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Abstract

Salinas provides a massively parallel implementation rfcstiral dynamics finite element
analysis, required for high fidelity, validated models usecthodal, vibration, static and shock
analysis of structural systems. This manual describedhéary behind many of the constructs
in Salinas. For a more detailed description of how tosiaknas, we refer the reader t8alinas,
User’s Notes

Many of the constructs iSalinasare pulled directly from published material. Where pos-
sible, these materials are referenced herein. Howevdgiodunctions inSalinasare specific
to our implementation. We try to be far more complete in thaxssas.

The theory manual was developed from several sources iimgjggneral notes, @rogram-
mer_notesmanual, the user’s notes and of course the material in the liteeature.
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1 Solutions

One thing which makeSalinassomewhat unique among the many mechanics codes developed at
Sandia National Labss thatSalinascombines a variety of different solution procedures. These
range from modal superposition based solutions to nonlinear transiertegssibed in théJser’'s
Notes, these solutions can be combined (or chained) in solution cases. Thissefctie manual
describes the theory behind these individual solutions. For details abdidular finite elements,

see section 2.

1.1 Time integration

For linear and nonlinear transient dynamics, we use a variant of the NewBeda time integrator
called the generalized alpha method.

1.2 Linear transient analysis

The equations of motion of the structure are

M[(1—dm)ani1+0man] + é[<1_0f)vn+l+afvn]+
K[(1—af)dhia+oardy] = (1—ap)F™(tha) +oF™ty)
(1.2)

whereF®is the external loady s, 0, are the integration parameters for the generalxedethod,
andC =C+aM + BK. That is, the damping matrix is the sum of the standard damping matrix C
plus the proportional damping terms.

In order to achieve second order accuracy and unconditional stabiBtynust satisfy the fol-
lowing conditions.

1
am<(xf <= =

2

1
Vnzé—am‘Faf

1 1
Bn > Z+§(Gf—am)

(1.2)

The code automatically computes these parameters such that they meetitbaae Specifically,

ar = p/(1+p)

Om (2p—-1)/(1+p)

Bn (1-am+af)-(l—am+0a¢)/4
Y = 1/2—am+(xf



We note some special cases of interestp # 0, we have thatis = 0 anda,, = —1. This is the
maximum damping case. ¢f= 1, we have thatt; = o, = 3, which yieldsB, = 1, andy, = 3. This
is similar to the classical undamped Newmark-beta method, although we noteithatdifferent

algorithm sincens = am = % implies some lagging in the time-stepping procedure. The classical
undamped Newmark-beta method lgs= a,, = 0.

For later use, we also define

FneflJraf = (1_ af)FEXt(tMl) + 05 FeXt(tn) (1-3)
There are two options for evaluatiff; . , . More will be given on this in the next section.

The time integration scheme is defined as follows

At?
dhi1 = dn+Atvy+ ) [(1—2Bn)an + 2Bnan; 1]

Vnil = Vn+At[(1—Yn)an+ Ynani1]
(1.4)

wherey,, B, are the integration parameters for the Newmark method. In order to havelacdiment-
based method, we solve these equations for the acceleration and velocitysnofedisplacement,
which yields

1 1-2B,
- = — O — VAL —
ant+1 BaAt [dnt1 — dn — VaAAt] 2B,

Vil = Vn+At[(1—Yn)an+Ynansa

1- 203,

= Vn+At [(1—Vn)an+BnyAntz[dn+1—dn—VnAt]—yn2[3nan

(1.5)

Substituting these equations into the equation of motion, and collecting termstave ob

1-a A
[M( m) K@ —ar)| dyes =

c(1—
BAZ ( O”)BnAt

ext
Fn+1+orf —Katd,

-C [aan-l- (1—-ap) [Vn+At(1—yn)an+ BZnAt 0 — Atvy] — VnAt(le—nZBn)anH

1-am

BnAt?

1- 2By

R

+M [—Gman +

(1.6)
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There are three matrix-vector products on the right hand side of thigiequane for each of the
system matricedl, K, andC.

1.3 Prescribed Accelerations

Prescribed accelerations can be applied in Salinas to nodesets or sideskgscribed in the users
manual. Here we give a brief description of the theory behind the implementation

To simplify matters, we consider the case when the acceleration of a singleedagreedom
is prescribed as,f(t), wherea, is the amplitude, and (t) is the function describing the time
dependence. The extension to multiply prescribed degrees of freedsimpsy a matter of an
external loop.

Given f(t), we compute two numerical integrals as follows.

att) = apf(t
v(t) = Vo—|- —Vo+/taoftdt:Vo+ao(if(t))

dit) = do+/ dt—do+vot+//aof )t = do + Vot + afi f (t)
(1.7)

where we have defined (t) andiif (t) to denote the first and second integrals of the funcfign,
anddp andvp denote the initial displacement and velocitiy(t) andiif (t) are computed numerically
in Salinas.

Given these functions, we can statically condense the prescribededagfrigeedom, and bring
the resulting terms to the right hand side. First, we definé& be the column of the mass matrix
associated with the prescribed dof, an@ndk; are similarly defined for the damping and stiffness
matrices. We first write the Gset version of equation 1.1. We put subsafigon the system
matrices and right hand side to denote that they do not yet have pres@&{be condensed out
(hence are Gset).

My [(1—0m)ant1+ Aman] Cg[(l Of)Vny1+ O V] +
Kg[(l—af)dn+1+afdn] = (1- )Fg (tn+1)+GfF§Xt(tn)
(1.8)

Next, we condense out the prescribed degrees of freedom and nmeogerttributions to the right
hand side. We note that degrees of freedom that are fixed do notledatto the right hand side.
After this process, we remove the subscripts from the system matrices,thie are now in Aset
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form. We also condense the right hand side terms, so that everythingtis Ase

M[(1—0m)ani1+0aman + C[(1—0af)Vni1+ 0tV +
K[(1—0at)dni1+asdn]
= (1 — Gf)FeXt(tn+1) + 0 FeXt(tn)
— (I—af)ao[f(thra)mi+if (tar1)ci +iif (thea)ki]
— agao[f(ta)m +if (th)c +iif (th)ki]
(1.9)

This shows that prescribed accelerations result in a contribution to thiehaglad side that consists
of products of the time functiori(t) with the column from the mass matrix corresponding to the
prescribed dof, and products of the first and second integrdlé pfvith the corresponding columns
from the damping and stiffness matrices. For statics problems, this preceelluces to only a
contribution from the stiffness matrix, and this is also included in Salinas.

1.4 Nonlinear transient analysis

This section follows closely the nonlinear transient procedure givenedyt&hko et af, with the
modification of using the generalized alpha integrator rather than the Newbretalapproach. In
the case of a nonlinear transient analysis, the equation of motion is

M[(1—dm)ans1+0man] + é[(l_o‘f)vn+l+0(fvn]+
(l—(Xf)Fn'g_tl—l-GfFr',nt = (1—0)F®Y(dny1) +asFoY(dyn)
(1.10)

whereF,iT1 andF/" are the internal forces at the current and previous time steps, resggchiote
that we have written the external loads as functions of displacement, sittee imost general case
they could be follower loads.

Before proceeding, we note that there are two possible approaahegplementing the gener-
alized alpha method, and in equation 1.10 we have taken one of thesecdmwoahe difference
lies in the treatment of the internal and external forces. The first apprizato evaluate them as
follows

Frmlwf = Fim((l—af)dn+1+0(fdn)
FnTlJruf = Fen((l—af)dnﬂ‘i‘afdn)

(1.12)
and the second is to evaluate two separate terms
Pl i, = (1= ag)F™(dgea) + 0 s F™ (dn)
Fnel(t1+af = (1—a)F®Y(dns1) +arF™(dn)
(1.12)

12



When bothF®tandF™ are linear functions, the two approaches are identical. For nonlinebs pro
lems, bothFet andF™ could be nonlinear functions, and thus the two procedures are differen
In the limit of very small time steps, these nonlinear functions effectively lineaand the two
approaches again become the same. Thus the limiting behavior of the twaelppsas the same.

We note that in most cases, the external [B&is treated as a piecewise linear function of time,
and in those cases the two approaches yield the same result for the Elktadnahough a couple
of exceptions are worth mentioning. First, if two consecutive time steps lie withindifferent
linear segments, then the two approaches above yield different loaden@&ealthough they are
seldom used, polynomial and loglog interpolation functions are availablelimaSan addition to
the commonly used linear interpolation, and in those cases different loaoryeesult from the
above procedures. For problems with very large time steps and involvigggraial interpolation,
different results are to be expected.

In Salinas we have chosen the second option, which evaluates both timalifibece and exter-
nal force at both times of interest, and forms a linear combination of the twmp@nsons have
shown little difference in the results on simple test problems.

Using the tangent stiffness method, we repIE,?;]Ezl as
RNt = F" 4 KAd (1.13)

wherek; is the tangent stiffness matrix, definedkqs= dFnteral/0u, andAd = d,1 — dy. Also, we
use equations 1.5, which are the same as in the linear case.

First, we substitute equations 1.5 and 1.13 into equation 1.10. This results iolltheirig
equations, which are almost identical to the ones from the linear case

(1-0am) A Yn

M- B1—
B.AtZ ( af)BnAt

+Ke(1—0t)| dnya =

Fne—&)-(tl—kaf — Uy I:nim - (1_ Gf) [Frilm o thn]

Yn

A B B L _ynAt(l—ZBn)

C[afvn+(1 af)[anrAt(l yn)an+BnAt[ On — Atvy] BT an
1—am 1_ZBH

+M |:—aman+BnAt2[dn+VnAt]+(l—am)ZBnan

Finally, we want the unknown to b&d = dn. 1 — d, whered is the current iterate of displace-
ment. To accomplish this, we subtract the appropriate terms from both sitéd) wields, after
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collecting terms

(1-0m) _ Yn
poaz g Ry

Fneflﬂxf - (1—C‘f)|fim —GfFAm —C[(l—df)\7+afvn]
—M[(1—0am)a+ aman] (1.14)

M

+K(1—af)|Ad =

where again bats denote current iterates of acceleration, velocity, ete.tinat we have re-defined
Ad = dnﬂ —d, Which is different than the previous definition that was given. Also, o ithat
Fint = EINt 4 Ke(d — dy).

Upon using the Newmark beta time integratgy £ % Bn = %1, Of = oy = 0, equation 1.14
reduces to

4 2 2 ext = int Y A
M5 +Ca K| Ad = FES ™ —CO— M4 (1.15)

which is the same equation given by Belytschko ét al.

We note that equation 1.14 can be written as
AAd =res (1.16)

whereA is the dynamic matrix)d is the change in displacement from the previous Newton iteration
to the current Newton iteration, and res is the residual, i.e. the amount by wigcequations of
motion (equation 1.10) are not satisfied by the current iterate.

1.4.1 Damping in Nonlinear Solutions

A number of sources of damping in the solution of linear and nonlinear sokutiawe been iden-
tified. It is useful to list them for comparison, as in Table 1. Note in partictiteat proportional
damping, common in linear systems, requires a slightly different definition itimear systems,
and will also require explicit formation of a damping matrix.

1.5 Explicit Transient Dynamics

An transient dynamics capability using an explicit integrator has been gmalor specialized
applications. Note that Salinas remains a small strain application, even wimegntiis explicit
integrator. This integrator is used because it may be advantageous vibgadimg with other
applications which control the time step. The implicit integrator requires no liseklwe of the
stiffness matrix, and does not require a new factorization when the timelsi@ges. It can be used
with both linear and nonlinear elements.

14



Damping Source

Discussion

linear dashpots

proportional damping

linear viscoelasticity

nonlinear energy loss

nonlinear material

numerical damping

Contributes directly to th€ matrix described in equation 1.1.
The matrix is constant.

Also known as Rayleigh damping,
oM + BKo

The damping is proportional to velocity. Note that the effec-
tive damping matrix is constant. Dampingnst proportional
to the tangent matrix.

Determined by material parameters.

Many nonlinear elements contribute to this form of damping.
It does not generate a damping matrix term, and often moves
energy from lower frequencies to higher frequencies. An ex-
ample is the lwan element.

Similar to nonlinear elements.

No damping matrix is generated. Most of the energy loss is
at frequencies above the Nyquist frequency. Controlled by
parameteRHO

Table 1. Sources of Damping in the Solution
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1.5.1 Central Difference Operator

Consider the following equation for a spatially discretized finite element syistemotion:

In the above equationy represents the displacement vectéryepresents the matrix of stiffness
terms,C represents the matrix of damping terms, aMdepresents a matrix of mass terms. The
vectorfey is calculated from a system of applied loads.

The above equation of motion, Equation 1.17, is a system of ordinary efiffiet equations
with constant coefficients. Difference expressions can be used toxapate the velocities and
accelerations in terms of the displacements appearing in the equation. A commedIgifference
expression is the central difference operator. The central diftereperator is as follows:

Unt1—Un  Un—Un_1
n+1/2 n-1/2
R (1.18)

(Atn+l/2 +Atnfl/2)/2

an:

In the above equatiom+ 1 denotes information at tim&*2, n denotes information at tim#, and
n— 1 denotes information at tim@ 1. The increment in time fron” to t"1 is At"*1/2, and the
increment in time from"1 to t" is At" /2. The termay, is an acceleration value in the vectar
The expression

Un+1— Un

Ath+1/2 (1.19)

is the velocityyvy, 1,2, at the half time stept™ /2 The termvy,,1/2 is a velocity value in the vector
u. The expression

Un — Un—1

A1 (1.20)

is the velocityv,_1 />, at the half time stept™ /2, The velocity is constant over a time step.

When a solution is known at timé& and timet"1, the solution can be determined at tinfe!
from Equation 1.18, the central difference operator. We use the preuirdormation to project the
solution to timet"1. To understand how we project the solution ahead to tfthe we return to
the equation of motion. We use the equation of motion without the damping matrix to siroptif
discussion. The equation of motion at tiflds

Kup+Mi, = &, (1.21)
In the above equation, the produ€t, is simply the internal force vector at tim&. The above

16



equation of motion reduces to

M i, = f&—fint (1.22)

The acceleration vector at timeis calculated from

Uy = M L(FX_finty (1.23)

Now that we have the acceleration at titlewe can compute the velocity at the half time step
t"+1/2 and the displacement at the time st&p" with the following equations:

(Ve1/2)i = (Vo_1/2)i + ()i (A2 4 At"12) /2 (1.24)

(Uns2)i = (Un)i + (Vi 1/2)iA" /2 (1.25)

In the above equations, the subsciipenotes quantities associated with ifelegree of freedom.
Once the vecton, 1 has been calculated, we can again advance the time step.

It is important to note that the central difference operator is conditionalbfest#f the time step
At exceeds the value/2/A2, whereA? is the maximum eigenvalue determined by the eigenvalue
problem

Ko—A°M@=0, (1.26)

the problem becomes unstable.

Typically, the mass matrix for an explicit, transient dynamics code is diagodal&ee Refer-
encé). When the mass matrix is diagonalized, the acceleration for each degireeddm can be
written simply as

(@n)i = (= £")i/(m); . (1.27)

The diagonalization is done for purposes of performance. When the mmatsix is diagonalized,
the application of kinematic boundary conditions and certain constraintsrisscextremely simple,
and no linear solves are required.

Note that, in our above description of the implementation of the explicit scheme, iifieiude
damping, the damping matri times the velocity vector produces a damping force vector that is
added to the right hand side of Equation 1.22.

Now that we have outlined the basics of an explicit solution technique, we oviider how
some of the basic functionality — kinematic boundary conditions, constraintsstidaces, and
superelements — are implemented for an explicit solver.
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1.5.2 Mass Matrix Solutions

A diagonal mass matrix simplifies the explicit integration in several ways. Mostiitapt of these
is that there is no need for a linear solve as each degree of freedonisplad from the rest. Speed
of the solution is critical as the conditionally stable time step can require very gerations. Other
factors, such as implementation of constraints and boundary conditionglsteye affected by the
form of the mass matrix. In addition, more accurate results for explicit integgrare obtained by
using a lumped mass matrix. (For an implicit scheme, the more accurate resutiistaireed by
using a consistent mass. See Referéice.

Salinas is designed around an implicit iteration scheme and powerful linkkarsare available
in the package. There are several reasons to consider an apprbadwe do not require that the
mass matrix be fully diagonal.

1. Superelements generated by Craig-Bampton type reductions contaimagdlmatrices. Since
the mass matrix provides all the coupling to the generalized degrees obfmeesiandard
lumping approaches cannot be used. Several other approacresdable including refor-
mulating the superelement (as is done in Abaqus), or other coordinatéotraations that
simplify the solution. The most straightforward approach is to solve the linesdems for
those coupled degrees of freedom.

2. Like super elements, inertias associated with rotating masses may noilypkiegsed. These
are typically 6x6 matrices, so existing codes typically handle these as alspssa

3. Elements such as beams may have mass terms that can be easily lumped in thecslerne
dinate frame. Lumping in an arbitrary rotated frame may cause a depenaietheesolution
on rotation. This comes about because the rotational inertia for a drillinggeed freedom
differs from that in bending. This is addressed in a variety of ways irewdfit codes. For
example, Nastran usually eliminates the mass of rotational dofs in beams. iRsesés that
all rotational inertias are identical. In the limit as the element size goes to zesg finoduce
the same solution. However, maintaining a tridiagonal inertia could greathceechanges
to existing code base and permit ready comparison with implicit solutions.

Recognizing the need for a rapid solution at each time step we propose luthpintass ma-
trix where feasible, but solving equation 1.23 for the remaining mass terni&l ements will
have diagonal mass terms, shells and beams will be tridiagonal, mass elemets @il6 and
superelement mass matrices will depend on the element.

Discussions with our linear solver folks indicate that these solves showgdtbemely fast. In
most cases there will be little or no coupling outside the subdomain, so a slrasEebacksolve is
all that is required at each time step. The solver preconditioner will be ttorethese special
characteristics. We expect the linear solve to be much less expensivéhthaomputation of
internal forces.

It is important that this solution strategy be compatible with follow on approaittzsnay not
use a full linear solve. We see no incompatibilities with the exception of the eleoramilations
for diagonal versus partially lumped mass matrices. For UC-2, details dfiagsuperelements
without a system solve are to be addressed later.
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1.5.3 Kinematic Boundary Conditions

A wide variety of kinematic boundary conditions can be implemented for an éxgdiltition tech-
nique. These boundary conditions are similar to those that can be foundnmpécit code — fixed
displacements, fixed rotations, prescribed displacement, etc. For tHemrédrmulation in Equa-
tion[1.23, kinematic boundary conditions are enforced by adding reactiord to the right-hand
side. The reaction forces are such that the acceleration atttimesults in the desired kinematic
behavior at time"*1,

Suppose, for example, we want to fix the displacement compduogrior all time. If degree of
freedomi is associated with a diagonalized mass, we can enforce the boundariarohy adding
a reaction force( f[¢2%); at each step that is equal and opposite to the residual t¢ff'9);, where
(fresidy, — (£ finy, The right hand side term becomes

(freact), | (]cresid)i -0, (1.28)

and the acceleration term at timelso becomes zero. For this diagonalized mass case, the acceler-
ation is simply ¢'(m);.

As a second example, suppose we want the velocity at the half timAStels? for component
i to have a value ofj,. The velocity at the half time stey~1/2 for componeni has a value of
Va. Again, assume degree of freedans associated with a diagonal mass tem);. Consider
Equation 1.28. The acceleratiofy);, required to produce the prescribed velocity at the half time
stepAt™1/2 is

Vp —Vva
Atn+1/2+Atn*1/2)/2 )

(ap)i = ( (1.29)

If we add (— f[esi9); + (m);(ap); to the residual ternifsi9);, then the acceleration componératt
timet" becomes

(faesid); — (fresid)i 4 (m)i(ap);
(m);i

, (1.30)

which is simply the valuga,); that produces the prescribed velocityat the half time step.

As can be seen from the above examples, each kinematic boundary comgbititd require its
own unique set of reaction forces to enforce the correct kinematio/imha

1.5.4 Constraints

Most explicit integrators use a diagonal mass matrix which eliminates the neadifiear solve of
the mass matrix. As a consequence, nondiagonal masses and multipoiraiots$MPCs) must
be treated a special cases. Within Salinas, a linear solve of the mass matffiecieda:f which
results in the MPCs being passed into the linear solver. The solver esftirese constraints in
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exactly the same manner as they are managed for implicit solutions. The aticelevelocity and
displacement are forced into the a linear space where all constraintstisfees.

The explicit integrator solves for acceleration. Displacements are soldedtly from the
acceleration solution. Specifically,

Vn+% = Vni%—i-anAtl (2.32)

1 = dn+Vn+%At2 (1.32)

The displacements are thus linear combinations of the acceleration vecmoaided that initial
conditions are correct, displacements remain in the space where consiraistisfied.

1.5.5 Contact with Tied Surfaces

Contact refers to the interaction of one or more bodies when they physicattir. This can include
the interaction of one part of a surface against another part of the sarfaee, the surface of one
body against the surface of another body, and so forth. Contaabdigs are provided in Sierra
applications by the ACME module (ReferefizeThe contact algorithms in ACME are designed to
ensure that surfaces do not inter-penetrate in a non-physical wdythat the surface behavior is
computed correctly according to any user-specified surface modelarexplicit solver, ACME
uses a two-step process. The first step is the detection of the overlagfaifes. The second step
is an enforcement phase to remove the overlap. Enforcement is accordplivihea kinematic
approach rather than a penalty approach. In the kinematic approaetpfacenstraint equations is
calculated based on the initial penetration of one surface by anothercoRs¢raint equations are
used to calculate contact forces to remove the inter-penetration of tleessrf(A penalty approach
can be thought of as introducing “stiff” springs between contact sagas a means of preventing
inter-penetration. The spring forces reduce the overlap to some smadrioke)

One of the options in ACME is tied surfaces. For the tied surface optionda an a surface
maintains its relative position on an opposing surface as the two surfaimemdé&or tied surfaces,
the detection phase is used initially to determine a set of initial constraint corglifldve enforce-
ment phase uses these initial constraint conditions throughout the time titatdimg problem.

1.5.6 Superelements

Superelements consist of a reduced stiffness md{iix,and associated reduced mass maix,
The superelement can include both interface (physical) degreesdbireand generalized degrees
of freedom. (The generalized degrees of freedom can be usedrio“eatra” information about
the superelement, such as information about behavior at high freqegn&gean approach to using
a super element with an explicit solver, the reduced mass matrix can be dsdentb the mass
matrix appearing on the left-hand side of Equation 1.22. At each timenst®p can compute the
internal forces(fi")g, for the superelement. The internal forces for the superelement fined®y

(fiM)g = Kr(Un)R, (1.33)
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where(un)r is the displacement vector associated with the superelement degreesdoifrat time
n. The internal forces associated with the superelement must be assentblétkifi™ vector on
the right-hand side of Equation 1.22.

1.5.7 Stable Time Step

There are two means to arrive at a stable time step.

1. The time step relates to the maximum eigenvalue of the systen®/wmax Whereu?, ., is
the largest eigenvalue of the system.

(K — M )@= 0 (1.34)

2. an element by element method. The stable step relates to the shortest tinedignél to
pass through the model.

The system level calculation is more expensive, but is the more accurigenvglues may be
computed using the Lanczos method which is included in the ARPACK pacKdge.is already
being used within Salinas, but the time step calculation computes only the hijferstadue.

From the ARPACK documentation for DSAUPD, we are looking for a solutiadh WHICH="LA’
to compute the largest eigenvalues, and witdthod=2 . The “B” matrix is 'G’, for a generalized
eigen problem. The operator requiredngM)*K

1.6 Time integration with viscoelastic materials

Here we describe the integration of viscoelastic structures using theajieedralpha method. For
the proper choice of the parameters of the generalized alpha methodsthis teelow reduce to
those corresponding to the Newmark-beta method.

1.6.1 Equations of motion

The equations of motion of elastodynamics in three dimensions are given by

w—0-0=f(xt) Q (1.35)
uixt)y=0 xelp (1.36)
o(xt)=g(xt) xely (1.37)
(1.38)

whereu = (uy, Uy, U,) is the vector of displacements,is the stress tensor, arfdx;t) is the body
force. The boundary a® is divided into Dirchlet 5 and Neumaniiiy subregions.
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The Dirichlet conditions lead to the space of admissible functions

V = [ve HY(Q),v(x) = 0,x € ['p] (1.39)

The equation of motion, along with boundary conditions, is cast into the waak in the
standard way

/un-v+/0-DSvdx:/ f(x,t)-vdx+/ g(x,t)-vds WweV (1.40)
Q Q Q Mn

where an integration by parts has been carried out on the middle terrmsaﬁ(%(D +07) denotes
the symmetric part of the gradient operator.

1.6.2 Constitutive equations

The representation of the time-dependent moduli for a viscoelastic mater@hisionly written in
the form of a Prony series

G(t) = Gint + (Go — Ginf){a(t) (1.41)
La(t) = Zcie’é (1.42)

whereGy is the glassy moduluys is the rubbery modulus, argl, 5 are coefficients used to fit the
Prony series representation to the experimentally measured relaxatian éusimilar expression
holds forK(t), with different values for the constants, and possibly a different numbierms in
the series. Assuming an isotropic viscoelastic constitutive law, we only nemahtider two rate-
dependent material properties. In this presentation, we will work in terntiseolbulkK and shear
G moduli, since experimental data is typically given in terms of these two parameters

The constitutive model for an elastic material can be written in terms of the simekbulk
moduli
0 = De = (KDk + GDg)e (1.43)

whereDg, Dg are given in equation 9.4.7 handK, G are the bulk and shear moduli. This consti-
tutive law can be generalized to a linear viscoelastic material as follows

9
Egi’ Y it + GDog(x 1) + (1.44)

0g(X,T)
ot

t
o(x,t) = (Go—Gmf)DG/O le(Xt—1)

1
(Ko—Kinf)DK/o L (Xt —1) At + KintDKe(x,)

The above expression is then used to represent the stress in the weakffthe equations of
motion, 1.40.

Given a finite dimensional subspadec V, we represent the approximate solution in the stan-
dard way

Un(X,t) = i(ﬁ(x)m(t) (1.45)
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whereVy, = spar{(@), andn(t) represents the unknown time dependence. We also déraje=
[@(x)] as the matrix havingy as thei" column. Inserting this into the equations of motion, and
rearranging, we obtain

MA () + (Go — Ginf)Kl/OtZG(t —D)A(t)dt+

(Ko— Kinf)Kl/OtZK(t —DN(tdt+Ken(t) = f(t) (1.46)

where
M = / p(X) DT (X)D(x)dx (1.47)
Q

is the mass matrix,

K1 = (Go— Ginf) / BT DaBdx+ (Ko — Kin) / B Dy Bdx (1.48)
Q Q

Ky = Ging / BT DBdx+ Kin / BT D« Bdx (1.49)
Q Q

are the stiffness matrices, and
f(t):/ f(x,t).v(x)dx+/ g(xt)-v(x)ds (1.50)
Q N

is the right hand side. The corresponding element matrices are definely &iynpreaking the
integrals into element wise contributions.

Equation 1.46 represents a system of \olterra integro-differentialtemsa Without the inertial
term, 1.46 represents a system of \Volterra integral equations of theifickst We now consider im-
plicit schemes for integrating these equations in time. The goal is to reducgstieensof equations
11.46 to a system in standard form

M (t) +Cn (t) + Kn(t) = f(t) (1.51)

whereC is aconstantdamping matrix, and (t) is a modified right hand side that will include a
portion of the viscoelastic convolution term. We demand @&k independent of time, since this
will eliminate the need for refactoring the left hand side at each time step. dinpidg (integral)
term in equation 1.46 is certainly time-dependent. However, we will show tispdssible to split
this integral term into a time-dependent and a time-independent part. The tiegeindent parts
remain on the left hand side and become the damping matrix, whereas the tigreddapparts
can be carried to the right hand side, since they are known quantitieg t@@equations 1.46 are
reduced to the system 1,51, the standard time integrators for structueahiygican be employed.

For simplicity, we consider the case of only a single Prony series term. HBu#tsdor more
terms can be obtained by adding together the results for a single term. Thealitegguation 1.46
can be split into two parts (considering only a single Prony series term)

L LN U,
/etTr](t)dr — / etTr](t)dT—i—/etTr](t)dT (1.52)
0 0 ti
t ti §-1 . t t-1 .
- e%/ eTn(t)d'[+/ es n(t)dr (1.53)
0 {;
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where the first term is a loading history term thakimownat timet;. Consequently, it can be treated
as an additional load and brought to the right hand side. The remainingctere split into two
terms, one containing coefficients gf and the other containing coefficientsmf The former is
unknown and thus becom€s), whereas the latter is known and thus also contributes to the right
hand side.

In order to evaluate the term .
/ e (t)dt (1.54)
t

we first need a representation for the veloct]'('y) in the intervalt € [tj,t]. We present two choices,
both of which are second order accurate.

1.6.3 Linear Representation of Velocity

The first is consistent with the Newmark-beta method, which presumes #anbr&celeration
within the time step. With this assumption, the velocity must vary linearly within the time step.
Thus, .

() =nity+ 10 ey (1.55)
wheren is the (unknown) acceleration at current timeandn(ii) is the previous acceleration.
Although equation 1.55 is the correct representation for velocity, it is w@aient in that it would
lead to (after inserting into equation 1.54) a contribution to the mass matrix. Thislisirable,
since it would interfere with the use of a lumped mass matrix. Thus, we re-wetevélocity
distribution in an equivalent form

) =nit)+ 11 ¢ (1.56)

We note that equations 1,55 and 1.56 are equivalent representatiores\@fldicity. By inserting
equation 1.56 into equation 1.54 we obtain

/titetsTr'](t)dr = [s+22t (e%1 - 1)] n-+ [—sesAl +Zzt (1—esm>] Ni (1.57)

The first term involves a coefficient times the unknownwhich is the unknown velocity at the
current time, and thus it must remain on the left hand side as a damping tetribetbon. The
damping matrix implied by this term is

KL T S T
C:cK(s'<+E(ea< —1))B DKB+CG(SG+E(eSG —1))B'DgB (1.58)
The second term is known, and thus it can be added to the load vector.

1.6.4 Midpoint Representation of Velocity

A second implicit scheme can be derived simply by using the midpoint rule onelbeity in the
viscoelastic term. The only difference from the linear approach destabeve is in equation 1.57.
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nt) =——5—- (1.59)

This leads to
tt;T. S A . S A\ .
/ties n(t)dui(1—es)n+§(1—es)n. (1.60)

In the same way as for the linear velocity approach, we use the term invalviegconstruct a
damping matrix, and the remaining known terms are carried to the right hand side

It should be noted that the midpoint scheme is inconsistent in that a diffdigretization
scheme is used for the viscoelastic term than was used for the overall timeatigag The lin-
ear representation of velocity is a consistent scheme. However, botbaabes are second order
accurate.

1.7 Linear Eigen Analysis

Linear Eigen analysis is a solution of the equation,
(K—=AM)p=0 (1.61)

The equation is considerduhear in the sense that appears only to the first power. Solution of
the equations involved is definitely not linear. Practically, there are manyrlswaes typically
associated with a given eigen pair.

A number of approaches can be used to solve this system. We refer yaweteeallent com-
parison report for a few of the iterative methods available (see 6). Dinethods such as tH@R
algorithm or Jacobi transformations are not scalable to very large syskemsy event, they do not
parallelize well. In Salinas, we rely on the shifted and inverted Lanczositdgoas implemented
in ARPACKFurther, since the linear solvers that we have at our disposal anesehsonvergent only
for positive definite systems, we require a negative shift. Documentatidmsmethod is available
in the ARPACK package (see 7).

1.8 Random Vibration

Details of random vibration analysis are included in a number of dﬁpé‘ﬂsese few paragraphs
document what was implemented.

1.8.1 algorithm

The first step in the calculation is computation of a modal spatial contribufigj which is per-
formed inComputeGammaQQThis is accomplished as follows.

1see for example, reference 8.
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Let the modal frequency response be defined as,

1

The modal force contribution from loaalis,

Fa(f) = Z(ﬂkflfsa(f)

= Zysa(f)

where f2 is thek component of the force vector associated with leadnds,(f) contains all of
the frequency content of the force, but none of the spatial depered&¥e have defined, for each
load that represents the sum of all the spatial contributions for moldeepresents the frequency
independent component of the force for lcad

:fo(ﬂk

A transfer function to an output degree of freeddmfrom the input loada, may be written as a
modal sum.

Hia(f) = lela(f)q (f) o

whereqy is the eigenvector of mode

1.8.2 Power Spectral Density

The displacement power spectral output (at a single location) is & Batrix.

Gmn(f) == Z Hma Hna’

a,a

= 3 3 RGNy

1,] a@

= zz% (ﬂm(PJnZISaa( )

I,] a,@

HereSava’( f) is the complex cross-correlation matrix between loadada’, and the superscript "'
denotes complex conjugate. The subscnpt@ndn are applicable to the 3 degrees of freedom at a
single location.

By summing over the loads we may reduce the power spectral expressiasuto an modal
contributions.

Gmn(f) = > @m®inGij (f) (1.62)
)
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where

Gij(f) = Zz zl s (1 (1.63)

a,a

Note that with the exception of th&, (which may be computed only once and are a fairly small
matrix), all the terms in equation 1.63 are completely known on each subdomain.

1.8.3 RMS Output

The RMS output for degree of freedamis given by,

ers = Gmm f)df
= \//Z(ﬂm(ijg” f)df
= [ Gm®jmlj
]

whererij :fgij(f)df

The parallel result can be arrived at by computifigon each subdomain, and then summing
the contributions of each subdomain. Note tBatcontains the spatial contribution of the input
force. At boundaries that interface force must be properly normaljusidas an applied force is
normalized for statics or transient dynamics by dividing by the cardinality@htide. Onc& has
been summed;;; may be computed redundantly on each subdomain. The only communication
required is the sum o0& (a matrix dimensioned at the number of loads by the number of modes).

The acceleration power spectral density is [Ggin(w)w*. Subsection 2.23.5 provides details
about transforming power spectra to an output coordinate system.

1.8.4 RMS Stress

A description of the algorithm for computation of the von Mises RMS stress Isided in the
reference at the beginning of this chapter. Two methods are availalilbptiuuse the integrated
modal contributiorT’j; as the basis for their computation. The more complete method relies on a
singular value decomposition. Portions of that method are touched on below

1.8.5 matrix properties for RMS stress

Since§(f) is Hermitian, it follows thaf q is also necessarily Hermitian. It will not in general be
real. Therefore, thevd() must be computed using complex arithmetic. We useghsvd routine
from arpack . The results from thevd of an Hermitian matrix are real eigenvalues (storeX)n
and complex vectors, stored @

27



At the element level anothevd must be performed. In this case we are computing the singular
values of the matrix.

C = XQ'BQX

where,
B=WwTAWY

Obviously, B is symmetric. It can be shown th@'BQ is Hermitian. If we examine a single
element ofC we can see that it contains the sum over all the terms in an Hermitian matrix. That
sum is necessarily real, since it can be computed by adding the lower halit'sitfanspose and
then summing the diagonal. Let,

Ajj = ZQ;quannj = zaij
mn mn

But,
ATi = z QM j * BmnQpi = z ananQ*mi = Z aiﬁ
mn mn mn

We therefore only need use the read routines to compute the results at each output location.

1.8.6 model truncation

Thesvd calculations provide the information needed for model truncation. In généthe size
of the model grows, the number of modes required for an analysis alsesgrohe relationship
is very model dependent. However, the computational time for calculatingvthearies as the
cube of the dimension of the matrix. Since the( I') is only computed once, it is not terribly
important. However, the computation of each decompositioB otcurs at each output location
and can significantly affect performance. In the model problem wheralifmension ofC was
allowed to remain the same as the number of modes, increasing the number &f froode20 to
100 changed the time for the analysis by factor of more than 100 (close t8 tme3night expect).
Clearly, this is unacceptable especially as the desired models may have nmaingdsiof modes.

Thesvd( I') provides important information about the number of independent presesite
thatC includes thesvd values from this calculation. We truncate by computing allrimedes x
nmodes terms inB, but only retainingCdim columns ofQ, whereCdim is chosen so the values of
X are not too small. Thus{[(Cdim)]/X[0] > 1074, This restricts the dimension & to a fairly
small number, while retaining all components that contribute significantly to itevala a result,
the entire calculation appears to scale approximately linearly with the numberdgsno

1.9 Modal Frequency Response Methods

The Salinas implementation of the modal acceleration method is described in tios s€eparate
cases are considered when the structure does and does not haw®dgichodes.
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1.9.1 No Rigid Body Modes

We first consider the frequency domain version of the equations of motion.
(—M+ jaC+K)i= f (1.64)
Consider the modal approximation

N
a~ Y @q (1.65)
2,

whereN is the number of retained mode s the i'th mode shape, arg is the i'th modal dof. For
modal damping, one obtains the uncoupled equations

(—wPmy + jooci + kg = @ f (1.66)

fori=1,...,Nwhere
m = @ Ma (1.67)
G = @Cg (1.68)
k = @K (1.69)
(1.70)

are the modal mass, modal damping, and modal stiffness of the i'th mode. elyiration 1.66
for g leads to

g = (@ f)/(—e’m + joxi +k) (1.71)
Replacing(—w’M + jwC)( in equation 1.64 with the modal approximation
N
(—Q?Mﬂuﬁ)_;cnqi (1.72)
is
leads to N
Ka= f+(w2M—qu)_Zl(nqi (1.73)
Recall that the mode shapes satisfy the eigenproblen;_
K@ = w’Mg (1.74)
wherew is the circular frequency of the i'th mode. Providexs# 0, one obtains
KM@ = @/of (1.75)
In addition, see Eq. (18.14) of Craig, the damping mafrisan be expressed as
c=i(2ﬁf"‘) (M@) (Ma)T (1.76)

where(; is the damping ratio of the i'th mode. Substituting equations|1.75 and 1.76 into equation
1.73 and solving fou feads to

N
0=K*f+ Z(wz/uf — 2 [0/ ) @G (1.77)

The acceleration frequency response;ahn be obtained by multiplying equation 1..77-byo?.

