
SANDIA REPORT
SAND2011-8284
Unlimited Release
Printed September 2011

SpaceWire Model Development
Technology for Satellite Architecture

Brian Van Leeuwen, John M. Eldridge, and Jacob Leemaster

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy's National Nuclear
Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov�
http://www.osti.gov/bridge�
mailto:orders@ntis.fedworld.gov�
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online�

3

SAND2011-8284
Unlimited Release

Printed September 2011

SpaceWire Model Development
Technology for Satellite Architecture

Brian Van Leeuwen
Critical Infrastructure Systems, 5628

John M. Eldridge

Embedded System Engineering, 5632

Jacob Leemaster
High Integrity SW Systems, 2622

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-1027

Abstract

Packet switched data communications networks that use distributed processing
architectures have the potential to simplify the design and development of new,
increasingly more sophisticated satellite payloads. In addition, the use of
reconfigurable logic may reduce the amount of redundant hardware required in
space-based applications without sacrificing reliability. These concepts were
studied using software modeling and simulation, and the results are presented in
this report. Models of the commercially available, packet switched data
interconnect SpaceWire protocol were developed and used to create network
simulations of data networks containing reconfigurable logic with traffic flows for
timing system distribution.

4

5

CONTENTS

EXECUTIVE SUMMARY .. 9

INTRODUCTION .. 11

MODEL DEVELOPMENT .. 12
SpW Host Node Model ... 13

AppLayer, Broadcast, and SOH Process Models ... 14
App_Sink, Broadcast_Sink, and SOH_Sink Process Models ... 14
PacketLevel Model ... 14
ExchangeLevel Model .. 15
SignalLevelQueue Model ... 15
Node Receiver and Transmitter (pr_1 and pt_1) Models ... 16

SpW Wormhole Router Node Model ... 16
WormholeRouting Process ... 17

SpW Broadcast Server Model ... 18
SpaceWire_Broadcast Process Model .. 19

SpW Link Model... 20

SYSTEM TIME DISTRIBUTION PRECISION ANALYSIS WITH HIGH-FIDELITY
SPACEWIRE MODEL ... 21

RESULTS AND DISCUSSION ... 22

FUTURE WORK AND CONCLUSIONS ... 24

REFERENCES ... 25

APPENDIX ... 26

6

FIGURES

Figure 1. Example SpW network topology...13
Figure 2. SpW Host Node model. ...14
Figure 3. SpW Wormhole Router node model. ..17
Figure 4. SpW Wormhole Router master process (left) and slave process (right).17
Figure 5. SpW Broadcast Server node model. ..19
Figure 6. Attribute list of SpW link model. ..20
Figure 7. Distribution of time differences calculated as the difference between the absolute

time and the node’s clock as set by the SpW time distribution approach................................22
Figure 8. Resulting PDF of the time synchronization error when the network is lightly

loaded (red trace) and heavily loaded (blue trace). ..23

7

ACRONYMS

EEP end of error packet
EOP end of packet
ESC escape

FCT flow control token

LChar link-character

NChar normal-character

PDF probability density function

SNL Sandia National Laboratories
SOH state of health
SpW SpaceWire
SpWBS SpW Broadcast Server

8

9

EXECUTIVE SUMMARY

Sandia National Laboratories (SNL) is pursuing the development and use of packet switched
data communications networks that use distributed processing architectures. These architectures
have the potential to simplify the design and development of new, increasingly more
sophisticated satellite payloads. In addition, the use of reconfigurable logic may reduce the
amount of redundant hardware required in space-based applications without sacrificing
reliability. These concepts were studied using software modeling and simulation, and the results
are presented in this report. Models of the commercially available, packet switched data
interconnect protocol – SpaceWire (SpW) – were developed and used to create network
simulations of data networks containing reconfigurable logic with traffic flows for timing system
distribution. This report covers two aspects of the modeling activity conducted. One aspect is the
development and construction of the general purpose, high-fidelity SpaceWire models. The
second aspect is the application of these models to a specific use case.

The modeling and simulations utilize the OPNET Modeler simulation environment. The
OPNET tool is widely used for performing network and communication simulations. The
system performs discrete event simulations where each data byte or packet within the network is
accurately generated, transferred, and processed as it would be in an actual network. While
OPNET Modeler provides a large library of standard network models for computers and typical
computer networks, it does not have specific features for the SpW protocol. It does, however,
provide the features necessary to add new or custom protocols to the model environment. The
design team used these extension features within OPNET Modeler to create a set of general
purpose modules to represent many of the network elements or basic building blocks to represent
most SpaceWire networks. The modules include models for SpW nodes, routers, broadcast
servers, and links. These modules can be arranged to represent networks during the design stage
that can then be analyzed for desired behavior.

The second aspect of the report is an in-depth analysis of the accurate distribution of system time
across a SpW network. The feature set of the SpW protocol has not fully matured to inherently
and completely include the distribution of system time. To accomplish this task, the team
developed a packet broadcast mechanism that would layer upon the standard SpW protocol. A
representative SpW network was constructed within the OPNET Modeler simulation
environment. Based on this network representation, several simulations were executed to study
the behavior of the network with respect to packet transmission time, jitter, and the accuracy of
distributed system time.

