. However, after several years of testing and analysis by 
NEDO, the batteries were withdrawn from operation as they were deemed unnecessary. 
 
All houses collected PV power output data at 1-sec resolution. Additionally, there were six point 
sensors collecting GHI at 1-sec resolution using EKO instruments ML-020VM silicon 
pyranometers. The location of these point sensors is shown in Figure 1. Ota City receives slightly 
more sunlight annually than Tokyo, as the amount of solar insolation incident on a horizontal 
plane in Ota City is approximately 1.3 MWh m-2 yr-1, 6% larger than in Tokyo. 
 
 



10 

 
Figure 1. Layout of the Pal Town neighborhood in Ota City. 

Black dots show houses with rooftop PV, and the red  
circles indicates the location of the GHI points sensors. 

 
 
 

 
Figure 2. Photo of PV on the rooftops of houses in Pal Town. 
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Figure 3.  Aggregate PV generation, load, and net load (load-PV)  

for all of the Pal Town neighborhood on October 12, 2007.  
Since data was only available from 80% of the houses (those with 

PV), the load of those 80% was multiplied by 1.25 to estimate the load 
of all the houses in Pal Town connected to the same feeder, even those 

without rooftop PV. The unresolved period just after 15:00 is due to missing data. 
 
 
2.2 Quality Control 
 
2.2.1 No DC Power Data Available 

The DC power output of the PV systems was chosen for this study due to the high level of 
apparent sensor noise on the AC data. However, a few of the Pal Town PV sites only had valid 
AC measurements, and so the number of houses available for this study was slightly reduced. 
The maximum number of sites reporting DC power data on one day was 483 (the number of sites 
with valid DC power in 2006 and 2007 data fluctuated due to new installations, sensor error, 
etc.). This is still a very large number of houses and a high proportion of all Pal Town houses, 
and so will still produce representative results of output variability and geographic smoothing. 

 
2.2.2 Artificial Ramps 

Even if a site is reporting DC power data, it may still have issues. The most common issue is 
extreme ramps that are not representative of cloud-caused events. Figure 4 shows a few such 
events. These extreme ramps occur because the 1-sec data collection system stops when a 
blackout or voltage dip trips the system, or when it is unable to communicate with the PV site. At 
some sites, there are observed to be quite a few of these outages for about 10-sec durations, 
though some outages can last up to about a minute. Immediately before and after outages, there 
were typically slow ramps down to and away from zero, meaning the outage had an effect on the 
data for longer than when a zero value was recorded. To remove the outages from the data, times 
when the power output was less than 0.7% of capacity and the 3 min before and after these times 
were filtered out. 
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Figure 4.  Power output from site 14 on June 23, 2006, shows  

extreme ramps down to zero power output, lasting about 10 seconds. 
 
 

2.2.3 Correlation Filter 

In addition to the data errors mentioned in Sections 2.2.1 and 2.2.2, there were some power 
output timeseries that deviated so far from the other timeseries that they were found to be errant. 
Figure 5 shows examples of these timeseries. To remove these largely deviating timeseries, a 
filter based on correlation between each timeseries and the mean of all timeseries was used. If 
the daytime (solar altitude angle > 10°) correlation between the two was less than 0.8 for a given 
site, then that site was deemed errant and removed from the analysis. The strategy was to err on 
the side of excluding more sites than necessary in order to ensure that all retained sites were 
indeed accurate. For example, the blue line in Figure 5 is likely real output of a house with panel 
azimuths far to the west, but was excluded using the correlation filter. It was decided to err on 
the side of exclusion because including just one errant site could cause large errors in ramp rate 
analysis. This correlation filter seemed effective for all days. Figures 5 and 6 show the rejected 
and retained power output profiles for October 12, 2007. Only four “good” sites were rejected on 
this day, leaving 477 sites in the analysis, meaning that even by using this aggressive filter, less 
than 1% of the data have been eliminated. Visually, all of the sites retained look to be 
appropriate power output profiles. 



13 

 
Figure 5.  Power output as a percent of capacity (thin colored lines) for  

sites that failed the daytime correlation >0.8 filter. The mean of all  
sites is shown as the thick black line. 