29



1.9.2 Rigid Body Modes

The procedure outlined here describes how the modal acceleration noathdiet used in the case
when the structure has rigid body modes. The main difference betweermppineaah presented
here and Craig's meth8dpp. 368-371) is in the way that the flexible response is computed using
the singular stiffness matrix. Craig removes the rigid body modes from thaegt#fmatrix using
constraints. In our approach, we first orthogonalize the right harevgiidh respect to the rigid body
modes, and then use an iterative solver such as FETI to solve the singiamgirectly. Although

the two methods are equivalent the latter is much more convenient from the immibgroe point of
view. Note, however, that the implementation is likely to fail on a single processoe the direct
solvers in Salinas are unable to manage a singular stiffness matrix.

The equations of interest are the frequency domain equations of motion
—w?Mu+ joCu+Ku= f (1.78)

Since the stiffness matrix may be singular, we first split the solution into a rigily lpart and a
flexible part.

u(w) = URr(w)+Ug(w) (1.79)
= OrOr(w) + Pege (W) (1.80)

where the subscript R refers to rigid body mode contributions, and Esrédecontributions from
flexible modes. We defind as the total number of degrees of freeddwn,as the number of rigid
body modes andNe the number of flexible modes, whele= Ngr+ Ng. Then, ®r is an NxNg
matrix of rigid body eigenvectorspe is anNxN: matrix of flexible eigenvectorsyr is a vector of
dimensionNg, andgg is a vector of dimensiohg. We assume mass normalized eigenvectors.

We now substitute equation 1180 into equation 1.78, and premultiply both sideg bypd L.
This yields two sets of equations, after using orthogonality and the facKthat= 0.

— (JL)ZC]R + JoCRrOR = CD-FI;f (1.81)
— W0 + jWCeGE + Kege = PE f (1.82)

whereCg,Ce are diagonal matrices containing the modal damping contributionsKansla diag-
onal matrix containing the eigenvalues. In particular, the ith diagonal eht¢ & 2w (g, and the
ith diagonal entry ofCr is 2w {r. For most application<r is null. Solving these equations we
obtain the component-wise values of the coefficients

= q)a f (1.83)
Gr = —wP+ j(.utCRi '
oL 1
' (1.84)
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Equation 1.82 can be solved fgg, and substituting this into equation 1.80, we obtain

U= ®Prar + PeK 1O f + WP PeKlge — jwPeKe'Cege (1.85)

The first term in equation 1.85 is known. The third and fourth terms of equati® can be com-
puted by modal truncation, and in fact these are the same as the secahitéutelms of equation
1.77. The second term in equation 1.85 is the static correction, and is Wdyreamputable in the
present form since all of the flexible modes would have to be known to ctanipu

In order to compute the second term in equation [1.85, we note that the matsixPgKg 1L
is the inverse of the elastic stiffness matrix, that is, the stiffness matrix witheutighd body
components. Craig gives a procedure of constraining the rigid body srindlee stiffness matrix in
order to compute the produat f. This procedure would require re-sizing the global stiffness matrix
midway through the modalfrf solution procedure, and this is tedious from tHe development
standpoint.

A more convenient approach is to use FETI to solve the system fg, wherefg is obtained
by orthogonalizing the right hand sidewith respect to the rigid body modes, via Gram Schmidt.
We note that FETI can solve problems of the fokm = f even ifK is singular, provided that the
right hand sidef is orthogonal to the rigid body modes.

The procedure is to first apply Gram Schmidt orthogonalization to obfainThen, we use
FETI to solve the systerug = fg, whereK is singular. Finally, to be sureg is orthogonal
to the rigid body modes, we apply Gram Schmidt one more tima=toThough in theoryg is
already orthogonal to the rigid body modes after the FETI solve, numedaoat-off may result in
a small loss of orthogonality (especially if the solver tolerance is loosetrarsdve apply this final
orthogonalization tae to be on the safe side. The resulting solution we again denote .byhen,

Ug = PeK oL f (1.86)

and thus all of the terms in equation 1.85 are known. Thus the modal fregueswonse can be
computed using equation 1.85.

We note that the orthogonalizations referred to above involve only the at@midbt products.
That is, in order to maké orthogonal to one rigid body modg, the Gram Schmidt factor is

.
o= ‘“Tif (1.87)
VR
and then
fe=f—a@ (1.88)

The dot products appearing in these expressions do not involve themssg. They are the
standard dot products.
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Comparison of frf methods with rigid body modes
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: — directfrf
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Figure 1. A comparison of the modal displacement, modal acceler-
ation, and direct frequency response approaches. The racdelera-
tion method gives a better approximation to the direct apgihdhan the
modal displacement method.
1.9.3 Example

Finally, we present an example of the performance of this method as cainfeatbe standard
modal displacement method. The example is a beam composed of 320 hex8tslel® beam
is free-free, so that all rigid body modes are present. The frequesponse is computed up to

9000 Hz, and 15 modes are used in the modal expansions. The 15th ndoal&éguency of 11362

Hz. In Figure 1, the two methods are compared with the direct frequesppnse approach. It is

seen that the modal acceleration method gives a significantly improvedrparioe over the modal
displacement method.
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1. Compute the full eigen problerfi{ — AM)® =0

2. Compute the applied load (in modal coordinates) at each tiine.
Yk PR

3. Compute the modal system response from equation 1.92.

4. Expand from modal téull physical space.

Nmodes

Xr|1(+1: Z O 1 Pri
|

5. Collapse the physical space to the output degrees of freedom.

X = subsetX)

The parallel data (matrices and
vectors® andX) are partitioned
by processor.

Num DOFS

proc n

Nmodes

Figure 2. Standard Modal Transient Algorithm. Note that while the
output is required on only a small part of the model, a catootaof
data on all degrees of freedom is performed first, and resuéishen
collapsed back to the reduced model.

1.10 Fast Modal Solutions

Because modal based solutions suchreadaltransient do not require a linear solve, they can
greatly accelerate the solution of linear problems. However, in the staagardach, these solu-
tions may not show the performance that could be achieved. This is leetteustandard approach
manipulates a lot of data when the model size is large, see Figure 2. Weddeessa method for

much higher performance provided that output is required on a very limeal st and that the

force is simple.
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1.10.1 Modal Solution Summary

Using the trapezoidal rule, Newmark-Beta integt%texquatiorﬁG may be condensed to,

4 2 4 ¢ A 2 4 4
{AtZM + ECJF K] thi1 =F5+C [vn + Atd”] +M [A’[Zdn + AV +an (1.89)
Also,
2
Vat1 = —Vnt E(dm —0n) (1.90)
4 4
ant1 = —an+ E(dn+l —dh) — EVn (2.92)

With the usual modal transformatiody = 5; ®xig, Ai = @ K®;, andd™M® = |, we may write the
equivalent modal equations.

81 = O+ fryg + f' (1.92)
where

L i+£-+}\-

AT At
1 = Zq’ki':kext

i y 4 . 4 . 2

= Ont EQn‘FEQn +Vi %‘FEQn

and,

Vi is the modal damping

These equations are now uncoupled, i.e. the solution for each modadliraier is independent of
any other.

1.10.2 Parallel Fast Modal

In many cases the analyst is interested only in the data in a very reduceaisietas data in the

history file). In these cases, large amounts of data are processedpaelguce the data at each
time step to a the reduced system. The parallel computer processing is bpérgles to process

large vectors that are not really needed, and for which no usefutibigprovided. If the reduced

set may easily fit on a single processor, and if the modal force may belaiddgdetermined, then

a streamlined algorithm may be used.

The fast algorithm is illustrated in Figure 3 for transient dynamics, and inrEigudor modal
frequency response. The same set of equations are now solvesih@eithe entire physical model
exists on all processors, we can compute the sum of terms in parallel.

2 This implies thatim = at = 0, By = 1/4, andy, = 1/2.
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1. Begin with eigenvalues\, andreducedeigen vectorsg. We also need the
generalized components of modal forggw) = 3 PyiFS(w).

2. Compute the time response of the modal system response in parallel| Each
processor gets only a subset of modes, and solves equation 1.92ringepe
dently.

3. Compute the response on the physical space using the sum of modesmas a
across processors. NOTE: this is restricted to the reduced physar.sp

Nproc Nmodesgroc

K=y .Z G

p

Figure 3. Fast Modal Transient Algorithm

1. Begin with eigenvalues\, andreducedeigen vectorsg. We also need the
generalized components of modal forggw) = 3 PwiFS(w).

2. Compute the frequency response of the modal system responsealitelpar
Each processor gets only a subset of modes, and solves the followiag|eq
tion independently.

_ fl(w)

W2 — 0F — 2 Yi oy

wherew= v/Aj andj = v/—1.

3. Compute the response on the physical space using the sum of modesmas a
across processors. NOTE: this is restricted to the reduced physa.sp

ai (w)

Nproc Nmodegyoc

K = % .Z PiCl

Alternatively, each processor may be assigned the computation of a fre-
guency range, and compute all the modal contributions to that range. A
processor sum would gather all the results for output.

Figure 4. Fast Modal Frequency Response Algorithm

35



1.10.3 Determination of Modal Force

The fast algorithm outlined in the previous section depends on determinatitie ofiodal force
vector, f'(t). But, the physical loads may be applied to degrees of freedom other thsa iththe
limited output set, so that the eigenvectrof the full system would be required.

However, in most casésthe force in the physical coordinates is computed as a sum of spatial

and temporal terms.
Nsets

FHxt) = 5 Fx3(t)

Typically each spatial functioRS is determined by a nodeset, sideset or body load input, while the
temporal termgs(t), is a multiplier defined in &UNCTIONsection. We may thus write,

fiit) = Zcbkil:e“(xk,t) (1.93)

Nsets
— Z(Dki z FS(X)5S('[>

Nsets

= 3 & (1.94)

where, _
(s= Z DR (1.95)

Thus, a necessary part of the preparation for a fast modal solutitudgscalculation of the gener-
alized components of forcé.

1.11 Complex Eigen Analysis - Modal Analysis of Damped Structres
1.11.1 Modal Analysis of Damped Structures

Salinas will solve the eigenvalue problems for structures with some typesngbidg. The al-
gorithms are designed for internally damped structures such as fromelastic materials. The
package is calle@eigen , and the parameters to be aware ofege_tol , nmodes, andviscofreq

The first two parametersig _tol andnmodes will be familiar to Salinas users that solve eigenvalue
problem for undamped structuresig _tol is the convergence tolerance for the eigenvalues, and
nmodes is the number of requested eigenvalugscofreq  approximates the first flexible mode of
the structure. The default value feig _tol is 1.e—8.

The complex eigen value problem which we solve is also known as the dicagigenvalue
equation.
[K+AD+A*M] =0 (1.96)

3 If user defined functions of space are included, this situation is violatetthe fast algorithm cannot be used.
4 What is described here for time applies equally well for functions in theueecy domain. They are products of
spatial and frequency components.
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where,

= the stiffness matrix
the damping matrix
the mass matrix

> < U X

= the complex frequency.

All of the matrices are independent of frequency. Note that we are gpfoim\ = iw+y, notw?.

1.11.2 Input File Specification

The Salinas input file specification is similar to the specification for transientafions. To change
a working Salinas input file for a transient problem into a Salinas input fil€é@en , change the
Solution and Parameters blocks. The example below illustrates how the SolaotidRaaameter
blocks are modified for modal analyses.

SOLUTION

case ceig

ceigen nmodes 20
viscofreq=1.e+4
END
PARAMETERS
eig_tol 1.E-5
wtmass=0.00259
END

The parameter wtmass is an example of a parameter that was was neededrforglent simulation,
and is still needed for modal analyses.

1.11.3 Output File Format

The output is very similar to the output for the undamped eigenvalue probleme. rdsults file
contains any requested data. Supplemental information is written to the shetdn useful for
algorithm development.

The Results fildoo.rslt  tabulates the values/(2m) for (A;) that solve equation (1.97). Pure
real eigenvalues are not written to the Resultsiléf A; has been found with in the range,
1<i<2427<i <34 then the missing eigenvaluék ),s<i<2¢ are real eigenvalues that are omit-
ted. The number of eigenvalues written in the Results file is less than or equaddes.

As is the case with the undamped eigenvalue problem, Salinas will print a table soréen.
The table is titled “Ritz values (Real, Imag) and direct residuals”, and hasci@umns of real

SReal modes correspond to an overdamped mode with no oscillatoryoremp These are usually generated from
numerical artifacts discussed below, and are seldom of practical value
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numbers. The number of eigenvalues that are actually computed may bedargmaller than
the number requested. Some real eigenvalues may appear among thgedmigenvalues. The
table will contain any converged real eigenvalues (zero in column two)un@ts three and four
are two different residual norms for each eigenvalue. Eigenvalueslarje residual norms are
not converged. The residual norm in the third column is less sensitive londa system relative
residual norm bound than the residual norm in the fourth column is Aftel @aplicit restart, all
the approximate eigenvalues are printed to the screen.

1.11.4 Some Back Ground

The eigenvalue problem for an undamped structure
KOo=M>dQ? od'Md=I,

Q = @jw;, has been discussed elsewhere in this document. Salinas returns thenfriequw/ (2m).
Ceigen solves a similar problenCeigen solves the quadratic eigenvalue problem

[MA24+DA+KJu=0, u'u=1 (1.97)
In the undamped casB,= 0, A = iw.

A second order linear differential equation is the same as a first ord¢ersy Similarly a
guadratic eigenvalue problem is the same as a matrix eigenvalue problemethwisize.

Linear problems such as matrix eigenvalue problems are solvable in that #sbfmto find all
of the solutions. For matrix eigenvalue problems the key idea is deflation. iQiselbspace is used
to compute all of the eigenvalues. Small eigenvalues tend to be computed maddyeadeflated
from the problem. The reward for deflation is that the gravest remainirene&jues are much more
likely to be computed next. For general nonlinear eigenvalue problems athtbehand, no robust
algorithms are known to the author.

1.11.5 Viscoelasticity

The eigenvalue problem for viscoelastic probléfis the most simple case (one term Prony series)
has the form
[MS? +D(s)s+K]u=0. (1.98)

K = BEw, D(s)s=B(Eg— Ex)f(s),
f(s)=s/(s+a)=1—(s/a+1) L

Prony series damping in the time domicreates a frequency domain problem with real eigenval-
ues that are not physicHl.Some care is needed to avoid the real eigenvalues in computations.

Here is a sketch of justification that the Prony series problem has realvaiges. The eigen-
value problem has a closed form solution in terms of the eigenvalues of tlz@nped problem. The
one term Prony series damping increases the degree of the charactegpistion from two to three,
and the third root must be real.
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1.11.6 Viscofreq

The eigenvalue problem in equation (1.98) is not a quadratic eigenvadiéepr(M,D,K). The
obvious approximation is to evaludbgs) at some fixedy, near to the wanted eigenvalues. The user
parameteviscofreq = wis a real number such thgi =iw. In a later releass, =r +iw for some
internally computed value

Using a value ofiiscofreq  that is much too small may degrade performanceviém®freq
increases, the eigenvalues do change, and Salinas converges riubtg. qlihe cluster of real
eigenvalues moves left, away from zero, and it becomes possible to compteeof the complex
eigenvalues. Over-estimateswvisfcofreq  are safer than underestimates.

Suppose thag, = r +iw. A different quadratic eigenvalue problem is usé€dBoth D andK
are modified. The approximation is more accurate for problems in whishmuch more accurate
thanw. Also (M,D,K) are all real matrices. The eigenvalues and eigenvectors come in complex
conjugate pairs.

Important to be aware that no constant damping matrix inherits the propeityspthat
slmo D(s) =0.

Physically, this means that the eigenvalues in equation|(1.97) that aredfavifcofreq  are over-
damped. If for a given mode shapsg,is closer to the real eigenvalue of equation (1.98) than either
complex conjugate pair, theCeigen may return the real eigenvalue. For example equation (1.98)
has many real eigenvalues clustered left-at

1.11.7 Trust Regions and Real Modes

The eigenvalue problem is solved using ARPACK. The convergenceiaiiitethe ARPACK pack-
age use atrust region. CEigen will compute the right-most eigenvalues eifflievalue problem in
equation (gevp). If thé&-th mode does not satisfy the convergence tolerancek atranodes, then
ARPACK is not converged, no matter how many other eigenvalues are Q@

The authors have gone to great lengths to filter out real eigenvaluesetiNdess in problems
with a cluster of real eigenvalues among the right-most eigenvalues, itysiifécult to compute
eigenvalues high into the frequency range. If such a problem arisgeasgeeig _tol (multiply by
ten), increasemodes (add ten), and most importantly increadseofreq  (double).

1.11.8 ViscoFreq - Approximating the Response of Viscoelastics

The viscoelastic mass matrix can be considered to be independent oériigquHowever, the
damping and stiffness matrices can be functions of frequency, depeouitne formulation. There
are two possible formulations. The first one results in a complex, frequégpgendent damping
matrix, and a real-valued, frequency independent stiffness matrixsdd¢wnd results in a frequency-
dependent, real-valued damping matrix and a frequency-dependanvalged stiffness matrix. We
chose the second formulation since the complex-valued damping matrix is satuffibult to deal
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with in quadratic eigensolvers. The two formulations are the same up to theabitie linearization
error.

Consider the simplest possible viscoelastic material, characterized by atsimglef the Prony
series. The equation of motion for a 1D system with this material is given bdloe/full 3D case
is similar, except that it has separate terms for the bulk and shear contponen

[Keo +D(s) — M| u= f(s) (1.99)
Here,sis the Laplace transform frequendy(s) is the frequency dependent force, and the damping

matrix is now a function of frequency.

1

D(s) = (o —Ea) 7 7B

(1.100)

with E., the Young’s modulus for high frequenciés; the modulus for low (or glassy) frequencies,
T is the Prony series relaxation time, alkd = E,B is the stiffness at high frequencies.

We now return to equatian 1.99, and consider different ways of linearittia relation, since
for the quadratic eigenvalue problem, we may only solve equations of timeificequation 1.96, i.e.
guadratic in\ ors.

User Specified frequency of linearization We define viscofreqp ands, = r +iw, which is the
complex number about which the linearization takes place. In the currenbdatiyy,r is zero.

First, we splitD(s,,) into its real and imaginary components by multiplying%%.

1

D(s) = (Bo—Eu)~ % (1.101)
= (Ee—Ew)WB (1.102)
_ T(E(Trjri)lz);)‘;’;) (Ec—Ea)B (1.103)

Then we also temporarily replace thén front of sD(s) with s,. This gives,
sD(s) = (iw+r)D(iw+r) (1.104)
_ T“‘*’(j&;“f;;rzrz (Ec—Ea)B (1.105)

Finally, we replacew-+r with sto go back to the quadratic eigenvalue problem. This results in a
contribution to the the stiffness matrix, and a real damping matrix.

(.02 2 22
[(Em+(EG—Ew)(r+T1)2++rQT)2T2> B+3<W> (Eg — Ex)B+$2M| ¢=0 (1.106)
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Thus we see that the damping matrix is purely real, but the stiffness matrix geidditional
(positive) real contribution.

Practically of course, the systems are far more complex. Typically there ie than one
material, and that material has a number of Prony terms. Equation 1.106 is rdpblifiehe overall
effect is the same, i.e. the stiffness matrix is increased by a viscoelastic tedrtihyeadamping term
is also modified. Effectively we have the following.

K(r+iw) = Z Keter(r + iw) (2.107)

whereKgjemis the modified stiffness matrix.

Relem(r + |(A)) - Kelem+ imanemm(r -+ |(1)>)
Likewise,

Delen(r +iw) = realD(r +iw)) (1.108)

We now solve thdinearizedeigenvalue equation fa,
[K(r +iw) +iAD(r +iw) —A°M] ¢=0 (1.109)

A Simple Error Estimate  This question is now how well the eigenvalues computed from equation
1.106 approximate the true eigenvalues of equation/ 1.99.

First, we define the distance from a given computed eigenvalum, the point of linearization,
S, aso.

0=%—S (1.110)

Note thatd is a complex-valued quantity.

Next, we define the residual as the vector resulting from insegingnd the corresponding
computed eigenvaluey, into equation 1.99.

($M +sD(s) +K) @ =res (1.111)

The residual, as defined in equation 1.111, is a computable quantity. Olyyidubke residual
is large, then the error in the computed eigenvalue and eigenvector is ldmgever, the more
interesting question from the analyst’s perspective is how largedimeyfor one to expect accurate
eigenvalues.

1.12 SAeigen

The quadratic eigenvalue problem which we address in this solution methiveistry the equation
below.

(K+AC+A?M) =0 (1.112)
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where K is the stiffness matrix,
C is a damping and coupling matrix, and
Mis a mass matrix.

More specifically, for a structural acoustic system.

([% QJH[_;} C"a]HZ['\(’)'S l\l])[fmzo (1.113)

Here the subscripts refer to structural or acoustic domaigss the density of the fluid and is a
coupling matrix. Note that for this formulatiop, represents the acoustic velocity potential, which
relates to the time derivative of the acoustic presspyes Uu,.

The matrixC will be completely asymmetric if it contains only coupling terms. In this case it
is called gyroscopic, and it can be shown that the system is Hermitian, ane&laeigenvalues.
However, if there is additional damping in the system, as fp@htamping on the acoustic domain,
thenC is of mixed symmetry, and the eigenvalues and eigenvectors are complexstiffhess
matrix is symmetric positive semi-definite, while the mass matrix is symmetric positivatdefin

While various methods are available for solving the generalized, Iinear\agmproblen@
solution of the quadratic eigenvalue problem is more challenging. The agprollowed here
is to transform the problem into a reduced space, solve the correspgodédirse matrix system
completely, and project back out to the original space. The challenggurse, is to properly
choose that space.

In general, if the eigenvectop, can be written in terms of generalized coordinatgshen this
approach may be taken. For a given transformation makrixyvhich determineg givenq, we have
the following.

® = Tq (1.114)
TH(K+AC+AM)Tq = 0 (1.115)
(k+A&+A2m)g = 0 (1.116)

Note that the only restriction on is that we may adequately wrigg= T g. In other words;T must
span the space of the eigenvectors. In particlilareed not be unitary or even orthogonal. However
for the transformation to be useful for a model reduction, there must bg fearer columns than
rows in T. Note thatT" is the transpose, complex conjugateTaf and that the left and right
eigenvectors of equation 1.113 are complex conjugates of each other.

The structural/acoustics problem may be viewed as a two subdomain pr%bﬁmre are a
variety of basis functions that have been examined for connecting sibclosains. Two common
sets are listed in Table 2.

We here investigate only the free-free method. Though this method hasdptowconverge
rather slowly for structure/structure problems, the coupling between thetstal and acoustic
domains is often rather weak, so this may be adequate. For the problemsrestingefull Craig-
Bampton type solution is almost certainly overkill, and will result in a dense matoixaime for

6The generalized linear eigenvalue probleniks— AM)p= 0.
"There is no requirement that each of these subdomains be topologicafigated in any special way.
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Table 2. Potential Basis Functions for Subdomain Reduction

Name | Basis Function |

Free-Free modes The unconstrained eigenvectors of each subdomain| are
computed and used as the column3 oiVhen the number
of columns inT equals the number of rows, this basis
complete.

Craig-Bampton | The eigenvectors of each subdomain are computed with
the interface fixed. These eigenvectors are supplemented
with constraint modes computed by fixing all the interface
degrees of freedom except one. That dof receives a |unit
static deformation. This method has been shown to ¢on-
verge near optimally for structure/structure interactions

S

standard solution methods. We may find it advantageous to augment tHeefterodes by adding
basis functions near the surface. Some thoughts that have been cedsit#ude the following.

¢ A uniform pressure mode could be added to both the acoustic and stiuegpanses.

e We could consider the static acoustic modes that are generated by thmalébois of the
structural eigen analysis. We anticipate that the structural deformationsavidl a larger
control over acoustic modes, so we may not need to be as concernedth&ompact of
the acoustic pressures on the structure, but we may want to include samesefas well.
Perhaps some methods could be used to identify a subset of modes thatbhestild in
model completeness and convergence.

e Spline or boundary expansions are possible.

1.13 Quadratic Modal Superposition

Consider the system
MU+ Cu+Ku= f(t) (1.117)

whereM, C, andK are the mass, damping, and stiffness matrices. Standard methods may be used to
solve the eigenvalue equation derived from 1/117 only in the case wieeegggnvectors d andM

also diagonaliz€ (as in proportional damping for example). Unfortunately, such cagessarally

not physical, and are rare in practice. For a general damping matrixategures are available to
directly solve the eigen equation. For an excellent survey article on gtia@igenvalue systems,

see the article by Tissedt.

However, the second order system may be transformed to a largeoyflestsystem which does
have a known solution. Wiénearizethe system as follows. Define,

W= [ u ] (1.118)

If we consider the eigenvalue problem corresponding to equation ME®puld set the right hand
side f(t) to zero. Then, there are many options for the linearization, but the orsenlor QEVP
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['\(’)' Nw:[_l\g _'\Hw (1.119)

We assume a solution of the fonm= @eM, and arrive at the eigenvalue problem,

AQ= \Bo (1.120)
where
A [ ’\c/)l }2 } (1.121)
and
B= { . _'\(":} (1.122)

Equation 1.120 yields the “right” eigenvectors. As is seen later, we alsbthegleft” eigenvectors,
which correspond to the eigenvalue problem,

p'A=2y'B (1.123)

We denote the left eigenvectorssto distinguish them from the right eigenvectqys

1.13.1 Diagonalization and Modal Superposition

Symmetric system matrices are always diagonalizable, using the matrix formbeibgigenvec-
tors. However, when nonsymmetric matrices, such as those of equatidh &y beimpossible
to diagonalize. This has significant implications for modal superposition igebs, since iA and
B cannot be diagonalized by pre and post multiplying by matrices of eigemsetten the reduced
(modal) equations of motion will be coupled. The primary advantages of nsagalposition would
be lost.

As discussed in the literatuté; 12 one case where the matricasindB are diagonalizable is if
all of the eigenvalues are distinct. If there are repeated eigenvaluaghtenatrix is still diagonal-
izable, as long as the eigenvectors corresponding to repeated eigenaadulinearly independent.
This can be summarized by the theory of geometric and algebraic multiplicitieserf\eilyes, as
follows:14

e Thealgebraic multiplicityof an eigenvalue is defined as the number of times that this eigen-
value is repeated in the list of eigenvalues of the matrix.

e The geometric multiplicityof an eigenvalue is the dimension of the space spanned by its
eigenvectors. Thus, for an eigenvalue with an algebraic multiplicity of 2, ¢oengtric mul-
tiplicity would be 2 if the corresponding eigenvectors are linearly independad 1 if they
are linearly dependent.

e An nx n matrix is diagonalizable if and only if the geometric multiplicity is equal to the
algebraic multiplicity for every eigenvalue
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In short, for the matrix to be diagonalizable, the eigenvectors corresppiuiepeated eigenvalues
must be linearly independent. If the eigenvalues are all distinct, then the nsaditixays diagonal-
izable.

It is also interesting to discuss the circumstances under which the eigenesldeigenvectors
of A andB come in complex conjugate pairs. When this is the case, significant savingsages
and computational time can be achieved. The general rule is quite simple ®!prifthe entries
in a matrix are all real-valued, then any complex eigenvalues or eigengdbttrarise must come
in complex conjugate pairs. In order to prove this, we note that for a matrix allitteal- valued
entries, the determinant must be a real number. On the other hand, thaidetgris also equal to
the product of the eigenvalues. Thus, if some of the eigenvalues ardeqrtife only way that the
product

det(A) = A1Az...An (1.124)

can be a real number is if all complex eigenvalues have a conjugate paiex&mple, ifA, and
Ani1 are complex conjugates, then we have

Anhnes = AL+ JA) + (N, — JAL) = A2+ [A)) (1.125)

The last expression after the equal sign is a real number. We can aslude that if a matrix has
any complex entries, then the eigenvalues and eigenvectors are nssarglyecomplex conjugates.

To diagonalizeA and B, we define a matrix corresponding to the right-eigenvectors that are
computed from equation 1.120.

W = [@1@2...@n] (1.126)
We can also define a matrix corresponding to the left-eigenvectors froatieq 1.123.
U = [W1z... Wan] (1.127)

Representing the solution as= Y2, z@, and the loading as,
g(t) = [ fg) } (1.128)

we havé!

—wiz(t)+Biz(t) = o) (1.129)
whereaq; = quTA(g andBi = quTB(g. When modes are mass normalizBd= 1 anda; = A;. We note
that the T symbol represents a conjugate transpose, and not just gosansThis is a complex-
valued uncoupled scalar equation for each degree of freedom ingtensywhich can be integrated
in time. We note that this is a first order system in time, rather than second andkthus different
methods are required for the numerical integration than are used fovakedd modal superposi-
tion. Superposition must be performed on the linearized system, as we d@enaral solution of
the original second order system.

Time Domain Superposition

Equation 1.129 can be integrated numerically, using first-order time integratimwever, another
approach is to use the analytical solution.

z(t) = /0 yig(rje Mt Ydr (1.130)
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Finally, given the solution for each(t), we computen = 52", z@, and extract the solution(t)

from the upper half ofv(t). We note that in the time domain, the final solutiw(t) must be real-
valued, even though both andz are, in general complex. It is easy to show that this is the case.
First, as noted earlier, we recall that the eigenveappcome in complex conjugate pairs. Equation
11.129 implies that; also comes in conjugate pairs. We note that

2n n —
W= chn = Zi[zcn +7Z@p] (1.131)
i= i=
Noting thatz @ + Z@ is a real number, we see that the total summation is also a real number.

Frequency Domain Superposition

For the frequency domain solution, we assume a time-harmonic loading guhses

g(t) = goe®* (1.132)
2(t) = ot (1.133)
(1.134)

wherewey is the frequency of the external excitation, agdis a spatial vector of loadings at that
frequency. Substituting these relations into equation 1.129, we obtain tldiatgifor complex
modal frequency response

[—ai +iopi]z = ¥ go (1.135)
This can also be written as,
z = UL (1.136)
— 0 + 1B '

We note that the denominator will go to zeraif = iwfi, as is expected, in the case of resonance.
A standard approach of stabilizing the solution near resonances is to add a small amount of modal
damping. In state space, this corresponds to a adding a real-valued téne denominator of
equation 1.136. Thus, when = iwf; this additional term would prevent a singular response. This
additional real term takes the form

e
_ _ 1.137
i Vi — ai + i ( )

wherey; is the modal damping, and is a real number.

As before, the solution of the displacement degrees of freedom is apsgten of modal
solutions.

2n

W) = 3 a6 (1.138)
2n (ﬂq'hgo
Zyl T (1.139)
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1.13.2 Theory for modal superposition with saeigen

In the case of thesa.eigensolution case, the eigenvalue problem is solved in a reduced space.
Recalling equation 1.117, and the transformatioa T(, we can transform equation 1.117 into a
reduced space as

i+ ci+ka=f (1.140)

whereni=TTMT, é=TTCT, k=TTKT, andf = TT f. We note that the superscript”is used from
here on to denote the reduced space. If we then define

3

As was done for the full system for the QEVP method, we project this into ttsofider syste@

] (1.141)

[ e TN e}

AG— B4 =g(t) (1.142)
where
R 0 I
A [ o _é} (1.143)
. [1 0
B [ ’ m] (1.144)
§= [ _of } (1.145)

Assuming a solution of the form= @e, we arrive at the eigenvalue problem
Ap= By (1.146)

where we emphasize thatis in the state-space form of the reduced problem. This eigenvalue
problem is solved with the DGGEYV algorithm from LAPACK.

Once the eigenvalue problém 1.146 is solved, methods of the previousseamide applied for
solution of the scalar modal equations of the linearized system and projéetainto the reduced
space and finally to physical space.

We transform equatidn 1.142 into the frequency domain.

Ad— 0eBf = §(w) (1.147)

8 also known as a state space solution
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wherewey is the frequency of the external excitation. We assume that the solutiorecapiesented
asqg= z@lz}q}. Substituting this into equation 1.147, and premultiplying by the left eigenvectors
i, we obtain A

iz — iBiwea = §i'g (1.148)
whered; = §i'A@ andpBi = §;'B@. This scalar equation, 1.148 can be solvedzoiThe solution
in reduced space can be obtained from = ziz:”lz}(ﬁ. Givend, U can be extracted from the upper
half of §, as per equatian 1.141. Finally, ongés known, the original solutiom can be computed
from the relatioru = T0.

1.13.3 Discussion of Eigenvectors and Superposition
There are several important points to consider for the eigenvectorssgirttblem.

e The left and the right eigenvectors of the linearized system diagonalizehduacteristic
matricesA andB. However, the eigenvectors amt diagonalize the matrices of the original
second order equatian, 1.117. This means that the modal equationsiplectim the second

order system, and most simplifications for superposition are available orihedmearized,
first order system.

e The left eigenvectors can be computed from the solution of the transgogedion. Thus,
for symmetric systems, left and right eigenvectors are identical.

e Eigenvectors of the linearized, nonsymmetric systems are often not northakzexpected.
In many cases the eigenvectors are not even completely orthogonakveeerthey may be
linearly independent.

1.13.4 Notes on Implementation

We now discuss some details regarding the implementation of the superpositioithahg In par-

ticular, we consider the following questions with regard to the specific linetoizs used in the
Anasazi and s&igen solvers

1. Can the state-space left and/or right eigenvectors be decomposad/etttor in one half and
then that same vector multiplied by the eigenvalue in the other half?

2. Does the nonzero part of the state-space force vector occupyphu tmottom half of the
vector, and does it have a minus sign in front of it?

3. Under what circumstances are there relations between the left aheiggnvectors, such as
Peft = Pright O Pett = (Pight) ' ?

The answers to any of these questions depends on the specific lineariziinderest. Here we
examine only 2 linearizations, which have been considered earlier, aicth whl be repeated here

for convenience.
M O 0O M
[ 0 K}W:)\[M C}W (1.149)
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[_OK _IC]W—A[CI) MO]W (1.150)

For the first question, we consider the right and left eigenvectorsaigha For the right eigen-
vectors, a simple substitution reveals that the right eigenvector for eqiiafid® can be decom-
posed as

W= [ Au“ } (1.151)

whereas the second linearization (equation 1.150) has right eigervelsairdecompose in the
opposite way.

u
W= [ Au} (1.152)

For the left eigenvectors, we write the equations corresponding to theidgeftvectors as

M O 0 M
[ w | [ 0 K } = A [w{ wj | [ M _c } (1.153)
ror| O | Tor| 10

(W wy | [ k¢ |=A (W wy | VAL (1.154)

Multiplying out the terms in equation 1.153, we find that
WM = A M (1.155)

which, for nonsingular M, yields

We = AWy (1.156)

Thus, for the linearization in equation 1.149, the left eigenvectors camrtentbosed in a similar
manner as the right eigenvectors when the mass matrix is nonsingular.

Multiplying out the terms in equation 1.154, we find that
WK = Aw (1.157)

Or, for symmetric K,
Kwp = Awg (1.158)

Thus, for the linearization described by equation 1.150, the left eigéargazannot be decomposed
as the right eigenvectors were.
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When forces are present in the system, we can rewrite equations 1.4491&0 as

[I\(;I HW_[_@ _%]W—[?} (1.159)

o e[ 2 ¢]

Thus, for both linearizations 1.149 and 1.150 the state-space force ast@ zero top half, and
for linearization 1.149 the non-zero bottom half is multiplied by a negative Sigis answers the
second question above.

In order to answer the third question, we first consider the results giveable 1.1 of! In this

table, relationships between the left and right eigenvectors are givearfious symmetry relations
of M, C, andK. In particular, propert$7 from this table states thathl, K are HermitianC = —C"
is skew-Hermitian, an is positive definite, then ik is a right eigenvector ok, thenx is also a
left eigenvector of-AT. Since we only consider real-valued matrices, we expect the eigenwaflues
the systems of interest to be purely imaginary, and thdé = A. Thus, propertyP7 simply states
that the left and right eigenvectors dfare the same. The results in this table define the left and
right eigenvectors as follows

MMu+ACu+Ku=0 (1.161)

WAM +wIAC+w'K =0 (1.162)

for right and left eigenvectors andw, respectively. By taking the conjugate transpose of equation
1.161, and noting tha = —C" and—A", we obtain

uA?M +uAC+u'K =0 (1.163)
from which the resulP7 from Table 1.1 id! is obtained.

We note that the results from Table 11%re with respect to the quadratic eigenvalue problem,
rather than the linearized versions. Since equations 1.161 and 1.162ediridarized in a number
of ways, we would expect the conclusions to change when we go to theizie@groblem. For
example, we again consider the case whikiK are HermitianC = —C'is skew-Hermitian, anil
is positive definite. With these conditions 8 K, andC, we consider the linearizations given by
equations 1.149 and 1.150, which can be written concisely as

Au= ABu (1.164)

In the case of equatian 1.149, we have tAas symmetric, whereaB is skew-symmetric. In
the case of equatian 1.150, we have tAds nonsymmetric, an@ is symmetric. If we take the
conjugate transpose of equation 1.164, we have the correspondiatioedfor the left eigenvectors

u'AT = u"ATB! (1.165)
For linearization 1.149, we haw = A, BT = —B, andAT = —\. This gives
u'A=u"AB (1.166)
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which implies that the left and right eigenvectors of linearization 1.149 caéncid

In the case of equation 1.150, we have tha nonsymmetric an@ is symmetric. Thus, when
we take the conjugate of equation 1.164, we have

u'AT = u"ATB? (1.167)
which, from symmetry conditions, reduces to
u'AT = —au'B (1.168)

Thus, sincéA is nonsymmetric, no relation can be deduced between the left and rightveders.

