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Abstract 

 

The Ground-Based Monitoring R&E Component Evaluation project performs testing 

on the hardware components that make up Seismic and Infrasound monitoring 

systems.  The majority of the testing is focused on the Digital Waveform Recorder 

(DWR), Seismic Sensor, and Infrasound Sensor.  In order to guarantee consistency, 

traceability, and visibility into the results of the testing process, it is necessary to 

document the test and analysis procedures that are in place.  Other reports document 

the testing procedures that are in place (Kromer, 2007).  This document serves to 

provide a comprehensive overview of the analysis and the algorithms that are applied 

to the Component Evaluation testing.  A brief summary of each test is included to 

provide the context for the analysis that is to be performed. 
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NOMENCLATURE 
 

 

dB Decibel 

DOE Department of Energy 

DFT Discrete Fourier Transform 

DUT Device Under Test 

DWR Digital Waveform Recorder 

FFT Fast Fourier Transform 

GNEMRE Ground-based Nuclear Explosion Monitoring Research & Engineering (Program 

within NA22) 

NA22 Office of Non-proliferation Research & Development (Office within NNSA) 

NNSA National Nuclear Security Administration (Office within DOE) 

PDF Probability Density Function 

PSD Power Spectral Density 

RMS Root Mean Square 

SNL Sandia National Laboratories 

Tester The individual responsible for performing a given test and the associated analysis 
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1 INTRODUCTION 
 

The purpose of this document is to capture the algorithms employed by the Component 

Evaluation project for processing and analyzing test data.  These algorithms are documented in 

sufficient detail so that they can be unambiguously reproduced.  Where appropriate, MATLAB® 

scripts are provided as examples. 
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2  ALGORITHMS 
 

A description of the core algorithms that are commonly applied to the test analysis modules are 

provided here.  These algorithms form the basis around which the testing is performed. 
 

2.1 Complex Numbers 
 

Complex numbers and their operations are used extensively throughout the algorithms described 

in this document.  Complex operations form the basis of much of signal processing and 

descriptions of their use are easily found in many available texts.  Their description is included 

simply as an easy reference. 

 

Complex numbers have both a real and an imaginary component.  In their Cartesian form, they 

can be expressed as: 

 

      
 

Where   is defined to be the imaginary unit: 

 

       

  √   
 

In their Polar form, complex numbers can be expressed as: 

 

      
 

Complex numbers can be converted between their Cartesian and Polar forms using the following 

relationships: 

   √       

        (   ) 
 

       ( ) 

       ( ) 
 

2.1.1 Complex Operations 
 

Given two complex numbers, defined as: 

 

                     
                    

 

The following operations may be performed: 

 

 Operation Cartesian Polar 
Addition        (     )    (      ) N/A 

Subtraction        (     )    (      ) N/A 
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Multiplication        (           )   
  (            ) 

        (     ) 

Division   

  
 (

           

  
    

 )   

  (
           

  
    

 ) 

  
  

   (     ) 

Square Root √   
√

     

 
   √

     

 
 

√        ⁄  

Inverse  

  
 (

  

  
     

 )    (
  

  
     

 ) 
 

  
       

Negation                       

Complex 

Conjugate 
  

                    

Exponent            (  )           (  ) N/A 

Logarithm    (  )    (  )       N/A 

Power   
          (  ) N/A 

 

Often, certain mathematical operations may be simpler to perform in either Cartesian or Polar 

form.  If that is the case, then the most straight forward option may be to transform to the other 

form, perform the operation, and then transform back. 
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2.2 Discrete Fourier Transform 
 

Given a discrete time series shown below: 

 

 , -         
 

It is possible to estimate the frequency content of the time series using the Discrete Fourier 

Transform (DFT) (Oppenheim, 1999, Pg. 542-543): 

 

 , -   ∑  , -   
  
 

  

   

   

         

 

The Fourier Transform,  , -, is a complex sequence giving magnitude and phase offsets for 

each component of the signal at frequency element k. 

