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Abstract

Peridynamics is a nonlocal extension of classical continuum mechanics. The discrete peri-
dynamic model has the same computational structure as a molecular dynamics model. This
document provides a brief overview of the peridynamic model of a continuum, then discusses
how the peridynamic model is discretized within LAMMPS. An example problem is also in-
cluded.
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1 Introduction

This document details the implementation of a discrete peridynamic model within the LAMMPS
molecular dynamic code, as described in the original article [5].

In §2 we discuss how to build the peridynamic module within LAMMPS, and discuss basic
requirements for input scripts to use the peridynamic module. In §3 we overview the relevant
portions of the peridynamic model of a continuum. In §4 we discuss the discretization of the
peridynamic model and its LAMMPS implementation. Finally, in §5, we discuss a LAMMPS
simulation of a specific numerical experiment described in [11].

1.1 Quick Start Guide

For those who hate reading users’ guides1, please try the following:

1. Download LAMMPS from http://lammps.sandia.gov and untar the source.

2. In the LAMMPS src/ directory do make yes-peri followed by make <your platform> (for
example, make g++).

3. In the LAMMPS examples/peri directory, run the example input script (for example,
lmp g++ < in.peri).

4. Follow instructions in §4.8 to visualize results.2

1.2 Typographical Conventions

Our typographical conventions are found in Table 1.

Table 1. Notational conventions.

Notation Example Description

Verbatim text make g++ Text to be typed at your command prompt

<text in angle brackets> <your platform> User specified statement

Bold lowercase letter x, ξ A vector in R3

Non-bold letter K, α A scalar in R
Underlined lowercase letter t, ω Scalar state (see §3.1)

Underlined bold uppercase letter T, M Vector state (see §3.1)

Finally, note all norms ‖·‖ are taken to be the 2-norm, ‖·‖2.

1Congratulations on getting this far!
2For a more meaningful example, try running the input script in Algorithm 3 on page 25.
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2 Getting Started

We assume that you already have a working LAMMPS installlation. For more on downloading
and building LAMMPS, see http://lammps.sandia.gov. This document only provides informa-
tion related to the peridynamic module within LAMMPS. For questions regarding the usage of
LAMMPS, please see the LAMMPS documentation.

2.1 Building the Peridynamic Module within LAMMPS

In the LAMMPS distribution, the peridynamic model is distributed as an add-on module, which
means that it is not by default compiled with the rest of LAMMPS. To instruct LAMMPS to build
the peridynamic module, go to the LAMMPS source subdirectory (/src) and type

make yes-peri

followed by

make <your platform>

to compile LAMMPS on your particular platform.

2.2 Input Script Basics

Here we provide a listing of commands that must be included in a LAMMPS input script to
utilize the peridynamic module. These commands assume knowledge of peridynamics (§3) and its
discretization (§4). This is not an inclusive list of LAMMPS commands. For a complete example
script, see §5.

LAMMPS has been modified to support SI units. To use SI units, your LAMMPS input script
should contain the command

units si

All quantities specified in the input script and data file, as well as quantities output to the screen,
log file, and dump files will be in SI units.

Only a simple cubic lattice is currently supported. Your LAMMPS input script should contain
the command

lattice sc <lattice constant>

8



A peridynamic simulation requires the “peri” atom style be used. Your input script should
contain the command

atom_style peri

An associated required command tells LAMMPS to create a data structure used to index particles.
Your input script should contain the command

atom_modify map array

The “skin” distance used when computing neighborlists should be defined appropriately for your
choice of simulation parameters. Your input script should contain the command

neighbor <skin> bin

where the “skin” should be set to a value such that the peridynamic horizon plus the skin distance
is larger than the maximum possible distance between two bonded particles (before their bond
breaks). A peridynamic simulation also requires a peridynamic pair style be used. Your input
script should contain either the commands

pair_style peri/lps

pair_coeff <type 1> <type 2> <bulk modulus> <shear modulus> <delta> <s00> <α>

to invoke the “peri/lps” pair style, or the commands

pair_style peri/pmb

pair_coeff <type 1> <type 2> <c> <delta> <s00> <α>

to invoke the “peri/pmb” pair style, or the commands

pair_style peri/mp

pair_coeff <type 1> <type 2> <c> <delta> <Y> <s00> <α>

to invoke the “peri/mp” pair style. See §3.2 for more on the linear peridynamic solid (LPS)
model, §3.3 for more on the prototype microelastic brittle (PMB) model, and §3.4 for more on the
microplastic model.

The mass density and volume fraction for each particle must be defined. Your input script
should contain the commands

set group all density <ρ>
set group all volume <Vi>
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In the second line, you are setting the volume of each peridynamic particle. For a simple cubic
lattice, the volume should be equal to the cube of the lattice constant, i.e., Vi = ∆x3.

If you wish to start a simulation with the velocity of the peridynamic particles set to zero, your
input script should contain the command

velocity all set 0.0 0.0 0.0 sum no units box

We use a velocity-Verlet time integrator (algebraically equivalent to a centered difference in
time, but numerically more stable.) To use a velocity-Verlet time integrator, your input script
should contain the command

fix <fix id> all nve

You can compute the damage (see §3.5) at each particle with the compute style damage/atom:

compute <compute id> all damage/atom

To periodically dump snapshots of your simulation to disk, use the LAMMPS dump command:

dump <dump id> all custom <N> <dump filename> id type x y z c <compute id>

where N is the number of steps between snapshots and <compute id> is the id of the damage/atom

compute style above. You can visualize these snapshots (see §4.8).