 
 
 
 
 

 
Figure 6.  Power output as a percent of capacity for  
sites that passed the daytime correlation > 0.8 filter. 
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2.3 Test Day: October 12, 2007 
 
October 12, 2007, was chosen as a test day for ramp rate statistics and wavelet analysis since it is 
a typical highly variable day with few errors in the data. This day is shown in Figure 3. A total of 
477 houses passed the quality controls laid out in Sections 2.2.1 and 2.2.3 on October 12. 
 
Additionally, when the measurements from a GHI point sensor were required, sensor 1 was used 
(see Figure 1 for sensor location). Sensor 1 was chosen because it is co-located with the project 
administrative office, so it is expected to be the best maintained and to produce the most reliable 
results. 
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3. METHODS 
 
3.1 Ramp Rates 
 
Extreme RRs of solar PV power are of critical interest to power system operators who need to 
understand worst-case scenarios. In this study the 99th-percentile RRs (RR99s) were calculated to 
gain an understanding of the worst-case fluctuations. RR99s were used instead of maximum RR 
for two reasons: (1) using RR99s, the worst-case scenarios that are seen somewhat often (1% of 
the time) and must be addressed are understood, while the maximum gives only the single worst-
case scenario in a whole day, which may not be of consequence, and (2) using the RR99s is 
another method of quality controlling the data as it protects against the case where the maximum 
RR was an error in the data rather than an actual power change of the system. 
 
After quality controlling the data as described in Section 2.2, the mean RR99 for the power 
output of a single house, and the RR99 of the aggregate power output of all houses, 𝑃(𝑡), were 
computed. 𝑃(𝑡) was obtained by summing all the individual houses, and so ignores transmission 
losses. To allow for easy comparison between individual houses and aggregate power output, 
RR99s were calculated as a function of system rated capacity. RR99s were calculated at 1 sec, 
10 sec, 30 sec, 1 min, and 10 min. Timeseries corresponding to timescales longer than 1 sec were 
created by block-averaging the 1-sec timeseries, which simulates data collected once per 
timescale, and RR99s were computed based on the newly created timeseries. This method means 
that the length of the timeseries is shorter for longer timescales (i.e., there are 144 10-min block 
average values per day, versus 86,400 1-sec values).  
 
Using longer time intervals than 10 min meant that too high of a percentage of the data had been 
thrown out due to quality control issues and so did not allow for accurate RR99s of the aggregate 
power output. RR statistics at longer timescales are well documented in other works (see, for 
example, Lave et al. 2011). While other studies have used the absolute value of RRs, in this 
report positive and negative ramps have been segregated, and so in addition to computing RR99s 
the 1st-percentile RRs (RR01s) were also calculated. Except for a negative sign, the RR99s and 
RR01s were found to be very nearly identical and so RR01s are not presented here. For 
comparison to other works, the RR99s in this study are equivalent to 98th-percentile absolute 
value RRs.  
 
In order to obtain a better resolution of the behavior of RR99s as the number of houses increases, 
RR99s were computed for varying numbers of houses, 𝑁, from 2 to 400. The process to compute 
RR99s for N houses was as follows: 
 

1. Select a random permutation of 𝑁 houses. For example, for 𝑁 = 2, the 25th and 400th 
houses might be chosen. 

2. Find the average power output, as a function of capacity, for the combination of all N 
houses.  

3. Determine the RR99 for this average power output. 
4. Repeat steps 1 through 3 100 times to ensure that house selection is representative (if 

only done once, houses right next to each other might be picked, underrepresenting the 
geographic diversity of the neighborhood). 

5. Record RR99 as the mean value of these 100 RR99 values computed in steps 1 through 4. 
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This method was run to find RR99s for timescales of 1 sec, 10 sec, 30 sec, 1 min, and 10 min for 
all days with data in 2007. 
 
