
SANDIA REPORT
SAND2011-8272
Unlimited Release
Printed November 2, 2011

Salinas - Theory Manual
Version 4.22

Garth M. Reese, Timothy F. Walsh, Manoj K. Bhardwaj

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Approved for public release; further dissemination unlimited.

lgalleg
Typewritten Text
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

lgalleg
Typewritten Text

lgalleg
Typewritten Text

lgalleg
Typewritten Text

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia

Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government, nor any agency thereof, nor any of their employees,

nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,

or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-

mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately

owned rights. Reference herein to any specific commercial product, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government, any agency thereof, or any of their contractors

or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of

the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available

copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2011-8272
Unlimited Release

Printed November 2, 2011

Salinas - Theory Manual
Version 4.22

Garth M. Reese
Timothy F. Walsh

Manoj K. Bhardwaj
Computational Solid Mechanics and Structural Dynamics Dept.

Sandia National Laboratories
P. O. Box 5800

Albuquerque, New Mexico 87185-0380

Abstract

Salinas provides a massively parallel implementation of structural dynamics finite element
analysis, required for high fidelity, validated models usedin modal, vibration, static and shock
analysis of structural systems. This manual describes the theory behind many of the constructs
in Salinas. For a more detailed description of how to useSalinas, we refer the reader toSalinas,
User’s Notes.

Many of the constructs inSalinasare pulled directly from published material. Where pos-
sible, these materials are referenced herein. However, certain functions inSalinasare specific
to our implementation. We try to be far more complete in thoseareas.

The theory manual was developed from several sources including general notes, aprogram-
mer notesmanual, the user’s notes and of course the material in the open literature.

3

4

Contents

1 Solutions .. 9
1.1 Time integration 9
1.2 Linear transient analysis 9
1.3 Prescribed Accelerations 11
1.4 Nonlinear transient analysis 12
1.5 Explicit Transient Dynamics 14
1.6 Time integration with viscoelastic materials 21
1.7 Linear Eigen Analysis 25
1.8 Random Vibration 25
1.9 Modal Frequency Response Methods 28
1.10 Fast Modal Solutions 33
1.11 Complex Eigen Analysis - Modal Analysis of Damped Structures 36
1.12 SAeigen 41
1.13 Quadratic Modal Superposition 43
1.14 Component Mode Synthesis 51
1.15 Sensitivity Analysis 56
1.16 A posteriori error estimation for eigen analysis 59
1.17 Nonlinear Distributed Damping using Modal Masing Formulation 72

2 Elements .. 76
2.1 Isoparametric Solid Elements. Selective Integration 76
2.2 Implementation 78
2.3 Mean Quadrature Element with Selective Deviatoric Control 78
2.4 Bubble Element 79
2.5 Quadratic Isoparametric Solid Elements 84
2.6 Wedge elements 84
2.7 Tet10 elements 86
2.8 Calculating shape functions and gradients of the Hex20 element 86
2.9 Anisotropic Elasticity 88
2.10 Triangular Shell Element 88
2.11 Triangular Shell - Tria3 89
2.12 Beam2 90
2.13 Nbeam 91
2.14 Nquad - Navy Quadrilateral Shell Element 93
2.15 Truss .. 96
2.16 Springs 96
2.17 Gap Elements 97
2.18 Multi-Point Constraints, MPCs 97
2.19 Rigid Elements 99
2.20 Shell Offset 106
2.21 Notes on Consistent Loads Calculations 107
2.22 Coordinate Systems 110
2.23 Constraint Transformations in General Coordinate Systems 112
2.24 HexShells 116
2.25 Membrane 117
2.26 Corrections to Element Matrices 120

3 Loadings .. 121

5

3.1 Matrices from Applied Forces 121
3.2 Modal Analysis of Rotating Structures 121
3.3 Random Pressure Loading 124

4 Linear Algebra Issues .. 129
4.1 Solution Spaces 129
4.2 Matrix Dimensions: Revision 131
4.3 Rotational Degrees of Freedom 133
4.4 Orthogonality of MPC to Rigid Body Vectors 136
4.5 Mass Properties 138

5 Constraints and Contact .. 141
5.1 Tied Friction 141
5.2 Mortar Methods 141

References .. 149

Appendix

A Anisotropic Materials .. 151
A.1 Linear Anisotropic Elasticity 151
A.2 Stress Vectors 151
A.3 Strain Energy and Orientation 153

B Integration of Isoparametric Solids .. 156
B.1 Uniform Strain-Displacement Matrices 157
B.2 Mixed Integration 158

C MSC documentation of Nastran’s RBE3 element 159
C.1 Abstract: Mathematical Specification of the Modern RBE3 Element 159
C.2 Abstract: RBE3 ELEMENT CHANGES IN VERSION 70.7 165

D Theory Notes for Acoustics and Structural Acoustics 168
D.1 Conforming and Nonconforming Linear Structural Acoustics 168
D.2 The Governing Equations and Their Discretizations 169
D.3 Conforming Structural Acoustics 169
D.4 Nonconforming Structural Acoustics 172
D.5 Acoustic Scattering 177
D.6 Absorbing Boundaries 180
D.7 Infinite Elements for Acoustics 182
D.8 Point Acoustic Sources 188
D.9 ALE Acoustics 190

Index .. 193

6

Figures

1 Comparison of Modal Displacement, Acceleration and DFRF 32
2 Standard Modal Transient Algorithm 33
3 Fast Modal Transient Algorithm 35
4 Fast Modal Frequency Response Algorithm 35
5 Complex EigenVector orthogonalization 52
6 Eigenvalue and Eigenvector corrections of CB models 57
7 nbeam Element Stiffness Matrix 91
8 nbeam mass matrix 92
9 Rigid Element Geometry 100
10 Equilibration of loads 103
11 Original, and rotated coordinate frames 111
12 Example for Set Definition 132
13 Node Constrained Directly to Beam. 137
14 Node Constrained Offset to Beam. 137
D.1 Nonconforming Mesh of 2 Acoustic Domains 173
D.2 A node-face interaction on the structural acoustic interface. 173
D.3 Ghosting of Acoustic DOFS on the Structural Interface 176
D.4 DomainsΩi andΩe and interfaceΓ for the exterior acoustic problem. 183

7

Tables

1 Sources of Damping in the Solution 15
2 Potential Basis Functions for Subdomain Reduction 43
3 Hex20 Gauss Point Locations 85
4 Comparison of deflections at Node 2 90
5 Comparison of deflections at Node 3 90
6 Nbeam Parameters 93
7 Salinas solution spaces 131

8

1 Solutions

One thing which makesSalinassomewhat unique among the many mechanics codes developed at
Sandia National Labsis thatSalinascombines a variety of different solution procedures. These
range from modal superposition based solutions to nonlinear transient. Asdescribed in theUser’s
Notes, these solutions can be combined (or chained) in solution cases. This section of the manual
describes the theory behind these individual solutions. For details aboutparticular finite elements,
see section 2.

1.1 Time integration

For linear and nonlinear transient dynamics, we use a variant of the Newmark-Beta time integrator
called the generalized alpha method.

1.2 Linear transient analysis

The equations of motion of the structure are

M [(1−αm)an+1 +αman] + Ĉ[(1−α f)vn+1 +α f vn]+

K [(1−α f)dn+1 +α f dn] = (1−α f)F
ext(tn+1)+α f F

ext(tn)

(1.1)

whereFext is the external load,α f ,αm are the integration parameters for the generalizedα method,
andĈ = C+ αM + βK. That is, the damping matrix is the sum of the standard damping matrix C
plus the proportional damping terms.

In order to achieve second order accuracy and unconditional stability,we must satisfy the fol-
lowing conditions.

αm < α f <=
1
2

γn =
1
2
−αm+α f

βn≥
1
4

+
1
2
(α f −αm)

(1.2)

The code automatically computes these parameters such that they meet these criteria. Specifically,

α f = ρ/(1+ρ)

αm = (2ρ−1)/(1+ρ)

βn = (1−αm+α f) · (1−αm+α f)/4

γn = 1/2−αm+α f

9

We note some special cases of interest. Ifρ = 0, we have thatα f = 0 andαm = −1. This is the
maximum damping case. Ifρ = 1, we have thatα f = αm = 1

2, which yieldsβn = 1
4, andγn = 1

2. This
is similar to the classical undamped Newmark-beta method, although we note that itis a different
algorithm sinceα f = αm = 1

2 implies some lagging in the time-stepping procedure. The classical
undamped Newmark-beta method hasα f = αm = 0.

For later use, we also define

Fext
n+1+α f

= (1−α f)F
ext(tn+1)+α f F

ext(tn) (1.3)

There are two options for evaluatingFext
n+1+α f

. More will be given on this in the next section.

The time integration scheme is defined as follows

dn+1 = dn +∆tvn +
∆t2

2
[(1−2βn)an +2βnan+1]

vn+1 = vn +∆t [(1− γn)an + γnan+1]

(1.4)

whereγn,βn are the integration parameters for the Newmark method. In order to have a displacement-
based method, we solve these equations for the acceleration and velocity in terms of displacement,
which yields

an+1 =
1

βn∆t2 [dn+1−dn−vn∆t]− 1−2βn

2βn
an

vn+1 = vn +∆t [(1− γn)an + γnan+1]

= vn +∆t

[

(1− γn)an +
γn

βn∆t2 [dn+1−dn−vn∆t]− γn
1−2βn

2βn
an

]

(1.5)

Substituting these equations into the equation of motion, and collecting terms, we obtain

[

M
(1−αm)

βn∆t2 +Ĉ(1−α f)
γn

βn∆t
+K(1−α f)

]

dn+1 =

Fext
n+1+α f

−Kα f dn

−Ĉ

[

α f vn +(1−α f)

[

vn +∆t(1− γn)an +
γn

βn∆t
[−dn−∆tvn]−

γn∆t(1−2βn)

2βn
an

]]

+M

[

−αman +
1−αm

βn∆t2 [dn +vn∆t]+ (1−αm)
1−2βn

2βn
an

]

(1.6)

10

There are three matrix-vector products on the right hand side of this equation, one for each of the
system matricesM, K, andC.

1.3 Prescribed Accelerations

Prescribed accelerations can be applied in Salinas to nodesets or sidesets, as described in the users
manual. Here we give a brief description of the theory behind the implementation.

To simplify matters, we consider the case when the acceleration of a single degree of freedom
is prescribed asao f (t), whereao is the amplitude, andf (t) is the function describing the time
dependence. The extension to multiply prescribed degrees of freedom issimply a matter of an
external loop.

Given f (t), we compute two numerical integrals as follows.

a(t) = ao f (t)

v(t) = v0 +
Z t

0
a(t) = v0 +

Z t

0
ao f (t)dt = v0 +ao(i f (t))

d(t) = d0 +
Z t

0
v(t)dt = d0 +v0t +

Z t

0

Z t

0
ao f (t)dt = d0 +v0t +ao(ii f (t))

(1.7)

where we have definedi f (t) andii f (t) to denote the first and second integrals of the functionf (t),
andd0 andv0 denote the initial displacement and velocity.i f (t) andii f (t) are computed numerically
in Salinas.

Given these functions, we can statically condense the prescribed degrees of freedom, and bring
the resulting terms to the right hand side. First, we definemi to be the column of the mass matrix
associated with the prescribed dof, andci andki are similarly defined for the damping and stiffness
matrices. We first write the Gset version of equation 1.1. We put subscriptsof g on the system
matrices and right hand side to denote that they do not yet have prescribed BCs condensed out
(hence are Gset).

Mg [(1−αm)an+1 +αman] + Ĉg [(1−α f)vn+1 +α f vn]+

Kg [(1−α f)dn+1 +α f dn] = (1−α f)F
ext
g (tn+1)+α f F

ext
g (tn)

(1.8)

Next, we condense out the prescribed degrees of freedom and move the contributions to the right
hand side. We note that degrees of freedom that are fixed do not contribute to the right hand side.
After this process, we remove the subscripts from the system matrices, since they are now in Aset

11

form. We also condense the right hand side terms, so that everything is Aset.

M [(1−αm)an+1 +αman] + Ĉ[(1−α f)vn+1 +α f vn]+

K [(1−α f)dn+1 +α f dn]

= (1−α f)F
ext(tn+1)+α f F

ext(tn)

− (1−α f)ao [f (tn+1)mi + i f (tn+1)ci + ii f (tn+1)ki]

− α f ao [f (tn)mi + i f (tn)ci + ii f (tn)ki]

(1.9)

This shows that prescribed accelerations result in a contribution to the right hand side that consists
of products of the time functionf (t) with the column from the mass matrix corresponding to the
prescribed dof, and products of the first and second integrals off (t) with the corresponding columns
from the damping and stiffness matrices. For statics problems, this procedure reduces to only a
contribution from the stiffness matrix, and this is also included in Salinas.

1.4 Nonlinear transient analysis

This section follows closely the nonlinear transient procedure given by Belytschko et al,1 with the
modification of using the generalized alpha integrator rather than the Newmarkbeta approach. In
the case of a nonlinear transient analysis, the equation of motion is

M [(1−αm)an+1 +αman] + Ĉ[(1−α f)vn+1 +α f vn]+

(1−α f)F
int
n+1 +α f F

int
n = (1−α f)F

ext(dn+1)+α f F
ext(dn)

(1.10)

whereF int
n+1 andF int

n are the internal forces at the current and previous time steps, respectively. Note
that we have written the external loads as functions of displacement, since inthe most general case
they could be follower loads.

Before proceeding, we note that there are two possible approaches for implementing the gener-
alized alpha method, and in equation 1.10 we have taken one of these approaches. The difference
lies in the treatment of the internal and external forces. The first approach is to evaluate them as
follows

F int
n+1+α f

= F int((1−α f)dn+1 +α f dn)

Fext
n+1+α f

= Fext((1−α f)dn+1 +α f dn)

(1.11)

and the second is to evaluate two separate terms

F int
n+1+α f

= (1−α f)F
int(dn+1)+α f F

int(dn)

Fext
n+1+α f

= (1−α f)F
ext(dn+1)+α f F

ext(dn)

(1.12)

12

When bothFext andF int are linear functions, the two approaches are identical. For nonlinear prob-
lems, bothFext andF int could be nonlinear functions, and thus the two procedures are different.
In the limit of very small time steps, these nonlinear functions effectively linearize and the two
approaches again become the same. Thus the limiting behavior of the two approaches is the same.

We note that in most cases, the external loadFext is treated as a piecewise linear function of time,
and in those cases the two approaches yield the same result for the external load, though a couple
of exceptions are worth mentioning. First, if two consecutive time steps lie within two different
linear segments, then the two approaches above yield different loads. Second, although they are
seldom used, polynomial and loglog interpolation functions are available in Salinas in addition to
the commonly used linear interpolation, and in those cases different load vectors result from the
above procedures. For problems with very large time steps and involving polynomial interpolation,
different results are to be expected.

In Salinas we have chosen the second option, which evaluates both the internal force and exter-
nal force at both times of interest, and forms a linear combination of the two. Comparisons have
shown little difference in the results on simple test problems.

Using the tangent stiffness method, we replaceF int
n+1 as

F int
n+1 = F int

n +Kt∆d (1.13)

whereKt is the tangent stiffness matrix, defined asKt = ∂Finternal/∂u, and∆d = dn+1−dn. Also, we
use equations 1.5, which are the same as in the linear case.

First, we substitute equations 1.5 and 1.13 into equation 1.10. This results in the following
equations, which are almost identical to the ones from the linear case

[

M
(1−αm)

βn∆t2 +Ĉ(1−α f)
γn

βn∆t
+Kt(1−α f)

]

dn+1 =

Fext
n+1+α f

−α f F
int
n − (1−α f)

[

F int
n −Ktdn

]

−Ĉ

[

α f vn +(1−α f)

[

vn +∆t(1− γn)an +
γn

βn∆t
[−dn−∆tvn]−

γn∆t(1−2βn)

2βn
an

]]

+M

[

−αman +
1−αm

βn∆t2 [dn +vn∆t]+ (1−αm)
1−2βn

2βn
an

]

Finally, we want the unknown to be∆d = dn+1− d̂, whered̂ is the current iterate of displace-
ment. To accomplish this, we subtract the appropriate terms from both sides, which yields, after

13

collecting terms

[

M
(1−αm)

βn∆t2 +Ĉ(1−α f)
γn

βn∆t
+Kt(1−α f)

]

∆d =

Fext
n+1+α f

− (1−α f)F̂
int −α f F

int
n −C[(1−α f)v̂+α f vn]

−M [(1−αm)â+αman] (1.14)

where again hats denote current iterates of acceleration, velocity, etc. Note that we have re-defined
∆d = dn+1− d̂, which is different than the previous definition that was given. Also, we note that
F̂ int = F int

n +Kt(d̂−dn).

Upon using the Newmark beta time integrator (γn = 1
2, βn = 1

4, α f = αm = 0, equation 1.14
reduces to

[

M
4

∆t2 +Ĉ
2
∆t

+Kt

]

∆d = Fext
n+1− F̂ int−Cv̂−Mâ (1.15)

which is the same equation given by Belytschko et al.1

We note that equation 1.14 can be written as

A∆d = res (1.16)

whereA is the dynamic matrix,∆d is the change in displacement from the previous Newton iteration
to the current Newton iteration, and res is the residual, i.e. the amount by which the equations of
motion (equation 1.10) are not satisfied by the current iterate.

1.4.1 Damping in Nonlinear Solutions

A number of sources of damping in the solution of linear and nonlinear solutions have been iden-
tified. It is useful to list them for comparison, as in Table 1. Note in particular, that proportional
damping, common in linear systems, requires a slightly different definition in nonlinear systems,
and will also require explicit formation of a damping matrix.

1.5 Explicit Transient Dynamics

An transient dynamics capability using an explicit integrator has been developed for specialized
applications. Note that Salinas remains a small strain application, even when using the explicit
integrator. This integrator is used because it may be advantageous when interfacing with other
applications which control the time step. The implicit integrator requires no linearsolve of the
stiffness matrix, and does not require a new factorization when the time step changes. It can be used
with both linear and nonlinear elements.

14

Damping Source Discussion

linear dashpots Contributes directly to theC matrix described in equation 1.1.
The matrix is constant.

proportional damping Also known as Rayleigh damping,

αMo +βKo

The damping is proportional to velocity. Note that the effec-
tive damping matrix is constant. Damping isnotproportional
to the tangent matrix,Kt .

linear viscoelasticity Determined by material parameters.

nonlinear energy loss Many nonlinear elements contribute to this form of damping.
It does not generate a damping matrix term, and often moves
energy from lower frequencies to higher frequencies. An ex-
ample is the Iwan element.

nonlinear material Similar to nonlinear elements.

numerical damping No damping matrix is generated. Most of the energy loss is
at frequencies above the Nyquist frequency. Controlled by
parameterRHO.

Table 1. Sources of Damping in the Solution

15

1.5.1 Central Difference Operator

Consider the following equation for a spatially discretized finite element systemin motion:

Ku +Cu̇+Mü = fext (1.17)

In the above equation,u represents the displacement vector,K represents the matrix of stiffness
terms,C represents the matrix of damping terms, andM represents a matrix of mass terms. The
vectorfext is calculated from a system of applied loads.

The above equation of motion, Equation 1.17, is a system of ordinary differential equations
with constant coefficients. Difference expressions can be used to approximate the velocities and
accelerations in terms of the displacements appearing in the equation. A commonlyused difference
expression is the central difference operator. The central difference operator is as follows:

an =

un+1−un

∆tn+1/2 − un−un−1

∆tn−1/2

(∆tn+1/2 +∆tn−1/2)/2
(1.18)

In the above equation,n+1 denotes information at timetn+1, n denotes information at timetn, and
n−1 denotes information at timetn−1. The increment in time fromtn to tn+1 is ∆tn+1/2, and the
increment in time fromtn−1 to tn is ∆tn−1/2. The terman is an acceleration value in the vectorü.
The expression

un+1−un

∆tn+1/2
(1.19)

is the velocity,vn+1/2, at the half time step∆tn+1/2. The termvn+1/2 is a velocity value in the vector
u̇. The expression

un−un−1

∆tn−1/2
(1.20)

is the velocity,vn−1/2, at the half time step∆tn−1/2. The velocity is constant over a time step.

When a solution is known at timetn and timetn−1, the solution can be determined at timetn+1

from Equation 1.18, the central difference operator. We use the previous information to project the
solution to timetn+1. To understand how we project the solution ahead to timetn+1, we return to
the equation of motion. We use the equation of motion without the damping matrix to simplify our
discussion. The equation of motion at timetn is

Kun +Mün = fext
n . (1.21)

In the above equation, the productKun is simply the internal force vector at timetn. The above

16

equation of motion reduces to

Mün = fext
n − f int

n . (1.22)

The acceleration vector at timetn is calculated from

ün = M−1(fext
n − f int

n) . (1.23)

Now that we have the acceleration at timetn, we can compute the velocity at the half time step
tn+1/2 and the displacement at the time steptn+1 with the following equations:

(vn+1/2)i = (vn−1/2)i +(an)i(∆tn+1/2 +∆tn−1/2)/2 (1.24)

(un+1)i = (un)i +(vn+1/2)i∆tn+1/2 (1.25)

In the above equations, the subscripti denotes quantities associated with theith degree of freedom.
Once the vectorun+1 has been calculated, we can again advance the time step.

It is important to note that the central difference operator is conditionally stable. If the time step
∆t exceeds the value 2/

√
λ2, whereλ2 is the maximum eigenvalue determined by the eigenvalue

problem

Kφ−λ2Mφ = 0, (1.26)

the problem becomes unstable.

Typically, the mass matrix for an explicit, transient dynamics code is diagonalized (See Refer-
ence2). When the mass matrix is diagonalized, the acceleration for each degree offreedom can be
written simply as

(an)i = (f ext
n − f int

n)i/(m)i . (1.27)

The diagonalization is done for purposes of performance. When the massmatrix is diagonalized,
the application of kinematic boundary conditions and certain constraints becomes extremely simple,
and no linear solves are required.

Note that, in our above description of the implementation of the explicit scheme, if we include
damping, the damping matrixC times the velocity vector produces a damping force vector that is
added to the right hand side of Equation 1.22.

Now that we have outlined the basics of an explicit solution technique, we will consider how
some of the basic functionality – kinematic boundary conditions, constraints, tied surfaces, and
superelements – are implemented for an explicit solver.

17

1.5.2 Mass Matrix Solutions

A diagonal mass matrix simplifies the explicit integration in several ways. Most important of these
is that there is no need for a linear solve as each degree of freedom is uncoupled from the rest. Speed
of the solution is critical as the conditionally stable time step can require very smalliterations. Other
factors, such as implementation of constraints and boundary conditions, mayalso be affected by the
form of the mass matrix. In addition, more accurate results for explicit integrators are obtained by
using a lumped mass matrix. (For an implicit scheme, the more accurate results areobtained by
using a consistent mass. See Reference.3)

Salinas is designed around an implicit iteration scheme and powerful linear solvers are available
in the package. There are several reasons to consider an approachwhere we do not require that the
mass matrix be fully diagonal.

1. Superelements generated by Craig-Bampton type reductions contain fullmass matrices. Since
the mass matrix provides all the coupling to the generalized degrees of freedom, standard
lumping approaches cannot be used. Several other approaches areavailable including refor-
mulating the superelement (as is done in Abaqus), or other coordinate transformations that
simplify the solution. The most straightforward approach is to solve the linear system for
those coupled degrees of freedom.

2. Like super elements, inertias associated with rotating masses may not be easily lumped. These
are typically 6x6 matrices, so existing codes typically handle these as a special case.

3. Elements such as beams may have mass terms that can be easily lumped in the element coor-
dinate frame. Lumping in an arbitrary rotated frame may cause a dependenceof the solution
on rotation. This comes about because the rotational inertia for a drilling degree of freedom
differs from that in bending. This is addressed in a variety of ways in different codes. For
example, Nastran usually eliminates the mass of rotational dofs in beams. Prestoinsures that
all rotational inertias are identical. In the limit as the element size goes to zero, these produce
the same solution. However, maintaining a tridiagonal inertia could greatly reduce changes
to existing code base and permit ready comparison with implicit solutions.

Recognizing the need for a rapid solution at each time step we propose lumpingthe mass ma-
trix where feasible, but solving equation 1.23 for the remaining mass terms. Solid elements will
have diagonal mass terms, shells and beams will be tridiagonal, mass elements willbe 6x6 and
superelement mass matrices will depend on the element.

Discussions with our linear solver folks indicate that these solves should beextremely fast. In
most cases there will be little or no coupling outside the subdomain, so a sparsedirect backsolve is
all that is required at each time step. The solver preconditioner will be tunedfor these special
characteristics. We expect the linear solve to be much less expensive thanthe computation of
internal forces.

It is important that this solution strategy be compatible with follow on approachesthat may not
use a full linear solve. We see no incompatibilities with the exception of the elementformulations
for diagonal versus partially lumped mass matrices. For UC-2, details of applying superelements
without a system solve are to be addressed later.

18

1.5.3 Kinematic Boundary Conditions

A wide variety of kinematic boundary conditions can be implemented for an explicit solution tech-
nique. These boundary conditions are similar to those that can be found in an implicit code – fixed
displacements, fixed rotations, prescribed displacement, etc. For the problem formulation in Equa-
tion 1.23, kinematic boundary conditions are enforced by adding reaction forces to the right-hand
side. The reaction forces are such that the acceleration at timetn results in the desired kinematic
behavior at timetn+1.

Suppose, for example, we want to fix the displacement component(u)i for all time. If degree of
freedomi is associated with a diagonalized mass, we can enforce the boundary condition by adding
a reaction force,(f react

n)i at each stepn that is equal and opposite to the residual term(f resid)i , where
(f resid)i = (f ext

n − f int
n)i . The right hand side term becomes

(f react
n)i +(f resid)i = 0, (1.28)

and the acceleration term at timen also becomes zero. For this diagonalized mass case, the acceler-
ation is simply 0/(m)i .

As a second example, suppose we want the velocity at the half time step∆tn+1/2 for component
i to have a value ofvb. The velocity at the half time steptn−1/2 for componenti has a value of
va. Again, assume degree of freedomi is associated with a diagonal mass term(m)i . Consider
Equation 1.23. The acceleration,(ap)i , required to produce the prescribed velocity at the half time
step∆tn+1/2 is

(ap)i =
vb−va

(∆tn+1/2 +∆tn−1/2)/2
. (1.29)

If we add(− f resid
n)i +(m)i(ap)i to the residual term(f resid)i , then the acceleration componenti at

time tn becomes

(f resid
n)i− (f resid

n)i +(m)i(ap)i

(m)i
, (1.30)

which is simply the value(ap)i that produces the prescribed velocityvb at the half time step.

As can be seen from the above examples, each kinematic boundary condition would require its
own unique set of reaction forces to enforce the correct kinematic behavior.

1.5.4 Constraints

Most explicit integrators use a diagonal mass matrix which eliminates the need for a linear solve of
the mass matrix. As a consequence, nondiagonal masses and multipoint constraints (MPCs) must
be treated a special cases. Within Salinas, a linear solve of the mass matrix is effected, which
results in the MPCs being passed into the linear solver. The solver enforces these constraints in

19

exactly the same manner as they are managed for implicit solutions. The acceleration, velocity and
displacement are forced into the a linear space where all constraints are satisfied.

The explicit integrator solves for acceleration. Displacements are solved indirectly from the
acceleration solution. Specifically,

vn+ 1
2

= vn− 1
2
+an∆t1 (1.31)

dn+1 = dn +vn+ 1
2
∆t2 (1.32)

The displacements are thus linear combinations of the acceleration vectors, and provided that initial
conditions are correct, displacements remain in the space where constraintsare satisfied.

1.5.5 Contact with Tied Surfaces

Contact refers to the interaction of one or more bodies when they physicallytouch. This can include
the interaction of one part of a surface against another part of the samesurface, the surface of one
body against the surface of another body, and so forth. Contact capabilities are provided in Sierra
applications by the ACME module (Reference4). The contact algorithms in ACME are designed to
ensure that surfaces do not inter-penetrate in a non-physical way, and that the surface behavior is
computed correctly according to any user-specified surface model. Foran explicit solver, ACME
uses a two-step process. The first step is the detection of the overlap of surfaces. The second step
is an enforcement phase to remove the overlap. Enforcement is accomplished with a kinematic
approach rather than a penalty approach. In the kinematic approach, a set of constraint equations is
calculated based on the initial penetration of one surface by another. Theconstraint equations are
used to calculate contact forces to remove the inter-penetration of the surfaces. (A penalty approach
can be thought of as introducing “stiff” springs between contact surfaces as a means of preventing
inter-penetration. The spring forces reduce the overlap to some small tolerance.)

One of the options in ACME is tied surfaces. For the tied surface option, a node on a surface
maintains its relative position on an opposing surface as the two surfaces deform. For tied surfaces,
the detection phase is used initially to determine a set of initial constraint conditions. The enforce-
ment phase uses these initial constraint conditions throughout the time historyfor the problem.

1.5.6 Superelements

Superelements consist of a reduced stiffness matrix,KR, and associated reduced mass matrix,MR.
The superelement can include both interface (physical) degrees of freedom and generalized degrees
of freedom. (The generalized degrees of freedom can be used to carry “extra” information about
the superelement, such as information about behavior at high frequencies.) As an approach to using
a super element with an explicit solver, the reduced mass matrix can be assembled into the mass
matrix appearing on the left-hand side of Equation 1.22. At each time stepn, we can compute the
internal forces,(f int

n)R, for the superelement. The internal forces for the superelement are defined by

(f f int
n)R = KR(un)R , (1.33)

20

where(un)R is the displacement vector associated with the superelement degrees of freedom at time
n. The internal forces associated with the superelement must be assembled into the f int

n vector on
the right-hand side of Equation 1.22.

1.5.7 Stable Time Step

There are two means to arrive at a stable time step.

1. The time step relates to the maximum eigenvalue of the system,τ = 2/ωmax, whereω2
max is

the largest eigenvalue of the system.

(K −ω2
maxM)φ = 0 (1.34)

2. an element by element method. The stable step relates to the shortest time for the signal to
pass through the model.

The system level calculation is more expensive, but is the more accurate. Eigenvalues may be
computed using the Lanczos method which is included in the ARPACK package.This is already
being used within Salinas, but the time step calculation computes only the highest eigenvalue.

From the ARPACK documentation for DSAUPD, we are looking for a solution with WHICH=’LA’
to compute the largest eigenvalues, and withmethod=2 . The “B” matrix is ’G’, for a generalized
eigen problem. The operator required isinv(M)*K .

1.6 Time integration with viscoelastic materials

Here we describe the integration of viscoelastic structures using the generalized alpha method. For
the proper choice of the parameters of the generalized alpha method, the results below reduce to
those corresponding to the Newmark-beta method.

1.6.1 Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

utt −∇ ·σ = f (x, t) Ω (1.35)

u(x, t) = 0 x∈ ΓD (1.36)

σ(x, t) = g(x, t) x∈ ΓN (1.37)

(1.38)

whereu = (ux,uy,uz) is the vector of displacements,σ is the stress tensor, andf (x, t) is the body
force. The boundary ofΩ is divided into DirchletΓD and NeumannΓN subregions.

21

The Dirichlet conditions lead to the space of admissible functions

V =
[

v∈ H1(Ω),v(x) = 0,x∈ ΓD
]

(1.39)

The equation of motion, along with boundary conditions, is cast into the weak form in the
standard way

Z

Ω
utt ·v+

Z

Ω
σ ·∇svdx=

Z

Ω
f (x, t) ·vdx+

Z

ΓN

g(x, t) ·vds ∀v∈V (1.40)

where an integration by parts has been carried out on the middle term, and∇s = 1
2(∇+∇T) denotes

the symmetric part of the gradient operator.

1.6.2 Constitutive equations

The representation of the time-dependent moduli for a viscoelastic material iscommonly written in
the form of a Prony series

G(t) = Ginf +(G0−Ginf)ζG(t) (1.41)

ζG(t) = ∑
i

cie
− t

si (1.42)

whereG0 is the glassy modulus,Ginf is the rubbery modulus, andci ,si are coefficients used to fit the
Prony series representation to the experimentally measured relaxation curve. A similar expression
holds forK(t), with different values for the constants, and possibly a different number of terms in
the series. Assuming an isotropic viscoelastic constitutive law, we only need toconsider two rate-
dependent material properties. In this presentation, we will work in terms ofthe bulkK and shear
G moduli, since experimental data is typically given in terms of these two parameters.

The constitutive model for an elastic material can be written in terms of the shearand bulk
moduli

σ = Dε = (KDK +GDG)ε (1.43)

whereDK ,DG are given in equation 9.4.7 in,5 andK, G are the bulk and shear moduli. This consti-
tutive law can be generalized to a linear viscoelastic material as follows

σ(x, t) = (G0−Ginf)DG

Z t

0
ζG(x, t− τ)

∂ε(x,τ)
∂τ

dτ+GinfDGε(x, t)+ (1.44)

(K0−Kinf)DK

Z t

0
ζK(x, t− τ)

∂ε(x,τ)
∂τ

dτ+KinfDKε(x, t)

The above expression is then used to represent the stress in the weak form of the equations of
motion, 1.40.

Given a finite dimensional subspaceVh⊂V, we represent the approximate solution in the stan-
dard way

uh(x, t) =
n

∑
i=1

φi(x)ηi(t) (1.45)

22

whereVh = span(φi), andη(t) represents the unknown time dependence. We also denoteΦ(x) =
[φi(x)] as the matrix havingφi as theith column. Inserting this into the equations of motion, and
rearranging, we obtain

Mη̈(t)+(G0−Ginf)K1

Z t

0
ζG(t− τ)η̇(t)dτ+

(K0−Kinf)K1

Z t

0
ζK(t− τ)η̇(t)dτ+K2η(t) = f (t) (1.46)

where
M =

Z

Ω
ρ(x)ΦT(x)Φ(x)dx (1.47)

is the mass matrix,

K1 = (G0−Ginf)
Z

Ω
BTDGBdx+(K0−Kinf)

Z

Ω
BTDKBdx (1.48)

K2 = Ginf

Z

Ω
BTDGBdx+Kinf

Z

Ω
BTDKBdx (1.49)

are the stiffness matrices, and

f (t) =
Z

Ω
f (x, t) ·v(x)dx+

Z

ΓN

g(x, t) ·v(x)ds (1.50)

is the right hand side. The corresponding element matrices are defined simply by breaking the
integrals into element wise contributions.

Equation 1.46 represents a system of Volterra integro-differential equations. Without the inertial
term, 1.46 represents a system of Volterra integral equations of the first kind. We now consider im-
plicit schemes for integrating these equations in time. The goal is to reduce the system of equations
1.46 to a system in standard form

Mη̈(t)+Cη̇(t)+Kη(t) = f̂ (t) (1.51)

whereC is a constantdamping matrix, and ˆf (t) is a modified right hand side that will include a
portion of the viscoelastic convolution term. We demand thatC be independent of time, since this
will eliminate the need for refactoring the left hand side at each time step. The damping (integral)
term in equation 1.46 is certainly time-dependent. However, we will show that itis possible to split
this integral term into a time-dependent and a time-independent part. The time-independent parts
remain on the left hand side and become the damping matrix, whereas the time-dependent parts
can be carried to the right hand side, since they are known quantities. Once the equations 1.46 are
reduced to the system 1.51, the standard time integrators for structural dynamics can be employed.

For simplicity, we consider the case of only a single Prony series term. The results for more
terms can be obtained by adding together the results for a single term. The integral in equation 1.46
can be split into two parts (considering only a single Prony series term)

Z t

0
e

t−τ
s η̇(t)dτ =

Z ti

0
e

t−τ
s η̇(t)dτ+

Z t

ti
e

t−τ
a η̇(t)dτ (1.52)

= e
∆t
s

Z ti

0
e

ti−τ
s η̇(t)dτ+

Z t

ti
e

t−τ
s η̇(t)dτ (1.53)

23

where the first term is a loading history term that isknownat timeti . Consequently, it can be treated
as an additional load and brought to the right hand side. The remaining termcan be split into two
terms, one containing coefficients ofη̇, and the other containing coefficients ofη̇i . The former is
unknown and thus becomesCη̇, whereas the latter is known and thus also contributes to the right
hand side.

In order to evaluate the term
Z t

ti
e

t−τ
s η̇(t)dτ (1.54)

we first need a representation for the velocitẏη(t) in the intervalt ∈ [ti , t]. We present two choices,
both of which are second order accurate.

1.6.3 Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes a constant acceleration
within the time step. With this assumption, the velocity must vary linearly within the time step.
Thus,

˙η(t) = ˙η(ti)+
η̈+ ¨η(ti)

2
(t− ti) (1.55)

where η̈ is the (unknown) acceleration at current timet, and ¨η(ti) is the previous acceleration.
Although equation 1.55 is the correct representation for velocity, it is inconvenient in that it would
lead to (after inserting into equation 1.54) a contribution to the mass matrix. This is undesirable,
since it would interfere with the use of a lumped mass matrix. Thus, we re-write the velocity
distribution in an equivalent form

η(t) = ˙η(ti)+
η̇− ˙η(ti)

∆t
(t− ti) (1.56)

We note that equations 1.55 and 1.56 are equivalent representations of the velocity. By inserting
equation 1.56 into equation 1.54 we obtain

Z t

ti
e

t−τ
s η̇(t)dτ =

[

s+
s2

∆t

(

e
∆t
s −1

)

]

η̇+

[

−se
−∆t

s +
s2

∆t

(

1−e
−∆t

s

)

]

η̇i (1.57)

The first term involves a coefficient times the unknownη̇, which is the unknown velocity at the
current time, and thus it must remain on the left hand side as a damping term contribution. The
damping matrix implied by this term is

C = cK(sK +
s2
K

∆t
(e
−∆t
sK −1))BTDK B+cG(sG +

s2
G

∆t
(e
−∆t
sG −1))BTDGB (1.58)

The second term is known, and thus it can be added to the load vector.

1.6.4 Midpoint Representation of Velocity

A second implicit scheme can be derived simply by using the midpoint rule on the velocity in the
viscoelastic term. The only difference from the linear approach described above is in equation 1.57.

24

η̇(t) =
η̇+ ˙η(ti)

2
(1.59)

This leads to

Z t

ti
e

t−τ
s η̇(t)dτ =

s
2

(

1−e
∆t
s

)

η̇+
s
2

(

1−e
∆t
s

)

η̇i (1.60)

In the same way as for the linear velocity approach, we use the term involvingη̇ to construct a
damping matrix, and the remaining known terms are carried to the right hand side.

It should be noted that the midpoint scheme is inconsistent in that a differentdiscretization
scheme is used for the viscoelastic term than was used for the overall time integration. The lin-
ear representation of velocity is a consistent scheme. However, both approaches are second order
accurate.

1.7 Linear Eigen Analysis

Linear Eigen analysis is a solution of the equation,

(K−λM)φ = 0 (1.61)

The equation is consideredlinear in the sense thatλ appears only to the first power. Solution of
the equations involved is definitely not linear. Practically, there are many linear solves typically
associated with a given eigen pair.

A number of approaches can be used to solve this system. We refer you to an excellent com-
parison report for a few of the iterative methods available (see 6). Direct methods such as theQR
algorithm or Jacobi transformations are not scalable to very large systems. In any event, they do not
parallelize well. In Salinas, we rely on the shifted and inverted Lanczos algorithm as implemented
in ARPACK. Further, since the linear solvers that we have at our disposal are ensured convergent only
for positive definite systems, we require a negative shift. Documentation onthis method is available
in the ARPACK package (see 7).

1.8 Random Vibration

Details of random vibration analysis are included in a number of papers1. These few paragraphs
document what was implemented.

1.8.1 algorithm

The first step in the calculation is computation of a modal spatial contribution,Γqq, which is per-
formed inComputeGammaQQ. This is accomplished as follows.

1see for example, reference 8.

25

Let the modal frequency response be defined as,

qi(f) =
1

ω2
i −ω2 +2 jωωiγi

The modal force contribution from loada is,

Fia(f) = ∑
k

φik f a
k sa(f)

= Zi
asa(f)

where f a
k is thek component of the force vector associated with loada, andsa(f) contains all of

the frequency content of the force, but none of the spatial dependence. We have definedZi
a for each

load that represents the sum of all the spatial contributions for modei. It represents the frequency
independent component of the force for loada.

Zi
a = ∑

k

f a
k φik

A transfer function to an output degree of freedom,k, from the input loada, may be written as a
modal sum.

Hka(f) = ∑
i

Fia(f)qi(f)φik

whereφik is the eigenvector of modei.

1.8.2 Power Spectral Density

The displacement power spectral output (at a single location) is a 3×3 matrix.

Gmn(f) = ∑
a,a′

H∗ma(f)Hna′(f)

= ∑
i, j

∑
a,a′

F∗ia(f)q∗i (f)φimF∗ja′(f)q j(f)φ jn

= ∑
i, j

∑
a,a′

q∗i (f)q j(f)φimφ jnZi
aSa,a′(f)Z j

a′

HereSa,a′(f) is the complex cross-correlation matrix between loadsa anda′, and the superscript ’*’
denotes complex conjugate. The subscriptsm andn are applicable to the 3 degrees of freedom at a
single location.

By summing over the loads we may reduce the power spectral expression to asum on modal
contributions.

Gmn(f) = ∑
i, j

φimφ jnGi j (f) (1.62)

26

where
Gi j (f) = q∗i (f)q j(f)∑

a,a′
Zi

aZ j
a′S

a,a′(f) (1.63)

Note that with the exception of theZi
a (which may be computed only once and are a fairly small

matrix), all the terms in equation 1.63 are completely known on each subdomain.

1.8.3 RMS Output

The RMS output for degree of freedomm is given by,

Xrms =

√

Z

Gmm(f)d f

=

√

Z

∑
i, j

φimφ jmGi j (f)d f

=
√

∑
i, j

φimφ jmΓi j

whereΓi j =
R

Gi j (f)d f .

The parallel result can be arrived at by computingZi
a on each subdomain, and then summing

the contributions of each subdomain. Note thatZi
a contains the spatial contribution of the input

force. At boundaries that interface force must be properly normalizedjust as an applied force is
normalized for statics or transient dynamics by dividing by the cardinality of the node. OnceZ has
been summed,Γi j may be computed redundantly on each subdomain. The only communication
required is the sum onZ (a matrix dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is justGmm(ω)ω4. Subsection 2.23.5 provides details
about transforming power spectra to an output coordinate system.

1.8.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress is included in the
reference at the beginning of this chapter. Two methods are available, but both use the integrated
modal contributionΓi j as the basis for their computation. The more complete method relies on a
singular value decomposition. Portions of that method are touched on below

1.8.5 matrix properties for RMS stress

SinceS(f) is Hermitian, it follows thatΓqq is also necessarily Hermitian. It will not in general be
real. Therefore, thesvd() must be computed using complex arithmetic. We use thezgesvd routine
from arpack . The results from thesvd of an Hermitian matrix are real eigenvalues (stored inX),
and complex vectors, stored inQ.

27

At the element level anothersvd must be performed. In this case we are computing the singular
values of the matrixC.

C = XQ†BQX

where,

B = ΨTAΨ

Obviously, B is symmetric. It can be shown thatQ†BQ is Hermitian. If we examine a single
element ofC we can see that it contains the sum over all the terms in an Hermitian matrix. That
sum is necessarily real, since it can be computed by adding the lower half withit’s transpose and
then summing the diagonal. Let,

Ai j = ∑
m,n

Q∗miBmnQn j = ∑
m,n

ai j

But,

A∗ji = ∑
m,n

Qm, j ∗BmnQ
∗
ni = ∑

m,n
Qn jBmnQ

∗
mi = ∑

m,n
a∗i j

We therefore only need use the realsvd routines to compute the results at each output location.