Similar conclusions can be drawn about a slightly different version ofton(1.149. If we
multiply the lower equation by-1, we obtain

['\g _OK]W:A['& '\(/:I]W (1.169)

or simply Aw = ABw. SinceC = —CT, the matrixB is nonsymmetric. Then, taking conjugate
transposes of both sides of equation 1.169, we see that we cannatamalusions about relations
between the left and right eigenvectors. This is the same problem seewaticerl.168.

1.13.5 Complex Eigenvector Orthogonalization

When the eigenvalues of a system are redundant, the eigenvectorstdudiyndefined, but can
be arbitrary linear combinations. Some solvers, such as DGGEV dorragiee orthogonality of
these vectors. If such orthogonalization is required, the procedurigiimeF5 may be followed to
orthogonalize two eigenvectors with a common eigen value.

1.14 Component Mode Synthesis

Component mode synthesis in Salinas follows the Craig-Bampton method. In thisdtee model
is reduced using fixed interface modes and constraint modes. The methdtined in some detalil
in Craig’s book, (Chapter 19 of 9). It is summarized below. Note that in Sslme danot permit
any flexibility in the interface boundary options. Only fixed interface modesapported.

CMS is typically applied to eigenvalue analysis, but it may be used in other solmthods
as well. Here we describe only the eigen analysis application. Within Salias @uibset of the
standard CMS method is available. Salinas may redmnoentire modeto a set of interface degrees
of freedom with the corresponding system matrices and transfer matBaésas may also read in
a reduced system for solution within its framework.

CMS by these methods is always a linear model, with support for linear elagiitiyy The
reduction is based on an eigen reduction and linear superposition.
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Given two modes with a common eigenvalie,and with left and right
eigenvectorsy; andg;, we orthogonalize with respect to a matBx

WiBe = Pu (1.170)
WBp = B (1.171)
WBe = Ba (1.172)

We modify {, and¢, to ensure thai> = B21 = 0. Let() be the corrected
eigenvector.

Q2 = W2 — Yy
We require thafi3Bg; = 0. Then,
0 = QiBp (1.173)
= (Wo—eP1)'Bay (1.174)
= Ba1—€Pn (1.175)
Thus,
B2 =W — @wl (1.176)
B11
For the right eigenvector,
A Bi2
=@ —-—0O (2.277)

11

Figure 5. Complex EigenVector orthogonalization
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1.14.1 Reduction of superelement matrices

The entire model of a structure may be reduced to the interface degresddm and generalized
degrees of freedom associated with internal modes of vibration. Coribiel@eneral eigenvalue
problem, with the system matrices partitioned into interface degrees of fre€@j@nd the comple-

ment,V.

va ch IVlvv MVC Uy
—A =0 1.178
<[ Kev  Kee ] { Mcv  Mece ]) [ Uc } ( )

Within Salinas we consider only the cases wh&fgis nonsingular. For the Craig-Bampton method
this implies that clamping the interface degrees of freedom removes all zergyemodes from the
structure.

The Craig-Bampton method reduces the physical degrees of freetidongeneralized coordi-
nates,p, using a set of preselected component modes,

u=Wp (1.179)

The component modes are selected as follows. W& let [® Y], where® is a set of eigen
modes of the fixed interface, i.e.,

(KVV_ )\Mvv) q) == O
We retain only a subset of the modes in this system. In addition, we definertegaiat modesy,
as the static condensation of the problem. Each colump isfthe solution of the static problem

where one interface degree of freedom has unit displacement, anthetlinterface degrees of
freedom are fixed. As shown in Craig,

W= —K  Kye (1.180)

Note that since we require thkt, be positive definite, all these solutions are well defined. The
matrix need be factored only once for all the modes.

Reduced System

As shown inCraig, the reduced system matrices can be written as follows.

Mkk Mk
= 1.181
H [ Mck  Mec ] ( )
and,
K — [K"" ""C} (1.182)
Kek  Kee
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where,

Mk =l

Me = M= (Mal+Myc) (1.183)
= "M+ (Mevo)'

Hee = qJT(MWqJ + IV'vc) + M) + Mcc
= qJT Mw + (Mcvw)T +Mcw) + Mcc

and,

Kik = ik

Kkc = Kk=0 (1.184)

Kee = Kee— Kch;levc
= Keet+ Kol

Note that the coupling between the modal and interface portion of the systa&ir atzurs only in
the mass matrix.

Parallelization Issues

The discussion above applies simply for direct solvers for which a systainx is generated.
Parallelization issues are straightforward, and cover 3 main areas 1utatiop of fixed interface
modes, 2) computation of constraint modes, and 3) matrix vector products.

1. Fixed Interface Modes. Since the process of computation of the eigensystem is independent

of the particular solver, there are no parallelization issues with respea widbnvalue prob-
lem. It is easily shown that parallel solvers result in the same eigen paieviaksolvers.
There is no reason to expect that any finite precision issues would beimpogtant here
than in other modal based solutions.

2. Constraint Modes. The constraint modes are different, in that we do not currently have a

capability to compute enforced displacement in parallel. Recall that the aoristrode is the
displacement on space “V” that is computed when a unit displacement is pplkesingle
degree of freedom on the interface. The serial equations are as $ollow

Kw Kve Uy 0
|: Kev ch:| [ Uc :| - |: R:| (1.185)

Equation 1.180 uses the first of these only to solveufor Y. For a domain decomposition
problem, the system matrices are written differently. We examine a two subdqnuddtem

for clarity.
Kiw Kinve O 0 CIV Uy 0
Kiev Kiee O 0 CIC Uic 0
0 0 Ko Kaec CJ, Uy | =1 0 (1.186)
0 0 Koyxv Ko C-zrc Uz 0
Cv Cic Co Cx 0 M R
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We extract only the first and third rows to arrive at,

U1y
KlVV O CIV o f]_
0" Ko CF uj, = 5 (1.187)

Heref; = KjycUic. This system is the standard system of equations that is solved by the domain
decomposition solver. The RHS is just the sum of the individual subdomairster

. Matrix Vector Products. There are two primary issues involved in the matrix vector products
computed in parallel. First, there is the issue of duplication of some nodatigesion the
subdomain interfaces. Second, there is the issue of multipoint constraifitria

The products required in computing the reduced matrices of equations thit8h 1.184
are all of the forma' Bc, wherea andc are vectors an® is a matrix. These are equivalent
to element by element summations like those used in computing the total energy.tfiéu
guantities must be summed on the interface. There is no need to divide byrtienof
shared interface degrees of freedom.

The issue of multipoint constraints is a little trickier. The system is now dividétgusa-
grange multipliersx. Equation 1.178 may be so expressed.

I<VV KVC C\T |\/IVV MVC 0 uV
KCV KCC C(-:r - )\ MCV MCC 0 UC — 0 (1188)
G G O 0 0 X

wherey are the Lagrange multipliers. But, we want these multipliers to be reduced thé o
system (i.e. they should be in the “V” space), so it is useful to reordenoilue and columns

of this equation. o . .
<|:|§vv KVC]_)\[MVV MVC:|>|:GV:|:0 (1.189)

Kev Kee Mcev  Mec Uc
where,
va = _ KW C\T ]
= _ C, 0 ,
~ [ K
ch - C\'lrc } ’
L “~c
~ M 0
Ivlvv = OW 0}
and,
. [ u
U\/ = i )(V :|

The matrix products are readily computed.

Mwly = Myply
Moy = Mgyly

? T
Kaly = Koy +Cc X
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Thus, all of the mass products are simple — they do not require any shagiange multiplier
treatment, but the stiffness product may require some such contributide tid ifC is zero
(as occurs if there is no constraint tied to the superelement interfacejietiffness terms
are likewise unchanged.

4. Accuracy Issues. The accuracy of the null space is determined by the sum of two large
quantities (see equation 1.184). With iterative solvers, this may not be detetmicurately
enough to insure stability of subsequent time history integration. Even ditmorally stable
integration schemes like the trapezoidal Newmark Beta methods can becotakl@ifsthe
stiffness matrix is indefinite.

Our experience has shown that inaccurate solves lead to corruptioa oéth energy modes
with little impact on the remaining elastic modes. Thus, it seems reasonable to elimmate th
error in a post processing step. Two methods are used. The simpler methodes negative
modes from the reduced matrix without affecting the eigenvector basis ofidtéx. How-

ever, if the eigenvectors can be accurately determined using geometris nileam a better
approach uses these known eigenvectors to correct both the eigesheald eigenvectors of
the reduced matrix.

To correct eigenvalues alone, we use the following algorithm, which is afsoleld in section

2.26.

(a) We extract the interface portion of the reduced system maigixNote that the portion
of the matrix associated with generalized degrees of freedom (i.e. theifitextace
modes) should be positive definite.

(b) We perform an eigen analysis of this matrix.
Kee = VAVT

whereViji is the eigenvector, anty; is the eigenvalue of mode
(c) We determine a corrected matrix,

negative modes
~ T
Kee = Kee — Z VjAjVj
J

To correct both eigenvaluesd eigenvectorsf the corrupted null space, the algorithm is a
little more involved. Details of the algorithm are presented in Figure 6. Moseodierations
in the algorithm operate on matrices of order 12 or smaller, so the computatimstas fairly
minimal. The method does require very accurate determination of the zeigyanedes.

1.15 Sensitivity Analysis

Within Salinas semi-analytic sensitivities may be computed for eigenvalues agnleggors. A
rudimentary capability for sensitivity to linear transient response is alstaale, but has not found
much practical value because the cost of the analysis is not significantér began the cost of
computing the response using finite differences. For details of the tramsiatysis formulation,
see Alvin's paper, 17.
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10.
11.

12.

Determine rigid body mode®, of the interface. This is done geometrical
These are normalized so tHatR = |. Typically there are 6 such vectors.

Let,A= R"KccR.
Compute a error vectdd = KccR— RA Note thaR"U =0

Perform a QR factorization of the error vector= SB Matrix Shas orthonor-
mal columns.

DefineQ=[R §

Compute the norm of the matrix composeddandB.

|5 ]]

Compute the eigenspectrumAaf

(A—=A)@, =0

ComputeG = P2l — A2,

. W = @av/Gal
D = —-BW1aw1BT
define,

A BT
(5 o)

Kee = Kee— QH QT

note that|H|| = .

Compute the correction,

Figure 6. Eigenvalue and Eigenvector corrections of Craig-Bampton
reduced models

57

Y.



For eigenvalue sensitivity, we begin with linear eigenvalue equation.
(K—=AM)p=0 (2.190)

The equation is differentiated with respect to a sensitivity paramgtand we consider the solution
for a single eigen pair.

(dK—dAM —N\idM) @ + (K—AiM)dg = O (1.191)
@ (dK—dAM —-AdM)@ = 0 (1.192)
(1.193)

where we use the fact thef (K —A\;M) is zero. We note thap' Mgis the identity to solve for the
sensitivity.

dAi = @' dK@ — A dM@ (1.194)
The method is “semi-analytic” in that the matricgk anddM are found by finite differences but

then are applied to the analytic expression above. Because there arearcslves required, the
solution is straightforward and accurate.

The algorithm used for the solution of eigenvalue sensitivity is as follows.

1. Perform nominal eigenvalue solution.

N

. Loop through parameters P, and modify as needed.

w

. On an element by element basis compute,

= (K+dK)g
H = (M+dM)e

»

compute the sensitivitg\ = @'k —A@" L.

This element by element method conserves memory and is efficient. It hasrhplemented
successfully for all parallel solvers. It has not been implemented fosplaesepalsolver when
MPCs are included in the model. The transformations required for multipoirstints complicate
the element by element calculation.

Eigenvector sensitivity is more involved, and several approacheseasdd. Nelson's method
has been applied for years (see 18). In this approach, the eigensensitivity may be written,

(K —)\iM)d(g =1 (1.195)

where,
fi = — (dK—A{dM — dAiM) (1.196)

Nelson’s method requires one linear solve per eigenvector sensitivigisdtsuffers from singu-
larity issues with redundant modes and from accuracy limitations when ortlpftoe modes are
extracted. Other methods (such as Fox 19) can also be employed.
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To obtain the best iterative performance, we consistently apply a pritcoedi conjugate gra-
dient algorithm (PCG) to solve,

(K —)\iM)Wi =fi— (K —)\iM)CDCi (1.197)

Because this operator is indefinite, we redefine the problem as,
(WT(K=AM)W)x = T (fi— (K= AiM)Dc;) (1.198)

wherew; = Wx. Now the operatofWT (K — AiM)W) is positive definite as long as modand all
modes below modeare contained i®.

1.16 A posteriori error estimation for eigen analysis

The purpose of this section is to summarize two different approachespfostariori error estima-
tion of eigen analysis. The first is an explicit error estimat#t and the second is a quantity of
interest approacf? The explicit approaches are described in chapter 2 afnd the quantity of
interest approaches are described in chapter 8 of the same bookvétpgiace we are interested
in the eigenvalue problem, the methodologies are somewhat different thapgheaches described
in,23 though there are many similarities. Both the explicit and the quantity of interpsbaghes
have the same goal - to use the computed solution to compute upper and lawdstzm the dis-
cretization error for the eigenvalues and eigenvectors. A drawbacletexplicit approach is that
unknown constants are present in the bounds, making final determindtiba error more diffi-
cult. Because of this, explicit estimators are more frequently used as elémdéar@tors to drive
adaptivity algorithms, rather than as error estimators. The quantity of ibtppesoach avoids the
unknown constants, but is more work in terms of implementation.

1.16.1 Preliminaries

We seek a posteriori bounds on the error of the finite element solution efgkavalue problem for
elasticity
—pAu= (A4+wO(0-u) +p2u=0-o(u) (1.199)

or
A1(U) = —AAg(u) (1.200)

where where?; (u) andAx(u) are the partial differential operators implied by equation 1.298nd

u are the unknown eigenvector and eigenvalue, Arahdp are the Lard elasticity constants. We
note that the right hand side of equation 1.199 can be written either in ternisptdicbment, as in
the first representation, or in terms of stress, as in the second ref@&éserf the right hand side
of the equation. The weak formulation of equation 1:199 is constructed by hgirlgigoy a test
function, and integrating by parts, with homogeneous boundary condifidns leads to the weak
formulation: Find(A,u) € V x Rsuch that

B(u,v) =AM(u,v) WweV (1.201)
where

B(u,v) = /Qo(u)s(v)dx (1.202)
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and
M(u,v) = / puvdx (1.203)
Q

After defining a finite element discretization, this reduces to: FipdAp) such that
Ku=AMu (1.204)

where(un,An) are the finite element approximations of the eigenvector and eigenvalu&;, angd
are the assembled stiffness and mass matrices.

1.16.2 Approach I - explicit error estimator

In Larserf® and Rannachef! two independently derived error estimates are presented for the
Laplace equation. While the two estimates differ slightly, both incorporate knawn constant,

C, an element diameter terrg, and an element residual functigm, In what follows we extend
these estimates to the elasticity problem. The following two error estimates areigifeand!
respectively. In what follows we use Larsen’s results (equ.@&ﬂusively@

Ne 2
A= An| < eACep ( > h‘éﬁ(uh,mZ) (1.205)
e=1
Ne .
A=A <C2 S hZp(un, An)? (1.206)
e=1

wherehe is the element diameter, and
Pt An) = [ (1At Aotk + Rriue) 0 (1.207)

The first term on the right hand side is the interior element residual, whick ditterential stiffness
operatorA;, defined in equation 1.200, applied to the computed element displacement edmbin
with the computed eigenvalue times the differential mass opergtonlso defined in equation
11.200, applied to the computed element displacement. This term is computedésemng the
eigenvector as a summation

N
h(x) = 3 AN (1.208)

wherea; is theit" entry in the eigenvector, an(x) is thei" shape function, and then simply
applying the gradient and divergence operators from equation |1.119@ tsummation in equation
1.208.

We note that the quantithun + ApAoUn is expressed in the strong form, and thus is not the
same a¥un — AnMup, though both expressions are on the element level. The differencecaeh
by observing the first term;un
Agup = 0-0o(up) (1.209)

9Equation 1.205 applies to elements with linear shape functions. The moezafj@xpression may be found in
equation 1.255 or the reference.
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Thatis,A1up is the divergence of the stress (which is computed from the finite elemeitdcispent

up). Thisis not the same &au,, sinceKuy is in the weak form, and has been evaluated by integrating
over the element against a test function. For example, if we consider lateaents, we have
Aiup = O-0o(up) = 0, since the stress is constant over the element. On the other Kands not
zero.

The second term is the boundary or flux residual.

1/2
Riiux = (hevol(e)) /2 [ i dere} (1.210)

It has two different integrands depending on whether the face in quelsti® on a part of the
boundary where traction or pressure boundary conditions are applieghether it is an interior
face. When it lies on a boundary loaded face,

R:g—oijnj (1.211)

whereg is the applied traction or pressure load. Note that O for eigen problems. When the face
is an interior face,

R=[oijnj] = ofn; —afin; (1.212)
whereo? anda® are the stress tensors in the two adjacent elements, element 'a’ and element’

Note that because the integrand is squared, computing the flux residwahbifeprequires parallel
communication.

We note the intuitive nature of the upper bound in equation 1.205. As the dlsimeh, tends
to zero, the right hand sides of the estimate goes to zero, due to the multiplicatiba blement
sizeshe. Keep in mind also that theterm includes an integral over a volume and tﬁail ||const|
is a constant.

There are two important issues in applying the results in Larsen’s refetergeneral elasticity
problems. The first of these is the extension to elasticity. The second istdresin to multiple
materials. These are covered in the following sections.

1.16.3 Extension of Estimators to Elasticity

This section was provided by Ulrich Hetmaniuk to help us with problems in scalmd.dplace
equation to the elasticity problem. It addresses issues of both mass anekstgraling. A similar
development was provided by Clark Dohrmann. The development hewdiolsbupon Larsen’s
development 20, and uses quantities defined there.

We consider the eigenvalue problem

—pAU— (A+pO(H-u)y=-0-0(u) = Bpu InQ (1.213)
u =20 onadaQ (1.214)

where the Laré constantg\ andp satisfy

VE E

N arvaswy Py

(1.215)
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We define also a weak formulation: firid,8) € V x R

a(u,v) = 6b(u,v), VYveV (1.216)
b(uu) = 1 (1.217)
where
a(u,v):/ch(u)-e(v)dx (1.218)
and
b(u,v):/gpu-vdx (1.219)

We follow the approach in the paper by M. Larson to derive a postenoi estimators. We use
most of his notation.

Residual

The definition (3.7) for the residual becomes, on a triangle

1 1 o(up) 2
R(Uh,Bh);c = %\D'U(Uh) + 6hpun| + \/h vol(T) /6‘[\6(2 <n- [ 2/ D (1.220)

Note that we have

R(Un, Bn) = R(un, B, p, E, V) (1.221)

and thatR satisfies the following scaling properties

Un O 1
R(—, — E = —R E 1.222
(\/a>a>apa >V) a (Uh,eh,p, aV> ( )
R(Uh,(}eh,p,aE,V) = GR(uhvehvva7V) (1223)

Stability estimates

The equation (3.10) becomes

1+s/2 1+s/2
D2 <Ce,st<<plD-c> ) (500) ) (v)) (1.224)

Note that
A= 2(1+v)(1—2v) ’ /\iuzl_zv (1.225)
Then, we get
p(1+9)/2
Ces= CW (1.226)
Note that we have
Ces=Ces(p.E,V) (1.227)
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and thalCe s satisfies the following scaling properties

Ces(ap,E,v) = al9/%Ceq(p,E,v) (1.228)
1
Ces(p,0E,V) = ch s(P,E,V) (1.229)

A posteriori estimates

We make also the assumption (2.6) : there are®< 1 andhgy > 0 such that

6h—06

max 6_6

80

’<5 . ||Qoun|* <3 (1.230)

for all meshes such that mhagx) < hg. Usingp =1,k =2, o =0, andp; = 1, the final estimate
on the eigenvalues becomes

6h—0
S

The estimates on the error in the discrete eigenvector are now

< 7—5Ceov/PlIPR(Un, 8| (1.231)

c 0
b(es,e0) < - 6Ceo(l+max‘ e‘)\f||h2 (Un,Bh)|| (1.232)
\/‘ 961/2
a(ep,€0) < (CchCeom<'ag<|e ‘hmaxHthh,eh)H (1.233)
| |

whereC, is related to the coercivity constant

IDV]| < Cev/alv,v) (1.234)
In Ciarlet’s book(“The finite element method for elliptic problemsthe coercivity constant is given

c

a(v,v) >2y/|Dv|| = C.= e

(1.235)

1.16.4 Explicit Estimator - Multiple Materials

To date, we have not seen any publication which extends the explicit estionator to multiple
materials. We don’t believe that there are significant issues, and pthsepproach used in Salinas
here. There are two main constraints from the explicit error estimator fotrantathat must be
maintained.

1. The eigenvectorsy, must be unit normalized, i.un|| = 1. This is important for mass scaling
so that a change of units does not affect the fractional error in théi@oldt is an essential
part of both Larsen’s development and Ulrich’s extension to elasticity.e§eation 1.217.

2. The extensions must maintain finite element consistency so thaj@es to zero there is no
inconsistency.

63



The second of these can be evaluated by examination of the residualse@saition 1.207).
Both the internal and the flux terms of the residuals are unaffected by malsgoperations
provided that materials remain constant within an element. Note that the evaloétibe flux
jump (equation 1.210) is unaffected by multiple materials since the normal comipohstress
discontinuity should go to zero even for disparate materials.

Eigenvector normalization could be addressed in several ways. Thaveers computed in
Salinas are mass normalized, ild.Mu = |. We renormalize for error estimation in the following
manner.

1. A unitless mass matrid is computed using unit density material.

2. We compute a scale factor _
Me = u'Mu (1.236)

3. The eigenvectors are renormalizedias- u//My.

In addition to eigenvector renormalization, we move the evaluation of the saadimgtantCe, s,
from equation 1.226 inside the summation of equation 1.205. This maintains thermecaling
with respect the element stiffness terms.

A recent paper by Bernardi and Verfufthhas shown that explicit estimators can be used in
the presence of multiple materials. For static Laplace equation, he derived mattgiconstants
for the interior and flux contributions that make the multiplicative constant intfod the estimator
independent of jJumps in material properties. In what follows we extend piisoach to the eigen-
value problem, and to elasticity problems. We will follow the same approach astip#per, i.e.
first constructing the lower bound, and then the upper bound. Thepabpices for the coefficients
will result from the upper and lower bound estimates.

First, we note a commonly used form for explicit estimators.

1
on(u 2
ol <0y (IR 80+ VRITG 2 )

(1.237)

whereR;(up,6r) = |0-0(up) + Bhpunl, [On(un)] is the jump in stress across the element boundary
0K, and|| - ||« is the energy norm. This estimator can be shown to give both an upper aneia lo
bound on the error. As written, this estimator does not fully account farodisnuous material
properties, since the constamin front of the estimator would depend on the jumps in material
properties.

We note that the estimator, written in this form, is essentially the same as the oms@idpy
Larson. For example, by writing the boundary term as an integral of atanhfunction, scaled by
the volume of the element, then we can write equation 1.237 in the form

il < (\hmuh,eh) gy ) HEz(K)>

(1.238)
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which is the same expression given by Larson in the case of linear eleméfetsiote that this
estimator is in terms of the energy norm, whereas Larson gives his resultsnis o theL? norm.
This results in the difference of one powerhoin equation 1.238.

The approach in Bernardi is to replace the estimator in equation|1.237 by

1
On(Un 2
Jun—ulo <3 (IR () s+ el G s )

(1.239)
wherepk ande are chosen in such a way that the resulting estimator is both an upper arrd lowe
bound on the error, and the constari$ independent of the jumps in material properties.

Before beginning, we redefine the original PDE as follows

—H-0 gy (1.240)
p
the corresponding bilinear forms as
1
a(u,v) :/ —0o(u)-g(v)dx
op
b(u,v) :/ u-vdx
Q
and the corresponding interior residual as
U-o(u
Ri(Un,6n) = | (Un) + Bnun| (1.241)

By dividing through byp, we include the density in the energy norm. This will be important later
on when the coefficients in equation 1.239 are selected.

As in Bernardi, we need the following identities, which follow from equatiord1.2

a(lu—up,v) = 6b(u,v)—a(up,Vv) (1.242)

8b(u,v) —a(up,v) = Z/K <9u+;D-0(uh)> vdx —

2

where the summatioR, is over all edges (in 2D) or over all faces (in 3D). We also use equations
2.11 in Bernardi’s paper.

;anh)] -vdt (1.243)
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The lower bound will be considered first. We &t = WkRi(un,65), whereWyx comes from
equation 2.11 in Bernardi's paper. We will also make use of the following.iakty for the bilinear
form

a(u,v)k e[Vl (1.244)

<
< ak/ullaflv]l2 (1.245)

whereayk = %E, andCx is the maximum eigenvalue of the material property matrix, ggds the
density of the element.

For the interior part of the residual, we have

IR (un, Bn) [Pz < vz/[ 0(Un +9huh] Wi dx
- —y2/ o(un) - £(wWk dx+y2/ OhUp - Wk
= y2a(u— Unh, Wk K—yﬁ@/u-deery%eh/uh-dex

IN

# 10~ vl + B~ U8l
X ||Ri(Un,6n)[L2k) (1.246)
where we note that, sindék is a bubble function, the boundary terms vanish in the integration by

parts on the second line of the above equation.

This implies that

IR (Un.B)lag) < v%[uu Un gk V2Pt + [Brn — B2 ]

or, multiplying through byuk,

IR (U, B o) < vZ[nu—uhua evahicad + e 8nun — Bz }

Now is where a critical assumption comes into play. We assume here that theuteaimp
eigenvalueb;, and eigenvectouy, are closer to the exact solutighandu than any other eigen-
value/eigenvector pair. This assumption is also made by Larson, in equaiiowizh this assump-
tion, the term||Bnhun — uB|| 2« is a higher order term compared wifl — un|[qk), and thus will
decay to zero at a faster rate. ThIS was also shown i |n the paper by.Bufans, we sequJAK based
on the term/|u — unl[ 2k only. If we selecty = hKO(K2 then the right hand side is independent of
the jumps in material propertles

For the boundary term, we first choosg = We {%Gn(uh)} , Where again¥e comes from equa-
tion 2.11 in Bernardi. Then, using equation 1.246 we have
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1 1
pGn(Uh)} IE2e < V%/ -

= Vzg/( -—0(up +9huh) e—\éga(U—Uh»We)
+ V%Z/K(GU—ehuh)‘We

1 11
cY3 (ZVShé IR (Un, Bn) [l L2k + Z\Mhe ag/[u—unlla

on(uh)} -WedT

IN

1
+ V5héZHU'9—Uh9hHL2 )H

0n(Uhﬁ L2(e)

IN

11 1
oY5 [Z he 202 ||u — un||q +Zhé ||BhUn —GuHLZ(K)]

x|

1

where in the above equatiofiy denotes a summation over elements, but only those elements that
border the edge. Also, in the previous estimate we collected constants involyiagd combine
with the constant, where possible.

This implies that

-

171
el | Jon uh)} L2 < ¢ ZlgheszHu uhHaJrthHehuh—GUHLz ]

We see that if we choogg = hemax(aKl,aKg)’l, where subscripts 1 and 2 denotes the two neigh-
boring elements that contain the edge or fadien the right hand side (neglecting the higher order
term) is independent of the jumps in material properties.

Now we construct the upper bound. We start with a few identities that willdeeled along the
way.

/Q <;D -o(up) +9u> -(W—Wp) = —a(up,Ww —wp) +
1
2

> pcn(uh)} ~(W—Wh)+/QGU(W—Wh)

(1.248)
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This implies that

a(up,w—wp) = Z Ecn(uh)] (W —wp)

e

Jr/Qeu-(w—wh)—/Q <;D-0(uh)+epu> - (W—wh) (1.249)

We will use the previous result in the upper bound on the energy nornedrtor. Letw = u — up,.
Then

lu—un |5 = a(u—un,w) = a(u— un,w —w) (1.250)

where the last equality follows from Galerkin orthogonality. Breaking thevimus expression into
element-wise quantities, and using equation 1.249, we obtain

lu—unld = Za(ufuh,w—wm (1.251)

= Za(uw Wh) — Z[;Gn(uh)] (W —wn)

- /eu (W —whp +Z/< -=o(up +9u>~(w—wh)
= Z/( -=0o(up +6u>~w—wh—g[;0n(uh)}'(W—Wh)

1 _
< ZHK”D - =0 (un) + 6u| 2 M W — Wil 2(k)

1
¥ Zuell{ ()| 0 19— Wl

1
2

IN

1 1
Z“ﬁHD 5 0(Un)+ BullEzq) + 3 el [pcn(uh)] HEZ(e)]
e

1
2

X Z“KZHW—Wh’EZ(K)+ZUe1||W—Wh||EZ(e)]
e

We now use equation 2.16 in Bernardi’s paper, which shows that

2

[; W lIw = wh 2y + uelrw—wmé(e)] < ¢||wlla (1.252)
e
With this result, we have

1
2

Fl)on(uh)] ||Ez(e)] (1.253)

1
lu—unlla <c|S KEIO- =0(un) +8pulZp, + S Hell
p (K)
e
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which is the desired upper bound. We note that we would also obtain higtier ®erms in the
above expression by adding and subtracting terms of the kiundx, but the same argument
could be made as before.

1.16.5 Explicit Estimator Summary

Summarizing, the implementation of the explicit error estimator involves the follovteggss These
steps have to be carried out for each eigenvalue separately.

1. Renormalize the eigenvectors as in section 1.16.4, equation 1.236.

2. Loop through all elements in the mesh. Compute the surface flux residuadadh face.
Share that residual vector at each surface gauss point with neigglelements to deter-
mine the stress jump 1.2[12. Integrate over all faces (by summing at sugasse goints) to
determineRyyx (€q 1.210).

3. Loop through all elements in the mesh. At each interior gauss point bfedament,

(a) Compute the interior residual,
a1 = |Az(Un) +AnAx(un)|
(b) Compute the integrand,
(a1 + Reiux)?
Note thatRs x IS a constant over the element.
(c) Sum at gauss points to obtain the element contribution,
52 = / (ar+ Rqux)dee

e

Ngauss

S wi(@1(%) + Riux)?

%

4. Compute the global contribution to the error. For elements with linear shegptidns, this
may be written,

A=A - 22 :
S sl S (Gl (1.254)
e=1
Where (as shown in section 1.16.3, equaltion 1.226),
2 P
0= w2

andp, A andp are the material density and the Laronstants respectively. The more general
expression for elements of ordpiis,

1
[A = An| h (Prio2 )
)\(p+1)/2§C Z(Ce,p—lhe P) . (1.255)
e=1

We note that although the constantin equation 1.254 is not known completely, it is usually
estimated to be of order 1. The constant depends on the details of the me s particular
on the minimum angle in the elements.
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1.16.6 Approach Il - quantity of interest estimator

In,?2 an error estimator is derived for the elasticity equation, using the eigesvakithe quantity
of interest. The estimate is of the form

NMow = —Mapp (1.256)
Npp = —Niow (1.257)

wherer]ﬁOW is a lower bound orh — Ay, and nﬁpp is an upper bound oA — An. Note that both

guantities are necessarily nega@esince the computed eigenvalues are always larger than the
exact ones.

The quantities)ypp andnow are computed using the so-calletment residual method his
method involves solving a small linear system on each element to obtain arregresentation
for that element, and then the element contributions are accumulated to obttitatresrors. The
element residual method involves solving the following linear system on dewteat

_B(dy,v) = R(v,0) + / gykvds W e W (1.258)
oK

or

Kpa= f (1.259)
whereais the vector of coefficients that represent the functign In other wordsdy = i'\ffape”bb'ea; N;,
whereN; is theit" bubble shape function. The left hand skigis the element stiffness matrix, but
evaluated using bubble functions rather than the standard element shaperis. This is necessary
since the standard element stiffness matrix is singular and thus equatiohnogBPotherwise not
be solvable. The right hand side consists of two terms, an interior res&tuafor the interior of the
element, and a stress jump term on the element boundary. This is similar to theriatetioound-
ary residual terms that were encountered in the explicit error estimatagltthihe exact formulas
for these terms are somewhat different. The first term is simply

R(v,0) = B(Un,V) — AnM(Up, V) (1.260)

Equation 1.260 can be most efficiently evaluated using the following méthatle evaluate the
first term first.

B(un,Y) = [ Bluno(x)dx (1.261)

whereB] ,.,0iS the standard 'B’ matrix, or the matrix of derivatives of the element shapetions,
except that it is using the bubble shape functions rather than the stastdgoe functions. Note that
the result of equation 1.261 is a vector of lengiiN3hapguppie WhereNshapguppieis the number
of bubble shape functions. We note that the routine ForceFromStressSalig.C already performs
the computation needed for equation 1/261, with the only change being théthsematrixB]
rather than the standaRf , and thus this code could be re-used.

1%or consistent mass only.

70



The second term can be evaluated in a similar way.
M(up,V) = / Un(X)v(x)dx (1.262)
K

Note thatun(x) is a known function. This term is also a vector of lengiiN3hapgyppie The three
entries corresponding to thi#® bubble shape function are as follows

/K Uzh(X)@ (X)dXx (1.263)
/KUZh(x)(n(x)dx (1.264)
/KU3h(x)(g(x)dx (1.265)

(1.266)

whereusn, Uon, andugp are the x, y, and z componentswgf andg is theit" bubble shape function.

The boundary term consists of the followirgy.k is simply the traction on the element boundary,
or

/gy,des = /[oijnj]vds (1.267)
oK oK

where[ajjn;] denotes thaveragedstress on the element faces. For two adjacent elements, element
'a’ and element 'b’, it is the average of their stress traction vectors.

1
(03] :E(OﬁanrGit}nj) (1.268)

Again, the test (shape) function in this case, v’ is the bubble functioreratian the standard
element shape function. We note that the boundary integral term in eqlia#ib8 and equation
11.267 is over all faces of the element in question. Thus, if the implementatioisd@étm proceeds
one face at a time, then there will be a nhodal summation step to get the compléteanghside

vector corresponding to the boundary integral term. We could also writeéetiisas

Nfaces
vds— / vds 1.269
/a < Oy.K i; oK. Oy.K ( )

wheredK; is theith face of element 'K’. Note that the test functionshbecome the element shape
functions when restricted to an element. Thus, for a given element bulbde Sunctionpyuppie
and a given face, we can write the previous equation as

/BK' Oy,K PoubbledS (1.270)

Note thaigy « is a 3-vector, and so for a given bubble shape function, and a gaeen/fy. gy.k PoubbiedS
is also a 3-vector. We then take this 3-vector and project it into the eleméntha@nd side. After
looping through all faces and all bubble shape functions, we end up wigigtar that is of length
3xNshapeubble
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Once the linear systems 1.259 are solved on each element, the upper ipgyindm equation
1.257 can be computed as follows

Nupp= \/W (1.271)

This equation can also be written as follows. If we represent the fundtjpas a summation of
coefficients multiplied by the bubble shape functions,

Nshapgubble
Py = Zl aiN; (1.272)
=

then

Nupp = \/Z B(®k, Dk ) = \/ZaTKba (1.273)

Finally, using equation 1.257, we have an upper bound on the error ingéevalue.

A lower bound on the error in the eigenvalue can also be computed. Thisésloled in detail
in,22 and we summarize here.

First, we define a functior € V, which we will define shortly. Once the functignis defined,
the lower bound can be computed as follows

R,(X,0
fow = R0 (1.274)

B(X.X)
The quantities in both the numerator and denominator can be computed by ldbpagh all

elements and computing the corresponding element-wise quantities (usingpeguas0), and
then summing globally.

Summarizing, in order to implement the quantity of interest approach for eagiggerror esti-
mation, we have the following steps. These must be carried out for eaafiveige.

1. Loop over all elements. Construct the bubble stiffness mati»n equation 1.259, in the
same way that standard element stiffness matrix is constructed, but usibglibke shape
functions.

2. Loop over all elements. Construct the right hand side of equation |1T288 consists of the
interior part, equation 1.260, and the boundary part, equation [1.267.

3. Loop over all elements and solve the linear systems 1.259, to obtain théugrtonsdy .
4. Compute the upper bound on the error in the eigenvalue using equatish 1.2

5. Compute the lower bound on the error in the eigenvalue using equatiofi 1.27

1.17 Nonlinear Distributed Damping using Modal Masing Forrrulation

This provides a method for implementing nonlinear distributed damping into a Sielsywith a
nonlinear transient solution. This is a method developed to model the nontiaegring response

72



of a subsystem. It implements the damping in a nonlinear manner with the use eéanairiorce
term. The damping is modeled by an Iwan model and distributed to the subsygtarmbdal
expansion. This method augments the internal force vector through a madaig formulation.

1.17.1 Subsystem Distributed Damping Formulation with Iwan Model

Given a system that contains a subsystem exhibiting nonlinear dampingidrelize equation of
motion for the subsystem, denoted Bycan be written in typical finite element form as:

Mpgiig + Cglg + Kpug = Fg + Fg, (1.275)

whereMg, Cg, K are the mass, damping, and stiffness matrices of the subsistienived from a
low-load responsayg is the discretized nodal displacements, a superposed dot denotes time diffe
entiation,Fg represents the external forces, dflis a distribution of internal nonlinear damping
forces to be discussed later.