3.2 Wavelet Decomposition 
 
To understand power fluctuations at each timescale, a wavelet transform can be used (see, for 
example, Woyte et al. 2007 or Lave et al. 2011). Since the wavelet transform works best upon a 
stationary signal, power output was first normalized by a clear-sky model such that output during 
entirely clear conditions would be 1. To create a clear-sky model for Pal Town, we used the 
Ineichen GHI clear-sky model to create 𝐺𝐻𝐼𝑐𝑙𝑟 (Ineichen and Perez 2002), and the Page Model 
to translate GHI into global irradiance on an inclined surface (Page 2003). An inclined surface 
15° tilted from horizontal and positioned 10° east of south was found to best fit the data, and this 
is likely the average tilt and azimuth for all of Pal Town. To translate this irradiance model to a 
clear-sky power output model, the clear-sky global irradiance on the inclined surface was 
multiplied by the power capacity of Pal Town, and a constant conversion efficiency of 0.85, 
creating 𝑃𝑐𝑙𝑟(𝑡). Temperature effects were found to be small (less than 5%), and varied from day 
to day, motivating the choice for a constant rather than temperature-dependent conversion 
efficiency. A normalized power output timeseries, essentially a power-derived clear-sky index, 
was created by dividing P(t) by Pclr(t): 
 

𝑃𝑛𝑜𝑟𝑚(𝑡) = 𝑃(𝑡)
𝑃𝑐𝑙𝑟(𝑡). (1)  

 
Since each house has panels at different orientations than its neighbors’, it was not possible to fit 
a clear-sky curve to the individual houses. Instead, the GHI measurement, 𝐺𝐻𝐼(𝑡), was used 
from the 1st point sensor (as shown in Figure 1) as a proxy for a single house. The GHI was 
normalized to create a clear-sky index: 
 

𝐺𝐻𝐼𝑛𝑜𝑟𝑚(𝑡) =
𝐺𝐻𝐼(𝑡)
𝐺𝐻𝐼𝑐𝑙𝑟(𝑡)

. (2)  

 
The wavelet transform of the power output timeseries, 𝑃𝑛𝑜𝑟𝑚(𝑡), is: 
 

𝑤𝑗(𝑡) = ∫ 𝑃𝑛𝑜𝑟𝑚(𝑇) 1
�2𝑗+1

𝜓 �𝑇−𝑡
2𝑗+1

� 𝑑𝑇𝑡𝑚𝑎𝑥
𝑡𝑚𝑖𝑛

, (3)  
 
where the wavelet timescale (length of fluctuations) in seconds is 2𝑗, and 𝑇 is a variable of 
integration. The top hat wavelet was used, defined by: 
 

𝜓(𝑡) = �
    1,         1

4
< 𝑡 < 3/4

 −1,         0 < 𝑡 < 1
4

     ||     3
4

< 𝑡 < 1
    0,          𝑒𝑙𝑠𝑒

, (4)  

 
because of its simplicity and similarity to the shape of solar power fluctuations. Wavelet modes 
(timeseries) were computed for 𝑗 values ranging from 1 (2 sec) to 12 (~1 hr), thus decomposing 
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the 𝑃𝑛𝑜𝑟𝑚(𝑡) timeseries into 12 modes showing fluctuations at these various timescales. 
Symmetric signal extension was used to ensure resolution at endpoints. A special definition for 
the highest wavelet mode was adopted, defining 𝑤12(𝑡) to be the moving average with 
window 212 = 4096𝑠. By doing so, the property that the sum of all wavelet modes equals the 
original input signal is achieved: 
 

∑ 𝑤𝑗(𝑡) =12
𝑗=1 𝑃𝑛𝑜𝑟𝑚(𝑡). (5)  

 
The same wavelet transform was applied to the timeseries 𝐺𝐻𝐼𝑛𝑜𝑟𝑚(𝑡), allowing for a 
comparison of fluctuations between the point sensor (representing a single house) and the areally 
average power output at each timescale. In addition to directly comparing the wavelet mode 
timeseries, the mathematical power content of each mode, called the fluctuation power index 
(𝑓𝑝𝑖) can also be compared: 
 

fpi(𝑗) = 1
𝑡𝑚𝑖𝑛−𝑡𝑚𝑎𝑥

∫ 1
2𝑗+1

�𝑤𝑗(𝑡)�
2
𝑑𝑡𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛
. (6)  

 
Comparing the 𝑓𝑝𝑖 of 𝐺𝐻𝐼𝑛𝑜𝑟𝑚 to the 𝑓𝑝𝑖 of 𝑃𝑛𝑜𝑟𝑚 gives an idea of the geographic smoothing 
effect. To quantify smoothing, the variability reduction (VR) is defined as: 
 