1.8.6 model truncation

The svd calculations provide the information needed for model truncation. In general, if the size
of the model grows, the number of modes required for an analysis also grows. The relationship
is very model dependent. However, the computational time for calculating thesvd varies as the
cube of the dimension of the matrix. Since thesvd(Γ) is only computed once, it is not terribly
important. However, the computation of each decomposition ofC occurs at each output location
and can significantly affect performance. In the model problem where the dimension ofC was
allowed to remain the same as the number of modes, increasing the number of modes from 20 to
100 changed the time for the analysis by factor of more than 100 (close to the 53 one might expect).
Clearly, this is unacceptable especially as the desired models may have many hundreds of modes.

Thesvd(Γ) provides important information about the number of independent processes. Note
thatC includes thesvd values from this calculation. We truncate by computing all thenmodes x
nmodes terms inB, but only retainingCdim columns ofQ, whereCdim is chosen so the values of
X are not too small. Thus,X[(Cdim)]/X[0] > 10

−14. This restricts the dimension ofC to a fairly
small number, while retaining all components that contribute significantly to its value. As a result,
the entire calculation appears to scale approximately linearly with the number of modes.

1.9 Modal Frequency Response Methods

The Salinas implementation of the modal acceleration method is described in this section. Separate
cases are considered when the structure does and does not have rigidbody modes.

28

1.9.1 No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.

(−ω2M + jωC+K)û = f̂ (1.64)

Consider the modal approximation

û≈
N

∑
i=1

φiqi (1.65)

whereN is the number of retained modes,φi is the i’th mode shape, andqi is the i’th modal dof. For
modal damping, one obtains the uncoupled equations

(−ω2mi + jωci +ki)qi = φT
i f̂ (1.66)

for i = 1, . . . ,N where

mi = φT
i Mφi (1.67)

ci = φT
i Cφi (1.68)

ki = φT
i Kφi (1.69)

(1.70)

are the modal mass, modal damping, and modal stiffness of the i’th mode. Solving equation 1.66
for qi leads to

qi = (φT
i f̂)/(−ω2mi + jωci +ki) (1.71)

Replacing(−ω2M + jωC)û in equation 1.64 with the modal approximation

(−ω2M + jωC)
N

∑
i=1

φiqi (1.72)

leads to

Kû = f̂ +(ω2M− jωC)
N

∑
i=1

φiqi (1.73)

Recall that the mode shapes satisfy the eigenproblem

Kφi = ω2
i Mφi (1.74)

whereωi is the circular frequency of the i’th mode. Providedωi 6= 0, one obtains

K−1Mφi = φi/ω2
i (1.75)

In addition, see Eq. (18.14) of Craig, the damping matrixC can be expressed as

C =
N

∑
i=1

(

2ζiωi

mi

)

(Mφi)(Mφi)
T (1.76)

whereζi is the damping ratio of the i’th mode. Substituting equations 1.75 and 1.76 into equation
1.73 and solving for ˆu leads to

û = K−1 f̂ +
N

∑
i=1

(ω2/ω2
i −2ζi jω/ωi)φiqi (1.77)

The acceleration frequency response, ˆa, can be obtained by multiplying equation 1.77 by−ω2.

29

1.9.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration methodcan be used in the case
when the structure has rigid body modes. The main difference between the approach presented
here and Craig’s method9 (pp. 368-371) is in the way that the flexible response is computed using
the singular stiffness matrix. Craig removes the rigid body modes from the stiffness matrix using
constraints. In our approach, we first orthogonalize the right hand side with respect to the rigid body
modes, and then use an iterative solver such as FETI to solve the singular system directly. Although
the two methods are equivalent the latter is much more convenient from the implementation point of
view. Note, however, that the implementation is likely to fail on a single processor since the direct
solvers in Salinas are unable to manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion

−ω2Mu+ jωCu+Ku= f (1.78)

Since the stiffness matrix may be singular, we first split the solution into a rigid body part and a
flexible part.

u(ω) = uR(ω)+uE(ω) (1.79)

= ΦRqR(ω)+ΦEqE(ω) (1.80)

where the subscript R refers to rigid body mode contributions, and E refers to contributions from
flexible modes. We defineN as the total number of degrees of freedom,NR as the number of rigid
body modes andNE the number of flexible modes, whereN = NR + NE. Then,ΦR is anNxNR

matrix of rigid body eigenvectors,ΦE is anNxNE matrix of flexible eigenvectors,qR is a vector of
dimensionNR, andqE is a vector of dimensionNE. We assume mass normalized eigenvectors.

We now substitute equation 1.80 into equation 1.78, and premultiply both sides byΦT
R andΦT

E.
This yields two sets of equations, after using orthogonality and the fact thatKΦR = 0.

−ω2qR+ jωCRqR = ΦT
R f (1.81)

−ω2qE + jωCEqE +KEqE = ΦT
E f (1.82)

whereCR,CE are diagonal matrices containing the modal damping contributions, andKE is a diag-
onal matrix containing the eigenvalues. In particular, the ith diagonal entry of CE is 2ωiζEi , and the
ith diagonal entry ofCR is 2ωiζRi . For most applications,CR is null. Solving these equations we
obtain the component-wise values of the coefficients

qRi =
ΦT

Ri
f

−ω2 + jωCRi

(1.83)

qEi =
ΦT

Ei
f

−ω2 + jωCEi +ω2
Ei

(1.84)

30

Equation 1.82 can be solved forqE, and substituting this into equation 1.80, we obtain

u = ΦRqR+ΦEK−1
E ΦT

E f +ω2ΦEK−1
E qE− jωΦEK−1

E CEqE (1.85)

The first term in equation 1.85 is known. The third and fourth terms of equation 1.85 can be com-
puted by modal truncation, and in fact these are the same as the second andthird terms of equation
1.77. The second term in equation 1.85 is the static correction, and is not readily computable in the
present form since all of the flexible modes would have to be known to compute it.

In order to compute the second term in equation 1.85, we note that the matrixaE = ΦEK−1
E ΦT

E
is the inverse of the elastic stiffness matrix, that is, the stiffness matrix without the rigid body
components. Craig gives a procedure of constraining the rigid body modes in the stiffness matrix in
order to compute the productaE f . This procedure would require re-sizing the global stiffness matrix
midway through the modalfrf solution procedure, and this is tedious from the code development
standpoint.

A more convenient approach is to use FETI to solve the systemKu = fE, where fE is obtained
by orthogonalizing the right hand sidef with respect to the rigid body modes, via Gram Schmidt.
We note that FETI can solve problems of the formKu = f even ifK is singular, provided that the
right hand sidef is orthogonal to the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obtainfE. Then, we use
FETI to solve the systemKuE = fE, whereK is singular. Finally, to be sureuE is orthogonal
to the rigid body modes, we apply Gram Schmidt one more time touE. Though in theoryuE is
already orthogonal to the rigid body modes after the FETI solve, numericalround-off may result in
a small loss of orthogonality (especially if the solver tolerance is loose), andthus we apply this final
orthogonalization touE to be on the safe side. The resulting solution we again denote byuE. Then,

uE = ΦEK−1
E ΦT

E f (1.86)

and thus all of the terms in equation 1.85 are known. Thus the modal frequency response can be
computed using equation 1.85.

We note that the orthogonalizations referred to above involve only the standard dot products.
That is, in order to makef orthogonal to one rigid body modeφi , the Gram Schmidt factor is

α =
φT

i f

φT
i φi

(1.87)

and then

fE = f −αφ (1.88)

The dot products appearing in these expressions do not involve the massmatrix. They are the
standard dot products.

31

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Frequency

A
m

pl
itu

de
Comparison of frf methods with rigid body modes

directfrf
modal disp
modal accel

Figure 1. A comparison of the modal displacement, modal acceler-
ation, and direct frequency response approaches. The modalaccelera-
tion method gives a better approximation to the direct approach than the
modal displacement method.

1.9.3 Example

Finally, we present an example of the performance of this method as compared to the standard
modal displacement method. The example is a beam composed of 320 hex8 elements. The beam
is free-free, so that all rigid body modes are present. The frequencyresponse is computed up to
9000 Hz, and 15 modes are used in the modal expansions. The 15th mode had a frequency of 11362
Hz. In Figure 1, the two methods are compared with the direct frequency response approach. It is
seen that the modal acceleration method gives a significantly improved performance over the modal
displacement method.

32

1. Compute the full eigen problem,(K−λM)Φ = 0

2. Compute the applied load (in modal coordinates) at each time.f i =

∑k ΦkiFext
k

3. Compute the modal system response from equation 1.92.

4. Expand from modal tofull physical space.

Xk
n+1 =

Nmodes

∑
i

qi
n+1Φki

5. Collapse the physical space to the output degrees of freedom.

x̃ = subset(X)

The parallel data (matrices and
vectorsΦ andX) are partitioned
by processor. �������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

}
}

}

}

proc n

proc 0

proc 1

proc 2

Nmodes
N

um
 D

O
F

S

Figure 2. Standard Modal Transient Algorithm. Note that while the
output is required on only a small part of the model, a calculation of
data on all degrees of freedom is performed first, and resultsare then
collapsed back to the reduced model.

1.10 Fast Modal Solutions

Because modal based solutions such asmodaltransient do not require a linear solve, they can
greatly accelerate the solution of linear problems. However, in the standardapproach, these solu-
tions may not show the performance that could be achieved. This is because the standard approach
manipulates a lot of data when the model size is large, see Figure 2. We here address a method for
much higher performance provided that output is required on a very limited data set and that the
force is simple.

33

1.10.1 Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integrator2 equation 1.6 may be condensed to,
[

4
∆t2M +

2
∆t

Ĉ+K

]

dn+1 = Fext
n+1 +Ĉ

[

vn +
2
∆t

dn

]

+M

[

4
∆t2dn +

4
∆t

vn +an

]

(1.89)

Also,

vn+1 = −vn +
2
∆t

(dn+1−dn) (1.90)

an+1 = −an +
4

∆t2(dn+1−dn)−
4
∆t

vn (1.91)

With the usual modal transformation,dk = ∑i Φkiq, λi = ΦT
i KΦi , andΦTMΦ = I , we may write the

equivalent modal equations.
aiq

i
n+1 = qi

n + f i
n+1 + f̃ i (1.92)

where

ai =
4

∆t2 +
2
∆t

γi +λi

f i
n+1 = ∑

k

ΦkiF
ext
k

f̃ i = q̈n +

(

4
∆t

q̇n +
4

∆t2qn

)

+ γi

(

q̇n +
2
∆t

qn

)

and,

γi is the modal damping

These equations are now uncoupled, i.e. the solution for each modal coordinate is independent of
any other.

1.10.2 Parallel Fast Modal

In many cases the analyst is interested only in the data in a very reduced set(such as data in the
history file). In these cases, large amounts of data are processed, onlyto reduce the data at each
time step to a the reduced system. The parallel computer processing is being expended to process
large vectors that are not really needed, and for which no useful output is provided. If the reduced
set may easily fit on a single processor, and if the modal force may be adequately determined, then
a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 3 for transient dynamics, and in Figure 4 for modal
frequency response. The same set of equations are now solved, butsince the entire physical model
exists on all processors, we can compute the sum of terms in parallel.

2 This implies thatαm = α f = 0, βn = 1/4, andγn = 1/2.

34

1. Begin with eigenvalues,λ, andreducedeigen vectors,φ. We also need the
generalized components of modal force,ζs

i (ω) = ∑k ΦkiF̂s
k (ω).

2. Compute the time response of the modal system response in parallel. Each
processor gets only a subset of modes, and solves equation 1.92 indepen-
dently.

3. Compute the response on the physical space using the sum of modes as asum
across processors. NOTE: this is restricted to the reduced physical space.

x̃k =
Nproc

∑
p

Nmodesproc

∑
i

φkiqi

Figure 3. Fast Modal Transient Algorithm

1. Begin with eigenvalues,λ, andreducedeigen vectors,φ. We also need the
generalized components of modal force,ζs

i (ω) = ∑k ΦkiF̂s
k (ω).

2. Compute the frequency response of the modal system response in parallel.
Each processor gets only a subset of modes, and solves the following equa-
tion independently.

qi(ω) =
f q
i (ω)

ω2−ω2
i −2 jγiωωi

whereω =
√

λi and j =
√
−1.

3. Compute the response on the physical space using the sum of modes as asum
across processors. NOTE: this is restricted to the reduced physical space.

x̃k =
Nproc

∑
p

Nmodesproc

∑
i

φkiqi

Alternatively, each processor may be assigned the computation of a fre-
quency range, and compute all the modal contributions to that range. A
processor sum would gather all the results for output.

Figure 4. Fast Modal Frequency Response Algorithm

35

1.10.3 Determination of Modal Force

The fast algorithm outlined in the previous section depends on determination ofthe modal force
vector, f i(t). But, the physical loads may be applied to degrees of freedom other than those in the
limited output set, so that the eigenvector,Φ of the full system would be required.

However, in most cases,3 the force in the physical coordinates is computed as a sum of spatial
and temporal terms.4

Fext(x, t) =
Nsets

∑
s

F̂s(x)δs(t)

Typically each spatial function̂Fs is determined by a nodeset, sideset or body load input, while the
temporal term,δs(t), is a multiplier defined in aFUNCTIONsection. We may thus write,

f i(t) = ∑
k

ΦkiF
ext(xk, t) (1.93)

= ∑
k

Φki

Nsets

∑
s

F̂s(x)δs(t)

=
Nsets

∑
s

ζi
sδ

s(t) (1.94)

where,
ζi

s = ∑
k

ΦkiF̂
s
k (1.95)

Thus, a necessary part of the preparation for a fast modal solution includes calculation of the gener-
alized components of force,ζi

s.

1.11 Complex Eigen Analysis - Modal Analysis of Damped Structures

1.11.1 Modal Analysis of Damped Structures

Salinas will solve the eigenvalue problems for structures with some types of damping. The al-
gorithms are designed for internally damped structures such as from viscoelastic materials. The
package is calledCeigen , and the parameters to be aware of areeig tol , nmodes, andviscofreq .
The first two parameters,eig tol andnmodes will be familiar to Salinas users that solve eigenvalue
problem for undamped structures.eig tol is the convergence tolerance for the eigenvalues, and
nmodes is the number of requested eigenvalues.viscofreq approximates the first flexible mode of
the structure. The default value foreig tol is 1.e−8.

The complex eigen value problem which we solve is also known as the quadratic eigenvalue
equation.

[

K +λD+λ2M
]

φ = 0 (1.96)

3 If user defined functions of space are included, this situation is violated, and the fast algorithm cannot be used.
4 What is described here for time applies equally well for functions in the frequency domain. They are products of

spatial and frequency components.

36

where,

K = the stiffness matrix

D = the damping matrix

M = the mass matrix

λ = the complex frequency.

All of the matrices are independent of frequency. Note that we are solving for λ = iω+ γ, notω2.

1.11.2 Input File Specification

The Salinas input file specification is similar to the specification for transient simulations. To change
a working Salinas input file for a transient problem into a Salinas input file for Ceigen , change the
Solution and Parameters blocks. The example below illustrates how the Solution and Parameter
blocks are modified for modal analyses.

SOLUTION
case ceig
ceigen nmodes 20
viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was was needed for the transient simulation,
and is still needed for modal analyses.

1.11.3 Output File Format

The output is very similar to the output for the undamped eigenvalue problem. The results file
contains any requested data. Supplemental information is written to the screenthat is useful for
algorithm development.

The Results filefoo.rslt tabulates the valuesλ/(2π) for (λi) that solve equation (1.97). Pure
real eigenvalues are not written to the Results file.5 If λi has been found withi in the range,
1≤ i ≤ 24,27≤ i ≤ 34, then the missing eigenvalues(λi)25≤i≤26 are real eigenvalues that are omit-
ted. The number of eigenvalues written in the Results file is less than or equal tonmodes.

As is the case with the undamped eigenvalue problem, Salinas will print a table to the screen.
The table is titled “Ritz values (Real, Imag) and direct residuals”, and has four columns of real

5Real modes correspond to an overdamped mode with no oscillatory component. These are usually generated from
numerical artifacts discussed below, and are seldom of practical value

37

numbers. The number of eigenvalues that are actually computed may be larger or smaller than
the number requested. Some real eigenvalues may appear among the converged eigenvalues. The
table will contain any converged real eigenvalues (zero in column two). Columns three and four
are two different residual norms for each eigenvalue. Eigenvalues withlarge residual norms are
not converged. The residual norm in the third column is less sensitive to thelinear system relative
residual norm bound than the residual norm in the fourth column is After each implicit restart, all
the approximate eigenvalues are printed to the screen.

1.11.4 Some Back Ground

The eigenvalue problem for an undamped structure

KΦ = MΦΩ2, ΦTMΦ = I ,

Ω =⊕iωi , has been discussed elsewhere in this document. Salinas returns the frequenciesω/(2π).
Ceigen solves a similar problem.Ceigen solves the quadratic eigenvalue problem

[Mλ2 +Dλ+K]u = 0, uTu = 1. (1.97)

In the undamped case,D = 0, λ = iω.

A second order linear differential equation is the same as a first order system. Similarly a
quadratic eigenvalue problem is the same as a matrix eigenvalue problem of twice the size.

Linear problems such as matrix eigenvalue problems are solvable in that it is possible to find all
of the solutions. For matrix eigenvalue problems the key idea is deflation. One big subspace is used
to compute all of the eigenvalues. Small eigenvalues tend to be computed early and are deflated
from the problem. The reward for deflation is that the gravest remaining eigenvalues are much more
likely to be computed next. For general nonlinear eigenvalue problems on theother hand, no robust
algorithms are known to the author.

1.11.5 Viscoelasticity

The eigenvalue problem for viscoelastic problems10 in the most simple case (one term Prony series)
has the form

[Ms2 +D(s)s+K]u = 0. (1.98)

K = BE∞, D(s)s= B(Eg−E∞) f (s),

f (s) = s/(s+a) = 1− (s/a+1)−1.

Prony series damping in the time domain10 creates a frequency domain problem with real eigenval-
ues that are not physical.10 Some care is needed to avoid the real eigenvalues in computations.

Here is a sketch of justification that the Prony series problem has real eigenvalues. The eigen-
value problem has a closed form solution in terms of the eigenvalues of the undamped problem. The
one term Prony series damping increases the degree of the characteristicequation from two to three,
and the third root must be real.

38

1.11.6 Viscofreq

The eigenvalue problem in equation (1.98) is not a quadratic eigenvalue problem(M ,D,K). The
obvious approximation is to evaluateD(s) at some fixedso near to the wanted eigenvalues. The user
parameterviscofreq = ω is a real number such thatso = iω. In a later releaseso = r + iω for some
internally computed valuer.

Using a value ofviscofreq that is much too small may degrade performance. Asviscofreq
increases, the eigenvalues do change, and Salinas converges more quickly. The cluster of real
eigenvalues moves left, away from zero, and it becomes possible to computemore of the complex
eigenvalues. Over-estimates ofviscofreq are safer than underestimates.

Suppose thatso = r + iω. A different quadratic eigenvalue problem is used.10 Both D andK
are modified. The approximation is more accurate for problems in whichr is much more accurate
thanω. Also (M ,D,K) are all real matrices. The eigenvalues and eigenvectors come in complex
conjugate pairs.

Important to be aware that no constant damping matrix inherits the property ofD(s) that

lim
s→∞

D(s) = 0.

Physically, this means that the eigenvalues in equation (1.97) that are far from viscofreq are over-
damped. If for a given mode shape,so is closer to the real eigenvalue of equation (1.98) than either
complex conjugate pair, thenCeigen may return the real eigenvalue. For example equation (1.98)
has many real eigenvalues clustered left of−a.

1.11.7 Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergence criteria in the ARPACK pack-
age use a trust region. CEigen will compute the right-most eigenvalues of theeigenvalue problem in
equation (qevp). If thek-th mode does not satisfy the convergence tolerance, andk≤nmodes, then
ARPACK is not converged, no matter how many other eigenvalues are converged.

The authors have gone to great lengths to filter out real eigenvalues. Nonetheless in problems
with a cluster of real eigenvalues among the right-most eigenvalues, it is very difficult to compute
eigenvalues high into the frequency range. If such a problem arises, increaseeig tol (multiply by
ten), increasenmodes (add ten), and most importantly increaseviscofreq (double).

1.11.8 ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent of frequency. However, the
damping and stiffness matrices can be functions of frequency, depending on the formulation. There
are two possible formulations. The first one results in a complex, frequency dependent damping
matrix, and a real-valued, frequency independent stiffness matrix. Thesecond results in a frequency-
dependent, real-valued damping matrix and a frequency-dependent, real valued stiffness matrix. We
chose the second formulation since the complex-valued damping matrix is somewhat difficult to deal

39

with in quadratic eigensolvers. The two formulations are the same up to the order of the linearization
error.

Consider the simplest possible viscoelastic material, characterized by a singleterm of the Prony
series. The equation of motion for a 1D system with this material is given below.The full 3D case
is similar, except that it has separate terms for the bulk and shear components.

[

K∞ +sD(s)−s2M
]

u = f (s) (1.99)

Here,s is the Laplace transform frequency,f (s) is the frequency dependent force, and the damping
matrix is now a function of frequency.

D(s) = (EG−E∞)
1

s+1/τ
B (1.100)

with E∞, the Young’s modulus for high frequencies,EG the modulus for low (or glassy) frequencies,
τ is the Prony series relaxation time, andK∞ = E∞B is the stiffness at high frequencies.

We now return to equation 1.99, and consider different ways of linearizing the relation, since
for the quadratic eigenvalue problem, we may only solve equations of the form in equation 1.96, i.e.
quadratic inλ or s.

User Specified frequency of linearization We define viscofreq,ω andsω = r + iω, which is the
complex number about which the linearization takes place. In the current methodology,r is zero.

First, we splitD(sω) into its real and imaginary components by multiplying by(r+1)−iωτ
(r+1)−iωτ .

D(s) = (EG−E∞)
1

s+1/τ
B (1.101)

= (EG−E∞)
τ

iωτ+(rτ+1)
B (1.102)

=
τ((rτ+1)− iωτ)
(rτ+1)2 +ω2τ2 (EG−E∞)B (1.103)

Then we also temporarily replace thes in front of sD(s) with sω. This gives,

sD(s) = (iω+ r)D(iω+ r) (1.104)

=
τ(iω+ r)+ω2τ2 + r2τ2

(r +1)2 +ω2τ2 (EG−E∞)B (1.105)

Finally, we replaceiω + r with s to go back to the quadratic eigenvalue problem. This results in a
contribution to the the stiffness matrix, and a real damping matrix.

[(

E∞ +(EG−E∞)
ω2τ2 + r2τ2

(r +1)2 +ω2τ2

)

B+s

(

τ
(r +1)2 +ω2τ2

)

(EG−E∞)B+s2M

]

φ = 0 (1.106)

40

Thus we see that the damping matrix is purely real, but the stiffness matrix gets an additional
(positive) real contribution.

Practically of course, the systems are far more complex. Typically there is more than one
material, and that material has a number of Prony terms. Equation 1.106 is modified, but the overall
effect is the same, i.e. the stiffness matrix is increased by a viscoelastic term, and the damping term
is also modified. Effectively we have the following.

K̃(r + iω) = ∑
elem

K̃elem(r + iω) (1.107)

whereK̃elem is the modified stiffness matrix.

K̃elem(r + iω) = Kelem+ imag(Delem(r + iω))

Likewise,
D̃elem(r + iω) = real(D(r + iω)) (1.108)

We now solve thelinearizedeigenvalue equation forλ,

[

K̃(r + iω)+ iλD̃(r + iω)−λ2M
]

φ = 0 (1.109)

A Simple Error Estimate This question is now how well the eigenvalues computed from equation
1.106 approximate the true eigenvalues of equation 1.99.

First, we define the distance from a given computed eigenvalue,sc, to the point of linearization,
sω asδ.

δ = sc−sω (1.110)

Note thatδ is a complex-valued quantity.

Next, we define the residual as the vector resulting from insertingsc and the corresponding
computed eigenvalue,φc, into equation 1.99.

(

s2
cM +scD(sc)+K

)

φc = res (1.111)

The residual, as defined in equation 1.111, is a computable quantity. Obviously, if the residual
is large, then the error in the computed eigenvalue and eigenvector is large.However, the more
interesting question from the analyst’s perspective is how large mayδ be for one to expect accurate
eigenvalues.

1.12 SAeigen

The quadratic eigenvalue problem which we address in this solution method is given by the equation
below.

(

K +λC+λ2M
)

φ = 0 (1.112)

41

where,K is the stiffness matrix,
C is a damping and coupling matrix, and
M is a mass matrix.

More specifically, for a structural acoustic system.
([

Ks 0
0 Ka

]

+λ
[

Cs L
−ρaLT Ca

]

+λ2
[

Ms 0
0 Ma

])[

φs

φa

]

= 0 (1.113)

Here the subscripts refer to structural or acoustic domains,ρa is the density of the fluid andL is a
coupling matrix. Note that for this formulation,φa represents the acoustic velocity potential, which
relates to the time derivative of the acoustic pressure,φa = ∇u̇a.

The matrixC will be completely asymmetric if it contains only coupling terms. In this case it
is called gyroscopic, and it can be shown that the system is Hermitian, and has real eigenvalues.
However, if there is additional damping in the system, as fromρC damping on the acoustic domain,
thenC is of mixed symmetry, and the eigenvalues and eigenvectors are complex. Thestiffness
matrix is symmetric positive semi-definite, while the mass matrix is symmetric positive definite.

While various methods are available for solving the generalized, linear eigenvalue problem,6

solution of the quadratic eigenvalue problem is more challenging. The approach followed here
is to transform the problem into a reduced space, solve the corresponding dense matrix system
completely, and project back out to the original space. The challenge, ofcourse, is to properly
choose that space.

In general, if the eigenvector,φ, can be written in terms of generalized coordinates,q, then this
approach may be taken. For a given transformation matrix,T, which determinesφ givenq, we have
the following.

φ = Tq (1.114)

T†(K +λC+λ2M
)

Tq = 0 (1.115)
(

k̃+λc̃+λ2m̃
)

q = 0 (1.116)

Note that the only restriction onT is that we may adequately writeφ = Tq. In other words,T must
span the space of the eigenvectors. In particular,T need not be unitary or even orthogonal. However
for the transformation to be useful for a model reduction, there must be many fewer columns than
rows in T. Note thatT† is the transpose, complex conjugate ofT, and that the left and right
eigenvectors of equation 1.113 are complex conjugates of each other.

The structural/acoustics problem may be viewed as a two subdomain problem.7 There are a
variety of basis functions that have been examined for connecting such subdomains. Two common
sets are listed in Table 2.

We here investigate only the free-free method. Though this method has proved to converge
rather slowly for structure/structure problems, the coupling between the structural and acoustic
domains is often rather weak, so this may be adequate. For the problems of interest, a full Craig-
Bampton type solution is almost certainly overkill, and will result in a dense matrix too large for

6The generalized linear eigenvalue problem is(K−λM)φ = 0.
7There is no requirement that each of these subdomains be topologically connected in any special way.

42

Table 2. Potential Basis Functions for Subdomain Reduction

Name Basis Function

Free-Free modes The unconstrained eigenvectors of each subdomain are
computed and used as the columns ofT. When the number
of columns inT equals the number of rows, this basis is
complete.

Craig-Bampton The eigenvectors of each subdomain are computed with
the interface fixed. These eigenvectors are supplemented
with constraint modes computed by fixing all the interface
degrees of freedom except one. That dof receives a unit
static deformation. This method has been shown to con-
verge near optimally for structure/structure interactions.

standard solution methods. We may find it advantageous to augment the free-free modes by adding
basis functions near the surface. Some thoughts that have been considered include the following.

• A uniform pressure mode could be added to both the acoustic and structural responses.

• We could consider the static acoustic modes that are generated by the deformations of the
structural eigen analysis. We anticipate that the structural deformations willhave a larger
control over acoustic modes, so we may not need to be as concerned about the impact of
the acoustic pressures on the structure, but we may want to include some ofthese as well.
Perhaps some methods could be used to identify a subset of modes that wouldbest aid in
model completeness and convergence.

• Spline or boundary expansions are possible.

1.13 Quadratic Modal Superposition

Consider the system
Mü+Cu̇+Ku= f (t) (1.117)

whereM, C, andK are the mass, damping, and stiffness matrices. Standard methods may be used to
solve the eigenvalue equation derived from 1.117 only in the case where the eigenvectors ofK andM
also diagonalizeC (as in proportional damping for example). Unfortunately, such cases are usually
not physical, and are rare in practice. For a general damping matrix, no procedures are available to
directly solve the eigen equation. For an excellent survey article on quadratic eigenvalue systems,
see the article by Tisseur.11

However, the second order system may be transformed to a larger, firstorder system which does
have a known solution. Welinearizethe system as follows. Define,

w =

[

u̇
u

]

(1.118)

If we consider the eigenvalue problem corresponding to equation 1.117,we would set the right hand
side f (t) to zero. Then, there are many options for the linearization, but the one chosen for QEVP

43

is
[

M 0
0 K

]

w =

[

0 M
−M −C

]

ẇ (1.119)

We assume a solution of the formw = φeλt , and arrive at the eigenvalue problem,

Aφ = λBφ (1.120)

where

A =

[

M 0
0 K

]

, (1.121)

and

B =

[

0 M
−M −C

]

(1.122)

Equation 1.120 yields the “right” eigenvectors. As is seen later, we also need the “left” eigenvectors,
which correspond to the eigenvalue problem,

ψ†A = λψ†B (1.123)

We denote the left eigenvectors asψi to distinguish them from the right eigenvectorsφi .

1.13.1 Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formed bytheir eigenvec-
tors. However, when nonsymmetric matrices, such as those of equation 1.119, may beimpossible
to diagonalize. This has significant implications for modal superposition techniques, since ifA and
B cannot be diagonalized by pre and post multiplying by matrices of eigenvectors, then the reduced
(modal) equations of motion will be coupled. The primary advantages of modalsuperposition would
be lost.

As discussed in the literature,11–13one case where the matricesA andB are diagonalizable is if
all of the eigenvalues are distinct. If there are repeated eigenvalues, then the matrix is still diagonal-
izable, as long as the eigenvectors corresponding to repeated eigenvalues are linearly independent.
This can be summarized by the theory of geometric and algebraic multiplicities of eigenvalues, as
follows:14

• Thealgebraic multiplicityof an eigenvalue is defined as the number of times that this eigen-
value is repeated in the list of eigenvalues of the matrix.

• The geometric multiplicityof an eigenvalue is the dimension of the space spanned by its
eigenvectors. Thus, for an eigenvalue with an algebraic multiplicity of 2, the geometric mul-
tiplicity would be 2 if the corresponding eigenvectors are linearly independent, and 1 if they
are linearly dependent.

• An n× n matrix is diagonalizable if and only if the geometric multiplicity is equal to the
algebraic multiplicity for every eigenvalueλ.

44

In short, for the matrix to be diagonalizable, the eigenvectors corresponding to repeated eigenvalues
must be linearly independent. If the eigenvalues are all distinct, then the matrixis always diagonal-
izable.

It is also interesting to discuss the circumstances under which the eigenvalues and eigenvectors
of A andB come in complex conjugate pairs. When this is the case, significant savings in storage
and computational time can be achieved. The general rule is quite simple to prove.15 If the entries
in a matrix are all real-valued, then any complex eigenvalues or eigenvectors that arise must come
in complex conjugate pairs. In order to prove this, we note that for a matrix withall real- valued
entries, the determinant must be a real number. On the other hand, the determinant is also equal to
the product of the eigenvalues. Thus, if some of the eigenvalues are complex, the only way that the
product

det(A) = λ1λ2...λn (1.124)

can be a real number is if all complex eigenvalues have a conjugate pair. For example, ifλn and
λn+1 are complex conjugates, then we have

λnλn+1 = (λr
n + jλi

n)∗ (λr
n− jλi

n) = [λr
n]

2 +
[

λi
n

]2
(1.125)

The last expression after the equal sign is a real number. We can also conclude that if a matrix has
any complex entries, then the eigenvalues and eigenvectors are not necessarily complex conjugates.

To diagonalizeA and B, we define a matrix corresponding to the right-eigenvectors that are
computed from equation 1.120.

W = [φ1φ2...φ2n] (1.126)

We can also define a matrix corresponding to the left-eigenvectors from equation 1.123.

U = [ψ1ψ2...ψ2n] (1.127)

Representing the solution asw = ∑2n
i=1ziφi , and the loading as,

g(t) =

[

f (t)
0

]

(1.128)

we have11

−αizi(t)+βi żi(t) = ψ†
i g(t) (1.129)

whereαi = ψ†
i Aφi andβi = ψ†

i Bφi . When modes are mass normalized,βi = 1 andαi = λi . We note
that the † symbol represents a conjugate transpose, and not just a transpose. This is a complex-
valued uncoupled scalar equation for each degree of freedom in the system, which can be integrated
in time. We note that this is a first order system in time, rather than second order, and thus different
methods are required for the numerical integration than are used for real-valued modal superposi-
tion. Superposition must be performed on the linearized system, as we have no general solution of
the original second order system.

Time Domain Superposition

Equation 1.129 can be integrated numerically, using first-order time integrators. However, another
approach is to use the analytical solution.

zi(t) =
Z t

0
ψ∗i g(τ)e−λi(t−τ)dτ (1.130)

45

Finally, given the solution for eachzi(t), we computew = ∑2n
i=1ziφi , and extract the solutionu(t)

from the upper half ofw(t). We note that in the time domain, the final solutionw(t) must be real-
valued, even though bothφi andzi are, in general complex. It is easy to show that this is the case.
First, as noted earlier, we recall that the eigenvectorsφi come in complex conjugate pairs. Equation
1.129 implies thatzi also comes in conjugate pairs. We note that

w =
2n

∑
i=1

ziφi =
n

∑
i=1

[

ziφi + z̄i φ̄i
]

(1.131)

Noting thatziφi + z̄i φ̄i is a real number, we see that the total summation is also a real number.

Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading and response.

g(t) = g0eiωext (1.132)

zi(t) = zie
iωext (1.133)

(1.134)

whereωex is the frequency of the external excitation, andg0 is a spatial vector of loadings at that
frequency. Substituting these relations into equation 1.129, we obtain the equations for complex
modal frequency response

[−αi + iωβi]zi = ψ†
i g0 (1.135)

This can also be written as,

zi =
ψ†

i g0

−αi + iωβi
(1.136)

We note that the denominator will go to zero ifαi = iωβi , as is expected, in the case of resonance.
A standard approach16 of stabilizing the solution near resonances is to add a small amount of modal
damping. In state space, this corresponds to a adding a real-valued term inthe denominator of
equation 1.136. Thus, whenαi = iωβi this additional term would prevent a singular response. This
additional real term takes the form

zi =
ψ†

i g0

γi−αi + iωβi
(1.137)

whereγi is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is a superposition of modal
solutions.

w(ω) =
2n

∑
i=1

zi(ω)φi (1.138)

=
2n

∑
i=1

φiψ†
i g0

γi−αi + iωβi
(1.139)

46

1.13.2 Theory for modal superposition with saeigen

In the case of thesa eigensolution case, the eigenvalue problem is solved in a reduced space.
Recalling equation 1.117, and the transformationu = Tû, we can transform equation 1.117 into a
reduced space as

m̂¨̂u+ ĉ ˙̂u+ k̂û = f̂ (1.140)

wherem̂= TTMT, ĉ = TTCT, k̂ = TTKT, and f̂ = TT f . We note that the superscriptˆis used from
here on to denote the reduced space. If we then define

q̂ =

[

û
˙̂u

]

(1.141)

As was done for the full system for the QEVP method, we project this into the first order system8.

Âq̂− B̂ ˆ̇q = ˆg(t) (1.142)

where

Â =

[

0 I
−k̂ −ĉ

]

(1.143)

B̂ =

[

I 0
0 m̂

]

(1.144)

ĝ =

[

0
− f̂

]

(1.145)

Assuming a solution of the form ˆq = φ̂eλt , we arrive at the eigenvalue problem

Âφ̂ = λB̂φ̂ (1.146)

where we emphasize thatφ̂ is in the state-space form of the reduced problem. This eigenvalue
problem is solved with the DGGEV algorithm from LAPACK.

Once the eigenvalue problem 1.146 is solved, methods of the previous section can be applied for
solution of the scalar modal equations of the linearized system and projectionback to the reduced
space and finally to physical space.

We transform equation 1.142 into the frequency domain.

Âq̂− iωexB̂q̂ = ĝ(ω) (1.147)

8 also known as a state space solution

47

whereωex is the frequency of the external excitation. We assume that the solution can be represented
asq̂ = ∑2n

i=1 ẑi φ̂i . Substituting this into equation 1.147, and premultiplying by the left eigenvectors
ψ̂i , we obtain

α̂i ẑi− iβ̂iωexzi = ψ̂i
†ĝ (1.148)

whereα̂i = ψ̂i
†Âφ̂i andβ̂i = ψ̂i

†B̂φ̂i . This scalar equation, 1.148 can be solved for ˆzi . The solution
in reduced space, ˆq can be obtained from ˆq = ∑2n

i=1 ẑi φ̂i . Givenq̂, û can be extracted from the upper
half of q̂, as per equation 1.141. Finally, once ˆu is known, the original solutionu can be computed
from the relationu = Tû.

1.13.3 Discussion of Eigenvectors and Superposition

There are several important points to consider for the eigenvectors of this problem.

• The left and the right eigenvectors of the linearized system diagonalize thecharacteristic
matricesA andB. However, the eigenvectors donot diagonalize the matrices of the original
second order equation, 1.117. This means that the modal equations are coupled in the second
order system, and most simplifications for superposition are available only onthe linearized,
first order system.

• The left eigenvectors can be computed from the solution of the transposedequation. Thus,
for symmetric systems, left and right eigenvectors are identical.

• Eigenvectors of the linearized, nonsymmetric systems are often not normalized as expected.
In many cases the eigenvectors are not even completely orthogonal, evenwhen they may be
linearly independent.

1.13.4 Notes on Implementation

We now discuss some details regarding the implementation of the superposition algorithm. In par-
ticular, we consider the following questions with regard to the specific linearizations used in the
Anasazi and saeigen solvers

1. Can the state-space left and/or right eigenvectors be decomposed intoa vector in one half and
then that same vector multiplied by the eigenvalue in the other half?

2. Does the nonzero part of the state-space force vector occupy the top or bottom half of the
vector, and does it have a minus sign in front of it?

3. Under what circumstances are there relations between the left and right eigenvectors, such as
φle f t = φright or φle f t = (φright)

†?

The answers to any of these questions depends on the specific linearization of interest. Here we
examine only 2 linearizations, which have been considered earlier, and which will be repeated here
for convenience.

[

M 0
0 K

]

w = λ
[

0 M
−M −C

]

w (1.149)

48

[

0 I
−K −C

]

w = λ
[

I 0
0 M

]

w (1.150)

For the first question, we consider the right and left eigenvectors separately. For the right eigen-
vectors, a simple substitution reveals that the right eigenvector for equation1.149 can be decom-
posed as

w =

[

λu
u

]

(1.151)

whereas the second linearization (equation 1.150) has right eigenvectors that decompose in the
opposite way.

w =

[

u
λu

]

(1.152)

For the left eigenvectors, we write the equations corresponding to the lefteigenvectors as

[

wT
t wT

b

]

[

M 0
0 K

]

= λ
[

wT
t wT

b

]

[

0 M
−M −C

]

(1.153)

[

wT
t wT

b

]

[

0 I
−K −C

]

= λ
[

wT
t wT

b

]

[

I 0
0 M

]

w (1.154)

Multiplying out the terms in equation 1.153, we find that

wT
t M = λwT

b M (1.155)

which, for nonsingular M, yields
wt = λwb (1.156)

Thus, for the linearization in equation 1.149, the left eigenvectors can be decomposed in a similar
manner as the right eigenvectors when the mass matrix is nonsingular.

Multiplying out the terms in equation 1.154, we find that

wT
b K = λwT

t (1.157)

Or, for symmetric K,
Kwb = λwt (1.158)

Thus, for the linearization described by equation 1.150, the left eigenvectors cannot be decomposed
as the right eigenvectors were.

49

When forces are present in the system, we can rewrite equations 1.149 and 1.150 as
[

M 0
0 K

]

w−
[

0 M
−M −C

]

ẇ =

[

0
f

]

(1.159)

[

0 I
−K −C

]

w−
[

I 0
0 M

]

ẇ =

[

0
− f

]

(1.160)

Thus, for both linearizations 1.149 and 1.150 the state-space force vector has a zero top half, and
for linearization 1.149 the non-zero bottom half is multiplied by a negative sign.This answers the
second question above.

In order to answer the third question, we first consider the results givenin Table 1.1 of.11 In this
table, relationships between the left and right eigenvectors are given for various symmetry relations
of M, C, andK. In particular, propertyP7 from this table states that ifM, K are Hermitian,C =−C†

is skew-Hermitian, andM is positive definite, then ifx is a right eigenvector ofλ, thenx is also a
left eigenvector of−λ†. Since we only consider real-valued matrices, we expect the eigenvaluesof
the systems of interest to be purely imaginary, and thus−λ† = λ. Thus, propertyP7 simply states
that the left and right eigenvectors ofλ are the same. The results in this table define the left and
right eigenvectors as follows

λ2Mu+λCu+Ku= 0 (1.161)

w†λ2M +w†λC+w†K = 0 (1.162)

for right and left eigenvectorsu andw, respectively. By taking the conjugate transpose of equation
1.161, and noting thatC =−C† and−λ†, we obtain

u†λ2M +u†λC+u†K = 0 (1.163)

from which the resultP7 from Table 1.1 in11 is obtained.

We note that the results from Table 1.111 are with respect to the quadratic eigenvalue problem,
rather than the linearized versions. Since equations 1.161 and 1.162 couldbe linearized in a number
of ways, we would expect the conclusions to change when we go to the linearized problem. For
example, we again consider the case whenM, K are Hermitian,C =−C† is skew-Hermitian, andM
is positive definite. With these conditions onM, K, andC, we consider the linearizations given by
equations 1.149 and 1.150, which can be written concisely as

Au= λBu (1.164)

In the case of equation 1.149, we have thatA is symmetric, whereasB is skew-symmetric. In
the case of equation 1.150, we have thatA is nonsymmetric, andB is symmetric. If we take the
conjugate transpose of equation 1.164, we have the corresponding equation for the left eigenvectors

u†A† = u†λ†B† (1.165)

For linearization 1.149, we haveA† = A, B† =−B, andλ† =−λ. This gives

u†A = u†λB (1.166)

50

which implies that the left and right eigenvectors of linearization 1.149 coincide.

In the case of equation 1.150, we have thatA is nonsymmetric andB is symmetric. Thus, when
we take the conjugate of equation 1.164, we have

u†A† = u†λ†B† (1.167)

which, from symmetry conditions, reduces to

u†A† =−λu†B (1.168)

Thus, sinceA is nonsymmetric, no relation can be deduced between the left and right eigenvectors.

Similar conclusions can be drawn about a slightly different version of equation 1.149. If we
multiply the lower equation by−1, we obtain

[

M 0
0 −K

]

w = λ
[

0 M
M C

]

w (1.169)

or simply Aw = λBw. SinceC = −C†, the matrixB is nonsymmetric. Then, taking conjugate
transposes of both sides of equation 1.169, we see that we cannot drawconclusions about relations
between the left and right eigenvectors. This is the same problem seen in equation 1.168.

1.13.5 Complex Eigenvector Orthogonalization

When the eigenvalues of a system are redundant, the eigenvectors are not fully defined, but can
be arbitrary linear combinations. Some solvers, such as DGGEV don’t guarantee orthogonality of
these vectors. If such orthogonalization is required, the procedure in Figure 5 may be followed to
orthogonalize two eigenvectors with a common eigen value.

1.14 Component Mode Synthesis

Component mode synthesis in Salinas follows the Craig-Bampton method. In this method the model
is reduced using fixed interface modes and constraint modes. The method isoutlined in some detail
in Craig’s book, (Chapter 19 of 9). It is summarized below. Note that in Salinas we donot permit
any flexibility in the interface boundary options. Only fixed interface modes are supported.