The SpW models provide a generalized tool for examining network behavior and will represent
most network designs. The final section of the report discusses future work and directions.
SNL’s extension of the SpW protocol is in fact a collection of protocols that include the base
protocol for link startup, transmission and routing, and extension protocols to provide remote
memory access and reliable data delivery. Future extensions to the model environment would
include modules for remote memory access (RMAP) and the remote data delivery protocol
(RDDP) for reliable data delivery.

10

11

INTRODUCTION

The European Space Agency, in collaboration with other international space agencies, specifies
and supports a serial data link standard to enable the transfer of large amounts of data on board
satellites. The standard, named SpaceWire (SpW) and defined in Reference 1, is a satellite
communication network based in part on the IEEE 1355 standard of communications. A SpW
network is typically comprised of a number of links, nodes, and routers. SpW routers are
necessary to coordinate traffic between indirectly connected processing nodes and to expand the
node’s link connectivity since nodes can only be directly connected to a limited number of other
nodes. Routers also reduce the number of point-to-point links and enable redundant paths in case
of link failures. The current SpW standard describes a mechanism that can enable modern
satellite systems to transfer large amounts of data on board the satellite with link data rates that
can range from 2 Mbps up to 400 Mbps. The total bandwidth of a SpW network expands with
the increasing number of nodes and links within the network.

Sandia National Laboratories (SNL) has investigated the SpW protocol for satellite payload
communications. The protocol provides a functional starting point for developing and
implementing a payload communication capability. However, there are gaps in the protocol’s
desired functionality. A robust set of communication features are desired to distribute time
information, reliably (without error) distribute data files, and to reconfigure network routing in
the face of node failures. To explore these communication issues, SNL has developed high-
quality network simulation models of the SpW protocol, nodes, links, and routers. The models
are developed using the OPNET network modeling and simulation software package [2]. This
software allows the creation of discrete event simulations and custom model development. This
capability can then be used to precisely model SpW protocols and network architectures.

A number of limitations in the SpW protocol required the development of extensions to SpW.
First, the SpW standard does not include quality of service with the exception of time codes.
Most payloads require the ability to prioritize messages, and one mechanism to do that is through
a broadcast capability. The second limitation of SpW is the lack of a standard time distribution
mechanism. The proposed time distribution mechanism can then use the broadcast extension.
While the SpW protocol natively offers a mechanism to broadcast a time trigger, it does not
provide a complete method to distribute system time. The approach that SNL took to resolve
this issue is to broadcast a time value from a master node within the network to all other nodes.
Each node receiving the broadcasted time value would store that value and apply it on receipt of
the next SpW time trigger.

A requirement for any approach to a general broadcast method was that it layer upon the existing
SpW standard. That is, it would be compatible with the existing protocol and not necessitate the
recreation of existing intellectual property or the revision of the existing SpW standard. Rather,
the goal was to extend the standard to include the new capability.

With the objective of enabling the development of a SpW broadcast method and the development
and analysis of a time distribution function, a high-fidelity SpW modeling and simulation
capability was developed. The SpW models provide a method to validate our candidate
approaches and to evaluate quickly the effect of different network topologies and operating

12

parameters on the accuracy of the timing distribution. Additionally, models of SpW nodes and
SpW wormhole routers provide a means to create and evaluate system architectures under
various network traffic conditions. Network device failures and fault-recovery approaches can be
analyzed using the models and simulations. Analysis capability with the model includes impacts
of device failure and network reconstitution. Our model-based approach enables the design team
to verify protocol effectiveness and identify design sensitivities and margins.

MODEL DEVELOPMENT

The SpW protocol standard is comprised of various mechanisms to meet the objective of high-
performance onboard data handling. To obtain detailed analysis of the SpW operation, the
protocol is modeled in high detail. SpW analysis should account for how SpW networks combine
application data and control plane data on the same links. Application data is passed as one or
more data packets that are composed of characters. At the link exchange level, data and control
characters are separated into two types: link-characters (LChars) and normal-characters
(NChars). LChars are those that are used in the exchange level and are not passed on to the
packet level. Examples of LChars are the flow control token (FCT) character, the time-code
character sequence, and the escape (ESC) character. NChars are the characters that are passed
on to the packet level as application data. SpW encodes eight-application data bits into 10-bit
NChars. Further details on the SpW standard can be obtained from Reference 1.

Our SpW model development is done in the OPNET Modeler (Version 15.0) network simulation
environment [2]. OPNET Modeler includes an extensive model library of network devices;
however, OPNET Modeler does not include SpW models in its standard model library.
Fortunately, OPNET Modeler does include the capability for users to develop node, link, and
router models based on custom protocols. Since we expect SpW to be utilized in new satellite
designs, having high-fidelity models available to perform analysis is important and the
investment in time is justified.