To periodically dump the bond family to disk, use the LAMMPS compute and dump commands:

compute <compute id> all peri/local dump <dump id> all local <N> <output filename>

c <compute id>

where N is the number of steps between snapshots. This output can be useful for post-processing
data about fragment sizes and distributions. See §4.7 for more about the output format of the
bond families.
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3 Peridynamic Model of a Continuum

The following is not a complete overview of peridynamics, but a discussion of only those details
specific to the model we have implemented within LAMMPS. For more on the peridynamic theory,
the reader is referred to [12, 9]. To begin, we define the notation we will use.

3.1 Basic Notation

Within the peridynamic literature, the following notational conventions are generally used. The
position of a given point in the reference configuration is x. Let u(x, t) and y(x, t) denote the
displacement and position, respectively, of the point x at time t. Define the relative position and
displacement vectors of two bonded points x and x′ as ξ = x′ − x and η = u(x′, t) − u(x, t),
respectively. We note here that η is time-dependent, and that ξ is not. It follows that the relative
position of the two bonded points in the current configuration can be written as ξ + η = y(x′, t)−
y(x, t).

Peridynamic models are frequently written using states, which we briefly describe here. For the
purposes of our discussion, all states are operators that act on vectors in R3. For a more complete
discussion of states, see [12]. A vector state is an operator whose image is a vector, and may be
viewed as a generalization of a second-rank tensor. Similarly, a scalar state is an operator whose
image is a scalar. Of particular interest is the vector force state T [x, t] 〈x′ − x〉, which is a mapping,
having units of force per volume squared, of the vector x′ − x to the force vector state field. The
vector state operator T may itself be a function of x and t. The constitutive model is completely
contained within T.

In the peridynamic theory, the deformation at a point depends collectively on all points inter-
acting with that point. Using the notation of [12], we write the peridynamic equation of motion
as

ρ(x)ü(x, t) =

∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ + b(x, t), (3.1)

where ρ represents the mass density, T the force vector state, and b an external body force density.
A point x interacts with all the points x′ within the neighborhood Hx, assumed to be a spherical
region of radius δ > 0 centered at x. δ is called the horizon, and is analogous to the cutoff radius
used in molecular dynamics. Conditions on T for which (3.1) satisfies the balance of linear and
angular momentum are given in [12].

We consider only force vector states that can be written as

T = tM,

with t a scalar force state and M the deformed direction vector state, defined by

M 〈ξ〉 =

{
ξ+η
‖ξ+η‖ ‖ξ + η‖ 6= 0

0 otherwise
. (3.2)

Such force states correspond to so-called ordinary materials ([12]). These are the materials for
which the force between any two interacting points x and x′ acts along the line between the points.
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3.2 Linear Peridynamic Solid (LPS) Model

We summarize the linear peridynamic solid (LPS) material model. For more on this model, the
reader is referred to [12]. This model is a nonlocal analogue to a classical linear elastic isotropic
material. The elastic properties of a a classical linear elastic isotropic material are determined by
(for example) the bulk and shear moduli. For the LPS model, the elastic properties are analogously
determined by the bulk and shear moduli, along with the horizon δ.

The LPS model has a force scalar state

t =
3Kθ

m
ω x+ αω ed, (3.3)

with K the bulk modulus and α related to the shear modulus G as

α =
15G

m
.

The remaining components of the model are described as follows. Define the reference position
scalar state x so that x 〈ξ〉 = ‖ξ‖. Then, the weighted volume m is defined as

m [x] =

∫
Hx

ω 〈ξ〉x 〈ξ〉x 〈ξ〉 dVξ. (3.4)

Let
e [x, t] 〈ξ〉 = ‖ξ + η‖ − ‖ξ‖

be the extension scalar state, and

θ [x, t] =
3

m [x]

∫
Hx

ω 〈ξ〉x 〈ξ〉 e [x, t] 〈ξ〉 dVξ

be the dilatation. The isotropic and deviatoric parts of the extension scalar state are defined,
respectively, as

ei =
θx

3
, ed = e− ei,

where the arguments of the state functions and the vectors on which they operate are omitted for
simplicity. We note that the LPS model is linear in the dilatation θ, and in the deviatoric part of
the extension ed.

Remark 3.1. The weighted volume m is time-independent, and does not change as bonds break. It
is computed with respect to the bond family defined at the reference (initial) configuration.

The nonnegative scalar state ω is an influence function [12, Defn. 3.2]. For more on influence
functions, see [8]. If an influence function ω depends only upon the scalar ‖ξ‖, (i.e., ω 〈ξ〉 = ω 〈‖ξ‖〉),
then ω is a spherical influence function. For a spherical influence function, the LPS model is isotropic
[12, Prop. 14.1].

Remark 3.2. In the PDLAMMPS implementation of the LPS model, the influence function ω 〈‖ξ‖〉 =
1/ ‖ξ‖ is used. However, the user can define their own influence function by altering the method
influence_function in the file pair_peri_lps.cpp. The PDLAMMPS code permits both spher-
ical and non-spherical influence functions (e.g., isotropic and non-isotropic materials).

Pseudocode for the LPS model appears in Appendix A.
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3.3 Prototype Microelastic Brittle (PMB) Model

We summarize the prototype microelastic brittle (PMB) material model. For more on this model,
the reader is referred to [9, 11]. This model is a special case of the LPS model; see [8] for the
derivation. The elastic properties of the PMB model are determined by the bulk modulus K and
the horizon δ.