CMS is typically applied to eigenvalue analysis, but it may be used in other solution methods
as well. Here we describe only the eigen analysis application. Within Salinas only a subset of the
standard CMS method is available. Salinas may reducean entire modelto a set of interface degrees
of freedom with the corresponding system matrices and transfer matrices.Salinas may also read in
a reduced system for solution within its framework.

CMS by these methods is always a linear model, with support for linear elasticityonly. The
reduction is based on an eigen reduction and linear superposition.

51

Given two modes with a common eigenvalue,λ, and with left and right
eigenvectors,ψi andφ j , we orthogonalize with respect to a matrixB.

ψ†
1Bφ1 = β11 (1.170)

ψ†
1Bφ2 = β12 (1.171)

ψ†
2Bφ1 = β21 (1.172)

We modifyψ2 andφ2 to ensure thatβ12 = β21 = 0. Let ψ̂ be the corrected
eigenvector.

ψ̂2 = ψ2− εψ1

We require that̂ψ†
2Bφ1 = 0. Then,

0 = ψ̂†
2Bφ1 (1.173)

= (ψ2− εψ1)
†Bφ1 (1.174)

= β21− εβ11 (1.175)

Thus,

ψ̂2 = ψ2−
β21

β11
ψ1 (1.176)

For the right eigenvector,

φ̂2 = φ2−
β12

β11
φ1 (1.177)

Figure 5. Complex EigenVector orthogonalization

52

1.14.1 Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degrees offreedom and generalized
degrees of freedom associated with internal modes of vibration. Consider the general eigenvalue
problem, with the system matrices partitioned into interface degrees of freedom,C, and the comple-
ment,V.

([

Kvv Kvc

Kcv Kcc

]

−λ
[

Mvv Mvc

Mcv Mcc

])[

uv

uc

]

= 0 (1.178)

Within Salinas we consider only the cases whereKvv is nonsingular. For the Craig-Bampton method
this implies that clamping the interface degrees of freedom removes all zero energy modes from the
structure.

The Craig-Bampton method reduces the physical degrees of freedom,u, to generalized coordi-
nates,p, using a set of preselected component modes,Ψ.

u = Ψp (1.179)

The component modes are selected as follows. We letΨ = [Φ ψ], whereΦ is a set of eigen
modes of the fixed interface, i.e.,

(Kvv−λMvv)Φ = 0

We retain only a subset of the modes in this system. In addition, we define the constraint modes,ψ,
as the static condensation of the problem. Each column ofψ is the solution of the static problem
where one interface degree of freedom has unit displacement, and all other interface degrees of
freedom are fixed. As shown in Craig,

ψ =−K−1
vv Kvc (1.180)

Note that since we require thatKvv be positive definite, all these solutions are well defined. The
matrix need be factored only once for all the modes.

Reduced System

As shown inCraig, the reduced system matrices can be written as follows.

µ =

[

µkk µkc

µck µcc

]

(1.181)

and,

κ =

[

κkk κkc

κck κcc

]

(1.182)

53

where,

µkk = Ikk

µkc = µT
ck = φT(Mvvψ+Mvc) (1.183)

= φTMvvψ+(Mcvφ)T

µcc = ψT(Mvvψ+Mvc)+Mcvψ+Mcc

= ψTMvvψ+(Mcvψ)T +Mcvψ+Mcc

and,

κkk = Λkk

κkc = κck = 0 (1.184)

κcc = Kcc−KcvK
−1
vv Kvc

= Kcc+Kcvψ

Note that the coupling between the modal and interface portion of the system matrix occurs only in
the mass matrix.

Parallelization Issues

The discussion above applies simply for direct solvers for which a systemmatrix is generated.
Parallelization issues are straightforward, and cover 3 main areas 1) computation of fixed interface
modes, 2) computation of constraint modes, and 3) matrix vector products.

1. Fixed Interface Modes.Since the process of computation of the eigensystem is independent
of the particular solver, there are no parallelization issues with respect to the eigenvalue prob-
lem. It is easily shown that parallel solvers result in the same eigen pairs as serial solvers.
There is no reason to expect that any finite precision issues would be moreimportant here
than in other modal based solutions.

2. Constraint Modes. The constraint modes are different, in that we do not currently have a
capability to compute enforced displacement in parallel. Recall that the constraint mode is the
displacement on space “V” that is computed when a unit displacement is applied to a single
degree of freedom on the interface. The serial equations are as follows.

[

Kvv Kvc

Kcv Kcc

][

uv

uc

]

=

[

0
R

]

(1.185)

Equation 1.180 uses the first of these only to solve foruv = ψ. For a domain decomposition
problem, the system matrices are written differently. We examine a two subdomainproblem
for clarity.

K1vv K1vc 0 0 CT
1v

K1cv K1cc 0 0 CT
1c

0 0 K2vv K2vc CT
2v

0 0 K2cv K2cc CT
2c

C1v C1c C2v C2c 0

u1v

u1c

u2v

u2c

µ

=

0
0
0
0
R

(1.186)

54

We extract only the first and third rows to arrive at,

[

K1vv 0 CT
1v

0 K2vv CT
2v

]

u1v

u2v

µ

=

[

f1
f2

]

(1.187)

Here fi = Kivcuic. This system is the standard system of equations that is solved by the domain
decomposition solver. The RHS is just the sum of the individual subdomain terms.

3. Matrix Vector Products. There are two primary issues involved in the matrix vector products
computed in parallel. First, there is the issue of duplication of some nodal quantities on the
subdomain interfaces. Second, there is the issue of multipoint constraint handling.

The products required in computing the reduced matrices of equations 1.181through 1.184
are all of the form,aTBc, wherea andc are vectors andB is a matrix. These are equivalent
to element by element summations like those used in computing the total energy. Thus, the
quantities must be summed on the interface. There is no need to divide by the number of
shared interface degrees of freedom.

The issue of multipoint constraints is a little trickier. The system is now divided using La-
grange multipliers,χ. Equation 1.178 may be so expressed.

Kvv Kvc CT
v

Kcv Kcc CT
c

Cv Cc 0

−λ

Mvv Mvc 0
Mcv Mcc 0
0 0

uv

uc

χ

= 0 (1.188)

whereχ are the Lagrange multipliers. But, we want these multipliers to be reduced out of the
system (i.e. they should be in the “V” space), so it is useful to reorder therows and columns
of this equation.

([

K̃vv K̃vc

K̃cv Kcc

]

−λ
[

M̃vv M̃vc

M̃cv Mcc

])[

ũv

uc

]

= 0 (1.189)

where,

K̃vv =

[

Kvv CT
v

Cv 0

]

,

K̃vc =

[

Kvc

CT
c

]

,

M̃vv =

[

Mvv 0
0 0

]

and,

ũv =

[

uv

χ

]

The matrix products are readily computed.

M̃vvũv = Mvvuv

M̃cvũv = Mcvuv

K̃cvũv = Kcvuv +CT
c χ

55

Thus, all of the mass products are simple – they do not require any specialLagrange multiplier
treatment, but the stiffness product may require some such contribution. Note that ifCc is zero
(as occurs if there is no constraint tied to the superelement interface) thenthe stiffness terms
are likewise unchanged.

4. Accuracy Issues. The accuracy of the null space is determined by the sum of two large
quantities (see equation 1.184). With iterative solvers, this may not be determined accurately
enough to insure stability of subsequent time history integration. Even unconditionally stable
integration schemes like the trapezoidal Newmark Beta methods can become unstable if the
stiffness matrix is indefinite.

Our experience has shown that inaccurate solves lead to corruption of the zero energy modes
with little impact on the remaining elastic modes. Thus, it seems reasonable to eliminate the
error in a post processing step. Two methods are used. The simpler method removes negative
modes from the reduced matrix without affecting the eigenvector basis of thematrix. How-
ever, if the eigenvectors can be accurately determined using geometric means, then a better
approach uses these known eigenvectors to correct both the eigenvalues and eigenvectors of
the reduced matrix.

To correct eigenvalues alone, we use the following algorithm, which is also detailed in section
2.26.

(a) We extract the interface portion of the reduced system matrix,κcc. Note that the portion
of the matrix associated with generalized degrees of freedom (i.e. the fixedinterface
modes) should be positive definite.

(b) We perform an eigen analysis of this matrix.

κcc = V∆VT

whereVj i is the eigenvector, and∆i is the eigenvalue of modei.

(c) We determine a corrected matrix,

κ̃cc = κcc−
negativemodes

∑
j

Vj∆ jV
T
j

To correct both eigenvaluesand eigenvectorsof the corrupted null space, the algorithm is a
little more involved. Details of the algorithm are presented in Figure 6. Most of the operations
in the algorithm operate on matrices of order 12 or smaller, so the computationalcost is fairly
minimal. The method does require very accurate determination of the zero energy modes.

1.15 Sensitivity Analysis

Within Salinas semi-analytic sensitivities may be computed for eigenvalues and eigenvectors. A
rudimentary capability for sensitivity to linear transient response is also available, but has not found
much practical value because the cost of the analysis is not significantly better than the cost of
computing the response using finite differences. For details of the transient analysis formulation,
see Alvin’s paper, 17.

56

1. Determine rigid body modes,R, of the interface. This is done geometrically.
These are normalized so thatRTR= I . Typically there are 6 such vectors.

2. Let,A = RTκccR.

3. Compute a error vector,U = κccR−RA. Note thatRTU = 0

4. Perform a QR factorization of the error vector.U = SB. Matrix Shas orthonor-
mal columns.

5. DefineQ = [R S]

6. Compute the norm of the matrix composed ofA andB.

µ=

∥

∥

∥

∥

[

A
B

]∥

∥

∥

∥

7. Compute the eigenspectrum ofA.

(A−λI)φa = 0

8. ComputeG = µ2I −λ2.

9. W = φa
√

GφT
a

10. D =−BW−1AW−1BT

11. define,

H =

(

A BT

B D

)

note that||H||= µ.

12. Compute the correction,
κ̃cc = κcc−QHQT

Figure 6. Eigenvalue and Eigenvector corrections of Craig-Bampton
reduced models

57

For eigenvalue sensitivity, we begin with linear eigenvalue equation.

(K−λM)φ = 0 (1.190)

The equation is differentiated with respect to a sensitivity parameter,p, and we consider the solution
for a single eigen pair.

(dK−dλiM−λidM)φi +(K−λiM)dφi = 0 (1.191)

φT
i (dK−dλiM−λdM)φi = 0 (1.192)

(1.193)

where we use the fact thatφT
i (K−λiM) is zero. We note thatφTMφ is the identity to solve for the

sensitivity.
dλi = φT

i dKφi−λiφT
i dMφi (1.194)

The method is “semi-analytic” in that the matricesdK anddM are found by finite differences but
then are applied to the analytic expression above. Because there are no linear solves required, the
solution is straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.

1. Perform nominal eigenvalue solution.

2. Loop through parameters P, and modify as needed.

3. On an element by element basis compute,

κ = (K +dK)φ
µ = (M +dM)φ

4. compute the sensitivity,dλ = φTκ−λφTµ.

This element by element method conserves memory and is efficient. It has been implemented
successfully for all parallel solvers. It has not been implemented for thesparsepaksolver when
MPCs are included in the model. The transformations required for multipoint constraints complicate
the element by element calculation.

Eigenvector sensitivity is more involved, and several approaches can be used. Nelson’s method
has been applied for years (see 18). In this approach, the eigenvector sensitivity may be written,

(K−λiM)dφi = fi (1.195)

where,
fi =−(dK−λidM−dλiM) (1.196)

Nelson’s method requires one linear solve per eigenvector sensitivity. Italso suffers from singu-
larity issues with redundant modes and from accuracy limitations when only part of the modes are
extracted. Other methods (such as Fox 19) can also be employed.

58

To obtain the best iterative performance, we consistently apply a preconditioned conjugate gra-
dient algorithm (PCG) to solve,

(K−λiM)wi = fi− (K−λiM)Φci (1.197)

Because this operator is indefinite, we redefine the problem as,

(ΨT(K−λiM)Ψ)xi = ψT(fi− (K−λiM)Φci) (1.198)

wherewi = Ψxi . Now the operator(ΨT(K−λiM)Ψ) is positive definite as long as modei and all
modes below modei are contained inΦ.

1.16 A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approaches for aposteriori error estima-
tion of eigen analysis. The first is an explicit error estimator,20,21 and the second is a quantity of
interest approach.22 The explicit approaches are described in chapter 2 of,23 and the quantity of
interest approaches are described in chapter 8 of the same book. However, since we are interested
in the eigenvalue problem, the methodologies are somewhat different than theapproaches described
in,23 though there are many similarities. Both the explicit and the quantity of interest approaches
have the same goal - to use the computed solution to compute upper and lower bounds on the dis-
cretization error for the eigenvalues and eigenvectors. A drawback to the explicit approach is that
unknown constants are present in the bounds, making final determination of the error more diffi-
cult. Because of this, explicit estimators are more frequently used as elementindicators to drive
adaptivity algorithms, rather than as error estimators. The quantity of interest approach avoids the
unknown constants, but is more work in terms of implementation.

1.16.1 Preliminaries

We seek a posteriori bounds on the error of the finite element solution of theeigenvalue problem for
elasticity

−ρλu = (Λ+µ)∇(∇ ·u)+µ∇2u = ∇ ·σ(u) (1.199)

or
A1(u) =−λA2(u) (1.200)

where whereA1(u) andA2(u) are the partial differential operators implied by equation 1.199,λ and
u are the unknown eigenvector and eigenvalue, andΛ andµ are the Laḿe elasticity constants. We
note that the right hand side of equation 1.199 can be written either in terms of displacement, as in
the first representation, or in terms of stress, as in the second representation of the right hand side
of the equation. The weak formulation of equation 1.199 is constructed by multiplying by a test
function, and integrating by parts, with homogeneous boundary conditions. This leads to the weak
formulation: Find(λ,u) ∈V×Rsuch that

B(u,v) = λM(u,v) ∀v∈V (1.201)

where
B(u,v) =

Z

Ω
σ(u)ε(v)dx (1.202)

59

and
M(u,v) =

Z

Ω
ρuvdx (1.203)

After defining a finite element discretization, this reduces to: Find(uh,λh) such that

Ku= λMu (1.204)

where(uh,λh) are the finite element approximations of the eigenvector and eigenvalue, andK, M,
are the assembled stiffness and mass matrices.

1.16.2 Approach I - explicit error estimator

In Larsen20 and Rannacher,21 two independently derived error estimates are presented for the
Laplace equation. While the two estimates differ slightly, both incorporate an unknown constant,
C, an element diameter term,he, and an element residual function,ρ̄. In what follows we extend
these estimates to the elasticity problem. The following two error estimates are given in20 and21

respectively. In what follows we use Larsen’s results (equation 1.205) exclusively.9

|λ−λh| ≤ cλCe,0

(

Ne

∑
e=1

h4
eρ̄(uh,λh)

2

) 1
2

(1.205)

|λ−λh| ≤C2

Ne

∑
e=1

h2
eρ̄(uh,λh)

2 (1.206)

wherehe is the element diameter, and

ρ̄(uh,λh)
2 =

Z

Ωe

(

|A1uh +λhA2uh|+Rf lux
)2

dΩe (1.207)

The first term on the right hand side is the interior element residual, which is the differential stiffness
operatorA1, defined in equation 1.200, applied to the computed element displacement combined
with the computed eigenvalue times the differential mass operatorA2, also defined in equation
1.200, applied to the computed element displacement. This term is computed by representing the
eigenvector as a summation

uh(x) =
N

∑
i=1

aiNi(x) (1.208)

whereai is the ith entry in the eigenvector, andNi(x) is the ith shape function, and then simply
applying the gradient and divergence operators from equation 1.199 tothe summation in equation
1.208.

We note that the quantityA1uh + λhA2uh is expressed in the strong form, and thus is not the
same asKuh−λhMuh, though both expressions are on the element level. The difference can be seen
by observing the first termA1uh

A1uh = ∇ ·σ(uh) (1.209)

9Equation 1.205 applies to elements with linear shape functions. The more general expression may be found in
equation 1.255 or the reference.

60

That is,A1uh is the divergence of the stress (which is computed from the finite element displacement
uh). This is not the same asKuh, sinceKuh is in the weak form, and has been evaluated by integrating
over the element against a test function. For example, if we consider linearelements, we have
A1uh = ∇ ·σ(uh) = 0, since the stress is constant over the element. On the other hand,Kuh is not
zero.

The second term is the boundary or flux residual.

Rf lux = (hevol(e))−1/2
[

Z

Γe

R2dΓe

]1/2

(1.210)

It has two different integrands depending on whether the face in question lies on a part of the
boundary where traction or pressure boundary conditions are applied, or whether it is an interior
face. When it lies on a boundary loaded face,

R= g−σi j n j (1.211)

whereg is the applied traction or pressure load. Note thatg = 0 for eigen problems. When the face
is an interior face,

R= [σi j n j] = σa
i j n j −σb

i j n j (1.212)

whereσa andσb are the stress tensors in the two adjacent elements, element ’a’ and element ’b’.
Note that because the integrand is squared, computing the flux residual in parallel requires parallel
communication.

We note the intuitive nature of the upper bound in equation 1.205. As the element sizehe tends
to zero, the right hand sides of the estimate goes to zero, due to the multiplication by the element
sizeshe. Keep in mind also that thēρ term includes an integral over a volume and that∑Ne

e=1‖const‖
is a constant.

There are two important issues in applying the results in Larsen’s reference to general elasticity
problems. The first of these is the extension to elasticity. The second is the extension to multiple
materials. These are covered in the following sections.

1.16.3 Extension of Estimators to Elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scaling the Laplace
equation to the elasticity problem. It addresses issues of both mass and stiffness scaling. A similar
development was provided by Clark Dohrmann. The development herein builds upon Larsen’s
development 20, and uses quantities defined there.

We consider the eigenvalue problem

−µ∆u− (Λ+µ)∇(∇ ·u) =−∇ ·σ(u) = θρu in Ω (1.213)

u = 0 on ∂Ω (1.214)

where the Laḿe constantsΛ andµ satisfy

Λ =
νE

(1+ν)(1−2ν)
, µ=

E
2(1+ν)

(1.215)

61

We define also a weak formulation: find(u,θ) ∈ V×R

a(u,v) = θb(u,v), ∀ v ∈ V (1.216)

b(u,u) = 1 (1.217)

where
a(u,v) =

Z

Ω
σ(u) · ε(v)dx (1.218)

and
b(u,v) =

Z

Ω
ρu ·vdx (1.219)

We follow the approach in the paper by M. Larson to derive a posteriori error estimators. We use
most of his notation.

Residual

The definition (3.7) for the residual becomes, on a triangleτ,

R(uh,θh)|τ =
1√ρ
|∇ ·σ(uh)+θhρuh|+

√

1
h vol(τ)

Z

∂τ\∂Ω

(

n ·
[

σ(uh)

2
√ρ

])2

(1.220)

Note that we have
R(uh,θh)≡ R(uh,θh,ρ,E,ν) (1.221)

and thatRsatisfies the following scaling properties

R(
uh√

α
,
θh

α
,αρ,E,ν) =

1
α

R(uh,θh,ρ,E,ν) (1.222)

R(uh,αθh,ρ,αE,ν) = αR(uh,θh,ρ,E,ν) (1.223)

Stability estimates

The equation (3.10) becomes

||D2+sv|| ≤Ce,s

√

√

√

√b

(

(−1
ρ

∇ ·σ
)1+s/2

(v),

(−1
ρ

∇ ·σ
)1+s/2

(v)

)

(1.224)

Note that

Λ+µ=
E

2(1+ν)(1−2ν)
,

µ
Λ+µ

= 1−2ν (1.225)

Then, we get

Ce,s = c
ρ(1+s)/2

(Λ+µ)(2+s)/2
(1.226)

Note that we have
Ce,s≡Ce,s(ρ,E,ν) (1.227)

62

and thatCe,s satisfies the following scaling properties

Ce,s(αρ,E,ν) = α(1+s)/2Ce,s(ρ,E,ν) (1.228)

Ce,s(ρ,αE,ν) =
1

α(2+s)/2
Ce,s(ρ,E,ν) (1.229)

A posteriori estimates

We make also the assumption (2.6) : there are 0≤ δ < 1 andh0 > 0 such that

max
θi 6∈Θ

∣

∣

∣

∣

θh−θ
θi−θ

∣

∣

∣

∣

≤ δ , ||QΘuh||2≤ δ (1.230)

for all meshes such that maxh(x) ≤ h0. Using p = 1, k = 2, β0 = 0, andβ1 = 1, the final estimate
on the eigenvalues becomes

θh−θ
θ
≤ c

1−δ
Ce,0
√

ρ||h2R(uh,θh)|| (1.231)

The estimates on the error in the discrete eigenvector are now

√

b(eΘ,eΘ) ≤ c
1−δ

Ce,0(1+max
θi 6∈Θ

θ
|θi−θ|)

√
ρ||h2R(uh,θh)|| (1.232)

√

a(eΘ,eΘ) ≤ c
√ρ

1−δ
(Cc +Ce,0max

θi 6∈Θ

θθ1/2
i

|θi−θ|hmax)||hR(uh,θh)|| (1.233)

whereCc is related to the coercivity constant

||Dv|| ≤Cc

√

a(v,v) (1.234)

In Ciarlet’s book(“The finite element method for elliptic problems”), the coercivity constant is given

a(v,v)≥ 2µ||Dv|| ⇒ Cc =
c√
2µ

(1.235)

1.16.4 Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit errorestimator to multiple
materials. We don’t believe that there are significant issues, and present the approach used in Salinas
here. There are two main constraints from the explicit error estimator formulations that must be
maintained.

1. The eigenvectors,uh must be unit normalized, i.e.‖uh‖= 1. This is important for mass scaling
so that a change of units does not affect the fractional error in the solution. It is an essential
part of both Larsen’s development and Ulrich’s extension to elasticity. See equation 1.217.

2. The extensions must maintain finite element consistency so that ash goes to zero there is no
inconsistency.

63

The second of these can be evaluated by examination of the residuals (as inequation 1.207).
Both the internal and the flux terms of the residuals are unaffected by most scaling operations
provided that materials remain constant within an element. Note that the evaluationof the flux
jump (equation 1.210) is unaffected by multiple materials since the normal component of stress
discontinuity should go to zero even for disparate materials.

Eigenvector normalization could be addressed in several ways. The eigenvectors computed in
Salinas are mass normalized, i.e.uTMu = I . We renormalize for error estimation in the following
manner.

1. A unitless mass matrix,̄M is computed using unit density material.

2. We compute a scale factor
mα = uTM̄u (1.236)

3. The eigenvectors are renormalized asu← u/
√

mα.

In addition to eigenvector renormalization, we move the evaluation of the scalingconstant,Ce,s,
from equation 1.226 inside the summation of equation 1.205. This maintains the proper scaling
with respect the element stiffness terms.

A recent paper by Bernardi and Verfurth24 has shown that explicit estimators can be used in
the presence of multiple materials. For static Laplace equation, he derived multiplicative constants
for the interior and flux contributions that make the multiplicative constant in front of the estimator
independent of jumps in material properties. In what follows we extend this approach to the eigen-
value problem, and to elasticity problems. We will follow the same approach as in that paper, i.e.
first constructing the lower bound, and then the upper bound. The proper choices for the coefficients
will result from the upper and lower bound estimates.

First, we note a commonly used form for explicit estimators.

‖uh−u‖α ≤ c∑
K

(

h‖Ri(uh,θh)‖2L2(K) +
√

h‖ [σn(uh)]

2
‖2L2(∂K)

) 1
2

(1.237)

whereRi(uh,θh) = |∇ ·σ(uh)+ θhρuh|, [σn(uh)] is the jump in stress across the element boundary
∂K, and‖ · ‖α is the energy norm. This estimator can be shown to give both an upper and a lower
bound on the error. As written, this estimator does not fully account for discontinuous material
properties, since the constantc in front of the estimator would depend on the jumps in material
properties.

We note that the estimator, written in this form, is essentially the same as the one proposed by
Larson. For example, by writing the boundary term as an integral of a constant function, scaled by
the volume of the element, then we can write equation 1.237 in the form

‖uh−u‖α ≤ c∑
K

(

‖hRi(uh,θh)+

√
h

Vol(K)

[σn(uh)]

2
‖2L2(K)

) 1
2

(1.238)

64

which is the same expression given by Larson in the case of linear elements.We note that this
estimator is in terms of the energy norm, whereas Larson gives his results in terms of theL2 norm.
This results in the difference of one power ofh in equation 1.238.

The approach in Bernardi is to replace the estimator in equation 1.237 by

‖uh−u‖α ≤ c∑
K

(

µK
2‖Ri(uh,θh)‖2L2(K) +µe‖

[σn(uh)]

2
‖2L2(∂K)

) 1
2

(1.239)

whereµK andµe are chosen in such a way that the resulting estimator is both an upper and lower
bound on the error, and the constantc is independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows

−∇ ·σ
ρ

= θu (1.240)

the corresponding bilinear forms as

a(u,v) =
Z

Ω

1
ρ

σ(u) · ε(v)dx

b(u,v) =
Z

Ω
u ·vdx

and the corresponding interior residual as

Ri(uh,θh) = |∇ ·σ(uh)

ρ
+θhuh| (1.241)

By dividing through byρ, we include the density in the energy norm. This will be important later
on when the coefficients in equation 1.239 are selected.

As in Bernardi, we need the following identities, which follow from equation 1.201

a(u−uh,v) = θb(u,v)−a(uh,v) (1.242)

θb(u,v)−a(uh,v) = ∑
K

Z

K

(

θu+
1
ρ

∇ ·σ(uh)

)

vdx−

∑
e

Z

e

[

1
ρ

σn(uh)

]

·vdτ (1.243)

where the summation∑e is over all edges (in 2D) or over all faces (in 3D). We also use equations
2.11 in Bernardi’s paper.

65

The lower bound will be considered first. We setwK = ΨKRi(uh,θh), whereΨK comes from
equation 2.11 in Bernardi’s paper. We will also make use of the following inequality for the bilinear
form

a(u,v)K ≤ ‖u‖α‖v‖α (1.244)

≤ αK‖u‖1‖v‖1 (1.245)

whereαK = CK
ρK

, andCK is the maximum eigenvalue of the material property matrix, andρK is the
density of the element.

For the interior part of the residual, we have

‖Ri(uh,θh)‖2L2(K) ≤ γ2
1

Z

K

[

1
ρ

∇ ·σ(uh)+θhuh

]

·wK dx

= −γ2
1

Z

K

1
ρ

σ(uh) · ε(wK)dx+ γ2
1

Z

K
θhuh ·wK

= γ2
1a(u−uh,wK)K− γ2

1θ
Z

K
u ·wK dx+ γ2

1θh

Z

K
uh ·wK dx

≤ γ2
1

[

‖u−uh‖α(K)γ2h−1
K α

1
2
K +‖θhuh−uθ‖L2(K)

]

× ‖Ri(uh,θh)‖L2(K) (1.246)

where we note that, sinceΨK is a bubble function, the boundary terms vanish in the integration by
parts on the second line of the above equation.

This implies that

‖Ri(uh,θh)‖α(K) ≤ γ2
1

[

‖u−uh‖α(K)γ2h−1
K α

1
2
K +‖θhuh−uθ‖L2(K)

]

or, multiplying through byµK ,

µK‖Ri(uh,θh)‖α(K) ≤ γ2
1

[

‖u−uh‖α(K)µKγ2h−1
K α

1
2
K +µK‖θhuh−uθ‖L2(K)

]

Now is where a critical assumption comes into play. We assume here that the computed
eigenvalueθh and eigenvectoruh are closer to the exact solutionθ and u than any other eigen-
value/eigenvector pair. This assumption is also made by Larson, in equation 2.6. With this assump-
tion, the term‖θhuh−uθ‖L2(K) is a higher order term compared with‖u−uh‖α(K), and thus will
decay to zero at a faster rate. This was also shown in the paper by Duran.25 Thus, we selectµK based

on the term‖u−uh‖L2(K) only. If we selectµK = hKα−
1
2

K then the right hand side is independent of
the jumps in material properties.

For the boundary term, we first choosewe = Ψe

[

1
ρ σn(uh)

]

, where againΨe comes from equa-

tion 2.11 in Bernardi. Then, using equation 1.246 we have

66

‖
[

1
ρ

σn(uh)

]

‖2L2(e) ≤ γ2
3

Z

e

[

1
ρ

σn(uh)

]

·wedτ

= γ2
3∑

K

Z

K

(

∇ · 1
ρ

σ(uh)+θhuh

)

·we− γ2
3∑

K

a(u−uh,we)

+ γ2
3∑

K

Z

K
(θu−θhuh) ·we

≤ cγ2
3

(

∑
K

γ5h
1
2
e‖Ri(uh,θh)‖L2(K) +∑

K

γ4h
− 1

2
e α

1
2
K‖u−uh‖α

+ γ5h
1
2
e ∑

K

‖uθ−uhθh‖L2(K)

)

‖
[

1
ρ

σn(uh)

]

‖L2(e)

≤ cγ2
3

[

∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α +∑

K

h
1
2
e‖θhuh−θu‖L2(K)

]

× ‖
[

1
ρ

σn(uh)

]

‖L2(e) (1.247)

where in the above equation,∑K denotes a summation over elements, but only those elements that
border the edgee. Also, in the previous estimate we collected constants involvingγ and combine
with the constantc, where possible.

This implies that

µ
1
2
e‖
[

1
ρ

σn(uh)

]

‖L2(e) ≤ cγ2
3µ

1
2
e

[

∑
K

h
− 1

2
e α

1
2
K‖u−uh‖α +∑

K

h
1
2
e‖θhuh−θu‖L2(K)

]

We see that if we chooseµe = hemax(αK1,αK2)
−1, where subscripts 1 and 2 denotes the two neigh-

boring elements that contain the edge or facee, then the right hand side (neglecting the higher order
term) is independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that will be needed along the
way.

Z

Ω

(

1
ρ

∇ ·σ(uh)+θu
)

· (w−wh) =−a(uh,w−wh)+

∑
e

[

1
ρ

σn(uh)

]

· (w−wh)+
Z

Ω
θu(w−wh)

(1.248)

67

This implies that

a(uh,w−wh) = ∑
e

[

1
ρ

σn(uh)

]

· (w−wh)

+
Z

Ω
θu · (w−wh)−

Z

Ω

(

1
ρ

∇ ·σ(uh)+θρu
)

· (w−wh) (1.249)

We will use the previous result in the upper bound on the energy norm of the error. Letw = u−uh.
Then

‖u−uh‖2α = a(u−uh,w) = a(u−uh,w−wh) (1.250)

where the last equality follows from Galerkin orthogonality. Breaking the previous expression into
element-wise quantities, and using equation 1.249, we obtain

‖u−uh‖2α = ∑
K

a(u−uh,w−wh) (1.251)

= ∑
K

a(u,w−wh)−∑
e

[

1
ρ

σn(uh)

]

· (w−wh)

− ∑
K

Z

K
θu · (w−wh)+∑

K

Z

K

(

∇ · 1
ρ

σ(uh)+θu
)

· (w−wh)

= ∑
K

Z

K

(

∇ · 1
ρ

σ(uh)+θu
)

·w−wh−∑
e

[

1
ρ

σn(uh)

]

· (w−wh)

≤ ∑
K

µK‖∇ ·
1
ρ

σ(uh)+θu‖L2(K)µ
−1
K ‖w−wh‖L2(K)

+ ∑
e

µ
1
2
e‖
[

1
ρ

σn(uh)

]

‖L2(e)µ
1
2
e‖w−wh‖L2(e)

≤
[

∑
K

µ2
K‖∇ ·

1
ρ

σ(uh)+θu‖2L2(K) +∑
e

µe‖
[

1
ρ

σn(uh)

]

‖2L2(e)

] 1
2

×
[

∑
K

µ−2
K ‖w−wh‖2L2(K) +∑

e
µ−1

e ‖w−wh‖2L2(e)

] 1
2

We now use equation 2.16 in Bernardi’s paper, which shows that

[

∑
K

µ−2
K ‖w−wh‖2L2(K) +∑

e
µ−1

e ‖w−wh‖2L2(e)

] 1
2

≤ c‖w‖α (1.252)

With this result, we have

‖u−uh‖α ≤ c

[

∑
K

µ2
K‖∇ ·

1
ρ

σ(uh)+θρu‖2L2(K) +∑
e

µe‖
[

1
ρ

σn(uh)

]

‖2L2(e)

] 1
2

(1.253)

68

which is the desired upper bound. We note that we would also obtain higher order terms in the
above expression by adding and subtracting terms of the kind

R

K θhuhdx, but the same argument
could be made as before.

1.16.5 Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the following steps. These
steps have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 1.16.4, equation 1.236.

2. Loop through all elements in the mesh. Compute the surface flux residuals for each face.
Share that residual vector at each surface gauss point with neighboring elements to deter-
mine the stress jump 1.212. Integrate over all faces (by summing at surface gauss points) to
determineRf lux (eq 1.210).

3. Loop through all elements in the mesh. At each interior gauss point of each element,

(a) Compute the interior residual,

a1 = |A1(uh)+λhA2(uh)|

(b) Compute the integrand,
(a1 +Rf lux)

2

Note thatRf lux is a constant over the element.

(c) Sum at gauss points to obtain the element contribution,

ρ̄2 =
Z

Ωe

(a1 +Rf lux)
2dΩe

≈
Ngauss

∑
i

wi(a1(xi)+Rf lux)
2

4. Compute the global contribution to the error. For elements with linear shape functions, this
may be written,

|λ−λh|
λ

≤ c

(

Ne

∑
e=1

(Ce,0h2
eρ̄)2

) 1
2

. (1.254)

Where (as shown in section 1.16.3, equation 1.226),

C2
e,0 =

ρ
(Λ+µ)2

andρ, Λ andµare the material density and the Lamé constants respectively. The more general
expression for elements of orderp is,

|λ−λh|
λ(p+1)/2

≤ c

(

Ne

∑
e=1

(Ce,p−1h(p+1)
e ρ̄)2

) 1
2

. (1.255)

We note that although the constant,c, in equation 1.254 is not known completely, it is usually
estimated to be of order 1. The constant depends on the details of the mesh, and in particular
on the minimum angle in the elements.

69

1.16.6 Approach II - quantity of interest estimator

In,22 an error estimator is derived for the elasticity equation, using the eigenvalues as the quantity
of interest. The estimate is of the form

ηλ
low = −η2

upp (1.256)

ηλ
upp = −η2

low (1.257)

whereηλ
low is a lower bound onλ− λh, andηλ

upp is an upper bound onλ− λh. Note that both
quantities are necessarily negative,10 since the computed eigenvalues are always larger than the
exact ones.

The quantitiesηupp andηlow are computed using the so-calledelement residual method. This
method involves solving a small linear system on each element to obtain an errorrepresentation
for that element, and then the element contributions are accumulated to obtain thetotal errors. The
element residual method involves solving the following linear system on each element

−B(ΦK ,v) = R(v,0)+
Z

∂K
gγ,Kvds ∀v∈WK (1.258)

or
Kba = f (1.259)

wherea is the vector of coefficients that represent the functionΦK . In other words,ΦK = ∑Nshapebubble
i=1 aiNi ,

whereNi is theith bubble shape function. The left hand sideKb is the element stiffness matrix, but
evaluated using bubble functions rather than the standard element shape functions. This is necessary
since the standard element stiffness matrix is singular and thus equation 1.259would otherwise not
be solvable. The right hand side consists of two terms, an interior residualterm for the interior of the
element, and a stress jump term on the element boundary. This is similar to the interior and bound-
ary residual terms that were encountered in the explicit error estimator, though the exact formulas
for these terms are somewhat different. The first term is simply

R(v,0) = B(uh,v)−λhM(uh,v) (1.260)

Equation 1.260 can be most efficiently evaluated using the following method.26 We evaluate the
first term first.

B(uh,v) =
Z

K
BT

bubbleσ(x)dx (1.261)

whereBT
bubble is the standard ’B’ matrix, or the matrix of derivatives of the element shape functions,

except that it is using the bubble shape functions rather than the standardshape functions. Note that
the result of equation 1.261 is a vector of length 3xNshapebubble, whereNshapebubble is the number
of bubble shape functions. We note that the routine ForceFromStress in IsoSolid.C already performs
the computation needed for equation 1.261, with the only change being the useof the matrixBT

bubble
rather than the standardBT , and thus this code could be re-used.

10for consistent mass only.

70

The second term can be evaluated in a similar way.

M(uh,v) =
Z

K
uh(x)v(x)dx (1.262)

Note thatuh(x) is a known function. This term is also a vector of length 3xNshapebubble. The three
entries corresponding to theith bubble shape function are as follows

Z

K
u1h(x)φi(x)dx (1.263)

Z

K
u2h(x)φi(x)dx (1.264)

Z

K
u3h(x)φi(x)dx (1.265)

(1.266)

whereu1h, u2h, andu3h are the x, y, and z components ofuh, andφi is theith bubble shape function.

The boundary term consists of the following.gγ,K is simply the traction on the element boundary,
or

Z

∂K
gγ,Kvds =

Z

∂K
[σi j n j]vds (1.267)

where[σi j n j] denotes theaveragedstress on the element faces. For two adjacent elements, element
’a’ and element ’b’, it is the average of their stress traction vectors.

[σi j n j] =
1
2

(

σa
i j n j +σb

i j n j

)

(1.268)

Again, the test (shape) function in this case, ’v’ is the bubble function rather than the standard
element shape function. We note that the boundary integral term in equation1.258 and equation
1.267 is over all faces of the element in question. Thus, if the implementation of this term proceeds
one face at a time, then there will be a nodal summation step to get the complete right hand side
vector corresponding to the boundary integral term. We could also write thisterm as

Z

∂K
gγ,Kvds=

Nf aces

∑
i=1

Z

∂Ki

gγ,Kvds (1.269)

where∂Ki is the ith face of element ’K’. Note that the test functions,v become the element shape
functions when restricted to an element. Thus, for a given element bubble shape functionφbubble,
and a given face, we can write the previous equation as

Z

∂Ki

gγ,Kφbubbleds (1.270)

Note thatgγ,K is a 3-vector, and so for a given bubble shape function, and a given face,
R

∂Ki
gγ,Kφbubbleds

is also a 3-vector. We then take this 3-vector and project it into the element right hand side. After
looping through all faces and all bubble shape functions, we end up with avector that is of length
3∗Nshapebubble.

71

Once the linear systems 1.259 are solved on each element, the upper bound,ηup from equation
1.257 can be computed as follows

ηupp =
√

∑
K

B(ΦK ,ΦK) (1.271)

This equation can also be written as follows. If we represent the functionΦK as a summation of
coefficients multiplied by the bubble shape functions,

ΦK =
Nshapebubble

∑
i=1

aiNi (1.272)

then
ηupp =

√

∑
K

B(ΦK ,ΦK) =
√

∑
K

aTKba (1.273)

Finally, using equation 1.257, we have an upper bound on the error in the eigenvalue.

A lower bound on the error in the eigenvalue can also be computed. This is described in detail
in,22 and we summarize here.

First, we define a functionχ ∈V, which we will define shortly. Once the functionχ is defined,
the lower bound can be computed as follows

ηlow =
|Rp(χ,0)|
√

B(χ,χ)
(1.274)

The quantities in both the numerator and denominator can be computed by loopingthrough all
elements and computing the corresponding element-wise quantities (using equation 1.260), and
then summing globally.

Summarizing, in order to implement the quantity of interest approach for eigenvalue error esti-
mation, we have the following steps. These must be carried out for each eigenvalue.

1. Loop over all elements. Construct the bubble stiffness matrix,Kb in equation 1.259, in the
same way that standard element stiffness matrix is constructed, but using thebubble shape
functions.

2. Loop over all elements. Construct the right hand side of equation 1.259.This consists of the
interior part, equation 1.260, and the boundary part, equation 1.267.

3. Loop over all elements and solve the linear systems 1.259, to obtain the error functionsΦK .

4. Compute the upper bound on the error in the eigenvalue using equation 1.273.

5. Compute the lower bound on the error in the eigenvalue using equation 1.274.

1.17 Nonlinear Distributed Damping using Modal Masing Formulation

This provides a method for implementing nonlinear distributed damping into a subsystem with a
nonlinear transient solution. This is a method developed to model the nonlineardamping response

72

of a subsystem. It implements the damping in a nonlinear manner with the use of an internal force
term. The damping is modeled by an Iwan model and distributed to the subsystem by a modal
expansion. This method augments the internal force vector through a modalmasing formulation.

1.17.1 Subsystem Distributed Damping Formulation with Iwan Model

Given a system that contains a subsystem exhibiting nonlinear damping behavior, the equation of
motion for the subsystem, denoted byB, can be written in typical finite element form as:

MBüB +CBu̇B +KBuB = FB +FJ
B, (1.275)

whereMB, CB, KB are the mass, damping, and stiffness matrices of the subsystemB derived from a
low-load response,uB is the discretized nodal displacements, a superposed dot denotes time differ-
entiation,FB represents the external forces, andFJ

B is a distribution of internal nonlinear damping
forces to be discussed later.

A modal expansion is used to distribute the damping to the subsystem; therefore, the problem is
formulated in modal coordinates. LetΦB be the matrix whose columns are the eigenvectors of the
(MB, KB) system and define modal coordinates in subsystem bodyB

uB = ΦBqB, (1.276)

whereqB is a vector of modal coordinates. It is assumed that the eigenvectors are mass normalized.
Pre-multiplying Eq. (1.275), byΦΦΦT

B, yields

[ΦΦΦT
BMBΦΦΦB]q̈B +[ΦΦΦT

BCBΦΦΦB]q̇B +[ΦΦΦT
BKBΦΦΦB]qB = ΦΦΦT

BFB +ΦΦΦT
BFJ

B, (1.277)

In order to derive a nonlinear distributed damping system, the force termΦΦΦT
BFJ

B is modeled by
a four parameter Iwan model:27,28

ΦΦΦT
BFJ

B = FJ
ΦB =−

Z ∞

0
diag(ρ(φ))[q(t)−βββ(t,φ)]dφ, (1.278)

whereρ is the population density of Jenkins elements of strengthφ (not to be confused with the
eigenvectors), andβ(t,φ) is the currentmodaldisplacements of the sliders in the Iwan model.28

This force term is actually solved in a discretized form with the integration fromzero toφmax:28

FJ
ΦB =−

N

∑
m=1

Fm(t)−Fδ(t)+K0q(t), (1.279)

where the integral in Eq. (1.278) is numerically integrated with intervals,∆φm, such that,

N

∑
m=1

∆φm = φmax, (1.280)

with φm being the midpoint of each interval∆φm in the numerical integration. The, term,Fm(t) is
derived as:28

Fm(t) =

R
φ2+χ

r,m −φ2+χ
l ,m

2+χ sgn[q(t)−βββ(t)] if ‖ q(t)−βββ(t) ‖= φm

R
φ1+χ

r,m −φ1+χ
l ,m

1+χ [q(t)−βββ(t)] if ‖ q(t)−βββ(t) ‖< φm

(1.281)

73

with φr,m andφl ,m being the right and left side of each subinterval,∆φm, andRandχ are a parameters
of the Iwan model. The term,Fδ(t), is found:28

Fδ(t) =

{

S[q(t)−βββ(t)] if [q(t)−βββ(t)] < φm

Sφmaxsgn[q(t)−βββ(t)] otherwise
(1.282)

whereS is an Iwan parameter. The final term,K0q(t) in Eq. (1.279), is an elastic restoring force in
the Iwan model that is included in theFm(t) term, but also in the overall subsystem stiffness matrix,
KB. Therefore, it needs to be subtracted, so as not to include the elastic force twice. The termK0

is the stiffness of the Iwan model under small applied loads (where slip is infinitesimal). This is
calculated from the Iwan parameters as

K0 =
Rφχ+1

max

χ+1
+S=

Rφχ+1
max

χ+1
(1+β) (1.283)

Transferring back to physical degrees of freedom provides the following for the equation of
motion:

MBüB +CBu̇B +KBuB = FB +ΦΦΦ−T
B FJ

ΦB (1.284)

To avoid the possibility of an ill-conditioned and difficult pseudo-inversions, recognize thatMBΦΦΦBBB =
ΦΦΦ−T

B , yielding:
MBüB +CBu̇B +KBuB = FB +MBΦΦΦBBBFJ

ΦB (1.285)

Given the above EOM, a typical nonlinear analysis can be performed, recognizing that the force
term MBΦΦΦBBBFJ

ΦB is a function of the displacement. However, care must be exercised in the im-
plementation, as the modal displacement will need to be passed to the Iwan function for updating
internal forces.