OPNET Modeler includes rich mechanisms to create network traffic. In our time synchronization
analysis, we are able to clearly identify when messages are created and when they arrive at their
intended target. The messages can be general application layer traffic, traffic supporting system
time distribution, state-of-health (SOH) messages, or broadcast messages. Application layer
traffic can be generated to represent actual data files being transported through the network.
OPNET Modeler also includes extensive probing of the network capability. Collecting data on
packet arrival times, end-to-end delays, and packet jitter are possible. Probes measuring queue
sizes and network link utilization can easily be configured.

A modeling objective was to have representative models of the various SpW modules and
protocol requisites to support system design activities in all phases of a project. These project
phases range from custom protocol extension analysis to assessing SpW architectures and their
operation under stressful scenario conditions resulting from possible link and node failures. In
pursuit of this objective, we developed the SpW models to be modular. The modular approach
enables the combination of endpoints and routers in various architectures. Figure 1 illustrates an
example SpW network. Also in Figure 1 is an illustration of one of the nodes in the example

13

network. In this example, each node is comprised of three specific modules: a SpW application
node (i.e., Node_12), a SpW wormhole router (i.e., Node_1012), and a SpW broadcast server
(i.e., SpWBS24). The SpW router is the connection point that combines or interconnects the
various applications nodes and broadcast servers.

Figure 1. Example SpW network topology.

The image on the right side of Figure 1 illustrates how a single node in SpW network is created.
A single processing node is comprised of a router node model (i.e., Node 1012 in the figure), a
host node (i.e., Node 12 in the figure), and a broadcast server (i.e., Node SpWBS24 in the
figure). Each of these node models is connected by a SpW link model.

The following sections describe details on what is implemented in these four fundamental
models and how the implementation is done.

SpW Hos t Node Model

Our model development begins with development of a SpW host. The host supports various
applications with a single communication protocol stack. The protocol stack implements the
various SpW protocols that implement many features of the SpW standard including the
functionality at the various communication-stack levels. It faithfully implements the disassembly
of application layer data (i.e., noted as “cargo” at the packet level) and the reassembly of the
resulting NChars at the destination node. Additionally, processes such as the startup sequence,
flow control, Time Code process, and realistic representation of various buffering and queuing
functions are included.

14

The SpW Host Node model is shown in Figure 2.

Figure 2. SpW Host Node model.

As shown in Figure 2, the SpW Host Node model can be decomposed into several process
models with each residing in one of the square icons in the figure. Following is a description of
each of the process models.

AppLayer, Broadcast, and SOH Process Models

Each of these models generates data packets of a specified size and a specified packet generation
rate. The packet generation can also be defined by a specification file. The name of the process
indicates the type of packet being generated and signals the SpW protocol to act on the packet as
appropriate. SOH packets can be defined as a periodic packet that originates from each node.
Each process can be configured independently and thus will create data packets independently.

App_Sink, Broadcast_Sink, and SOH_Sink Process Models

The sink process models receive the packets that were destined for the specific node. When a
packet is received, the time it was created is noted along with reception time. These performance
metrics are recorded for analysis.

PacketLevel Model

This process implements the segmentation and reassembly of packets. This process receives data
packets from one of the packet generation processes and segments into NChars (8 bits data, 10
bits with overhead). When NChars are received by this process, the NChars are reassembled into
data packets. This process creates and receives the end of packet (EOP) character, indicating the
complete packet has been transmitted. The process also manages the reset of the receive
sequence if an end of error packet (EEP) is received. When FCTs are received by the Exchange
Layer, the Exchange Layer creates a control message indicating additional NChars can be

15

transmitted. On a receive process, this layer notifies the Exchange Layer of available buffer
space. Thus the Exchange Layer can then request more NChars by sending more FCTs.

ExchangeLevel Model

This process manages the flow control in coordination with the opposing SpW interface. The
process receives notification from the Packet Level process on available buffer space and creates
and transmits the necessary FCTs to the opposing interface. The process also receives FCTs
created and transmitted by the opposing interface. The received FCTs are used to manage the
transmission of NChars from the host node. Error characters are received and processed by
resetting the interface flow.

Null characters are processed by this layer. Null characters are used to initiate connections and
are transmitted when no other character is being transmitted. In order to minimize processing of
Null characters in the model an abstraction is introduced. In the model the Null characters that
are part of the connection setup process are faithfully modeled; however, the constant stream of
Null characters that real SpW interfaces transmit are not modeled. This is a necessary abstraction
since the process of transmitting and receiving Null characters for each link not involved in
transmitting NChars or Time Codes becomes a large consumer of simulation resources. The
impacts to network Time Code transmissions such as jitter are included in the model as a random
delay associated with the transmission of a Null character.

Additionally, the ExchangeLevel process creates and receives the SpW Time Codes. The Time
Codes are processed in this layer and made available to other layers.

SignalLevelQueue Model

The SignalLevelQueue process model creates a queue and accepts SpW characters from the
ExchangeLevel process. Characters received from the upper layer are either immediately
transferred to the transmitter or, if the transmitter is busy, placed in a queue for later
transmission. Immediate transfer to the transmitter means the character is sent to the transmitter,
but if the transmitter is sending an NChar, for example, that NChar transmission must be
completed before transmitting the character. In the case of an NChar, a time delay equivalent to
transmitting between one and ten bits will be incurred. Otherwise, if the queue of this layer
model has characters, the arriving character is added to the queue in a first-in, first-out basis.