 

The inverse transform is thus: 

 

 , -   
 

 
∑  , -  

  
 

  

   

   

         

 

In general, both  , - and its Fourier Transform  , - are sequences of complex values containing 

both real and imaginary components.  However, in practice for this application,  , - is limited to 

purely real sequences.  If  , - is real, then its Fourier Transform is known to be symmetric 

(Oppenheim, 1999, Pg. 576): 

 

 , -     ,(  ) -       ( )                        
 

The Fast Fourier Transform (FFT) is used to compute the DFT and its inverse using a Cooley-

Tukey decimation-in-time radix-2 FFT algorithm (Oppenheim, 1999, Pg. 635-6).  This method 

of computing the DFT is limited to sequences that have a length that is a power of 2.  However, 

this limitation is not restrictive for this application since the time series being analyzed are 

typically divided into windows that have been chosen to be a power of 2 in length. 
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2.3 Windows 
 

A number of windowing functions are employed in the test analysis.  The windows serve to 

segment a section of the waveform time series. The windowed signal comes from multiplying 

the signal with the window.  In addition, the windows generally taper the ends of the time 

segment so as to minimize spectral aliasing.  The specific type of taper influences the resulting 

frequency content of the windowed signal. 

 

The effect of a window in the frequency domain is the convolution of the frequency response of 

the window with the frequency response of the signal under study.  The simplest case of a 

rectangular window results in considerable spectral leakage.  An ideal window would consist of 

only an impulse in the frequency domain, as the convolution of an arbitrary signal with an 

impulse is simply itself.  That is unattainable, as it would require a window of infinite length in 

the time domain, defeating the purpose of a window.  However, windows can be shaped with 

that ideal in mind. 

 

Assume each window is of length N.  Along with an equation for the computation of the 

window, an example plot of the window function and its frequency response are shown below 

the equation for N=128.  A Matlab® script for generating the window and response plots is 

provided (see 0 Window Comparison). 
 

2.3.1 Rectangular 
 

The rectangular window (Oppenheim, 1999, Pg 468) is defined as: 

 

 , -   2 
  
  

    
       

         
 

 
window_comparison(rectwin(128), 'Rectangular'); 

 

 
Figure 1  Rectangular Window 

 

The frequency response of the rectangular window has side lobes with high amplitude.  This 

leads to spectral smearing when this window is used to examine the frequency response of a 

signal under study. 
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2.3.2 Hann 
 

The Hann window (Oppenheim, 1999, Pg 468), also known as a Hanning window, is defined as: 

 

 , -   {           (
   

   
*         

           
 

 

window_comparison(hann(128), 'Hann'); 

 

 
Figure 2  Hann Window 

 

The Hann window has rapidly decaying side lobes.  However, its main lobe is still fairly broad 
 

2.3.3 Hamming 
 

The Hamming window (Oppenheim, 1999, Pg 468) is defined as: 

 

 , -   {             (
   

   
*         

           
 

 
window_comparison(hamming(128), 'Hamming'); 

 

 
Figure 3  Hamming Window 

 

0        N-1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
m

p
lit

u
d
e

samples

Window function (Hann)

-60 -40 -20 0 20 40 60
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

d
e
c
ib

e
ls

DFT bins

Frequency response (Hann)

0        N-1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
m

p
lit

u
d
e

samples

Window function (Hamming)

-60 -40 -20 0 20 40 60
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

d
e
c
ib

e
ls

DFT bins

Frequency response (Hamming)



 
 

16  

The Hamming window has a narrower main lobe and fairly low amplitude side lobes. 

 

2.3.4 Kaiser Bessel 
 

The Kaiser Bessel window (Oppenheim, 1999, Pg 474) is defined as: 

 

 , -   

{
 
 

 
   ( √  0

   
 1

 
)

  ( )
        

           

 

where: 

                                                
 

   
   

 
 

 

              
 

   ,

       (     ) 

       (    )              (    ) 
  

   
    

         
    

 

 

For the purposes of this application, we have chosen the following peak approximation error: 

 

        
 

This approximation error value results in an A and   of: 

 

       

           
 

window_comparison(kaiser(128, 21.0813), 'Kaiser Bessel'); 

 

 
Figure 4  Kaiser Bessel Window 
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The Kaiser Bessel window has a slightly broader main lobe than the Hamming window.  

However, it has minimal side lobes. 