1.17.2 Subsystem Distributed Damping Formulation with a Linear Damper

It is possible to derive the same basic formulation as above, but for a lineardamping. This provides
a check into the formulation as the results should be the same as a model with a modal damping
parameter.

The only required change from the above derivation is in the nonlinear internal force term,FJ
ΦB.

This term will need to be appropriate for a viscous damper; thus, a functionof the modal velocity.
A formulation can be found as the following:

FJ
ΦB = FJ

ΦBi =−2ςiωi q̇i , (1.286)

where subscripti represents the mode,ςi is the damping ratio for modei, ωi is the frequency for
modei, andα̇ is the modal velocity. Here I am trying to see how many subscripts I can possibly
add.

1.17.3 Reduced Model

In order to reduce computational demand, a reduced set of eigenvectors (ΦΦΦR
B) can be calculated for

the subsystem and used in place of the total subsystem eigenvector,ΦΦΦB.

74

1.17.4 Full System Model

Implementation of the full system with nodal degrees of freedom,u, is accomplished with a typical
projection matrix,P, from the full system to the subsystem.

uB = Pu (1.287)

Thus, the EOM, now becomes

Mü+Cu̇+Ku = F+PTMBΦΦΦRRR
BBBFJ

ΦB (1.288)

75

2 Elements

Structural dynamics is a rich and extensive field. Finite element tools such asSalinashave been
used for decades to describe and analyze a variety of structures. Thesame tools are applied to
large civil structures (such as bridges and towers), to machines, and tomicron sized structures. This
has necessarily led to a wealth of different element libraries. Details of these element libraries are
presented in this section. For information on the solution procedures that tie these elements together,
please refer to section 1.

2.1 Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in the code on ele-
ments with linear shape functions (such as hex8 or wedge6). This discussion addresses calculation
of relevant operators on the shape functions and eventual integration into the stiffness matrices.11

2.1.1 Derivation

We begin with the separation of the strain into deviatoric and dilitational parts so that their contri-
butions to the stiffness matrix can be computed separately. This is part of the strategy for avoiding
over stiffness with respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is:

p =
1
2
(2Gε+λtr(ε)I)• ε (2.1)

with some re-arrangement, this can be shown to be:

p = Gε̂• ε̂+
1
2

β(tr(ε))2 (2.2)

whereε̂ = ε− 1
3tr(ε)I .

Having separated the part of the strain energy density due to deviatoric part of the strain from
the part of the strain energy density due to the dilitational part of the strain, we shall integrate them
separately. First, we must determine how to express the strains in terms of nodal degrees of freedom.

We know that the deformation field is linear in the nodal degrees of freedomand that the dis-
placement gradient is also, so we should be able to expand each of those quantities as follows.

Let Pj be the node associated with thejthe degree of freedom and letsj be the direction associ-
ated with that degree of freedom. The displacement field is:

~u(x) = ÑPj (x)u
Pj
sj~esj (2.3)

where summation takes place over the degree of freedomj.

11This development is based on work by Dan Segalman.

76

Similarly, the displacement gradient is:

~∇~u(x) = (
∂

∂xk
)ÑPj (x)u

Pj
sj~esj~ek (2.4)

We now define the shape deformation tensorW j corresponding to thej th nodal degree of
freedom:

W j(x) = (
∂

∂u
Pj
sj

)~∇~u(x) (2.5)

which, with Equation 2.4 yields:

W j(x) = (
∂

∂xk
)ÑPj (x)~esj~ek (2.6)

The symmetric part of this tensor is:

Sj(x) =
1
2
(W j(x)+W j(x)T) (2.7)

and the strain tensor is
ε(x) = Sj(x)u

Pj
sj (2.8)

From the above, we construct the dilitational and deviatoric portions of the strain in terms of the
nodal displacement components:

tr(ε(x)) = b j(x)u
Pj
sj (2.9)

where
b j(x) = tr(Sj(x)) (2.10)

Similarly,

ε̂(x) = B̂ j(x)u
Pj
sj (2.11)

where

B̂ j(x) = Sj(x)− 1
3

b j(x)I (2.12)

The stiffness matrix is evaluated using the constitutive equation (Equation 2.2)and the following
definition:

Km,n =
∂2

∂uPm
sm ∂uPn

sn

Z

volume
p(x)dV(x) (2.13)

This plus our expressions for strain in terms of the nodal degrees of freedom yield us the following
expression for element stiffness:

Km,n = G
Z

volume
(B̂m(x))T • B̂n(x)dV(x)

+β
Z

volume
bm(x)bn(x)dV(x) (2.14)

77

2.2 Implementation

From the above it is seen that once the shape deformation tensorW j is found, the rest of the cal-
culation follows naturally. The calculation of the components of that tensor is presented here. The
components ofW j are

W j
mn = ~em ·W j ·~en (2.15)

= δm,sj (
∂

∂xn
)ÑPj (x) (2.16)

The partial derivative(∂
∂xn

)ÑPj (x) is calculated from

(
∂

∂xn
)ÑPj (x(ξ)) = (

∂
∂ξα

)NPj (ξ)J−1
α,n (2.17)

where

Jm,γ =
∂

∂ξγ
xm(ξ) (2.18)

and
N(ξ) = Ñ(x(ξ)) (2.19)

The issue of selective integration in the elements is discussed in Appendix B. The formulation
discussed there applies to all the isoparametric solid elements.

2.3 Mean Quadrature Element with Selective Deviatoric Control

In this section we discuss the implementation of the mean quadrature element in Salinas. This work
is a result of a collaboration with Sam Key.29

We first examine the element stiffness matrix resulting from a fully integrated element

K =
Z

V
BTCBdV (2.20)

whereK is the stiffness matrix,V is the volume of the element,B is the standard strain-displacement
matrix, andC is the matrix of material constants. When implemented in the standard way, this
element behaves very poorly for nearly-incompressible materials, and is too stiff even on materials
with moderate Poisson ratios.

A standard approach for softening the element formulation in the presenceof nearly incom-
pressible materials is to replace the matrixB with its mean quadrature counterpart,B̃,

B̃ =
Z

V
BdV (2.21)

This alleviates problems associated with nearly incompressible materials, but theresulting stiffness
matrix exhibits hourglass modes. These modes can be removed either throughhourglass control
methods, or by adding in some of the missing deviatoric components. In the approach described

78

here, we use the latter method. We note that bothB andB̃ can be decomposed into their volumetric
and deviatoric components, i.e.

B̃ = B̃V + B̃D (2.22)

B = BV +BD

With these decompositions, we define

B̂ = B̃V + B̃D +sd(BD− B̃D) (2.23)

wheresd is a parameter between 0 and 1. Whensd= 0, the element corresponds to a mean quadra-
ture element. Whensd= 1, the element corresponds to mean quadrature on the volumetric part, but
with full integration on the deviatoric component.

With this new definition ofB̂, we can define the stiffness matrix for this element as

K =
Z

V
B̂TCB̂dV (2.24)

2.4 Bubble Element

Low order finite elements tend to behave poorly when subjected to bending loads. The bubble
hex elements have been shown to give much better bending performance, without increasing the
number of degrees of freedom in the element,30,31.32 In this section we give a brief review of the
theory behind this element.

The representation of displacement at the element level in the standard hex8 element is

u =
8

∑
i=1

uiNi(ξ) = uTN (2.25)

whereu is the element displacement,Ni is theith shape function,N is the vector of shape functions,
andξ is the vector of reference element coordinates. The bubble element augments the standard
finite element basis functions with additional bubble functions. The representation of displacement
at the element level for the bubble element takes the form

u =
8

∑
i=1

uiNi(ξ)+
3

∑
i=1

aiPi(ξ) = uTN+aTP (2.26)

wherePi(ξ) are the bubble functions,P is the vector of bubble functions,ai are the unknown coeffi-
cients for the bubble functions, anda is the vector of unknown coefficients for the bubble functions.
The corresponding expression for element strain is given as

ε = Bu+Ga (2.27)

whereB andG are the appropriate derivatives of the shape functions. We note thatB is a 6x24
matrix, whereasG is a 6x9 matrix. See,3031 for the exact forms of these matrices.

79

The corresponding element stiffness and load terms can be assembled into a2x2 system
[

K ET

E H

][

u
a

]

=

[

f
0

]

(2.28)

whereK =
R

eBTCBdV is the 24x24 element stiffness matrix corresponding to standard element
shape functions,H =

R

eGTCGdV is the 9x9 stiffness matrix corresponding to bubble shape func-
tions,E =

R

eGTCBdV is the 9x24 matrix corresponding to products of bubble and standard shape
functions, andf is the element load vector. Since the bubble unknownsa are local to each element,
they can be condensed out, which yields a modified element stiffness matrix

K̂ = K−ETH−1E (2.29)

Note thatK is still a 24x24 matrix.

It has been shown that the bubble hex element does not pass the patch test unless a correction
is made to the element formulation. There are two options for this correction. The first30 involves
evaluating the matrix G at the centroid of the element rather than at the Gauss points. The second
approach31 consists of subtracting from the matrixG its average value. Both approaches yield an
element that passes the patch test, and thus convergence is assured.

In Salinas, we have taken the second approach. A newG matrix is defined,Ĝ, that is constructed
by subtracting the average value ofG from G.

Ĝ = G− 1
Ve

Z

e
GdV (2.30)

Then, we simply replaceG with Ĝ in the above equations. We note that, in the implementation of
this element in Salinas, it was found that after implementing the correction described above, the
element passed the patch test. Without the correction, the element failed all ofthe patch tests.

With the bubble element, the stresses vary through the thickness. In order tocompute the stresses
at any particular point within the element, we need to recover the strains. These are given in equation
2.27. However, an additional task is to compute the bubble degrees of freedom, since only the
displacement degrees of freedom are calculated during the solution procedure. From equation 2.28,
the bubble degrees of freedom can be computed from the displacements as

a = H−1Eu (2.31)

whereu is the element displacement vector. Givena, we can then compute the strains from equation
2.27, and then the stresses can be computed in the standard way.

2.4.1 Nonlinear analysis with bubble element

The bubble element can be used in nonlinear analysis. A brief description of the procedure is given
in.31 More details will be given here. In,31 an assumed strain approach was used rather than the
assumed displacement method, but the two reduce to the same procedure.

We will give the necessary modifications for a nonlinear static analysis. Theequations that need
to be satisfied are

F int(u,α) = Fext (2.32)

80

More specifically, this breaks down to two separate equations

F int
1 =

Z

Ω
BTσdΩ = Fext (2.33)

F int
2 =

Z

Ω
GTσdΩ = 0 (2.34)

(2.35)

The stress is given byσ = Cε, whereε is given by equation 2.27.

Next, we expand the expressions for internal force in a Taylor series,and truncate after the first
two terms. In the following, the quantitiesu andα denote the unknowns, andû andα̂ represent the
current iterates of displacement and bubble unknowns.

F int
1 (u,α)≈ Fint

1 (û, α̂)+
∂Fint

1

∂u
u+

∂Fint
1

∂α
α (2.36)

F int
2 (u,α)≈ Fint

2 (û, α̂)+
∂Fint

2

∂u
u+

∂Fint
2

∂α
α (2.37)

(2.38)

We define

KT =
∂F int

1

∂u
(2.39)

ET =
∂F int

1

∂α
(2.40)

HT =
∂F int

2

∂α
(2.41)

(2.42)

where the subscriptT denotes tangent matrices that are computed at the current configuration.Using
these definitions and substituting equations 2.38 into equations 2.35, we obtain

[

KT (ET)T

ET HT

][

∆u
∆a

]

=

[

Resu
Resα

]

(2.43)

where

Resu = Fext−F int
1 (û, α̂) (2.44)

Resα =−F int
2 (û, α̂) (2.45)

(2.46)

More detailed expressions for the tangent matrices will now be given. We note that, for example,
in equation 2.35, bothσ and the matrixB depend on displacementu and bubble unknownsα. Thus,

81

the chain rule is needed to compute the following expressions.

KT =
∂

R

Ω BTσdΩ
∂u

=
Z

Ω

∂BT

∂u
σdΩ+

Z

Ω
BT ∂σ

∂u
dΩ (2.47)

ET =
∂

R

Ω BTσdΩ
∂α

=
Z

Ω

∂BT

∂α
σdΩ+

Z

Ω
BT ∂σ

∂α
dΩ (2.48)

HT =
∂

R

Ω GTσdΩ
∂α

=
Z

Ω

∂GT

∂α
σdΩ+

Z

Ω
GT ∂σ

∂α
dΩ (2.49)

(2.50)

In each of these expressions, the first term on the right hand side represents a geometric stiffness
term, whereas the second term represents the material stiffness term. Next,in order to evaluate
terms like∂BT

∂u and ∂BT

∂α , we use the deformation gradient. We use the notationx = u+X, wherex is
the current configuration,u is the displacement, andX is the initial configuration.

e=
1
2
(FTF− I) (2.51)

B =
∂ε
∂u

= F
∂F
∂u

(2.52)

∂B
∂u

= F
∂2F
∂u2 +

∂F
∂u

∂F
∂u

=
∂F
∂u

∂F
∂u

(2.53)

(2.54)

where the last identity follows from the fact that∂2F
∂u2 = 0. This can be seen from the following

relations.

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+αT DP
DX

(2.55)

∂F
∂u

=
DN
DX

(2.56)

∂2F
∂u2 = 0 (2.57)

(2.58)

Similarly, we can construct these equations for the bubble functions

e=
1
2
(FTF− I) (2.59)

G =
∂ε
∂α

= F
∂F
∂α

(2.60)

∂G
∂α

= F
∂2F
∂α2 +

∂F
∂α

∂F
∂α

=
∂F
∂α

∂F
∂α

(2.61)

(2.62)

82

where similar identities have been used

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+αT DP
DX

(2.63)

∂F
∂α

=
DP
DX

(2.64)

∂2F
∂α2 = 0 (2.65)

(2.66)

For the cross terms, we have

e=
1
2
(FTF− I) (2.67)

B =
∂ε
∂u

= F
∂F
∂u

(2.68)

∂B
∂α

= F
∂2F

∂u∂α
+

∂F
∂u

∂F
∂α

=
∂F
∂u

∂F
∂α

(2.69)

(2.70)

where, again we justify that the second term vanishes as follows

F =
∂x
∂X

= I +
∂u
∂X

= I +uT DN
DX

+αT DP
DX

(2.71)

∂F
∂u

=
DN
DX

(2.72)

∂2F
∂u∂α

= 0 (2.73)

(2.74)

In a similar manner as was done for the linear element, the bubble degrees of freedom can be
condensed from equations 2.46. This results in the equation

(KT −ET
T H−1

T ET)∆u = Resu−ET
TH−1

T Resα (2.75)

Thus, the full tangent operator for the bubble element is given by

KT −ET
T H−1

T ET (2.76)

the internal force is given by
F int

1 (û, α̂)−ET
T H−1

T F int
2 (û, α̂) (2.77)

and the residual is given by two terms

Resu−ET
T H−1

T Resα (2.78)

These equations fully describe the nonlinear analysis of the bubble element.

83

2.5 Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functions) such as the Hex20 and
Tet10 are naturally soft and do not need to be softened by positive values of G andβ (see section
2.1 and Appendix B for definitions of G andβ.) Therefore, G=0 andβ=0 are good values for such
elements.

2.5.1 Shape Functions and Gauss Points

The shape functions and gauss points for Hex20 elements follow very standard ordering. The nodal
ordering (and shape functions) follows the ordering in the exodusII manual. Gauss points are input
and output using the ordering developed by Thompson 33. Internally, thegauss points are located
at element coordinates (and order) shown in Table 3.

2.6 Wedge elements

2.6.1 Shape Functions

The shape functions are given explicitly inHughes, (ref. 34). These are provided as bi-linear
polynomials inr, s, t, andξ, wherer ands are independent coordinates of the triangular cross-
subsections,t = 1− r − s, andξ is the coordinate in the third direction. For our purposes, it is
necessary to expand the shape functions as polynomials inr, s, andξ:

Nk = Ak
0 +Ak

1r +Ak
2s+Ak

3ξ+Ak
4rξ+Ak

5sξ (2.79)

The shape functions and the coefficients are given in the following table:

Shape Function A0 A1 A2 A3 A4 A5

N1 = 1
2(1−ξ)r 1

2 -1
2

N2 = 1
2(1−ξ)s 1

2 −1
2

N3 = 1
2(1−ξ)t 1

2 -1
2 -1

2 -1
2

1
2

1
2

N4 = 1
2(1+ξ)r 1

2
1
2

N5 = 1
2(1+ξ)s 1

2
1
2

N6 = 1
2(1+ξ)t 1

2 -1
2 -1

2
1
2 -1

2 -1
2

2.6.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicatedin the following table:

84

number X Y Z
1 0 0 0
2 0 0 A
3 0 0 -A
4 0 A 0
5 0 A A
6 0 A -A
7 0 -A 0
8 0 -A A
9 0 -A -A
10 A 0 0
11 A 0 A
12 A 0 -A
13 A A 0
14 A A A
15 A A -A
16 A -A 0
17 A -A A
18 A -A -A
19 -A 0 0
20 -A 0 A
21 -A 0 -A
22 -A A 0
23 -A A A
24 -A A -A
25 -A -A 0
26 -A -A A
27 -A -A -A

Table 3. Hex20 Gauss Point Locations. The constant
A=0.77459666924148. The unit element is 2x2x2, with a volume of
8 cubic units.

85

No. Points r s ξ
1 1/3 1/3 0
2 1/3 1/3 -1/

√
3

1/3 1/3 1/
√

3
6 1/6 1/6 -1/

√
3

1/3 1/6 -1/
√

3
1/6 1/3 -1/

√
3

1/6 1/6 1/
√

3
1/3 1/6 1/

√
3

1/6 1/3 1/
√

3

2.7 Tet10 elements

The 4-point integration is given inHughes(see 35), and the 16-point integration is given inJinyun.
It is believed that a higher order integration is needed for the mass matrix thanthe stiffness matrix
and that the reason is that the mass matrix involves higher degree polynomials.(Using 4-point
integration to try to estimate the mass matrix of a natural element resulted in a 30 by 30mass matrix
with several zero eigenvalues.)

2.8 Calculating shape functions and gradients of the Hex20 element

Using a 3D Pascal’s triangle, we can construct 20 polynomials of the form,

pi = εr i
1 εsi

2 εti
3

where ther i , si andti (i = 1, . . . ,20) are integers satisfying,

r2
i +s2

i + t2
i ≤ 7

These terms may be constructed with the following loop.12

count=0
for I = 0 to 7

for J = 0 to 7
for K = 0 to 7

if Iˆ2 + Jˆ2 + Kˆ2 <= 7
count = count + 1

r(count) = I
s(count) = J
t(count) = K

endif
endfor

endfor
endfor

12 This is how therst matrix in Hex20.C was created.

86

We require 20 shape functionsNi , with i = 1, . . . ,20, that satisfy the conditions thatNi = 1 at node
i andNi = 0 at every other node. This results in 20 equations at each node. Expressing theNi as
linear combinations of thepi , we can write,

~N = A~p (2.80)

whereA is a 20x20 matrix. We want to find the 400 termA−matrix values. For each node, we
have 20 equations and there are 20 nodes; so, there are 400 equationsfor the 400 unknowns. Let~εi

denote the natural coordinate value at theith node. We haveA~p(~ε1) =~e1≡ (1,0,0, . . . ,0)T , and, in
general,A~p(~εi) =~ei . So,

[~ε1,~ε2, . . . ,~ε20] = [A][~p(~ε1),~p(~ε2), . . . ,~p(~ε20)]

or,
I = AP

or,
A = P−1

This matrixA is the matrix“hc20” in Hex20.C .

Not only can the shape functions be expressed as a linear combination of the pi , but so can the
derivatives,∂~N∂ε j

, (j = 1,2,3). Differentiating equation 2.80, we have

∂~N
∂ε j

= A
∂~p
∂ε j

but the∂~p/∂ε j may be written as a linear combination of thepk via the following three equations.

∂pi

∂ε1
= r iεr i−1

1 εsi
2 εti

3 (2.81)

∂pi

∂ε2
= siεr i

1 εsi−1
2 εti

3 (2.82)

∂pi

∂ε3
= tiεr i

1 εsi
2 εti−1

3 (2.83)

while noting that equations 2.81, 2.82 and 2.83 are zero ifr i , si , or ti is zero, respectively. We would
like to find the matrixB j with j = 1,2,3 such that,

∂~N
∂ε j

= B j~p.

Evaluating∂~N/∂ε j and~p at all 20 nodes, we have,

[

∂~N
∂ε j

(~ε1),
∂~N
∂ε j

(~ε2), . . . ,
∂~N
∂ε j

(~ε20)

]

= B j [~p(~ε1),~p(~ε2), . . . ,~p(~ε20)] (2.84)

Matrix equation 2.84 can be inverted to solve forB j with j = 1,2,3. In Hex20.C , AB1 is B1 , AB2 is
B2, andAB3 is B3.

87

Shape Function Ordering: The above method results in elements which satisfy the requirements
that the evaluation of shape functioni on nodei is one. However, the implementation does not insure
compatibility with standard node ordering from exodus. We’ve provided a re-ordering function to
insure this.

2.9 Anisotropic Elasticity

Anisotropic elasticity requires special care in the rotation of the matrix of material parameters when
those parameters are given in some coordinate system other that in which theelement matrices are
calculated. A derivation of the formulae for rotating those matrices is given inA.

2.10 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bending d.o.f. (w,θx,θy) and
the membrane d.o.f. (u,v,θz) are decoupled. The idea is to obtain the membrane response using
Allman’s triangle and the bending response using the discrete Kirchoff triangular (DKT) element.

2.10.1 Allman’s Triangular Element

Using the formulation given in Ref. 36 and replacing cos(γi j) =
y ji

l i j
and sin(γi j) =

−x ji

l i j
, we get

u = u1ψ1 +u2ψ2 +u3ψ3 +
1
2

y21(ω2−ω1)ψ1ψ2 +
1
2

y32(ω3−ω2)ψ2ψ3 +
1
2

y13(ω1−ω3)ψ3ψ1

(2.85)

v = v1ψ1 +v2ψ2 +v3ψ3 +
1
2

x21(ω2−ω1)ψ1ψ2−
1
2

x32(ω3−ω2)ψ2ψ3−
1
2

x13(ω1−ω3)ψ3ψ1

(2.86)

The stiffness and mass matrices ([K]AT, [M]AT) are found using general finite element proce-
dures. Unfortunately, a mechanism exists for this element if the deformationsare all zero and the
rotations are all the same value. Cooket al.5 have a “fix” for this which has been implemented to
avoid undesirable low energy modes produced by this mechanism.

2.10.2 Discrete Kirchoff Element

As for the DKT37 element, things are not so simple. The nine d.o.f. element is obtained by trans-
forming a twelve d.o.f. element with mid-side nodes to a triangle with the nodes at thevertices only.
This is obtained as follows. Using Kirchoff theory, the transverse shearis set to zero at the nodes.
And the rotation about the normal to the edge is imposed to be linear. Using theseconstraints, a
nine d.o.f. bending element is derived (DKT) using the shape functions for the six-node triangle.

88

Unfortunately, the variation ofw over the element cannot be explicitly written. Therefore, thew
variation over the element needs to be calculated before the mass matrix can beobtained.

As stated, the equation forw is not explicitly stated over the element in the derivation by Batoz
at al.. Using a nine d.o.f. element, a complete cubic cannot be written, since 10 quantities would
be needed to get a unique polynomial. The strategy taken here is that the stiffness matrix produced
using for the DKT element provides reasonable results, and the derivation of the mass matrix is not
as critical. So, the equation forw is taken from Ref. 38, as

w = α1ψ1 +α2ψ2 +α3ψ3 +α4ψ1ψ2 +α5ψ2ψ3 +α6ψ3ψ1 +α7ψ1
2ψ2 +α8ψ2

2ψ3 +α9ψ3
2ψ1

(2.87)

For the AT and DKT elements, the stiffness and mass matrices are derived withthe help of
Maple. The consistent mass matrix is derived using “normal” finite element procedures. If a lumped
mass matrix is requested then the mass matrix terms associated with the translation d.o.f. are found
in the “normal” sense. However, mass matrix terms for the rotational d.o.f. areset to 1

125 of the
translation terms.

In summary, the code has been written which uses the AT and DKT element usein combination
as a shell element. The stiffness matrices are calculated without complication. The mass matrix
for the AT element is also derived without complication. The mass matrix for the DKT element is
derived using an incomplete polynomial, but the results obtained should not be effected very much.

2.10.3 Verification and Validation

The AT element is verified by comparing calculated results with the results published by Allman in
Ref. 36. The square plate in pure bending and a cantilevered beam with a parabolic tip load are used
as verification examples. The mass matrix is not verified except to note that themass is conserved
in theu,v directions.

The DKT element is validated by using the experimental data published by Batozet al. in Ref.
37 for a triangular fin. The first 10 eigenvalues for the triangular fin (cantilever) match very well. In
addition, the DKT element is verified by using a cantilevered beam and matchingdeflection results
at the tip. Ifν = 0, then results should match very closely with Euler-Beam theory results, and they
did.

Finally, the AT/DKT element is verified by comparing with published results fromRef. 39.
Tables 4 and 5 show that our elements match exactly with ABAQUS to the number ofdigits shown.
The first column is the result produced by Ertaset al., the second column is the result produced by
ABAQUS, and the third column is the result produced by SALINAS using this DKT/AT element.

2.11 Triangular Shell - Tria3

The triangular shell used most in Salinas is theTria3 element developed by Carlos Felippa of the
University of Colorado in Boulder. This element is very similar to theTriaShell element presented
in section 2.10. Full details of the theory behind the element is out of the scopeof this document,
but details may be found in references 40, 41 and 42.

89

DOF AT/DKT ABAQUS AT/DKT!

x 0.000 0.000 0.000
y 0.000 0.000 0.000
z -1.405× 10−2 -1.398× 10−2 -1.398× 10−2

θx 3.337× 10−2 3.337× 10−2 3.337× 10−2

θy 3.106× 10−2 3.089× 10−2 3.089× 10−2

θz 0.000 0.000 0.000

Table 4. Comparison of deflections at Node 2

DOF AT/DKT ABAQUS AT/DKT!

x 0.000 0.000 0.000
y 0.000 0.000 0.000
z 1.949× 10−2 1.955× 10−2 1.955× 10−2

θx 3.363× 10−2 3.363× 10−2 3.363× 10−2

θy -2.686× 10−2 -2.702× 10−2 -2.702× 10−2

θz 0.000 0.000 0.000

Table 5. Comparison of deflections at Node 3

2.12 Beam2

This is the definition for a Beam element based on Cook’s development (seepp 113-115 of reference
5).

The beam uses underintegrated cubic shape functions. Only isotropic material models are sup-
ported. Torsional affects are accounted for in the axis of the beam. Thebeam is uniform in area and
bending moments, i.e. they are not a function of position in the beam.

The following parameters are read from the exodus file.13

1. The cross subsectional area of the beam (Attribute 1)

2. The first bending moment,I1. (Attribute 2).

3. The second bending moment,I2. (Attribute 3).

4. The torsional moment,Jk. (Attribute 4).

5. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of an improperly spec-
ified orientation, a warning will be written, and a new orientation selected. Theorientation

13 Beam attribute numbering has changed, due to changes in pre-processors. The original ordering had attributes 2,3,4
associated with orientation.

90

AE/L 0 0 0 0 0 −AE/L 0 0 0 0 0

R1 β 0 −Lβ/2 LR1/2 0 −R1 −β 0 −Lβ/2 LR1/2

R2 0 −LR2/2 Lβ/2 0 −β −R2 0 −LR2/2 Lβ/2

GJ/L 0 0 0 0 0 −GJ/L 0 0

k2 −βL2/3 0 Lβ/2 −LR2/2 0 k4 −βL2/6

k1 0 LR1/2 −Lβ/2 0 −βL2/6 k3

AE/L 0 0 0 0 0

R1 β 0 Lβ/2 −LR1/2

Ri2 0 LR2/2 −Lβ/2

GJ/L 0 0

k2 −βL2/3

k1

Figure 7. nbeam Element Stiffness Matrix

is an x,y,z triplet specifying a direction. It does not need to be completely perpendicular to
the beam axis, nor is it required to be normalized. The orientation vector, and the beam axis
define the plane for the first bending direction.

Torsion

As outlined in Blevins,43 the stiffness properties of beam torsion are governed byJk (Attribute 4),
while the mass properties are derived from the polar moment of inertia,Jpolar = I1 + I2. This repre-
sentation is fairly accurate for beams with closed cross sections, but will have significant error for
more open sections. Warping in open sections is not accounted for in this standard beam formula-
tion.

2.13 Nbeam

Beam/bar elements are a major component in many structural Finite Element Models(FEM). It is
important to employ a beam/bar element which includes transverse shear and torsion in addition
to axial and bending stiffness. Additionally, the mass formulation needs to include rotary inertia.
The nbeam element is an implementation of the NASTRAN CBAR element. The stiffness matrix
is identical to the CBAR. The mass matrix is a new formulation to this implementation providing a
diagonal mass matrix w/ rotary inertia included.

The nbeam element stiffness matrix is based on Timoshenko beam theory. A good theoretical
description can be found in [44]. The formulation differs (slightly) in the inertia coupling formula-
tion. The derivation of this specific form is provided in [45]. The exact form of the stiffness matrix
implemented in Salinas is shown in Figure 7.

91

m′ 0 0 0 0 0 0 0 0 0 0 0
m′ 0 0 0 0 0 0 0 0 0 0

m′ 0 0 0 0 0 0 0 0 0
m′J/A 0 0 0 0 0 0 0 0

m′I2/Az 0 0 0 0 0 0 0
m′I1/Ay 0 0 0 0 0 0

m′ 0 0 0 0 0
m′ 0 0 0 0

m′ 0 0 0
m′J/A 0 0

m′I2/Az 0
m′I1/Ay

Figure 8. nbeam mass matrix

The following derived quantities are used depending on the value ofI12.

If I12 = 0 If I12 6= 0

β = 0 β = 12EI12
L3

R1 = 12EI1
L3

[

1+ 12EI1
s1AGL2

]−1
R1 = 12EI1

L3

R2 = 12EI2
L3

[

1+ 12EI2
s2AGL2

]−1
R2 = 12EI2

L3

The rest of the quantities are valid for any value ofI12.

k1 =
L2R1

4
+

EI1
L

k2 =
L2R2

4
+

EI2
L

k3 =
L2R1

4
− EI1

L

k4 =
L2R2

4
− EI2

L
s1 = Ay/A shear factor

s2 = Az/A shear factor

The nbeam mass matrix is given in Figure 8. The mass quantitym′ is defined asm′ = ρAL/2.

To preserve a diagonal mass matrix for arbitrary beam element orientation,the mass matrix
subroutine provides the calling routine options of diagonal stripping or diagonal summation. The
mass matrix will not be diagonal after transforming to global coordinates under general conditions
(off diagonal terms will be present in the rows corresponding to rotary inertia). If diagonal strip-
ping is chosen, the off diagonal terms are simply zeroed, restoring a diagonal matrix. If diagonal
summation is chosen, the off diagonal terms are added to the diagonal elementand then zeroed.

92

Table 6. Nbeam Parameters

Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment I1 2
Second Bending Moment I2 3
Cross Inertia I12 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor Shearfactor 1 N/A
Z-axis Shear Area Factor Shearfactor 2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13

Diagonal stripping slightly reduces the total rotary mass contributions while diagonal summation
slightly increases rotary mass contributions. In the current implementation, diagonal stripping is
assumed and coded. This could be expanded as a user option in the future.

The user provides the element properties in the Salinas input deck. The required parameters are
listed in Table 6.

The parallel axis theorem is used to account for offsets. The offset vector is defined as a vector
from the bending neutral axis of the beam to the nodal location. All other quantities are derived
from the material data and the element length.

Torsion

As outlined in Blevins,43 the stiffness properties of beam torsion are governed byJk, while the mass
properties are derived from the polar moment of inertia,Jpolar = I1+ I2. This representation is fairly
accurate for beams with closed cross sections, but will have significant error for more open sections.
Warping in open sections is not accounted for in this standard beam formulation.

2.14 Nquad - Navy Quadrilateral Shell Element

Many structural components on naval vessels, including the hull, bulkheads and decks are made
from plate, be it steel, aluminum or a composite material. As such, plate and shellelements are
essential to any finite element analysis of ships or submarines. It is importantto employ an element
that is shear deformable and can also accommodate orthotropic layers. Thenquad is a four-noded
isoparametric element that is designed to be similar to the NASTRAN CQUAD4 element.

The development of the stiffness matrix draws heavily from the plane elasticityand bending
formulations found in 46. The membrane and bending components are decoupled. The membrane

93

stiffness terms are derived from the integrals in equation 4.156 in 46:

K11
i j =

Z

Ωe

(

C11
∂ψi

∂x

∂ψ j

∂x
+C33

∂ψi

∂y

∂ψ j

∂y

)

dxdy (2.88)

K12
i j = K21

i j =
Z

Ωe

(

C12
∂ψi

∂x

∂ψ j

∂y
+C33

∂ψi

∂y

∂ψ j

∂x

)

dxdy (2.89)

K22
i j =

Z

Ωe

(

C33
∂ψi

∂x

∂ψ j

∂x
+C22

∂ψi

∂y

∂ψ j

∂y

)

dxdy (2.90)

where theCi j are the elastic material constants defined in equation 4.137 of 46:

C11 = C22 = E
1−ν2 C12 = νE

1−ν2 C33 = E
2(1+ν

and theψi are the element shape functions (see equation 4.31 in 46) over the elementΩe. The
membrane stiffness matrix is of the form:

[

K11 K12

K21 K22

]

assuming the displacement vector is of the form{u1,v1,u2,v2, ...}. The bending stiffness terms,
based on the shear deformation theory of plates, are based on the integrals in equation 4.226 in 46:

K11
i j =

Z

Ωe

(

D44
∂ψi

∂x

∂ψ j

∂x
+D55

∂ψi

∂y

∂ψ j

∂y

)

dxdy

K12
i j =

Z

Ωe

(

D44
∂ψi

∂x
ψ j

)

dxdy

K13
i j =

Z

Ωe

(

D55
∂ψi

∂y
ψ j

)

dxdy

K22
i j =

Z

Ωe

(

D11
∂ψi

∂x

∂ψ j

∂x
+D33

∂ψi

∂y

∂ψ j

∂y
+D44ψiψ j

)

dxdy

K23
i j =

Z

Ωe

(

D12
∂ψi

∂x

∂ψ j

∂y
+D33

∂ψi

∂y

∂ψ j

∂x

)

dxdy

K33
i j =

Z

Ωe

(

D33
∂ψi

∂x

∂ψ j

∂x
+D22

∂ψi

∂y

∂ψ j

∂y
+D55ψiψ j

)

dxdy

where theDi j are the elastic material constants defined (for the isotropic case) in equation4.221 of
46:

D11 = D22 =
Eh3

12(1−ν2)

D12 = νD11

D33 =
Gh3

12
D44 = D55 = Ghk

94

whereh is the thickness of the plate andk is the shear correction factor. The bending stiffness matrix
is of the form:

[K11] [K12] [K13]
[K22] [K23]

sym [K33]

assuming the displacement matrix is of the form{w1, θx1, θy1,w2, θx2, θy2, ...} To minimize the
effect of locking, reduced integration on the shear terms (i.e., those involving D44 andD55) is used.

The layered shell formulation, also based on first-order shear deformation theory, draws heavily
from [47], particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases do notaccount for in-plane
rotational stiffness. A fictitious stiffness for theθz d.o.f. is provided by equation 12.3-4 in [5]. The
resulting element stiffness matrix is 24 x 24, accounting for 6 d.o.f at each ofthe four nodes.

A consistent mass matrix is formed based on equation 4.235 in 46:

Mi j =
Z

Ωe
ρhψiψ j dxdy

whereρ is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in 46:

{ε}e = [B]e{∆}e

where the five terms in{ε}e areεx, εy, andτxy as well as the transverse shear strainsγyz andγzx. The 5
x 24 matrix[B]e is formed by the element shape functions and their derivatives and the 24 x1 vector
{∆}e are the nodal displacements. The membrane and bending strain-displacement relationships
are found, respectively, in equations 11.1-3 and 11.1-4 in [5]:

Membrane:
εx = u,x εy = v,y γxy = (u,y+v,x)

Bending:
εx =−zθy,x γxy =−z(θy,y +θx,x)
εy =−zθx,y γyz = w,y−θx

γzx = w,x−θy

Note that the bending equations are altered slightly from 11.1-4 in [5]. In that reference, a rotation
about the x-axis is expressed asθy and a rotation about the y-axis isθx x. These definitions have
been reversed in the above equations.

The user provides element properties in the Salinas input deck. The required parameters are:

1. Element thickness.

2. Material ID, which contains the required material properties (E,ν, ρ).

3. For the layered shell case, each layer must have specified its own material ID (usually an
orthotropic layer), thickness and fiber orientation.

95

2.15 Truss

This is the definition for a Truss element based on pages 214-216 of Cook(ref 5).

The truss uses linear shape functions. Unlike the truss elements used by Nastran, there is no
torsional stiffness. The truss is uniform in area, i.e. the area is not a function of position in the truss.

The following parameters are read from the exodus file.

1. The cross subsectional area of the truss (Attribute 1)

2.16 Springs

TheSpringelement is the simplest one dimensional element. It has no mass. Entries in the stiffness
matrix are added by hand. Note the following.

• The force generated in aSpringelement should be collinear with the nodes. Typically spring
elements connect coincident nodes so that no torques are generated.

• Springsattach 3 degrees of freedom. In the event that some of the spring constants are zero,
there is no effective stiffness for that associated degree of freedom.However, the degree of
freedom will remain in the A-set matrices. This will be a problem if the other degrees of
freedom are not attached to other elements which provide stiffness entriesconnecting them to
the remainder of the model. For an understanding of the various solution spaces (such as the
A-set), see section 4.1.

The data for spring elements is entered in the input file. Three values are given,Kx, Ky, andKz.
This results in a 6x6 element stiffness matrix,

K′ =

Kx 0 0 −Kx 0 0
0 Ky 0 0 −Ky 0
0 0 Kz 0 0 −Kz

−Kx 0 0 Kx 0 0
0 −Ky 0 0 Ky 0
0 0 −Kz 0 0 Kz

(2.91)

Notice thatK′ is blocked. It could be written more simply,

K′ =

(

K′11 −K′11
−K′11 K′11

)

The rotation matrix for the two endpoints is block diagonal.14 As a result, the stiffness matrix
in the basic coordinate system can be written,

14 In other words, the displacements in a rotated frame are related to the unrotated frame by a transformation matrix of
the form,

[

u1
u2

]

= [T]

[

ũ1
ũ2

]

96

K =

(

K11 K12

K12 K11

)

where,
Ki j = RTK′i j R

andR is the 3x3 rotation matrix of subsection 2.22.

2.17 Gap Elements

TheGap element is a nonlinear spring which has a stiffness matrix that is dependent on displace-
ment. In the element coordinate frame, the stiffness matrix has the same form asthe matrix in
equation 2.91 with the following replacements.

Spring Gap
Open Closed

Kx KU KL
Ky KT×KU/KL KT
Kz KT×KU/KL KT

Note that typicallyKL≫ KU.

Also, like the spring, the two nodes of the gap element must rotate together andthe matrix
transforms exactly as the matrix for a spring element.

2.18 Multi-Point Constraints, MPCs

A description ofMPCs is contained in the users manual. This subsection discusses the coordinate
system dependencies.

MPCs may be defined in any coordinate system. However, all nodes in theMPCs are defined
in the same system. This is done for convenience in parsing, and not for any fundamental reason.
Consider a constraint equation where each entry in the equation could be specified in a different
coordinate system.

∑
i

Ciu
(ki)
i = 0

whereCi is a real coefficient, andu(ki)
i represents the displacement of degree of freedomi in degree

of coordinate systemki . We can transform to the basic coordinate system usingu(ki)
i = ∑ j R

(ki)
ji u(0)

j ,

whereR(ki) is the rotation matrix for coordinate systemki . Then we may write,

∑
i, j

CiR
(ki)
ji u(0)

j = 0

where,

T =

[

R1 0
0 R2

]

Here,Ri is a 3x3 rotation matrix, and because the two nodes of the spring must rotatetogether,R1 = R2

97

or,

∑
i

C(ki)
i u(0)

i = 0

whereC(ki)
i = ∑ j R

(ki)
i j Cj . Note however, that in this analysis, we have assumed that the dimension

of C is 3. Thus, rotation into the basic frame will likely increase the number of coefficients.

Salinas is designed to support constraints through at least two methods. These include a con-
straint transform method and Lagrange multipliers. Lagrange multiplier methodsare used for all
the parallel solvers. The serial solver uses constraint transform methods.

2.18.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. This is described in detail in
Cook, chapter 9 (ref 5). In this method, the analysis set is partitioned into constrained degrees of
freedom and retained degrees of freedom. The constrained dofs areeliminated.

Unlike many Finite Element programs, Salinas does not support user specification of constraint
and residual degrees of freedom. The partition of constrained and retained degrees of freedom is
performed simultaneously in the “gauss()” routine. This routine performs full pivoting so the con-
strained degrees of freedom are guaranteed to be independent. Redundant specification of constraint
equations is handled by elimination of the redundant equations and issue of awarning. User selec-
tion of constrained dofs in Nastran has led to serious difficulty to insure thatthe constrained dofs
are independent and never specified more than once.

For constraint elimination we have a constraint matrixC = CcCr , whereCc is a square, nonsin-
gular matrix andCr is the solution. We wish to solve for,

Crc =−[Cc]
−1Cr

This is equivalent to the Gauss-Jordan elimination problem forKx = b if we let Cr = b, Cc = K
andx =−Crc. There is one additional wrinkle: we have mixed the rows ofC soCc is intermingled
with Cr . However, we only require thatCC be non-singular. Therefore if we do a gauss elimination
with full pivoting we should simultaneously obtain an acceptable reordering of C, and obtainCrc.

In practice, it is not even necessary thatCc be non-singular. It is not uncommon for two identical
constraints to be specified. The program issues a warning and continues.

Constraint transform methods do not currently support recovery of MPC forces.

The Gaussian elimination is presently being performed with a sparse packagecalled ”SuperLU,”
instead of a dense gaussian elimination, to speed up the time to createCrc. On some platforms, e.g.,
sgi and dec, the blas routinedmyblas2.c in the CBLAS directory of of the SuperLU directory (need
superlu-underscore-salinas.tar to create this) should be the one and only routine whose object file
is placed into the SuperLU-blas library (presently called libblas-underscore-super.a) to be linked
in to create the salinas executable. Failure to include this routine will cause failures of the type
”Illegal value in call to DSTRV” on the above platforms, and including more than just dmyblas2.c
can cause slow performance on many platforms as the SuperLU-CBLAS could override the built-in
blas routines. (The built-in routines are almost always faster.)

98

2.19 Rigid Elements

Salinas supports standardpseudoelements for rigid bodies. These include,

• RRODs - a rigid truss like element, infinitely stiff in extension, but with no couplingto bend-
ing degrees of freedom. There is exactly one constraint equation per element.

• RBARS - a rigid beam, with up to 6 constraint equations per element.

• RBE2 - a rigid solid. With up to 6(n−1) degrees of freedom deleted, wheren is the number
of nodes.

• RBE3 - an averaging type solid. This connects to many nodes, but removesup to 6 dofs on
the slave node.