The PMB model is expressed using the scalar force state field

t [x, t] 〈ξ〉 =
1

2
f (η, ξ) , (3.5)

with f a scalar-valued function. We assume that f takes the form

f = cs,

where

c =
18K

πδ4
, (3.6)

with K the bulk modulus and δ the horizon, and s the bond stretch, defined as

s(t,η, ξ) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖
. (3.7)

Bond stretch is a unitless quantity, and identical to a one-dimensional definition of strain. As such,
we see that a bond at its equilibrium length has stretch s = 0, and a bond at twice its equilibrium
length has stretch s = 1. The constant c given above is appropriate for 3D models only. For more
on the origins of the constant c, see [11]. For the derivation of c for 1D and 2D models, see [2].

Given (3.5), (3.1) reduces to

ρ(x)ü(x, t) =

∫
Hx

f (η, ξ) dVξ + b(x, t), (3.8)

with

f (η, ξ) = f (η, ξ)
ξ + η

‖ξ + η‖
.

Unlike the LPS model, the PMB model has a Poisson ratio of ν = 1/4 in 3D, and ν = 1/3 in 2D.
This is reflected in the input for the PMB model, which requires only the bulk modulus of the
material, whereas the LPS model requires both the bulk and shear moduli.

Pseudocode for the PMB model appears in Appendix B.

3.4 Microplastic (MP) Model

We summarize the microplastic (MP) material model. For more on this model, the reader is referred
to [4]. The material properties of the MP model are determined by the bulk modulus K, the yield
stretch Y , and the horizon δ.

13



The MP model is expressed using the scalar force state field

t [x, t] 〈ξ〉 =
1

2
f (η, ξ) , (3.9)

with f a scalar-valued function. We assume that f takes the form

f = c (s− sp(t)) ,

where c is defined in (3.6), s is defined in (3.7), and sp = sp(t) is the plastic stretch history, defined
as

d

dt
sp =

{
0 if |s− sp| < Y
d
dts otherwise

, sp(0) = 0. 

 

 

 

 

 

 

 

bond 

force      

f(,) 

bond stretch s

yielding in 
tension 

yielding in  
compression 

Y

elastic 
(not yielding) 

Figure 1. Bond force vs. bond stretch for microplastic material.

The MP model, like the PMB model, is a bond-based model and has a Poisson ratio of ν = 1/4
in 3D, and ν = 1/3 in 2D. This is reflected in the input for the MP model, which requires only
the bulk modulus of the material. In the LAMMPS thermo output, only the elastic portion of the
potential energy is output. The work done through plastic deformation is not recorded.

Pseudocode for the MP model appears in Appendix C.

3.5 Damage

Bonds are made to break when they are stretched beyond a given limit. Once a bond fails, it is
failed forever [11]. Further, new bonds are never created during the course of a simulation. We
discuss only one criterion for bond breaking, called the critical stretch criterion.

Define µ to be the history-dependent scalar boolean function

µ(t,η, ξ) =

{
1 if s(t′,η, ξ) < min

(
s0(t′,η, ξ), s0(t′,η′, ξ′)

)
for all 0 ≤ t′ ≤ t

0 otherwise

}
. (3.10)
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where η′ = u(x′′, t)− u(x′, t) and ξ′ = x′′ − x′. Here, s0(t,η, ξ) is a critical stretch defined as

s0(t,η, ξ) = s00 − αsmin(t,η, ξ), smin(t) = min
ξ
s(t,η, ξ), (3.11)

where s00 and α are material-dependant constants. The history function µ breaks bonds when the
stretch s exceeds the critical stretch s0.

Although s0(t,η, ξ) is expressed as a property of a particle, bond breaking must be a symmetric
operation for all particle pairs sharing a bond. That is, particles x and x′ must utilize the same
test when deciding to break their common bond. This can be done by any method that treats the
particles symmetrically. In the definition of µ above, we have chosen to take the minimum of the
two s0 values for particles x and x′ when determining if the x–x′ bond should be broken.

Following [11], we can define the damage at a point x as

ϕ(x, t) = 1−
∫
Hx µ(t,η, ξ)dVx′∫

Hx dVx′
. (3.12)
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4 Discrete Peridynamic Model and LAMMPS Implementation

In LAMMPS, instead of (3.1), we model this equation of motion:

ρ(x)ÿ(x, t) =

∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ + b(x, t),

where we explicitly track and store at each timestep the positions and not the displacements of the
particles. We observe that ÿ(x, t) = ẍ + ü(x, t) = ü(x, t), so that this is equivalent to (3.1).

4.1 Spatial Discretization

The region defining a peridynamic material is discretized into particles forming a simple cubic
lattice with lattice constant ∆x, where each particle i is associated with some volume fraction Vi.
For any particle i, let Fi denote the family of particles for which particle i shares a bond in the
reference configuration. That is,

Fi = {p | ‖xp − xi‖ ≤ δ}. (4.1)

The discretized equation of motion replaces (3.1) with

ρÿni =
∑
p∈Fi

{
T [xi, t]

〈
x′p − xi

〉
−T [xp, t] 〈xi − xp〉

}
Vp + bni , (4.2)

where n is the timestep number and subscripts denote the particle number.