VR(𝑗) = fpi𝐺𝐻𝐼𝑛𝑜𝑟𝑚(𝑗)
fpi𝑃𝑛𝑜𝑟𝑚(𝑗)

. (7)  
 
A high VR indicates strong geographic smoothing of the total power output versus the power 
output of a single house, while a VR of unity means no smoothing benefit. 
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4. RESULTS 
 
4.1 99th-Percentile RRs 
 
RR99s were found for various numbers of houses and timescales for the test day, and the results 
are shown in Figure 7. The RR99s are presented as change in percent of capacity per timescale of 
interest, meaning, for example, that a 1-min RR99 of 20% means a 20% change per minute. 
When normalized to RRs per second, the 1-sec RR99s are always larger than the longer-
timescale RR99s.  RR99s represent relative variability (% of capacity fluctuations), not absolute 
variability (fluctuations in kW). While relative variability is expected to decrease when adding 
more PV sites, absolute variability will increase since the total capacity of the system will also 
have increased. 
 

 
Figure 7.  RR99s for various timescales and number of houses on October 12, 2007.  

 
 

RR99s initially decrease significantly as more houses are added, but eventually reach a nearly 
steady value. To quantify the reduction in RR99 when adding more houses, Figure 8 shows the 
ratio of RR99 at one house to RR99 at many houses. When the ratio is large, there is a strong 
reduction in RR99, and when the ratio is 1, there is no reduction in RR99. The strongest 
reduction in RR99 is seen at 1 sec, where there is a more than 4.5 times reduction in RR99 of all 
477 houses compared to RR99 of a single house. Additionally, at the 1-sec timescale, there 
continues to be a noticeable benefit to adding more sites. At longer timescales, there is almost no 
benefit to increasing from 100 to 477 sites. The 10-sec reduction in RR99 is still significant: 
more than a 2 times reduction in RR99 occurs for all 477 sites. At 10 min, however, the 
reduction in RR99 is minimal, indicating that 10-min RRs of a single house are similar to 10-min 
RRs of the entire 2-MW plant. 
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Figure 8.  Ratio of RR99 of 1 house to RR99 of  

various numbers of houses on October 12, 2007. 
This plot can be used to determine the benefit of adding more houses.  

Large values indicate a strong reduction in RR99 compared to  
RR99 of a single house, while a value of 1 indicates no reduction in RR99. 

 
 
Figures 7 and 8 show the RR99 behavior on the test day.  To see how this compares to other 
days, Figure 9 shows the RR99s for various numbers of houses at timescales of 1 min and shorter 
for every day with data in 2007. On all days, RR99s decrease with increasing number of houses, 
though the rate of decrease varies from day to day. By comparing the test day (red line in Figure 
9), to all other days, it is clear that the test day was one of the most variable days in the whole 
year. At every timescale, the test day has some of the highest RR99s. 
 
Figure 9 also gives an indication of the most extreme RRs over the whole year. For example, at 
1 sec there were only three RR99s greater than 1% of capacity in all of 2007, meaning for the 
sum of all PV in Pal Town it is very unlikely to have a RR99 greater than 1% of capacity. A 
much larger change can be expected over 1 min, where it is only unlikely to have RR99s over 
20%. Note, though, that since the change happens over 1 minute, the rate of change is actually 
slower: a 1-min RR99 of 20% corresponds to a 1-sec RR99 of only 0.33%. 
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Figure 9.  RR99s for every day with data in 2007 for 1-sec (top left),  

10-sec (top right), 30-sec (bottom left), and 1-min (bottom right) timescales.  
The test day is shown as a red line, and is one of the days with the highest RR99s at all 

timescales. Note that the scale of the y-axis varies on each plot. 
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4.2 Wavelet Decomposition and Fluctuation Power Content 
 
4.2.1 Wavelet Decomposition of a GHI Sensor and the Total Power Output of Pal 

Town 

While RR statistics are often of interest to grid operators, RRs at a certain timescale are the 
combination of fluctuations at all timescales equal to and longer than the timescale under 
consideration. For example, in the morning, 1-min RRs will tend to be positive due to the 
longer-timescale effect of the sun rising. Using a wavelet decomposition allows fluctuations to 
be isolated by timescale. Wavelet decomposition using the top hat wavelet was calculated for 
𝐺𝐻𝐼𝑛𝑜𝑟𝑚(𝑡) and 𝑃𝑛𝑜𝑟𝑚(𝑡), and both decompositions are shown in Figure 10.  
 