All of the rigid elements are stored and applied internally as MPC equations. The RBE2 is a special
case of RBAR (actually just multiple instances). Note, that unlike MPC equations, these rigid
elementsdoactivate (or touch) degrees of freedom. In general, an MPC equation will not activate a
degree of freedom. In the case of a rigid element however, it is necessary to activate the degrees of
freedom before constraining them. Otherwise the rigid elements do not act like real elements.

Rigid elements are input into Salinas using exodus beam elements. A block entryis then pro-
vided in the input file indicating what type of rigid element is required. There isno stiffness or mass
matrix entry for any type of rigid elements (only the MPC entries described above).

Considerations for Nastran users

These rigid elements are provided for similar capability with Nastran, howeversignificant differ-
ences can exist. There are a number of reasons for this. A primary issueis the differences in the
solvers. Salinas solvers manage the separation of dependent and independent degrees of freedom,
freeing the analyst from having to manage this complexity. Specification of rigid elements in Nas-
tran implies this relation. When the elements are applied in the most common ways (suchas an
RBAR constraining all 6 dofs), little or no differences are found betweenthe two implementations.
When only some of the dofs are constrained, and certainly if Nastran’s autospc capability is invoked,
larger differences may be found.

2.19.1 RROD

An RROD is apseudoelement which is infinitely stiff in the extension direction. The constraints
for an RROD may be conveniently stated that the dot product of the translation and the beam axial
direction for a RROD is zero. There is one constraint equation per RROD.

Consider the geometry of Figure 2.19.1. The equation of constraint for theRROD may be
written as follows.

lxdux + lyduy + lzduz = 0 (2.92)

99

A

B

~l ′

~duA

~duB

~l

Figure 9. Rigid Element Geometry. The undeformed extent of the bar
may be expressed as~l , with components,

lx = xB−xA

ly = yB−yA

lz = zB−zA

After deformation,~du= ~duB− ~duA, the modified extent is,~l ′, with com-
ponents as below.

l ′x = lx +dux

l ′y = ly +duy

l ′z = lz+duz.

100

2.19.2 RBAR

An RBAR is apseudoelement which is infinitely stiff in all the directions. The constraints for an
RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,

2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

It is apparent that the last two of these constraints may be specified mathematically by requiring that
the translation be the cross product of the rotation vector and the bar direction.

~T = ~R×~L

where~T is the translation difference of the bar (defined as~U2−~U1),

~R is the rotation vector, and

~L is the vector from the first grid to the second.

The three constraints in the cross product, together with the three constraints requiring identical
rotations at both ends of the bar form the six required constraint equations. Referring to Figure
2.19.1, the six constraint equations may be written as follows.15

dux + lyRz− lzRy = 0 (2.93)

duy + lzRx− lxRz = 0 (2.94)

duz+ lxRy− lyRx = 0 (2.95)

Rxa = Rxb (2.96)

Rya = Ryb (2.97)

Rza = Rzb (2.98)

Partial Constraints on Rbars

Nastran permits application of only some of the above constraints on an RBAR.For example, one
can apply only the first 3 constraints, and ignore the constraints on rotationalone. In addition, Nas-
tran permits control of which end of the bars is constrained, and can split dependent and independent
degrees of freedom between the nodes. However while Nastran permits less than 6 dependent dofs,
there must always be exactly 6 independent dofs.

Salinas uses two attributes in the exodus file to establish partial constraints on RBARs. An
attribute labeled “CIDFLAG INDEP”is the constraint flag associated with the independent dofs. It
should always be “123456”, and it is always associated with the first node of the bar. The second
attribute, “CID FLAG DEPEND”, establishes the dependent degrees of freedom on the second node

15 For a zero length bar, the first three constraints are modified to becomedux = duy = duz = 0.

101

of the bar. This attribute determines which of the equations above are applied. For example, if
CID FLAG DEPEND = 123000then only the first three constraint equations are applied.

With partial application of the constraint equations, the results can be confusing. If equations
2.96-2.98 are not applied, then the rotation terms in 2.93 are appropriate onlyto the independent
node. This is not always what is anticipated by the analyst, and because there is no mechanism for
allocating degrees of freedom to arbitrary ends of the bar, it may differ from what is produced by
Nastran.16

2.19.3 RBE3

The RBE3 element behavior is taken from Nastran’s element of the same name. Earlier implemen-
tations of the RBE3 differed significantly from the MSC/Nastran implementations (see appendix C).
The revised element should act like a Nastran RBE3 for most applications17. The element is used to
apply distributed forces to many nodes while not stiffening the structure as an RBE2 or RBAR does.
The RBE3 uses the concept of a slave node. The theory follows the MSC documentation included
in the appendix.

Characteristic Length. An element characteristic length is computed to allow scaling the equa-
tions. The distance between the reference point (subscriptq) and a connected point (subscripti) is
expressed by the components

Li,x = xi−xq (2.99)

Li,y = yi−yq (2.100)

Li,z = zi−zq (2.101)

Li =
√

L2
i,x +L2

i,y +L2
i,z (2.102)

The characteristic length of the element is the average of these lengths,

Lc =
Nc

∑
i=1

|Li |/Nc, (2.103)

whereNc is the number of connected points. IfLc is computed as a binary zero it is changed to a
value of unity.

To insure that the element is invariant to a change of scale, the weighting functionsw1 through

16 Applying CID FLAG INDEP = CID FLAG DEPEND = 1 results in an RROD type constraint.
17The Salinas element is not as flexible as the Nastran element in all respects. In particular, there is no flexibility to

apply node specific weighting. Weights may be applied by degree of freedom, but these weights are applied uniformly to
all nodes in the pseudo element.

102

Figure 10. Equilibration of loads

q

i

Li,x

Li,y

A force of−ê1 at pointi is equivalent to
a force of−ê1 and a moment ofτz = Li,y

at pointq.

w6 provided by the user are modified to produce a connected grid point’s weighting matrix.

W =

w1

w2 0
w3

w4L2
c

0 w5L2
c

w6L2
c

(2.104)

That is, the rotational DOF coefficients are scaled by the square of the characteristic length.

Equilibration. Conventional equilibration equations are applied. These equations relate aforce
applied at the reference point to an equivalent force and moment appliedat the slave node as il-
lustrated in Figure 10. The loads at the connection point,i, relate to the loads at the slave point.

Pq = S′iqPi (2.105)

Where,

Siq =

1 0 0 0 Li,z −Li,y

1 0 −Li,z 0 Lx

1 Li,y −Li,x 0
1 0 0

0 1 0
1

(2.106)

Assembled Constraint. As shown in Appendix C (equation C.1), the loads on the set of all con-
nection nodes may be computed from the load on the slave node.

Pi = G′qiPq (2.107)

103

Where,
Gqi = A−1S ′W (2.108)

hereS is a concatenation of the individualSiq,

S =

S1,q

S2,q

...
SNc,q

, (2.109)

Similarly,

W =

W1

W2

...
Wc

(2.110)

andA is a 6 by 6 weightings matrix.
A = S ′WS (2.111)

We require thatA be nonsingular, which corresponds to a requirement that the RBE3 be non-
mechanistic. The constraint relation follows directly fromGqi, i.e. define the 6 by(6+6Nc) matrix,

C = [−Iqq Gqi] (2.112)

and apply the constraint,

C

[

uq

ui

]

= 0. (2.113)

Each row ofC contains the constraint coefficients for one of the six possible constraints inthe
RBE3.

2.19.4 RBE3 – old version

The RBE3-old elements behavior is taken from Nastran’s element of the samename. Note however,
that the precise mathematical framework of the Nastran RBE3 element is not specified in the open
literature. This element should act like an RBE3 for most applications. The element is used to apply
distributed forces to many nodes while not stiffening the structure as an RBE2 or RBAR would. The
RBE3-old uses the concept of a slave node. Constraints are specified as follows.

1. The translation of the slave node is the sum of translations of all the other nodes in the element.

2. The rotation of the slave node is the weighted average of all the other nodes about it. This is
determined by the nodal translations, not by their rotations.

While the first of these constraints is easy enough to apply using multi-point constraints, the
second is a little more difficult. We seek a least squares type solution.

104

slave

X1

X2

X3

Let ~Di = ~Ui−~Uslave,

~Li = ~Xi−~Xslave

TheL represent a vector from the “origin” to the pointi, while theDi represent the differential
displacement of the same points. Note that the origin is at the location of the slave node, and will
not in general be at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave node.This is equivalent
to computing a rotational inertial term and requiring a similar net rotation for the centroid.

The displacement at the centroid should be given by,

~Di = ~R×~Li

or, in the least squares sense we seek to minimizeE.

E = ∑
i

(~Di−~R×~Li) · (~Di−~R×~Li)

Take the derivative ofE with respect to a component ofR, rk.

dE
drk

= 0 = 2∑
i

(êk×~Li) · (~R×~Li)−~Di · (êk×~Li)

Now, letR= ∑mrmêm. We substitute forR in the previous equation to obtain,

∑
m

∑
i

rm(êk×~Li) · (êm×~Li)−~Di · (êk×~Li) = 0

Now, if we write Li as a column vector then the expression(êk×~Li) · (êm×~Li) can be written as
LT

i Li · I −LiLT
i . If the sum oni is performed for the first term, we may write,

∑
m

rmAmk−∑
i

êk · (~Li×~Di) = 0

where

Amk =

(

n

∑
i

|Li |2
)

δmk−Lm
i Lk

i

105

This provides three equations (one for eachk) in the 3 unknowns,rm. Note thatLm
i represents them

component (1-3) of the vectorLi .

The solution is found by looping once through alli to fill in the A matrix, and simultaneously
to fill out the coefficients for the three equations involvingDi . Once the loop has been completed,
the coefficients ofR are known, and the three components ofrm can be added for each of the three
equations. Each equation has 3 components ofR, 2n components ofUi and 2 components ofUslave

for a total of 2n+5 equations.

2.20 Shell Offset

Consider a shell offset, with an offset vector,~v. Notice that~v could be defined at each nodal location
in what follows, but for this development, we assume a single offset~v which applies to all nodes.
Define a coordinate system at the node, with variablesu. On the offset beam the coordinate system
is ũ.

Now, u is related simply to ˜u. The constraint of a constant offset may be stated that the dis-
placement difference of the two systems must be orthogonal to~v, i.e. (u− ũ) =~v×~κ, where~κ is
the rotation at the nodes. Notice that the rotation is the same at both nodes.

Thus we can write,
(

ũ
κ

)

= [L]

(

u
κ

)

(2.114)

whereL is a constant matrix which depends only on the geometry. We can use this transformation
matrix to eliminate the degrees of freedom associated with ˜u. The energy of the shell can be written,

Estrain = 0.5

{

ũ
κ

}T
[

K̃
]

{

ũ
κ

}

(2.115)

But with this substitution,

Estrain = 0.5

{

u
κ

}T
[

LTK̃L
]

{

u
κ

}

(2.116)

If we let K = LTK̃L, then,

Estrain = 0.5

{

u
κ

}T

[K]

{

u
κ

}

(2.117)

Thus,ũ has been eliminated, and the equations may be rather simply put in terms of the output
variables.

106

2.21 Notes on Consistent Loads Calculations

Starting with equation 4.1-6 fromConcepts and Applications of Finite Element Analysisby Cook
et al.,

{re}=
Z

Ve

[B]T [E]{ε0}dV−
Z

Ve

[B]T{σ0}dV +
Z

Ve

[N]T{F}dV +
Z

Se

[N]T{Φ}dS (2.118)

where each of these terms are defined in Subsection 4.1 of the above mentioned reference. The load
vector,{re}, is composed of four parts in Eqn. 2.118. In this document, only the last part, which is
the contribution of the surface tractions to the load vector, will be considered. Rewriting,

{re}=
Z

Se

[N]T{Φ}dS (2.119)

Here, the integral is calculated over the surface of the element on which thesurface traction,{Φ},
is applied. Therefore,

{Φ}= [ΦxΦyΦz]
T (2.120)

and[N] is the shape function matrix of the element on which the surface tractions,{Φ}, are applied.
In Salinas,{Φ} can be applied within PATRAN by applying a spatial field to a specified side set.As
a result, when calculating the load vector, this field must be accounted for. In Salinas however, this
spatial field values will be available only at the nodes of the element. Using the nodal values of this
surface traction, the value inside must be defined using an interpolation function over the surface or
side of the element. Since only one value per node may be specified on the sideset in Salinas, a
surface traction may be applied only in one direction at a time. Therefore,{Φ} will be defined as

{Φ}=

nx

ny

nz

Φ(x,y,z) (2.121)

2.21.1 Salinas Element Types

The following 3-D and 2-D elements have consistent loads implemented:

• Hex8

• Hex20

• Wedge6

• Tet4

107

• Tet10

• Tria3

• TriaShell

• Tria6 (four Tria3s)

• QuadT (two Tria3s)

• Quad8T (1 QuadT and 4 Tria3s)

2.21.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Φ}=

nx

ny

nz

Φ(x,y,z) (2.122)

where[nx,ny,nz]
T is the normal to the element face. Hence, the consistent loads can be calculated

as,

{re}=
Z

Se

[N]T{Φ}dS=
Z

Se

[N]TΦ(x,y,z)(~a×~b)dSe (2.123)

Here,

~a = [
∂x
∂r

,
∂y
∂r

,
∂z
∂r

]T (2.124)

~b = [
∂x
∂s

,
∂y
∂s

,
∂z
∂s

]T (2.125)

whereΦ is the pressure load, and(x,y,z) are the physical coordinate directions, and(r,s) are the
local element directions for the face of the element. Notice, taking the cross-product of~a and~b, the
normal is obtained.

2.21.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangular shaped. Hence, shape functions
for quads and triangles could be used to evaluate the consistent loads. Ifthe shape functions for
the 3-D elements are used, it will reduce code and “fit” better into the current finite element class
structure. This is what is currently implemented. This requires a “mapping” ofthe 3-D elements’
faces to a 2-D plane. The additional overhead for using the 3-D elements isthat each face of the
element must have this “mapping” which states how the elements’ 3-D shape functions will map

108

to a 2-D element. For example, for a Hex20, the element coordinates(η1,η2,η3) are defined in a
particular way. For each face of the Hex20, defined by a side id, the face will have a local coordinate
system(r,s). The “mapping” will define how(r,s) are related to(η1,η2,η3). This will also help
defined how 2-D Gauss points are mapped to the 3-D face. These mappingsare done for all the 3-D
elements.

2.21.4 Shell Elements - consistent loads

All the 2-D elements (shell elements) are based on the Tria3. The consistentloads calculations
for the Tria3 can be “copied” to the TriaShell. This way all the shell elements will use the same
consistent loads implementation. Since Carlos Felippa designed the Tria3, his consistent loads im-
plementation is used. The portion for linearly varying pressure loads is shown here. If the loads are
aligned along an edge,{q}, they need to be decomposed into(qs,qn,qt). Where(s,n, t) are coordi-
nate directions along the element edge. Coordinates varies along the element edge tangentially,n
is normal to the element edge, andt is tangent to the element edge in the transverse direction, i.e.,
in the direction of the thickness. Once, the edge load is decomposed, the equations for consistent
loads are

f 1
s =

1
20

(7qs1 +3qs2)L21 f 2
s =

1
20

(3qs1 +7qs2)L21 (2.126)

f 1
n =

1
20

(7qn1 +3qn2)L21 f 2
n =

1
20

(3qn1 +7qn2)L21 (2.127)

f 1
t =

1
20

(7qt1 +3qt2)L21 f 2
t =

1
20

(3qt1 +7qt2)L21 (2.128)

m1
s = m2

s = 0 (2.129)

m1
n =− 1

60
(3qt1 +2qt2)L

2
21 m2

n =
1
60

(2qt1 +3qt2)L
2

21 (2.130)

m1
t =− 1

40
(3qn1 +2qn2)L

2
21 m2

t =
1
40

(2qn1 +3qn2)L
2

21 (2.131)

whereqs1 is the value ofq in thesdirection at node 1 of the edge,L12 is the length of the edge. The
superscripts 1,2 are the node numbers of the edge. Note, it is assumed here that the loadq is per
unit length, but this is not assumed when creating the sideset in PATRAN forexample. Therefore,
this distributed load is multiplied, in Salinas, by the thickness of the triangle.

Now if the pressure load is on the face of the Tria3, the equations become,

109

f 1
x = f 1

y = m1
z = f 2

x = f 2
y = m2

z = f 3
x = f 3

y = m3
z = 0 (2.132)

f 1
z = (

8
45

p1 +
7
90

p2 +
7
90

p3)A (2.133)

f 2
z = (

7
90

p1 +
8
45

p2 +
7
90

p3)A (2.134)

f 3
z = (

7
90

p1 +
7
90

p2 +
8
45

p3)A (2.135)

m1
x =

A
360

[7(y31+y21)p1 +(3y31+5y21)p2 +(5y31+3y21)p3] (2.136)

m1
y =

A
360

[7(x13+x12)p1 +(3x13+5x12)p2 +(5x13+3x12)p3] (2.137)

m2
x =

A
360

[(5y12+3y32)p1 +7(y12+y32)p2 +(3y12+5y32)p3] (2.138)

m2
y =

A
360

[(5x21+3x23)p1 +7(x21+x23)p2 +(3x21+5x23)p3] (2.139)

m3
x =

A
360

[(3y23+5y13)p1 +(5y23+3y13)p2 +7(y23+y13)p3] (2.140)

m3
x =

A
360

[(3x32+5x31)p1 +(5x32+3x31)p2 +7(x32+x31)p3] (2.141)

whereyi j = yi−y j andxi j = xi−x j , A is the area of the triangle,pi is the value of the pressure load
at nodei, and(xi ,yi) are coordinates of the triangle in 2-D space.

Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by usingTria3s require a little extra
overhead. For example, the Quad8T is composed of 1 QuadT and 4 Tria3s. However, since it is
defined as a Quad8T, it will have distribution factors at its 8 nodes, and these distribution factors
have to be mapped to the 1 QuadT and the 4 Tria3s. The number of distribution factors will be 3
however, if the load is applied to its edge. Therefore, this extra coding canbe seen in the ElemLoad
method of the shells’ classes.

2.22 Coordinate Systems

Coordinate systems are provided for a number of applications including:

1. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.

4. specification of spring directions (see subsection 2.16).

5. specification of output coordinate systems (in history files only).

110

- X

6

Y

�

X′

I

Y′

θ

Figure 11. Original, and rotated coordinate frames

There are some applications for coordinate systems which we do NOT intend tosupport. These
include,

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordinates may be defined. In the
case of noncartesian systems, theXZ plane is used for defining the origin of theθ direction only.

Each coordinate system carries with it a rotation matrix. It is important to clarifythe meaning
of that matrix. Specifically,

X′ = RX

WhereX′ is the new system of coordinates,R is the rotation matrix andX is the basic coordi-
nate system. For cartesian systems, the rotation matrix is static. Curvilinear systems will require
computation of a new rotation matrix at each location in space.

The usual identity on rotation matrices applies, namely:

X = RTX′ (2.142)

and

RTR= RRT = I

As an example, consider a cartesian system as shown in Figure 11.

The new system (marked by primes) is rotatedθ from the old system with the newX′ axis in the
first quadrant of the old system. The rotation matrix is,

R=

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

111

2.23 Constraint Transformations in General Coordinate Systems

In general, constraint equations can be applied in any coordinate system.We here describe the
transformation equations and implications for general constraints in any coordinate system. The
implications of this use in Salinas are also outlined.

Consider a constraint equation,
C′u′ = Q (2.143)

where the primes indicate a generalized coordinate frame. The frame may be transformed to the
basic coordinate system using equation 2.142, and

u′ = Ru (2.144)

We can now rewrite equation 2.143,

C′Ru = Q
Cu = Q

(2.145)

whereC = C′R.

Thus a general system of constraint equations may be easily transformedto the basic system.
Further, the rotational matrix is a 3x3 matrix which may be applied to each node’sdegrees of
freedom separately.

2.23.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into constrained and retained
degrees of freedom, and describe the constrained dofs in terms of its Schur complement.

u =

[

ur

uc

]

(2.146)

The whole constraint equation may be similarly partitioned.

[

Cr Cc
]

[

ur

uc

]

= [Q] (2.147)

Note thatCr is ancxr matrix,Cc is cxc, andQ is a vector of lengthc. Under most conditionsQ is
null.

This may be solved foruc,
uc = C−1

c Q−C−1
c Crur (2.148)

We must be concerned with cases whereCc may be either singular or over constrained. The former
case occurs if we try to eliminatec equations, but the rank ofC is less thanc. This could occur
if the equations are redundant. We can over constrain the system only ifQ is nonzero. Both these
situations need attention, but both can be dealt with.

112

We may also write the solution using a transformation matrix,T.

[

ur

uc

]

= [T] [ur]+ Q̃ (2.149)

where

T =

[

1
Crc

]

(2.150)

Crc =−C−1
c Cr (2.151)

and

Q̃ =

[

0
C−1

c Q

]

=

[

0
Q̆

]

(2.152)

2.23.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statics arethen,

[

Krr Krc

Kcr Kcc

][

ur

uc

]

=

[

Rr

Rc

]

(2.153)

or,
[K] [T]ur +[K]

[

Q̃
]

= R (2.154)

and
TTKTur = TT {R−KQ̃

}

= R̃ (2.155)

We can define the reduced equations,

K̃ = TTKT = Krr +KrcCrc +CT
rcKcr +CT

rcKccCrc (2.156)

and,

R̃ = TTR−TT

[

KrcQ̆
KccQ̆

]

= Rr +CT
rcRc−KrcQ̆−CT

rcKccQ̆
(2.157)

The solution in the retained system is

K̃ur = R̃ (2.158)

The system may now be solved using the reduced equations, and the constrained degrees of
freedom may be solved using equation 2.148. Much of this is detailed in Cook,but without the
constrained right hand side.

113

For eigen analysis the mass matrix may be transformed exactly as the stiffness matrix in equation
2.156. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the same. Theforce vector and
force vector corrections may be time dependent. There is currently no structure to store these time
dependent terms in Salinas.

2.23.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limited tothe basic coordinate
system. In that system the equations decouple,Cc is unity andCrc is zero. Then equations 2.156
and 2.157 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constraints are not applied in the basic
coordinate system, we must generate all the constraint equation on the node. This may be up to a
6x6 system. I believe that there is no real conflict in first applying constraints in the basic system,
then adding additional constraints in other systems.

The process for applying constraints can be summarized as follows.

1. Generate the constraint equation in the generalized coordinate system (equation 2.143).

2. Transform the constraint equation to the basic coordinate system (equation 2.144).

3. Determine the constraint degrees of freedom. It may need to be done in concert with the next
step to keep from degrading the matrix condition.

4. Compute the two transformation matricesC−1
c andCrc from equations 2.147 and 2.151.

5. Compute the corrections to the force vector from equation 2.157. We currently do not have a
structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 2.156.

7. Eliminate the constraint degrees of freedom from the mass and stiffnessmatrix.

In addition, for post processing,

8. store the terms of the equations necessary to recover the constraint degrees of freedom (equa-
tion 2.148).

A few words about post processing could also prove useful. In the first implementation of
Salinas, constraints were applied only in the basic coordinate system. The degree of freedom to
eliminate was obvious from the exodus file, and it’s value was a constant (usually zero). In this later
version, a more general approach must be used. We use the following strategy.

1. degrees of freedom directly constrained to zero are handled implicitly. This is done by setting
the G-set vector to zero before merging in the A-set results. There is no storage cost for this.

114

2. Other degrees of freedom are managed using an spcinfo object. An array of these objects will
be stored globally. Each object contains the degree of freedom to fill, an integer indicating
the number of other terms, a list of dofs/coefficients, and a constant. This facilitates solutions
of the form,

uspc= constant+
retained dofs

∑
i

uiCi (2.159)

2.23.4 Multi Point Constraints

The application to multipoint constraints is very straight forward. The only difference is that the
whole system of equations must be considered together. This changes thelinear algebra significantly
because the matrices must now be stored in sparse format. However, the steps that are applicable
for single point constraints apply here as well. Subsection 2.18 deals more explicitly with MPCs.

2.23.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [48]. We identify how to transform
output PDS.

Let H(f) denote a frequency response function vector for a given input (in theglobal system)
expressed as,

H(f) = H1(f)e1 +H2(f)e2 +H3(f)e3

whereei represents the unit vectors of this space. Note thatH(f) is an output vector at a single
location in the model.H(f) can also be expressed using an alternate set of unit vectors,ẽi .

H(f) = H̃1(f)ẽ1 + H̃2(f)ẽ2 + H̃3(f)ẽ3

Taking the dot product of these two equations and equating the results, wehave,

H̃1(f) =
3

∑
k=1

ckiHk(f) (2.160)

where
cki = ek · ẽi

The spectral density functionGi j (f) (for a given input and at a single output location) can be ex-
pressed as,

Gi j (f) = αH∗i (f)H j(f) (2.161)

whereα is a constant and superscript * denotes complex conjugate. Similarly for thealternative
coordinate frame,

G̃i j (f) = αH̃∗i (f)H̃ j(f)

We may use equation 2.160 to expressG̃ in terms of theHi . We may then use the spectral definition
in equation 2.161 to provide the transformation of spectral densities.

115

G̃i j (f) = α

(

3

∑
k=1

ckiH
∗
k (f)

)(

3

∑
m=1

cm jHm(f)

)

=
3

∑
k=1

3

∑
m=1

ckicm jGkm (2.162)

This can be expressed in matrix notation asG̃ = CTGC.

2.24 HexShells

Hexshells are provided to give the analyst an element with performance similar to a standard shell,
but with the mesh topography of a brick. Thus, thin regions of the model canbe meshed with
hexshells, without concern for the bad aspect ratio of the elements, and with topography consistent
with a solid mesh.

The element is documented extensively in the description by Carlos Felippa (see reference 49).
The paragraphs in this document summarize the limitations of the shells and the possible usage.

Because hexshells have an inherent thickness direction, it is important to be able to identify that
direction. There are (at least) four methods to accomplish this.

natural The natural ordering of the nodes in the element can determine the thickness direction.
This is the method used by Carlos in developing the element. I believe that the connectivity
for the element will indeed have to be modified to properly interface to his software.

sideset The placement of a sideset on one (or both) thickness faces of the elements uniquely iden-
tifies the thickness direction.

topology Usually the topology can be used to identify the thickness direction. The hexshell should
be used in a sheet. If the hexshells are considered alone, only the free surfaces of the sheet
are candidates for the thickness direction. Further, once the thickness direction is established
for one element, it must propagate to the neighbors. (Note that this implies that we can’t have
a self intersecting sheet).

projection The thickness direction could be determined by the closest projection to a coordinate
direction.

We will try to support all of the above methods. Thetopologymethod puts the least burden on the
analyst. It is the least explicit however, and the most work to implement (especially in parallel).
The next simplest (for the analyst) is theprojectionmethod. Sideset methods are burdensome for
both the analyst and the code development team. Thenatural method is the easiest to implement,
but can be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with each method. Only one of the
four keywords above can be entered. If no keyword is entered, thentopologyis assumed.

116

Block 9
HexShell
orientation sideset=’1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

2.25 Membrane

In this section we provide the theory behind the tangent stiffness matrix for the quad membrane
element in Salinas. This element has stiffness in the in-plane directions, but has no stiffness out-
of-plane. Also, it has no rotational degrees of freedom. We note that theformulation given here is
identical to the membrane used in Abaqus.50

To begin, we define two orthogonal surface directions in the plane of the membranel andm,
and a normal vectorn. Given these unit vectors, a local coordinate system(l ,m,n) is implied. Then,
we consider the weak formulation of the internal force term for the membranein the deformed
configuration1

δWint =
Z

Ω
δD : σdΩ (2.163)

whereWint is the virtual work,Ω is the domain of the membrane,σ is the stress tensor, andL =
∂u
∂x = D+W is the deformation gradient. The rate-of-deformationD and spin tensorsW are defined
as

D =
1
2

[

(

∂u
∂x

)

+

(

∂u
∂x

)T
]

(2.164)

W =
1
2

[

(

∂u
∂x

)

−
(

∂u
∂x

)T
]

(2.165)

Note that we are using an updated Lagrangian formulation here, and thus the integral in equation
2.163 is over the current (deformed) configuration of the membrane.

We note that we can also write equation 2.163 as

δWint =
Z

Ω
δL : σdΩ (2.166)

sinceW is a skew-symmetric tensor, and the tensor product of a skew-symmetric tensor with a
symmetric tensor (i.e.σ) is zero.

117

Equation 2.166 is written in terms of the global coordinate system. In the formationof the
tangent stiffness matrix, we wish to use the fact that all stress components normal to the plane of
the membrane are zero. Hence, when considering equation 2.163 in terms ofthe(l ,m,n) coordinate
system of the membrane, we can eliminate the out-of-plane terms and write as

δWint =
Z

Ω
δLlm : σlmdΩ (2.167)

wherel ,m= 1,2 are the indices for the in-plane coordinate system of the membrane,Llm = ∂ul
∂xm

, and
σlm is the 2x2, in-plane stress tensor.

Next, we need to relate the derivatives in the plane of the element to those in theglobal coor-
dinate system. This is because the numerical integration of the tangent stiffness matrix takes place
in the plane of the element (and hence involves derivatives with respect toin-plane coordinates),
whereas the derivatives in equation 2.167 are in terms of global coordinates. We can express the
in-plane displacement in terms of the out-of-plane displacement as

ul = ul̇ (2.168)

um = uṁ (2.169)

un = uṅ (2.170)

(2.171)

Then, the relationship between the derivatives can be computed

∂u
∂xl

=
∂u
∂x

∂x
∂xl

=
∂u
∂x

el (2.172)

whereel is the unit vector in thel direction. Similar expressions hold for the other components.
Taking the dot product of both sides of the previous equation with the unit vector in themdirection,
em, we arrive at

∂um

∂xl
= em

∂u
∂x

el (2.173)

Next, we consider the expression given for the tangent operator in50

Z

Ω
δD : C : dD+σ :

(

δLT ·dL−2δD ·dD
)

dΩ (2.174)

Since there is no stress in the out-of-plane direction, and nothing varies through the thickness, the
thickness can be pulled out, and this can be written simply as an area integral

t
Z

A
δD : C : dD+σ :

(

δLT ·dL−2δD ·dD
)

dA (2.175)

The first term is recognized as the material stiffness, and the second is thegeometric stiffness term.
In particular, the material stiffness term is precisely the same as the standardform of the material
stiffness in three dimensions, expect that now it is restricted to two dimensions. The geometric
stiffness term is more involved, and so we elaborate some more on that.

118

First, we consider the deformation gradient in the plane of the element

Llm = el
∂u

∂xm
(2.176)

Then, we have

δLlm = el
∂δu
∂xm

(2.177)

δLT
lm =

(

∂δu
∂xm

)T

eT
l (2.178)

(2.179)

We also note that

LTL =

(

∂u
∂xm

)T

eT
l em

∂u
∂xl

=

(

∂u
∂xm

)T ∂u
∂xl

(2.180)

sinceeT
l em = δlm.

The rate of deformationD is simply the symmetric part ofL. Thus, we can write

Dlm =
1
2

(

el
∂u

∂xm
+em

∂u
∂xl

)

(2.181)

With these relations, we can expand the expression for the geometric stiffness, as

t
Z

A
σlm

(

∂δu
∂xm

)T ∂u
∂xl
− 1

2

(

el
∂δu
∂xm

+em
∂u
∂xl

)(

el
∂δu
∂xm

+em
∂u
∂xl

)

(2.182)

The material stiffness term can be integrated with a selective deviatoric approach, in much the
same was as for a volumetric element. First, we note that after finite element discretization, the
material stiffness term in equation 2.175 can be written as

Kmat =
Z

V
BTCBdV (2.183)

whereK is the stiffness matrix,V is the volume of the element,B is the two-dimensional strain-
displacement matrix

We define the mean quadrature counterpart toB,

B̃ =
Z

V
BdV (2.184)

We note that bothB andB̃ can be decomposed into their volumetric and deviatoric components, i.e.

B̃ = B̃V + B̃D (2.185)

B = BV +BD

119

With these decompositions, we define

B̂ = B̃V + B̃D +sd(BD− B̃D) (2.186)

wheresd is a parameter between 0 and 1. Whensd= 0, the element corresponds to a mean quadra-
ture element. Whensd= 1, the element corresponds to mean quadrature on the volumetric part, but
with full integration on the deviatoric component.

With this new definition ofB̂, we can define the stiffness matrix for this element as

K =
Z

V
B̂TCB̂dV (2.187)

This is the approach taken for integrating the material stiffness term in equation 2.175

2.26 Corrections to Element Matrices

Several elements generate element matrices that may need corrections. Forexample, the stiffness
matrix generated from Craig-Bampton reductions may not be positive definite, and may not have
the proper null space. Infinite acoustic elements have a similar problem with themass matrix. These
errors are typically small, but may lead to unstable systems. Correcting the errors is an important
step.

The errors are removed using an eigen decomposition. We compute the eigenvalues and eigen
vectors of the element matrix of concern.

(A−λI)φ = 0

whereA is the matrix of concern,λ are the eigenvalues andφ are the eigenvectors. Computation of
the eigen problem on a small element matrix is not expensive. We normalize the eigenvectors such
thatφTφ = I . It follows thatφT = φ−1. We then correct the element matrix by computing,

Ã jk = A jk−
λi<0

∑
i

φi j λiφik (2.188)

The element matrix̃A then replaces matrixA in subsequent calculations. The correction of the null
space vectors (as well as the element matrix) is optionally performed for Craig-Bampton models.
See Figure 6.

120

3 Loadings

3.1 Matrices from Applied Forces

In addition to the standard mass and stiffness matrices that arise in linear structural dynamics, force-
based matrices are also common. The most common include follower stiffness matrices from ap-
plied pressures, and Coriolis/centrifugal matrices in rotating structures. These notes describe the
design of the interface for these additional matrices. We will focus on the following three terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric term, but is sym-
metrized, and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, and becomes part of the
stiffness matrix.

3. Coriolis matrix in rotating structures. This is a skew-symmetric term that becomes part of the
damping matrix.

3.2 Modal Analysis of Rotating Structures

The finite element modal analysis of rotating structures has been studied by many authors. There are
two different approaches to this problem, with each approach being limited to certain applications.
In the first approach, a rotating coordinate system is constructed that rotates with the structure.51–53

Then, relative deformations about that rotating coordinate system are sought. In the second ap-
proach, an Eulerian (ALE) formulation is used, in which the structure rotates through an Eulerian
mesh, and then Lagrangian deformations are considered about the Eulerian configuration.54,55

The first approach is not appropriate for modal analysis when contactsurfaces are present, since
the boundary conditions in the contact patch would change with time. On the other hand, the
second approach is applicable to modal analysis with contact, but requiresthe structure to have a
radial symmetry. In either case, the formulation leads to a gyroscopic eigenvalue problem, which
can then be solved using a quadratic eigenvalue solver.

In these notes, we derive the finite element eigenvalue formulation corresponding to three-
dimensional finite elements.

We begin by considering the homogeneous equations of motion of a solid bodyin three dimen-
sions

ρü−∇ ·σ = 0 (3.1)

whereü is the particle acceleration,ρ is the material density, andσ is the stress tensor. We only
consider the homogeneous (no forcing) equation here, since we are mainly interested in eigenvalue
analysis. This equation holds relative to a fixed, inertial reference frame. The terminertial reference
frameis typically used to describe a reference frame that is not accelerating.

We now consider a reference frame that has the same origin as the inertial one described above,
but is rotating at some angular velocityΩ = (ω1,ω2,ω3). We wish to formulate the eigenvalue
problem in an Eulerian framework, in which the displacement, velocity, and acceleration are all

121

written asrelative quantities, i.e. relative to the rotating coordinate system. Once the equations
are written in terms of these relative quantities, we will be able to consider the small deformation
eigenvalue problem about this rotating state.

We first note that the position vector of a point on the structure can written in terms of both
the stationary coordinate system, i.e.r = (x,y,z), or the rotating (relative) coordinate system, i.e.
rrel = (xrel,yrel,zrel). It is clear thatr = rrel, even though the individual components in these vectors
are different.

The relationships between the velocities and accelerations in the two coordinate systems are a
bit more complex. Standard textbooks on rigid body dynamics56 give the following expressions for
the velocityu̇ and acceleration ¨u in terms of the relative velocity ˙urel and relative acceleration ¨urel

u̇ = u̇rel +Ω× r (3.2)

and

ü = ürel +2Ω× u̇rel +
dΩ
dt
× r +Ω×Ω× r (3.3)

wherer = x+u andx are the position vector and coordinates of a point.

We can now rewrite the first term in equation 3.1 as

ρütt = ρ
[

ürel +2Ω× u̇rel +
dΩ
dt
× r +Ω×Ω× r

]

(3.4)

In our case, we are only interested in the case where the structure is rotating at a fixed angular
velocity, and thusdΩ

dt = 0.

Having the equations of motion in the rotating coordinate system, we now proceed to construct
the weak formulation. This can be done by multiplying equation 3.1 by a test function v and inte-
grating by parts

ρ
[

Z

V
ürel ·vdV+2

Z

V
(Ω× u̇rel) ·vdV+

Z

V
(Ω×Ω× r) ·vdV

]

+
Z

V
σ : ∇vdV+

Z

S
σnvdS= 0 (3.5)

We note that sincer = x+u, the term involvingx will simply become part of the load vector. Since
we are interested in eigenvalue analysis only, we can drop this term. Also, wewill subsequently
drop therel subscripts from the above equation, since all quantities are now in the relative (rotating)
coordinate system. Thus, the weak formulation becomes

ρ
[

Z

V
ü·vdV+2

Z

V
(Ω× u̇) ·vdV+

Z

V
(Ω×Ω×u) ·vdV

]

+
Z

V
σ : ∇vdV+

Z

S
σnvdS= 0 (3.6)

For the purposes of eigenvalue analysis, we can also drop the boundary term
R

SσnvdS, since it will
contribute to the load vector. Thus, we have

[

Z

V
ü·vdV+

Z

V
(Ω× u̇) ·vdV+

Z

V
(Ω×Ω×u) ·vdV

]

+
Z

V
σ : ∇vdV = 0 (3.7)

The first and last terms in the above equations correspond to the mass and stiffness matrices, respec-
tively. The second term is the skew-symmetric Coriolis term, and the third term is the symmetric
centrifugal term. We note that the stiffness term includes both the initial (material) stiffness asso-
ciated with the material properties, as well as the geometric stiffness associated with the stresses.

122

This stress state comes from the solution of the steady-state rolling problem, which includes the
additional stresses associated with the inertial forces.

It is easy to show that the centrifugal term is symmetric, whereas the Coriolis term is skew-
symmetric. For the centrifugal term, we note the following identity for the triple cross product

a× (b×c) = b(a·c)−c(a·b) (3.8)

Using this for examining the Coriolis term, we have

Z

V
(Ω×Ω×u) ·vdV =

Z

V
(Ω ·v)(Ω ·u)− (u·v)(Ω ·Ω)dV (3.9)

By switchingu andv in the above expression, the same result is obtained, since the dot product is
commutative. Thus, this term is symmetric.

For the Coriolis term, we first write out the cross product term in terms of its components

Ω× u̇ = (−Ω3u̇2 +Ω2u̇3,Ω3u̇1−Ω1u̇3,−Ω2u̇1 +Ω1u̇2) (3.10)

Then, we have

(Ω× u̇) ·v = v1(−Ω3u̇2 +Ω2u̇3)+v2(Ω3u̇1−Ω1u̇3)+v3(−Ω2u̇1 +Ω1u̇2) (3.11)

Similarly, we can show that

(Ω×v) · u̇ = u̇1(−Ω3v2 +Ω2v3)+ u̇2(Ω3v1−Ω1v3)+ u̇3(−Ω2v1 +Ω1v2) (3.12)

Comparing terms, we see that equation 3.11 is precisely the negative of equation 3.12. Thus, the
Coriolis term

Z

V
(Ω× u̇) ·vdV (3.13)

is skew-symmetric.

We can now construct the finite element discretization of this equation by adopting the usual
expansions,u = Niui , u̇ = Ni u̇i , and ü = Ni üi . We will generate the forms of the matrices corre-
sponding to the interactions a single node (nodei) with another single node (nodej). These will be
3×3 matrices, which then can be projected into the global matrices. First, we note the form of the
expansion for displacement

u = Niui (3.14)

Since the displacement is a vector of dimension 3, each shape function can be represented as a
dimension-3 vector of the form

Ni = (φi ,0,0) (3.15)

whereφi is the ith shape function. Although we write the shape function in the first entry of the
3-vectorNi , it is actually placed in thek entry, wherek = mod(i,3). With this notation, the 3×3
Coriolis submatrix corresponding to the interaction between nodesi and j can be evaluated by
settingu = Niui , andv = Nj . Then, the(i, j)submatrix is given by

Z

V
(Ω×Ni) ·NjdV (3.16)

123

After doing some simplifications, we find that the 3×3 matrix corresponding to nodesi and j is
given by

Z

V
φiφ j

0 Ω3 Ω2

−Ω3 0 Ω1

−Ω2 −Ω1 0

dV (3.17)

As observed earlier, this matrix is skew-symmetric.

Next, we derive the form of the 3×3 submatrix corresponding to the centrifugal term. Again,
using the expansionu = Niui and settingv = Nj , we have the 3×3 matrix

Z

V
(Ω×Ω×Ni) ·NjdV = (3.18)

Z

V
(Ω ·Nj)(Ω ·Ni)− (Ni ·Nj)(Ω ·Ω)dV = (3.19)

Z

V
φiφ j(ΩkΩm−δkm)dV (3.20)

whereδkm is the 3×3 identity matrix,k = mod(i,3), andm= mod(j,3). Switchingk andm, we
see that the matrix is the same. Hence, we conclude that the centrifugal term issymmetric.

3.3 Random Pressure Loading

Input for random loads can be complicated. The most general type of input is the correlation matrix,
which is the inverse Fourier transform of the spectral density matrix,18 Si j (ω).

c(~x1,~x2, t1− t2) = E[P(~x1, t1)P(~x2, t2)] (3.21)

whereE[] is the expected value of the pressure at two locations on the surface at respective times.

This could be defined as a user defined function. In the most general case, that is the best means
of a definition. However, defining that function is a real chore, and in many cases, the function can
be more easily defined.

3.3.1 Specialization for Reentry

A number of simplifications can reduce the complexity of the correlation matrix. Inthe following
paragraphs, we examine each of these, and arrive at a simplified parametric input for the correlation
matrix.

Ergodic or Stationary Systems

Many variables change significantly during the course of reentry. For example, the velocity of the
body and the density of the air depend on the portion of the trajectory. However, within limited time

18 In the frequency domain we have the autospectral density matrix, and cross spectral density matrices which together
form the spectral density matrix. It typically has units of(PSI)2/Hz.

124

bounds of the trajectory, the system may be considered stationary. We represent this by writing the
pressure as a product of a deterministic function and a stationary functionof time and space.

P(~x, t) = σ(~x, t)Q(~x, t) (3.22)

where,σ is a slowly varying, deterministic function, andQ contains all the random processes.

More precisely, the pressure field applied to the RB is not stationary due to,among many things,
the deceleration of the vehicle and the increase in dynamic pressure with time. However, we assume
here that this non-stationary behavior can be modeled simply byP = σQ, whereQ is stationary and
ergodic, andσ is a scaling or modulation function of time and space. This class of non-stationary
model is called a modulated stationary process. BecauseQ is stationary,E[Q(x1, t1)Q(x2, t2)]
can be written as a function oft2− t1, call it τ(t2− t1). However,P is not stationary because
E[P(x1, t1)P(x2, t2)] = σ(x1, t1)σ(x2, t2)τ(t2− t1) cannot be written as a function only of(t2− t1); t1
andt2 appear in theσ terms.

This can simplify computation of the correlations of the pressure.

c(~x1,~x2, t1, t2) = E[P(~x1, t1)P(~x2, t2)] (3.23)

= σ(~x1, t1)σ(~x2, t2)E[Q(~x1, t1)Q(~x2, t2)] (3.24)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the correlationfunction.