4.2 Short-Range Forces

In the model discussed so far, particles interact only through their bond forces. A particle with no
bonds becomes a free non-interacting particle. To account for contact forces, short-range forces are
introduced [10]. We add to the force in (4.2) the following force

fS(yp,yi) = min
{

0,
cS
δ

(
∥∥yp − yi

∥∥− dpi)} yp − yi∥∥yp − yi
∥∥ , (4.3)

where dpi is the short-range interaction distance between particles p and i, and cS is a multiple of
the constant c from (3.6). Note that the short-range force is always repulsive, never attractive. In
practice, we choose

cS = 15
18K

πδ4
. (4.4)

For the short-range interaction distance, we choose [10]

dpi = min {0.9 ‖xp − xi‖ , 1.35(rp + ri)} , (4.5)
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where ri is called the node radius of particle i. Given a discrete lattice, we choose ri to be half the
lattice constant.3 Given this definition of dpi, contact forces appear only when particles are under
compression.

When accounting for short-range forces, it is convenient to define the short-range family of
particles

FSi = {p |
∥∥yp − yi

∥∥ ≤ dpi}.
4.3 Modification to the Particle Volume

The right-hand side of (4.2) may be thought of as a midpoint quadrature of (3.1). For situations
when a particle is not completely contained within the neighborhood of another, the quadrature
over this particle should take account only the volume fraction lying within the within the neigh-
borhood. The quadrature in such cases is not done exactly due to cost, but instead a approximate
modification to the particle volume used in (4.2). In a situation where two particles share a bond
with ‖xp − xi‖ = δ, for example, we suppose that only approximately half the volume of each
particle is “seen” by the other [10]. When computing the force of each particle on the other we use
Vp/2 rather than Vp in (4.2). As such, we introduce a nodal volume scaling function for all bonded
particles where δ − ri ≤ ‖xp − xi‖ ≤ δ (c.f. Figure 2).

We choose to use a linear unitless nodal volume scaling function

ν(xp − xi) =


− 1

2ri
‖xp − xi‖+

(
δ

2ri
+ 1

2

)
if δ − ri ≤ ‖xp − xi‖ ≤ δ

1 if ‖xp − xi‖ ≤ δ − ri
0 otherwise


If ‖xp − xi‖ = δ, ν = 0.5, and if ‖xp − xi‖ = δ − ri, ν = 1.0, for example.

4.4 Temporal Discretization

When discretizing time in LAMMPS, we use a velocity-Verlet scheme, where both the position and
velocity of the particle are stored explicitly. The velocity-Verlet scheme is generally expressed in
three steps. In Algorithm 1, ρi denotes the mass density of a particle and f̃

n

i denotes the the net force
density on particle i at timestep n. The LAMMPS command fix nve performs a velocity-Verlet
integration.

Algorithm 1 Velocity Verlet

1: v
n+1/2
i = vni + ∆t

2ρi
f̃
n

i

2: yn+1
i = yni + ∆tv

n+1/2
i

3: vn+1
i = v

n+1/2
i + ∆t

2ρi
f̃
n+1

i

3For a simple cubic lattice, ∆x = ∆y = ∆z.
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(a) Two-dimensional diagram show-
ing particle on mesh (solid lines) with
neighborhood Hx as grey circular re-
gion. Dual mesh (dotted lines) shows
boundaries of each particle.
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(b) Plot of ν(xp − xi) vs. ‖xp − xi‖.

Figure 2. Diagram showing horizon of a particular particle. The
volume associated with particles near the boundary of the horizon
is not completely contained within the horizon.

4.5 Breaking Bonds

During the course of simulation, it may be necessary to break bonds, as described in §3.5. Bonds
are recorded as broken in a simulation by removing them from the bond family Fi (see (4.1)).

A näıve implementation would have us first loop over all bonds and compute smin in (3.11),
then loop over all bonds again and break bonds with a stretch s > s0 as in (3.10), and finally loop
over all particles and compute forces for the next step of Algorithm 1. For reasons of computational
efficiency, we will utilize the values of s0 from the previous timestep when deciding to break a bond.

Remark 4.1. For the first timestep, s0 is initialized to ∞ for all nodes. This means that no bonds
may be broken until the second timestep. As such, it is recommended that the first few timesteps
of the peridynamic simulation not involve any actions that might result in the breaking of bonds.
As a practical example, the projectile in §5 is placed such that it does not impact the target brittle
plate until several timesteps into the simulation.

4.6 Damage Compute Style

The damage associated with every particle (see (3.12)) can optionally be computed and output
with a LAMMPS data dump. To do this, your input script must contain the command
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compute <ComputeID> all damage/atom

This enables a LAMMPS per-atom compute to calculate the damage associated with each particle
every time a LAMMPS data dump is called. To output the results of this compute in your dump
file, you must use the LAMMPS dump command, as

dump <DumpID> all custom <N> <output filename> id type x y z c_<ComputeID>

where N is the number of timesteps between dumps.

4.7 Bond Family Compute Style

Some post-processing steps require knowledge of the bond family Fi from (4.1). For example, the
bond families for each particle can be used to determine the number of fragments n a simulation,
and the volume of each fragment. This section describes how to output all the unbroken bonds in
each particle’s bond family, which can be used as input to post-processing tools.

Output of the bond families is accomplished via a local compute style.

compute <ComputeID> all peri/local

Group IDs may be used if one does not wish to dump out the bond families for all particles. A
separate dump file is recommended with this compute style, due to the size of the data output. To
output the results of this compute in your dump file, you must use the LAMMPS dump command,
as

dump <DumpID> all local <N> <output filename> c_<ComputeID>

where N is the number of timesteps between dumps.

The format for the dump file containing the bond families is consists of: (1) the ID of a particle,
followed by (2) the number of unbroken bonds in the bond family for that particle, followed by (3)
a listing of the IDs of each particle in the bond family, repeated for each particle.