 

2.3.5 Bartlett 
 

The Bartlett window (Oppenheim, 1999, Pg 468), also known as a triangular window, is defined 

as: 

 

 , -   {
  (   )⁄  

    (   )⁄  
  

   
      (   )  ⁄

(   )  ⁄       
         

 

 
window_comparison(bartlett(128), 'Bartlett'); 

 

 
Figure 5  Bartlett Window 
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2.4 Power Spectral Density 
 

The Power Spectral Density (PSD) is a method of describing how the power of a stationary 

signal is distributed over frequency.  The PSD is estimated using Welch’s method for computing 

a modified periodogram (Oppenheim, 1999, Pg 737-739).  In summary, we have a digital time 

series of length N with a sampling period of T seconds such that: 

 

 , -   (  )           
 

The sequence is divided and windowed into segments of length L samples with a length R 

sample step size, using the window function  , - (see 2.3 Windows): 

  

  , -  ( ,    -    , -)     , -          
 

There are three methods by which any dc offset may be removed from the signal: 

 

  , -   

{
  
 

  
 

       

 

 
∑  , -

   

   

       

 

 
∑  ,    -

   

   

       

 

 

In total, there are K segments where: 

 

(   )   (   )      
 

   (   )  ⁄     
 

The segmented time series are represented graphically below: 

 
Figure 6  PSD Windowing 
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Note that there may be a small number of data points, less than R, at the end of the time series 

that are insufficient to form a full segment of length L.  Some applications of the PSD choose to 

zero-pad the time series so as to be able to include those data points in an additional segment.  

That is not the approach favored by this application of the PSD.  Zero-padding would only serve 

to introduce a sharp transition in the time domain, especially in the case of tonal data, which 

would result in spurious frequency content.  Instead, we choose to simply not include those data 

points. 

 

The Fourier Transform (see 2.2 Discrete Fourier Transform) of the r
th

 segment is: 

 

  , -    *  , -+                   
 

The normalization to account for the attenuation due to the windowing function is: 

 

   
 

 
∑( , -) 

   

   

 

 

The periodogram of the individual data segment is defined as: 

 

  , -   
 

  
|  , -|                  

 

Note that the individual periodogram must be scaled by the sampling period   in order to 

estimate its continuous time equivalent (Oppenheim, 1999, Pg 731-732). 

 

The averaged periodogram of the entire sequence is: 

 

 , -   
 

 
∑   , -

   

   

         

 

Because the data we are analyzing is composed of purely real sequences, the FFT and the 

periodogram are symmetric about the positive and negative frequencies.  Thus, we can decrease 

the storage and any resulting computation by approximately half.  Note that it is necessary to 

double the PSD values (other than at the DC and Nyquist frequencies), so that the power 

contribution of the negative frequencies are not lost. 

 

   , -  

{
 
 

 
  , -    

   , -     
 

 

 , -   
 

 

 

 

 

Thus, the length of the sequence    , - is equal to M where: 
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The unit of a PSD is       where   is the unit of the time series.  For example, if the time-

series samples are in units of Volts, then the unit of the PSD is      .   

 

Typically, the PSD will be converted to decibels for display, for example               : 

 

        (   , -) 
 

2.4.1 PSD Confidence 
 

The accuracy of the PSD estimate increases as the number of time segments that are included in 

the spectral averaging grows.  An important metric of the PSD is the 90% confidence interval 

measured in dB.  The confidence interval indicates the estimated PSD has a 90% probability of 

falling within a band, expressed in dB, centered on the actual underlying PSD. 

 

 
Figure 7  PSD Confidence Interval 

 

For the case of non-overlapping data segments, if the entire data record is of length N and the 

time window is of length L, then the 90% confidence, in dB, of the PSD estimate is (Stearns, 

1990, Pg 378): 

 

Confidence 

Interval 
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√
 

  ⁄
      

 

 

In general, K, the number of data segments for a length R step size, is: 

 

  (   )  ⁄     
 

For the non-overlapping case where R = L, the 90% confidence interval becomes: 

 

      
    

√        
 

 

Therefore, the confidence interval is observed to decrease as the number of data segments in the 

PSD estimate increases. 

 

However, this method of estimating the confidence interval does not take into account any 

potential overlap in the data segments or the windowing function used in constructing the data 

segments.  It is insufficient to assume that the increased number of data segments, K, due to 

overlapping can simply be substituted into the equation for the confidence interval.  The 

increased overlap will result in a decreased independence between the data segments that will 

limit the reduction in spectral variance.  Depending upon the windowing function being used, the 

decrease in independence may be limited to some extent. 

 

When estimating a PSD via the periodogram method, the variance of the PSD estimate is 

proportional to the number of independent time segments, K, that went into the spectral 

averaging (Oppenheim, 1999, Pg 738).  Estimating the contributions of the degree of overlap and 

the window function to the PSD variance are provided for (Welch, 1967) by computing a 

weighting of the window function, w[n], where the data segment step size is R samples: 

 

 , -  [∑  , - ,    -

   

   

]

 

[∑  , - 
   

   

]

 

⁄          

 

Then, the overall reduction in variance in the PSD estimate due to the chosen overlap and 

window function is equal to: 

 
 

0   ∑
   

  ( )   
   1

 

 

Substitution this equation back into the 90% confidence equation results in: 
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√
  

0   ∑
   

  ( )   
   1

      

 

 

As would be expected, for the case of non-overlapping, rectangular windows, this updated 

confidence interval equation degenerates back to the original equation. 