This layer manages the immediate transmission of SpW Time Codes. According to the SpW
standard NChars, EOP, and EEP characters are transmitted on the SpW link in the order they are
received. However, Time Codes are immediately transferred to the transmitter regardless of
whether there are characters in the process queue. Thus a Time Code can be delayed only by the
SpW character being transmitted, whether it is a Null, NChar, EOP, or EEP. Thus if a SpW host
is transmitting an application layer packet, the application layer packet will be segmented into
NChars and the NChars will be modulated onto the SpW link with the possibility of only Time
Codes to be inserted into the NChar flow.

16

Node Receiver and Transmitter (pr_1 and pt_1) Models

The node transmitter and receiver are connected through a full-duplex link that is configured to a
specific data rate. Since SpW supports heterogeneous link data rates in a single SpW network,
the transmitter and receiver must be capable of adjusting its data rate to the link capacity.
Additionally, the transmitter signals the SignalLevelQueue process of its transmission state. This
is necessary since SpW implements a form of transmission priority with its near-immediate
action on SpW Time Codes. Thus in this implementation the transmitter queues are not used
since priorities cannot be managed within the queue, and thus they are performed by the
SignalLevelQueue. Note that the SpW standard describes a start sequence that begins with each
link’s data rate set to 10 Mbps. According to the SpW standard, the links then can adjust to
another data rate. Our SpW model does not implement this mechanism and each link should be
configured to its expected data rate for the experiment duration.

SpW Wormhole Router Node Model

A critical component to obtaining realistic simulation analysis results in SpW is the
representation of the SpW router. SpW routing is based on wormhole routing [1]. In wormhole
routing the first byte of the packet, or NChar, contains a destination address that the wormhole
router uses to determine the output port to which it will direct the received NChars. If the
identified output port is not being used, then the NChar is immediately routed to that port. The
port is marked as busy and all remaining NChars for that flow are immediately forwarded to the
port. During the transfer of data through the receiving and transmitting ports, the ports are
considered busy until the last character of the packet has passed through the router. If the router
determines the requested output port is busy, then the flow-control stops the incoming NChar
stream at the input port until the output port completes its current flow and is released. Each
SpW port manages its data flow with its opposing port and will stop the flow of incoming
NChars by ceasing to send flow control tokens to the source node.

SpW protocols associated with both endpoints and routers manage the flow of the various SpW
standard data and control characters. The ports manage the exchange of flow control tokens that
control the rate of data flows since a SpW network may have links with asymmetric data rate
capacity. Additionally, the protocols manage the buffering of NChars and the near-immediate
transmission of Time Codes. For analysis, these protocol effects are faithfully modeled.

The node model of the SpW wormhole router is shown in Figure 3. This router model supports
up to six interfaces; however, it can be expanded to any number of interfaces. Figure 3 illustrates
six groups of process models that include the SignalLevelQueue process, the transmit process,
and the receive process. These process models are identical to the processes in the host node
described in the above section.

17

Figure 3. SpW Wormhole Router node model.

WormholeRouting Process

This WormholeRouting process implements the root process of the wormhole router. Its primary
role is to create a child process for each of the interfaces identified in the node model. Each child
process is an identical state machine process model that can independently be in a different state.
For example, if Interface Number One is receiving a data flow and transferring the data to
Interface Number Two, each of the interfaces must manage their flow with the opposing
interface independent of each other. Additional data flows occurring on other interfaces must
function independent of the initial data flow. The master-to-child process approach is a good fit
to model the wormhole router, and it is illustrated in Figure 4.

Figure 4. SpW Wormhole Router master process (left) and slave process (right).

The master process manages the mapping of the two child processes needed to support a specific
data flow. The master process receives SpW characters from the various router interfaces and
directs them to the appropriate child process. Each child process manages the flow control and
SpW character buffering with each opposing interface as provided by a host node, a broadcast
server, or another router interface. Additionally, the SpW router distributes a Time Code
received on one interface to all other connected interfaces. The child process that receives a Time
Code duplicates and then sends a copy Time Code to every other interface.

18

The SpW router’s configuration can either use a specified Routing Table or Discover its route
selection. In the case of the Discover configuration, the router model discovers the nodes
connected to each of its interfaces. The discovered nodes are listed in a routing table and are
mapped to the appropriate interface. When the router receives a character with a target
destination, it looks up the destination in the routing table and directs the character to the
appropriate transmit interface. This discovery approach works for routes that are limited to a
single hop.

The other approach is to read a preconfigured routing table at initialization. In this case, no route
discovery is performed, and the Excel formatted routing table is read and stored in memory by
the master process model. Each slave process model accesses the appropriate row of routing
configuration that maps the intended transmit interface for a destination host.

As with the SpW host node model, the SpW router model does not continuously stream Null
characters as a real SpW device would. An abstraction is necessary in the models to avoid the
excessive computation resources to source and sink a constant Null character stream on all
interface pairs. The models faithfully produce Null characters in the setup phase of the SpW link.
Once the link is set up, no Nulls are sourced; however, the Time Code character jitter that results
from the minor delay variation if Null characters were being streamed is modeled as a random
delay.