As an example, suppose that we have a system of three particles with IDs 1, 2, and 3, and that
each particle is bonded to the other two. Output from one timestep in the dump file will look like
the figure in the box below.
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ITEM: TIMESTEP

0

ITEM: NUMBER OF ENTRIES

12

ITEM: ENTRIES c C2

1

2

2

3

2

2

1

3

3

2

1

2

We see that 12 bonds have been output. Each i-j bond is output twice, once for particle i and once
for particle j, so there are 6 bonds in total. Reading this data directly, we see that particle 1 has
two bonds, which are to particles 2 and 3. Particle 2 has 2 bonds, which are to particles 1 and 3,
and particle 3 has two bonds, which are to particles 1 and 2.

Note that the ordering of the particles within the dump file may change from one timestep to
the next.

4.8 Visualizing Simulation Results

LAMMPS does not visualize your simulation results. You’ll need to post-process your LAMMPS
data dump for use by a third-party visualization tool. Use of the pizza.py toolkit [6] is recommended
for conversion of LAMMPS data dump to another format suitable for use of your visualization
package of choice.

As an example, we outline here one possible means of visualizing the output of a peridynamic
simulation using only freely available open-source software. We assume that you have a dump file
named dump.peri constructed using line 35 in Algorithm 3, and that you have Algorithm 2 saved
as a python script named convert.py.

1. Install the pizza.py toolkit from http://www.sandia.gov/~sjplimp/pizza.html.

2. Install the Numeric Python package (v.24.2) from http://sourceforge.net/projects/

numpy/files/Old%20Numeric/, or the numpy Python package (current version) from http:

//numeric.scipy.org/. The package is installed correctly if you can type >>> import Numeric

or >>> import numpy from an interactive python prompt.

3. Install ParaView from www.paraview.org.
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Algorithm 2 Example Python Script to Convert LAMMPS Dump to Ensight .case File Format
1: import sys

2: from dump import dump

3: from ensight import ensight

4: d = dump("dump.peri)̈;

5: d.scale();

6: d.map(1,"id",2,"type",3,"x",4,"y",5,"z",6,"damage");

7: e = ensight(d);

8: e.one("disk","damage","Damage")

4. Run the conversion script: python convert.py.

This will produce an Ensight-format .case file, as well as a .xyz file and a .damage file. Launch
ParaView, open the .case file, and click the green Apply button on the left. For more on Paraview,
see www.paraview.org.

4.9 Pitfalls

Parallel Scalability. LAMMPS operates in parallel in a spatial-decomposition mode [7], where
each processor owns a spatial subdomain of the overall simulation domain and communicates with
its neighboring processors via distributed-memory message passing (MPI) [13] to acquire ghost
atom information to allow forces on the atoms it owns to be computed. LAMMPS also uses Verlet
neighbor lists which are recomputed every few timesteps as particles move. On these timesteps,
particles also migrate to new processors as needed. LAMMPS decomposes the overall simulation
domain so that spatial subdomains of nearly equal volume are assigned to each processor. When
each subdomain contains nearly the same number of particles, this results in a reasonable load
balance among all processors. As is more typical with some peridynamic simulations, some sub-
domains may contain many particles while other subdomains contain few particles, resulting in a
load imbalance that impacts parallel scalability.

Setting the “skin” distance. The neighbor command with LAMMPS is used to set the
so-called “skin” distance used when building neighbor lists. All atom pairs within a cutoff distance
equal to the horizon δ plus the skin distance are stored in the list. Unexpected crashes in LAMMPS
may be due to too small a skin distance. The skin should be set to a value such that δ plus the skin
distance is larger than the maximum possible distance between two bonded particles. For example,
if s00 is increased, the skin distance may also need to be increased.

“Lost” particles. All particles are contained within the “simulation box” of LAMMPS. The
boundaries of this box may change with time, or not, depending on how the LAMMPS boundary

command has been set. If a particle drifts outside the simulation box during the course of a
simulation, it is called lost.

As an option of the themo_modify command of LAMMPS, the lost keyword determines whether
LAMMPS checks for lost atoms each time it computes thermodynamics and what it does if atoms
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are lost. If the value is ignore, LAMMPS does not check for lost atoms. If the value is error or
warn, LAMMPS checks and either issues an error or warning. The code will exit with an error and
continue with a warning. This can be a useful debugging option. The default behavior of LAMMPS
is to exit with an error if a particle is lost.

The peridynamic module within LAMMPS does not check for lost atoms. If a particle with
unbroken bonds is lost, those bonds are marked as broken by the remaining particles.

Defining the peridynamic horizon δ. In the pair_coeff command, the user must specify the
horizon δ. This argument determines which particles are bonded when the simulation is initialized.
It is recommended that δ be set to a small fraction of a lattice constant larger than desired.

For example, if the lattice constant is 0.0005 and you wish to set the horizon to three times
the lattice constant, then set δ to be 0.0015001, a value slightly larger than three times the lattice
constant. This guarantees that particles three lattice constants away from each other are still
bonded. If δ is set to 0.0015, for example, floating point error may result in some pairs of particles
three lattice constants apart not being bonded.

Breaking bonds too early. For technical reasons, the bonds in the simulation are not created
until the end of the first timestep of the simulation. Therefore, one should not attempt to break
bonds until at least the second step of the simulation.

4.10 Bugs

The user is cautioned that this code is a beta release. If you are confident that you have found
a bug in the peridynamic module, please send an email to the developers. First, check the “New
features and bug fixes” section of the LAMMPS website site to see if the bug has already been
reported or fixed. If not, the most useful thing you can do for us is to isolate the problem. Run
it on the smallest number of atoms and fewest number of processors and with the simplest input
script that reproduces the bug. In your email, describe the problem and any ideas you have as to
what is causing it or where in the code the problem might be. We’ll request your input script and
data files if necessary.