The j=12 mode is not computed using Equation (3), but rather is a moving average with a 
window of 4096 sec. This preserves the identity that summing the wavelet modes 𝑗 = 1 through 
𝑗 = 12 (2nd through 13th plots in Figure 10) will return the original input signal (top-most plot in 
Figure 10). This is important in that the 𝐺𝐻𝐼𝑛𝑜𝑟𝑚 or 𝑃𝑛𝑜𝑟𝑚 signals have not been altered, but 
merely separated by timescales. For example, a large weather front bringing a large cloud bank 
would be isolated to a long timescale, while a small hole in that cloud bank would be isolated to 
a short timescale. For RRs, the larger cloud back could overwhelm the small hole and lead to a 
negative short-timescale ramp, but with a wavelet decomposition the two events are separated. 
 
At long timescales (large 𝑗 values), the amplitude of fluctuations in 𝑃𝑛𝑜𝑟𝑚 is only slightly 
reduced over 𝐺𝐻𝐼𝑛𝑜𝑟𝑚. This means that there is essentially no reduction in variability when 
averaging over all of Pal Town at long timescales, and is expected because clouds and weather 
fronts corresponding to long wavelet timescales will be large enough that they will cover all of 
Pal Town and affect the neighborhood uniformly. For example, if clouds were assumed to be 
moving overhead at a constant speed of 5 m/s with no distortion, a 1-km (the diagonal distance 
across Pal Town) cloud covering the whole neighborhood would correspond to a wavelet 
timescale of about 200 sec. Although assuming undistorted cloud motion is a crude 
approximation, it does appear that timescales greater than 200 sec have very similar wavelet 
modes of 𝑃𝑛𝑜𝑟𝑚 and 𝐺𝐻𝐼𝑛𝑜𝑟𝑚. 
 
At short timescales, however, there is a difference between 𝑃𝑛𝑜𝑟𝑚 and 𝐺𝐻𝐼𝑛𝑜𝑟𝑚 fluctuations. At 
𝑗 = 1 (2 sec) the difference is most extreme, as there are no noticeable fluctuations in 𝑃𝑛𝑜𝑟𝑚, but 
are observable fluctuations in 𝐺𝐻𝐼𝑛𝑜𝑟𝑚. For all shorter timescales (𝑗 < 8), there is a reduction in 
the magnitude of fluctuations of 𝑃𝑛𝑜𝑟𝑚 versus  𝐺𝐻𝐼𝑛𝑜𝑟𝑚. At short timescales, therefore, there is 
a strong benefit to geographic smoothing, and this benefit decreases with increasing timescale.  
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Figure 10.  𝑮𝑯𝑰𝒏𝒐𝒓𝒎 and 𝑷𝒏𝒐𝒓𝒎 (top, blue and green lines),  

and their wavelet modes (black and red lines) on October 12, 2007.  
The 𝒋 = 𝟏𝟐 mode is the moving average at 4096 sec, and it is included to illustrate  
that the sum of modes 𝒋 = 𝟏 through 𝟏𝟐 is equal to the original normalized signal. 
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4.2.2 Fluctuation Power Content 

One way to compare the wavelet modes of GHInorm and Pnorm is to calculate their mathematical 
fluctuation power content. Figure 11 shows the fluctuation power index (𝑓𝑝𝑖) for GHInorm and 
Pnorm. Also included in Figure 11 are the 𝑓𝑝𝑖s for the other five irradiance sensors at Pal Town, 
to ensure that the results are not biased by the use of only one of the six sensors. Although there 
are minor variations in the 𝑓𝑝𝑖s of each of the six GHI sensors, the relationship between GHI 
𝑓𝑝𝑖 and Power 𝑓𝑝𝑖 is very similar for all GHI sensors. At short timescales, the fluctuation power 
content is reduced significantly, up to a nearly 100 times reduction at the 2-sec timescale. At 
long timescales, fluctuation power indices, just as wavelet modes, are nearly identical. 
 