E[Q(~x1, t1)Q(~x2, t2)] = π(~x1,~x2)τ(t1, t2) (3.25)

Whereπ(~x1,~x2) contains the spatial component of correlation, andτ(t1, t2) contains the temporal
correlation.

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation of pressure on an RB
during reentry. The simplest models are,

π(~x1,~x2) = exp(−αz∆z)exp(−βt∆y) (3.26)

In this expression, the spatial correlation terms depend on the separation inthe axial (or flow)
direction,∆z, and on the transverse separation,∆y.

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral density (PSD) on the surface of an
RB are still under development. Many of these models predict a PSD that is only a weak function
of the axial location. Thus, the PSD at the base of the cone is a scaled version of those at the nose.

125

Further, with high velocities, the PSD is very flat within the band of interest. Thus, the PSD may be
represented as a product of a deterministic function ofz and a single PSD. The correlations reflect
this same product, and the deterministic functionσ() can be employed to carry this scaling. If the
PSD is flat over the bandwidth, the temporal correlation may be further simplified. We may then
write,

τ(t1, t2) =
sin(ωc(t1− t2))

ωc(t1− t2)
(3.27)

where we use the fact that the Fourier transform of a constant frequency response with cutoff fre-
quencyωc is a sin(x)/x.19

Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequency.Anything above that
frequency is out of band of the analysis, and can (should) be filtered.Equivalently, time steps less
thanT = π/ωc should also be filtered. One way to approach this is to sample at an intervalT, and
interpolate using a sin(x)/x type filter as described below. Note that in addition to the benefit of
filtering, sampling at an interval,T, can reduce the amount of memory used to store the temporal
correlation.

Let [−ν∗,ν∗], 0< ν∗ < ωc, be the frequency band of a deterministic function,x(t),−∞ < t < ∞.
Then,

x(t) = lim
n→∞

n

∑
k=−n

x(kT)αk(t,T) (3.28)

where

αk(t,T) =
sin[π(t/T−k)]

π(t/T−k)
(3.29)

=
sin[π

T (t−kT)]
π
T (t−kT)

(3.30)

“It is sufficient to know the valuesx(kT), with k = ...,-2, -1, 0, 1, 2, ... to reconstruct the entire
signalx(t),−∞ < t < ∞.”

Note:

αk = 1 if
t
T

= k (3.31)

αk = 0 if
t
T

any other integer (3.32)

|αk| decreases to zero as
∣

∣

∣

t
T
−k
∣

∣

∣ increases. (3.33)

19While a flat response results in a sin(x)/x, which is the default, many PSD responses arenot flat, so a user defined
temporal function may be required.

126

Advancing the Coarse Temporal Solution

The strategy described involves computation of the solution on a coarse temporal grid, with inter-
polation to a fine time step as described above. The process for advancingthe coarse time solution
is described here.

The initial coarse solution,Y(x,T), is given by the solution to the Cholesky factor of the corre-
lation matrix.

Y = chol(c̃)W (3.34)

where

c̃ is thed(2n+1) x d(2n+1) correlation matrix

W is a vector of zero mean, unit variance random variables,
and

Y is the properly correlated solution vector at the 2n + 1
coarse time values, 0,T, 2T, ...,(2n+1)T and thed sample
locations.

Temporal Advancement As described in texts on stochastic calculus (see 57 for example), we can
compute the response of a Gaussian random vector when a portion of the vector is known. Consider
a random vectorY, which is partitioned into a known part,Y(1), and a portion to be determined,
Y(2). We may write, (see equation 2.109 of [57]),

ξ = (Y(2)|Y(1) = z) (3.35)

= Ñ(µ̂, ĉ) (3.36)

where,

µ̂ = µ(2) +c(2,1)[c(1,1)]−1(z−µ(1)) (3.37)

ĉ = c(2,2)−c(2,1)[c(1,1)]−1c(1,2) (3.38)

andµ(i) is the mean on each portion of the solution.

In words, we can express the normal distribution of the unknown vector as a random distribution
with meanµ̂ and variance given by the covariance matrix ˆc. The covariance does not depend on
the previous samples but only on the partition of the original covariance matrix. The mean depends
weakly on the previous sample,z.

The matrixc is partitioned as follows.

c(1,1) is just c̃, the original correlation matrix. It is a square matrix of dimensiond(2n+1).

c(2,2) is thedxd correlation matrix associated with zero time lag.

c(2,1) is an additional set ofd rows of the correlation matrix associated with the time lag(2n+2)T.

127

c =

C(0) C(T) C(2T) ... | C((2n+2)T)
C(T) C(0) C(T) ... | C((2n+1)T)

... | ...

C((2n+2)T) C((2n+1)T) C(2nT) ... | C(0)

andC(T) is thed x d correlation matrix evaluated on thed spatial points at time lagT.

Procedure The solution is advanced as follows.

1. We augment the system to haved(2n+2) equations. Thusc(1,1) is thed(2n+1) covariance
previously calculated.

2. We useb = chol(c(1,1)) to compute the desired mean of the new distribution. Specifically,

µ̂ = µ(2) +c(2,1)(btb)−1(z−µ(1)) (3.39)

= c(2,1)(btb)−1z (3.40)

= gz (3.41)

where we have used the fact that bothµ(1) andµ(2) are zero. We store the rectangular matrix
g = c(2,1)(btb)−1. We no longer need the original covariance matrix ˜c, nor it’s factor,b.

3. We reuseg to compute the revised correlation matrix.

ĉ = c(2,2)−c(2,1)[c(1,1)]−1c(1,2) (3.42)

= C(0)−gc(1,2) (3.43)

whereC(0) is thed x d correlation matrix for a time lag of zero. The matrix ˆc is dxd as well.

4. We perform a Cholesky factor on ˆc. This is the second such factor, and it is performed on a
smaller space. It need be performed only on the first advancement as ˆc is a constant.

b̂ = chol(ĉ) (3.44)

5. Compute the new distribution.

ξ = Ñ(µ̂, ĉ) (3.45)

= µ̂+chol(ĉ)w (3.46)

= µ̂+ b̂w (3.47)

wherew is a zero mean, unit normal Gaussian basis.

6. Move solution vector solution,Y, up by one, and insertξ in the new locations.

128

4 Linear Algebra Issues

4.1 Solution Spaces

There are a number of different dimensions in Salinas. These will be summarized here with a
focus on using the data within the matlab framework. Examples of how to convert data from one
dimensionality to another will be given.

The subject of matrix dimensions is an important one. Salinas has a fairly simple set of dimen-
sions compared to more complex systems like Nastran. However, it is critical that these be well
understood if we wish to manipulate the data.

As an example, I consider an eigen analysis of a structure with 9938 nodes. This structure is
made of shells and solids. There are no boundary conditions, but there are 9 mpcs applied. I look at
only the serial file sizes.

To get the required maps and other m-files, we must select ’mfiles’ in the output section. To get
the eigenvector data, we must also write the exodus file with ’disp’ selected in the output section.

For this model, we have the following important dimensions.

1. #nodes=9938

2. external set= #nodes * 6 dofs/node = 59628

3. G-set = # active dofs before boundary conditions = 42708

4. A-set = analysis set = # equations to be solved = 42699

5. reduced external set = #nodes * 3 = 29814

There are 3 dofs/node for solid elements, but shells and beams have 6. Inaggregate, the total dofs is
42708 before boundary conditions and mpcs are applied. There are noBCs in the model, but there
are 9 MPC equations, each of which eliminates 1 dof, so the Aset is reducedto 42699.

Unfortunately, theeigen disp*.m files are written in the reduced external set since this is what
the analysts typically want. The bad news is that these m-files are useless to us. The good news is
that all the data is available in eitherm-files or in theexodus output.

The matricesMssr andKssr contain the mass and stiffness matrices in theA-set . They are
symmetric matrices and only one half of the off diagonal is stored. To get the complete matrix
within matlab ,

>>> K = Kssr + Kssr’ - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the output exodus file. To get them use the
seacas commandexo2mat .

129

> exo2mat example-out.exo

Within matlab , the data can be converted to a properly shaped matrix.

>>> load example-out
>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;
>>> phi(tmp+1,:)=nvar01;
>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
>>> phi(tmp+4,:)=nvar04;
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;

We now have phi as a matrix with each column corresponding to an eigenvector. However, phi is
dimensioned at 59628 x 10 for this example. We clearly can’t multiply phi by K for example - the
dimensions don’t match. To do this we need a map.

We have two maps in our directory.FetiMap a.m is the map from the external set to the A set.
Thus we can reducephi to theA-set by combining it withFetimap a. If the G-set is desired
instead of theA-set , replaceFetiMap a with FetiMap .

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:nnodes*6
>>> i=FetiMap_a(j);
>>> if (i > 0)
>>> p2(i,:)=phi(j,:);
>>> end
>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mapp1=FetiMap_a+1;
>>> tmp=zeros(max(max(mapp1)),nsteps);
>>> tmp(mapp1,:)=phi;
>>> p2=tmp(2:max(max(mapp1)),:);

Now we can do all the neat things likep2’*K*p2 .

To get back to the external set, we again use this map. For example, if we have a vector of
dimension 42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);

130

>>> for i=1:59628
>>> if (FetiMap_a(i)>0)
>>> XX(i)=x(FetiMap_a(i));
>>> end
>>> end

Obviously, similar shortcuts can be made to make this more efficient. One that appears to work is
shown here.

>>> xtmp=[0 x’];
>>> X2=xtmp(mapp1);

4.2 Matrix Dimensions: Revision

The previous section is pretty confusing, and worse than this, it does notcorrespond well with other
documentation. Let us make another stab at it. The variousspacesare listed in Table 7. A discussion
of each follows.

Space Description
Full-set biggest possible set. 8 * number of nodes

Structural-set 6 * number of nodes
This is the space that is typically written to exodus.

Assembly-set
This is the space to which we assemble matrices. It represents
those DOFS that have been “touched” by elements.

S-set degrees of freedom eliminated by SPC
Common-set Assemby minus S-set

M-set degrees of freedom eliminated by MPC
Analysis-set dimension of matrices sent to solvers.

Table 7. Salinas solution spaces

Full-set This space is referenced by many of our solvers. We then provide a map from this space
to the Analysis-set using Feti-map. Every node has 8 degrees of freedom (3 translations, 3
rotations, acoustic and generalized). Virtual nodes may have been added to handle generalized
dofs.

Structural-set This is identical to thefull-setexcept that acoustic and generalized dofs have been
eliminated. It is used for output to exodus files, and contains all the structural dofs of the
model. It includes virtual nodes.

Assembly-setThe assembly set is the space to which matrices are assembled. It includes dofs that
may later be eliminated by SPC or MPC. It includes all dofs that are touched.

Assembly-set= Analysis-set∪S-set∪M-set

Currently the only map to the assembly set is found in theNodeArray .

131

S-set This is the list of degrees of freedom that are eliminated by single point constraints (SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This setis
common to all solvers, in contrast to the analysis set which may have different dimensions
for serial and parallel solvers.

M-set This is the list of degrees of freedom that are eliminated using multipoint constraints (or
MPCs). When using constraint elimination in serial, the dimension of the problemis reduced
by the number of MPC constraints. In contrast, in solvers that use Lagrange multipliers,
the stiffness matrix is unchanged by introduction of the constraints. Note however, that the
solution vector will include extra lagrange multipliers.

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note that it
may depend on the solver. With constraint elimination, the M-set may not be empty, while
solvers that use Lagrange multipliers will always have an emptyM-set.

Solution-set As noted above, in parallel solutions with lagrange multipliers, we actually passa
LHS matrix of dimension equal to the Analysis set. However, the solution vectorreturned
is of length Analysis-set plus the number of Lagrange multipliers. This is the solution-set
length.

G-set Unfortunately, while the sets above are well defined, the G-set is not. At various times it has
been used to refer to the Full, Structural or assembly set. This confusion spreads throughout
the documentation and the comments in the notes.

4.2.1 Revised Set definition Example

Consider the problem in Figure 12. The model consists of 4 real nodes, one MPC, one superelement
(with one generalized dof), and single point constraints sufficient to clampthe left hand side, and
keep the rest of the model in one dimension.

1 2 3

MPC SE (1 generalized dof)

4

Figure 12. Example for Set Definition

Full-set There are 4 real nodes, plus 1 virtual node (generated for the generalized dof). Thus,

size(Full) = (4+1)8 = 40

132

Assembly-setThe two elements are beams, with 6 dofs per node. The superelement touches the
generalized dof on the virtual node.

size(Assembly) = (4)6+1 = 25

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by eliminating 5 dofs
each on the 3 remaining nodes.

size(S) = 6+15= 21

Common-set After elimination of the S-set, the common set is,

size(Common) = 25−21= 4

All solvers use this space initially. The following cases are different for each solver.

M-set The size of the M-set is one, but what that means to the analysis depends on the solver. For
serial solvers with constraint elimination, the matrix size is reduced by one. For Lagrange
multiplier solvers, we keep our matrices at the same size, but augment the solution space by
one Lagrange multiplier.

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lagrange multiplier
problems, the LHS matrix stays at the Common-set dimension, but constraint equations are
passed in separately, and Lagrange multipliers are part of the solution vector.

Solution-set For serial solvers, the Solution-set is always equal to the analysis-set(which is 3 in
this example). For Lagrange multiplier solvers, the solution-set in this example is5.

4.3 Rotational Degrees of Freedom

In addition to the three translational degrees of freedom common in solid elements, beams, shells
and some other specialty elements use rotational degrees of freedom. These degrees of freedom per-
mit direct application of moments and allow efficient computations of structural element response
such as bending. Rotational degrees of freedom are also important formanagement of rigid bodies.
There are two methods of managing rotational degrees of freedom in our applications. Full rotation
tensors are used for large deformation nonlinear response, while infinitesimal rotation angles are
typically used for small strain, linear response such as eigen analysis.

4.3.1 Euler Angles

In standard texts on classical mechanics, the rotation of a rigid body is oftendescribed using a
rotation tensor complete with Euler angles. However, there are a variety of definitions of these
angles, and the order by which they are applied does matter. From the wikipedia:

133

Euler angles are a means of representing the spatial orientation of any frame of
the space as a composition of rotations from a reference frame. In the following
the fixed system is denoted in lower case (x,y,z) and the rotated system is denoted
in upper case letters (X,Y,Z).
The definition is Static. The intersection of the xy and the XY coordinate planes
is called the line of nodes (N).

α is the angle between the x-axis and the line of nodes.

β is the angle between the z-axis and the Z-axis.

γ is the angle between the line of nodes and the X-axis.

This previous definition is called z-x-z convention and is one of several common
conventions; others are x-y-z and z-y-x. Unfortunately the order in which the
angles are given and even the axes about which they are applied has never been
“agreed” upon. When using Euler angles the order and the axes aboutwhich the
rotations are applied should be supplied.
Euler angles are one of several ways of specifying the relative orientation of two
such coordinate systems. Moreover, different authors may use different sets of
angles to describe these orientations, or different names for the same angles.
Therefore a discussion employing Euler angles should always be preceded by
their definition.

Whatever definition is used, Euler angles use a series of 3 rotations about3 different axis to
represent the orientation of a body in space. For example, in the case of the z-x-z convention, these
angle define the following rotation matrix.

[R] =

cosα −sinα 0
sinα cosα 0

0 0 1

1 0 0
0 cosβ −sinβ
0 sinβ cosβ

cosγ −sinγ 0
sinγ cosγ 0

0 0 1

Because matrix multiplication is not commutative, the solution depends on the orderof rotation.
Rotation of a vector by this angle is a tensor product with this matrix. i.e.v′ = Rv.

4.3.2 Infinitesimal Rotational Angles

Most linear, small deformation FE applications apply the small angle approximation. We expand
all trigonometric functions as polynomials of their arguments and retain only first order terms in
the angles. Thus,sin(θ) = θ, and cross terms are eliminated. With these approximations, the
order of rotation becomes unimportant, and the component contributions to therotation matrix are
commutable. For a rotation about x,y, z ofα,β,γ we have:

[R] =

1 −γ β
γ 1 −α
−β α 1

This formulation is extremely convenient, because the coordinates are completely independent
of each other. There are obvious limitations, as the approach does not conserve length for larger

134

rotations. This is often apparent in animation of mode shapes; the modes are computed under a
small angle approximation, but are often displayed with a finite deformation.

4.3.3 Quaternions

The Euler angles of the previous sections can properly define the rotations of a body. However,
the three ordered matrix operations required are not very convenient from a computational point of
view. The quaternion provides an alternate form of algebra which is equivalent to the full Euler
rotations, and is much more elegant (and efficient) for this type of computation. Within Salinas,
we use the full rotation tensor, while other sierra solid mechanics codes usequaternions. They are
mathematically equivalent.

4.3.4 Salinas Implementations

Linear vs. Nonlinear Solutions

Very simply put, all linear solutions use the infinitesimal rotation angle formulations. All nonlinear
solutions maintain a large rotation capability and use the full rotation tensor. Nonlinear solutions
using linear elements (or linearized tangent stiffness matrix terms) require conversion between these
forms.

Mixed Variable Solutions

Many linear element have been constructed which are quite adequate for use in some parts of non-
linear applications. For example, a large ship may be include a linearized modelof an engine as part
of the model. As long as the engine is undergoing small deformations, it is reasonable to employ
such a linearized model, even if another part of the ship is subject to large strain and large rotation.
In general, Salinas allows the user to specify that certain material blocks in amodel are linear, even
in a nonlinear analysis. This necessitates translation between these alternate(and non-equivalent)
forms.

Incremental Angular Update

Update of the rotation tensor following an incremental solution of a small deformation is accom-
plished as follows. Let us call the initial rotation tensor,Rinit . We compute a small rotation incre-
ment expressed in terms of its small rotation angles,< α,β,γ > . From the rotation increment, we
compute a rotation increment quaternion as follows.

1. θ =
√

(α2 +β2 + γ2)

2. q1 = cos(θ/2)

3. c = sin(θ/2)/θ

135

4. q2 = cα

5. q3 = cβ

6. q4 = cγ

7. The quaternion is normalized.

The quaternion is then converted to a rotation tensor,

R∇ =

2(q2
1 +q2

2)−1 2(q2q3−q4q1) 2(q2q4 +q3q1)
2(q2q3 +q4q1) 2(q2

1 +q2
3)−1 2(q3q4−q2q1)

2(q2q4 +−q3q1) 2(q3q4 +q2q1) 2(q2
1 +q2

4)−1

The updated rotation tensor is,
Rupdate= R∇Rinit

Thus, the rotation increment is treated as a full angle update.

4.3.5 Consequence for Linear Elements in nonlinear solutions

The consequence of this update is that there may be significant differences between a nonlinear
solution and a linear solution, even when both are applied to a linear element. The approximations
applied for infinitesimal rotations are significant, and are not reciprocal, i.e. information is lost in
that approximation. Nonlinear solutions should permit large rotations with most elements. Linear
solutions are valid only in the range of small deformations.

4.4 Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One that is essential is that the con-
straints must be orthogonal to rigid body rotations. By this we mean that the multipoint constraints
must not constrain the system in a way that eliminates rigid body motion. This can be easily seen
in modal analysis. An ungrounded system with MPCs must retain 6 rigid body modes. Transient
and static analysis has the same kind of issues, but here the problem may notbe as obvious. Note
that there are a variety of means of arriving at the weights for a set of constraints. For example,
an inconsistent tied constraint may be constructed with a node on face approach. Alternatively a
mortar method can accomplish the same thing with a different set of constraints.The weights for
these systems may differ, but all must allow the body to freely rotate. It is clear that each constraint
equation must satisfy this orthogonality independently.

4.4.1 Beam Example

I take an an example a simple two node beam to which a single node is constrainedas is illustrated
in Figure 13. The beam is of unit length, in theX direction. Point 3 is located a distanceε from
point 1.

136

1 23

ε� -

Figure 13. Node Constrained Directly to Beam.

The displacement vector is defined as,

U = [u1xu1yu2xu2yu3xu3y] (4.1)

With a linear shape function, the typical constraints required to keep point 3on the line are,

[(1− ε) 0 ε 0 −1 0] (4.2)

[0 (1− ε) 0 ε 0 −1] (4.3)

The three orthogonal rigid body vectors are,20

1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ 0 (2ε−1)θ

 (4.4)

It can be seen that the constraints are orthogonal to the rigid body vectors.

4.4.2 Offset Example

With an offset, such as that shown in Figure 14, the rigid body vectors change. They become,

1 0 1 0 1 0
0 1 0 1 0 1
0 −θ 0 θ −Lθ (2ε−1)θ

 (4.5)

What is important here is that the rotation rigid body mode gains an extra term. Rotation of thisX
axis beam about theZ axis now has a term inX. These rotational rigid body modes are no longer
orthogonal to the original constraints, 4.3.

L1 2

3

ε� -

Figure 14. Node Constrained Offset to Beam.

20 We are using infinitesimal rotations where sin(θ) = θ.

137

4.4.3 Orthogonalization

A simple orthogonalization step can make the constraint weights once again orthogonal. We com-
pute,

n = ~C ·~Ri/||~Ri ||2 (4.6)
~C ← ~C−n~Ri (4.7)

where~C represents the constraint equation, and~Ri represents one of theorthogonalizedrigid body
modes. Without loss of generality, we can restrict~R to the nodes in the constraint interaction. In
general, this operation must be performed for all rigid body modes on eachconstraint.

4.5 Mass Properties

Mass properties are computed using the method of Baruch and Zemel.58 The total mass, location of
the center-of-gravity, and the moment of inertia tensor are all calculated for most element types us-
ing the mass matrix and a set of rigid-body vectors. However, acoustic elements and superelements
use a slightly different procedure. Both methods are discussed below.

4.5.1 Mass Property Calculations for Most Element Types

The mass properties are computed using rigid-body vectors. At a node, the translational rigid-body
vectors are

{Rx}=

1
0
0
0
0
0

{Ry}=

0
1
0
0
0
0

{Rz}=

0
0
1
0
0
0

(4.8)

and the rotational rigid-body vectors are

{Rrx}=

0
−z
y
1
0
0

{Rry}=

z
0
−x
0
1
0

{Rrz}=

−y
x
0
0
0
1

(4.9)

wherex, y, andz are the location of the node in the global coordinate system. These vectors are
actually assembled on an element level. As an example, for a three-node triangle element,{Rrx}
takes the form

{Rrx}T =
{

0 −z1 y1 1 0 0 0 −z2 y2 1 0 0 0 −z3 y3 1 0 0
}

.
(4.10)

138

The total mass for an element can be computed as

Melement = {Rx}T [Me]{Rx} (4.11)

= {Ry}T [Me]{Ry} (4.12)

= {Rz}T [Me]{Rz} (4.13)

where[Me] is the mass matrix for the element. The total mass for the model is computed by summing
over all the elements

Mtotal =
Nel

∑
i=1

{Rx}T [Me]{Rx}. (4.14)

Note that the x, y, and z-direction equations produce the same result.Salinasuses the x-direction
equation.

In a similar manner, the location of the center-of-gravity can be found by

xcg =
1

Mtotal

Nel

∑
i=1

{Rrz}T [Me]{Ry}, (4.15)

ycg =
1

Mtotal

Nel

∑
i=1

{Rrx}T [Me]{Rz}, (4.16)

zcg =
1

Mtotal

Nel

∑
i=1

{Rry}T [Me]{Rx}. (4.17)

The components of the inertia tensor are computed as

Ixx =
Nel

∑
i=1

{Rrx}T [Me]{Rrx}, (4.18)

Iyy =
Nel

∑
i=1

{Rry}T [Me]{Rry}, (4.19)

Izz=
Nel

∑
i=1

{Rrz}T [Me]{Rrz}, (4.20)

Ixy =
Nel

∑
i=1

{Rrx}T [Me]{Rry}, (4.21)

Ixz =
Nel

∑
i=1

{Rrx}T [Me]{Rrz}, (4.22)

Iyz =
Nel

∑
i=1

{Rry}T [Me]{Rrz}. (4.23)

This procedure for computing mass properties applies to hex8, hex20, wedge6, wedge15, tet4,
tet10, beam2, Obeam, Nbeam, truss, tri3, tri6, tria, quad4, quad8, quadM,and conmass elements.

139

4.5.2 Mass Property Calculations for Acoustic Elements and Superelements

Although acoustic element blocks are made up of element types listed above, acoustic elements
only have 1 degree-of-freedom per node. Thus, the rigid-body vectors presented above cannot be
used without modification. Similarly, superelement can have any number of degrees-of-freedom
depending on how the element was formed. Because of this, a different method is used to compute
mass properties for superelements and acoustic elements.

The mass properties for these elements can be computed with somewhat less accuracy than the
method presented above by lumping the mass matrix of each element, then summing thecontribu-
tion from each node. This is the method implemented inSalinas.

The total mass is

Mtotal =
Nnode

∑
i=1

Mi (4.24)

whereMi is the mass at nodei. The center-of-gravity is

xcg =
1

Mtotal

Nnode

∑
i=1

Mixi , (4.25)

ycg =
1

Mtotal

Nnode

∑
i=1

Miyi , (4.26)

zcg =
1

Mtotal

Nnode

∑
i=1

Mizi (4.27)

wherexi , yi , andzi , are the global coordinates of nodei. The components of the inertia tensor are

Ixx =
Nnode

∑
i=1

Mi(y
2
i +z2

i), (4.28)

Iyy =
Nnode

∑
i=1

Mi(x
2
i +z2

i), (4.29)

Izz=
Nnode

∑
i=1

Mi(x
2
i +y2

i), (4.30)

Ixy =−
Nnode

∑
i=1

Mixiyi , (4.31)

Ixz =−
Nnode

∑
i=1

Mixizi , (4.32)

Iyz =−
Nnode

∑
i=1

Miyizi . (4.33)

140

5 Constraints and Contact

5.1 Tied Friction

The work on tied surfaces with friction is under development. Details are maintained in our design
documentation.

5.2 Mortar Methods

5.2.1 Background

For simplicity, we only consider one of the three components of displacement inthe following
development; the same approach holds for the other two components of displacement. Letum and
us denote displacements on themasterandslavesides of a mesh interface. Ideally, we would like
to satisfy

us = um

at all locations on the interface. This restriction, however, is only practical for meshes which are
conforming at the interface. Otherwise, displacements would be restricted toa low-order polyno-
mial of degree equal to that of the lowest-order finite element on either side of the interface. As a
result, the interface would be too stiff.

For mortar methods, the constraintus = um is only satisfied in a weak sense. Specifically, the
mortar constraints are of the form

Z

Γ
λ(us−um)dx= 0, (5.1)

whereΓ denotes the interface andλ is a Lagrange multiplier. Notice the familiar inconsistent
tied contact (node on face) constraints for a slave node can be expressed in this form by choosing
λ as a Dirac delta function for the subject slave node. For mortar methods it is important that
constant functions are in the space of Lagrange multipliers. Clearly, Diracdelta functions cannot
be combined to obtain a constant. Thus, we should not expect the convergence rates of mortar and
tied contact methods to be identical. Indeed, the convergence rates for tiedcontact are in general
suboptimal.59

Let qm andqs denote vectors of nodal values of displacement on the master and slave sides of
the interface. Similarly, letqλ denote a vector of discrete values of the Lagrange multiplier. The
displacements and Lagrange multiplier are approximated (discretized) as follows:

um = φT
mqm, (5.2)

us = φT
s qs, (5.3)

λ = φT
λ qλ, (5.4)

whereφm andφs are vectors of shape functions for the master and slave sides of the interface, andφλ
is a vector of shape functions for the Lagrange multiplier. A discrete form of the mortar constraints
are obtained from substitution of (5.2-5.4) into (5.1).

Mssqs+Msmqm = 0, (5.5)

141

where
Mss=

Z

Γ
λsφT

s dx, Msm=
Z

Γ
λsφT

mdx. (5.6)

Thestandardmortar method implemented in ACME uses

φλ = φs. (5.7)

In other words, the Lagrange multiplier shape functions are the same as the shape functions for
the slave side of the interface. We note in the mortar methods literature that Lagrange multiplier
shape functions are often modified for slave nodes on the boundary of the interface. The purpose for
this modification is to avoid redundant constraints at the intersection of two or more interfaces. At
present, we make no such modifications, but we will revisit this topic in a later section. Substitution
of (5.7) into (5.6) gives

Mstandard
ss =

Z

Γ
φsφT

s dx, Mstandard
sm =

Z

Γ
φsφT

mdx. (5.8)

Although the matrixMstandard
ss is sparse and positive definite, its inverse is dense. Thus, if one

were to solve (5.5) forqs in terms ofqm, each slave node displacement would depend on all the
master side nodal displacements in the general case. As a result, solvers which make use of this
form of constraint elimination would suffer from significant memory and computational demands
for interfaces with large numbers of nodes.

The basic idea with dual mortar methods is to choose a Lagrange multiplier basis which leads
to a diagonalMss matrix. One could then efficiently eliminate slave node displacements since each
one would only depend on the master node displacements in a small neighborhood around the slave
node rather than the entire interface. In this respect, the constraint equations for dual mortar methods
resemble those of tied contact.

Let σ denote an element face on the slave side of the interface. Further, letσ(Γ) denote the set
of all such faces onΓ. From (5.6) we then have

Mss= ∑
σ∈σ(Γ)

Mssσ, Msm= ∑
σ∈σ(Γ)

Msmσ, (5.9)

where
Mssσ =

Z

σ
φλφT

s dx, Msmσ =
Z

σ
φλφT

mdx. (5.10)

For the dual mortar method, we choose the vectorφλ to be a linear combination of rows ofφs.
Specifically, for each slave faceσ we set

φλ = Aσφs, (5.11)

whereAσ is a transformation matrix. In order to have a method which passes constant stress patch
tests (linear consistency), it must be possible to obtain a constant function from a linear combination
of the rows ofφλ. We see thatAσ equal to the identity matrix satisfies this condition since the sum
of all slave shape functions overσ is unity. In this case, however, we recover the standard mortar
method. The present goal is to chooseAσ to satisfy the constant approximation property while also
leading to a diagonal matrixMss. To this end, we follow the construction in60 and:61

Aσ = Dσ(Mstandard
ssσ)−1, (5.12)

142

where

Dσ = diag

(

Z

σ
φsdx

)

. (5.13)

Replacingφs in (5.8) byAσφs, we obtain

Mdual
ss = ∑

σ∈σ(Γ)

Z

σ
AσφsφT

s dx= ∑
σ∈σ(Γ)

AσMstandard
ssσ = ∑

σ∈σ(Γ)

Dσ, (5.14)

Mdual
sm = ∑

σ∈σ(Γ)

Z

σ
AσφsφT

mdx= ∑
σ∈σ(Γ)

AσMstandard
smσ . (5.15)

Since eachDσ is diagonal, it follows thatMdual
ss is also diagonal.

Numerical integration over each slave faceσ is done in ACME by first decomposingσ into a set
of triangular facetst(σ) and then summing the contributions from each of these facets. Specifically,
from ACME we have access to the integrals

Mstandard
sst =

Z

t
φsφT

s dx, Mstandard
smt =

Z

t
φsφT

mdx, (5.16)

wheret ∈ t(σ). By assembling contributions toσ, we then calculate

Mstandard
ssσ =

Z

σ
φsφT

s dx= ∑
t∈t(σ)

Mstandard
sst . (5.17)

With Mstandard
ssσ now in hand, we then calculate

Mdual
sst = AσMstandard

sst = Dσ(Mstandard
ssσ)−1Mstandard

sst , (5.18)

Mdual
smt = AσMstandard

sst = Dσ(Mstandard
ssσ)−1Mstandard

smt . (5.19)

SinceMstandard
ssσ is symmetric and positive definite, it can be factored using the Cholesky decompo-

sition. Accordingly, products with the inverse ofMstandard
ssσ in (5.18) and (5.19) can be obtained with

calls toLAPACKroutinesDPOTRFandDPOTRS. It then only remains to calculate the entries of the
diagonal matrixDσ.

Let e denote a vector of the same length asφs and with all its entries equal to 1. Since the sum
of shape functions inφs equals 1 inσ, we have

φT
s e= 1. (5.20)

From (5.17) we then obtain

Mstandard
ssσ e=

Z

σ
φs(φT

s e)dx=
Z

σ
φsdx. (5.21)

With reference to (5.13), it then follows that

Dσ = diag
(

Mstandard
ssσ e

)

. (5.22)

The procedure used to calculate the transformed mortar matricesMdual
sst andMdual

smt for the dual La-
grange multiplier basis is summarized as follows.

143

1. CalculateMstandard
ssσ by assembling contributions from triangular facets as in (5.17).

2. Calculate the diagonal matrixDσ according to (5.22).

3. Calculate the mortar matricesMdual
sst andMdual

smt for the dual Lagrange multiplier basis accord-
ing to (5.18) and (5.19).

In summary, all that is needed is to replace the mortar matricesMstandard
sst andMstandard

smt for each
triangular facett by their dual basis counterpartsMdual

sst andMdual
smt . The remainder of the coding in

ACME remains the same. The only code changes on the Salinas side is to pass aflag to ACME
indicating whether or not to use the dual mortar method.

5.2.2 Treatment of Interface Boundary

To be continued. This section will deal with the special treatment of slave nodes on the interface
boundary to avoid potential redundant constraint equations.

5.2.3 Nodal Coordinate Adjustments

To be continued. This section will deal with how to initially move the slave nodes to retain all six
rigid body modes for curved interfaces or flat interfaces with initial gaps.

144

References

[1] Belytschko, T., Liu, W. K., and Moran, B.,Nonlinear Finite Elements for Continua and Struc-
tures, John Wiley & Sons, first edn., 2000.

[2] Koteras, J. R., Gullerud, A. S., Crane, N. K., and Hales, J. D., “Presto User’s Guide,” Tech.
Rep. SAND2006-6093, Sandia National Laboratories, Albuquerque,NM, 2006.

[3] Krieg, R. D. and Key, S. W., “Transient Shell Response by Numerical Time Integration,”
International Journal for Numerical Methods in Engineering, vol. 7, 1973, pp. 273–286.

[4] Brown, K. and Voth, T., “ACME: Algorithms for Contact in a MultiphysicsEnvironment, API
Version 1.3,”SAND Report 2003-1470, Sandia National Laboratories, 2003.

[5] Cook, R. D. and D. S. Malkaus, M. E. P.,Concepts and Applications of Finite Element Analy-
sis, John Wiley & Sons, third edn., 1989.

[6] Arben, P., Hetmaniuk, U. L., Lehoucq, R. B., and Tuminaro, R. S., “A Comparison of Eigen-
solvers for Large-scale 3D Modal Analysis using AMG-PreconditionedIterative Methods,”
International Journal for Numerical Methods in Engineering, vol. 1, 2003, pp. 1–21.

[7] Lehoucq, R. B., Sorensen, D., and Yang, C.,ARPACK Users’ Guide, SIAM, Philadelphia, PA,
USA, 1998.

[8] Reese, G., Field, R., and Segalman, D. J., “A Tutorial on Design Analysis Using von Mises
Stress in Random Vibration Environments,”Shock and Vibration. Digest, vol. 32, no. 6, 2000.

[9] Craig, R. R.,Structural Dynamics: An Introduction to Computer Methods, John Wiley & Sons,
1981.

[10] Day, D. M. and Walsh, T., “Damped Structural Dynamics,” Tech. Rep. SalinasDocu-
ments/SandReport/qevp - Draft, Sandia National Laboratories, 2003.

[11] Tisseur, F. and Meerbergen, K., “The Quadratic Eigenvalue Problem,” SIAM Review, vol. 43,
no. 2, 2001, pp. 235–286.

[12] Saad, Y.,Numerical Methods for Large Eigenvalue Problems, Manchester University Press
UK, 1992.

[13] Lang, G. F., “Demystifying Complex Modes,”Sound and Vibration Magazine, vol. 28.8, 1989,
pp. 36–40.

[14] Meyer, C. D.,Matrix Analysis and Applied Linear Algebra, 2001.

[15] Mahan, G.,Applied Mathematics, Kluwer Academic Publishers, 2002.

[16] Brinkmeier, M., Nackenhorst, U., Petersen, S., and von Estorff, O., “A Finite Element Ap-
proach for the Simulation of Tire Rolling Noise,”Journal of Sound and Vibration, vol. 309,
no. 1-2, 2008, pp. 20–39.

[17] Alvin, K. F., Reese, G. M., Day, D. M., and Bhardwaj, M. K., “Incorporation of Sensitivity
Analysis into a Scalable Massively Parallel Structural Dynamics FEM code,” August 1999.

145

[18] Nelson, R. B., “Simplified Calculation of Eigenvector Derivatives,” No. 14, 1976, pp. 1201–
1205.

[19] Fox, R. L. and Kapoor, M. P., “Rate of Change of Eigenvalues and Eigenvectors,” No. 6, 1968,
pp. 2426–2429.

[20] Larsen, M., “A Posteriori and a Priori Error Analysis for Finite Element Approximations of
Self-Adjoint Elliptic Eigenvalue Problems,”SIAM Journal of Numerical Analysis, vol. 38,
no. 2, 2000, pp. 608–625.

[21] Heuveline, V. and Rannacher, R., “A Posteriori Error Control for Finite Element Approxi-
mations of Elliptic Eigenvalue Problems,”Advances in Computational Mathematics, vol. 15,
2001, pp. 107–138.

[22] Oden, J. T. and Prudhomme, S., “Error Estimation of Eigenfrequencies for Elasticity and
Shell Problems,”Mathematical Models and Methods in Applied Sciences, vol. 13, no. 3, 2003,
pp. 323–344.

[23] Ainsworth, M. and Oden, J. T.,A Posteriori Error Estimation in Finite Element Analysis, John
Wiley & Sons, Inc., first edn., 2000.

[24] Bernardi, C. and Verfurth, R., “Adaptive finite element methods forelliptic equations with
non-smoooth coefficients,”Numerische Mathematik, vol. 85, 2000, pp. 579–608.

[25] Duran, R., Padra, C., and Rodriguez, R., “A Posteriori Error Estimates for the Finite Ele-
ment Approximation of Eigenvalue Problems,”Mathematical Models and Methods in Applied
Sciences, vol. 13, no. 8, 2003, pp. 1219–1229.

[26] Prudhomme, S., “personal communication,” March 2004.

[27] Segalman, D. J., “A Four-Parameter Iwan Model for Lap-Type Joints,” Tech. Rep. SAND
2002-3828, Sandia National Laboratories, November 2002.

[28] Segalman, D. J., “A Four-Parameter Iwan Model for Lap-Type Joints,” Journal of Applied
Mechanics, vol. 72, September 2005, pp. 752–760.

[29] Key, S. W., “personal communication,” December 2003.

[30] Taylor, R. L., Beresford, P. J., and Wilson, E. L., “A Non-conforming Element for Stress Anal-
ysis,” International Journal for Numerical Methods in Engineering, vol. 10, 1976, pp. 1211–
1219.

[31] Ibrahimbegovic, A. and Wilson, E. L., “A Modified Method of Incompatible Modes,”Com-
munications in Applied Numerical Methods, vol. 7, 1991, pp. 187–194.

[32] MacNeal, R. H.,Finite Elements: Their Design and Performance, Marcel Dekker, 1994.

[33] Thompson, D., Ṕebay, P. P., and Jortner, J. N., “An Exodus II Specification for Handling Gauss
Points,” Tech. Rep. SAND2007-7169, Sandia National Laboratories,2007.

[34] Hughes, T. J. R.,The Finite Element Method–Linear Static and Dynamic Finite Element Anal-
ysis, Prentice-Hall, Inc, 1987.

146

[35] Hughes, T. J. R.,The Finite Element Method–Linear Static and Dynamic Finite Element Anal-
ysis, chap. Appendix 3.1, Prentice-Hall, Inc, 1987, p. 170.

[36] Allman, D. J., “A Compatible Triangular Element Including Vertex Rotationsfor Plane Elas-
ticity Problems,”Computers and Structures, vol. 19, no. 1-2, 1996, pp. 1–8.

[37] Batoz, J.-L., Bathe, K.-J., and Ho, L.-W., “A Study of Three-Node Triangular Plate Bend-
ing Elements,”International Journal for Numerical Methods in Engineering, vol. 15, 1980,
pp. 1771–1812.

[38] Zienkiewicz, O. C. and Taylor, R. L.,The Finite Element Method, vol. 2, chap. 1, McGraw-Hill
Book Company Limited, fourth edn., 1991, pp. 23–26.

[39] Ertas, A., Krafcik, J. T., and Ekwaro-Osire, S., “Explicit Formulation of an Anisotropic All-
man/DKT 3-Node Thin Triangular Flat Shell Elements,”Composite Material Technololgy,
vol. 37, 1991, pp. 249–255.

[40] Alvin, K., de la Fuente, H. M., Haugen, B., and Felippa, C. A., “Membrane triangles with cor-
ner drilling freedoms – I. The EFF element,”Finite Elements in Analysis and Design, vol. 12,
1992, pp. 163–187.

[41] Felippa, C. A. and Militello, C., “Membrane triangles with corner drilling freedoms – II. The
ANDES element,”Finite Elements in Analysis and Design, vol. 12, 1992, pp. 189–201.

[42] Felippa, C. A. and Alexander, S., “Membrane triangles with corner drilling freedoms – III.
Implementation and performance evaluation,”Finite Elements in Analysis and Design, vol. 12,
1992, pp. 203–239.

[43] Blevins, R. D.,Formulas for Natural Frequency and Mode Shape, Krieger, Malabar, FL, USA,
1984.

[44] Przemieniecki, J.,Theory Of Matrix Structural Analysis, Dover Publications, 1968.

[45] MacNeal, R.,The NASTRAN Theoretical Manual, 1972, NASTRAN Theoretical Manual was
first published by NASA through COSMIC. NASA no longer maintains NASTRAN and COS-
MIC no longer exists. Various vendors reproduce this manual with permission from NASA.

[46] Reddy, J. N.,An Introduction to the Finite Element Method, McGraw Hill, 1984.

[47] Ochoa, O. O. and Reddy, J. N.,Finite Element Analysis of Composite Laminates, Kluwer
Academic Publishers, 1992.

[48] Wirsching, P. H., Paez, T. L., and Ortiz, K.,Random Vibrations, theory and practice, John
Wiley and Sons, Inc, 1995.

[49] Felippa, C. A., “The SS8 Solid-Shell Element: Formulation and a Mathematica Implementa-
tion,” Tech. Rep. CU-CAS-02-03, Univ. Colo. at Boulder, 2002.

[50] Abaqus, I.,Abaqus Theory Manual, Version 6.5, 2005.

[51] Carne, T., Lobitz, D., Nord, A., and Watson, R., “Finite Element Analysis and Modal Testing
of a Rotating Wind Turbine,” Tech. Rep. SAND82-0345, Sandia NationalLaboratories, 1982.

147

[52] Laurenson, R., “Modal Analysis of Rotating Flexible Structures,”AIAA Journal, vol. 14,
no. 10, 1976, pp. 1444–1450.

[53] ENDO, M., HATAMURA, K., SAKATA, M., and TANIGUCHI, ., “FlexibleVibration of a
Thin Rotating Ring,”Journal of Sound and Vibration, vol. 92(2), 1984, pp. 261–272.

[54] Nackenhorst, U., “The ALE-formulation of bodies in rolling contact. Theoretical foundations
and finite element approach,”Computer Methods in Applied Mechanics and Engineering,
vol. 193, 2004, pp. 4299–4322.

[55] Boman, R. and Ponthot, J., “Finite element simulation of lubricated contactin rolling using
the arbitrary Lagrangian-Eulerian formulation,”Computer Methods in Applied Mechanics and
Engineering, vol. 193, 2004, pp. 4323–4353.

[56] Wilson, C., Sadler, J., and Michaels, W.,Kinematics and Dynamics of Machinery, Harper and
Row, 1983.

[57] Grigoriu, M.,Stochastic Calculus, Applications in Science and Engineering, Birkhäuser, 2002.