4.11 Modifying and Extending the Peridynamic Module

To add new features or peridynamic potentials to the peridynamic module, the user is referred
to section 8 of the LAMMPS user manual, Modifying & extending LAMMPS. To develop a new
bond-based material, start with the PMB pair style as a template. To develop a new state-based
material, start with the LPS pair style as a template.
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5 A Numerical Example

To introduce the peridynamic implementation within LAMMPS, we replicate a numerical experi-
ment taken from section 6 of [11].

5.1 Problem Description and Setup

We consider the impact of a rigid sphere on a homogeneous disk of brittle material. The sphere
has diameter 0.01 m and velocity 100 m/s directed normal to the surface of the target. The target
material has density ρ = 2200 kg/m3. A PMB material model is used with K = 14.9 GPa and
critical bond stretch parameters given by s00 = 0.0005 and α = 0.25. A three-dimensional simple
cubic lattice is constructed with lattice constant 0.0005 m and horizon 0.0015 m. (The horizon
is three times the lattice constant.) The target is a cylinder of diameter 0.074 m and thickness
0.0025 m, and the associated lattice contains 103,110 particles. Each particle i has volume fraction
Vi = 1.25× 10−10 m3.

The spring constant in the PMB material model is (see (3.6))

c =
18k

πδ4
=

18(14.9× 109)

π(1.5× 10−3)4
≈ 1.6863× 1022.

The CFL analysis from [11] shows that a timestep of 1.0× 10−7 is safe.

We observe here that in IEEE double-precision floating point arithmetic when computing the
bond stretch s(t,η, ξ) at each iteration where ‖η + ξ‖ is computed during the iteration and ‖ξ‖
was computed and stored for the initial lattice, it may be that fl(s) = ε with |ε| ≤ εmachine for an
unstretched bond. Taking ε = 2.220446049250313×10−16, we see that the value csVi ≈ 4.68×10−4,
computed when determining f , is perhaps larger than we would like, especially when the true force
should be zero. One simple way to avoid this issue is to insert the following instructions in Algorithm
7 after instruction 21 (and similarly for Algorithm 4):

1: if |dr| < εmachine then
2: dr = 0.
3: end if

Qualitatively, this says that displacements from equilibrium on the order of 10−6Å are taken to be
exactly zero, a seemingly reasonable assumption.

5.2 The Projectile

The projectile used in the following experiments is not the one used in [11]. The projectile used
here exerts a force

F (r) = −ks(r −R)2

on each atom where ks is a specified force constant, r is the distance from the atom to the center of
the indenter, and R is the radius of the projectile. The force is repulsive and F (r) = 0 for r > R.
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For our problem, the projectile radius R = 0.05 m, and we have chosen ks = 1.0 × 1017 (compare
with (3.6) above).

5.3 Writing the LAMMPS Input File

We discuss the example input script from Algorithm 3. In line 2 we specify that SI units are
to be used. We specify the dimension (3) and boundary conditions (“shrink-wrapped”) for the
computational domain in lines 3 and 4. In line 5 we specify that peridynamic particles are to
be used for this simulation. In line 7, we set the “skin” distance used in building the LAMMPS
neighborlist. In line 8 we set the lattice constant (in meters) and in line 10 we define the spatial
region where the target will be placed. In line 12 we specify a rectangular box enclosing the target
region that defines the simulation domain. Line 14 fills the target region with atoms. Lines 15
and 17 define the peridynamic material model, and lines 19 and 21 set the particle density and
particle volume, respectively. The particle volume should be set to the cube of the lattice constant
for a simple cubic lattice. Line 23 sets the initial velocity of all particles to zero. Line 25 instructs
LAMMPS to integrate time with velocity-Verlet, and lines 27-30 create the spherical projectile,
sending it with a velocity of 100 m/s towards the target. Line 32 declares a compute style for the
damage (percentage of broken bonds) associated with each particle. Line 33 sets the timestep, line
34 instructs LAMMPS to provide a screen dump of thermodynamic quantities every 200 timesteps,
and line 35 instructs LAMMPS to create a data file (dump.peri) with a complete snapshot of the
system every 100 timesteps. This file can be used to create still images or movies. Finally, line 36
instructs LAMMPS to run for 2,000 timesteps.
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Algorithm 3 Example LAMMPS Input Script
1: # 3D Peridynamic simulation with projectile

2: units si

3: dimension 3

4: boundary s s s

5: atom_style peri

6: atom_modify map array

7: neighbor 0.0010 bin

8: lattice sc 0.0005

9: # Create desired target

10: region target cylinder y 0.0 0.0 0.037 -0.0025 0.0 units box

11: # Make 1 atom type

12: create_box 1 target

13: # Create the atoms in the simulation region

14: create_atoms 1 region target

15: pair_style peri/pmb 4

16: # <type1> <type2> <c> <horizon> <s00> <alpha>

17: pair_coeff * * 1.6863e22 0.0015001 0.0005 0.25

18: # Set mass density

19: set group all density 2200

20: # volume = lattice constant^3

21: set group all volume 1.25e-10

22: # Zero out velocities of particles

23: velocity all set 0.0 0.0 0.0 sum no units box

24: # Use velocity-Verlet time integrator

25: fix F1 all nve

26: # Construct spherical indenter to shatter target

27: variable y0 equal 0.00510

28: variable vy equal -100

29: variable y equal "v y0 + step*dt*v vy"