 

 
Figure 11.  Wavelet fluctuation power index (𝒇𝒑𝒊) of 𝑮𝑯𝑰𝒏𝒐𝒓𝒎 and 𝑷𝒏𝒐𝒓𝒎   

(thick black and red lines) on October 12, 2007, on a logarithmic plot.  
Also included are the 𝒇𝒑𝒊s from the five other irradiance sensors (thin colored lines). 
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4.2.3 Variability Reduction 

For a numerical value on the benefit of geographic smoothing, the variability reduction (VR) 
between the first GHI point sensor and the total power output is computed. The VR as a function 
of timescale is shown in Figure 12. VR values of above 10 are found for timescales of 8 sec and 
shorter, confirming the extreme amounts of smoothing observed in Figures 10 and 11. At 256 sec 
(about 4 min), the VR is reduced to nearly 1. Therefore, it can be said that the longest timescales 
at which geographic smoothing is effective for Pal Town is about 128 sec (2 min). Beyond that 
timescale, the variability of the point sensor and the entire Pal Town system is comparable. 
 
 

 
Figure 12.  Variability reduction (VR) for 𝑷𝒏𝒐𝒓𝒎 versus 𝑮𝑯𝑰𝒏𝒐𝒓𝒎 for (a) all timescales  

and (b) zoomed in on timescales longer than 1 min.  
High values indicate the total power output was strongly smoothed  
over the GHI point sensor, while values of 1 indicate no smoothing.  
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5. CONCLUSION 
 
The Pal Town neighborhood of Ota City, Japan, allowed for an in-depth study of a highly 
distributed 2-MW residential rooftop PV system. Although the data required a lot of quality 
control, the goals of characterizing the variability and determining how variability scales with the 
number of houses were achieved. 
 
RR analysis focused on extreme ramps by studying the 99th-percentile RRs (RR99s). For a 
highly-variable test day, RR99s were found to initially decrease at all timescales as more houses 
were added, but a limit was reached where adding more houses had a very small effect on 
reducing RR99. The ratio of RR99 of one house to RR99 of many houses shows the effect of 
geographic smoothing on reducing ramp rates. Geographic smoothing was strong at 1 sec, 
reaching a 4.5 times reduction in RR99 of 477 houses versus a single house. At 10 min, however, 
the reduction on RR99 from adding more houses was very small, with RR99 reduced only about 
10% for 477 houses over a single house. RR99s were plotted for all days with data in 2007, and 
similar trends were seen in other days, though the exact ratios of RR99s of one house versus 
many houses varied from day to day. The test day was found to have some of the highest RR99s 
of any day in 2007, confirming its use as a sample highly variable day. Based on the RR99s for 
all of 2007, the most extreme RRs over the whole year can be estimated. 
 
By using a top hat wavelet transform, fluctuations over various timescales were resolved. While 
RRs include fluctuations of all timescales equal to and longer than the RR timescale, wavelet 
modes resolve only fluctuations at the timescale of interest. The fluctuations of the total power 
output of Pal Town were compared to the fluctuations of a single GHI point sensor, which 
represented a single house. At short timescales, fluctuations were up to 70 times reduced in the 
total power output over the GHI point sensor. The reduction in fluctuations, though, quickly 
decreased with increasing timescale. At times of 4 min and longer, there was very little 
difference in the wavelet fluctuations, and so the benefit of geographic smoothing was small at 
timescales longer than 4 min. 
 
Overall, by studying this Ota City dataset, the following lessons were learned: 
 

1. Extreme ramp rates tend to decrease with increasing levels of installed PV, due to 
geographic smoothing. 

2. The incremental benefit of adding more houses with PV on reducing extreme ramp rates 
gets exponentially smaller as more houses are already in the system.  

3. Short timescales show a larger reduction in extreme RRs when going from 1 to 500 
houses than longer timescales. 

4. Wavelet fluctuations, which show fluctuations isolated by timescale, are reduced at 
timescales shorter than 4 min, showing that clouds corresponding to timescales longer 
than 4 min are highly correlated at Pal Town. 
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