A modal expansion is used to distribute the damping to the subsystem; thetk&peoblem is
formulated in modal coordinates. L& be the matrix whose columns are the eigenvectors of the
(Mg, Kg) system and define modal coordinates in subsystem Body

Ug = PgQs, (1.276)

wheregg is a vector of modal coordinates. It is assumed that the eigenvectors ssenoranalized.
Pre-multiplying Eq.[(1.275), bgpg, yields

[(®EMe®s|is + [PECe®Ps|ds + [PLKPE]ds = PEFg + PLFE, (1.277)

In order to derive a nonlinear distributed damping system, the forceﬁ!{{ﬁg is modeled by
a four parameter lwan modéf:28

LRy = Fhs = — | diag(p(9))[a(t) Bt 9)de (1.278)
wherep is the population density of Jenkins elements of stremgfhot to be confused with the

eigenvectors), anf(t, @) is the currentmodal displacements of the sliders in the Iwan motfel.
This force term is actually solved in a discretized form with the integration zer to@max?®

Fe = z Fn(t) — Fo(t) + Kodl(1). (1.279)

where the integral in Eq. (1.278) is numerically integrated with interdsgg,, such that,

N
Z APm = Pmax, (1.280)
=1

with @y, being the midpoint of each intervAky, in the numerical integration. The, terffy(t) is
derived as®®

24X

Fma){ RO sgniq(t) — B0 i | a(t) — B(E) 1= @

G ﬁﬁx . (1.281)
R=—~"[a(t) — B(t)] if [l a(t) —B(t) [|< om
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with @ m and@ n, being the right and left side of each subintersagy,, andRandy are a parameters
of the Iwan model. The ternfs(t), is found2®

_J Sa(t) - B(t)] if [a(t) — B(t)] < ¢m
Falt) = { SPnaxSgra(t) —B(t)] otherwise (1.282)

whereSis an lwan parameter. The final terifq(t) in Eq. (1.279), is an elastic restoring force in
the lwan model that is included in tikg,(t) term, but also in the overall subsystem stiffness matrix,
Kg. Therefore, it needs to be subtracted, so as not to include the elasgctface. The ternkg
is the stiffness of the Iwan model under small applied loads (where slip istasfimal). This is
calculated from the Iwan parameters as
R R
Ko = 1 +S= X+1(1+B) (1.283)

Transferring back to physical degrees of freedom provides thewwitp for the equation of
motion:
Mgl + Cglp + Kpug = Fg + ®5 ' Fa (1.284)

To avoid the possibility of an ill-conditioned and difficult pseudo-inversjoesognize thatl g®g =
@7, yielding:

Msglig + Cglg + KpUg = Fg + Mg®gFag (1.285)
Given the above EOM, a typical nonlinear analysis can be performedgmézing that the force
term Mg®gFy; is a function of the displacement. However, care must be exercised in the im-

plementation, as the modal displacement will need to be passed to the Iwanritioc updating
internal forces.

1.17.2 Subsystem Distributed Damping Formulation with a Linear Dampe

It is possible to derive the same basic formulation as above, but for a tla@aping. This provides
a check into the formulation as the results should be the same as a model with ladanogéng
parameter.

The only required change from the above derivation is in the nonlineanatforce tersz},B.
This term will need to be appropriate for a viscous damper; thus, a funefidre modal velocity.
A formulation can be found as the following:

Fos = Fdsi = —2GwiG;, (1.286)

where subscript represents the mode, is the damping ratio for mode «j; is the frequency for
modei, anda is the modal velocity. Here | am trying to see how many subscripts | can ppssib
add.

1.17.3 Reduced Model

In order to reduce computational demand, a reduced set of eigerw@ﬁ:)rcan be calculated for
the subsystem and used in place of the total subsystem eigengtor,
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1.17.4 Full System Model

Implementation of the full system with nodal degrees of freedars accomplished with a typical
projection matrix P, from the full system to the subsystem.

ug = Pu (1.287)

Thus, the EOM, now becomes

Mii+Cl+Ku = F+ P Mg®BFl; (1.288)
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2 Elements

Structural dynamics is a rich and extensive field. Finite element tools suShlemshave been
used for decades to describe and analyze a variety of structuressane tools are applied to
large civil structures (such as bridges and towers), to machines, anidron sized structures. This
has necessarily led to a wealth of different element libraries. Details of tlement libraries are
presented in this section. For information on the solution procedures thatsie ¢dlements together,
please refer to section 1.

2.1 Isoparametric Solid Elements. Selective Integration

The following applies to any solid isoparametric element, but is implemented in tleearodle-
ments with linear shape functions (such as hex8 or wedge6). This dsic@skiresses calculation
of relevant operators on the shape functions and eventual integratiothestiffness matriceld?

2.1.1 Derivation

We begin with the separation of the strain into deviatoric and dilitational partsasahtéir contri-
butions to the stiffness matrix can be computed separately. This is part dfdkegy for avoiding
over stiffness with respect to bending.

The strain energy density in the case of an isotropic, linearly elastic material is

p= %(ZG£+)\tr(s)|)os (2.1)
with some re-arrangement, this can be shown to be:
~ . 1 2
p=GEeE+ EB(tr(s)) (2.2)

whereé =& — tr(e)!.

Having separated the part of the strain energy density due to deviatorioffihe strain from
the part of the strain energy density due to the dilitational part of the stra@shall integrate them
separately. First, we must determine how to express the strains in termsabfiegdees of freedom.

We know that the deformation field is linear in the nodal degrees of freeatahthat the dis-
placement gradient is also, so we should be able to expand each of trargéigs as follows.

Let P; be the node associated with titee degree of freedom and igtbe the direction associ-
ated with that degree of freedom. The displacement field is:

i(x) = NP (xullg (2.3)

where summation takes place over the degree of freedom

11This development is based on work by Dan Segalman.
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Similarly, the displacement gradient is:

F00 = (NP 00Ul 8 (2.4)

We now define the shape deformation ten#dr corresponding to thg th nodal degree of
freedom:

. 0 -
W (x) = (- )0I(X) (2.5)
0us,
which, with Equation 2.4 yields:
] 0 . ~p
W) = (5, -INT (x)8; & (2.6)
Xk
The symmetric part of this tensor is:
S = (W) +WI)T) @7)
and the strain tensor is
e(x) =9 (X)us (2.8)

From the above, we construct the dilitational and deviatoric portions otithie $n terms of the
nodal displacement components:

tr(e(x)) = bl (x)ug 2.9)
where
bl (x) = tr(S(x)) (2.10)
Similarly,
&(x) = Bl (uf! (2.11)
where
Bl(x) =9 (x) — %bj (x)! (2.12)

The stiffness matrix is evaluated using the constitutive equation (Equatioari2he following
definition:
62

mn = —p - P
Ousmous”

/v PV (2.13)

This plus our expressions for strain in terms of the nodal degreeseaatdra yield us the following
expression for element stiffness:

Kmn=G (B™(x))" #B"(x)dV(x)

volume

+B b™(x)b™(x)dV (x) (2.14)

volume
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2.2 Implementation

From the above it is seen that once the shape deformation ténisisr found, the rest of the cal-
culation follows naturally. The calculation of the components of that tensoeiepted here. The
components ofV! are

Why = &nW & (2.15)
0

Sms, (&)NF" (X) (2.16)

The partial derivative 32- )N (x) is calculated from

0 . ~p 0 . _
(3 NP X(E) = (3N ()t (2.17)
where 3
Imy = szXm(E) (2.18)
and )
N(&) = N(x(§)) (2.19)

The issue of selective integration in the elements is discussed in AppendieBfofimulation
discussed there applies to all the isoparametric solid elements.

2.3 Mean Quadrature Element with Selective Deviatoric Contol

In this section we discuss the implementation of the mean quadrature element asS&his work
is a result of a collaboration with Sam Ké¥.

We first examine the element stiffness matrix resulting from a fully integratedesie
K = / BTCBdV (2.20)
Y

whereK is the stiffness matrix/ is the volume of the elemerB,is the standard strain-displacement
matrix, andC is the matrix of material constants. When implemented in the standard way, this
element behaves very poorly for nearly-incompressible materials, and gifbeven on materials
with moderate Poisson ratios.

A standard approach for softening the element formulation in the presd#noearly incom-
pressible materials is to replace the maBiwith its mean quadrature counterpdst,

B— / BdV (2.21)
Vv
This alleviates problems associated with nearly incompressible materials, lvasthing stiffness

matrix exhibits hourglass modes. These modes can be removed either thowgfass control
methods, or by adding in some of the missing deviatoric components. In theaappdescribed
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here, we use the latter method. We note that iB#mdB can be decomposed into their volumetric
and deviatoric components, i.e.

B=Bv+Bp (2.22)
B=Bv +Bp

With these decompositions, we define
B=By +Bp +sd(Bp — Bp) (2.23)

wheresdis a parameter between 0 and 1. Wisels= 0, the element corresponds to a mean quadra-
ture element. Whead= 1, the element corresponds to mean quadrature on the volumetric part, but
with full integration on the deviatoric component.

With this new definition oB, we can define the stiffness matrix for this element as

K = / BTCBdV (2.24)
Vv

2.4 Bubble Element

Low order finite elements tend to behave poorly when subjected to bendidg. IoEhe bubble
hex elements have been shown to give much better bending performaitioa tvincreasing the
number of degrees of freedom in the elem&t.3? In this section we give a brief review of the
theory behind this element.

The representation of displacement at the element level in the stand&eleexent is
8
u= ZuiNi(E) =u'N (2.25)
i=

whereu is the element displaceme; is theit" shape functionl\ is the vector of shape functions,
and¢ is the vector of reference element coordinates. The bubble element atggthe standard
finite element basis functions with additional bubble functions. The reptatsen of displacement
at the element level for the bubble element takes the form

U—%UiNi(E)‘i‘%aiPi(E)—UTN‘i‘aTP (2.26)
i =]

whereP, (§) are the bubble function®, is the vector of bubble functions; are the unknown coeffi-
cients for the bubble functions, alads the vector of unknown coefficients for the bubble functions.
The corresponding expression for element strain is given as

€ =Bu+Ga (2.27)

whereB and G are the appropriate derivatives of the shape functions. We noteBtlsaah 624
matrix, wherea$s is a &9 matrix. Se€31for the exact forms of these matrices.
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The corresponding element stiffness and load terms can be assemble@i@teystem
K ET u f
NN 228
whereK = feBTCBdV is the 2424 element stiffness matrix corresponding to standard element
shape functionsd = [,GTCGdV is the %9 stiffness matrix corresponding to bubble shape func-
tions,E = feGTCBdV is the %24 matrix corresponding to products of bubble and standard shape

functions, and is the element load vector. Since the bubble unknoavare local to each element,
they can be condensed out, which yields a modified element stiffness matrix

K=K-ETH'E (2.29)
Note thatK is still a 24«24 matrix.

It has been shown that the bubble hex element does not pass the patatides a correction
is made to the element formulation. There are two options for this correctioa fifEt® involves
evaluating the matrix G at the centroid of the element rather than at the Ganss gde second
approach consists of subtracting from the mati@&its average value. Both approaches yield an
element that passes the patch test, and thus convergence is assured.

In Salinas, we have taken the second approach. AGevatrix is defined(, that is constructed
by subtracting the average value®ffrom G.

A 1
G:G——/de (2.30)
Ve Je
Then, we simply replac& with G in the above equations. We note that, in the implementation of
this element in Salinas, it was found that after implementing the correctionidedabove, the

element passed the patch test. Without the correction, the element failedred|ditch tests.

With the bubble element, the stresses vary through the thickness. In oodenpate the stresses
at any particular point within the element, we need to recover the strainse e given in equation
2.27. However, an additional task is to compute the bubble degrees dbfreesince only the
displacement degrees of freedom are calculated during the solutioedan@c From equation 2.28,
the bubble degrees of freedom can be computed from the displacements as

a=H'Eu (2.31)

whereu is the element displacement vector. Giemve can then compute the strains from equation
2.27, and then the stresses can be computed in the standard way.

2.4.1 Nonlinear analysis with bubble element

The bubble element can be used in nonlinear analysis. A brief descriftiba procedure is given
in.31 More details will be given here. I}, an assumed strain approach was used rather than the
assumed displacement method, but the two reduce to the same procedure.

We will give the necessary modifications for a nonlinear static analysisegations that need
to be satisfied are _
F™(u,a) = F (2.32)
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More specifically, this breaks down to two separate equations

F" — [ Blodo —Fe (2.33)
Q
innt _ / GTO-dQ -0 (234)
Q
(2.35)

The stress is given by = Cg, wheree is given by equation 2.27.

Next, we expand the expressions for internal force in a Taylor sex@bstruncate after the first
two terms. In the following, the quantitiesanda denote the unknowns, arfidandd represent the
current iterates of displacement and bubble unknowns.

oFt  oF

int ~ [cint/a &
Fi" (u,0) = F(0,6) + e mu+ 3 ™ (2.36)
. . aFint aFint
int ~ [cint/rn A 2 2
B (u,0) =~ B (0,6) + N mu+ 3 ™ (2.37)
(2.38)
We define
oF™
Kt = 5 (2.39)
oF™
Er = % (2.40)
oF
Hr = =52 (2.41)
(2.42)

where the subscrigt denotes tangent matrices that are computed at the current configutagiog.
these definitions and substituting equations 2.38 into equations 2.35, we obtain

Kr (E")r ][ Au] [ Res
[ Er Hy } [ Aa ] n [ Resg ] (2.43)
where
Res = F'— F{"(0,4) (2.44)
Reg = —F"(0,d) (2.45)
(2.46)

More detailed expressions for the tangent matrices will now be given.dtésthat, for example,
in equation 2.35, bottr and the matri8 depend on displacemenfind bubble unknowns. Thus,
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the chain rule is needed to compute the following expressions.

T T
Ky — 2JoB 000 _ /0B dQ+/ BT—dQ (2.47)
Ju Q Odu
T T
g, 0JoB 00Q _ 0B dQ+/BT—dQ (2.48)
da qQ da
T T
Hy = /oG 0dQ _ "2 0dQ + / GTaGdQ (2.49)
Jda q oa
(2.50)

In each of these expressions, the first term on the right hand sideseis a geometric stiffness
term, whereas the second term represents the material stiffness term.irNesder to evaluate
terms IlkeaB andaB we use the deformation gradient. We use the notatisru + X, wherex is
the current conflguratloru is the displacement, anlis the initial configuration.

e= %(FTF —1) (2.51)
o< oF
B= - =F-- (2.52)

0B FaZF OF OF  OF oF

0 o T auau (2:53)

(2.54)

where the last identity follows from the fact th%%% = 0. This can be seen from the following
relations.

ax B au +DN  ;DP
oF DN
0°F
ha— 2.57
(2.58)
Similarly, we can construct these equations for the bubble functions
1 7
e:E(F F—1) (2.59)
oe oF
— — —F— 2.
G oa oa (2.60)
G 0°F OFOF OF oF
g =T S 2.61
da 60(2+60(60( da da (2:61)
(2.62)
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where similar identities have been used

_ox  0u DN~ DP
Feog =g =1+ o o' 55 (2.63)
oF DP
0°F
a2 = 0 (2.65)
(2.66)
For the cross terms, we have
1T
e=S(F'F-1) (2.67)
o€ oF
B=—=F— 2.
ou ou (2.68)
0B 0°F OFOF OF oF
3a  "owa " auoa  auda (2.69)
(2.70)
where, again we justify that the second term vanishes as follows
~ox _, ou_ DN [DP
F_&_I+a—x_l+u ﬁ—kaﬁ (2.71)
oF DN
=
= 2.7
ouoa 0 (2.73)
(2.74)

In a similar manner as was done for the linear element, the bubble degreegddin can be
condensed from equations 2.46. This results in the equation

(Kt — EfH{'Er)Au = Res, — ETH 'Res, (2.75)
Thus, the full tangent operator for the bubble element is given by
o A (2.76)

the internal force is given by _ _
Fi"(0,8) — EfH{ IR (0, 4) (2.77)

and the residual is given by two terms
Res — ETHr 'Reg, (2.78)

These equations fully describe the nonlinear analysis of the bubble element.
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2.5 Quadratic Isoparametric Solid Elements

Quadratic elements (elements with bilinear or higher order shape functiocisps the Hex20 and
Tet10 are naturally soft and do not need to be softened by positivesvafu@ andp (see section
2.1 and Appendix B for definitions of G arfdl) Therefore, G=0 anf3=0 are good values for such
elements.

2.5.1 Shape Functions and Gauss Points

The shape functions and gauss points for Hex20 elements follow vedesthardering. The nodal
ordering (and shape functions) follows the ordering in the exodusluaaGauss points are input
and output using the ordering developed by Thompson 33. Internallgahss points are located
at element coordinates (and order) shown in Table 3.

2.6 Wedge elements
2.6.1 Shape Functions

The shape functions are given explicitly Hughes (ref. 34). These are provided as bi-linear

polynomials inr, s, t, and¢, wherer ands are independent coordinates of the triangular cross-
subsectionst = 1 —r —s, and§ is the coordinate in the third direction. For our purposes, it is
necessary to expand the shape functions as polynomisls,iandg:

Ni = A + Afr + Afs-+ ASE + A€ + ALSE (2.79)

The shape functions and the coefficients are given in the following table:

Shape Function Ag | A1 | Ao | As | A | As
Ny =2(1-¥)r 3 3

Na=3(1-&)s ; —3
T e IR IEIEIEIREE
Ny = 5(1+&)r 3 3

Ns = 5(1+§&)s 3 2
Ne=31+8t [ 3 |33 33|

2.6.2 Quadrature

Three reasonable quadratures for wedges that come to mind are indicttedollowing table:
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number | X Y Z
1 0O 0 O
2 O 0 A
3 0O 0 -A
4 O A O
5 0O A A
6 0O A -A
7 0O -A O
8 0O -A A
9 0O -A -A
10 A 0 O
11 A 0 A
12 A 0 -A
13 A A O
14 A A A
15 A A -A
16 A -A O
17 A -A A
18 A -A -A
19 A0 O
20 A0 A
21 A0 -A
22 -A A0
23 A A A
24 A A A
25 A A0
26 A A A
27 A A A

Table 3. Hex20 Gauss Point Locations. The constant

A=0.77459666924148. The unit element is 2x2x2, with a va@uof
8 cubic units.
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No. Points| r S 13

1 1/311/3] 0

2 1/3|1/3|-1/V3
1/3]1/3]| 1/V3
6 1/6 | 1/6 | -1//3
1/311/6 | -1/V3
1/6 | 1/3|-1/V3
1/6 | 1/6 | 1/v/3
1/311/6 | 1/V/3
1/6 | 1/3| 1/V3

2.7 TetlO elements

The 4-point integration is given iHughes(see 35), and the 16-point integration is givedimyun
It is believed that a higher order integration is needed for the mass matrixtttbastiffness matrix
and that the reason is that the mass matrix involves higher degree polynortiising 4-point
integration to try to estimate the mass matrix of a natural element resulted in a 30gs30natrix
with several zero eigenvalues.)

2.8 Calculating shape functions and gradients of the Hex2(Jement

Using a 3D Pascal’s triangle, we can construct 20 polynomials of the form,
pi = €] e3¢
where therj, s andt; (i = 1,...,20) are integers satisfying,
4 s+t2<7

These terms may be constructed with the following I@%p.

count=0
for1 = 0to 7
forJ=0to 7
for K=01to 7
if I'2 +J2+ K2<=7
count = count + 1
r(count) = |
s(count) = J
t(count) = K
endif
endfor
endfor
endfor

12 This is how thest matrix in Hex20.C was created.
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We require 20 shape functiong, withi =1,...,20, that satisfy the conditions thidt = 1 at node
i andN; = 0 at every other node. This results in 20 equations at each node. SsikpyeheN; as
linear combinations of the;, we can write,

N =Ap (2.80)

whereA is a 20x20 matrix. We want to find the 400 tedw-matrix values. For each node, we
have 20 equations and there are 20 nodes; so, there are 400 eqtmtibies400 unknowns. L&
denote the natural coordinate value atittenode. We havAp(g1) = & = (1,0,0,...,0)", and, in
general Ap(€i) = §. So,

[€1,€2, ..., €20 = [A][P(£1), B(E2), - .., P(€20)]

or,
| =AP

or,
A=p1

This matrixA is the matrix‘hc20” in Hex20.C .

Not only can the shape functions be expressed as a linear combinatianmf but so can the
derivatives,g—g, (j = 1,2,3). Differentiating equationh 2.80, we have

oN _,op

an N aa,-

but thedp/de; may be written as a linear combination of thevia the following three equations.

opi i—108 ot
a—si = rig] lejey (2.81)
opi io§—1l;
6—82' — sere) ey (2.82)
opi igSeli—1
6—83' = tejejey (2.83)

while noting that equations 2.81, 2/82 and 2.83 are zearsf, ort; is zero, respectively. We would
like to find the matrixB; with j = 1,2,3 such that,

—

oN
a—sj—BJD'.

EvaluatingdN/de; andp at all 20 nodes, we have,

32@1)’ 3262)’ o 22(520) =Bj[P(E1), B(E2), -, PlE20)] (2.84)

Matrix equation 2.84 can be inverted to solve Byrwith j = 1,2,3. InHex20.C , ABlis B; , AB2is
B,, andAB3is Bs.
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Shape Function Ordering: The above method results in elements which satisfy the requirements
that the evaluation of shape functipon node is one. However, the implementation does not insure
compatibility with standard node ordering from exodus. We've provideglardering function to
insure this.

2.9 Anisotropic Elasticity

Anisotropic elasticity requires special care in the rotation of the matrix of mapaiameters when
those parameters are given in some coordinate system other that in whiletient matrices are
calculated. A derivation of the formulae for rotating those matrices is givién in

2.10 Triangular Shell Element

The triangular shell element (TriaShell) is derived as follows. The bendio.f. (v, 6y,6y) and
the membrane d.o.f.u(v,0,) are decoupled. The idea is to obtain the membrane response using
Allman’s triangle and the bending response using the discrete Kirchoffitrian(DKT) element.

2.10.1 Allman’s Triangular Element

Using the formulation given in Ref. 36 and replacing @Qs = |yTJ,' and sirtyj) = _ll—’j“ we get

1 1 1
U= U1 + UaPo + UzPs + EY21(002 — )PPz + 53/32(603 — )PPz + 5}’13(001 — w3)YaPn
(2.85)

1 1 1
V=vil1 + Voo + Va3 + §X21(U)2 — 1) P12 — §X32(003 — ) Yoz — §X13(0)1 — wz)YsWs
(2.86)

The stiffness and mass matricéK|at, [M]aT) are found using general finite element proce-
dures. Unfortunately, a mechanism exists for this element if the deformadierall zero and the
rotations are all the same value. Coetkal® have a “fix” for this which has been implemented to
avoid undesirable low energy modes produced by this mechanism.

2.10.2 Discrete Kirchoff Element

As for the DKT’ element, things are not so simple. The nine d.o.f. element is obtained by trans-
forming a twelve d.o.f. element with mid-side nodes to a triangle with the nodes attiees only.

This is obtained as follows. Using Kirchoff theory, the transverse sisesat to zero at the nodes.
And the rotation about the normal to the edge is imposed to be linear. Usingdbeskaints, a

nine d.o.f. bending element is derived (DKT) using the shape functiarthdosix-node triangle.
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Unfortunately, the variation ofv over the element cannot be explicitly written. Therefore, \the
variation over the element needs to be calculated before the mass matrix chtained.

As stated, the equation feris not explicitly stated over the element in the derivation by Batoz
at al.. Using a nine d.o.f. element, a complete cubic cannot be written, since 1@tepsawould
be needed to get a unique polynomial. The strategy taken here is that thesstifhatrix produced
using for the DKT element provides reasonable results, and the den\aftthe mass matrix is not
as critical. So, the equation faris taken from Ref. 38, as

W= a1 + 0oW + 033 + aaWa Wy + OsWolis + aeWay + 07Ws AW + agWa?Ws + dgWa?y
(2.87)

For the AT and DKT elements, the stiffness and mass matrices are derivedheitielp of
Maple. The consistent mass matrix is derived using “normal’” finite elemenegroes. If a lumped
mass matrix is requested then the mass matrix terms associated with the translati@arelfolind
in the “normal” sense. However, mass matrix terms for the rotational d.o.fse.atrta)%5 of the
translation terms.

In summary, the code has been written which uses the AT and DKT elemeinta@®bination
as a shell element. The stiffness matrices are calculated without complicati@nmass matrix
for the AT element is also derived without complication. The mass matrix for th€ Blement is
derived using an incomplete polynomial, but the results obtained shouleredtdrted very much.

2.10.3 \Verification and Validation

The AT element is verified by comparing calculated results with the results pellisy Allman in
Ref. 36. The square plate in pure bending and a cantilevered beam veitalzofic tip load are used
as verification examples. The mass matrix is not verified except to note thaatbeis conserved
in theu, v directions.

The DKT element is validated by using the experimental data published by Ba#hzan Ref.
37 for a triangular fin. The first 10 eigenvalues for the triangular fim{iaver) match very well. In
addition, the DKT element is verified by using a cantilevered beam and matdéflegtion results
at the tip. Ifv = 0, then results should match very closely with Euler-Beam theory resuttshag
did.

Finally, the AT/DKT element is verified by comparing with published results fiRei. 39.
Tables 4 and/5 show that our elements match exactly with ABAQUS to the numbgitsfshown.
The first column is the result produced by Er&sl, the second column is the result produced by
ABAQUS, and the third column is the result produced by SALINAS using tS AT element.

2.11 Triangular Shell - Tria3

The triangular shell used most in Salinas is Tia3 element developed by Carlos Felippa of the
University of Colorado in Boulder. This element is very similar to Tm@Shell element presented
in section 2.10. Full details of the theory behind the element is out of the sfdpes document,
but details may be found in references 40, 41 and 42.
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| DOF| AT/DKT | ABAQUS | AT/DKT!
X 0.000 0.000 0.000
y 0.000 0.000 0.000
z |-1.405x 102 | -1.398x 102 | -1.398x 102
6x | 3.337x 102 | 3.337x 10 % | 3.337x 10 2
6y [ 3.106x 10°% | 3.089x 10 | 3.089x 107
6, 0.000 0.000 0.000

Table 4. Comparison of deflections at Node 2

| DOF| AT/DKT | ABAQUS | AT/DKT!
X 0.000 0.000 0.000
y 0.000 0.000 0.000

z | 1.949%x 107 | 1.955x 102 | 1.955x 10 2
6, | 3.363x 102 | 3.363x 10 2 | 3.363x 10 2
B, | -2.686x 10 2| -2.702x 10 2 | -2.702x 10 2
6, 0.000 0.000 0.000

Table 5. Comparison of deflections at Node 3

2.12 Beam2
This is the definition for a Beam element based on Cook’s developmemigske3-115 of reference
5).

The beam uses underintegrated cubic shape functions. Only isotropidahatedels are sup-
ported. Torsional affects are accounted for in the axis of the beambddma is uniform in area and
bending moments, i.e. they are not a function of position in the beam.

The following parameters are read from the exodu{’ﬁle.

. The cross subsectional area of the beam (Attribute 1)
. The first bending moment,. (Attribute 2).

1
2
3. The second bending momeht, (Attribute 3).
4. The torsional momendy. (Attribute 4).

5

. The orientation of the beam (Attributes 5, 6 and 7)

The orientation should not be aligned with the beam axis. In the event of anpety spec-
ified orientation, a warning will be written, and a new orientation selected. ofiemtation

13 Beam attribute numbering has changed, due to changes in pre-aceBise original ordering had attributes 2,3,4
associated with orientation.
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Figure 7. nbeam Element Stiffness Matrix

is an x,y,z triplet specifying a direction. It does not need to be completejyepéicular to
the beam axis, nor is it required to be normalized. The orientation vectthanbeam axis
define the plane for the first bending direction.

Torsion

As outlined in Bleving'® the stiffness properties of beam torsion are governedttribute 4),
while the mass properties are derived from the polar moment of indgtig; = 11+ I2. This repre-
sentation is fairly accurate for beams with closed cross sections, but wél gignificant error for
more open sections. Warping in open sections is not accounted for in thigastiabeam formula-
tion.

2.13 Nbeam

Beam/bar elements are a major component in many structural Finite Element Ni6E&3. It is

important to employ a beam/bar element which includes transverse shearrsiod io addition
to axial and bending stiffness. Additionally, the mass formulation needs todiechtary inertia.
The nbeam element is an implementation of the NASTRAN CBAR element. The s#ffnatrix
is identical to the CBAR. The mass matrix is a new formulation to this implementation jpmg\ad
diagonal mass matrix w/ rotary inertia included.

The nbeam element stiffness matrix is based on Timoshenko beam theoopdAttteoretical
description can be found in [44]. The formulation differs (slightly) in theriecoupling formula-
tion. The derivation of this specific form is provided in [45]. The exactii of the stiffness matrix
implemented in Salinas is shown in Figure 7.
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Figure 8. nbeam mass matrix

The following derived quantities are used depending on the valug.of

If 11 =0 If 115 #£ 0

B=0 1 B= 1=l

Ru= 12 [14 224 Ry = 251
-1

Ro— 158 [1.+ 222k Ro — 1228

The rest of the quantities are valid for any valud ©of

L2R1 ElL
Kk — — %, =1
! 4 L
LR, El,
ky, — —2,-2
2 4 L
L°R; Ely
ks = ————=
4 L
ky = LZRZ_@
4 L
st = AJ/A shear factor
s = AJ/A shear factor

The nbeam mass matrix is given in Figure 8. The mass quantity defined asn’ = pAL/2.

To preserve a diagonal mass matrix for arbitrary beam element orientéi@nmass matrix
subroutine provides the calling routine options of diagonal stripping orotiagsummation. The
mass matrix will not be diagonal after transforming to global coordinatesmugeneral conditions
(off diagonal terms will be present in the rows corresponding to roteeytien). If diagonal strip-
ping is chosen, the off diagonal terms are simply zeroed, restoring ardbgatrix. If diagonal
summation is chosen, the off diagonal terms are added to the diagonal el@naetiiten zeroed.
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Table 6. Nbeam Parameters

Description Keyword Exodus Attributes
Cross-Sectional Area Area 1
First Bending Moment 11 2
Second Bending Moment 12 3
Cross Inertia 112 N/A
Torsional Moment J 4
Beam Orientation orientation 5-7
Y-axis Shear Area Factor | Shearfactor.1 N/A
Z-axis Shear Area Factor| Shearfactor.2 N/A
Offset Vector At 1st Node offset 8-10
Offset Vector At 2nd Node - 11-13

Diagonal stripping slightly reduces the total rotary mass contributions whitpde summation
slightly increases rotary mass contributions. In the current implementatiogorhd stripping is
assumed and coded. This could be expanded as a user option in the future

The user provides the element properties in the Salinas input deck. qinea parameters are
listed in Table 6.

The parallel axis theorem is used to account for offsets. The oféssowis defined as a vector
from the bending neutral axis of the beam to the nodal location. All othantifies are derived
from the material data and the element length.

Torsion

As outlined in Bleving'? the stiffness properties of beam torsion are governed bwyhile the mass
properties are derived from the polar moment of inedjg,ar = 11+ I2. This representation is fairly
accurate for beams with closed cross sections, but will have significanfer more open sections.
Warping in open sections is not accounted for in this standard beam faramula

2.14 Nquad - Navy Quadrilateral Shell Element

Many structural components on naval vessels, including the hull, bulkshaad decks are made
from plate, be it steel, aluminum or a composite material. As such, plate andetgralkbnts are
essential to any finite element analysis of ships or submarines. It is imptotamiploy an element
that is shear deformable and can also accommodate orthotropic layeragiiae is a four-noded
isoparametric element that is designed to be similar to the NASTRAN CQUAD4 etemen

The development of the stiffness matrix draws heavily from the plane elasticttybending
formulations found in 46. The membrane and bending components arepliedolrhe membrane
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stiffness terms are derived from the integrals in equation 4.156 in 46:

oy; 0y oy 0y
1 i 0Yj j
Kij / (C 13% ox +Cs3 3y dy > dxdy (2.88)
o0y 0 oy 0
12 k2l _ Lzl !
Kij K /Qe (Clz x dy +Cs3 dy ox dxdy (2.89)
oy; 0 oy 0y
2 _ i 0Wj j
K / <C 3% 9x +Co2 ay 3y > dxdy (2.90)

where theCjj are the elastic material constants defined in equation 4.137 of 46:

VE E
Ci1=Cp2= Cio=1" Caz=

1-v2 V2 2(1+v

and they; are the element shape functions (see equation 4.31 in 46) over the el@feiihe
membrane stiffness matrix is of the form:
Kll K12
|: KZl K22 :|
assuming the displacement vector is of the fdma,vi,uz,vo,...}. The bending stiffness terms,
based on the shear deformation theory of plates, are based on thelsileg@guation 4.226 in 46:

Ki? = /Qe<D llJ'l]JJ>dxdy

K3 = /Qe<D lIJ'l]J,)dxdy

K = /Q (D aaq:(. a(;l;/‘w aaq;. aaw‘>dxdy

KP¥ = /Qe<D aaqila(.;l:(J-i-D aaq;'a;:/JJrD%quJ,)dxdy

where theDj; are the elastic material constants defined (for the isotropic case) in eqdatihof
46:

Eh?
D = Doy =
11 22 121-v?)
D1, = vD11
Gh
D = —
33 12
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whereh s the thickness of the plate akds the shear correction factor. The bending stiffness matrix
is of the form:
[Kll] [K12] [K13]
[KZZ] [K23]
sym (K]

assuming the displacement matrix is of the fofm, 6x1, 6y1,Wo, B2, By, ...} To minimize the
effect of locking, reduced integration on the shear terms (i.e., those ingdDs4 andDss) is used.

The layered shell formulation, also based on first-order shear defiomtaeory, draws heavily
from [47], particularly equations 3.4-5 and 3.4-6 found therein.

The stiffness matrices developed for the isotropic and laminate cases aocooint for in-plane
rotational stiffness. A fictitious stiffness for tig d.o.f. is provided by equation 12.3-4 in [5]. The
resulting element stiffness matrix is 24 x 24, accounting for 6 d.o.f at eatttedbur nodes.

A consistent mass matrix is formed based on equation 4.235 in 46:

Mij :/erhtpitpjdxdy

wherep is the material density. The diagonal mass matrix is derived by row summation.

Element level strains are expressed by equation 4.147 in 46:

{e}e=[Ble{A}e

where the five terms ifie} . areey, €y, andtyy as well as the transverse shear strgjpandy,x. The 5
x 24 matrix[Bl is formed by the element shape functions and their derivatives and thé 2dotor
{A}¢ are the nodal displacements. The membrane and bending strain-displacelagonships
are found, respectively, in equations 11.1-3 and 11.1-4 in [5]:

Membrane:
€x = Uy &y = Vyy Yiy = (Uyy +Vix)
Bending:
€x = —ZByx Yy = —2Z(6yy + Bxx)
gy = —Z0xy Yyz = W,y — B
Yzx = W,x — By

Note that the bending equations are altered slightly from 11.1-4 in [5]. kréfi@rence, a rotation
about the x-axis is expressed @sand a rotation about the y-axis @ x. These definitions have
been reversed in the above equations.

The user provides element properties in the Salinas input deck. Thieeggarameters are:

1. Element thickness.
2. Material ID, which contains the required material properties/p).

3. For the layered shell case, each layer must have specified its owniahdde(usually an
orthotropiclayer), thickness and fiber orientation.
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2.15 Truss

This is the definition for a Truss element based on pages 214-216 of (@dX.

The truss uses linear shape functions. Unlike the truss elements usedstigriNahere is no
torsional stiffness. The truss is uniform in area, i.e. the area is notctidumof position in the truss.

The following parameters are read from the exodus file.

1. The cross subsectional area of the truss (Attribute 1)

2.16 Springs

The Springelement is the simplest one dimensional element. It has no mass. Entries in tresstiff
matrix are added by hand. Note the following.

e The force generated in@pringelement should be collinear with the nodes. Typically spring
elements connect coincident nodes so that no torques are generated.

e Springsattach 3 degrees of freedom. In the event that some of the spring ctenatarzero,
there is no effective stiffness for that associated degree of freettmwever, the degree of
freedom will remain in the A-set matrices. This will be a problem if the otherekeg of
freedom are not attached to other elements which provide stiffness estriescting them to
the remainder of the model. For an understanding of the various soluticesfguch as the
A-set), see section 4.1.

The data for spring elements is entered in the input file. Three valuesvam i§x, Ky, andKz
This results in a 6x6 element stiffness matrix,

Ke 0 0 —K, 0 0
0O K, 0 0 -K, 0
0 0 K, 0 0 -K,
K¢« O 0 K¢ 0 0
0 -K, 0 0 K, 0
0 0 —K, 0 0 K

K' = (2.91)

Notice thatk’ is blocked. It could be written more simply,
K' = ( Ki:/l. _511 >
—Kin Kip

The rotation matrix for the two endpoints is block diagd%_f‘bAs a result, the stiffness matrix
in the basic coordinate system can be written,

14 In other words, the displacements in a rotated frame are related to theieatérame by a transformation matrix of
the form,



Ki1 K2
K=
( Kiz Ku1 >
Kij = RTK/|R
andRis the 3x3 rotation matrix of subsection 2.22.

where,

2.17 Gap Elements

The Gap element is a nonlinear spring which has a stiffness matrix that is dependeiigmace-
ment. In the element coordinate frame, the stiffness matrix has the same fdie asatrix in
equation 2.91 with the following replacements.