30: fix F2 all indent 1e17 sphere 0.0000 v_y 0.0000 0.0050 units box

31: # Compute damage for each particle

32: compute C1 all damage/atom

33: timestep 1.0e-7

34: thermo 200

35: dump D1 all custom 100 dump.peri id type x y z c_C1

36: run 2000

5.4 Numerical Results and Discussion

We ran the input script from Algorithm 3. Images of the disk (projectile not shown) appear in
Figure 3. The LAMMPS dump file was converted to an EnSight data format with the pizza.py
toolkit [6]. Visualization was done with the EnSight visualization package [1]. Use of the Paraview
visualization package is also recommended, as it reads EnSight data files, and is open-source and
freely available [3]. See §4.8 for more on visualizing peridynamic simulations results. The plot of
damage on the top monolayer was created by coloring each particle according to its damage (see
(3.12)).

The symmetry in the computed solution arises because a “perfect” lattice was used, and a

4To use the LPS or MP models, replace line 15 with pair style peri/lps or pair style peri/mp and modify
line 17 accordingly; see page 9.
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(a) Cut view of target during impact.

(b) Top monolayer showing fragmenta-
tion.

(c) Top monolayer showing damage. (blue
= 0% broken bonds; red = 100% broken
bonds)

Figure 3. Target during (a) and after (b,c) impact.

because a perfectly spherical projectile impacted the lattice at its geometric center. To break the
symmetry in the solution, the nodes in the peridynamic body may be perturbed slightly from the
lattice sites. To do this, a perturbed lattice of points can be prepared in a data file and read into
LAMMPS using the read_data command.

26



References

[1] CEI, EnSight web page. http://www.ensight.com/.

[2] E. Emmrich and O. Weckner, On the well-posedness of the linear peridynamic model and
its convergence towards the Navier equation of linear elasticity, Commun. Math. Sci., 5 (2007),
pp. 851–864.

[3] Kitware Inc., ParaView web page. http://www.paraview.org/.

[4] R. W. Macek and S. A. Silling, Peridynamics via finite element analysis, Finite Elements
in Analysis and Design, 43 (2007), pp. 1169–1178.

[5] M. L. Parks, R. B. Lehoucq, S. J. Plimpton, and S. A. Silling, Implementing peri-
dynamics within a molecular dynamics code, Computer Physics Communications, 179 (2008),
pp. 777–783.

[6] S. J. Plimpton, Pizza.py webpage. http://www.cs.sandia.gov/~sjplimp/pizza.html.

[7] , Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys., 117 (1995),
pp. 1–19. Available at http://lammps.sandia.gov.

[8] P. Seleson and M. Parks, On the role of the influence function in the peridynamic theory,
Int. J. Mult. Comp. Eng., (2010). Submitted.

[9] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces,
Journal of the Mechanics and Physics of Solids, 48 (2000), pp. 175–209.

[10] S. A. Silling. Personal communication, 2007.

[11] S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid
mechanics, Computer and Structures, 83 (2005), pp. 1526–1535.

[12] S. A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and
constitutive modeling, J. Elasticity, 88 (2007), pp. 151–184.

[13] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The
Complete Reference, vol. 1, The MIT Press, Cambridge, MA., 2 ed., 1998.

27



Appendix A: LPS Pseudocode

A sketch of the LPS model implementation in PDLAMMPS appears in Algorithm 4. This algorithm
makes use of the routines in Algorithms 5 and 6.

Algorithm 4 LPS Peridynamic Model Pseudocode
1: Fix s00, α, horizon δ, bulk modulus K, shear modulus G, timestep ∆t, and generate initial lattice of particles

with lattice constant ∆x. Let there be N particles. Define constant cS for repulsive short-range forces.
2: Initialize bonds between all particles i 6= j where ‖xj − xi‖ ≤ δ
3: Initialize weighted volume m for all particles using Algorithm 5
4: Initialize s0 = ∞ {Initialize each entry to MAX DOUBLE}
5: while not done do
6: Perform step 1 of Algorithm 1, updating velocities of all particles
7: Perform step 2 of Algorithm 1, updating positions of all particles
8: s̃0 = ∞ {Initialize each entry to MAX DOUBLE}
9: for i = 1 to N do

10: {Compute short-range forces}
11: for all particles j ∈ FSi (the short-range family of nodes for particle i) do
12: r =

∥∥yj − yi
∥∥

13: dr = min{0, r − d}. {Short-range forces are only repulsive, never attractive}
14: k = cS

δ
Vkdr {cS defined in (4.4)}

15: f = f + k
yj−yi

‖yj−yi‖
16: end for
17: end for
18: Compute the dilatation for each particle using Algorithm 6
19: for i = 1 to N do
20: {Compute bond forces}
21: for all particles j sharing an unbroken bond with particle i do
22: e =

∥∥yj − yi
∥∥− ‖xj − xi‖

23: ω+ = ω 〈xj − xi〉 {Influence function evaluation}
24: ω− = ω 〈xi − xj〉 {Influence function evaluation}
25: f̂ =

[
(3K − 5G)

(
θ(i)
m(i)

ω+ + θ(j)
m(j)

ω−
)
‖xj − xi‖+ 15G

(
ω+

m(i)
+

ω−
m(j)