SpW Broadcas t Server Model

Several approaches to broadcast were considered in this development. Fully serial broadcast
occurs when a single node sends out the broadcast message as a unicast message to each target
node. This approach lacks network efficiency and is too slow to completely distribute the time
broadcast. A fully parallel broadcast is where a router would receive a message on a single
interface and simultaneously transmit it to all of its other interfaces. The SpW standard does not
support this, and implementation would require substantial modification to the standard. Neither
a fully serial broadcast nor fully parallel broadcast is used. The broadcast servers use several
techniques at the protocol level to guarantee that no loops, infinite broadcast storms, or spurious
re-broadcasts occur. This broadcast solution has been fully developed in VHDL and tested in
actual custom hardware.

The broadcast mechanism used for the SpW Broadcast Server (SpWBS) includes several stages:

Local-to-Server Stage - A SpWBS receives a local-to-server type packet containing the
broadcast message.

Server-to-Server Stage - The initiating SpWBS sends a server-to-server type packet
containing the broadcast message to every other enabled SpWBS in the network.

Server-to-Local Stage - Once a SpWBS receives a Server-to-Server stage packet, or the
initiating SpWBS finishes the Server-to-Server stage transmission, it sends Local-to-Server
type packets with the broadcast message to every enabled and connected local port.

19

This broadcast approach has efficiencies in that it partially distributes bandwidth utilization
across the network and obtains parallelization of the Server-to-Local stage of broadcast. The
approach requires that every router with nodes receiving broadcast messages have an attached
SpWBS and it requires an additional header byte to distinguish between Local-to-Server, Server-
to-Local, and Server-to-Server type messages. The Server-to-Local header byte can be removed
if the system can guarantee that the replacement byte will never have the same value as a Local-
to-Server header byte. As in Reference 3, all Server-to-Local packets use physical addresses to
avoid the latency of requiring the router to check its routing table.

The SpWBS model uses several of the process models used for the SpW host model and is
shown in Figure 5. The SpWBS employs a hybrid broadcast approach derived from work
described in Reference 3. The implementation of this approach has two main configurable
aspects: which local ports will receive broadcasts, and a list of the logical addresses of all other
broadcast servers in the network, of which there is one per router. This broadcast approach was
modified with the primary goal of distributing system time across a SpW network. This
broadcast approach is fully compatible with existing SpW hardware. The approach creates a
“broadcast server” that appears as an additional SpW endpoint on every router in the network. A
packet intended for broadcast is transmitted to the local “broadcast server,” which then forwards
the packet to all other broadcast servers in the network. Once this is completed, every broadcast
server in the network will forward the packet to the appropriate local ports on their respective
routers.

Figure 5. SpW Broadcast Server node model.

SpaceWire_Broadcast Process Model

This process model serves the primary broadcast function within the SpW model. The basic
functions are the reception of a broadcast packet and the duplication and transmission of the
packet. When this process receives the various NChars representing the broadcast packet, the
NChars are reassembled back into a complete packet before duplication of the packet. When the
packet has been successfully reassembled, the SpWBS process duplicates the packet for each
additional SpWBS that should receive the broadcast packet. The packets are queued in the order

20

of the SpWBS list and transmitted in a unicast fashion to each SpWBS. Upon completion, the
process duplicates the broadcast packet for each local host node and transmits the packet to each
local host in a series of unicast transmissions.

The configuration of the SpWBS node model requires that each SpWBS be configured with a list
of other SpWBS that should receive the broadcast and a list of local hosts that should receive the
broadcast.

SpW Link Model

A custom link model was created to represent a full duplex SpW link. The link model can be
configured to represent any data rate. Additional attributes include link delay and link error
models. In the case of our SpW model, the standard link delay model used is distance-based. For
the use case presented in this report, the link error model is configured to not introduce errors in
the link data flow; however, the error model can be configured to cause errors (e.g., random or
burst). An image of the SpW link model attribute list is shown in Figure 6.

Figure 6. Attribute list of SpW link model.

21

SYSTEM TIME DISTRIBUTION PRECISION ANALYSIS
WITH HIGH-FIDELITY SPACEWIRE MODEL

The standard SpW Time Code comprises the SpW ESC character followed by an eight-bit data
character. The data character contains 6 bits of system time and 2 bits for control flags. A time-
master node asserts a periodic “tick.” With each “tick,” the time-master node immediately sends
out a Time Code with the 6-bit time field incremented before transmission [4]. This Time Code
mechanism is limited to a six-bit resolution and increments each network device’s internal time
counter from the current Time Code value to the next. The counter rolls from its maximum value
of 63 to zero because of its six-bit field size limit. The purpose of the counter is to prevent
endless retransmission of the time around a looped network and not necessarily to carry a time
value.