Spring Gap

Open Closed
Kx KU KL
Ky KT x KU /KL KT
K, KT x KU/KL KT

Note that typicallyKL > KU.

Also, like the spring, the two nodes of the gap element must rotate togetheéhandatrix
transforms exactly as the matrix for a spring element.

2.18 Multi-Point Constraints, MPCs

A description ofMPCs is contained in the users manual. This subsection discusses the coordinate
system dependencies.

MPCs may be defined in any coordinate system. However, all nodes iM&@s are defined
in the same system. This is done for convenience in parsing, and notyfduregamental reason.
Consider a constraint equation where each entry in the equation coujgkbiied in a different
coordinate system.

Y Gy =0

whereC; is a real coefficient, anq(m represents the displacement of degree of freediondegree

of coordinate systerk. We can transform to the basic coordinate system usq(ilﬁ)gz Y Rgmugo),

|
whereR ) is the rotation matrix for coordinate systdg Then we may write,

> GRI 0
I’J

where,
| RO
- % &)

Here,R; is a 3x3 rotation matrix, and because the two nodes of the spring musttagatberR; = R,
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or,

Whereka‘) =3 Ri(jki)cj'. Note however, that in this analysis, we have assumed that the dimension
of Cis 3. Thus, rotation into the basic frame will likely increase the number of coefs.

Salinas is designed to support constraints through at least two methoese Fitlude a con-
straint transform method and Lagrange multipliers. Lagrange multiplier metiiedssed for all
the parallel solvers. The serial solver uses constraint transform oh&tho

2.18.1 Constraint Transforms

Constraints may be eliminated using the constraint transform method. Thiscigbaéekin detail in
Cook, chapter 9 (ref 5). In this method, the analysis set is partitioned imstraned degrees of
freedom and retained degrees of freedom. The constrained doframeated.

Unlike many Finite Element programs, Salinas does not support user sp#oifi of constraint
and residual degrees of freedom. The partition of constrained andedtdegrees of freedom is
performed simultaneously in the “gauss()” routine. This routine perfoutipivoting so the con-
strained degrees of freedom are guaranteed to be independenhdaetispecification of constraint
equations is handled by elimination of the redundant equations and issweaohiag. User selec-
tion of constrained dofs in Nastran has led to serious difficulty to insurettieatonstrained dofs
are independent and never specified more than once.

For constraint elimination we have a constraint ma@ix C.C;, whereC is a square, nonsin-
gular matrix andz; is the solution. We wish to solve for,

Crc = —[Cc]_lcr

This is equivalent to the Gauss-Jordan elimination problenKfoe b if we letC; = b, C. =K
andx = —C,.. There is one additional wrinkle: we have mixed the row€&0C; is intermingled
with C;. However, we only require th&c be non-singular. Therefore if we do a gauss elimination
with full pivoting we should simultaneously obtain an acceptable reordefi) and obtairC.

In practice, it is not even necessary tiabe non-singular. Itis not uncommon for two identical
constraints to be specified. The program issues a warning and continues

Constraint transform methods do not currently support recoveryENbrces.

The Gaussian elimination is presently being performed with a sparse pazdége”SuperLU,”
instead of a dense gaussian elimination, to speed up the time to CreaBn some platforms, e.g.,
sgi and dec, the blas routidenyblas2.c  in the CBLAS directory of of the SuperLU directory (need
superlu-underscore-salinas.tar to create this) should be the one natme whose object file
is placed into the SuperLU-blas library (presently called libblas-undezssper.a) to be linked
in to create the salinas executable. Failure to include this routine will causeefaiih the type
"lllegal value in call to DSTRV” on the above platforms, and including morentjust dmyblas2.c
can cause slow performance on many platforms as the SuperLU-CBLA® aeerride the built-in
blas routines. (The built-in routines are almost always faster.)
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2.19 Rigid Elements

Salinas supports standgrdeudelements for rigid bodies. These include,

e RRODs - arigid truss like element, infinitely stiff in extension, but with no coupianigend-
ing degrees of freedom. There is exactly one constraint equation peeerie

RBARS - a rigid beam, with up to 6 constraint equations per element.

RBE2 - arigid solid. With up to 61— 1) degrees of freedom deleted, wheres the number
of nodes.

e RBES - an averaging type solid. This connects to many nodes, but remapuwest dofs on
the slave node.

All of the rigid elements are stored and applied internally as MPC equatiorsRBIE2 is a special
case of RBAR (actually just multiple instances). Note, that unlike MPC equgtibese rigid
elementglo activate (or touch) degrees of freedom. In general, an MPC equatilomolvactivate a
degree of freedom. In the case of a rigid element however, it is negdssactivate the degrees of
freedom before constraining them. Otherwise the rigid elements do not acebkelements.

Rigid elements are input into Salinas using exodus beam elements. A blocksetiten pro-
vided in the input file indicating what type of rigid element is required. Themmistiffness or mass
matrix entry for any type of rigid elements (only the MPC entries describedegbo

Considerations for Nastran users

These rigid elements are provided for similar capability with Nastran, howsgeificant differ-
ences can exist. There are a number of reasons for this. A primaryis#ue differences in the
solvers. Salinas solvers manage the separation of dependent andriddepdegrees of freedom,
freeing the analyst from having to manage this complexity. Specification idf eigments in Nas-
tran implies this relation. When the elements are applied in the most common waysagsach
RBAR constraining all 6 dofs), little or no differences are found betwertwo implementations.
When only some of the dofs are constrained, and certainly if Nastratosgaicapability is invoked,
larger differences may be found.

2.19.1 RROD

An RROD is apseudelement which is infinitely stiff in the extension direction. The constraints
for an RROD may be conveniently stated that the dot product of the tramskaii the beam axial
direction for a RROD is zero. There is one constraint equation per RROD.

Consider the geometry of Figure 2.19.1. The equation of constraint foRR@®D may be
written as follows.
lxduy + lyduy +1,du, = 0 (2.92)
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Figure 9. Rigid Element Geometry. The undeformed extent of the bar
may be expressed &swith components,

|x = XB—Xa
ly = Ys—Ya
l; = Zz—2a

After deformationdu = dﬁB - dﬁA, the modified extent id’, with com-
ponents as below.

Il = l+du
L = l,+du,.
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2.19.2 RBAR

An RBAR is apseudelement which is infinitely stiff in all the directions. The constraints for an
RBAR may be summarized as follows.

1. the rotations at either end of the RBAR are identical,
2. there is no extension of the bar, and

3. translations at one end of the bar are consistent with rotations.

Itis apparent that the last two of these constraints may be specified mathaipatjaequiring that
the translation be the cross product of the rotation vector and the batidiirec

T=RxL
whereT is the translation difference of the bar (definedias- Us),
Ris the rotation vector, and
L is the vector from the first grid to the second.

The three constraints in the cross product, together with the three cotstraquiring identical
rotations at both ends of the bar form the six required constraint eqsati@eferring to Figure
, the six constraint equations may be written as folfSivs.

duc+ R, — 1R, = 0 (2.93)
du+1,R—IxR, = 0 (2.94)
du+IxRy—IyR, = 0 (2.95)
R, = R (2.96)
R, = R, (2.97)
R, = R, (2.98)

Partial Constraints on Rbars

Nastran permits application of only some of the above constraints on an RB#Rxample, one
can apply only the first 3 constraints, and ignore the constraints on rottae. In addition, Nas-
tran permits control of which end of the bars is constrained, and can spktriient and independent
degrees of freedom between the nodes. However while Nastran perssithén 6 dependent dofs,
there must always be exactly 6 independent dofs.

Salinas uses two attributes in the exodus file to establish partial constraintBARSR An
attribute labeled “CIDFLAG_INDEP”is the constraint flag associated with the independent dofs. It
should always be “123456”, and it is always associated with the fiide b the bar. The second
attribute, “CID_-FLAG_DEPEND?”, establishes the dependent degrees of freedom on thedseode

15 For a zero length bar, the first three constraints are modified to bedogne duy = du; = 0.
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of the bar. This attribute determines which of the equations above are appl@dexample, if
CID_FLAGDEPEND = 123000then only the first three constraint equations are applied.

With partial application of the constraint equations, the results can be siagfulf equations
2.96+2.98 are not applied, then the rotation terms in 2.93 are appropriateoothlg independent
node. This is not always what is anticipated by the analyst, and becarsdgmo mechanism for
aIIocatL%% degrees of freedom to arbitrary ends of the bar, it may diféen fwhat is produced by
Nastran:

2.19.3 RBE3

The RBE3 element behavior is taken from Nastran’s element of the same Eantier implemen-
tations of the RBE3 differed significantly from the MSC/Nastran implementatseesgppendix C).
The revised element should act like a Nastran RBE3 for most appliio‘ﬁs;e element is used to
apply distributed forces to many nodes while not stiffening the structure B8&2 or RBAR does.
The RBES uses the concept of a slave node. The theory follows the M&@rekntation included
in the appendix.

Characteristic Length. An element characteristic length is computed to allow scaling the equa-
tions. The distance between the reference point (subsgrgmd a connected point (subscripts
expressed by the components

Lix = X—Xq (2.99)
Li7y = VYi— yq (2.100)

Li = y/LA+Ly+LE, (2.102)

The characteristic length of the element is the average of these lengths,

N
Le= [Lil/Ne, (2.103)
2,

whereN; is the number of connected points. L is computed as a binary zero it is changed to a
value of unity.

To insure that the element is invariant to a change of scale, the weightintidaswl through

16 Applying CID_FLAG_INDEP = CID.FLAG_DEPEND = 1 results in an RROD type constraint.

1"The Salinas element is not as flexible as the Nastran element in all resprepasticular, there is no flexibility to
apply node specific weighting. Weights may be applied by degree ofdnegut these weights are applied uniformly to
all nodes in the pseudo element.
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Figure 10. Equilibration of loads
i

A force of —&; at pointi is equivalent to
Liy aforce of—€& and amomentof, =L,y
at pointg.

I—i,x

w6 provided by the user are modified to produce a connected grid point’s tiregghatrix.

Wy
Wo 0
W3 L2 (2.104)
0 Wng
Wg L(Z: ]

That is, the rotational DOF coefficients are scaled by the square of #raathristic length.

Equilibration.  Conventional equilibration equations are applied. These equations rdlateea
applied at the reference point to an equivalent force and moment agiltbeé slave node as il-
lustrated in Figure 10. The loads at the connection pajnelate to the loads at the slave point.

Py = s’qP. (2.105)
Where,
i 1 0 0 O Li7z —L|y 7
1 O _Li,Z O LX
Sq— 1 L{V *';vx % (2.106)
0 1 0
- l -

Assembled Constraint. As shown in Appendix C (equation C.1), the loads on the set of all con-
nection nodes may be computed from the load on the slave node.

R

=GPy
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Where,
Gg=Ats'w (2.108)

heres is a concatenation of the individugl,

Siq
S = 24 : (2.109)
SNe.g
Similarly,
Wy
W= We (2.110)
"
andAis a 6 by 6 weightings matrix.
A=S5'Ws (2.111)

We require thaiA be nonsingular, which corresponds to a requirement that the RBE3rbe no
mechanistic. The constraint relation follows directly fr@g, i.e. define the 6 by6+ 6N.) matrix,

C: [ —Iqq qu ] (2112)
and apply the constraint,
C[ Ha } —o0. (2.113)

Each row of C contains the constraint coefficients for one of the six possible constrairtkein
RBES.

2.19.4 RBE3 -old version

The RBE3-old elements behavior is taken from Nastran's element of thereame= Note however,
that the precise mathematical framework of the Nastran RBE3 element isauifisp in the open
literature. This element should act like an RBE3 for most applications. Theeeleis used to apply
distributed forces to many nodes while not stiffening the structure as a2 RBEBAR would. The

RBES3-old uses the concept of a slave node. Constraints are spesifigitbas.

1. The translation of the slave node is the sum of translations of all the ailesin the element.

2. The rotation of the slave node is the weighted average of all the othesmtbut it. This is
determined by the nodal translations, not by their rotations.

While the first of these constraints is easy enough to apply using multi-ponstreants, the
second is a little more difficult. We seek a least squares type solution.
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X2

slave

Let Ifji = L_ji - L_jslave

— =

I—i = X| - Xslave

ThelL represent a vector from the “origin” to the pointwhile theD; represent the differential
displacement of the same points. Note that the origin is at the location of the sldeeand will
not in general be at the centroid of the structure.

We will use least squares to compute the rotational vector of the slave mbdeis equivalent
to computing a rotational inertial term and requiring a similar net rotation for éméroid.

The displacement at the centroid should be given by,
Bi = ﬁ X Ei
or, in the least squares sense we seek to minifize

— — —> —

E= Z —RxL)- (D —RxL)

Take the derivative o with respect to a component Bf ry.

dE o I L
d—rk—o 22 xLi)-(RxLj)—Dj-(&xL)

Now, letR= ¥ ,,rmém. We substitute foR in the previous equation to obtain,

Now, if we write L; as a column vector then the expressiénx Ei) - (Em % fi) can be written as
LTLi -1 —LiL{. If the sum oni is performed for the first term, we may write,

> TmAmk— ) & (LixDi)=0
m |
where

Amk = (Z |Li|2> Sk — LI
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This provides three equations (one for e&m the 3 unknowns;,. Note thatL]" represents then
component (1-3) of the vectas.

The solution is found by looping once through iatb fill in the A matrix, and simultaneously
to fill out the coefficients for the three equations involving Once the loop has been completed,
the coefficients oR are known, and the three componentsptan be added for each of the three
equations. Each equation has 3 componeni @h components of); and 2 components &fgjave
for a total of 21+ 5 equations.

2.20 Shell Offset

Consider a shell offset, with an offset vectarNotice tha could be defined at each nodal location
in what follows, but for this development, we assume a single oifsetich applies to all nodes.
Define a coordinate system at the node, with variable3n the offset beam the coordinate system
isU.

Now, u is related simply tas.” The constraint of a constant offset may be stated that the dis-

placement difference of the two systems must be orthogonglite. (u— i) = V x K, wherek is
the rotation at the nodes. Notice that the rotation is the same at both nodes.

( E > - [L]< E ) (2.114)

whereL is a constant matrix which depends only on the geometry. We can use thi®traaton
matrix to eliminate the degrees of freedom associated wiifhé energy of the shell can be written,

Estrain:O.5{ E }T [K]{ E } (2.115)

Thus we can write,

But with this substitution,

.
Estrai,,:o.s{ , } [LTKL]{ , } (2.116)

K

If we letK = LTKL, then,

Estrain:0.5{ y }T[K]{ » } (2.117)

Thus,u’has been eliminated, and the equations may be rather simply put in terms of the outp
variables.
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2.21 Notes on Consistent Loads Calculations

Starting with equation 4.1-6 fror@oncepts and Applications of Finite Element AnalysysCook
etal,

{re} = [ B El{eo}av — [ BT {oo}av+ [ NI {Flav+ [ [NT{0}dS  (2118)

where each of these terms are defined in Subsection 4.1 of the above radm&érence. The load
vector,{re}, is composed of four parts in Eqn. 2.118. In this document, only the lastvgiaich is
the contribution of the surface tractions to the load vector, will be considé&tewriting,

{re} = /Se IN]T{®}dS (2.119)

Here, the integral is calculated over the surface of the element on whicutfaee traction{d},
is applied. Therefore,

{0} = [0, @, (2.120)

and|N] is the shape function matrix of the element on which the surface tractidis are applied.
In Salinas{@} can be applied within PATRAN by applying a spatial field to a specified sidé\set.
a result, when calculating the load vector, this field must be accounteahfBalinas however, this
spatial field values will be available only at the nodes of the element. Usingtad walues of this
surface traction, the value inside must be defined using an interpolatiotidniover the surface or
side of the element. Since only one value per node may be specified on treesideSalinas, a
surface traction may be applied only in one direction at a time. Therefdrpwill be defined as

Ny
{0} = { ny }GJ(X,V,Z) (2.121)

nz

2.21.1 Salinas Element Types

The following 3-D and 2-D elements have consistent loads implemented:

e Hex8
e Hex20
e Wedge6

e Tetd
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Tetl10

e Tria3

TriaShell

Tria6 (four Tria3s)

QuadT (two Tria3s)

e Quad8T (1 QuadT and 4 Tria3s)

2.21.2 Pressure Loading

Here, we will consider only pressure loads on 3-D elements, such that

{Pr=49 ny P P(XY,2) (2.122)

where[ny, ny, nZ]T is the normal to the element face. Hence, the consistent loads can betealcula
as,

{re} = [INT{@}ds= [ INT@(xy.2(@xb)ds (2.123)
S S
Here,
ox dy ad
_ [a*)r(’ 6%’ aTZ}T (2.124)
- 0x 0y 0
b— [a*)s(’a%’ aéT (2.125)

where® is the pressure load, and,y,z) are the physical coordinate directions, amng) are the
local element directions for the face of the element. Notice, taking the proskict ofd andb, the
normal is obtained.

2.21.3 Shape Functions for Calculating Consistent Loads

For 3-D elements, all the faces are either quadrilateral or triangulaesh&fence, shape functions
for quads and triangles could be used to evaluate the consistent lodtig. siiape functions for
the 3-D elements are used, it will reduce code and “fit” better into the dufiréte element class
structure. This is what is currently implemented. This requires a “mappingfi@B-D elements’
faces to a 2-D plane. The additional overhead for using the 3-D elemeihistisach face of the
element must have this “mapping” which states how the elements’ 3-D shag@ofsmwill map
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to a 2-D element. For example, for a Hex20, the element coordiigaieg,,ns3) are defined in a
particular way. For each face of the Hex20, defined by a side id, tleasdichave a local coordinate
system(r,s). The “mapping” will define how(r,s) are related tqn,n2,n3). This will also help
defined how 2-D Gauss points are mapped to the 3-D face. These mappérdgme for all the 3-D
elements.

2.21.4 Shell Elements - consistent loads

All the 2-D elements (shell elements) are based on the Tria3. The condselst calculations

for the Tria3 can be “copied” to the TriaShell. This way all the shell elemeiritsuge the same
consistent loads implementation. Since Carlos Felippa designed the Tria8nbistent loads im-
plementation is used. The portion for linearly varying pressure loads srshere. If the loads are
aligned along an edgéq}, they need to be decomposed it gn, qt). Where(s,n,t) are coordi-
nate directions along the element edge. Coordisa@ries along the element edge tangentiaily,

is normal to the element edge, anid tangent to the element edge in the transverse direction, i.e.,
in the direction of the thickness. Once, the edge load is decomposed, tagoeguor consistent
loads are

1 1
fl = 5(70st + 32 Lot f2 = 5030+ 702)La1 (2.126)
1 1
= o5(7am + 3tz L2a P20 = o5(3am + 7ah2) L2a (2.127)
1 1
ft = %(7%1+3Ch2)|—21 f2 = @(3%1+7Qt2)|—21 (2.128)
mts = m’s=0 (2.129)
1 1
mt, = ~go 3L+ 2012)L %21 My = 5o 20 + 30k2)L%21 (2.130)
1 1
Ml = — o3 +202)L%1 M= (20 + 3the)L %21 (2131)

whereqq is the value ofj in thesdirection at node 1 of the edgle;; is the length of the edge. The
superscripts 1,2 are the node numbers of the edge. Note, it is assureeithdttethe loady is per
unit length, but this is not assumed when creating the sideset in PATRA&k&mple. Therefore,
this distributed load is multiplied, in Salinas, by the thickness of the triangle.

Now if the pressure load is on the face of the Tria3, the equations become,
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fly=fh =mh =% =1 =n?,= 3, =13, =m*,=0 (2.132)

“a(im+;m+%mm (2.133)
f2,= ($m+8m+;pm (2.134)
P, = (970I01+ 970I02+ 4£5p3)A (2.135)
mty = 320[ (Ya1+Y21) P1+ (3y31+ 5Y21) p2 + (5ya1+ 3y21) s3] (2.136)
miy = 320[ (X134 X12) P1 + (3X13+ 5X12) P2 + (5%13+ 3X12) P (2.137)
Py = 320[(5)/12 +3ys2) p1+ 7(Y12+ Y32) P2 + (3y12+ 5y32) 3] (2.138)
ey = 3'2 O[(5X21 + 3X23) P1+ 7(X21+ X23) P2 + (3X21 + 5X23) P3] (2.139)
My = 320[(3)/23 +5Yy13) P1+ (5Y23+ 3y13) P2 + 7(Y23+ Y13) P3] (2.140)
My = 320[(3X32 + 5xX31) P1 + (5%a2+ 3X31) P2 + 7(Xs2+ X31) P3] (2.141)

wherey;j = y; —yj andx; = X — xj, Ais the area of the triangley, is the value of the pressure load
at node, and(x;, ;) are coordinates of the triangle in 2-D space.

Finally, the “pseudo” elements (QuadT, Quad8T, Tria6) created by Usiags require a little extra
overhead. For example, the Quad8T is composed of 1 QuadT and 4.THaBgever, since it is
defined as a Quad8T, it will have distribution factors at its 8 nodes, arse thlistribution factors
have to be mapped to the 1 QuadT and the 4 Tria3s. The number of distribationsf will be 3
however, if the load is applied to its edge. Therefore, this extra codinpeaeen in the ElemLoad
method of the shells’ classes.

2.22 Coordinate Systems

Coordinate systems are provided for a number of applications including:

=

. specification of boundary constraints (SPCs)

2. specification of multi-point constraints (MPCs)

3. specification of material property rotations for anisotropic materials.
4. specification of spring directions (see subsection|2.16).

5. specification of output coordinate systems (in history files only).
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Figure 11. Original, and rotated coordinate frames

There are some applications for coordinate systems which we do NOT intsng@port. These
include,

1. specification of nodal locations,

2. specification of new coordinate systems in any but the basic system.

Coordinate systems for cartesian, cylindrical and spherical coordimasg be defined. In the
case of noncartesian systems, ¥i&plane is used for defining the origin of tBedirection only.

Each coordinate system carries with it a rotation matrix. It is important to cldrgymeaning
of that matrix. Specifically,

X' =RX

Where X’ is the new system of coordinateR,is the rotation matrix anX is the basic coordi-
nate system. For cartesian systems, the rotation matrix is static. Curvilineamsywsit require
computation of a new rotation matrix at each location in space.

The usual identity on rotation matrices applies, namely:
X =R"X' (2.142)

and
R'TR=RR =|
As an example, consider a cartesian system as shown in Figure 11.

The new system (marked by primes) is rotaifidom the old system with the neX/ axis in the
first quadrant of the old system. The rotation matrix is,

cogB) —sin(@) O
R=| sin(6) cogb) O
0 0 1
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2.23 Constraint Transformations in General Coordinate Sysems

In general, constraint equations can be applied in any coordinate syStiarhere describe the
transformation equations and implications for general constraints in angioate system. The
implications of this use in Salinas are also outlined.

Consider a constraint equation,
C'uU=Q (2.143)

where the primes indicate a generalized coordinate frame. The frame manbi®tmed to the
basic coordinate system using equation 2,142, and

U =Ru (2.144)
We can now rewrite equation 2.143,
CRu =Q
Cu =0Q (2.145)

whereC =C'R.

Thus a general system of constraint equations may be easily transftontes basic system.
Further, the rotational matrix is a 3x3 matrix which may be applied to each noegrees of
freedom separately.

2.23.1 Decoupling Constraint Equations

We still have a coupled system of equations. We partition the space into a@aestrand retained
degrees of freedom, and describe the constrained dofs in terms of iis Sshplement.

u= [ Ur } (2.146)

The whole constraint equation may be similarly partitioned.

u
[C C ] [ e ] =[Q (2.147)
Note thatC; is ancxr matrix, C. is cxc, andQ is a vector of lengtle. Under most condition® is
null.

This may be solved faug,
u.=C;lQ-C lcuy (2.148)

We must be concerned with cases wh&genay be either singular or over constrained. The former
case occurs if we try to eliminateequations, but the rank @ is less tharc. This could occur

if the equations are redundant. We can over constrain the system @lig ihonzero. Both these
situations need attention, but both can be dealt with.
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We may also write the solution using a transformation mafirix,

| Mo
where
1
= [ Ce ]
Cre = -C;'Cr
and

2.23.2 Transformation of Stiffness Matrix

We assume a similar partition of the stiffness matrix. The equations for statitiseame

Kr Ky u | | R
Ker  Kee u | | R

[K][T]u +[K][Q] =R

or,

and
T'KTu =T"{R-KQ} =R

We can define the reduced equations,

K = TTKT — Krr + KI’CCI'l'.I +CIjI(;Kcr +C;I(—3KCCCrC

and, o
. KeQ
R :TTR—TT[ rcv]
chg .
=R +CLR: — KicQ— CLKccQ

The solution in the retained system is

IZUr:R

(2.149)

(2.150)

(2.151)

(2.152)

(2.153)

(2.154)

(2.155)

(2.156)

(2.157)

(2.158)

The system may now be solved using the reduced equations, and theatwtsulegrees of
freedom may be solved using equation 2/148. Much of this is detailed in Gobkyithout the

constrained right hand side.

113



For eigen analysis the mass matrix may be transformed exactly as the stiffteégsmejuation
2.156. There is no force vector.

For transient dynamics the mass and stiffness matrix transform the saméré@eector and
force vector corrections may be time dependent. There is currently noigteuo store these time
dependent terms in Salinas.

2.23.3 Application to single point constraints

Our initial efforts at applying single point constraints (SPC) has been limitdtetbasic coordinate
system. In that system the equations decouplas unity andC, is zero. Then equations 2.156
and 2.157 reduce to elimination of rows and columns.

To properly account for the coupling that occurs when the constrai@tsat applied in the basic
coordinate system, we must generate all the constraint equation on theTiodenay be up to a
6x6 system. | believe that there is no real conflict in first applying coimésrén the basic system,
then adding additional constraints in other systems.

The process for applying constraints can be summarized as follows.

=

. Generate the constraint equation in the generalized coordinate sysjaaiion 2.143).
2. Transform the constraint equation to the basic coordinate systemati@g@.144).

3. Determine the constraint degrees of freedom. It may need to be doaedartwith the next
step to keep from degrading the matrix condition.

4. Compute the two transformation matri€gst andC,. from equations 2.147 and 2.151.

5. Compute the corrections to the force vector from equation 2.157. Wentlyrdo not have a
structure to store these corrections, except for the case of statics.

6. Compute the reduced mass and stiffness matrices from equation 2.156.

7. Eliminate the constraint degrees of freedom from the mass and stiffress.
In addition, for post processing,

8. store the terms of the equations necessary to recover the constiggslef freedom (equa-
tion[2.148).

A few words about post processing could also prove useful. In tkeifitplementation of
Salinas, constraints were applied only in the basic coordinate system. Gheeds freedom to
eliminate was obvious from the exodus file, and it's value was a constardlfygero). In this later
version, a more general approach must be used. We use the follownategstr

1. degrees of freedom directly constrained to zero are handled implichilg.iF done by setting
the G-set vector to zero before merging in the A-set results. There i®rage cost for this.
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2. Other degrees of freedom are managed using am$pobject. An array of these objects will
be stored globally. Each object contains the degree of freedom to fill,tegenindicating
the number of other terms, a list of dofs/coefficients, and a constant. adiigdtes solutions
of the form,

retained dofs
Uspc= constant- Z uGi (2.159)

2.23.4 Multi Point Constraints

The application to multipoint constraints is very straight forward. The onliedihce is that the
whole system of equations must be considered together. This chandjesénalgebra significantly
because the matrices must now be stored in sparse format. However,ghehsteare applicable
for single point constraints apply here as well. Subsection 2.18 deals xreitty with MPCs.

2.23.5 Transformation of Power Spectral Densities

Note: The following is taken almost verbatim from Paez’s book [48]. Watiiehow to transform
output PDS.

Let H(f) denote a frequency response function vector for a given input (igltiel system)
expressed as,

H(f) =Hi(f)er+Ha(f)ex+Hs(f)es

whereg represents the unit vectors of this space. Note kh@t) is an output vector at a single
location in the modelH () can also be expressed using an alternate set of unit vegtors,

H(f) = Hi(f)& + Ha(f)& + Ha(f)&s

Taking the dot product of these two equations and equating the resultguse

3
Hi(f) = 5 cabk(f) (2.160)
K=1
where
Cki = & &

The spectral density functio@;j (f) (for a given input and at a single output location) can be ex-
pressed as,
Gij () = aH (f)H;(f) (2.161)

wherea is a constant and superscript * denotes complex conjugate. Similarly faltémmative
coordinate frame,

Gij () = aH"(f)H;(f)

We may use equation 2.160 to exprésin terms of theH;. We may then use the spectral definition
in equation 2.161 to provide the transformation of spectral densities.

115



Mw

éij(f) = G(

3

3
CkiHE(f)> (Z ijHm(f)>
1 m=1

CkiCmjGkm (2.162)
1

k

I
M w

k=1

This can be expressed in matrix notatiorGas: CT GC.

2.24 HexShells

Hexshells are provided to give the analyst an element with performancersicmdastandard shell,
but with the mesh topography of a brick. Thus, thin regions of the modebeameshed with
hexshells, without concern for the bad aspect ratio of the elements, iimtbpography consistent
with a solid mesh.

The element is documented extensively in the description by Carlos Felippagference 49).
The paragraphs in this document summarize the limitations of the shells and #ilei@osage.

Because hexshells have an inherent thickness direction, it is importamefoldto identify that
direction. There are (at least) four methods to accomplish this.

natural The natural ordering of the nodes in the element can determine the thickness direction.
This is the method used by Carlos in developing the element. | believe that theativity
for the element will indeed have to be modified to properly interface to his aoétw

sideset The placement of a sideset on one (or both) thickness faces of the ¢senméuely iden-
tifies the thickness direction.

topology Usually the topology can be used to identify the thickness direction. Thénakkstiould
be used in a sheet. If the hexshells are considered alone, only thaiffaees of the sheet
are candidates for the thickness direction. Further, once the thickitessah is established
for one element, it must propagate to the neighbors. (Note that this impliesétanit have
a self intersecting sheet).

projection The thickness direction could be determined by the closest projection tordircaie
direction.

We will try to support all of the above methods. Ttepologymethod puts the least burden on the
analyst. It is the least explicit however, and the most work to implement ¢&dlyein parallel).
The next simplest (for the analyst) is theojectionmethod. Sideset methods are burdensome for
both the analyst and the code development team.rnBl@ral method is the easiest to implement,
but can be next to impossible for the analyst to use.

Input will be structured as follows. Keywords are associated with eathadeOnly one of the
four keywords above can be entered. If no keyword is entered ttpeogyis assumed.
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Block 9
HexShell
orientation sideset="1,2’
material=9

end

or,

Block 10
HexShell
orientation topology
material=9

end

2.25 Membrane

In this section we provide the theory behind the tangent stiffness matrix éoqulad membrane
element in Salinas. This element has stiffness in the in-plane directionsaduiohstiffness out-
of-plane. Also, it has no rotational degrees of freedom. We note thdbthrilation given here is
identical to the membrane used in Abags.

To begin, we define two orthogonal surface directions in the plane of tmebmamel andm,
and a normal vectan. Given these unit vectors, a local coordinate system, n) is implied. Then,
we consider the weak formulation of the internal force term for the membiratiee deformed
configuratiort

Myt — / 8D : 6dQ (2.163)
Q

whereW,; is the virtual work,Q is the domain of the membrane,is the stress tensor, ard=
% — D+ W is the deformation gradient. The rate-of-deformatidand spin tensoné/ are defined

as
D_ % [<g§> N <‘;)‘:>T] (2.164)
W % ng) ~ (ZDT] (2.165)

Note that we are using an updated Lagrangian formulation here, and #hirgélgral in equation
2.163 is over the current (deformed) configuration of the membrane.

We note that we can also write equation 2./163 as
Wit = / 5L : 0dQ (2.166)
Q

sinceW is a skew-symmetric tensor, and the tensor product of a skew-symmetrar weith a
symmetric tensor (i.eq) is zero.
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Equation 2.166 is written in terms of the global coordinate system. In the formafitime
tangent stiffness matrix, we wish to use the fact that all stress comporemsilrio the plane of
the membrane are zero. Hence, when considering equation 2.163 in tettreglofm, n) coordinate
system of the membrane, we can eliminate the out-of-plane terms and write as

Wt — / SLim : GimdQ (2.167)
Q

aU|

,m,and

wherel, m= 1, 2 are the indices for the in-plane coordinate system of the membrgne
O|m is the X2, in-plane stress tensor.

Next, we need to relate the derivatives in the plane of the element to thosegiotied coor-
dinate system. This is because the numerical integration of the tangentsstiffregrix takes place
in the plane of the element (and hence involves derivatives with respétiplane coordinates),
whereas the derivatives in equation 2.167 are in terms of global cotedinsle can express the
in-plane displacement in terms of the out-of-plane displacement as

u = ul (2.168)
U = um (2.169)
Up = un (2.170)
(2.171)

Then, the relationship between the derivatives can be computed

ou Oduox du
oagu_uoer Y 2.172

0x;  OXO0X axa ( )
whereg is the unit vector in the direction. Similar expressions hold for the other components.
Taking the dot product of both sides of the previous equation with the anibvin themdirection,

€mn, We arrive at

OUm ou
— e 2.17
X aXa ( 3)

Next, we consider the expression given for the tangent operatdr in
[ 8:C:dD+o: (3L -dL 25D -dD)dQ (2.174)
Q

Since there is no stress in the out-of-plane direction, and nothing varmsgtithe thickness, the
thickness can be pulled out, and this can be written simply as an area integral

t/éD:C:dD+0: (5LT -dL— 23D - dD) dA (2.175)

A

The first term is recognized as the material stiffness, and the secondgedheetric stiffness term.
In particular, the material stiffness term is precisely the same as the staodardf the material

stiffness in three dimensions, expect that now it is restricted to two dimensibims geometric
stiffness term is more involved, and so we elaborate some more on that.
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First, we consider the deformation gradient in the plane of the element

ou
Lim=&e-— 2.17
Im= € % ( 6)
Then, we have
OLim=¢ géu (2.177)
oJou
L=(=—) & 2.17
6 Im (axm> e| ( 8)
(2.179)
We also note that . .
ou ou ou ou
L'L=(—) gen—=(-—] — 2.180
<6xm> @ e’“ax| <6m> 0x ( )
sinceg’ em = dm.
The rate of deformatioD is simply the symmetric part df. Thus, we can write
1 ou ou
Dim = > <Q % + €m 6X| > (2.181)

With these relations, we can expand the expression for the geometric sdiffre
odu 1/ odu ou odu ou
t/ Im (axm> 0X| > <anm+emaxl> (anm‘i‘emaxl) (2.182)

The material stiffness term can be integrated with a selective deviatorioagprin much the
same was as for a volumetric element. First, we note that after finite elemergtidiation, the
material stiffness term in equation 2.175 can be written as

Kumat = / BTCBdV (2.183)
Y

whereK is the stiffness matrixy is the volume of the elemenB is the two-dimensional strain-
displacement matrix

We define the mean quadrature counterpaB,to
B— / BdV (2.184)
\%

We note that botlB andB can be decomposed into their volumetric and deviatoric components, i.e.

B=Bv+Bp (2.185)
B=Bv +Bp
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With these decompositions, we define
B =By +Bp+sd(Bp — Bp) (2.186)

wheresdis a parameter between 0 and 1. Wisels= 0, the element corresponds to a mean quadra-
ture element. Whead= 1, the element corresponds to mean quadrature on the volumetric part, but
with full integration on the deviatoric component.

With this new definition oB, we can define the stiffness matrix for this element as
K — / BTCBdV (2.187)
Vv

This is the approach taken for integrating the material stiffness term in equUafig5

2.26 Corrections to Element Matrices

Several elements generate element matrices that may need correctioresafmie, the stiffness
matrix generated from Craig-Bampton reductions may not be positive defamitemay not have
the proper null space. Infinite acoustic elements have a similar problem withetb& matrix. These
errors are typically small, but may lead to unstable systems. Correcting thrs &ran important
step.

The errors are removed using an eigen decomposition. We compute theatigesnand eigen
vectors of the element matrix of concern.

(A—A)e=0

whereA is the matrix of concern\ are the eigenvalues amghare the eigenvectors. Computation of
the eigen problem on a small element matrix is not expensive. We normalizeygmectors such

thatg"@=I. It follows thate" = ¢~1. We then correct the element matrix by computing,
- Ai<0
Ajk = Ajk — z (ﬂj)\i(ﬂk (2.188)
|

The element matriA then replaces matrii in subsequent calculations. The correction of the null
space vectors (as well as the element matrix) is optionally performed fog-Beampton models.
See Figure 6.
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3 Loadings

3.1 Matrices from Applied Forces

In addition to the standard mass and stiffness matrices that arise in lineansthdgnamics, force-
based matrices are also common. The most common include follower stiffnessemétom ap-
plied pressures, and Coriolis/centrifugal matrices in rotating structurbssel notes describe the
design of the interface for these additional matrices. We will focus on tleniog three terms

1. Follower stiffness matrix from applied pressure. This is a nonsymmetric, tleat is sym-
metrized, and becomes part of the stiffness matrix.

2. Centrifugal stiffness in rotating structures. This is a symmetric term, acahbes part of the
stiffness matrix.

3. Coriolis matrix in rotating structures. This is a skew-symmetric term that bespan¢ of the
damping matrix.

3.2 Modal Analysis of Rotating Structures

The finite element modal analysis of rotating structures has been studiechigyanthors. There are
two different approaches to this problem, with each approach being limitestairc applications.
In the first approach, a rotating coordinate system is constructed tas&savith the structure:=>3
Then, relative deformations about that rotating coordinate system aghsoln the second ap-
proach, an Eulerian (ALE) formulation is used, in which the structure retdti@ugh an Eulerian
mesh, and then Lagrangian deformations are considered about theEalenfiguratiorp® >°

The first approach is not appropriate for modal analysis when cosuafetces are present, since
the boundary conditions in the contact patch would change with time. On the ludhd, the
second approach is applicable to modal analysis with contact, but retfuéresructure to have a
radial symmetry. In either case, the formulation leads to a gyroscopic eilyengroblem, which
can then be solved using a quadratic eigenvalue solver.