)
e
]
ν(xj − xi)Vj

26: f = f + f̂
yj−yi

‖yj−yi‖
27: if (dr/ ‖xj − xi‖) > min(s0(i), s0(j)) then
28: Break i’s bond with j {j’s bond with i will be broken when this loop iterates on j}
29: end if
30: s̃0(i) = min(s̃0(i), s00 − α(dr/ ‖xj − xi‖))
31: end for
32: end for
33: s0 = s̃0 {Store for use in next timestep}
34: Perform step 3 of Algorithm 1, updating velocities of all particles
35: end while
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Algorithm 5 Computation of Weighted Volume m
1: for i = 1 to N do
2: m(i) = 0.0
3: for all particles j sharing a bond with particle i do
4: m(i) = m(i) + ω 〈xj − xi〉 ‖xj − xi‖2 ν(xj − xi)Vj
5: end for
6: end for

Algorithm 6 Computation of Dilatation θ
1: for i = 1 to N do
2: θ(i) = 0.0
3: for all particles j sharing an unbroken bond with particle i do
4: e =

∥∥yi − yj
∥∥− ‖xi − xj‖

5: θ(i) = θ(i) + ω 〈xj − xi〉 ‖xj − xi‖ eν(xj − xi)Vj
6: end for
7: θ(i) = 3

m(i)
θ(i)

8: end for
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Appendix B: PMB Pseudocode

A sketch of the PMB model implementation in PDLAMMPS appears in Algorithm 7.

Algorithm 7 PMB Peridynamic Model Pseudocode
1: Fix s00, α, horizon δ, spring constant c, timestep ∆t, and generate initial lattice of particles with lattice constant

∆x. Let there be N particles.
2: Initialize bonds between all particles i 6= j where ‖xj − xi‖ ≤ δ
3: Initialize s0 = ∞ {Initialize each entry to MAX DOUBLE}
4: while not done do
5: Perform step 1 of Algorithm 1, updating velocities of all particles
6: Perform step 2 of Algorithm 1, updating positions of all particles
7: s̃0 = ∞ {Initialize each entry to MAX DOUBLE}
8: for i = 1 to N do
9: {Compute short-range forces}

10: for all particles j ∈ FSi (the short-range family of nodes for particle i) do
11: r =

∥∥yj − yi
∥∥

12: dr = min{0, r − d} {Short-range forces are only repulsive, never attractive}
13: k = cS

δ
Vkdr {cS defined in (4.4)}

14: f = f + k
yj−yi

‖yj−yi‖
15: end for
16: end for
17: for i = 1 to N do
18: {Compute bond forces}
19: for all particles j sharing an unbroken bond with particle i do
20: r =

∥∥yj − yi
∥∥

21: dr = r − ‖xj − xi‖
22: k = c

‖xi−xj‖ν(xi − xj)Vjdr {c defined in (3.6)}

23: f = f + k
yj−yi

‖yj−yi‖
24: if (dr/ ‖xj − xi‖) > min(s0(i), s0(j)) then
25: Break i’s bond with j {j’s bond with i will be broken when this loop iterates on j}
26: end if
27: s̃0(i) = min(s̃0(i), s00 − α(dr/ ‖xj − xi‖))
28: end for
29: end for
30: s0 = s̃0 {Store for use in next timestep}
31: Perform step 3 of Algorithm 1, updating velocities of all particles
32: end while
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Appendix C: MP Pseudocode

A sketch of the MP model implementation in PDLAMMPS appears in Algorithm 8.

Algorithm 8 MP Peridynamic Model Pseudocode
1: Fix s00, α, horizon δ, spring constant c, timestep ∆t, and generate initial lattice of particles with lattice constant

∆x. Let there be N particles.
2: Initialize bonds between all particles i 6= j where ‖xj − xi‖ ≤ δ
3: Initialize sp(i, j) = 0 for all bonded particles i 6= j. {sp defined in §3.4}
4: Initialize s0 = ∞ {Initialize each entry to MAX DOUBLE}
5: while not done do
6: Perform step 1 of Algorithm 1, updating velocities of all particles
7: Perform step 2 of Algorithm 1, updating positions of all particles
8: s̃0 = ∞ {Initialize each entry to MAX DOUBLE}
9: for i = 1 to N do

10: {Compute short-range forces}
11: for all particles j ∈ FSi (the short-range family of nodes for particle i) do
12: r =

∥∥yj − yi
∥∥

13: dr = min{0, r − d} {Short-range forces are only repulsive, never attractive}
14: k = cS

δ
Vkdr {cS defined in (4.4)}

15: f = f + k
yj−yi

‖yj−yi‖
16: end for
17: end for
18: for i = 1 to N do
19: {Compute bond forces}
20: for all particles j sharing an unbroken bond with particle i do
21: r =

∥∥yj − yi
∥∥

22: dr = r − ‖xj − xi‖
23: stretch = dr/ ‖xj − xi‖
24: if (sp(i, j)− Y ≤ stretch) then
25: sp(i, j) = stretch− Y {Y defined in §3.4}
26: else
27: if (stretch ≤ sp(i, j)− Y ) then
28: sp(i, j) = stretch + Y
29: end if
30: end if
31: k = c ν(xi − xj)Vj {c defined in (3.6)}
32: f = f + k(stretch− sp(i, j))

yj−yi

‖yj−yi‖
33: if stretch > min(s0(i), s0(j)) then
34: Break i’s bond with j {j’s bond with i will be broken when this loop iterates on j}
35: end if
36: s̃0(i) = min(s̃0(i), s00 − α · stretch)
37: end for
38: end for
39: s0 = s̃0 {Store for use in next timestep}
40: Perform step 3 of Algorithm 1, updating velocities of all particles
41: end while
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