This time synchronization approach accomplishes the distribution of system time. This is done
by sending a system-wide broadcast, containing what the system time will be at the next Time
Code “tick.” This broadcast is sent out in an efficient, semi-parallel manner using broadcast
servers. The SpW network node that created the system time broadcast message waits a
predetermined time that is sufficient for the time message broadcast to propagate throughout the
network. After waiting, the node transmits a Time Code tick indicating to the network that the
time described in the previous time message is now current. Thus, the various network
applications have access to an unambiguous system time.

Unambiguous system time is derived from a central time server that employs broadcast to
distribute time updates. System time is a 32-bit integer representation, and it is broadcast to all
nodes in the network. When the timekeeper endpoints receive a SpW Time Code, the previously
mentioned received system time message is output as the current time after having been
validated by combinational logic. The time endpoint evaluates whether it is synchronized with
the rest of the SpW network with every received SpW Time Code “tick.” If the time endpoint
believes itself to be synchronized with the rest of the time endpoints in the SpW network, it
considers itself to be “locked” and asserts a corresponding signal.

The time endpoint determines if it is “locked” in the following way: After every “tick,” the
expected value of the next system time message is calculated. The calculated value is considered
to be the value of the current system time message plus one. If the next received system time
message matches the expected value, the endpoint concludes that it is synchronized with the rest
of the network. If the next received time message does not match the expected value, or no
system time message is received by the next “tick,” then the endpoint assumes that a
synchronization error has occurred, indicates that it is no longer “locked,” and will simply
increment its system time as a “best guess.”

To demonstrate the time synchronization analysis capability, a SpW network comprised of 12
nodes, routers, and broadcast servers was created, as shown in Figure 1. The architecture,
constructed in OPNET Modeler, uses the various custom-built SpW nodes and process modules
that were added to go beyond OPNET’s standard libraries. In this demonstration case, Node 10 is
considered the time master and thus originates both the Time Codes and the system-time
broadcast messages. Following the time synchronization mechanism, Node 10 will create a

22

broadcast message immediately following a Time Code transmission. The broadcast message
will be transmitted to the broadcast server associated with Node 10 (i.e., Node 1010). This
broadcast message contains the time that the next transmitted Time Code will clock into the
various network slave nodes. Since Time Codes are not delayed by full application layer file
transfers, the broadcast will not arrive at a slave node before the previously sent Time Code.
However, there is no guarantee that the broadcast message will arrive at the slave nodes before
the arrival of the following Time Code transmission. In these cases, where the following Time
Code arrives at the slave node before the broadcast time message, the system is said to have lost
synchronization “lock.” The following section describes the analysis results of the network in
Figure 1 for time synchronization precision.

RESULTS AND DISCUSSION

The network in Figure 1 with Node 10 producing both the Time Codes and the broadcast
messages is assessed for time synchronization delay variation. In this analysis, we record the
receipt of a broadcast message and the time at which the broadcast message’s time value is
clocked into the slave node’s clock. The node’s time is then compared with a global absolute
time. The difference of the absolute time and node clock time is recorded and plotted in Figure 7
as a distribution of time differences and in Figure 8 as a probability density function (PDF). In
Figure 7 the timing mechanism results begin at 10 seconds on the y-axis because the model
performs initialization actions before 10 seconds. This time value was selected by the analyst and
is not based on any SpW protocol specification.

Figure 7. Distribution of time differences calculated as the difference between
the absolute time and the node’s clock as set by the SpW time distribution approach.

The x-axis represents the simulation run time in seconds and the y-axis
is the time difference in seconds.

23

Figure 8. Resulting PDF of the time synchronization error when the network
is lightly loaded (red trace) and heavily loaded (blue trace).

The y-axis describes the relative likelihood for the time-precision value.
The y-axis should be normalized by dividing by 50E6.

Figure 7 describes a time synchronization error averaging approximately 7.0 µsec. The plot
graphs the time variation between each node’s local clock and the system’s actual reference time.
Each point in the y-axis is the time variation for each node in the network versus the progressing
simulation time. The plot in Figure 8 is the resulting PDF of the data shown in Figure 7 and has
three regions centered at approximately 5.5 µsec., 7.3 µsec., and 9.0 µsec. Each region describes
the variation in time synchronization based on the number of network hops necessary to forward
the Time Code to a particular node. Each additional hop adds more variation and thus leads to
more spreading of the plot as you move from left to right on the time axis in Figure 8. The
variation between the lightly loaded network (red trace) and the heavily loaded network (blue
trace) results from more NChars on the network. A network transmitting more NChars increases
the probability that a Time Code will be delayed by the time to complete an NChar transmission.
The variation is not significant since a NULL can cause a delay of up to an 8-bit transmission
time whereas an NChar can cause a delay of up to a 10-bit transmission time. In the
demonstration network, the SpW links operate at 10 Mbps. Also note that the Time Code period
was 6 msec and the maximum application-layer file size was less than 60 Kbits and thus were
easily within range so the network would not lose time synchronization lock. Selection of 6 msec
and a file size of less than 60 Kbps is arbitrary; however, selecting a file size larger than what
can be transmitted within the Time Code period will result in the network losing time
synchronization lock. This will result if multiple Time Codes are received before the time
broadcast being received. Time Codes are not delayed by the file being transmitted but time
broadcasts are delayed by file transmissions. We elaborate on synchronization lock in the
following section.