In these notes, we derive the finite element eigenvalue formulation comdis to three-
dimensional finite elements.

We begin by considering the homogeneous equations of motion of a solidibtthee dimen-
sions
pi—0-0=0 (3.1)

whereu’is the particle acceleratiom, is the material density, and is the stress tensor. We only
consider the homogeneous (no forcing) equation here, since we arly in&@nested in eigenvalue
analysis. This equation holds relative to a fixed, inertial reference fraimeterminertial reference
frameis typically used to describe a reference frame that is not accelerating.

We now consider a reference frame that has the same origin as the ineetidéscribed above,
but is rotating at some angular velocify = (w, wp,ws3). We wish to formulate the eigenvalue
problem in an Eulerian framework, in which the displacement, velocity, andla@tion are all
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written asrelative quantities, i.e. relative to the rotating coordinate system. Once the equations
are written in terms of these relative quantities, we will be able to consider thié defarmation
eigenvalue problem about this rotating state.

We first note that the position vector of a point on the structure can writterrimstef both
the stationary coordinate system, ire= (X,Y,z), or the rotating (relative) coordinate system, i.e.
rrel = (Xrel, Yrel, Zrel)- Itis clear that = ryg, even though the individual components in these vectors
are different.

The relationships between the velocities and accelerations in the two cderdysiems are a
bit more complex. Standard textbooks on rigid body dynaffiigave the following expressions for
the velocityu and acceleration in terms of the relative velocity,e and relative acceleratian,|

and 4o

wherer = x4 u andx are the position vector and coordinates of a point.

We can now rewrite the first term in equation 3.1 as

. . . dQ
ply = p ure|+ZQ><ure|+a><r+QxQ><r (3.4)
In our case, we are only interested in the case where the structure is gagatanfixed angular
velocity, and thusl? = 0.

Having the equations of motion in the rotating coordinate system, we now greceenstruct
the weak formulation. This can be done by multiplying equation 3.1 by a testidnncand inte-
grating by parts

p[/ Ure|~vdv+2/(qure|)-vdv+/(Qxer)-vdV] +/0:Dvdv+/0nvd8:0 (3.5)
Vv Vv Vv \Y S

We note that since = x+ u, the term involvingx will simply become part of the load vector. Since
we are interested in eigenvalue analysis only, we can drop this term. Alswijllixsubsequently
drop therel subscripts from the above equation, since all quantities are now in the/edlattating)
coordinate system. Thus, the weak formulation becomes

pVu-vdv+2/(Qxu>-vdv+/(Qxqu)-vdv] +/0: Dvdv+/onvd8:0 (3.6)
\Y \% \ \Y S

For the purposes of eigenvalue analysis, we can also drop the bguatar/so,vdS since it will
contribute to the load vector. Thus, we have

[/Vu.vdVJr/V(QxU).vdV+/V(Q><Q><u)-vdV} +/V0:DvdV:0 (3.7)

The first and last terms in the above equations correspond to the maggfardsmatrices, respec-
tively. The second term is the skew-symmetric Coriolis term, and the third terne isytmmetric
centrifugal term. We note that the stiffness term includes both the initial (mBtstiffness asso-
ciated with the material properties, as well as the geometric stiffness assowsittiethe stresses.
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This stress state comes from the solution of the steady-state rolling probleoh wbludes the
additional stresses associated with the inertial forces.

It is easy to show that the centrifugal term is symmetric, whereas the Coriatisiseskew-
symmetric. For the centrifugal term, we note the following identity for the triplesgrproduct

ax (bxc)=Db(a-c)—c(a-b) (3.8)
Using this for examining the Coriolis term, we have
/(QxQ><u)-vdV:/(Q-v)(Q-u)—(u-v)(Q-Q)dV (3.9)
\% \%
By switchingu andv in the above expression, the same result is obtained, since the dot fioduc
commutative. Thus, this term is symmetric.

For the Coriolis term, we first write out the cross product term in terms of ispmnents
Q x U= (—Qaly+ Qouz, Q3U; — Q1U3, —QoUy + Q1Us) (3.10)
Then, we have
(Qx ) -v=v1(—Qalz+ QoU3) + V2(Qaly — Q1U3) + V3(—Q2U1 + Q1) (3.11)
Similarly, we can show that
(Q x V) - U= Ug(—QaV2 + Q2V3) + Uz(Qav1 — Q1V3) + Uz(—Qav1 + Q1V2) (3.12)

Comparing terms, we see that equation 3.11 is precisely the negative dioed84d2. Thus, the
Coriolis term

/ (Q x u)-vdV (3.13)
\%
is skew-symmetric.

We can now construct the finite element discretization of this equation bytiagdpe usual
expansionsy = Niu;, U= N;t;, andu'= N;Gi. We will generate the forms of the matrices corre-
sponding to the interactions a single node (njdeith another single node (nod¢. These will be
3 x 3 matrices, which then can be projected into the global matrices. First, we rdf@rth of the
expansion for displacement

u= Ny (3.14)

Since the displacement is a vector of dimension 3, each shape functioreaapresented as a
dimension-3 vector of the form
Ni = (9,0,0) (3.15)

whereg is theith shape function. Although we write the shape function in the first entry of the
3-vectorN;, it is actually placed in th& entry, wherek = mod(i, 3). With this notation, the % 3
Coriolis submatrix corresponding to the interaction between nodexl j can be evaluated by
settingu = Niu;, andv = N;. Then, the(i, j)submatrix is given by

/V(QxNi)-deV (3.16)
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After doing some simplifications, we find that thex® matrix corresponding to nodesnd j is
given by

0 Q
/ ap | Qs 0 Qi |av (3.17)
v -0, -Q; 0

As observed earlier, this matrix is skew-symmetric.

Next, we derive the form of the 8 3 submatrix corresponding to the centrifugal term. Again,
using the expansion= Nu; and setting/ = Nj, we have the % 3 matrix

/V(QxQxNi)-deV _ (3.18)
@Np@N) - (NN @-Q)av (3.19)
/V AP (UQm— Om)dV (3.20)

wheredym is the 3x 3 identity matrix,k = mod(i, 3), andm = mod(j,3). Switchingk andm, we
see that the matrix is the same. Hence, we conclude that the centrifugal rmnsetric.

3.3 Random Pressure Loading

Input for random loads can be complicated. The most general typewfighe correlation matrix,
which is the inverse Fourier transform of the spectral density mafr (w).

C(X:L,Xz,tl — tz) = E[P(Yl,tl)P(Xz,tz)] (3.21)
whereE([] is the expected value of the pressure at two locations on the surfaspattee times.

This could be defined as a user defined function. In the most gensgltbat is the best means
of a definition. However, defining that function is a real chore, and inywases, the function can
be more easily defined.

3.3.1 Specialization for Reentry

A number of simplifications can reduce the complexity of the correlation matrixhdrfollowing
paragraphs, we examine each of these, and arrive at a simplified gacanyput for the correlation
matrix.

Ergodic or Stationary Systems

Many variables change significantly during the course of reentry. ¥amele, the velocity of the
body and the density of the air depend on the portion of the trajectory. faweithin limited time

18 |n the frequency domain we have the autospectral density matrix, asd spectral density matrices which together
form the spectral density matrix. It typically has units(BSI)2/Hz.
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bounds of the trajectory, the system may be considered stationary. Véseapthis by writing the
pressure as a product of a deterministic function and a stationary furtdttone and space.

P(X,t) = o(X,1)Q(X,t) (3.22)
where,o is a slowly varying, deterministic function, aifglcontains all the random processes.

More precisely, the pressure field applied to the RB is not stationary daenttng many things,
the deceleration of the vehicle and the increase in dynamic pressure with tonevelr, we assume
here that this non-stationary behavior can be modeled simpB/bwQ, whereQ is stationary and
ergodic, ando is a scaling or modulation function of time and space. This class of non-sttiona
model is called a modulated stationary process. Bec&us® stationary,E[Q(X1,t1)Q(X2,t2)]
can be written as a function @ —t;, call it T(t, —t;). However, P is not stationary because
E[P(x1,t1)P(X2,t2)] = 0(X1,t1)0(X2,t2)T(t2 —t1) cannot be written as a function only @ —t1); t1
andt, appear in the terms.

This can simplify computation of the correlations of the pressure.

C(Xl,zz,tl,tz) = E[P(Xl,tl)P(XZ,tz)] (3.23)
O'(xl,tl)O'(Xz,tz)E[Q(Xl,tl)Q(Xz,tz)] (3.24)

Separation of spatial and temporal components

We may often separate the temporal and spatial components of the corrélattion.

E[Q(%1,t1)Q(X2, t2)] = T(X1, X2) T(ta, 1) (3.25)

Wheret(X,X) contains the spatial component of correlation, aftg,ty) contains the temporal
correlation.

Simplified Spatial Correlation

There is little data and few mathematical models of the spatial correlation ofupeess an RB
during reentry. The simplest models are,

(X1, X2) = exp(—a;Az) exp(—BAy) (3.26)

In this expression, the spatial correlation terms depend on the separatibe axial (or flow)
direction,Az, and on the transverse separatify,

Simplified Temporal Correlations

Aerodynamic models that predict the pressure power spectral denS§)) (& the surface of an
RB are still under development. Many of these models predict a PSD thalyis eveak function
of the axial location. Thus, the PSD at the base of the cone is a scaléohvefshose at the nose.
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Further, with high velocities, the PSD is very flat within the band of interestisTthe PSD may be
represented as a product of a deterministic functionard a single PSD. The correlations reflect
this same product, and the deterministic functan can be employed to carry this scaling. If the
PSD is flat over the bandwidth, the temporal correlation may be further simpl¥dgmay then
write,

_sin(oe(ty —t2))

T(ty, ) = T wti-t) (3.27)

where we use the fact that the Fourier transform of a constant fnreguesponse with cutoff fre-
quencywy is a sir(x)/x@

Temporal Interpolation and Filtering

As noted above, we have an assumption that there is a cutoff frequeékrgithing above that
frequency is out of band of the analysis, and can (should) be filté&tgdivalently, time steps less
thanT = 11/ should also be filtered. One way to approach this is to sample at an inferaad
interpolate using a sii)/x type filter as described below. Note that in addition to the benefit of
filtering, sampling at an intervall;, can reduce the amount of memory used to store the temporal
correlation.

Let[—v*,v*], 0 < V* < w, be the frequency band of a deterministic functixfh), —co <t < co.
Then,

n

X(t) = lim Z X(KT)o(t,T) (3.28)
n—»ook:_n
where
sinm(t/T — k)]
T) = — >~/ 7/ 2
sin| F(t - KT))
= — 3.30
Tt kT) (3.30)
“It is sufficient to know the valueg(kT), with k= ...,-2, -1, 0, 1, 2, ... to reconstruct the entire
signalx(t), —oo <t < .”
Note:
a = 1 it Lk (3.31)
k = T :
o = 0 if % any other integer (3.32)
|ok] decreases to zero a% - k‘ increases. (3.33)

while a flat response results in a gijy/x, which is the default, many PSD responsesraflat, so a user defined
temporal function may be required.
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Advancing the Coarse Temporal Solution

The strategy described involves computation of the solution on a coarseredrgpad, with inter-
polation to a fine time step as described above. The process for advéneiogarse time solution
is described here.

The initial coarse solutior¥ (x, T), is given by the solution to the Cholesky factor of the corre-
lation matrix.

Y = chol(¢)W (3.34)

where

is thed(2n+ 1) x d(2n+ 1) correlation matrix

¢
W is a vector of zero mean, unit variance random variables,
and
Y is the properly correlated solution vector at the 21

coarse time values, T, 2T, ...,(2n+1)T and thed sample
locations.

Temporal Advancement As described in texts on stochastic calculus (see 57 for example), we can
compute the response of a Gaussian random vector when a portion efctioe i known. Consider

a random vectol, which is partitioned into a known pai¥,Y), and a portion to be determined,
Y@, We may write, (see equation 2.109 of [57]),

& = (YYD =z (3.35)
= N({,6) (3.36)
where,
ﬂ — u(z) + C(Z,l) [C(lvl)]*l(z_ u(l)) (337)
e c(22) _ 2111112 (3.38)

andp'’ is the mean on each portion of the solution.

In words, we can express the normal distribution of the unknown vestarrandom distribution
with meanyand variance given by the covariance matixThe covariance does not depend on
the previous samples but only on the partition of the original covariance matixmean depends
weakly on the previous sample,

The matrixc is partitioned as follows.

¢V is justc; the original correlation matrix. It is a square matrix of dimengigan + 1).
c22) is thedxd correlation matrix associated with zero time lag.

c?Y is an additional set al rows of the correlation matrix associated with the time(2g+2)T.
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C(0) C(T) C(2T) ... | C((2n+2)T)
C(T) C(0) C(T) .. | C((2n+1)T)
c= e |
C((2n+2)T) C((2n+1)T) C(2nT) ... | C(0)

andC(T) is thed x d correlation matrix evaluated on tliespatial points at time lag.

Procedure The solution is advanced as follows.

1. We augment the system to hal@n + 2) equations. Thus*V is thed(2n+ 1) covariance
previously calculated.

2. We useb = chol(c!*Y) to compute the desired mean of the new distribution. Specifically,

po= WP+ (b') Hz—uP) (3.39)
= c®Y('b)1z (3.40)
= 0z (3.41)

where we have used the fact that bptft) andp(2) are zero. We store the rectangular matrix
g=c@Y(b'b)~1. We no longer need the original covariance matirdr it's factor,b.

3. We reusea to compute the revised correlation matrix.
¢ = c22_RyLy-112) (3.42)
= C(0)—gct? (3.43)
whereC(0) is thed x d correlation matrix for a time lag of zero. The matdxsdxd as well.

4. We perform a Cholesky factor an This is the second such factor, and it is performed on a
smaller space. It need be performed only on the first advancemeris asconstant.

A~

b = chol(€) (3.44)
5. Compute the new distribution.
& = N(o) (3.45)
= [i+chol(€)w (3.46)
= {i+bw (3.47)

wherew is a zero mean, unit normal Gaussian basis.

6. Move solution vector solutiory;, up by one, and inseétin the new locations.
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4 Linear Algebra Issues

4.1 Solution Spaces

There are a number of different dimensions in Salinas. These will be sunaddrere with a
focus on using the data within the matlab framework. Examples of how to dosetr from one
dimensionality to another will be given.

The subject of matrix dimensions is an important one. Salinas has a fairly sist@édimen-
sions compared to more complex systems like Nastran. However, it is critidaihése be well
understood if we wish to manipulate the data.

As an example, | consider an eigen analysis of a structure with 9938 .ndtiés structure is
made of shells and solids. There are no boundary conditions, but ttee®en@pcs applied. | look at
only the serial file sizes.

To get the required maps and other m-files, we must select 'mfiles’ in thetaéption. To get
the eigenvector data, we must also write the exodus file with 'disp’ selected mutiput section.

For this model, we have the following important dimensions.

1. #nodes=9938
2. external set= #nodes * 6 dofs/node = 59628
3. G-set =# active dofs before boundary conditions = 42708
4. A-set = analysis set = # equations to be solved = 42699
5. reduced external set = #nodes * 3 = 29814
There are 3 dofs/node for solid elements, but shells and beams havediragate, the total dofs is

42708 before boundary conditions and mpcs are applied. There 8€sa the model, but there
are 9 MPC equations, each of which eliminates 1 dof, so the Aset is rettud2699.

Unfortunately, theeigen _disp*.m files are written in the reduced external set since this is what
the analysts typically want. The bad news is that these m-files are uselesshizeugood news is
that all the data is available in eitherfiles  or in theexodus output.

The matricesMissr andKssr contain the mass and stiffness matrices inAkset . They are
symmetric matrices and only one half of the off diagonal is stored. To getdimplete matrix
within matlab ,

>>> K = Kssr + Kssr' - speye(size(Kssr)).*Kssr;

The full eigenvectors (in the external set) are available in the outpuusxid. To get them use the
seacas commanckxo2mat .
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> exo2mat example-out.exo

Within matlab , the data can be converted to a properly shaped matrix.

>>> |oad example-out

>>> phi = zeros(nnodes*6,nsteps);
>>> tmp = (0:nnodes-1)*6;

>>> phi(tmp+1,:)=nvar01;

>>> phi(tmp+2,:)=nvar02;
>>> phi(tmp+3,:)=nvar03;
=nvar04;

( )
( )
>>> phi(tmp+4,:)
>>> phi(tmp+5,:)=nvar05;
>>> phi(tmp+6,:)=nvar06;
We now have phi as a matrix with each column corresponding to an eigenveldwever, phi is

dimensioned at 59628 x 10 for this example. We clearly can’t multiply phi bgrikekample - the
dimensions don’t match. To do this we need a map.

We have two maps in our directorletiMap _a.m is the map from the external set to the A set.
Thus we can reducghi to theA-set by combining it withFetimap _a. If the G-set is desired
instead of the\-set , replaceFetiMap _a with FetiMap .

>>> p2=zeros(max(max(FetiMap_a)),nsteps);
>>> for j=1:.nnodes*6

>>>  i=FetiMap_a());

>>> jf (1>0)

>>> p2(i,})=phi(j,:);

>>>  end

>>> end

This is slow. A faster, but less straightforward method is shown here.

>>> mappl=FetiMap_a+1;

>>> tmp=zeros(max(max(mappl)),nsteps);
>>> tmp(mappl,:)=phi;

>>> p2=tmp(2:max(max(mappl)),:);

Now we can do all the neat things lik@*K*p2

To get back to the external set, we again use this map. For example, if veeahaactor of
dimension 42699,

>>> x=1:42699’;
>>> XX = zeros(59628,1);
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>>> for i=1:59628

>>>  if ( FetiMap_a(i)>0 )
>>> XX(i)=x(FetiMap_a(i));
>>>  end

>>> end

Obviously, similar shortcuts can be made to make this more efficient. One thedragp work is
shown here.

>>> xtmp=[ 0 X];
>>> X2=xtmp(mappl);

4.2 Matrix Dimensions: Revision

The previous section is pretty confusing, and worse than this, it doesnesspond well with other
documentation. Let us make another stab at it. The vaspasesre listed in Table|7. A discussion
of each follows.

Space Description
Full-set biggest possible set. 8 * number of nodes
Structural-set] 6 * number of nodes

This is the space that is typically written to exodus.
This is the space to which we assemble matrices. It represents

those DOFS that have been “touched” by elements.

Assembly-set

S-set degrees of freedom eliminated by SPC
Common-set| Assemby minus S-set
M-set degrees of freedom eliminated by MPC

Analysis-set | dimension of matrices sent to solvers.

Table 7. Salinas solution spaces

Full-set This space is referenced by many of our solvers. We then provide anmapttis space
to the Analysis-set using Feti-map. Every node has 8 degrees of fre@ltranslations, 3
rotations, acoustic and generalized). Virtual nodes may have beed tdaendle generalized
dofs.

Structural-set This is identical to thdull-setexcept that acoustic and generalized dofs have been
eliminated. It is used for output to exodus files, and contains all the stalietafs of the
model. It includes virtual nodes.

Assembly-set The assembly set is the space to which matrices are assembled. It inclésldsatio
may later be eliminated by SPC or MPC. It includes all dofs that are touched.

Assembly-set= Analysis-sety S-setu M-set

Currently the only map to the assembly set is found inNbdeArray .
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S-set This is the list of degrees of freedom that are eliminated by single pointreamts (SPC).

Common-set The “Common” set includes the Assembly set, with the S-set removed. This set
common to all solvers, in contrast to the analysis set which may have diffdiensions
for serial and parallel solvers.

M-set This is the list of degrees of freedom that are eliminated using multipoint contstr(or
MPCs). When using constraint elimination in serial, the dimension of the probklesduced
by the number of MPC constraints. In contrast, in solvers that use Lggramltipliers,
the stiffness matrix is unchanged by introduction of the constraints. Noteveswhat the
solution vector will include extra lagrange multipliers.

Analysis-set The analysis set is the matrix dimension that will be sent to the solver. Note that it
may depend on the solver. With constraint elimination, the M-set may not be ewiptg
solvers that use Lagrange multipliers will always have an erivpet

Solution-set As noted above, in parallel solutions with lagrange multipliers, we actually @ass
LHS matrix of dimension equal to the Analysis set. However, the solution veetomed
is of length Analysis-set plus the number of Lagrange multipliers. This is theico-set
length.

G-set Unfortunately, while the sets above are well defined, the G-set is notarius times it has
been used to refer to the Full, Structural or assembly set. This confysieads throughout
the documentation and the comments in the notes.

4.2.1 Revised Set definition Example

Consider the problem in Figure 12. The model consists of 4 real nodesvi®C, one superelement
(with one generalized dof), and single point constraints sufficient to ciepeft hand side, and
keep the rest of the model in one dimension.

_ MPC\

: © G

SE (1 generalized dc

Figure 12. Example for Set Definition

Full-set There are 4 real nodes, plus 1 virtual node (generated for theajeset dof). Thus,

sizgFull) = (4+1)8 = 40
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Assembly-set The two elements are beams, with 6 dofs per node. The superelementddiiehe
generalized dof on the virtual node.

sizg Assembly= (4)6+1=25

S-set Degrees of freedom are eliminated by clamping 6 dofs on node 1, and by &fingrb dofs
each on the 3 remaining nodes.

SizeS) = 6+ 15=21

Common-set After elimination of the S-set, the common set is,
siz§Common =25—-21=4
All solvers use this space initially. The following cases are different &mhesolver.

M-set The size of the M-set is one, but what that means to the analysis depeiius solver. For
serial solvers with constraint elimination, the matrix size is reduced by oneLdgyrange
multiplier solvers, we keep our matrices at the same size, but augment the rsclodice by
one Lagrange multiplier.

Analysis-set For serial, constraint elimination solvers, the analysis set is 3. For Lggmanltiplier
problems, the LHS matrix stays at the Common-set dimension, but constraatiats are
passed in separately, and Lagrange multipliers are part of the solutitor.vec

Solution-set For serial solvers, the Solution-set is always equal to the analys{svhath is 3 in
this example). For Lagrange multiplier solvers, the solution-set in this example is

4.3 Rotational Degrees of Freedom

In addition to the three translational degrees of freedom common in solid elenieams, shells
and some other specialty elements use rotational degrees of freedora.dBgeses of freedom per-
mit direct application of moments and allow efficient computations of structleatent response
such as bending. Rotational degrees of freedom are also importanafagement of rigid bodies.
There are two methods of managing rotational degrees of freedom irpplicaions. Full rotation
tensors are used for large deformation nonlinear response, while isfimdérotation angles are
typically used for small strain, linear response such as eigen analysis.

4.3.1 Euler Angles

In standard texts on classical mechanics, the rotation of a rigid body is déseribed using a
rotation tensor complete with Euler angles. However, there are a varietgfwiittbns of these
angles, and the order by which they are applied does matter. From the diikipe
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Euler angles are a means of representing the spatial orientation of amy &
the space as a composition of rotations from a reference frame. In theifodia
the fixed system is denoted in lower case (X,y,z) and the rotated systenoieden
in upper case letters (X,Y,2).
The definition is Static. The intersection of the xy and the XY coordinate planes
is called the line of nodes (N).

o is the angle between the x-axis and the line of nodes.
B is the angle between the z-axis and the Z-axis.
y is the angle between the line of nodes and the X-axis.

This previous definition is called z-x-z convention and is one of severahoon
conventions; others are x-y-z and z-y-x. Unfortunately the orderhicvthe
angles are given and even the axes about which they are appliedveaideen
“agreed” upon. When using Euler angles the order and the axes abatlt the
rotations are applied should be supplied.

Euler angles are one of several ways of specifying the relative otientaf two

such coordinate systems. Moreover, different authors may usedtiffeets of
angles to describe these orientations, or different names for the sartes.ang
Therefore a discussion employing Euler angles should always bedaedsy
their definition.

Whatever definition is used, Euler angles use a series of 3 rotations aluliffi¢rent axis to
represent the orientation of a body in space. For example, in the casenkia convention, these
angle define the following rotation matrix.

cosoa —sina Ol |1 O 0 cosy —siny O
[R]=|sina cosa Of |0 cof3 —sinf| [siny cosy O
0 0 1] |0 sinB cosB 0 0 1

Because matrix multiplication is not commutative, the solution depends on theabrdéation.
Rotation of a vector by this angle is a tensor product with this matrixvi.e.Rv.

4.3.2 Infinitesimal Rotational Angles

Most linear, small deformation FE applications apply the small angle approximaii® expand

all trigonometric functions as polynomials of their arguments and retain onlydiider terms in

the angles. Thussin(@) = B, and cross terms are eliminated. With these approximations, the
order of rotation becomes unimportant, and the component contributions totétien matrix are
commutable. For a rotation about x,y, zaff3, y we have:

1 -v B
Rl=|ly 1 -—a
B a 1

This formulation is extremely convenient, because the coordinates are ¢elnphelependent
of each other. There are obvious limitations, as the approach does ms#rge length for larger
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rotations. This is often apparent in animation of mode shapes; the modesmapeited under a
small angle approximation, but are often displayed with a finite deformation.

4.3.3 Quaternions

The Euler angles of the previous sections can properly define the rataifca body. However,
the three ordered matrix operations required are not very convemgntd computational point of
view. The quaternion provides an alternate form of algebra which isvafgut to the full Euler
rotations, and is much more elegant (and efficient) for this type of computadthin Salinas,
we use the full rotation tensor, while other sierra solid mechanics codeguasernions. They are
mathematically equivalent.

4.3.4 Salinas Implementations
Linear vs. Nonlinear Solutions

Very simply put, all linear solutions use the infinitesimal rotation angle formulatidisonlinear
solutions maintain a large rotation capability and use the full rotation tensoringan solutions
using linear elements (or linearized tangent stiffness matrix terms) requiveision between these
forms.

Mixed Variable Solutions

Many linear element have been constructed which are quite adequateefor some parts of non-
linear applications. For example, a large ship may be include a linearized ofateengine as part
of the model. As long as the engine is undergoing small deformations, it isnable to employ
such a linearized model, even if another part of the ship is subject to laege and large rotation.
In general, Salinas allows the user to specify that certain material block®aiadal are linear, even
in a nonlinear analysis. This necessitates translation between these altanthten-equivalent)
forms.

Incremental Angular Update

Update of the rotation tensor following an incremental solution of a small defton is accom-
plished as follows. Let us call the initial rotation tens&;;. We compute a small rotation incre-
ment expressed in terms of its small rotation angtes,, 3,y > . From the rotation increment, we
compute a rotation increment quaternion as follows.

1. 6= /(0?+p?+y?)
2. g1 =cog0/2)
3. c=sin(6/2)/6
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4. gp =ca
5. g3=cp
6. qa=cy

7. The quaternion is normalized.

The quaternion is then converted to a rotation tensor,

2002 +3) —1  2(GeGs—0a01) 2(0204 + Gsa)
Ro=| 2(0Uz+dath) 2(cF+03)—1 2(GsGa—Cos)
2(Go0a+ k) 2(0R0a+eq1) 2(qF+q3) —1

The updated rotation tensor is,
Rupdate: RoRinit

Thus, the rotation increment is treated as a full angle update.

4.3.5 Consequence for Linear Elements in nonlinear solutions

The consequence of this update is that there may be significant diftesrdretween a nonlinear
solution and a linear solution, even when both are applied to a linear elemenapphoximations
applied for infinitesimal rotations are significant, and are not reciprocaljrifermation is lost in
that approximation. Nonlinear solutions should permit large rotations with niestemts. Linear
solutions are valid only in the range of small deformations.

4.4 Orthogonality of MPC to Rigid Body Vectors

There are many requirements on multipoint constraints (MPCs). One thaeisted is that the con-
straints must be orthogonal to rigid body rotations. By this we mean that the mnttgunstraints

must not constrain the system in a way that eliminates rigid body motion. Thisecaadily seen
in modal analysis. An ungrounded system with MPCs must retain 6 rigid bodiesndlransient
and static analysis has the same kind of issues, but here the problem nizyasbbvious. Note
that there are a variety of means of arriving at the weights for a setrdt@ints. For example,
an inconsistent tied constraint may be constructed with a node on faceaapprAlternatively a
mortar method can accomplish the same thing with a different set of constraimtsweights for

these systems may differ, but all must allow the body to freely rotate. It is tlageach constraint
equation must satisfy this orthogonality independently.

4.4.1 Beam Example

| take an an example a simple two node beam to which a single node is consaaiisatiustrated
in Figurel 13. The beam is of unit length, in tiedirection. Point 3 is located a distanedrom
point 1.
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1 3 2

G, O

Figure 13. Node Constrained Directly to Beam.

The displacement vector is defined as,

U = U1y U1y Uox Upy U3y Uay] (4.1)

With a linear shape function, the typical constraints required to keep painttBe line are,

[(1-g) 0 ¢ 0 —1 0 (4.2)
0 (1-¢) 0 € 0 —1] (4.3)

The three orthogonal rigid body vectors @e

1 01

010 1 4.4)
060

It can be seen that the constraints are orthogonal to the rigid body sector

4.4.2 Offset Example

With an offset, such as that shown in Figure 14, the rigid body vectorsgehal hey become,

1 0 10 1 0
0 1 01 O 1 (4.5)
0 -6 06 —L6 (2—1)0

What is important here is that the rotation rigid body mode gains an extra tertatiétoof thisX
axis beam about th2 axis now has a term iX. These rotational rigid body modes are no longer
orthogonal to the original constraints, 4.3.

1 L 2

C, )

Figure 14. Node Constrained Offset to Beam.

20 We are using infinitesimal rotations where @h= 6.
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4.4.3 Orthogonalization

A simple orthogonalization step can make the constraint weights once agangamntd. \We com-
pute,

n ‘R/IIRII? (4.6)
C —

—nR, 4.7)

L O

whereC represents the constraint equation, &depresents one of therthogonalizedigid body
modes. Without loss of generality, we can restRdb the nodes in the constraint interaction. In
general, this operation must be performed for all rigid body modes on@atdiraint.

4.5 Mass Properties

Mass properties are computed using the method of Baruch and Z&fie total mass, location of
the center-of-gravity, and the moment of inertia tensor are all calculateddet element types us-
ing the mass matrix and a set of rigid-body vectors. However, acoustic elemed superelements
use a slightly different procedure. Both methods are discussed below.

4.5.1 Mass Property Calculations for Most Element Types

The mass properties are computed using rigid-body vectors. At a nadeatislational rigid-body
vectors are

1 0 (0
0 1 0
0 0 1
0 0 0
0 0 0
and the rotational rigid-body vectors are
0 z -y
—Z 0 X
—X 0
Rb=4 1 ¢ Ry}=1 5 ¢ Rab=1 (4.9)
0 1 0
0 0 1

7

wherex, y, andz are the location of the node in the global coordinate system. These verors a
actually assembled on an element level. As an example, for a three-nodgetréd@ment{ Ry }
takes the form

{R}T = (4.10)
{0 -zzy1 1000 -2y 1000 -z1y3 10 0}. '
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The total mass for an element can be computed as

Melement = {RX}T[Me]{Rx} (4.112)
= {R}TMe{Ry} (4.12)
= {R} T [MeJ{Re} (4.13)

where[M¢| is the mass matrix for the element. The total mass for the model is computed by summing

over all the elements |
Ne

Miotal = ;{RX}T [Me]{Rx}- (4-14)

Note that the x, y, and z-direction equations produce the same r&alihasuses the x-direction
equation.

In a similar manner, the location of the center-of-gravity can be found by

Nel

Xeg = M:;tal _;{er}T [Me]{Ry}a (4.15)
1 Nel

Yeg = Motal _;{Rrx}T Me[{R}, (4.16)
1 Nel

Z0= o 2 (Rt MR (4.17)

The components of the inertia tensor are computed as

Nel

lx = _;{Rrx}T [Me]{Rrx}v (4.18)
Nel

lyy = .Zl{Rry}T [Me[{Rey}, (4.19)
Nel

l22= _;{er}T[Me]{er}a (4.20)
Nel

by = _;{Rrx}T Me] {Ry}, (4.21)
Nel

|xz: .;{Rrx}T[Me]{er}y (4-22)
Nel

lyz = _Z‘{Rry}T [MeJ{R:z}. (4.23)

This procedure for computing mass properties applies to hex8, hex2@efewedgel5, tet4,
tetl0, beam2, Obeam, Nbeam, truss, tri3, tri6, tria, quad4, quad8, quamMonmass elements.
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4.5.2 Mass Property Calculations for Acoustic Elements and Superetgents

Although acoustic element blocks are made up of element types listed alvouestia elements
only have 1 degree-of-freedom per node. Thus, the rigid-bodiovepresented above cannot be
used without modification. Similarly, superelement can have any numbergoéeke of-freedom
depending on how the element was formed. Because of this, a differémbanis used to compute
mass properties for superelements and acoustic elements.

The mass properties for these elements can be computed with somewhatigssyathan the
method presented above by lumping the mass matrix of each element, then sumnaoigtthoe-
tion from each node. This is the method implemente8afinas.

The total mass is

Nnode
Miotal = Z Mi (4-24)
i=
whereM; is the mass at node The center-of-gravity is
1 Nnode
Xeg = Mix;, 4.25
’ Miotal i; I ( )
1 Nnode
= Mivi, 4.26
Yeg Mrow i; iYi ( )
1 Nnode
total =

wherex;, yi, andz, are the global coordinates of nodélrhe components of the inertia tensor are

Nnode
b= 3 Mi(YF +72), (4.28)
=
Nnode
=3 Mi (¢ + Z), (4.29)
i=
Nnode
= 3 Mi (¢ +7), (4.30)
=
Nnode
ly=— MiXi, (4.31)
P
Nnode
XZ iZl i
Nnode
|yz:_ Zi I\/Iiyizi- (4-33)
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5 Constraints and Contact

5.1 Tied Friction

The work on tied surfaces with friction is under development. Details are nira@utén our design
documentation.

5.2 Mortar Methods
5.2.1 Background

For simplicity, we only consider one of the three components of displacemehegifollowing
development; the same approach holds for the other two components otdisglat. Leu,, and
Us denote displacements on theasterandslavesides of a mesh interface. Ideally, we would like
to satisfy

Us = Un

at all locations on the interface. This restriction, however, is only prddiicaneshes which are
conforming at the interface. Otherwise, displacements would be restricitbte-order polyno-
mial of degree equal to that of the lowest-order finite element on either §ithe interface. As a
result, the interface would be too stiff.

For mortar methods, the constraint= un, is only satisfied in a weak sense. Specifically, the
mortar constraints are of the form

/r)\(us— Um) dX = 0, (5.1)

wherel" denotes the interface andis a Lagrange multiplier. Notice the familiar inconsistent
tied contact (node on face) constraints for a slave node can be s&grgsthis form by choosing
A as a Dirac delta function for the subject slave node. For mortar methods it crtamp that
constant functions are in the space of Lagrange multipliers. Clearly, Ditia functions cannot
be combined to obtain a constant. Thus, we should not expect the ceneertates of mortar and
tied contact methods to be identical. Indeed, the convergence rates foptitatt are in general
suboptimaPf?®

Let gm andgs denote vectors of nodal values of displacement on the master and slaseosid
the interface. Similarly, let, denote a vector of discrete values of the Lagrange multiplier. The
displacements and Lagrange multiplier are approximated (discretized) asgollow

Um — (ﬂ-‘rnqma (52)
Us = QL G, (5.3)
A= @ ah, (5.4)

where@,, andgs are vectors of shape functions for the master and slave sides of theasteahdp,
is a vector of shape functions for the Lagrange multiplier. A discrete fdrtheomortar constraints
are obtained from substitution of (5.2-5.4) into (5.1).

Mss0s + Msnfm = 0, (5.5)
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where
MSS:/?\SCPST dx, Msm:/)\s(ngdx (5.6)
r r

Thestandardmortar method implemented in ACME uses

O = Qs. (5.7)

In other words, the Lagrange multiplier shape functions are the same abape Binctions for
the slave side of the interface. We note in the mortar methods literature thatrigegmultiplier
shape functions are often modified for slave nodes on the boundary initérface. The purpose for
this modification is to avoid redundant constraints at the intersection of two g imerfaces. At
present, we make no such modifications, but we will revisit this topic in a latgiose Substitution

of (5.7) into (5.6) gives
Mt [ gl dx M~ [ guqfdx (5.8)

Although the matrixMStandad js sparse and positive definite, its inverse is dense. Thus, if one
were to solve[(5.5) fogg in terms ofqm, each slave node displacement would depend on all the
master side nodal displacements in the general case. As a result, solielsmake use of this
form of constraint elimination would suffer from significant memory and cotafional demands

for interfaces with large numbers of nodes.

The basic idea with dual mortar methods is to choose a Lagrange multiplier Haists wads
to a diagonaMgs matrix. One could then efficiently eliminate slave node displacements since each
one would only depend on the master node displacements in a small neightb@aroand the slave
node rather than the entire interface. In this respect, the constrairtt@wgir dual mortar methods
resemble those of tied contact.