[58] Baruch, M. and Zemel, Y., “Mass Conservation in the Identification ofSpace Structures,”
AIAA, , no. 89-1239-CP, 1988, pp. 710–712.

[59] Bernardi, C., Maday, Y., and Patera, A. T., “A New NonconformingApproach to Domain
Decomposition: the Mortar Element Method,” inNonlinear Partial Differential Equations
and Their Applications. Collége de France Seminar, Vol XI (Paris, 1989-1991), vol 299 of
Pitman Res. Math. Ser., Longman Sci. Tech., Harlow, 1994, pp. 13–51.

[60] Wohlmuth, B. I., “A Mortar Finite Element Method Using Dual Spaces forthe Lagrange Mul-
tiplier,” SIAM J. Numer. Anal., vol. 38, no. 3, 2000, pp. 989–1012.

[61] Puso, M. A., “A 3D Mortar Method for Solid Mechanics,”Int. J. Numer. Meth. Engng., vol. 59,
2004, pp. 315–336.

[62] Auld, B. A., Acoustic Fields and Waves in Solids, Second Edition, vol. I, Robert E. Krieger
Publishing Company, 1990.

[63] “MSC support,” http://support.mscsoftware.com/.

[64] Harari, I., Grosh, K., Hughes, T., Malhotra, M., Pinsky, P., Stewart, J., and Thompson, L.,
“Recent Developments in Finite Element Methods for Structural Acoustics,”Archives of Com-
putational Methods in Engineering, vol. 3, 1996, pp. 132–311.

[65] Everstine, G. C., “Finite Element Formulations of Structural Acoustics Problems,”Computers
and Structures, vol. 65, no. 3, 1997, pp. 307–321.

[66] Aminpour, M., Ransom, J., and McCleary, S., “A coupled analysis methodfor structures with
independently modelled finite element subdomains,”IJNME, vol. 38, 1995, pp. 3695–3718.

[67] Dohrmann, C., Key, S., and Heinstein, M., “Methods for Connecting Dissimilar Three-
Dimensional Finite Element Meshes,”IJNME, vol. 47, 2000, pp. 1057–1080.

[68] Laursen, T. and Heinstein, M., “Consistent mesh tying methods for topologically distinct dis-
cretized surfaces in nonlinear solid mechanics,”IJNME, vol. 57, 2003, pp. 1197–1242.

148

[69] Mandel, J., “An Iterative Substructuring Method for Coupled Fluid-Solid Acoustic Problems,,”
J. Comp. Phys., vol. 177, 2002, pp. 95–116.

[70] Flemisch, B., Kaltenbacher, M., and Wohlmuth, B., “Elasto-acoustic andacoustic-acoustic
coupling on non-matching grids,”IJNME, 2006, pp. (in press).

[71] Alonzo, A., Russo, A., Souto, C., Padra, C., and Rodriguez, R., “An Adaptive Finite Element
Scheme to Solve Fluid-Structure Vibration Problems on Non-Matching Grids,”Computing
and Visualization in Science, vol. 4, 2001, pp. 67–78.

[72] Bermudez, A., Gamallo, P., and Rodriguez, R., “A Hexahedral FaceElement for Elastoacoustic
Vibration Problems,”JASA, vol. 109, no. 1, 2001, pp. 422–425.

[73] Cook, R. D. and D. S. Malkaus, M. E. P.,Concepts and Applications of Finite Element Analy-
sis: Chapter 9, John Wiley & Sons, third edn., 1989.

[74] Chung, J. and Hulbert, G. M., “A Time Integration Algorithm for Structural Dynamics with
Improved Numerical Dissipation - The Generalized Alpha Method,”JAM, vol. 60, no. 2, 1993,
pp. 371–375.

[75] Astley, R. J., “Infinite Elements Wave Problems: A Review of Current Formulations and an
Assessment of Accuracy,”IJNME, vol. 49, 2000, pp. 951–976.

[76] Gerdes, K., “A Review of Infinite Element Methods,”Journal of Computational Acoustics.

[77] Cippola, J. and Butler, M., “Infinite Elements in the Time Domain using a Prolate Spheroidal
Multipole Expansion,”IJNME, vol. 43, 1998, pp. 889–908.

[78] Astley, R. J., “Transient Wave Envelope Elements for Wave Problems,” Journal of Sound and
Vibration, vol. 192, no. 1, 1996, pp. 245–261.

[79] Astley, R. J., Macaulay, G., Coyette, J., and Cremers, L., “Three dimensional Wave Envelope
Elements of Variable Order for Acoustic Radiation and Scattering. Part I. Formulation in the
Frequency Domain.”Journal of the Acoustical Society of America, vol. 103, no. 1, 1998,
pp. 49–63.

[80] Astley, R. J., Coyette, J., and Cremers, L., “Three dimensional WaveEnvelope Elements of
Variable Order for Acoustic Radiation and Scattering. Part II. Formulationin the Time Do-
main.” Journal of the Acoustical Society of America, vol. 103, no. 1, 1998, pp. 64–72.

[81] Astley, R. J. and Hamilton, J., “The Stability of Infinite Element Schemes for Transient Wave
Problems,”CMAME, vol. 195, 2006, pp. 3553–3571.

[82] Astley, R. J. and Coyette, J., “Conditioning of Infinite Element Schemesfor Wave Problems,”
Communications in Numerical Methods in Engineering, vol. 17, 2001, pp. 31–41.

[83] Dreyer, D. and von Estorff, O., “Improved Conditioning of InfiniteElements for Exterior
Acoustics,”IJNME, vol. 58, 2003, pp. 933–953.

[84] Demkowicz, L. and Shen, J., “A Few New (?) Facts about Infinite Elements,” CMAME,
vol. 195, 2006, pp. 3572–3590.

[85] Kinsler, Frey, Coppens, and Sanders,Fundamentals of Acoustics, John Wiley & Sons, 1982.

[86] Pierce, A. D.,Acoustics, McGraw-Hill, New York, 1981.

149

150

A Anisotropic Materials

Here we discuss how anisotropic elasticity is implemented in Salinas.21 The approach is reason-
ably standard, but a documentation here is necessary to specify which ofthe many conventions
of material parameter numbering is used in Salinas. Further, it is useful to present the theoretical
development for those who may do maintenance on this part of the code.

A.1 Linear Anisotropic Elasticity

Linear elasticity asserts that the stress is a linear function of the strain:

σi j = C4
i jkl εkl (A.1)

WhereC4
i jkl are the Cartesian components of the fourth order constitutive tensor and the Einstein

convention of summation on repeated indices is used.

A.2 Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutive assumption that the
stress is symmetric. This permits the representation of the 3x3 stress matrix and the 3x3 strain
matrix each by a column vector having six rows.

s=

σ11

σ22

σ33

σ23

σ13

σ12

(A.2)

and,

e=

ε11

ε22

ε33

2ε23

2ε13

2ε12

.

This is the Voigt notation. Note that this mapping fromσ to s and fromε to e is not universal. This
is the numbering used in Malvern and seems to be popular in the materials scienceworld, but it
differs from the numbering used in NASTRAN and from the numbering in ABAQUS. Further, note
that though the above are usually referred to as “stress vectors” and “strain vectors”, they are not
vectors in the sense that they map from one coordinate system to another astrue vectors do. How
that mapping is done is discussed in a later section.

21 This is a transcription of Dan Segalman’s framemaker document, “aniosConst.frm”.

151

We use the above to map the fourth-order tensorC4
i jkl into a 6x6 matrix of material parameters.

This is done with the aid of the matrices that formally mapσ to s and fromε to e.

en = Eni jεi j (A.3)

and
εi j = enFni j (A.4)

where

E1 =

1 0 0
0 0 0
0 0 0

 E2 =

0 0 0
0 1 0
0 0 0

 E3 =

0 0 0
0 0 0
0 0 1

E4 =

0 0 0
0 0 1
0 1 0

 E5 =

0 0 1
0 0 0
1 0 0

 E6 =

0 1 0
0 0 0
0 1 0

 (A.5)

and

F1 =

1 0 0
0 0 0
0 0 0

 F2 =

0 0 0
0 1 0
0 0 0

 F3 =

0 0 0
0 0 0
0 0 1

F4 =

0 0 0
0 0 1/2
0 1/2 0

 F5 =

0 0 1/2
0 0 0

1/2 0 0

 F6 =

0 1/2 0
0 0 0
0 1/2 0

 (A.6)

We note that the stress mappings are also achieved with the above third orderquantities:

sn = Fni jσi j (A.7)

and
σi j = snEni j (A.8)

From Equations A.3 and A.4 or Equations A.7 and A.8 we see that,

Emi jFni j = δmn (A.9)

Substituting Equations A.4 and A.8 into Equation A.1 and simplifying with Equation A.9,we
find

sm = Cmnen (A.10)

where
Cmn = Fmi jC

4
i jkl Fnkl (A.11)

Though above shows how to find the 6x6 matrixCi j in terms of the fourth order tensor components
C4

i jkl , the material description is usually provided directly in terms of the components of Ci j .

152

A.3 Strain Energy and Orientation

We now address the situation where the matrix of material parameters of are provide in a Cartesian
coordinate system different from the coordinate system (usually the global system) in which strains
are calculated. Because stress and strain are tensors, they transfer from one coordinate system to
another by:

σi j = Raiσ̂abRb j (A.12)

and
εi j = Raiε̂abRb j (A.13)

whereσi j andεi j are the stress and strain components calculated in some other (global) Cartesian
system andRai are the components of the rotation matrix that rotates the basis vectors in that global
system to that with respect to which the material properties are defined. A basis vectorb̂a in the
local, material frame is expressed in terms of the basis vectors of the global system by:

b̂a = Raibi (A.14)

whereb1, b2, andb3 are the basis vectors of the global frame.

From Equations A.7, A.8, and A.11, we find following

sm = (Fmi jEnabRaiRb j)ŝn. (A.15)

From Equations A.3, A.4, and A.13, we find the more useful relationship

em = (Emi jFnabRaiRb j)ên. (A.16)

The above two transformations are simplified:

s= TT ŝ (A.17)

and
e= Tê (A.18)

where the 6x6 transformation matrix,T, is defined

Tnk = Eni jFkabRaiRb j = tr
(

ET
n RFkR

T) (A.19)

Noting that
s= Ĉê, (A.20)

and substituting Equations A.17 and A.18 into Equation A.20, we further find

s= TTĈTe. (A.21)

Comparing the above with Equation A.10, we finally find that

C = TTĈT (A.22)

which was the main point of this exercise.

153

Note also that the components of arraysEn andFn are mostly zero, with the rest either 1 or 1/2.
After using Maple to simplify the product matrix,we find thatT has a fairly simple form.

T =

[

T11 T12

T21 T22

]

(A.23)

where

T11 =

R2
11 R2

12 R2
13

R2
21 R2

22 R2
23

R2
31 R2

32 R2
33

 , (A.24)

T12 =

R13R12 R13R11 R13R11

R23R22 R23R21 R23R21

R33R32 R33R31 R33R31

 , (A.25)

T21 =

2R21R31 R22R32 R23R33

2R11R31 R12R32 R13R33

2R11R21 R12R22 R13R23

 , (A.26)

and

T22 =

R23R32+R22R33 R23R31+R21R33 R22R31+R21R32
R13R32+R12R33 R13R31+R11R33 R12R31+R11R32
R13R22+R12R23 R13R21+R11R23 R12R21+R11R22

 . (A.27)

Note thatT defined above is the transformation matrixN in of Equation 3.34 in Auld’s“Acoustic
Waves in Solids, Volume I”(reference 62), which is used in the same way.

The Maple code to perform the above calculations follows.

with(linalg);
E[1] := matrix(3,3,[[1,0,0],[0,0,0],[0,0,0]]);
E[2] := matrix(3,3,[[0,0,0],[0,1,0],[0,0,0]]);
E[3] := matrix(3,3,[[0,0,0],[0,0,0],[0,0,1]]);
E[4] := matrix(3,3,[[0,0,0],[0,0,1],[0,1,0]]);
E[5] := matrix(3,3,[[0,0,1],[0,0,0],[1,0,0]]);
E[6] := matrix(3,3,[[0,1,0],[1,0,0],[0,0,0]]);
F[1] := E[1];
F[2] := E[2];
F[3] := E[3];
F[4] := (1/2)*E[4];
F[5] := (1/2)*E[5];
F[6] := (1/2)*E[6];
R := matrix(3,3);

for k from 1 to 6 do
FRR[k] := matrix(3,3);
FRR[k] := evalm (R &* F[k] &*transpose(R));
od;

154

T := matrix(6,6);
for k from 1 to 6 do
for n from 1 to 6 do
T[n,k] := 0;
for i from 1 to 3 do
for j from 1 to 3 do
T[n,k] := T[n,k] +evalm(FRR[k][i,j])*E[n][i,j];
od; od;
od; od;

readlib(C);
C(T);

read("/home/djsegal/Maple/tools/maple2mif.mpl");
M := maple2mif();
fprintf("/home/djsegal/MPP/notes/temp.mif",’%s’,M(e val(T))) ;

155

B Integration of Isoparametric Solids

We show below how one achieves effective selective integration of isoparametric solids in a manner
that satisfies the standard conditions (such as the patch test) and also accommodates anisotropic
materials.22

We begin with the definition of the strain vector. For computational convenience defines the
stress and strain vectors:

s=

σ11

σ22

σ33

σ23

σ13

σ12

(B.1)

and,

ν =

ε11

ε22

ε33

2ε23

2ε13

2ε12

. (B.2)

These are related through the matrix of elastic constants.

s= Cν (B.3)

We now take a look at virtual work, since it is from virtual work that the stiffness matrix is
derived.

δW =
Z

V
sTδνdV =

Z

V
νTCδνdV (B.4)

If we select the above volume to be that of an element and use the strain-displacement matrices
associated with each nodal degree of freedom,

ν(x) = ∑
j

B j(x)u j (B.5)

whereu j is the j th nodal degree of freedom, the virtual work becomes

δW = u jδuk

Z

V
B j(x)

TCBk(x)dV (B.6)

Since the element stiffness matrix is defined by

δW = u jδKi j (B.7)

22 This is a transcription of Dan Segalman’s framemaker document, “IsoInt.frm”.

156

we conclude that
Ki j =

Z

V
B j(x)

TCBk(x)dV (B.8)

The next step is to decompose the strain-displacement vectors into deviatoricand dilatational com-
ponents.

B j(x) = BD
j (x)+BV

j (x) (B.9)

where,

BV
j (x) = d j(x)

1
1
1
0
0
0

(B.10)

and 3d j(x) is the sum of the first three rows ofB j(x). BD
j (x) is defined by Equation B.9. Substitution

of Equation B.9 into Equation B.8 yields:

Ki j =
Z

V
BD

j (x)
TCBD

k (x)dV+
Z

V
BV

j (x)
TCBV

k (x)dV + · · ·

+
Z

V
BV

j (x)
TCBD

k (x)dV +
Z

V
BD

j (x)
TCBV

k (x)dV (B.11)

For isotropic materials, the deviatoric and dilatational portions of the strain areorthogonal with
respect to the matrix of material constants, so the last two integrals in the aboveequation are zero.
It is sometimes common to integrate the contributions of each to the stiffness matrix using separate
strategies. Such approaches can produce elements with slightly less susceptibility to parasitic shear.
Such an approach does not work for elements of anisotropic material, so the following approach has
been developed.

B.1 Uniform Strain-Displacement Matrices

At this point it is useful to define the element averaged strain displacement matrices.

B̄k =
1
V

Z

V
Bk(x)dV (B.12)

For hex elements, these are the strain-displacement matrices of the Flanaganand Belytschko, and
are known as “uniform strain” elements. Elements formed by the above strain/displacement matri-
ces are very “soft”, having properties similar to elements formed by single point integration. Hex
elements of this sort display extraneous zero-energy modes. In what follows, we consider linear
combinations of this strain-displacement matrix formulation with the consistent formulation pre-
sented in Equation B.5.

The uniform strain matrices are also separable into dilatational and deviatoricparts.

B̄k = B̄V
k + B̄D

k (B.13)

157

B.2 Mixed Integration

The approach presented here builds on one presented by Hughes.34 We can achieve the effect of
softening elements by forming the strain displacement matrices from combinationsof the consistent
strain-displacement and the uniform strain displacement matrices.

B̂k(x) = αB̄V
k +(1−α)BV

k (x)+βB̄D
k +(1−β)BD

k (x) (B.14)

(14) Note that for all values ofα andβ, the above correctly captures uniform strains. It is in
how the non-uniform strains contribute to the stiffness matrix that the particular values ofα andβ
make a difference. By setting values ofα andβ according to the following table, we recover the
standard integration forms:

α β Integration
1 1 Flanagan and Belytschko
0 0 Full Integration
1 0 Selective Integration

We note that settingα = 1 and using an intermediate value ofβ, we can achieve performance
almost as good as that of the Flanagan and Belytschko element but without admitting hour-glass
modes.

158

C MSC documentation of Nastran’s RBE3 element

This documentation is provided by MSC from their web page.63 It has been reformatted for math
type formatting in TEX.

C.1 Abstract: Mathematical Specification of the Modern RBE3 Element

Solution#: 4494 Last Modified Date: 06/01/00 09:06:19 AM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN (1002or 1004)

Product Version: Product Feature:
Article Type: FAQ Publish: Y

C.1.1 Extended Description

The RBE3 element is a volume or surface spline element similar to the RSPLINE linespline el-
ement. The purpose of this memorandum is to develop a method for computing the terms in the
equations of constraint generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 G1,1 G1,2
RBE3 15 5 123456 1.0 123 10 20

$ G1,3 G1,4 WT2 C2 . .
, 30 40

$ UM G1 C1 G2 C2 . . .
, UM 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, are connected to a reference
grid point (number 5). The number of connected points,Nc, is unlimited. The physical principle
used to generate the constraint equation coefficients is that the motion of a body connected to the
reference grid point produces a weighted least-squares best fit to theactual motions at the other
connected grid points. The reference point is connected by 1 through 6DOFs (REFC specification).
The connected points are also connected by 1 through 6 DOFs (Ci specification) with a weighting
factor Wti. The UM data is optional, and is explained below.

The reference is the original design document for this element. Over the years some changes
have been made in the interests of better theory and increased numerical robustness. Those changes
are incorporated in this document as though this were the original design document, to avoid the
awkwardness of first explaining older behaviors and then the presentbehavior. The original equa-
tions of the reference are derived with conventional variational principles applied to displacement
variables. The derivation used here is based on force variable principles. This has proven to be

159

more intuitive and better understood by some engineers. The results derived by the displacement
method theory and force method theory are identical. The reference is notavailable in machine-
readable format. A fax copy may be requested from the MSC/NASTRAN Development Secretary,
Jan.McLaughlin@MSCSOFTWARE.COM. It is primarily of historical interest now.

REFERENCE: Mathematical Specification for the RBE3 Element, MAG-4, 15 April 1975 (Also
known as MAG-81).23

C.1.2 GENERATION OF UNIT WEIGHTING FUNCTIONS

The element is designed to allow use of any coordinate system at any connected grid point, the
global coordinate system in NASTRAN parlance. In the interests of clarity the equations are first
developed for a system where all variables are defined in one common coordinate system (the basic
coordinate system), then modified to allow global coordinates. An element characteristic length is
computed to allow scaling the equations. The distance between the referencepoint (subscript q) and
a connected point (subscript i) is expressed by the components

Li,x = xi−xq

Li,y = yi−yq

Li,z = zi−zq

Li =
√

L2
i,x +L2

i,y +L2
i,z

The characteristic length of the element is the average of these lengths,Lc = ∑c
i=1 |Li |/c, where

c is the number of connected points. IfLc is computed as a binary zero it is changed to a value of
unity.

The weighting functionsw1 throughw6 provided by the user are modified for reasons to be
motivated later to produce a connected grid point’s weighting matrix, a diagonalmatrix shown here
as a vector. Let ˜wi = wiL2

c. Then,

W = [w1w2w3 w̃4 w̃5 w̃6]

That is, the rotation DOF coefficients are scaled by the characteristic lengthsquared, but not the
translation DOF coefficients.

23 This TAN is known in MSC’ s internal filing system as MAG-102.

160

Conventional equilibrium equations are developed,

Siq =

1 0 0 0 z −y
1 0 −z 0 x

1 y −x 0
1 0 0

0 1 0
1

This matrix expresses the loads that must be applied to the reference point toreact loads applied at
a connected point,

Pq = S′iqPi

The equilibrium matrix can also be used to generate a loading pattern on the connected points due
to a load on the reference point. LetPqin be a set of arbitrary loads on the reference point. When
this load is applied, it is “beamed out” as loads on the connected points,

Pi =

P1

P2

...
Pc

=

W1

W2

...
Wc

S1

S2

...
Sc

XPqin = WSiq

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that the load
distribution mechanism should be in equilibrium. The equilibrium condition is that

Pqout =
[

S′1 S′2 ... S′c
]

Pi = S′iqPi

Then
Pqout = S′iqWSiqXPqin

If Pqout = Pqin, then
X = [S′iqWSiq]

−1 = A−1

and,
Pi = WSXPq= G′qiPq

Where for convenience we define,
G′qi = WSX (C.1)

Transformation. The direction cosine matrixTi expresses the transformation betweenui , the val-
ues in basic coordinates, and ˜ui , the values in global coordinates:

ui = Ti ũi

The transformed equilibrium equations and weighting matrices are

161

Siq =

T1S1

T2S2

...
TcSc

The transformed weighting matrix in global coordinates is

Wi = T ′i WiTi

The transformed A matrix is
Ai = S′iqWiSiq

A = ∑
i

Ai

It is shown in the reference that the introduction of global coordinates modifiesGqi as shown:

Gqi = TiA
−1[Siq]Wi

This implies the dual relationship between displacements

uq = Gqiui

Cast in the Nastran convention of constraint equations,

Rqi = [−Iqq Gqi]

and,

Rqi

[

uq

ui

]

= 0.

Rqi is the rows of the matrix of MPC coefficients for one RBE3 element.

C.1.3 SELECTION OF DEPENDENT DOFS (OPTIONAL)

The default selection for dependent DOFs (m-set) are the REFC DOFs listed for the REFGRID.
There are modeling applications where it is convenient to use these DOFs in aset exclusive from the
dependent set, such as the analysis set (a-set). The dependent DOFs may be moved to the connected
DOFs with the optional UM data. The number of DOFs must match the number of REFC DOFs,
and the selected DOFs in the UM data must have non-zero weighting functions. If the subset of Rgi
associated with these DOFs is named Rmm, the Rqi matrix is pre-multiplied by the inverse of this
quantity,

Rqi = R−1
mmRqi = [−Imm|R−1

mmRmn]

The user is required to select a UM set that produces anRmm matrix that is stable for inversion.
There are TANs that describe techniques for selection of a good set ofUM variables. The uncoupling
of the dependent equations allows some of them to be discarded, as described in the next section.

162

C.1.4 EQUATION SELECTION

The totalRqi is generated above. It has 6 rows. Six or less rows are transmitted to the system
constraint matrixRmg, depending on theREFCdata. This data consists of a packed integer with up to
6 numbers in the range of 1 to 6, and describes which rows are to be passed to Rmg. The remaining
rows are discarded.

C.1.5 FEATURES FOR DIMENSION INDEPENDENCE

A good finite element should produce the same results regardless of the unitsof measure used in the
model. That is, the same structure modeled in millimeters, centimeters, or inches should provide
identical results. The RBE3 gains this valuable characteristic by scaling the rotation weights with
an element characteristic length,Lc, as described above. The effect of this scaling is demonstrated
here by an example. In the interests of simplicity all geometry is in the basic coordinate system and
the only non-zero offsets are in thezdirection. TheT matrix is then an identity matrix, and need not
be listed in these equations. Consider the problem, defined by theSiq matrix above andWi matrices
below, where

x = xi−xq = 0,

y = yi−yq = 0,

z = zi−zq >< 0

The user inputs up to six weighting factors w1 through w6. The weighting factors for rotation are
multiplied byLcsq= Lc2, the square of the characteristic lengths of the element. These modified
terms are underlined in the matrix below, for example, ˜w4 = L2

cw4. The modified weighting factor
matrix is then

W =

w1

w2

w3

w4L2
c

w5L2
c

w6L2
c

The contribution for grid point i to the equilibrium matrixA is

A = S′WS=

w1 0 0 0 w1z 0
w2 0 −w2z 0 0

w3 0 0 0
L2

cw4 +z2w2 0 0
Sym L2cw5 +z2w1 0

L2
cw6

163

The diagonal terms for rotation (for exampleA55) have the formL2
cwi +z2w j , wherewi is the rota-

tional weighting term, andw j the translation term active in rotation weighting because of offsets.
The motivation for modifying the rotation term can be seen in this addition of effects. BothL2

c and
z2 are in the same units of measure. When a model is changed from centimeters to millimeters, for
example, the ratio of rotation effects to offset effects is unchanged. Thismodification of the rotation
term allows the solution in the area of the RBE3 element to be the same for all units of measure.
As z andLc are related by a common factor the ratio of moment terms coming in directly from
applied moments (L2

cw5) stays in constant ratio to the moment terms from offsets (z2w1) regardless
of whether lengths are measured in centimeters, millimeters, or inches. This modification of the
moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counter-intuitive behavior of the
RBE3 element, the difference between the user-supplied weighting functions and the actual values
used in the corresponding coefficients of the constraint matrix. Let us simplify the expression of
A above by settingzi = 0.0. A becomes a diagonal matrix, which when inverted and multiplied by
W to form G, becomes an identity matrix. That is, the weighting factors, whatever they are, are
scaled to provide equilibrium. There may be little correlation between the values inthe weighting
matrix and the values in the coefficients of the constraint matrix. The requirements for equilibrium
may change these values radically. Similarly, it shows that the significance ofthe weighting factors
is mainly in their ratio to one another. If all are multiplied by 10, for example, the inversion of
the A matrix, used to impose equilibrium, removes this factor of 10 so that the coefficients of the
constraint matrix are unchanged.

C.1.6 STABILITY ISSUES

The solution requires the inverse ofA. It may be ill-conditioned for linear equation solution. It is
first equilibrated to make the inversion more stable. LetAd be the diagonal terms of A. It is pre- and
post-multiplied by the inverse ofAd,

A = A−1
d AA−1

d

This makes all of the diagonal terms ofA unity. Any term multiplied byA is first multiplied
by Ad. A matrix decomposition subroutine is used that provides an inverse conditioning number.
As this number approaches zero the solution becomes more ill-conditioned. A belt-and-suspenders
check that is less mathematical and more engineering-oriented is made by also computing the largest
term in [A−1A− I], which should be a computational zero, and outputting this value when it passed
a certain threshold. If the element is determined to be pathologically ill-conditioned it causes a user
fatal error exit.

C.1.7 UPWARD COMPATIBILITY

The RBE3 element prior to V70.7 had a more primitive theory that does not provide dimension
independence. Its theory is identical to that above if a value of 1.0 is substituted for the characteristic
lengthLc. A system cell is provided to obtain this theory in V70.7. Its use allows computation of
the same answers that were provided in earlier systems.

164

System Cell 310 Value Action
0 (default) Use new theory.
1 Use old theory.

The name of this system cell is OLDRBE3. For example, either entry below will cause the old
theory to be used:

NASTRAN OLDRBE3=1 $ or
NASTRAN SYSTEM(310)=1 $

Changes to the RBE3 element for V70.7 are summarized in TAN 4155.

C.1.8 TOPICS FOR FUTURE WORK

The present order of operations requires that at first six equations be generated that allow meeting
equilibrium conditions, then some equations (rows ofRqi) may be discarded, at the user’s option.
This makes modeling of planar elements, for example, awkward. There are now enough numerical
tools such as Singular Value Decomposition (SVD) that would allow a different order of operations
where only the equations required would be generated. There would thenbe no requirement to
make the element stable for 6 DOFs, then, only for the number of equations actually used.

At present all dependent DOFs must either be totally on the reference grid point(default action),
or on the connected grid points (UM data). There have been some unsolvable modeling problems
due to singularRmg matrices uncovered by clients having to do with interconnected RBE3 elements
in a field of very regular geometry. If the geometry is perturbed slightly the equations are solvable,
a disquieting feature when small changes in the model move it from a stable to anunstable state. It
was shown in breadboard work that the problem is solvable if some of the reference point DOFs and
some of the connected DOFs can both be in the Um data. The present rule that dependent DOFs
must all be on the reference point or all on connected DOFs was done merely for programming
convenience. The rule could readily be changed to allow mixed sets of dependent freedoms.

There are now enough mathematical tools to allow the dependent set for all MPC equations to
be picked automatically, without the requirement for user input. There havebeen some unsuccessful
attempts to do so in the past, but the lessons learned there, and the new mathematical tools available
today, (particularly the SVD) offer promise for successful researchin this area.

C.2 Abstract: RBE3 ELEMENT CHANGES IN VERSION 70.7

Solution#: 4155 Last Modified Date: 04/17/00 02:50:26 PM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN Basic(1003)

Product Version: 70.7 Product Feature: ELEM
Article Type: FAQ Publish: Y

165

C.2.1 Extended Description

1. The theory used for the RBE3 element has been modified so that the element isnow independent
of the units of measure. For example, a structure modeled in centimeters will nowprovide the same
results when modeled in millimeters. This was not true for certain cases in systemsprior to Version
70.7. A system cell provides the capability available prior to Version 70.7.

Ref. Tan 3280 for Version 70.6

2. THEORY The modeler inputs a reference grid point, its connectivity, a weighting factor for
other connected grid points, their connectivity, and the connected grid point ids. An RBE3 element
used for testing this new capability of the form

$ EID [blank] REFGRID REFC WT C G1 G2
RBE3, 123, , 4 123456 1.0 123456 1 2
$ G3
, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFs to the 1, 2, and 3 grid
points, for all of their DOFs, with a uniform weighting factor for all. The element divides forces
applied to point 4 to the other grid points in a manner that is influenced by their geometry and
weighting factors, in a manner that maintains equilibrium. Define a line from the reference point to
a connected point as an arm of the element. In the revised theory, a characteristic length,Lc of the
element is calculated from the average length of its arms. The square of this length is used to modify
the weighting of the connected rotation DOFs. The theory for the element is rather involved. The
derivation is given in TAN 4494. Some of the results of that derivation areused here. The constraint
equation terms applied to a connected pointui and the reference pointuq are

uq = Gqiui

The constraint matrix itself has the following components:

Gqi = TiA
−1SiqWi

Ti is a rotation matrix that is an identity matrix when GIDi and GIDq are in parallel coordinate
systems. It will be dropped from this discussion.Siq is the traditional matrix for transmitting rigid
body motion between point “i” and point “q”. It has unit terms on the diagonal,and offset lengths
on coupling terms between translation and rotation in the upper triangle.Wi is the user-supplied
weighting functions, andA a matrix used to force the element to meet equilibrium requirements.
All MSC/NASTRAN constraint-type (R-) elements must meet an equilibrium condition, to avoid
any possibility of internal constraints in the element. It is instructive once in one’s lifetime, if
tedious, to work out a simple example by hand, for a simple geometry. We will instead just look at
typical terms, to avoid some of the tedium.

The A matrix is generated by finding the resultants of loads applied at the connectedpoints,
measured at the reference point. The 5,5 term for a single connected point is shown in the referenced
TAN to be

A55 = w5 +z2
i w2.

166

WhenA is inverted, this term operates on the correspondingSiqwi term

Giq55 = w5/(w5 +z2
i w1)

If zi is zero, the effects of this normalization is to ”wash out” thew5 weighting term, so that the
coefficient is 1.0. Ifzi is not zero, the ratio of translation load effectsz2

i w1 to rotation loads effects
w5 is

Ratio= w5/(z2
i w1)

This leads to a dimensional dependence, in that the ratio changes when the model is converted from
millimeters to centimeters, for example. This undesirable behavior is eliminated by multiplying the
rotation weighting factors by the square of the characteristic length,Lc,

Ratio= L2
c ∗w5/(z2

i w1)

If zi (andLc) have their units of measure changed, the ratio stays constant. If this modified
weighting constant is used on the 5,5 term

Giq55 = L2
cw5/(L2

cw5 +z2
i w1)

If zi = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantity isconstant
with changes in units of measure.

Note that answers will change only when rotations are given connectivityfor the connected
DOFs, and then only when the rotations at the connected DOFs are part ofa redundant load path.
This is because the element is required to meet equilibrium conditions to avoid internal constraints,
that is, single point constraints that do not appear in the SPCFORCE output.If the load path is stat-
ically determinate the equations used to impose equilibrium will adjust the values ofinternal loads
in the element as needed to meet equilibrium, regardless of the value of the weighting functions.
Always meeting equilibrium requirements insures that there will be no internalSPC forces in the
element.

167

D Theory Notes for Acoustics and Structural Acoustics

Finite element analysis of acoustic and structural acoustic phenomena has become a common prac-
tice in both academia and industry. Excellent review articles can be found in,64.65

In this section, we present the theory and equations behind the acoustic implementations in
Salinas. This section is a work in progress, but still is a good start. We startwith linear acoustics,
on conforming and nonconforming structural acoustic meshes. Then, wedescribe the nonlinear
acoustic work in Salinas.

D.1 Conforming and Nonconforming Linear Structural Acoustics

Having the same mesh density in the acoustic fluid and solid may be very inefficient, since the
two domains typically require significantly different mesh densities to achieve agiven level of dis-
cretization accuracy. Perhaps more importantly, it is also impractical in many applications since the
mesh generation process may be performed separately for the two domains.Generating conforming
meshes on the wet interface may be very difficult, if not impossible, even given the most sophis-
ticated mesh generation software. Excellent examples include the hull of a ship, or the skin of an
aircraft. In these cases, the structural and fluid meshes are typically created independently, and have
very different mesh density requirements. Joining them into a single, monolithicmesh is usually
impractical.

Although methods for joining dissimilar meshes are well-known in structural mechanics,61,66–68

very few papers exist in the area of dissimilar structural acoustic meshes.Mandel69 considered
parallel domain decomposition techniques for structural acoustics in the frequency domain, on mis-
matched fluid/solid meshes. Nonconforming discretizations on the wet interface were handled by
duplicating acoustic and structural degrees of freedom on either side ofthe wet interface, and im-
posing coupling equations that enforce continuity of pressure and displacement. The duplicated
degrees of freedom were then included in a dual-primal, parallel domain decomposition strategy.
Only two-dimensional, frequency-domain problems were considered. Flemisch et al.70 studied
both fluid-fluid and structure-fluid coupling on mismatched meshes. For fluid-fluid coupling, a
mortar approach was taken, whereas for structural acoustic coupling,the coupling matrices were
assembled in normal fashion and used across the wet interface to coupledthe fluid-solid responses.
Only time-domain, serial solutions were considered.

Several recent references considered a displacement-based acoustic formulation, which was then
coupled to an elasticity formulation on mismatched fluid/solid meshes. Alonzo71 used an adaptive
method with error estimation to refine the fluid/solid meshes accordingly. The error estimator de-
manded different mesh densities on the fluid and solid interface, as expected. Bermudez72 also
considered a displacement-based acoustic formulation, but used an integral constraint on the wet in-
terface, along with a static condensation procedure to eliminate the acoustic degrees of freedom. In
both of the preceding references, Raviert-Thomas elements were needed to avoid spurious modes
in the fluid. These modes would have been automatically eliminated with the use of a potential
formulation in the fluid.

Here we present a new technique for acoustic and structural acoustic analysis in the case of
nonconforming fluid/solid interface meshes. We first construct a simple methodfor coupling mis-

168

matched fluid/fluid meshes, based on a set of linear constraint equations. Using static condensation,
we show how these constraint equations can be eliminated from the final system of equations. We
then demonstrate that the same approach can be taken to couple mismatched fluid/solid meshes,
provided that the coupling matrices that are typically used for conforming fluid/solid meshes are
calculated on the structural side of the interface, and that extra (“ghost”) acoustic degrees of free-
dom are introduced on the structural side of the wet interface. With this arrangement, the structural
acoustic coupling resembles a conforming method on the structural side of thewet interface, and
then the fluid degrees of freedom on both sides are coupled with the same approach that was used
for the nonconforming fluid-fluid meshes. The coupling operators ensure a weak continuity of par-
ticle velocity and stress between the structural degrees of freedom and the ghost acoustic degrees of
freedom, and then the linear constraints ensure continuity of acoustic pressure between the two sets
of acoustic degrees of freedom.

Although we do not consider more sophisticated methods for nonconformingacoustic/acoustic
meshes, such as mortar methods, our approach allows such methods to be readily applied to noncon-
forming structural acoustic meshes, since the wet interface coupling involves only acoustic degrees
of freedom. Also, in the case that the fluid/solid meshes are conforming, ourapproach reduces to
standard methods for conformal structural acoustic coupling.

D.2 The Governing Equations and Their Discretizations

In this section, we review the governing equations of acoustics and structural acoustics, along with
their corresponding weak formulations, and then we present our approach for the nonconforming
discretization. We will begin with the case when all meshes are fully conforming, and then we will
extend this to the nonconforming case.

D.3 Conforming Structural Acoustics

We will begin by constructing a weak formulation of the linear acoustic wave equation for conform-
ing meshes. Subsequently, we will consider conforming structural acoustics.

The linear acoustic wave equation is given by

1
c2

∂2ψ
∂t2 −∆ψ = 0, (D.1)

whereψ is the velocity potential (ψ = ∇u̇, whereu̇ is the particle velocity), andc is the speed of
sound. Note that this implies we neglect volume (body) forces on the fluid.

A weak formulation of equation D.1 can be constructed by multiplying with a test function and
integrating by parts. We denote the fluid domain byΩ f and its boundary by∂Ω = ∂Ωn

S

∂Ωd, where
the subscriptsn andd refer to the portions of the boundary where Neumann and Dirichlet boundary
conditions are applied. We also assume that the fluid is initially at rest, i.e.ψ(x,0) = ψ̇(x,0) = 0,
which is sufficient for most applications.

Denoting byVf (Ω f) the function space for the fluid, the weak formulation can be written as

169

follows. Find the mappingψ : [0,T]→Vf (Ω f) such that

1
c2

Z

Ω
ψ̈φdx+

Z

Ω
∇ψ ·∇φdx=−

Z

∂Ωn

ρ f u̇nφds

∀φ ∈Vf (Ω f), whereu̇n is the prescribed velocity on the Neumann portion of the fluid boundary.

Inserting a finite element discretizationφ(x) = ∑N
i=1 φiNi(x) into equation D.2 results in the

system of equations

Mψ̈+Kψ = fa, (D.2)

whereN is the vector of shape functions,M =
R

Ω f

1
c2 NNTdx is the mass matrix,K =

R

Ω f
∇N ·

∇NTdx is the stiffness matrix, andfa =
R

∂Ωn
ρ f u̇nNTdx is the external forcing vector from Neumann

boundary conditions.

For structural acoustics, the second order equations of motion for the solid and the wave equation
for the fluid are

ρsutt −∇ ·σ = f ,

1
c2

∂2ψ
∂t2 −∆ψ = 0.

(D.3)

Hereu corresponds to the displacement of the structure,σ is the structural stress tensor,ρs is the
density in the solid, andf denotes body forces on the solid. Subsequently, subscriptss and f refer
to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface,
which is designated by∂Ωwet), are

∂ψ
∂n

= −ρ f u̇n,

σn = −ψ̇n̂,

(D.4)

whereρ f is the density of the fluid, and ˆn is the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface.

The weak formulation of the coupled problem is constructed by multiplying the twopartial
differential equations in equation D.3 by test functions and integrating by parts. Denoting byVs(Ωs)
andVf (Ω f) the function spaces for the solid and fluid, respectively, we have the following weak
formulation.

170

Find the mapping(u,ψ) : [0,T]→Vs(Ωs)×Vf (Ω f) such that

Z

Ωs

ρsüwdx+
Z

Ωs

σ : ∇swdx−
Z

∂Ωwet

σnwds=
Z

Ωs

f wdx+
Z

∂Ωn

σnwds,

1
c2

Z

Ω f

ψ̈φdx+
Z

Ω f

∇ψ ·∇φdx+
Z

∂Ωwet

∂ψ
∂n

φds

=
Z

∂Ωn

∂ψ
∂n

φds

(D.5)

∀w∈Vs(Ωs) and∀φ ∈Vf (Ω f), where∂Ωn is the portion of the solid and fluid boundaries that has
applied loads, andf is used to denote body forces on the solid. Also,∇s = 1

2

(

∇+∇T
)

is the
symmetric part of the gradient operator. If Dirichlet boundary conditionswere applied to part of
the structure, or if the fluid had a portion of its boundary subjected to Dirichlet conditions, then
the Sobolev spacesVs(Ωs) andVf (Ω f) would be modified accordingly to correspond to spaces that
have those same boundary conditions. We also note that in the integration on the wet interface, the
normal is defined to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation D.4, and we defineσn = g on the solid
portion of ∂Ωn, and ∂ψ

∂n = −ρ f u̇n on the fluid portion of∂Ωn. This leads to the following weak
formulation. Find the mapping(u,ψ) [0,T]→Vs(Ωs)×Vf (Ω f) such that

Z

Ωs

ρsüwdx+
Z

Ωs

σ : ∇swdx+
Z

∂Ωwet

ψ̇n̂wds=
Z

Ωs

f wdx+
Z

∂Ωn

gwds,

1
c2

Z

Ω f

ψ̈φdx+
Z

Ω f

∇ψ ·∇φdx−ρ f

Z

∂Ωwet

u̇nφds=

−ρ f

Z

∂Ωn

u̇nφds (D.6)

∀w∈Vs(Ωs) and∀ψ ∈Vf (Ω f).

Assuming a linear constitutive model for the solid, and inserting the spatial discretizationsu =

∑uiNi andφ = ∑φiNi into equation D.6 yields the following semidiscrete system of linear ordinary
differential equations in time

[

Ms 0
0 M f

][

ü
ψ̈

]

+

[

Cs L
−ρ f LT Cf

][

u̇
ψ̇

]

+

[

Ks 0
0 K f

][

u
ψ

]

=

[

fs
f f

]

, (D.7)

whereMs, Cs, andKs denote the mass, damping, and stiffness matrices for the solid, andM f , Cf ,
andK f denote the same for the fluid. The coupling matrices are denoted byL andLT . Coupling
between fluid and structure, as well as any damping in the fluid or solid separately, is accounted for
by the damping matrices. The quantitiesfs and f f denote the external forces on the solid and fluid,
respectively.

In the case that the stiffness, damping, and mass matrices of the acoustic andstructural sub-
systems are symmetric, equation D.7 can be symmetrized in a number of ways. Forexample, the
second equation can be multiplied by−1

ρ f
. This makes the system symmetric, but the matrices are

indefinite. In cases where any of the system matrices are non-symmetric, thissymmetrization is not

171

possible. For example, if infinite elements are used in the acoustic mesh, then theacoustic stiffness
and damping matricesK f andCf are nonsymmetric. In that case, it is not possible to symmetrize
the overall coupled systems.

D.4 Nonconforming Structural Acoustics

In the case of nonconforming fluid/solid discretizations, equations D.5 and D.6 contain some extra
technicalities. In this section we will first describe a simple procedure for coupling two acoustic
domains which share a common boundary, but with nonconforming discretizations. This method
will then serve as a stepping stone to the case of nonconforming structuralacoustics.

In order to enforce continuity of appropriate field variables between the two different surfaces,
the degrees of freedom and element surfaces involved in the coupling need to be known a priori.
Given the surface meshes of the fluid and solid, this information is non-trivial to obtain, especially
in parallel, since adjacent element surfaces may reside on different processors.

The ACME package4 has been developed as a tool to determine surface contact conditions
between general surfaces in three dimensions. These surfaces can take the form of boundaries of
finite element discretizations, as in our case, or they can be analytic surfaces. In either case, search
algorithms are employed to determine node-to-face interactions between the opposing surfaces,
based on user-defined normal and tangential search tolerances. A given node is determined to
be in contact with a given face of the adjacent surface if the distance from the node to the adjacent
element face is within the user-specified search tolerance. The ACME package can compute contact
conditions between most of the standard three-dimensional finite elements, including hexahedral,
tetrahedral, and prismatic elements. Once these interactions are defined, one can devise enforcement
algorithms to enforce continuity of the appropriate field variables. For the purposes of our work,
we use ACME only to determine the node-to-face interactions on the wet interface. Once these are
known, we derive our own enforcement algorithms, as explained below.