24

FUTURE WORK AND CONCLUSIONS

The time synchronization resolution of this approach is limited by the frequency of Time Code
transmissions. The frequency of Time Code transmissions is limited by the requirement of
sufficient time for the broadcast system time message to propagate throughout the network. It is
believed possible to decouple the need for a one-to-one correlation of system time messages and
Time Code transmissions to obtain an improved synchronization error. However, the theoretical
upper limit of system time synchronization precision is limited by the latency and jitter inherent
in SpW Time Code function. Time Code enhancement techniques [5,6] could be incorporated
into our time distribution approach to improve time synchronization.

The Time Code enhancement techniques described by Reference 5 can be incorporated in the
SpW models and evaluated to determine the level of improved time synchronization
performance. If timing improvements are identified, the proposed improvements described in
Reference 5 can be implemented to provide high-accuracy, low-jitter delivery of Time Codes
across the network. An improved system would maintain the current time distribution approach
as is, thus still guaranteeing time to be provided by a central server. In this case local
clocks/calculations are only used for verification of the received time. The additional introduced
clock element would reside in the timekeeper and increment from a locally running clock, but be
synchronized against a field in the system time message at the arrival of the higher-accuracy
Time Code. Given the highly deterministic latency and ultra-low jitter of the high-accuracy time
code ticks proposed in References 5 and 6, we could potentially pre-calculate what the time
value should be when the tick arrives at every timekeeper, provide that information in the system
time message, and synchronize against it in the timekeeper using high-accuracy Time Code
delivery methods. Therefore, fine-time will be provided locally, using the system-time broadcast
for verification and synchronization. This approach can be modeled to determine expected
performance.

Additional features will be incorporated into the OPNET Models to expand the representation of
the SpW protocol and the nodes. Specifically, a model of Remote Memory Access Protocol
(RMAP) for SpW will be developed. RMAP provides a standard method of reading and writing
to registers and memory across a SpW network. This will further the analysis capability of
application performance.

Additionally, SNL has developed a Live/Virtual/Constructive capability [7] that combines real
devices, emulated devices, and simulated devices in a single hybrid experiment. Use cases in the
SpW development activities have been identified that will benefit from merging the SpW models
into hybrid experiments to assess satellite network ideas at various stages of the development.
This approach is expected to support assessing the behavior of actual hardware before the
availability of complete system hardware.

A viable system distribution approach has been demonstrated that can be employed without
modification to the SpW standard. The time distribution approach has been modeled in a high-
fidelity simulator and analysis has identified the range of time synchronization for various SpW
network architectures. The broadcast solution has been fully developed in VHDL and tested in
actual hardware. Further integration and testing in actual hardware continues in this development
activity.

25

REFERENCES

[1] European Space Agency, ECSS-E-ST-50-12C, SpaceWire - Links, nodes, routers, and

networks, ESA-ESTEC Requirements & Standards Division, July 31, 2008.

[2] OPNET Technologies, Inc., www.opnet.com.

[3] A. Roberts, S. G. Dykes, R. Klar, and C. C. Mangels, A Link-Layer Broadcast Service for

SpaceWire Networks, Aerospace Conference, 2007 IEEE, March 2007, pp. 1-10.

[4] S. Parkes, The Operation and Uses of the SpaceWire Time Code, ISWS International

SpaceWire Seminar 2003, November 2003.

[5] B. Cook and P. Walker, Time Code Enhancements for SpaceWire, 2006 MAPLD

International Conference, Washington, D.C., September 25, 2006.

[6] B. M. Cook, Reducing SpaceWire Time Code Jitter, Internet:

www.4links.co.uk/bibliography/Reducing-Time Code-Jitter-on-SpaceWire.pdf

, October
27, 2003 [accessed July 4, 2011].

[7] B. Van Leeuwen, V. Urias, J. Eldridge, C. Villamarin, and R. Olsberg, Performing cyber
security analysis using a live, virtual, and constructive (LVC) testbed, Military
Communications Conference, 2010 - MILCOM 2010, pp. 1806-1811, October 31, 2010–
November 3, 2010.

http://www.ecss.nl/forums/ecss/dispatch.cgi/standards/docProfile/100654/d20080802144344/No/t100654.htm�
http://www.opnet.com/�

26

APPENDIX

This appendix contains notes intended to assist the user of the SpaceWire (SpW) models.

• Each state machine process model should be examined to be certain constant values are
set appropriately. The constant values are set in the INIT stage. Examples include:

o Null and normal-character (NChar) character sizes,
o Link data rate, and
o Maximum flow control tokens (FCTs) allowed

• For the SpaceWire_Signal_level_Proc_wQueue process, check the “recv” state to be

certain the Time Codes are delayed by the correct distribution.
o // TimeCode Pkts are sent to transmitter immediately
o // Since no regular pkts being sent expect NULL pkts being sent
o op_pk_send_delayed(pkptr, TXLayer_sendSTRM, op_dist_outcome (null_dist));

• In the SpW Broadcast server (SpWBS) the size of the SpWBS and localBS list/table is

limited to 20 nodes per two integer tables with 20 places. See state variables (i.e.,
SpWBS_Table[20]). Also see the initialize code in INIT state.