Let o denote an element face on the slave side of the interface. Furthe([Tgtlenote the set
of all such faces ofi. From (5.6) we then have

Mss: z Mssm IV'sm: Z Msnm (5-9)
oea(l) oco(l)
where
Mo = [ Q@ dx M= | orghx (5.10)
o o

For the dual mortar method, we choose the vegipto be a linear combination of rows @k.
Specifically, for each slave facewe set

O = Ao, (5.11)

whereAq is a transformation matrix. In order to have a method which passes constss gatch
tests (linear consistency), it must be possible to obtain a constant funatioraflinear combination

of the rows of@,. We see thaf; equal to the identity matrix satisfies this condition since the sum
of all slave shape functions overis unity. In this case, however, we recover the standard mortar
method. The present goal is to chodggto satisfy the constant approximation property while also
leading to a diagonal matridss. To this end, we follow the construction®fhand®?

Ag = Dg(MZEMard)~1, (5.12)
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where

Dgzdiag</ (psdx>. (5.13)
o
Replacingps in (5.8) by As@s, we obtain
ME— S [ Ageldx= T AMEM_ 5 D, (5.14)
oeco(r)’ 9 oca(r) oca(r)
M=y / Ass@hdx= 5 AMZea (5.15)
oeo(r)”0 oeo(l)

Since eactDy is diagonal, it follows thaM3¥@ is also diagonal.

Numerical integration over each slave face done in ACME by first decomposir@into a set
of triangular facet$(o) and then summing the contributions from each of these facets. Specifically,
from ACME we have access to the integrals

Mo [oqlax MER— [gughdx (5.16)

wheret € t(0). By assembling contributions to, we then calculate

Mggndard:/%(p'srdxz Z Mgts?ndard_ (5.17)
o tet(o)

With Mgandardnow in hand, we then calculate

dual __ standard __ standardy —1 gstandard
Msst - AGMsst - DO(Mss;r Msst ) (5-18)

dual __ standard __ standardy —1 gstandard
I\/Ismt - AGMsst - DG(MSSU Msmt . (5-19)

SinceMgtandardjs symmetric and positive definite, it can be factored using the Choleskyrgeso
sition. Accordingly, products with the inverse BE2"9adin (5.18) and[(5.19) can be obtained with
calls to LAPACKroutinesDPOTRFand DPOTRS It then only remains to calculate the entries of the
diagonal matrixDg.

Let e denote a vector of the same lengthgasnd with all its entries equal to 1. Since the sum
of shape functions ip; equals 1 ino, we have

ole=1 (5.20)
From (5.17) we then obtain
MmStandardg /G(ps(cp'sre)dx: /c(psdx (5.21)
With reference ta (5.13), it then follows that
Dy — diag(Mgggndafde) . (5.22)

The procedure used to calculate the transformed mortar mavge® andM342 for the dual La-
grange multiplier basis is summarized as follows.
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1. Calculatemgiandardpy assembling contributions from triangular facets as in (5.17).
2. Calculate the diagonal matrix; according to| (5.22).
3. Calculate the mortar matric@24' andMZ42 for the dual Lagrange multiplier basis accord-

ing to (5.18) and (5.19).

In summary, all that is needed is to replace the mortar matigg'92"d and MStandard for each
triangular facet by their dual basis counterpat4dd? andM3ud!. The remainder of the coding in
ACME remains the same. The only code changes on the Salinas side is to flEgp$0aACME
indicating whether or not to use the dual mortar method.

5.2.2 Treatment of Interface Boundary

To be continued. This section will deal with the special treatment of slavesiod the interface
boundary to avoid potential redundant constraint equations.

5.2.3 Nodal Coordinate Adjustments

To be continued. This section will deal with how to initially move the slave nodestéorr all six
rigid body modes for curved interfaces or flat interfaces with initial gaps.
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A Anisotropic Materials

Here we discuss how anisotropic elasticity is implemented in Safhahe approach is reason-
ably standard, but a documentation here is necessary to specify whttle ofiany conventions
of material parameter numbering is used in Salinas. Further, it is usefuesepr the theoretical
development for those who may do maintenance on this part of the code.

A.1 Linear Anisotropic Elasticity

Linear elasticity asserts that the stress is a linear function of the strain:
0ij = Gl & (A.1)

WhereCi‘}k| are the Cartesian components of the fourth order constitutive tensor arigirthtein
convention of summation on repeated indices is used.

A.2 Stress Vectors

By definition, the strain is symmetric. Further, we make the usual constitutstergstion that the
stress is symmetric. This permits the representation of the 3x3 stress matrixeaBa3tstrain
matrix each by a column vector having six rows.

O11

022
o

s=¢ 33 (A.2)

023

013

O12

and,

&1
€22
€33
2823
2€13
2812

This is the Voigt notation. Note that this mapping franto s and frome to e is not universal. This
is the numbering used in Malvern and seems to be popular in the materials scierdgbut it
differs from the numbering used in NASTRAN and from the numbering in &BfS. Further, note
that though the above are usually referred to as “stress vectors”strair' vectors”, they are not
vectors in the sense that they map from one coordinate system to anothes asctors do. How
that mapping is done is discussed in a later section.

21 This is a transcription of Dan Segalman’s framemaker document, “@oiust.frm”.
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We use the above to map the fourth-order tem}”m into a 6x6 matrix of material parameters.
This is done with the aid of the matrices that formally nzajfp s and frome to e.

én = Enijgj; (A.3)
and
&ij = enFnij (A.4)
where
1 0 07 [0 0 0] [0 0 07
Ei=(0 0 O Eo =0 1 O Es=| 0 O O
|0 0 0] |0 0 0] (00 1
[0 0 07 [0 0 17 [0 1 07
Es=|0 0 1| Es=|0 0 0| Es=|0 0 0 (A.5)
(0 1 0 |10 0] 01 0
and
1 0 0] 0 0O [0 0 O
Fr=10 0 O FF=]101 0 Fs=10 0 O
00 0, 000 0 01
0 0 0] 0 0 12 [0 1/2 0
FA=| 0 0 1/2 Fs = 0O O O Fe=1 0 0 O (A.6)
0 1/2 0 | 1/2 0 0 |0 1/2 ©

We note that the stress mappings are also achieved with the above thirdjoadeities:
Sh= Fnijoij (A.7)
and

Oij = SNk (A.8)

From Equations A.3 and A.4 or Equations A.7 and/A.8 we see that,

EmijFnij = Omn (A.9)

Substituting Equations A.4 and A.8 into Equation A.1 and simplifying with Equation We9,
find
Sm = Cmrén (A.10)
where
Con= Fmijcf}k| Frki (A.12)

Though above shows how to find the 6x6 ma@jxin terms of the fourth order tensor components
C,‘}kl , the material description is usually provided directly in terms of the componé@s.o
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A.3 Strain Energy and Orientation

We now address the situation where the matrix of material parameters ofoaidgm a Cartesian
coordinate system different from the coordinate system (usually thalgtgbtem) in which strains
are calculated. Because stress and strain are tensors, they traosfarfe coordinate system to
another by:

0ij = Rai0apRyj (A.12)
and

&j = Rai€apRyj (A.13)

whereaj; andg;; are the stress and strain components calculated in some other (globaljaPartes
system andR,; are the components of the rotation matrix that rotates the basis vectors in thalt glo
system to that with respect to which the material properties are definedsié ectorby in the
local, material frame is expressed in terms of the basis vectors of the gicitahsby:

Da = Raibi (A.14)

wherebs, by, andbs are the basis vectors of the global frame.

From Equations A7, A8, and A.11, we find following

Sm = (FimijEnabRaiRbj) 5. (A.15)

From Equations A.3, Al4, and A.13, we find the more useful relationship
em = (EmijFnanRaiRoj) én. (A.16)
The above two transformations are simplified:
s=T'"$§ (A.17)

and
e=Té (A.18)

where the 6x6 transformation matrix, is defined

Tnk = EnijFabRaiRpj = tr (EJRFkRT) (A.19)

Noting that R
s=C§, (A.20)

and substituting Equations A.17 and A.18 into Equation A.20, we further find

s=T'CTe (A.21)
Comparing the above with Equation A!10, we finally find that

c=T'CT (A.22)

which was the main point of this exercise.
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Note also that the components of arr&ssandF, are mostly zero, with the rest either 1 of2L

After using Maple to simplify the product matrix,we find thethas a fairly simple form.

where

and

Too = !

Tio= {

To1= {

Ro3Rs2+ Ro2R33  Ro3Ra1 + RoiRsz RooRsi +R21R32
Ri3R32+ R12R33  Ri3Rs1+ R11Rs3  Ri2Rs1 + R11R32
R13R22+ R12R23  Ri3Re1 +Ri1Ro3 RioRo1 +R11R22

2R11R31
2R11R>1

Ri3R12 Ri3Ri1 RizRig
Ro3Ro2 RozRo1 RosRos
R33R32 Rs3Rs1 RasRs:

2R>1R31 Rx2R32  Rp3Rsz
Ri2R32  Ri13Rs3
Ri2R2>  Ri3Re3

|

|

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

Note thafl defined above is the transformation matdin of Equation 3.34 in Auld’$Acoustic

Waves in Solids, Volume [(feference 62), which is used in the same way.

The Maple code to perform the above calculations follows.

with(linalg);

E[1] := matrix(3
E[2] := matrix(3
E[3] := matrix(3
E[4] := matrix(3
E[5] := matrix(3
E[6] := matrix(3
F[1] = E[1];

F2] = E[2];

F[3] = E[3];

F[4] = (1/12)*E[4];
F[5] = (L/12)*E[5];
F[6] := (1/2)*E[6];

R = matrix(3,3);

for kK from 1 to 6 do
FRRIK] := matrix(3,3);

3] [1,0,01,[0,0,01,[0,0,0]]
3,[ [0,0,01,[0,1,01,[0,0,0);
3,[ [0,0,01,[0,0,01,[0,0,1]]
3,[ [0,0,01,[0,0,1],[0,1,0]]
3,[ [0,0,1],[0,0,01,[1,0,0]]
3,[ [0,1,01,[1,0,01,[0,0,0]]

)
)
);
)
)
)

FRRIK] := evalm ( R &* F[k] &*transpose(R));

od;
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T = matrix(6,6);

for k from 1 to 6 do

for n from 1 to 6 do

TInk] = 0;

for i from 1 to 3 do

for j from 1 to 3 do

TInK] = T[n,k] +evalm(FRRIK][i,i)*E[n][i,j];
od; od;

od; od;

readlib(C);
C(m);

read("/home/djsegal/Maple/tools/maple2mif.mpl");
M = maple2mif();
fprintf("/home/djsegal/MPP/notes/temp.mif",'%s’,M(e
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B Integration of Isoparametric Solids

We show below how one achieves effective selective integration ofiiaop@ric solids in a manner
that satisfies the standard conditions (such as the patch test) and alsuraugtates anisotropic
material$??

We begin with the definition of the strain vector. For computational converieletines the
stress and strain vectors:
011
022

033

S= o (B.1)
O13
O12

and,

€n

€22
€33

V= 26y [ (B.2)

2813

L 2812

These are related through the matrix of elastic constants.

s=Cv (B.3)

We now take a look at virtual work, since it is from virtual work that the sgfs matrix is
derived.

BW = / ST dvdV = / VTCovdV (B.4)
Vv \Y%

If we select the above volume to be that of an element and use the straiaedisent matrices
associated with each nodal degree of freedom,

V(X) = z B;j(X)u; (B.5)
]
whereu; is the j'" nodal degree of freedom, the virtual work becomes

BW = u; Sy /V B; (x)TCB(x)dV (B.6)

Since the element stiffness matrix is defined by

oW = UjéKij (B.7)

22 This is a transcription of Dan Segalman’s framemaker document,figoh”.
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we conclude that

mpiiaufc&umv (B.8)

The next step is to decompose the strain-displacement vectors into deviatdritilatational com-
ponents.
Bj(x) = BY (x)+BY () (B.9)

where,

BY (x) = dj(x) (B.10)

O o0OoOor kR

and 3;(x) is the sum of the first three rows Bf (x). B?(x) is defined by Equatian B.9. Substitution
of Equation B.9 into Equatidn B.8 yields:

/BD dv+/®’ )TCRY ()dV + -

+/®’ dV+/BD )TCBY (x)dV (B.11)

For isotropic materials, the deviatoric and dilatational portions of the straimrnegonal with
respect to the matrix of material constants, so the last two integrals in the aoa#on are zero.
It is sometimes common to integrate the contributions of each to the stiffness matgpceparate
strategies. Such approaches can produce elements with slightly lesstiibigeto parasitic shear.
Such an approach does not work for elements of anisotropic materiak $allttwing approach has
been developed.

B.1 Uniform Strain-Displacement Matrices

At this point it is useful to define the element averaged strain displaceméritesa

T
:VL&WW (B.12)

For hex elements, these are the strain-displacement matrices of the FlamagBelytschko, and
are known as “uniform strain” elements. Elements formed by the above/dsisgilacement matri-
ces are very “soft”, having properties similar to elements formed by singtg paegration. Hex

elements of this sort display extraneous zero-energy modes. In wi@atvgpwe consider linear
combinations of this strain-displacement matrix formulation with the consistemuiation pre-

sented in Equation B.5.

The uniform strain matrices are also separable into dilatational and devipéot&

B« = By +BP (B.13)
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B.2 Mixed Integration

The approach presented here builds on one presented by Hifghés.can achieve the effect of
softening elements by forming the strain displacement matrices from combinafitiresconsistent
strain-displacement and the uniform strain displacement matrices.

Bi(X) = aBY + (1—a)BY (x) +BBL + (1 B)BR(X) (B.14)

(14) Note that for all values afi and3, the above correctly captures uniform strains. It is in
how the non-uniform strains contribute to the stiffness matrix that the panticalaes ofa and3
make a difference. By setting valuesafand3 according to the following table, we recover the
standard integration forms:

Integration
Flanagan and Belytschk
Full Integration
Selective Integration

R o RrQ
oo Rr®
(@)

We note that setting = 1 and using an intermediate value[®fwe can achieve performance
almost as good as that of the Flanagan and Belytschko element but withroiitiag hour-glass
modes.
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C MSC documentation of Nastran’s RBE3 element

This documentation is provided by MSC from their web p&gét has been reformatted for math
type formatting in EX.

C.1 Abstract: Mathematical Specification of the Modern RBE3 Elenent

Solution#: 4494 Last Modified Date:  06/01/00 09:06:19 AM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN (1602004)
Product Version: Product Feature:
Article Type: FAQ Publish: Y

C.1.1 Extended Description

The RBE3 element is a volume or surface spline element similar to the RSPLINEpiime el-
ement. The purpose of this memorandum is to develop a method for computingriseitethe
equations of constraint generated by the element.

A sample Bulk Data Entry for the element is :

$ EID [blank] REFGRID REFC WT1 C1 Gl1 G1,2
RBE3 15 5 123456 1.0 123 10 20
$ G1;3 Gl4 WT2 c2 ..

, 30 40

$ uMm Gl C1 G2 C2 C

, uMm 10 123 20 23 30 3

The grid points 10 through 40, entered in the Gi,j fields on the entry, amesubded to a reference
grid point (number 5). The number of connected poiig,is unlimited. The physical principle
used to generate the constraint equation coefficients is that the motion diyabionected to the
reference grid point produces a weighted least-squares best fit tcthal motions at the other
connected grid points. The reference point is connected by 1 throDghF& (REFC specification).
The connected points are also connected by 1 through 6 DOFs (Ci sp#aifi) with a weighting
factor Wti. The UM data is optional, and is explained below.

The reference is the original design document for this element. Over tire geme changes
have been made in the interests of better theory and increased numericsthess. Those changes
are incorporated in this document as though this were the original desgmbmt, to avoid the
awkwardness of first explaining older behaviors and then the préséravior. The original equa-
tions of the reference are derived with conventional variational priesippplied to displacement
variables. The derivation used here is based on force variable deacighis has proven to be
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more intuitive and better understood by some engineers. The resultedi®gvthe displacement
method theory and force method theory are identical. The reference avaitdble in machine-
readable format. A fax copy may be requested from the MSC/NASTRANe[@pwment Secretary,
Jan.McLaughlin@MSCSOFTWARE.COM. It is primarily of historical interesivn

REFERENCE: Mathematical Specification for the RBE3 Element, MAG-4, 15 April 1975 (Also
known as MAG—81@

C.1.2 GENERATION OF UNIT WEIGHTING FUNCTIONS

The element is designed to allow use of any coordinate system at anyctearggid point, the
global coordinate system in NASTRAN parlance. In the interests of clar@yetjuations are first
developed for a system where all variables are defined in one commatirtate system (the basic
coordinate system), then modified to allow global coordinates. An elemeraatbéstic length is
computed to allow scaling the equations. The distance between the refpmntesubscript ) and
a connected point (subscript i) is expressed by the components

Lix = X—Xq
Ly = VYi—Yq
Lz = z—z

L - e,

The characteristic length of the element is the average of these lehgthsy{ ; |Li|/c, where
c is the number of connected points.Lif is computed as a binary zero it is changed to a value of
unity.

The weighting functionsvl throughw6 provided by the user are modified for reasons to be
motivated later to produce a connected grid point’'s weighting matrix, a diagaataix shown here
as a vector. Letv= w;L2. Then,

W = [Wl Wo W3 W4 W5 WG]

That is, the rotation DOF coefficients are scaled by the characteristic leggéred, but not the
translation DOF coefficients.

23 This TAN is known in MSC' s internal filing system as MAG-102.
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Conventional equilibrium equations are developed,

1 00 0 z -y
1 0 -z 0 x
- 1y —x O
Sa = 1 0 0
0 1 O

- l -

This matrix expresses the loads that must be applied to the reference p@attdoads applied at
a connected point,

Pg = qul

The equilibrium matrix can also be used to generate a loading pattern on thected points due

to a load on the reference point. LY, be a set of arbitrary loads on the reference point. When
this load is applied, it is “beamed out” as loads on the connected points,

Py Wy S
pi—| 72| = V2 =2 XPgn =W S
Pe We &

X is a 6 by 6 matrix to be determined. The criterion used in its determination is that tte loa
distribution mechanism should be in equilibrium. The equilibrium condition is that

Pou=[S & .. §|R=54R
Then

PGout = SIqW SaXPan

If PQout = Pqn, then
X = [SWs] = AT
and,
R =WSXPg= GyPq
Where for convenience we define,
Gai =WSX (C.1)

Transformation. The direction cosine matriX expresses the transformation betwegrihe val-
ues in basic coordinates, aog the values in global coordinates:

Ui = TiGi
The transformed equilibrium equations and weighting matrices are
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TS
.9

Sq =
Te&

The transformed weighting matrix in global coordinates is
W= T/WT,

The transformed A matrix is

A = §qWSq
A=S A

It is shown in the reference that the introduction of global coordinates nesdf; as shown:
Ggi = TIA™*[Sq W
This implies the dual relationship between displacements
Ug = Ggili
Cast in the Nastran convention of constraint equations,

qu:[ —lgg Gqi |

and,

Rqi is the rows of the matrix of MPC coefficients for one RBE3 element.

C.1.3 SELECTION OF DEPENDENT DOFS (OPTIONAL)

The default selection for dependent DOFs (m-set) are the REFC DOF fiist¢the REFGRID.
There are modeling applications where it is convenient to use these DOBstiexeclusive from the
dependent set, such as the analysis set (a-set). The dependeia@pbe moved to the connected
DOFs with the optional UM data. The number of DOFs must match the number BEREOFs,
and the selected DOFs in the UM data must have non-zero weighting fundfitms subset of Rgi
associated with these DOFs is named Rmm, the Rqi matrix is pre-multiplied by thecirofetss
guantity,

Rai = Rr?mrlanl = [~Imm Rr#ann}
The user is required to select a UM set that produceR.gnmatrix that is stable for inversion.

There are TANs that describe techniques for selection of a good &l eariables. The uncoupling
of the dependent equations allows some of them to be discarded, aibeésarithe next section.
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C.1.4 EQUATION SELECTION

The totalR;; is generated above. It has 6 rows. Six or less rows are transmitted to dtesnsy
constraint matriRmg, depending on thREFCdata. This data consists of a packed integer with up to

6 numbers in the range of 1 to 6, and describes which rows are to beddasdg; The remaining
rows are discarded.

C.1.5 FEATURES FOR DIMENSION INDEPENDENCE

A good finite element should produce the same results regardless of thefunigasure used in the
model. That is, the same structure modeled in millimeters, centimeters, or inchdd phavide
identical results. The RBE3 gains this valuable characteristic by scalingthigon weights with

an element characteristic lendth, as described above. The effect of this scaling is demonstrated
here by an example. In the interests of simplicity all geometry is in the basicicatedsystem and

the only non-zero offsets are in telirection. TheT matrix is then an identity matrix, and need not
be listed in these equations. Consider the problem, defined If;theatrix above andi matrices
below, where

X =X—X =0,
y ZYi_YQ :07
z =z-23 ><0

The user inputs up to six weighting factors wl through w6. The weightinpifador rotation are
multiplied by Lcsg= Lc?, the square of the characteristic lengths of the element. These modified
terms are underlined in the matrix below, for examplg,=12w,. The modified weighting factor
matrix is then

W1
W2
W3
2
Wal g
Wsl2
wel? |

The contribution for grid point i to the equilibrium matriis

wpg 0 O 0 Wiz 0
w, 0 —Wpz 0 0
B B W3 0 0 0
A=SWS= L5W4 + ZZW2 0 0
Sym Bws+Zw; 0

i Liwe |
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The diagonal terms for rotation (for exampes) have the form_2w; + 22Wj, wherew; is the rota-
tional weighting term, anev; the translation term active in rotation weighting because of offsets.
The motivation for modifying the rotation term can be seen in this addition otstf@othL? and

7 are in the same units of measure. When a model is changed from centimeters to texifljrfor
example, the ratio of rotation effects to offset effects is unchanged.mitdkfication of the rotation
term allows the solution in the area of the RBE3 element to be the same for all éinitsagure.

As z andL. are related by a common factor the ratio of moment terms coming in directly from
applied momentsL@ws) stays in constant ratio to the moment terms from offsgisy() regardless

of whether lengths are measured in centimeters, millimeters, or inches. This catdifi of the
moment weight term provides dimension independence.

This example also provides an opportunity to discuss another counteniatoéhavior of the
RBE3 element, the difference between the user-supplied weighting fus@iahthe actual values
used in the corresponding coefficients of the constraint matrix. Let udifntipe expression of
A above by setting; = 0.0. A becomes a diagonal matrix, which when inverted and multiplied by
W to form G, becomes an identity matrix. That is, the weighting factors, whatever theyaare
scaled to provide equilibrium. There may be little correlation between the valubs ineighting
matrix and the values in the coefficients of the constraint matrix. The requitsrfer equilibrium
may change these values radically. Similarly, it shows that the significartbe @feighting factors
is mainly in their ratio to one another. If all are multiplied by 10, for example, thersion of
the A matrix, used to impose equilibrium, removes this factor of 10 so that the coatBoié the
constraint matrix are unchanged.

C.1.6 STABILITY ISSUES

The solution requires the inverse Af It may be ill-conditioned for linear equation solution. It is
first equilibrated to make the inversion more stable. Agbe the diagonal terms of A. It is pre- and
post-multiplied by the inverse &jy,

A= ATAAL

This makes all of the diagonal terms Afunity. Any term multiplied byA is first multiplied
by Agq. A matrix decomposition subroutine is used that provides an inverse condg@ionmber.
As this number approaches zero the solution becomes more ill-conditioneglt-Artal-suspenders
check that is less mathematical and more engineering-oriented is made bgralsating the largest
term in[A~1A— 1], which should be a computational zero, and outputting this value when #gass
a certain threshold. If the element is determined to be pathologically ill-conditibcauses a user
fatal error exit.

C.1.7 UPWARD COMPATIBILITY

The RBE3 element prior to V70.7 had a more primitive theory that does neideraimension

independence. Its theory is identical to that above if a value of 1.0 is subdtftr the characteristic
lengthL;. A system cell is provided to obtain this theory in V70.7. Its use allows compautafio
the same answers that were provided in earlier systems.
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System Cell 310 Value Action
0 (default) Use new theory.
1 Use old theory.

The name of this system cell is OLDRBE3. For example, either entry below ailte the old
theory to be used:

NASTRAN OLDRBE3=1 $ or
NASTRAN SYSTEM(310)=1 $

Changes to the RBE3 element for V70.7 are summarized in TAN 4155.

C.1.8 TOPICS FOR FUTURE WORK

The present order of operations requires that at first six equategeherated that allow meeting
equilibrium conditions, then some equations (rowsgh may be discarded, at the user’s option.
This makes modeling of planar elements, for example, awkward. Therearemough numerical
tools such as Singular Value Decomposition (SVD) that would allow a diffeneter of operations
where only the equations required would be generated. There wouldbth@o requirement to
make the element stable for 6 DOFs, then, only for the number of equatitradlpaised.

At present all dependent DOFs must either be totally on the refereitcpant(default action),
or on the connected grid points (UM data). There have been some ublgolaadeling problems
due to singulaRng matrices uncovered by clients having to do with interconnected RBE3 elements
in a field of very regular geometry. If the geometry is perturbed slightly thegps are solvable,
a disquieting feature when small changes in the model move it from a stablaitstable state. It
was shown in breadboard work that the problem is solvable if some offis@nee point DOFs and
some of the connected DOFs can both be in the Um data. The present tuliepeadent DOFs
must all be on the reference point or all on connected DOFs was doredynfier programming
convenience. The rule could readily be changed to allow mixed sets ohdeptfreedoms.

There are now enough mathematical tools to allow the dependent set foP&lléduations to
be picked automatically, without the requirement for user input. Therelbese some unsuccessful
attempts to do so in the past, but the lessons learned there, and the new mati¢owdsiavailable
today, (particularly the SVD) offer promise for successful researchis area.

C.2 Abstract: RBE3 ELEMENT CHANGES IN VERSION 70.7

Solution#: 4155 Last Modified Date:  04/17/00 02:50:26 PM
Product Line: MSC.Nastran Product Name: MSC.NASTRAN Bés003)
Product Version:  70.7 Product Feature: ELEM
Article Type: FAQ Publish: Y
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C.2.1 Extended Description

1. Thetheory used for the RBE3 element has been modified so that the elemantislependent
of the units of measure. For example, a structure modeled in centimeters wifinoswde the same
results when modeled in millimeters. This was not true for certain cases in system® Version
70.7. A system cell provides the capability available prior to Version 70.7.

Ref. Tan 3280 for Version 70.6

2. THEORY The modeler inputs a reference grid point, its connectivity, a weighting iféoto
other connected grid points, their connectivity, and the connected gndlids. An RBE3 element
used for testing this new capability of the form

$ EID [blank] REFGRID REFC ~ WT c Gl G2
RBE3, 123, , 4 123456 1.0 123456 1 2

$ G3

, 3

The modeler’s intent here is to connect grid point 4, for all 6 of its DOFsedlti2, and 3 grid
points, for all of their DOFs, with a uniform weighting factor for all. The elerhdivides forces
applied to point 4 to the other grid points in a manner that is influenced by themegey and
weighting factors, in a manner that maintains equilibrium. Define a line from fleargce point to
a connected point as an arm of the element. In the revised theory, ahstic lengthL. of the
element is calculated from the average length of its arms. The square ofgjis Is used to modify
the weighting of the connected rotation DOFs. The theory for the elemerthisriavolved. The
derivation is given in TAN 4494. Some of the results of that derivatioruaszl here. The constraint
equation terms applied to a connected paijrand the reference point; are

The constraint matrix itself has the following components:
Ggi = TIA 'SqW

T; is a rotation matrix that is an identity matrix when GIDi and GIDq are in paralleldioate
systems. It will be dropped from this discussi@y, is the traditional matrix for transmitting rigid
body motion between point “i” and point “q”. It has unit terms on the diagoaiad] offset lengths

on coupling terms between translation and rotation in the upper trianglés the user-supplied
weighting functions, and\ a matrix used to force the element to meet equilibrium requirements.
All MSC/NASTRAN constraint-type (R-) elements must meet an equilibrium ttmmg to avoid

any possibility of internal constraints in the element. It is instructive once &isdifetime, if
tedious, to work out a simple example by hand, for a simple geometry. We wilbishgtist look at
typical terms, to avoid some of the tedium.

The A matrix is generated by finding the resultants of loads applied at the conrewited,
measured at the reference point. The 5,5 term for a single connectedsaiiown in the referenced
TAN to be

Ass = Ws -+ Z2Ws.
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WhenA is inverted, this term operates on the correspond@gg; term

Gigss = W5/ (W5 + Z‘-ZW]_)

If z is zero, the effects of this normalization is to "wash out” theweighting term, so that the
coefficient is 1.0. Iz is not zero, the ratio of translation load effeq%svl to rotation loads effects
Ws iS

Ratio= ws/(Zw)

This leads to a dimensional dependence, in that the ratio changes whendéldsremnverted from
millimeters to centimeters, for example. This undesirable behavior is eliminated by lyinljiphe
rotation weighting factors by the square of the characteristic lehgth,

Ratio= Lg * W5/(Z‘2W1)

If z (andLc) have their units of measure changed, the ratio stays constant. If this rdodifie
weighting constant is used on the 5,5 term

Gi(,]55 = L(23W5/(L§W5 + Z|2W1)

If z = 0.0 the weighting terms wash out. If it is non-zero the denominator of this quantpnistant
with changes in units of measure.

Note that answers will change only when rotations are given connectaitthe connected
DOFs, and then only when the rotations at the connected DOFs are @aredfindant load path.
This is because the element is required to meet equilibrium conditions to avaitkihtenstraints,
that is, single point constraints that do not appear in the SPCFORCE olitihnétload path is stat-
ically determinate the equations used to impose equilibrium will adjust the valueteofal loads
in the element as needed to meet equilibrium, regardless of the value of thetingitunctions.
Always meeting equilibrium requirements insures that there will be no int&SR& forces in the
element.
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D Theory Notes for Acoustics and Structural Acoustics

Finite element analysis of acoustic and structural acoustic phenomenadwmada common prac-
tice in both academia and industry. Excellent review articles can be foutfdin,

In this section, we present the theory and equations behind the acousticniempétions in
Salinas. This section is a work in progress, but still is a good start. Wevgitartinear acoustics,
on conforming and nonconforming structural acoustic meshes. Thenles&ibe the nonlinear
acoustic work in Salinas.

D.1 Conforming and Nonconforming Linear Structural Acoustics

Having the same mesh density in the acoustic fluid and solid may be very indffisieoe the
two domains typically require significantly different mesh densities to achigyreea level of dis-
cretization accuracy. Perhaps more importantly, it is also impractical in maslicapons since the
mesh generation process may be performed separately for the two doamerating conforming
meshes on the wet interface may be very difficult, if not impossible, evaandive most sophis-
ticated mesh generation software. Excellent examples include the hull g,zoslthe skin of an
aircraft. In these cases, the structural and fluid meshes are typicagdrimdependently, and have
very different mesh density requirements. Joining them into a single, monatiteéh is usually
impractical.

Although methods for joining dissimilar meshes are well-known in structural argck?!:66-68
very few papers exist in the area of dissimilar structural acoustic medflasdef® considered
parallel domain decomposition techniques for structural acoustics in tpeginey domain, on mis-
matched fluid/solid meshes. Nonconforming discretizations on the wet inderfae handled by
duplicating acoustic and structural degrees of freedom on either sithe afet interface, and im-
posing coupling equations that enforce continuity of pressure and d&pknt. The duplicated
degrees of freedom were then included in a dual-primal, parallel domawontgosition strategy.
Only two-dimensional, frequency-domain problems were considered. Fiereisal’® studied
both fluid-fluid and structure-fluid coupling on mismatched meshes. For fluidl-coupling, a
mortar approach was taken, whereas for structural acoustic cougtieg;oupling matrices were
assembled in normal fashion and used across the wet interface to ctiupltald-solid responses.
Only time-domain, serial solutions were considered.

Several recent references considered a displacement-baseti@atmmulation, which was then
coupled to an elasticity formulation on mismatched fluid/solid meshes. Alénzzd an adaptive
method with error estimation to refine the fluid/solid meshes accordingly. Tbe estimator de-
manded different mesh densities on the fluid and solid interface, as eoztpelBtzarmude%2 also
considered a displacement-based acoustic formulation, but used a@ictmgstraint on the wet in-
terface, along with a static condensation procedure to eliminate the acougtedef freedom. In
both of the preceding references, Raviert-Thomas elements weredheedeoid spurious modes
in the fluid. These modes would have been automatically eliminated with the useobératial
formulation in the fluid.

Here we present a new technique for acoustic and structural acousligss in the case of
nonconforming fluid/solid interface meshes. We first construct a simple mébhadupling mis-
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matched fluid/fluid meshes, based on a set of linear constraint equatising. stiatic condensation,
we show how these constraint equations can be eliminated from the finairsp$ equations. We
then demonstrate that the same approach can be taken to couple mismatcligalifluideshes,
provided that the coupling matrices that are typically used for conformind/$lolid meshes are
calculated on the structural side of the interface, and that extra (“ghastustic degrees of free-
dom are introduced on the structural side of the wet interface. With trasgement, the structural
acoustic coupling resembles a conforming method on the structural side wkthaterface, and
then the fluid degrees of freedom on both sides are coupled with the samoaelp that was used
for the nonconforming fluid-fluid meshes. The coupling operators ersweak continuity of par-
ticle velocity and stress between the structural degrees of freedomegtidist acoustic degrees of
freedom, and then the linear constraints ensure continuity of acoust&upedsetween the two sets
of acoustic degrees of freedom.

Although we do not consider more sophisticated methods for nonconforacimgstic/acoustic
meshes, such as mortar methods, our approach allows such methodsadilyeaggplied to noncon-
forming structural acoustic meshes, since the wet interface coupling esoivly acoustic degrees
of freedom. Also, in the case that the fluid/solid meshes are conforming@pproach reduces to
standard methods for conformal structural acoustic coupling.

D.2 The Governing Equations and Their Discretizations

In this section, we review the governing equations of acoustics and salatoustics, along with
their corresponding weak formulations, and then we present our apipfor the nonconforming
discretization. We will begin with the case when all meshes are fully conforraimdthen we will
extend this to the nonconforming case.

D.3 Conforming Structural Acoustics

We will begin by constructing a weak formulation of the linear acoustic waveign for conform-
ing meshes. Subsequently, we will consider conforming structural #csus

The linear acoustic wave equation is given by

1 0%y

?W—Aw_o, (D.1)
where is the velocity potentialy = 0u, whereu'is the patrticle velocity), and is the speed of
sound. Note that this implies we neglect volume (body) forces on the fluid.

A weak formulation of equation D.1 can be constructed by multiplying with a testtion and
integrating by parts. We denote the fluid domaintbyand its boundary b§Q = 0Qn,|J9Qq, where
the subscripts andd refer to the portions of the boundary where Neumann and Dirichlet ksoynd
conditions are applied. We also assume that the fluid is initially at restpixe0) = Q(x,0) =0,
which is sufficient for most applications.

Denoting byV;(Qs) the function space for the fluid, the weak formulation can be written as
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follows. Find the mappings: [0, T] — V;(Q¢) such that

(;I'Z/le(pdx-|-/QDljJ-D(de:—/aanfUn(PdS

Vo e Vi (Q¢), whereu, is the prescribed velocity on the Neumann portion of the fluid boundary.

Inserting a finite element discretizatiapix) = TN, @N;(x) into equation D.2 results in the
system of equations

M+ Ky = f,, (D.2)

whereN is the vector of shape functiond) = [, SNNTdx is the mass matrixk = Jo,ON-

ONTdxis the stiffness matrix, ant}, = fagn ptU,NTdxis the external forcing vector from Neumann
boundary conditions.

For structural acoustics, the second order equations of motion forlidexsd the wave equation
for the fluid are

pSUt[—D‘O: fa
1 0%y
2oz Sv=0

(D.3)

Hereu corresponds to the displacement of the structaris the structural stress tensgx, is the
density in the solid, and denotes body forces on the solid. Subsequently, subseritd f refer
to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solithicegwet interface,
which is designated b§Qyei), are

0 :
% = —PfUn,
Op = —llJﬁ,

(D.4)

whereps is the density of the fluid, andi§ the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface.

The weak formulation of the coupled problem is constructed by multiplying thepavtal
differential equations in equation D.3 by test functions and integrating tig.daenoting bys(Qs)
andV;(Qs) the function spaces for the solid and fluid, respectively, we have theriolipweak
formulation.
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Find the mappindu, ) : [0, T] — Vs(Qs) x Vi (Q¢) such that

/ psl'jwdx+/ o: Dswdx—/ onwds:/ dex+/ onwds
Qs Qs 0Qet Qs 0Qn

3 /. g /Q Oy Dadx-+ /693:1: >

VT

- 00, On
(D.5)

Yw € V5(Qs) andVo € V¢ (Q¢), whereoQ,, is the portion of the solid and fluid boundaries that has
applied loads, and is used to denote body forces on the solid. Al§S,= 3 (0+0") is the
symmetric part of the gradient operator. If Dirichlet boundary conditivese applied to part of
the structure, or if the fluid had a portion of its boundary subjected to Diticddaditions, then
the Sobolev spacég(Qs) andVs (Q+) would be modified accordingly to correspond to spaces that
have those same boundary conditions. We also note that in the integratioa wettmterface, the
normal is defined to be positive going from solid into the fluid.

Next, we insert the boundary conditions from equation D.4, and we defireg on the solid
portion of 0Qp, andg—ﬂ]’ = —pPsU, on the fluid portion 0fdQ,,. This leads to the following weak
formulation. Find the mappingu, ) [0, T] — Vs(Qs) x Vi (Q¢) such that

/ps(jwdx+/ o OSwdx+ L]JﬁWdS:/ fwdx+/ gwds
Qg Qs Qs 0Qn

0Qyet

& [ wodce [ 0w Doy [ tnads—

wet

—ps /a _ tngels (D.6)

Yw € Vs(Qs) andvVy € Vi (Qf).