We consider the situation shown in Figure D.1. Here there are 2 interacting acoustic domains,
and two contact surfaces. We adopt a master-slave approach, whereone of the two interacting
surfaces is designated as a master, and the other as the slave. We denote surface 1 as master,
and surface 2 as slave. For a transient acoustic simulation involving the two meshes shown in
Figure D.1, we would have to solve the system of equations given in D.2, which would involve
degrees of freedom from both acoustic domains, subject to the constraint that the velocity potential is
continuous across the nonconforming interface. The extra equations corresponding to this constraint
can be derived from a simple consideration of the contact geometry.

In Figure D.2, nodex from surface 1 is impinging on element facey of surface 2. If ACME
determines that the distance from nodex to element facey is within the user-defined search toler-
ance, a constraint relation will be needed to enforce continuity of velocity potential. The constraint
relation for this interaction can be written in the form

ψa =
4

∑
i=1

ciψb
i , (D.8)

whereψa is the velocity potential at nodex on surface 1, andψb
i are the velocity potentials at the four

nodes of element facey on surface 2. The coefficientsci are determined from the position of nodex

172

Figure D.1. Two interacting acoustic domains, with nonconforming
meshes at the common interface. In this case surface 1 is defined to be
the master surface, and surface 2 is the slave.

Figure D.2. A node-face interaction on the structural acoustic interface.

173

relative to the positions of the nodes on element facey on surface 2. For example, in the special case
that facey is square and nodex lies at the center of the facey, the coefficientsci would all be equal
to 1

4, indicating that the constraint is simply an average. We use this approach, commonly referred
to as inconsistent tied contact, for all of the nodes/elements on the interacting surfaces. This results
in a set of linear constraints that enforces continuity of velocity potential atdiscrete points between
the two acoustic meshes. These constraint equations can be written mathematically as follows

CΦ = 0, (D.9)

whereC is a matrix that contains all of the constraint coefficients from all of the node-face interac-
tions, and vectorΦ contains nodal velocity potentials from all of the nodes involved in the constraint
equations.Φ can be partitioned into master and slave components

Φ =

[

Φm

Φs

]

. (D.10)

With this partition, the matrixC can also be split into master and slave components, and equation
D.9 can be written as

[Cm ,Cs]

[

Φm

Φs

]

= 0. (D.11)

Also, if we defineCms=−C−1
s Cm, we can condense the slave degrees of freedom from the stiffness

matrix in equation D.2.

K̃ = Kmm+KmsCms+CT
msKsm+CT

msKssCms (D.12)

Similar condensation expressions hold for the mass and damping matrices.73 After condensing out
the slave acoustic degrees of freedom in equation D.2, we obtain a modified system of equations

M̃ψ̈+ K̃ψ = f̃a, (D.13)

where the tilde superscripts indicate that the slave constraints have been condensed out. Note that
the vectorψ now only contains the interior degrees of freedom (corresponding to nodes that are
not on the interacting surfaces), and the master degrees of freedom onthe contact surface, since the
slave degrees of freedom have been eliminated. Equations D.13 can also be solved in the frequency
domain, as follows

[

s2M̃ + K̃
]

ψ = f̃a, (D.14)

wheres is the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm just described for the nonconforming fluid/fluid
meshes can be used as a stepping stone to the nonconforming solid/fluid meshes. In this approach,
acoustic degrees of freedom are added to the nodes on the adjacent structural side of the wet in-
terface. We subsequently refer to these as the ghost acoustic degreesof freedom. Subsequently,
the acoustic and structural meshes are matching on the structural side of thewet interface, and the
nodes on that side have four degrees of freedom instead of three. Next, the two surface integrals
in equation D.6, i.e.

R

∂Ωwet
ψ̇n̂wdsandρ f

R

∂Ωwet
u̇nφds, are both evaluated on the structural side of

the wet interface. Finally, the mismatched acoustic meshes (the “true” acousticsurface nodes and
their ghost counterparts) are tied together using the same set of linear constraint equations that was
developed for the nonconforming acoustic/acoustic case.

174

In addition to equations D.7, we have a set of linear constraint equations that couple acoustic
variables across the wet interface. As in the fluid/fluid case, these constraint equations represent the
relations between the master and slave acoustic degrees of freedom, and they take the form

CΦ = 0. (D.15)

Upon condensing these constraints out of the system of equations, D.7, we obtain a modified system
of equations

[

M̃s 0
0 M̃ f

][

ü
ψ̈

]

+

[

C̃s L̃
−ρ f L̃T C̃f

][

u̇
ψ̇

]

+

[

K̃s 0
0 K̃ f

][

u
ψ

]

=

[

f̃s
f̃ f

]

, (D.16)

where again the tilde superscripts represent the matrices with constraints condensed out. Note
that, in this case, even the structural matrices (and coupling matrices) must bemodified during the
constraint removal process, even though the constraints involve only acoustic degrees of freedom.
This is because of the coupling matricesL andLT , which couple the acoustic and structural degrees
of freedom on the structural side of the wet interface. The fact that these other matrices are also
modified is an essential part of the overall fluid/solid coupling scheme. To solve this system of
equations, we use the generalized alpha time integration method,74 which is a generalization of the
Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advantageof our coupling
procedure is that it can be applied equally well to nonconforming structural acoustic problems for
both eigenvalue analysis, and frequency domain analysis. This can be seen simply by transforming
equation D.16 to the frequency domain.

s2
[

M̃s 0
0 M̃ f

][

u
ψ

]

+s

[

C̃s L̃
−ρ f L̃T C̃f

][

u
ψ

]

+

[

K̃s 0
0 K̃ f

][

u
ψ

]

=

[

f̃s
f̃ f

]

, (D.17)

wheres is the frequency parameter that comes from the Laplace transform. The same constraint
equations that were used for the transient problem would also apply to the eigenvalue problem.
Equations D.17 constitute a quadratic eigenvalue problem, which could be solved for the coupled
modes. Note that the forcing terms would need to be set to zero in that case. Alternatively, if the
frequency response (Helmholtz) problem was of interest, it could be obtained simply by setting
s= iω in the above equations, whereω is the frequency of interest. This would result in following
complex-valued system of equations

−ω2
[

M̃s 0
0 M̃ f

][

u
ψ

]

+ iω
[

C̃s L̃
−ρ f L̃T C̃f

][

u
ψ

]

+

[

K̃s 0
0 K̃ f

][

u
ψ

]

=

[

f̃s
f̃ f

]

. (D.18)

Our method can be summarized by the diagram in Figure D.3. As shown the structural nodes on
the wet interface are augmented with acoustic degrees of freedom. Consequently, these nodes each
have four degrees of freedom. These “ghosted” acoustic degrees of freedom are then constrained
by the acoustic degrees of freedom on the adjacent side of the wet interface. The structural acoustic
coupling operators, which come from the weak formulation, are both evaluated on the structural
side of the wet interface.

175

Constraint equations join acoustic degrees of
freedom on both sides of wet interface

Acoustic subdomain Solid subdomain

1 degree of freedom per node

4 degrees of freedom per node

3 degrees of freedom per node

Figure D.3. Illustration of our method for structural acoustic meshes
with nonconforming interfaces. Ghost acoustic degrees of freedom are
added to the structural side of the wet interface, and then connected to
the adjacent acoustic surface with constraint equations.

176

D.5 Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with solidbodies which are
immersed in an infinite acoustic fluid. The plane waves are assumed to originate from infinity, and
after impinging on the solid body, they continue to propagate to infinity. In scattering simulations,
the velocity potential is decomposed into a sum of the incident potential, and scattered potential

ψtot = ψin +ψsc (D.19)

whereψtot is the total potential,ψin is the incident potential, andψsc is the scattered potential. The
incident potential is a known quantity, and the scattered potential is unknown. Thus, in the final
formulation, the incident potential becomes part of the right hand side forcing function, and the
scattered potential remains on the left hand side as an unknown.

We recall that the linear wave equation in terms of the total velocity potential is given by

1
c2 ψ̈tot−∆ψtot = 0 (D.20)

Decomposing this into incident and scattered fields, we have
[

1
c2 ψ̈in−∆ψin

]

+

[

1
c2 ψ̈sc−∆ψsc

]

= 0 (D.21)

Since the incident wave is assumed to satisfy the wave equation, the first part of the expression can
be dropped, and we are left with

1
c2 ψ̈sc−∆ψsc = 0 (D.22)

This implies that we can solve for the scattered potential directly. The effectof the incident field is
then accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problem, it ismost convenient to
solve for the scattered acoustic potential in the fluid and the total displacementfield in the structure.
With that assumption, we have the following partial differential equations

ρsu
tot
tt −∇ ·σ = F,

1
c2 ψ̈sc−∆ψsc = 0 = 0.

(D.23)

Hereutot corresponds to the total displacement of the structure,σ is the structural stress tensor,ρs

is the density in the solid, andF denotes body forces on the solid. Subsequently, subscriptss and f
refer to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solid interface (wet interface,
which is designated by∂Ωwet), are

∂ψtot

∂n
=−ρ f u̇

tot
n (D.24)

σn =−ψ̇totn̂ =−
[

ψ̇in + ψ̇sc] n̂ (D.25)

177

whereρ f is the density of the fluid, and ˆn is the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface. For equation D.24, we note that
we rearrange the terms for convenience

∂ψtot

∂n
=

∂ψin

∂n
+

∂ψsc

∂n
= −ρ f u̇

tot
n

(D.26)

Rearranging, we have

∂ψsc

∂n
= −ρ f u̇

tot
n −

∂ψin

∂n
(D.27)

Equations D.27 and D.25 are in the form that we can insert them directly into thevariational formu-
lation D.5, with the recognition that the unknowns are the total structural displacement and scattered
velocity potential. Carrying this through, and assuming a linear constitutive model for both the solid
and fluid, the time domain equations of motion can be represented by the followingsemidiscrete
system of linear ordinary differential equations
[

Ms 0
0 −1

ρa
Ma

][

ütot

ψ̈sc

]

+

[

Cs L
LT −1

ρa
Ca

][

u̇tot

ψ̇sc

]

+

[

Ks 0
0 −1

ρa
Ka

][

utot

ψsc

]

=

[

fs
−1
ρa

fa

]

,

(D.28)
whereMs, Cs, andKs denote the mass, damping, and stiffness matrices for the solid,Ma, Ca, Ka

denote the same for the acoustic fluid,ρa is the density of the acoustic fluid, andu andψ denote
the structural displacement and fluid velocity potential. The coupling matrices are denoted byL and
LT . Coupling between fluid and structure, as well as any damping in the fluid or solid separately, is
accounted for by the damping matrices. The quantitiesfs and fa denote the external forces on the
solid and fluid, respectively.

The acoustic loadfa for the scattering problem can be written in the form

fa =−
Z

∂Ωn

∂ψin

∂n
φds (D.29)

where againφ is a test function. Since∂ψin

∂n is a known quantity, we can integrate equation D.29 to
obtain the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is given by

fs =
Z

∂Ωn

ψ̇inwds (D.30)

wherew is a test function for the structural discretization. Sinceψ̇in is a known quantity, the force
on the solid body can be computed from equation D.30. Note that equations D.29 and D.30 require
the spatial and temporal derivatives of the incident field,ψinc. Thus, even ifψin is known, methods
for computing its spatial and temporal derivatives are also required.

Inserting the expressions forfa and fs from equations D.29 and D.30 into equations D.28, we
can solve for the responses of the acoustic fluid and solid body to incidentacoustic waves. The only

178

requirement onψin is that it satisfies the acoustic wave equation. Note that the solution to equations
D.28 will give the scattered acoustic potential. In order to compute the total acoustic potential, we
would need to add the incident and scattered potentials together, as in equation D.19. Also, we note
that the loads from equations D.29 and D.30 are generated by a single incident wave. For multiple
incident waves (as in the case of a diffuse field), the right hand side of equations D.16 involve a
simple superposition of all of the incident waves.

D.5.1 Frequency Domain scattering.

The incident potential satisfies the wave equation, and for a plane wave takes the form

ψin = Aei[k·x−ωt] (D.31)

whereω = 2π f is the circular frequency of the wave,f is the frequency in Hz,k is the vector wave
number, andx is the vector coordinates of a point in space. The vector wave number hasthree
components,k = (kx,ky,kz), which define the direction of propagation of the wave. For example,
for a wave propagating strictly in the x direction, we would havek = (kx,0,0), wherekx = ω

c would
be the standard wave number from one-dimensional wave propagation. The parameterA is a scalar
constant that defines the magnitude of the wave. AlthoughA can be made to vary with frequency,
we will only consider the case whereA is a scalar constant. This simply implies that all incoming
plane waves have the same amplitude (but different frequencies). In thefrequency domain, the time
portion of the expression in equation D.31 drops out, and we are left with

ψin = Aeik·x (D.32)

We consider a three-dimensional elastic body, which is immersed in an infinite acoustic fluid,
and subjected to impinging plane waves from infinity in the frequency domain. The equations of
motion of the coupled system are given by

−ω2
[

M̃s 0
0 M̃a

][

utot

ψsc

]

+ iω
[

C̃s L̃
−ρ f L̃T C̃f

][

utot

ψsc

]

+

[

K̃s 0
0 K̃a

][

utot

ψsc

]

=

[

f̃s
−1
ρa

f̃a

]

.

(D.33)
We recall that the portion of the acoustic loadfa that comes from Neumann boundary conditions
can be computed from equation D.29. Given equation D.32, we definen = (nx,ny,nz) to be the
surface normal of the solid body. We also letk = ω

c (dirx,diry,dirz), where(dirx,diry,dirz) define
the direction cosines of the direction of propagation of the incident plane wave. Then, we have

∂ψin

∂n
= ∇ψin ·n = i

ω
c

[nxdirx +nydiry +nzdirz]Aeik·x (D.34)

Inserting this expression into equation D.29, and integrating, we obtain the loading on the acoustic
fluid due to scattering.

For the loading on the structure, we recall the expression for loading on thestructure due to Neu-
mann boundary conditions in equation D.30. In the frequency domain case,σn = nψ̇in = inωψin =
inωAei(k·x). Inserting this expression into equation D.30, and integrating, we obtain the loading on
the solid body due to scattering.

179

Finally, we examine the complex-valued loads presented in equations D.29 andD.30. We make
two observations regarding these loads.

1. These loads have real and imaginary parts, and thus even for a singleplane wave, they cannot
be combined into a single vector, even though they have the same multiplication factor A.
Currently, Salinas combines load vectors that have the same time function into a single array.
For the case of complex loads in the frequency domain, this translates into combining the real
and imaginary parts into a single array if they have the same “time” function, which in this
case corresponds to the multiplication factorA. A temporary work-around is to use distinct
time functions for the real and imaginary parts in the input deck. (even if the timefunctions
themselves are identical). Otherwise, if the same time function is used, the real and imaginary
parts would be combined into a single vector in Salinas.

2. We have considered the case where the coefficientA is a scalar constant, but we could also
consider the case whereA = A(ω) is a function of frequency. This would correspond to mul-
tiple plane waves of different amplitudes impinging on the structure. Since the spatial parts
of these loads varies with frequency, they could not be computed by adding the spatial parts
together before multiplying by the coefficientA(ω). Thus, we would have an inconsistency
with the current approach in Salinas of adding the spatial parts together before multiplying
by the time function (which in this case would beA(ω)).

D.6 Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, where thefluid or solid domain is
infinite or semi-infinite. In these cases, the domain could be truncated either withinfinite elements,
or absorbing boundary conditions. We describe below the simple absorbing boundary conditions
that have been implemented in Salinas. A description of infinite elements will be added at a later
time. We describe the cases of an acoustic space and an elastic space separately.

D.6.1 Acoustic Space

The implementation of absorbing boundary conditions begins by consideringthe weak formulation
of the equations of motion, in equations D.5. On an absorbing boundary, one needs to consider the
term

Z

∂Ωn

∂ψ
∂n

φds, (D.35)

which arises from the integration by parts on the acoustic space. Absorbing boundary conditions are
typically derived by applying impedance matching conditions to equation D.35, insuch a way that
the boundary absorbs waves of a given form exactly. For example, thesimplest absorbing boundary
conditions consist of plane wave and spherical wave conditions, which can be written as follows65

∂ψ
∂n

=
−1
cf

∂ψ
∂t

(D.36)

∂ψ
∂n

=
−1
cf

∂ψ
∂t
− 1

R
ψ (D.37)

180

whereR is the radius of the absorbing spherical boundary.

Inserting equation D.36 into equation D.35, we obtain a term proportional toψ̇, which becomes
a damping matrix. Inserting equation D.37 into equation D.35, we obtain two matrix terms, one that
contributes to the damping matrix, and another that contributes to the stiffness matrix. Note that
in the limit of largeR, the spherical wave condition reduces to the plane wave condition, since for
large enough radius, the spherical wave begins to resemble a plane wave.

Both conditions D.36 and D.37 are implemented in Salinas.

D.6.2 Elastic Space

In the case of an elastic space, very similar absorbing boundary conditions can be applied as were
in the acoustic space, except now the boundary has to absorb both pressure and shear waves. In the
case of an acoustic medium, only pressure waves are of interest. Thus, the elastic space is slightly
more complicated.

The equation of motion for an elastic space can be written as

ρutt −∇ ·σ = f (D.38)

whereρ is the material density,utt is the second time derivative of displacement,σ is the stress, and
f is the forcing. A weak formulation of this equation can be constructed by multiplying with a test
function and integrating by parts.

Z

V
ρuttwdV+

Z

V
σ : ∇wdV−

Z

∂V
σswdS=

Z

V
f ·wdV (D.39)

wherew is the test function, andσs is the traction vector on∂V, the boundary of volumeV. The
absorbing boundary condition is imposed on the portions of∂V that point into the infinite space. In
this derivation, we assume that this includes the entire boundary∂V. If only part of the boundary
pointed into the infinite space, the derivation would be exactly the same.

Considering the term
Z

∂V
σswdS (D.40)

we note that the traction vectorσs can be decomposed into its normal and tangential components,
i.e. σs = σn +σt . Then, we apply the conditions

σn = ρcL
∂vn

∂t
(D.41)

σt = ρcT
∂vt

∂t

wherecL andcT are the longitudinal and shear wave speeds in the medium, andvn, vt are the normal
and tangential components of velocity vectors on the surface. Inserting these relations into equation
D.40 yields two absorbing boundary matrices. Since these matrices involve thevelocities, they
become part of the overall damping matrix of the structure.

181

D.7 Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent review articles can be found
in,75.76

In the early formulations, only frequency-domain formulations were considered, and system
matrices were developed that depended on frequency in a nonlinear manner. Though these formu-
lations worked well in the frequency domain, there was no clear approachfor transforming them
back to the time domain. As a result, time domain formulations for infinite elements were delayed
for some time. The unconjugated formulations75,77 in the time domain formulation involved con-
volution integrals that could be used with the frequency-dependent system matrices, but storing the
time histories for the convolution integrals would be a significant burden for atime-domain code.

In the early 1990’s, Astley78–80derived a conjugated formulation that resulted in system matrices
that were independent of frequency. This allowed the frequency domain formulation to be readily
transformed to the time domain, in the same way that is typically done in linear structural dynamics.
He also derived a scheme for post-processing the infinite element degrees of freedom to compute
the far-field response at points outside of the acoustic mesh. This approach followed simply from a
time-shift applied to the infinite element degrees of freedom.

The exterior acoustic problem consists of finding a solutionp, outside of some bounded region
Ωi . We refer to Figure D.4 for a description of the geometry. We have an interior domainΩi , and
an exterior domainΩe, and a boundaryΓ that separates the inner and outer domains. We wish to
find the acoustic pressurep in Ωe. In the exterior domainΩe, the acoustic pressure must satisfy the
acoustic wave equation

1
c2 p̈−∆p = 0 (D.42)

a Neumann boundary condition onΓ
∂p
∂n

= g(x, t) (D.43)

and the Sommerfelt radiation condition at infinity

∂p
∂r

+
1
c

∂p
∂t
→ 1

r
(D.44)

asr → ∞.

We note that the weight and test functions are chosen such that the Sommerfelt condition is
satisfied identically. Then, the weak formulation reads as follows

Z

Ωe

1
c2 p̈q+∇p·∇qdV =

Z

Γ
gqdS (D.45)

In the frequency domain, the counterpart to equation D.45 is as follows

−k2
Z

Ωe

pqdV+
Z

Ωe

∇p·∇qdV =
Z

Γ
gqdS (D.46)

wherek = ω
c .

182

Ω

Ωi

e

Γ

Figure D.4. DomainsΩi andΩe and interfaceΓ for the exterior acoustic
problem.

We will focus on conjugated infinite element formulations, which implies specific choices for
the trial and weight functions for the infinite elements. For the trial functions,we have

φ j(x,ω) = Pj(x)e
−ikµ(x) (D.47)

and for the weight functions, we have

ψ j(x,ω) = D(x)P(x)eikµ(x) (D.48)

whereP(x), D(x), andµ(x) are as yet undefined functions ofx, andk = ω
c is the wavenumber. The

choice of these functions will determine the particular infinite element approach. In our case, the
exponential in the weight functions involves a conjugate of the exponentialin the trial functions.
This results in the exponential canceling out in the system matrices, thus rendering the matrices
independent of frequency.

Given these trial functions, the solutionp(x,ω) can be written in an expansion

p(x,ω) =
N

∑
i=1

q j(x,ω)φ j(x,ω) (D.49)

Substituting these expressions for trial and weight functions into equation D.46, we obtain for

183

following expression

Z

Ωe

(Pi∇D+D∇Pi + ikDPi∇µ) · (∇Pj − ikPj∇µ)qi−k2DPiPjqidV (D.50)

Separating out terms ofω, we obtain the following expressions for the stiffness, mass and damp-
ing matrices

Ki j =
Z

Ωe

(Pi∇D+D∇Pi) ·∇PjdV (D.51)

Ci j =
1
c

Z

Ωe

DPi∇µ·∇Pj −PiPj∇D ·∇µ−DPj∇Pi ·∇µdV (D.52)

Mi j =
1
c2

Z

Ωe

DPiPj(1−∇µ·∇µ)dV (D.53)

We now discuss the phase functionµ(x) in more detail. First, we note that the series expansions
for the trial functions (theith term is given by equation D.47), assume an outwardly propagating
wave. The exact solution from which these trial functions are derived involves a source point for the
wave. We denote the distance from that source point to a point on the basesurface bya. The phase
function is then defined by

µ(x) = r−a (D.54)

In spherical coordinates, the gradient of a function is equal to

∇ f (r,θ,φ) = r̂
∂ f
∂r

+
1
r

∂ f
∂φ

φ̂+
1

rsin(φ)

∂ f
∂θ

θ̂ (D.55)

Since the expression forµ(x) depends only onr, we have

∇µ(x) = r̂ (D.56)

Thus, ∇µ(x) ·∇µ(x) = 1. This implies that when the boundary defining the infinite elements is
a spherical surface, the mass matrix from equation D.53 is identically zero. This makes sense,
since it ensures that the modes are purely outgoing, and that there are nostanding waves. Since
a numerical integration of equation D.53 will never come out identically zero, the question then
becomes whether to include this numerical mass in the time integration, or whether toneglect it
completely from the outset. This has important implications in the stability of the time integration,
as outlined in.81

In terms of discretizing the infinite domain, infinite elements can be classified into 2 main ap-
proaches: the separable approach, and the mapped approach. In theseparable approach, the exterior
domain is assumed to be in a separable coordinate system, such as sphericalor spheroidal. In the
mapped approach, the nodes on the exterior boundary are mapped into parent elements using a
special mapping functions that map the infinite domain into a finite master element domain. The
mapped approach is advantageous because it allows a more arbitrary placement of nodes on the ex-
terior surface. The separable approach requires the exterior nodesto conform to a specific boundary,
and thus this approach places more restrictions on the mesh generation process.

184

D.7.1 Infinite Element Shape Functions

In our work, we have chosen the mapped approach due to its flexibility in meshgeneration. The
integrals in equations D.51, D.53, and D.52 are over an infinite domain,Ωe. In order to perform
numerical integration of these integrals, we first have to map onto a unit masterelement, as in
standard finite elements. The mapping is as follows

x =
N

∑
j=1

M j(s, t,v)x j (D.57)

wherex is a point in the infinite domain,x j are the coordinates of the mapping points,s, t define the
master coordinates of thebaseplane of the infinite element (which lies on the exterior surface of the
acoustic mesh), andv is the master coordinate in the infinite direction. If we consider a point on the
exterior surface, and its radial pointai , then the master coordinate along the radial edge emanating
from this point is given by

v = 1−2ai/r (D.58)

Equivalently,

r−ai = ai
1+v
1−v

(D.59)

Thus, as v approaches 1,r − ai approaches infinity. In this way, we can map the infinite radial
dimension onto a unit element.

The radial pointa is now interpolated over the base of the infinite element, to give

a(s, t) =
N

∑
i=1

aiSi(s, t) (D.60)

whereSi(s, t) is the implied surface shape function of the base element on the exterior surface. In
this way, tet or hex elements could be used in the acoustic mesh. For the infinite elements, the
only difference would be the surface shape functionsSi(s, t). The radial interpolation would be
treated in exactly the same way for tet or hex acoustic elements. The functionsM j(s, t,v) given in
equation D.57 are constructed as tensor products of the surface shapefunctionsSi(s, t) and radial
basis mapping functions. The radial basis mapping functions are typically defined to be linear
functions that map the finite master domain into the infinite domain. These functions are given as

m1(v) =
2v

v−1

m2(v) =
1+v
1−v

(D.61)

Thus, whenv = −1, we have thatm1(v) = 1 andm2(v) = 0. Whenv = 1, we havem1(v) = ∞ and
m2(v) = ∞. In this way, the infinite domain is mapped to a finite domain.

The mapping functionsM j(s, t,v) are defined as tensor products of the surface shape functions
Si(s, t) with the radial mapping functions from equation D.61. For example, for an 8-node hex, the

185

surface shape functions are defined as

S1(s, t) =
(1+s)(1+ t)

4

S2(s, t) =
(1+s)(1− t)

4

S3(s, t) =
(1−s)(1+ t)

4

S4(s, t) =
(1−s)(1− t)

4
(D.62)

Then, the 8 functionsMi(s, t,v) can be constructed simply by crossing eachSi(s, t) from equation
D.62 with anmj(v) from equation D.61.

Equation D.59 can then be used to compute the phase functionµ(x) at an arbitrary point

µ(x) = r−a =
N

∑
i=1

(r−ai)Si(s, t) =
N

∑
i=1

aiSi(s, t)
1+v
1−v

= a(s, t)
1+v
1−v

(D.63)

With µ(x) defined, we now turn attention to definingP(x). Thel th shape functionP(x) is defined
as

Pl (x) =
1
2

Si(s, t)(1−v)Q j(v) (D.64)

whereQ j(v) is a polynomial in a single variable. Various choices ofQ j(x) have been investigated,
including Lagrangian,78,79 Legendre,82 Jacobi,83 and rational (integrated Jacobi).84 Lagrangian
shape functions result in very poorly conditioned infinite element matrices. The other three choices
all appear to give acceptable levels of conditioning. Dreyer83 showed that the Jacobi polynomials in
general give a better condition than the Legendre polynomials. Regardless of the choice forQ(x),
equations D.57 and D.64 imply thatP(x) will be a function of the master element coordinatesr,s, t,
and thus can be integrated over the master element.

The functionD(x) is defined as

D(x) = (
1−v

2
)2 (D.65)

Now that we have definedP(x), µ(x), andD(x), in terms of the master element coordinates
r,s, t, the integrals in equations D.51, D.52, and D.53 can all be evaluated by standard Gaussian
quadrature over the master unit element (either hex or tet).

D.7.2 Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coefficients in the expansion
of equation D.49 are known. The next step is then to compute the solution at far-field points outside
of the acoustic mesh. We consider two cases below, one where the polynomial functionsP(x) in
equation D.47 is a Lagrangian shape function, and the other whereP(x) is a more general polyno-
mial (like a Legendre or Jacobi polynomial). In the former case, the functionsP(x) are associated

186

with particular nodes having values of 1 at the node and 0 at the other nodes. In the latter case, this
property does not hold.

We assume that we wish to compute the solution at a noded that is at a locationxd, and a radial
distancer = ||xd|| from the origin. This point is located on a radial line with a corresponding radial
pointa. Thus, for this point we haveµd = r−a., We have

p(xd,ω) =
N

∑
i=1

q j(ω)Pj(xd)e
−ikµd (D.66)

Note that ’N’ in this case is the number of infinite element basis functions within theinfinite element
that includes the pointd. In the case of Lagrangian polynomials, we have the property that the
function is equal to 1 at the node of interest and is equal to 0 at the other nodes. Thus, in the case
that the pointxd coincides with a node in the infinite element, we have the expression

p(xd,ω) = qd(ω)e−ikµd (D.67)

whereqd(ω) is the infinite element shape function corresponding to noded. Equivalently, we have

qd(ω) = p(xd,ω)eikµd (D.68)

Thus, the pressure at the noded is equal to the corresponding value of the coefficient of the infinite
element expansion corresponding to that node, multiplied by the factore−ikµd , whereµd is equal to
the distance (along the radial line) from the boundary of the acoustic domainto the noded.

If we take the inverse Fourier transform of equation D.68, we get

qd(t) = p(xd, t +
d
c
) (D.69)

Thus, the pressure time history at noded is equal to a time-shifted value of the infinite element
degree of freedomqd(t) corresponding to noded. This makes physical sense in that it would take
the wave additional time equal todc to reach the pointd.

Next we consider the case whenP(x) is not a Lagrangian polynomial. In this case, the pointd
could not be associated with any particular node. In this case, we still havethe relation

p(xd,ω) =
N

∑
i=1

q j(ω)Pj(xd)e
−ikµd (D.70)

except in this case, the polynomialsP(x) do not necessarily vanish atd. Thus, again bringing the
exponential to the other side of the equation, we have

p(xd,ω)eikµd =
N

∑
i=1

q j(ω)Pj(xd) (D.71)

Taking inverse Fourier transforms, we arrive at the result

p(xd, t +
d
c
) =

N

∑
i=1

q j(t)Pj(xd) (D.72)

Since all quantities on the right hand side of equation D.72 are known after the finite/infinite element
solution is complete, we can postprocess to compute the pressure at the field point xd.

187

D.8 Point Acoustic Sources

Point acoustic sources are common in acoustic modeling, and we provide somecapability for do-
ing this in Salinas. Here we describe the theory behind this implementation. The theory of point
sources85,86 in acoustics is typically formulated by considering a pulsating sphere of radius R, cen-
tered at the pointxs = (x,y,z). Upon taking the limit as the radius of the sphere goes to zero, one
obtains the equation for an acoustic point source. The distance from the center of the sphere to a
point in the domain isx− xs, wherex is the vector from the center of the sphere. If the source is
centered at the origin, thenxs = 0 and the norm ofx is the distance to that point in the domain.
In the remaining discussion, we will assume for simplicity thatxs = 0. In the case thatxs 6= 0, the
expressions below can be modified by replacingx with x−xs.

We consider a point source that is injecting mass into the acoustic domain at a volume velocity
rate (mass per unit time)

ṁs(t) = ρQs(t) (D.73)

whereṁs is the mass per unit time of fluid that is being injected into the domain,ρ is the density
of the fluid, andQs(t) is the volume velocity of the fluid that is entering the acoustic domain. More
on this will be given later in the section on Lighthill’s approach, and its connection with the point
source.

In order to compute the noise resulting from a point source, the wave equation is augmented
with a right hand side term86

1
c2 p̈−∇2p = m̈s(t)δ(x−xs) = m̈s(t)δ(x) (D.74)

wherep is the acoustic pressure at a point in the domain,c is the speed of sound, andρ is the fluid
density. We note that the volume velocity can also be written as the time derivativeof the volume in
the source

Qs(t) =
dV
dt

(D.75)

whereV is the volume enclosed by the source. Equation D.75 is valid for a spherical source en-
closing a volumeV, but in the case of a point source we shrink the radius to zero. The volume
velocity, Qs, is also sometimes referred to as thesource strength. It is simply the integral of the
normal component of surface velocity over the spherical surface of the source. Since the surface
velocity is the same everywhere on the surface of the sphere, the sourcestrength is

Qs =
Z

S
vndS= vn

Z

s
dS= 4πa2vn (D.76)

wherea is the radius of the sphere, andvn is the normal component of velocity on the surface. By
considering the volume increase for a pulsating sphere, it is easy to see that equations D.75 and
D.76 are the same.

We note that in the Salinas implementation of acoustics, we actually use the time derivative of
pressure rather than the pressure directly. We also scale the equation bydensity, since this is needed
when the fluid properties are not constant. Thus, we would modify equationD.74 as follows

1
ρc2 ψ̈− ∇2ψ

ρ
=

ṁs(t)
ρ

δ(x−xs) =
ṁs(t)

ρ
δ(x) (D.77)

188

wherep = ψ̇. Equivalently, this gives

1
ρc2 ψ̈− ∇2ψ

ρ
= Qs(t)δ(x−xs)δ(x) (D.78)

In the frequency domain, equation D.74 is typically written as

(∇2 +k2)φ =−4πAδ(x) (D.79)

whereA is referred to as theamplitudeof the source. The solution to equation D.79 in an unbounded
domain can be shown to be the following

φ =
A
r

ej(ωt−kr) (D.80)

wherer = x−xs is the distance from the center of the source to the point in the domain, the circular
frequency of the wave,k = ω

c is the wavenumber.

Assuming a time-harmonic expression forQs(t) = Qeiωt , and substituting this and equation
D.80 into equation D.74, it follows that the following relation exists betweenQ andA

Q =
−4πA

ρ
(D.81)

Thus, equation D.79 can also be written in terms ofQ as follows

(∇2 +k2)φ = ṁs(t)δ(x) (D.82)

Consequently, we have shown that in both time (equation D.74) and frequency (equation D.82) we
can represent the point source as a volume velocity amplitude times a delta function.

A finite element formulation of the previous equation can be constructed as usual, by multi-
plying the previous equation by a test function, and integrating by parts. Wenote that the domain
of integration must include the pointxs, the location of the point source. Also, we note that the
integration against the delta functionδ(x− xs) is actually a duality pairing, rather than an integral,
since the integral of a delta function is not defined. In what follows, we assume that the pointxs

lies on a node in the finite element mesh. This will facilitate the modeling, since we will typically
define the point source on a nodeset or nodelist consisting of a single node.

Denoting byVf (Ω f) the function space for the fluid, the weak formulation can be written as
follows. Find the mappingψ : [0,T]→Vf (Ω f) such that

Z

Ω

ψ̈
ρc2 φdx+

Z

Ω

∇ψ ·∇φ
ρ

dx=−
Z

∂Ωn

u̇nφds+Qs(t)

∀φ∈Vf (Ω f), whereu̇n is the prescribed velocity on the Neumann portion of the fluid boundary. We
note that the first term on the right hand side is a surface excitation force,and thus only contributes
nonzero terms on nodes that lie on the surface

R

∂Ωn
. The second term comes from the point source,

and only contributes a nonzero term on the node where the point source islocated.

Inserting a finite element discretizationφ(x) = ∑N
i=1 φiNi(x) into equation D.83 results in the

system of equations
Mψ̈+Kψ = fa, (D.83)

189

whereN is the vector of shape functions,M =
R

Ω f

1
ρc2 NNTdx is the mass matrix,K =

R

Ω f

∇N·∇NT

ρ dx

is the stiffness matrix, andfa =
R

∂Ωn
u̇nNTdx+Qs(t) is the external forcing vector from Neumann

boundary conditions.

If Q = dV
dt is computed with a void element in Presto, equation D.83 can be used to compute the

right hand side term and the corresponding acoustic response.

D.9 ALE Acoustics

In many cases of acoustic and structural acoustic analysis, the Lagrangian structural mesh penetrates
into the Eulerian acoustic mesh. Although this happens for all structural acoustic problems, if the
amplitude of the structural vibrations is small, this penetration/separation can beignored. In fact,
all of the previous equations made this implicit assumption.

When mesh interpenetration/separation occurs, a mesh motion scheme can be used in the acous-
tic domain to correct for the motion of the nodes. Here we describe a scheme for doing this. We
will only consider the case of a one-way coupling, i.e. where the structural vibration drives both
the acoustic mesh motion and the corresponding acoustic wave propagation.The fully coupled case
would be an extension of what is presented below.

First, we consider the undamped acoustic wave equation

1
c2 ψ̈−∇2ψ = 0 (D.84)

This equation is based on an Eulerian formulation and thus assumes a stationary acoustic mesh.
When the acoustic mesh is moving, we need to replace the time derivative with the total derivative,
as follows

Dψ
Dt

=
∂ψ
∂t

+u·∇ψ (D.85)

whereu is the spatial nodal velocities of the nodes of the mesh. Thus we see that when the mesh is
not moving,Dψ

Dt = ∂ψ
∂t .

Inserting equation D.85 into equation D.84, we obtain the wave equation in a moving reference
frame

1
c2

(

∂
∂t

+u·∇
)(

∂
∂t

+u·∇
)

ψ−∇2ψ = 0 (D.86)

Expanding out terms, we have

1
c2

[

∂2ψ
∂t2 +u·∇∂ψ

∂t
+a·∇ψ+u·∇(u·∇)ψ

]

−∇2ψ = 0 (D.87)

wherea = du
dt are the nodal accelerations, or the time derivatives of the nodal velocities.

Multiplying equation D.87 by a test function and integrating by parts, we obtain the variational
formulation for the ALE wave equation

Z

Ω

1
c2

∂2ψ
∂t2 φdV+

Z

Ω

1
c2u·∇∂ψ

∂t
φdV+

Z

Ω

1
c2a· ∇ψφdV+

Z

Ω

1
c2u·∇(u·∇)ψφdV−

Z

Ω
∇2ψφdV = 0

(D.88)

190

The first term in equation D.88 is the classical mass matrix. The second term is anonsymmetric term
that contributes to the damping matrix, and the third term is a nonsymmetric term that contributes
to the stiffness matrix. The fourth term is a symmetric term that contributes to the stiffness matrix
(after integration by parts), and the fifth term is the classical stiffness matrix.

Currently, the first, second, and fifth terms are implemented in the ALE acoustics formulation
in Salinas. The third and fourth terms are not difficult to implement, but are currently missing in the
Salinas implementation.

191

192

Index

abstract, 3
accuracy

null space, 56
algorithms

fast modal frf, 35
fast modal transient, 35
modal transient, 33, 34

Allman, 88
Anisotropy, 88

Beam, 90

Citations, 149
CMS, 51
Component Mode Synthesis, 51
Consistent loads, 107
Constraint Transformations, 112
Coordinate Systems, 110
Correction of matrices, 56
Craig-Bampton, 51

Distributed Damping, 72

Eigenanalysis
quadratic, 41
structural acoustics (modal basis), 41

Element
Beam2, 90
Hex20, 86
HexShell, 116
Isoparametric, 76
matrix correction, 56, 120
Membrane, 117
Nbeam, 91
Offset, 106
Rbar, 101
Rbe3, 102, 104
Rigid, 99
Rrod, 99
Spring, 96
Tet, 86
Tria3, 89
TriaShell, 88
Truss, 96
Wedge, 84

element residual method, 70
error estimation, 59
error estimator

explicit, 60
quantity of interest, 70

Error Estimators
explicit

elasticity, 61
Euler Angles, 133

Felippa, Carlos, 89
foreword, 3
frf, 35

Gauss Point Locations, 84

Hex20, 84, 86
Hex8, 76
HexShell, 116

isoparametric solids, 76, 84

Lanczos, 25
linear algebra, 129
Loads, 107

Mass Properties, 138
Acoustics, 140
default elements, 138
Superelements, 140

matrix dimensions, 129
Membrane, 117
Modal Acceleration Method, 28
Modal Masing, 72
modal transient, 34
mortar, 141
MPC, 97

NBeam, 91
Newmark-Beta, 9, 21
Nquad, 93
null space correction, 57

offset shells, 106

quaternions, 135

193

Rbar, 101
RBE3, 102

MSC/Nastran, 159
old, 104

References, 149
Rigid Elements, 99
Rotation, 133
Rrod, 99

SA eigen, 41
selective integration, 76, 84
Set

Analysis-set, 132
Assembly-set, 131
Common-set, 132
full-set, 131
G-set, 132
M-set, 132
S-set, 132
Solution-set, 132
Structural-set, 131

Shell
Triangle, 89

shell offsets, 106
solid elements, 76, 84
solution spaces, 129
SPC, 132
Spring, 96
Structural Acoustics

eigen, 41
superelement, 53

Tet10, 84
Tetrahedron, 86
time integration, 21
Tria3, 89
Tria6, 88
Triangular Shell, 89
Triangular shell, 88
Truss, 96

viscoelastic materials, 21
viscoelastics, 39
viscofreq, 39

Wedge, 84

194

DISTRIBUTION:

1 MS 0380 Garth M. Reese, 01542

1 MS 0380 Timothy F. Walsh, 01542

1 MS 0380 Manoj K. Bhardwaj, 01542

1 MS 0899 RIM-Reports Management, 9532 (electronic copy)

195

196

v1.27

	Solutions
	Time integration
	Linear transient analysis
	Prescribed Accelerations
	Nonlinear transient analysis
	Explicit Transient Dynamics
	Time integration with viscoelastic materials
	Linear Eigen Analysis
	Random Vibration
	Modal Frequency Response Methods
	Fast Modal Solutions
	Complex Eigen Analysis - Modal Analysis of Damped Structures
	SA_eigen
	Quadratic Modal Superposition
	Component Mode Synthesis
	Sensitivity Analysis
	A posteriori error estimation for eigen analysis
	Nonlinear Distributed Damping using Modal Masing Formulation

	Elements
	Isoparametric Solid Elements. Selective Integration
	Implementation
	Mean Quadrature Element with Selective Deviatoric Control
	Bubble Element
	Quadratic Isoparametric Solid Elements
	Wedge elements
	Tet10 elements
	Calculating shape functions and gradients of the Hex20 element
	Anisotropic Elasticity
	Triangular Shell Element
	Triangular Shell - Tria3
	Beam2
	Nbeam
	Nquad - Navy Quadrilateral Shell Element
	Truss
	Springs
	Gap Elements
	Multi-Point Constraints, MPCs
	Rigid Elements
	Shell Offset
	Notes on Consistent Loads Calculations
	Coordinate Systems
	Constraint Transformations in General Coordinate Systems
	HexShells
	Membrane
	Corrections to Element Matrices

	Loadings
	Matrices from Applied Forces
	Modal Analysis of Rotating Structures
	Random Pressure Loading

	Linear Algebra Issues
	Solution Spaces
	Matrix Dimensions: Revision
	Rotational Degrees of Freedom
	Orthogonality of MPC to Rigid Body Vectors
	Mass Properties

	Constraints and Contact
	Tied Friction
	Mortar Methods

	References
	Anisotropic Materials
	Linear Anisotropic Elasticity
	Stress Vectors
	Strain Energy and Orientation

	Integration of Isoparametric Solids
	Uniform Strain-Displacement Matrices
	Mixed Integration

	MSC documentation of Nastran's RBE3 element
	Abstract: Mathematical Specification of the Modern RBE3 Element
	Abstract: RBE3 ELEMENT CHANGES IN VERSION 70.7

	Theory Notes for Acoustics and Structural Acoustics
	Conforming and Nonconforming Linear Structural Acoustics
	The Governing Equations and Their Discretizations
	Conforming Structural Acoustics
	Nonconforming Structural Acoustics
	Acoustic Scattering
	Absorbing Boundaries
	Infinite Elements for Acoustics
	Point Acoustic Sources
	ALE Acoustics

	Index