• For the SpW router, routing tables are created in an EXCEL spreadsheet as follows:

o Save as a .csv file
o Row 1 represents Router-1 routing table

 Column A indicates interface number to send data to Node 1
 Column B indicates interface number to send data to Node 2

• For the SpW router, note configuration how routing table is accessed:

o A small network uses neighbor discovery – no routers chained together.
o Networks with multiple router layers use imported routing table

• For host nodes that originate state of health (SOH) messages, be certain not to send SOH

packets (or any packets) to self. For example, if Node 1 is a Telemetry Node that receives
all SOH packets, do not auto config to send to "Destination =1”.

• If an end of error character (EEP) is generated and part of the simulation, check results

for expected operation. Testing of this function is limited.

27

28

DISTRIBUTION

1 MS0503 James W. Daniels 5337
1 MS0503 Dominic A. Perea 5337
1 MS0503 Mythi M. To 5337
1 MS0503 Christopher K. Wojahn 5337
1 MS0503 Donald E. Tolsch 5339
1 MS0513 Richard D. Hunt 5336
1 MS0621 Dallas Wiener 5632
1 MS0661 Daniel E. Gallegos 2623
1 MS0661 Mark W. Learn 2623
1 MS0661 Aaron D. Niese 2623
1 MS0671 Jennifer M. Depoy 5628
1 MS0672 Brian P. Van Leeuwen 5628
1 MS0860 Matthew W. K. Brown 2622
1 MS0860 Jacob E. Leemaster 2622
1 MS0971 Ethan L. Blansett 5735
1 MS0980 Jay F. Jakubczak 5710
1 MS0980 Matt P. Napier 5571
1 MS0982 Jaime Gomez 5732
1 MS0982 Dan J. Kral 5732
1 MS0986 David M. Bullington 2664
1 MS0986 Jonathon W. Donaldson 2664
1 MS0986 Justin W. Enderle 2664
1 MS0986 David Heine 2664
1 MS0986 Jeffrey L. Kalb 2664
1 MS0986 David S. Lee 2664
1 MS0986 J. (Heidi) Ruffner 2664
1 MS1027 John M. Eldridge 5632
1 MS0359 D. Chavez, LDRD Office 1911

1 MS0899 RIM-Reports Management 9532 (electronic copy)

29

	SpaceWire Model Development Technology for Satellite Architecture
	Contents
	Figures
	ACRONYMS
	EXECUTIVE SUMMARY
	INTRODUCTION
	MODEL DEVELOPMENT
	SpW Host Node Model
	AppLayer, Broadcast, and SOH Process Models
	App_Sink, Broadcast_Sink, and SOH_Sink Process Models
	PacketLevel Model
	ExchangeLevel Model
	SignalLevelQueue Model
	Node Receiver and Transmitter (pr_1 and pt_1) Models

	SpW Wormhole Router Node Model
	WormholeRouting Process

	SpW Broadcast Server Model
	SpaceWire_Broadcast Process Model

	SpW Link Model

	SYSTEM TIME DISTRIBUTION PRECISION ANALYSIS WITH HIGH-FIDELITY SPACEWIRE MODEL
	RESULTS AND DISCUSSION
	FUTURE WORK AND CONCLUSIONS
	REFERENCES
	APPENDIX
	Distribution

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.7

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo false

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

 /Arial-Black

 /Arial-BlackItalic

 /Arial-BoldItalicMT

 /Arial-BoldMT

 /Arial-ItalicMT

 /ArialMT

 /ArialNarrow

 /ArialNarrow-Bold

 /ArialNarrow-BoldItalic

 /ArialNarrow-Italic

 /ArialUnicodeMS

 /CenturyGothic

 /CenturyGothic-Bold

 /CenturyGothic-BoldItalic

 /CenturyGothic-Italic

 /CourierNewPS-BoldItalicMT

 /CourierNewPS-BoldMT

 /CourierNewPS-ItalicMT

 /CourierNewPSMT

 /Georgia

 /Georgia-Bold

 /Georgia-BoldItalic

 /Georgia-Italic

 /Impact

 /LucidaConsole

 /Tahoma

 /Tahoma-Bold

 /TimesNewRomanMT-ExtraBold

 /TimesNewRomanPS-BoldItalicMT

 /TimesNewRomanPS-BoldMT

 /TimesNewRomanPS-ItalicMT

 /TimesNewRomanPSMT

 /Trebuchet-BoldItalic

 /TrebuchetMS

 /TrebuchetMS-Bold

 /TrebuchetMS-Italic

 /Verdana

 /Verdana-Bold

 /Verdana-BoldItalic

 /Verdana-Italic

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 150

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /ColorImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /GrayImageDict <<

 /QFactor 0.76

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 15

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects true

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (None)

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)

 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

>> setdistillerparams

<<

 /HWResolution [1200 1200]

 /PageSize [612.000 792.000]

>> setpagedevice