Assuming a linear constitutive model for the solid, and inserting the spatiakbtlisationsu =

s uiN; andg= Y @N; into equation D.6 yields the following semidiscrete system of linear ordinary
differential equations in time

Ms O u Cs L u Ks O u fs }
- |+ |+ = , D.7
I R el 1 R g | o R
whereMs, Cs, andKg denote the mass, damping, and stiffness matrices for the solidylan@s,
andK; denote the same for the fluid. The coupling matrices are denotédamgL". Coupling
between fluid and structure, as well as any damping in the fluid or solidatepatis accounted for

by the damping matrices. The quantitigsand f; denote the external forces on the solid and fluid,
respectively.

In the case that the stiffness, damping, and mass matrices of the acoussitruatdral sub-
systems are symmetric, equation D.7 can be symmetrized in a number of wayexafaple, the
second equation can be multiplied %’;]’ This makes the system symmetric, but the matrices are
indefinite. In cases where any of the system matrices are non-symmetrsyitinisetrization is not
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possible. For example, if infinite elements are used in the acoustic mesh, theootistic stiffness
and damping matricel§; andC; are nonsymmetric. In that case, it is not possible to symmetrize
the overall coupled systems.

D.4 Nonconforming Structural Acoustics

In the case of nonconforming fluid/solid discretizations, equations D.5 afdd@ntain some extra
technicalities. In this section we will first describe a simple procedure faploag two acoustic
domains which share a common boundary, but with nonconforming disdretiga This method
will then serve as a stepping stone to the case of nonconforming struatanastics.

In order to enforce continuity of appropriate field variables between tohedifferent surfaces,
the degrees of freedom and element surfaces involved in the couplathtadbe known a priori.
Given the surface meshes of the fluid and solid, this information is nonttoviabtain, especially
in parallel, since adjacent element surfaces may reside on differerdgsors.

The ACME packagt has been developed as a tool to determine surface contact conditions
between general surfaces in three dimensions. These surfacekeahddorm of boundaries of
finite element discretizations, as in our case, or they can be analytic ssirfiaceither case, search
algorithms are employed to determine node-to-face interactions between pbsimyp surfaces,
based on user-defined normal and tangential search tolerancesve rpde is determined to
be in contact with a given face of the adjacent surface if the distanoetfie node to the adjacent
element face is within the user-specified search tolerance. The ACM&gacan compute contact
conditions between most of the standard three-dimensional finite elemenisiimgchexahedral,
tetrahedral, and prismatic elements. Once these interactions are defieednatevise enforcement
algorithms to enforce continuity of the appropriate field variables. For thpgses of our work,
we use ACME only to determine the node-to-face interactions on the wetanéerOnce these are
known, we derive our own enforcement algorithms, as explained below.

We consider the situation shown in Figure D.1. Here there are 2 interactingtic domains,
and two contact surfaces. We adopt a master-slave approach, ameref the two interacting
surfaces is designated as a master, and the other as the slave. We defac®e 5 as master,
and surface 2 as slave. For a transient acoustic simulation involving the tsbesashown in
Figure D.1, we would have to solve the system of equations given in D.2 hwimaild involve
degrees of freedom from both acoustic domains, subject to the congtiaithe velocity potential is
continuous across the nonconforming interface. The extra equaticesponding to this constraint
can be derived from a simple consideration of the contact geometry.

In Figure/ D.2, nodex from surface 1 is impinging on element fagef surface 2. If ACME
determines that the distance from nod® element face is within the user-defined search toler-
ance, a constraint relation will be needed to enforce continuity of velootigrial. The constraint
relation for this interaction can be written in the form

4

P2 = _Zlci WP, (D.8)

wherey? is the velocity potential at nodeon surface 1, anqilib are the velocity potentials at the four
nodes of element fageon surface 2. The coefficientsare determined from the position of node
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Acoustic Domain 1 Acoustic Domain 2

N

surface 1 surface 2

Figure D.1. Two interacting acoustic domains, with nonconforming
meshes at the common interface. In this case surface 1 isedefirbe
the master surface, and surface 2 is the slave.

Element "y"

Node "x" Surface 2

Figure D.2. A node-face interaction on the structural acoustic intefa
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relative to the positions of the nodes on element fage surface 2. For example, in the special case
that facey is square and nodelies at the center of the fage the coefficients; would all be equal

to %, indicating that the constraint is simply an average. We use this appraanmanly referred

to as inconsistent tied contact, for all of the nodes/elements on the interaatfages. This results

in a set of linear constraints that enforces continuity of velocity potentidisatete points between
the two acoustic meshes. These constraint equations can be written mathigyrestifdlows

Ch =0, (D.9)

whereC is a matrix that contains all of the constraint coefficients from all of the fade interac-
tions, and vecto® contains nodal velocity potentials from all of the nodes involved in the cainstr
equations® can be partitioned into master and slave components

o= { ?;S” ] (D.10)

With this partition, the matrixC can also be split into master and slave components, and equation
can be written as
[0)
.| or | -0 (0.11)
S
Also, if we defineCyns= —C5 'Cm, we can condense the slave degrees of freedom from the stiffness
matrix in equation D.2.

K = Kmm+ Kmscms+ Cr-lr-BKsm‘f' Cr-lr-15|<s§rns (D.lZ)

Similar condensation expressions hold for the mass and damping matriaésr condensing out
the slave acoustic degrees of freedom in equation D.2, we obtain a mogiiednsof equations

M+ Ky = fa, (D.13)

where the tilde superscripts indicate that the slave constraints have begdgnsed out. Note that
the vectory now only contains the interior degrees of freedom (corresponding desthat are
not on the interacting surfaces), and the master degrees of freedtita oantact surface, since the
slave degrees of freedom have been eliminated. Equations D.13 caraslvéd in the frequency
domain, as follows

[SM+K] g = fa, (D.14)

wheresis the frequency parameter that comes from the Laplace transform.

In the case of structural acoustics, the algorithm just described footh@mforming fluid/fluid
meshes can be used as a stepping stone to the nonconforming solid/fluigniaghes approach,
acoustic degrees of freedom are added to the nodes on the adjaceniratrside of the wet in-
terface. We subsequently refer to these as the ghost acoustic de§femsdom. Subsequently,
the acoustic and structural meshes are matching on the structural sidevwsdtthrgerface, and the
nodes on that side have four degrees of freedom instead of three, tNe two surface integrals
in equation D.6, i.e.f5o  WAwdsandps [y,  Un@ds are both evaluated on the structural side of
the wet interface. Finally, the mismatched acoustic meshes (the “true” aceugace nodes and
their ghost counterparts) are tied together using the same set of linedrasohequations that was
developed for the nonconforming acoustic/acoustic case.
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In addition to equations D.7, we have a set of linear constraint equationsahgle acoustic
variables across the wet interface. As in the fluid/fluid case, these aorigquations represent the
relations between the master and slave acoustic degrees of freedomewatakinthe form

Co =0. (D.15)

Upon condensing these constraints out of the system of equations, ©cbtain a modified system
of equations

% 2181 & &[5 2)05]-[8]

where again the tilde superscripts represent the matrices with constramdersed out. Note
that, in this case, even the structural matrices (and coupling matrices) muosidieed during the
constraint removal process, even though the constraints involve oolistc degrees of freedom.
This is because of the coupling matrideandLT, which couple the acoustic and structural degrees
of freedom on the structural side of the wet interface. The fact thaetlo¢gher matrices are also
modified is an essential part of the overall fluid/solid coupling scheme. e $bis system of
equations, we use the generalized alpha time integration méthaich is a generalization of the
Newmark-beta method.

In addition to the transient analysis formulation outlined above, an advaofame coupling
procedure is that it can be applied equally well to honconforming strucigraustic problems for
both eigenvalue analysis, and frequency domain analysis. This caehsisgply by transforming
equation D.16 to the frequency domain.

15w [a]elar g 18]G & I00]-[R] em

wheres is the frequency parameter that comes from the Laplace transform. e @anstraint
equations that were used for the transient problem would also apply tageevalue problem.
Equations D.17 constitute a quadratic eigenvalue problem, which could bedsfolvthe coupled
modes. Note that the forcing terms would need to be set to zero in that cieenafively, if the
frequency response (Helmholtz) problem was of interest, it could bengatasimply by setting
s=iwin the above equations, whesgis the frequency of interest. This would result in following
complex-valued system of equations

<[5 [l o & I8 R[]

Our method can be summarized by the diagram in Figure D.3. As shown theussitumodes on
the wet interface are augmented with acoustic degrees of freedom. dLemdky, these nodes each
have four degrees of freedom. These “ghosted” acoustic degfée=edom are then constrained
by the acoustic degrees of freedom on the adjacent side of the weaugeiffhe structural acoustic
coupling operators, which come from the weak formulation, are both eealuan the structural
side of the wet interface.

t B}

s ] . (D.18)

—h
—
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Acoustic subdomain  Solid subdomain

00000, @ O & o
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Constraint equations join acoustic degrees of
freedom on both sides of wet interface

Q 1 degree of freedom per node

. 4 degrees of freedom per node

{3 degrees of freedom per node

Figure D.3. lllustration of our method for structural acoustic meshes
with nonconforming interfaces. Ghost acoustic degreesegfdom are
added to the structural side of the wet interface, and themected to
the adjacent acoustic surface with constraint equations.
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D.5 Acoustic Scattering

Acoustic scattering refers to the interaction of plane acoustic waves with lsotites which are
immersed in an infinite acoustic fluid. The plane waves are assumed to origimaténfinity, and
after impinging on the solid body, they continue to propagate to infinity. In soajtsimulations,
the velocity potential is decomposed into a sum of the incident potential, atidreckepotential

lIJtot — llJin + lIJSC (D.19)

wheret s the total potentialy™ is the incident potential, angls¢ is the scattered potential. The
incident potential is a known guantity, and the scattered potential is unkn®was, in the final
formulation, the incident potential becomes part of the right hand sidénfpfanction, and the
scattered potential remains on the left hand side as an unknown.

We recall that the linear wave equation in terms of the total velocity potentiaténdiy
1.
?Lptot APt =0 (D.20)

Decomposing this into incident and scattered fields, we have
1-in Ain 1-sc AUSC| =0 D.21
?LD —AYT |+ ?L[J —AYT| = (D.21)

Since the incident wave is assumed to satisfy the wave equation, the firef ffae expression can
be dropped, and we are left with

1
V- ap*=0 (D.22)

This implies that we can solve for the scattered potential directly. The effébe incident field is
then accounted for in the boundary conditions on the wet surface.

For scattering in the context of the coupled structural acoustic problenmibss convenient to
solve for the scattered acoustic potential in the fluid and the total displac&eidrih the structure.
With that assumption, we have the following partial differential equations

pSu%Pt_D'o-: F7
1.
SUe—aye=0=0,
(D.23)

Hereu' corresponds to the total displacement of the structmiie,the structural stress tenspk
is the density in the solid, arfél denotes body forces on the solid. Subsequently, subsergtd f
refer to solid and fluid, respectively.

In the case of linear acoustics, the boundary conditions on the fluid/solithicégwet interface,
which is designated b§Q,e), are

tot
aan = —psUt (D.24)
On = _thOtﬁ _ [l]Jin + L'IJSC] A (D.25)
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whereps is the density of the fluid, andi§ the surface normal vector. These boundary conditions
correspond to continuity of velocity and stress at the wet interface. diat®on D.24, we note that
we rearrange the terms for convenience

awtot awin 6L|JSC

on  on * on
= —priy
(D.26)
Rearranging, we have
oy ot OY"
n - —pfly — n (D.27)

Equations D.27 and D.25 are in the form that we can insert them directly ini@tfegional formu-
lation'D.5, with the recognition that the unknowns are the total structural dispiant and scattered
velocity potential. Carrying this through, and assuming a linear constitutive Ifardeoth the solid
and fluid, the time domain equations of motion can be represented by the follsginigliscrete
system of linear ordinary differential equations

Mg 0 (jtot Cs L (ot Ke O ytot fq

RN b | e LS B e

(D.28

whereMs, Cs, andKg denote the mass, damping, and stiffness matrices for the 8&lidC,, Ka
denote the same for the acoustic fluid,is the density of the acoustic fluid, andand ¢ denote
the structural displacement and fluid velocity potential. The coupling matrieedemoted by and
LT. Coupling between fluid and structure, as well as any damping in the fludlidrseparately, is
accounted for by the damping matrices. The quantitieend f; denote the external forces on the
solid and fluid, respectively.

The acoustic load, for the scattering problem can be written in the form

o alpin
fo— /a ds (D.29)

Q, on

where againpis a test function. Sinc%ﬂ’# is a known quantity, we can integrate equation D.29 to
obtain the loading on the fluid side of the wet interface.

The expression for loading on the structure due to scattering loads is lgyve
o= / Uwds (D.30)
0Qn

wherew is a test function for the structural discretization. Sig¢is a known quantity, the force
on the solid body can be computed from equation D.30. Note that equatioBsBd2D.30 require
the spatial and temporal derivatives of the incident figiflc. Thus, even )" is known, methods
for computing its spatial and temporal derivatives are also required.

Inserting the expressions fdg and fs from equations D.29 and D.30 into equations D.28, we
can solve for the responses of the acoustic fluid and solid body to in@denstic waves. The only
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requirement onp™" is that it satisfies the acoustic wave equation. Note that the solution to equations
will give the scattered acoustic potential. In order to compute the totakcgotential, we
would need to add the incident and scattered potentials together, as in adudi#o Also, we note

that the loads from equations D.29 and D.30 are generated by a singlenineigee. For multiple
incident waves (as in the case of a diffuse field), the right hand sidguat®ns D.16 involve a
simple superposition of all of the incident waves.

D.5.1 Frequency Domain scattering.

The incident potential satisfies the wave equation, and for a plane wasttakform
qun _ Aé’[k-xfwt] (D31)

wherew = 2mtf is the circular frequency of the wavé,is the frequency in HZ is the vector wave
number, andk is the vector coordinates of a point in space. The vector wave numbeh ieses
componentsk = (ky, ky,kz), which define the direction of propagation of the wave. For example,
for a wave propagating strictly in the x direction, we would hiave (ky,0,0), wherek, = £ would

be the standard wave number from one-dimensional wave propagatierparameteA is a scalar
constant that defines the magnitude of the wave. Althcdigan be made to vary with frequency,
we will only consider the case whefeis a scalar constant. This simply implies that all incoming
plane waves have the same amplitude (but different frequencies). firetheency domain, the time
portion of the expression in equation D.31 drops out, and we are left with

P = Ak (D.32)

We consider a three-dimensional elastic body, which is immersed in an infimiteste fluid,
and subjected to impinging plane waves from infinity in the frequency domaie.€eghations of
motion of the coupled system are given by

<A d [l g e [N (S R[]

0 Ma || @ —psLT Cr | | we 0 Kafluwe] | mfal
(D.33)

We recall that the portion of the acoustic loggdthat comes from Neumann boundary conditions

can be computed from equation D.29. Given equation D.32, we defiagny,ny,n,) to be the

surface normal of the solid body. We also ket %’(dirx,diry,dirz), where(diry, diry,dir;) define
the direction cosines of the direction of propagation of the incident plawe vildhen, we have

anin
on

Inserting this expression into equation D.29, and integrating, we obtain timépan the acoustic
fluid due to scattering.

— Oy n= i%) nydliry + nydiry + nydir ] Ad< (D.34)

For the loading on the structure, we recall the expression for loading @triieture due to Neu-
mann boundary conditions in equation D.30. In the frequency domain@asen(™ = inwy" =
inwAd*¥)  Inserting this expression into equation D.30, and integrating, we obtainad@fpon
the solid body due to scattering.
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Finally, we examine the complex-valued loads presented in equations D.I®220.dWe make
two observations regarding these loads.

1. These loads have real and imaginary parts, and thus even for aplisgéewave, they cannot
be combined into a single vector, even though they have the same multiplication Aacto
Currently, Salinas combines load vectors that have the same time function intfeaagray.
For the case of complex loads in the frequency domain, this translates intargogie real
and imaginary parts into a single array if they have the same “time” function,hwhithis
case corresponds to the multiplication facorA temporary work-around is to use distinct
time functions for the real and imaginary parts in the input deck. (even if theftimeions
themselves are identical). Otherwise, if the same time function is used, theddalaginary
parts would be combined into a single vector in Salinas.

2. We have considered the case where the coeffiéiéata scalar constant, but we could also
consider the case whefe= A(w) is a function of frequency. This would correspond to mul-
tiple plane waves of different amplitudes impinging on the structure. Sinceptt@akparts
of these loads varies with frequency, they could not be computed bygtitirspatial parts
together before multiplying by the coefficieAfw). Thus, we would have an inconsistency
with the current approach in Salinas of adding the spatial parts togethmehbefiltiplying
by the time function (which in this case would Béw)).

D.6 Absorbing Boundaries

The need to truncate acoustic domains arises in exterior problems, whétédtwe solid domain is
infinite or semi-infinite. In these cases, the domain could be truncated eithanfiidite elements,
or absorbing boundary conditions. We describe below the simple abgdsbimdary conditions
that have been implemented in Salinas. A description of infinite elements will exlatd later
time. We describe the cases of an acoustic space and an elastic spaatekepa

D.6.1 Acoustic Space

The implementation of absorbing boundary conditions begins by considéengeak formulation
of the equations of motion, in equatidns D.5. On an absorbing bounday)eeds to consider the
term

/ M s (D.35)

Q, 0N

which arises from the integration by parts on the acoustic space. Abgdybimdary conditions are
typically derived by applying impedance matching conditions to equation D.3fidh a way that
the boundary absorbs waves of a given form exactly. For examplsirtipgest absorbing boundary
conditions consist of plane wave and spherical wave conditions, whithe written as follow®

oy 10y
n C—fﬁ (D.36)
w_ 1oy 1 037

on ¢ ot R
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whereRis the radius of the absorbing spherical boundary.

Inserting equation D.36 into equation D.35, we obtain a term proportionjlwhich becomes
a damping matrix. Inserting equation D.37 into equation D.35, we obtain two matmis tene that
contributes to the damping matrix, and another that contributes to the stiffnegg. nidote that
in the limit of largeR, the spherical wave condition reduces to the plane wave condition, since f
large enough radius, the spherical wave begins to resemble a plane wave

Both conditions D.36 and D.37 are implemented in Salinas.

D.6.2 Elastic Space

In the case of an elastic space, very similar absorbing boundary corsd@&mbe applied as were
in the acoustic space, except how the boundary has to absorb bashinerasd shear waves. In the
case of an acoustic medium, only pressure waves are of interest. Taudastic space is slightly

more complicated.

The equation of motion for an elastic space can be written as
put — -0 = f (D.38)

wherep is the material densityy; is the second time derivative of displacemenis the stress, and
f is the forcing. A weak formulation of this equation can be constructed by muhiphyith a test
function and integrating by parts.

/putthV+/0: DWdV—/ oswdS:/ f-wdV (D.39)
Y Y v v

wherew is the test function, ands is the traction vector odV, the boundary of volum¥&. The
absorbing boundary condition is imposed on the portior®d/cfhat point into the infinite space. In
this derivation, we assume that this includes the entire bourdlaryf only part of the boundary
pointed into the infinite space, the derivation would be exactly the same.

Considering the term
/ oswdS (D.40)
v

we note that the traction vectog can be decomposed into its normal and tangential components,
i.e. 0s = Op+ 0;. Then, we apply the conditions

oVh
Op = pCLE (D.41)
t = PCT ot

wherec, andcy are the longitudinal and shear wave speeds in the mediuny,andare the normal
and tangential components of velocity vectors on the surface. Inseréisg tklations into equation
D.40 yields two absorbing boundary matrices. Since these matrices involwelheties, they
become part of the overall damping matrix of the structure.
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D.7 Infinite Elements for Acoustics

Infinite elements have been around since the mid 1970’s. Excellent revielesican be found
‘7576
in,’.

In the early formulations, only frequency-domain formulations were cemsitl and system
matrices were developed that depended on frequency in a nonlineaemaimough these formu-
lations worked well in the frequency domain, there was no clear appri@acransforming them
back to the time domain. As a result, time domain formulations for infinite elements \wkged
for some time. The unconjugated formulatiéh$’ in the time domain formulation involved con-
volution integrals that could be used with the frequency-dependennsystgrices, but storing the
time histories for the convolution integrals would be a significant burden fionecdomain code.

In the early 1990’s, Astled?-8%derived a conjugated formulation that resulted in system matrices
that were independent of frequency. This allowed the frequency ishoimianulation to be readily
transformed to the time domain, in the same way that is typically done in linear sabdyunamics.

He also derived a scheme for post-processing the infinite element degfréeedom to compute
the far-field response at points outside of the acoustic mesh. This apgawed simply from a
time-shift applied to the infinite element degrees of freedom.

The exterior acoustic problem consists of finding a solufipoutside of some bounded region
Qi. We refer to Figure D.4 for a description of the geometry. We have an intéoimainQ;, and
an exterior domairf)e, and a boundary that separates the inner and outer domains. We wish to
find the acoustic pressugein Qe. In the exterior domaif)e, the acoustic pressure must satisfy the
acoustic wave equation

1.
?p—Apzo (D.42)
a Neumann boundary condition &n
op
n_ g(x.t) (D.43)

and the Sommerfelt radiation condition at infinity

op 1op 1

asr — oo,

We note that the weight and test functions are chosen such that the Saftroendition is
satisfied identically. Then, the weak formulation reads as follows

1
/ —zrquer-quV:/quS (D.45)
Q. C r

In the frequency domain, the counterpart to equation D.45 is as follows
R / padV/ + / Op- OgdV = / gqds (D.46)
Qe Qe r
wherek = 2.
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Figure D.4. DomainsQ; andQe and interfacé for the exterior acoustic
problem.

We will focus on conjugated infinite element formulations, which implies spedifiéoes for
the trial and weight functions for the infinite elements. For the trial functioshave

@ (x, w) = Pj(x) e~ kHX) (D.47)
and for the weight functions, we have
Wj (%, @) = D(X)P(x)ekH®) (D.48)

whereP(x), D(x), andu(x) are as yet undefined functionsxfandk = £ is the wavenumber. The
choice of these functions will determine the particular infinite element apprdacour case, the
exponential in the weight functions involves a conjugate of the exponentthk trial functions.
This results in the exponential canceling out in the system matrices, thusriregndhe matrices
independent of frequency.

Given these trial functions, the solutiqrix, w) can be written in an expansion

N
p(x, w) = ; a;j (X, 0)@; (X, w) (D.49)

Substituting these expressions for trial and weight functions into equatié®, e obtain for
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following expression

/ (ROD + DOR, +ikDP,Oy) - (OP; — ikP;Op) g — k’DRP;gidV (D.50)
Qe

Separating out terms of, we obtain the following expressions for the stiffness, mass and damp-
ing matrices

Ki,-:/ (ROD + DOPR) - OPjdV (D.51)
Qe
Q,-:(lz/g DROy- OP; — PP,0D - Op— DP,OR, - DudV (D.52)
1
Mij :7/ DRP;(1— Oy Op)dV (D.53)
C% JQe

We now discuss the phase functipfx) in more detail. First, we note that the series expansions
for the trial functions (thé'" term is given by equation D.47), assume an outwardly propagating
wave. The exact solution from which these trial functions are derivealas a source point for the
wave. We denote the distance from that source point to a point on thebdaee bya. The phase
function is then defined by

MX)=Tr—a (D.54)
In spherical coordinates, the gradient of a function is equal to

L0f 10f~ 1 of,

Since the expression fai(x) depends only on, we have
Ou(x) =rf (D.56)

Thus, Ou(x) - Ou(x) = 1. This implies that when the boundary defining the infinite elements is
a spherical surface, the mass matrix from equation D.53 is identically zenés rifakes sense,
since it ensures that the modes are purely outgoing, and that there atenaing waves. Since

a numerical integration of equation D.53 will never come out identically zem gtrestion then
becomes whether to include this numerical mass in the time integration, or whetheglet it
completely from the outset. This has important implications in the stability of the time atiegy

as outlined irf*

In terms of discretizing the infinite domain, infinite elements can be classified intarRapa
proaches: the separable approach, and the mapped approachsépahnable approach, the exterior
domain is assumed to be in a separable coordinate system, such as sphesptedroidal. In the
mapped approach, the nodes on the exterior boundary are mapped rietd pements using a
special mapping functions that map the infinite domain into a finite master elemenindohinee
mapped approach is advantageous because it allows a more arbitramplaof nodes on the ex-
terior surface. The separable approach requires the exterior tmdesform to a specific boundary,
and thus this approach places more restrictions on the mesh generatieagaroc
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D.7.1 Infinite Element Shape Functions

In our work, we have chosen the mapped approach due to its flexibility in gesération. The
integrals in equationis D.51, D.563, and D.52 are over an infinite dorfainJn order to perform
numerical integration of these integrals, we first have to map onto a unit neleteent, as in
standard finite elements. The mapping is as follows

N
X="Y Mj(s,t,v)X; (D.57)
&

wherex is a point in the infinite domairx; are the coordinates of the mapping poirsts define the
master coordinates of thmseplane of the infinite element (which lies on the exterior surface of the
acoustic mesh), andis the master coordinate in the infinite direction. If we consider a point on the
exterior surface, and its radial poiat, then the master coordinate along the radial edge emanating
from this point is given by

v=1-2a/r (D.58)
Equivalently,
1+v
—a—a— D.
r—a=a;— (D.59)

Thus, as v approaches . g approaches infinity. In this way, we can map the infinite radial
dimension onto a unit element.

The radial poinfais now interpolated over the base of the infinite element, to give

N
a(sit) = _ZlaiS(s,t) (D.60)

whereS§(s,t) is the implied surface shape function of the base element on the exteriacsuih
this way, tet or hex elements could be used in the acoustic mesh. For the infémtergs, the
only difference would be the surface shape functi§ts,t). The radial interpolation would be
treated in exactly the same way for tet or hex acoustic elements. The funbti¢as,v) given in
equation D.57 are constructed as tensor products of the surface fsimegiensS(s,t) and radial
basis mapping functions. The radial basis mapping functions are typicdilyedeto be linear
functions that map the finite master domain into the infinite domain. These functmgs/an as

(D.61)

Thus, wherv = —1, we have thaitn (v) = 1 andmp(v) = 0. Whenv = 1, we havem(v) = « and
mp(V) = co. In this way, the infinite domain is mapped to a finite domain.

The mapping functionM;(s,t,v) are defined as tensor products of the surface shape functions
S(s,t) with the radial mapping functions from equation D.61. For example, for rad® hex, the
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surface shape functions are defined as

S5 1) = (1+s)4(1+t)
S5 = (1+S)4(1—t)
S5 1) = (1—s)4(1—|—t)
S5 1) = (1—s)4(1—t)

(D.62)

Then, the 8 functiond/;(s,t,v) can be constructed simply by crossing e&lls,t) from equation
with anm; (v) from equation D.61.

Equation D.59 can then be used to compute the phase fungtpat an arbitrary point

N N
W0 =r-a= 3 (-a)S(s0=Fassor Y —asy (069

With p(x) defined, we now turn attention to definiRgx). Thel'" shape functiofP(x) is defined
as

AM) = 5S(8H1-VQV) (D.64)

whereQj(v) is a polynomial in a single variable. Various choice<xpfx) have been investigated,
including Lagrangiar® 7® Legendré®? Jacobi®® and rational (integrated JacoBf). Lagrangian
shape functions result in very poorly conditioned infinite element matrides.other three choices
all appear to give acceptable levels of conditioning. Drédshowed that the Jacobi polynomials in
general give a better condition than the Legendre polynomials. Regsuafiéise choice foQ(x),
equations D.57 and D.64 imply thBtx) will be a function of the master element coordinatest,
and thus can be integrated over the master element.

The functionD(x) is defined as
1-v
D(x) = (——)* (D.65)

Now that we have defineB(x), u(x), andD(x), in terms of the master element coordinates
r,s,t, the integrals in equations D.51, DI52, and D.53 can all be evaluated byasia@dussian
quadrature over the master unit element (either hex or tet).

D.7.2 Computation of solution at far-field points

After the solution to the acoustic problem is complete, the values of the coetidgiethe expansion
of equation D.49 are known. The next step is then to compute the solutiarfeifBpoints outside
of the acoustic mesh. We consider two cases below, one where the polyfiengigonsP(x) in

equation D.47 is a Lagrangian shape function, and the other vit{gfés a more general polyno-
mial (like a Legendre or Jacobi polynomial). In the former case, the fumeBgx) are associated
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with particular nodes having values of 1 at the node and 0 at the othes.nlodkbe latter case, this
property does not hold.

We assume that we wish to compute the solution at a ddtat is at a locationy, and a radial
distance = ||Xg|| from the origin. This point is located on a radial line with a correspondin@tad
pointa. Thus, for this point we havey =r — a., We have

N .
PO, ) = 3 a(w)P (xg)e (D.66)

Note that 'N’ in this case is the number of infinite element basis functions withiimfiméte element

that includes the poind. In the case of Lagrangian polynomials, we have the property that the
function is equal to 1 at the node of interest and is equal to 0 at the otdesndhus, in the case
that the pointxy coincides with a node in the infinite element, we have the expression

P(Xg, ) = Ga(co)e " (D-67)
whereqq(w) is the infinite element shape function corresponding to rbdequivalently, we have
0 (W) = p(xq, w)ekH (D.68)

Thus, the pressure at the nodiés equal to the corresponding value of the coefficient of the infinite
element expansion corresponding to that node, multiplied by the fact#t, wherepy is equal to
the distance (along the radial line) from the boundary of the acoustic ddmd#ie noded.

If we take the inverse Fourier transform of equation D.68, we get

) = plxa.t + ) (0.69

Thus, the pressure time history at nadlées equal to a time-shifted value of the infinite element
degree of freedomy(t) corresponding to nodé. This makes physical sense in that it would take
the wave additional time equal @)to reach the poind.

Next we consider the case whBXx) is not a Lagrangian polynomial. In this case, the pdint
could not be associated with any particular node. In this case, we stilthavelation

N R
PO, ) = 5 ()P (xg)e (D.70)

except in this case, the polynomid$x) do not necessarily vanish dt Thus, again bringing the
exponential to the other side of the equation, we have

p(Xg, )k = _iqj(w)Pj (Xd) (D.71)
is
Taking inverse Fourier transforms, we arrive at the result
d N
POt + ) :i;Qj(t)Pj(Xd) (D.72)

Since all guantities on the right hand side of equation D.72 are known adtéintte/infinite element
solution is complete, we can postprocess to compute the pressure at theffieb p
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D.8 Point Acoustic Sources

Point acoustic sources are common in acoustic modeling, and we providecapaigility for do-

ing this in Salinas. Here we describe the theory behind this implementation. Tdry thfepoint
source&>88in acoustics is typically formulated by considering a pulsating sphere ofs&licen-
tered at the points = (X,y,2). Upon taking the limit as the radius of the sphere goes to zero, one
obtains the equation for an acoustic point source. The distance fronether of the sphere to a
point in the domain ix — X5, wherex is the vector from the center of the sphere. If the source is
centered at the origin, theq = 0 and the norm ok is the distance to that point in the domain.
In the remaining discussion, we will assume for simplicity that 0. In the case thats # 0, the
expressions below can be modified by replacivgth x — xs.

We consider a point source that is injecting mass into the acoustic domain lainaeveelocity
rate (mass per unit time)

ms(t) = pQs(t) (D.73)

whereni is the mass per unit time of fluid that is being injected into the donais,the density

of the fluid, andQs(t) is the volume velocity of the fluid that is entering the acoustic domain. More
on this will be given later in the section on Lighthill's approach, and its cotimeevith the point
source.

In order to compute the noise resulting from a point source, the waveiequs augmented
with a right hand side terfi

B PP = ft)8(x—x6) = fL(t)5(x (0.74)

wherep is the acoustic pressure at a point in the domais,the speed of sound, apds the fluid
density. We note that the volume velocity can also be written as the time derightive volume in

the source Y
Qs(t) = at

whereV is the volume enclosed by the source. Equation D.75 is valid for a spheoigadesen-
closing a volumeV, but in the case of a point source we shrink the radius to zero. The volume
velocity, Qs, is also sometimes referred to as gwurce strength It is simply the integral of the
normal component of surface velocity over the spherical surfaceeo$dhirce. Since the surface
velocity is the same everywhere on the surface of the sphere, the stiength is

(D.75)

Qs = / VadS= i / dS= 4y, (D.76)
S S

wherea is the radius of the sphere, awmglis the normal component of velocity on the surface. By
considering the volume increase for a pulsating sphere, it is easy to sesgtraions D.75 and
D.76 are the same.

We note that in the Salinas implementation of acoustics, we actually use the timatigerof
pressure rather than the pressure directly. We also scale the equatiendity, since this is needed
when the fluid properties are not constant. Thus, we would modify equtith as follows

1. 2 ng(t
pczlp—w:mSp()é(X—XS):

5 —L3(x) (D.77)
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wherep = . Equivalently, this gives
O2y

pizup — 5 = Q13X x)3(x) (D.78)

In the frequency domain, equation DL 74 is typically written as
(0% 4 K?) = —4TA3(X) (D.79)

whereA s referred to as thamplitudeof the source. The solution to equation D.79 in an unbounded
domain can be shown to be the following

P— éejmfkr) (D.80)

wherer = X — Xg is the distance from the center of the source to the point in the domain, thé&circu
frequency of the wavek = 2 is the wavenumber.

Assuming a time-harmonic expression fQg(t) = Qé“*, and substituting this and equation
into equation D.74, it follows that the following relation exists betw@amdA

Q= —4m (D.81)
P
Thus, equation D.79 can also be written in termQas follows
(02 4+ K?) = rig(t)3(X) (D.82)

Consequently, we have shown that in both time (equation D.74) and freg¢equation D.82) we
can represent the point source as a volume velocity amplitude times a deltiarfiunc

A finite element formulation of the previous equation can be constructeduas, Uy multi-
plying the previous equation by a test function, and integrating by partsndi¢ethat the domain
of integration must include the poimt, the location of the point source. Also, we note that the
integration against the delta functidix — xs) is actually a duality pairing, rather than an integral,
since the integral of a delta function is not defined. In what follows, veei@e that the points
lies on a node in the finite element mesh. This will facilitate the modeling, since we witiiijyp
define the point source on a nodeset or nodelist consisting of a singge no

Denoting byV;(Q+) the function space for the fluid, the weak formulation can be written as
follows. Find the mappingy: [0, T] — V¢ (Q¢) such that

/QF:I’CZ(pdx+/Q DqJF;D(pdx: _/agn Unds+ Qs(t)

Vo e Vi (Qr), whereu, is the prescribed velocity on the Neumann portion of the fluid boundary. We
note that the first term on the right hand side is a surface excitation fanckethus only contributes
nonzero terms on nodes that lie on the surfgg. The second term comes from the point source,
and only contributes a nonzero term on the node where the point solooaised.

Inserting a finite element discretizatiapix) = TN, @N;(x) into equation D.83 results in the
system of equations
M+ Ky = f,, (D.83)
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whereN is the vector of shape functionld, = [o, ;NN dxis the mass matriX = [o, = DNT ORONC g%

is the stiffness matrix, anth = [5q, uNTdx+ Qs(t) is the external forcing vector from Neumann
boundary conditions.

If Q= dt is computed with a void element in Presto, equation D.83 can be used to compute the
right hand side term and the corresponding acoustic response.

D.9 ALE Acoustics

In many cases of acoustic and structural acoustic analysis, the Laamastigictural mesh penetrates
into the Eulerian acoustic mesh. Although this happens for all structurakticgroblems, if the
amplitude of the structural vibrations is small, this penetration/separation cemdsed. In fact,
all of the previous equations made this implicit assumption.

When mesh interpenetration/separation occurs, a mesh motion scheme sad bethe acous-
tic domain to correct for the motion of the nodes. Here we describe a sclerdeing this. We
will only consider the case of a one-way coupling, i.e. where the strdotiation drives both
the acoustic mesh motion and the corresponding acoustic wave propaddugofully coupled case
would be an extension of what is presented below.

First, we consider the undamped acoustic wave equation
1. 2
?LD_D P=0 (D.84)
This equation is based on an Eulerian formulation and thus assumes a syatiooastic mesh.

When the acoustic mesh is moving, we need to replace the time derivative withahddwvative,
as follows

Dy oy
Ft E +u-dy (D.85)
whereu is the spatial nodal velocities of the nodes of the mesh. Thus we see thatlehmesh is

not moving,% = %—‘f

Inserting equation D.85 into equation D.84, we obtain the wave equation in a gn@farence

frame 173 5
.0 u-0p—0%p = D.
(at+ )(at )Lp w0 (D.86)
Expanding out terms, we have
02y olU] 2
[atz%—u O +a 0p+u- O(u D)w]—m P=0 (D.87)
wherea = d“ are the nodal accelerations, or the time derivatives of the nodal velocities

Multiplying equation D.87 by a test function and integrating by parts, we obtaindhiational
formulation for the ALE wave equation

162 1
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The first term in equatidn D.88 is the classical mass matrix. The second temoisgmmetric term
that contributes to the damping matrix, and the third term is a nonsymmetric termothtabates
to the stiffness matrix. The fourth term is a symmetric term that contributes to threesgfmatrix
(after integration by parts), and the fifth term is the classical stiffness matrix

Currently, the first, second, and fifth terms are implemented in the ALE acsudstimulation
in Salinas. The third and fourth terms are not difficult to implement, but arectly missing in the
Salinas implementation.
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