 

As an example, the plot below of theoretical confidence intervals was generated for an arbitrary 

time series with 100,000 data points, a 1024 point window length, and over a range of step sizes 

for various window functions (see 0 PSD Confidence for the Matlab® script to generate this 

plot). 

 

 
Figure 8  PSD Confidence Interval versus Window Length 

 

From this confidence interval plot, it is observed that considerable gains may be made in 

reducing the uncertainty of the PSD estimate by allowing for an overlap in the data segments.  

 

However, beyond an overlap of approximately one-half of the window length, there are 

diminishing returns, due to the decreased independence of the data in successive time segments.  

Also, for window functions that have greater amounts of taper at the extremes (such as Hann or 

Kaiser), there are greater potential gains in confidence interval that can be achieved by reducing 

the step size.  For these window functions, the step size can be reduced further without any 

decrease in the independence between the data in successive time segments. 
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2.4.2 RMS Estimates 
 

A Root Mean Square (RMS) is a statistical estimate of the signal magnitude of a time varying 

signal.  The RMS may typically be computed in either the time domain or frequency domain.   

 

In the time domain, with a time sampling period of     the RMS estimate is equal to (IEEE Std 

100-2000, Pg. 990-991): 

 

    √
 

 
 ∑| , -| 
   

   

 

 

In the frequency domain, computing an RMS estimate across a frequency band of a PSD 

involves numerically integrating the PSD using the rectangle method. 

  

For a given PSD of length M and window and Fourier Transform of length L: 

 

  
 

 
    

 

 The PSD is defined: 

 

   , -         
 

Over frequencies (in Hertz): 

 

 , -  
 

   
         

 

Note that PSD length is equal to approximately half the length of the Fourier Transform due to 

the method of storing the symmetric PSD of real signals. 

 

Employing Parseval’s theorem (Oppenheim, 1999, Pg. 621), the computation of the RMS power 

across the entire frequency band is: 

 

    √
 

   
 ∑|   , -|

   

   

 

 

Where the term 
 

   
 is the spacing in Hertz between successive points in the PSD.  

 

For the band-limited case, the RMS value over the frequency range f [n] to f [m], inclusive, is: 
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     √
 

   
∑|   , -|

 

   

 

 

If the given power spectra    , - has units of      , then the rms estimate has the unit     . 

 

2.4.3 Dynamic Range Estimation 
 

A dynamic range estimate is the ratio, typically expressed in decibels, between the largest and 

smallest signal values that a device can either output or accept as an input.  For the purpose of 

this test analysis, we are choosing to define dynamic range as the signal to noise ratio between 

the RMS value of a full-scale sinusoid and the RMS of a device’s self-noise within a specified 

bandwidth. 

 

In the time domain, the dynamic range can be estimated using either peak or RMS estimates of 

the largest and smallest time domain signals. 

 
Figure 9  Time Domain Signal Measurements 

 

In determining the dynamic range for a device under test, the low signal level is typically 

obtained from a frequency domain measurement of the device’s self-noise.  The high signal level 

is either obtained from the device’s datasheet or determined experimentally by testing.  The high 

signal level is typically expressed as a peak time domain value. 

 

The first step in estimating a frequency domain measurement of self-noise is to determine the 

frequency band over which the signal levels will be computed.  The choice of frequency band is 

dependent upon the desired application.  An example power spectrum from a digitizer Input 

Terminated Noise test (see 3.2.12 Input Terminated Noise and Maximum Potential Dynamic 

Range) is shown below: 

Peak-to-Peak 

Peak 

RMS 

Complete Cycle 
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Figure 10  Dynamic Range Power Spectra 

 

An RMS estimate of noise is computed (see 2.4.2 RMS Estimates) over the defined frequency 

band: 

       (   ) 

 

For example, in the plot shown above, over a 3 to 15 Hz band there is approximately            

of noise.   

 

Note that the size of the chosen frequency band will have a significant impact on the magnitude 

of the noise estimate.  As the size of the frequency band increases or decreases, the noise 

estimate will also increase or decrease as either more or less signal content, respectively, is 

captured by the frequency band.  This variability in the noise estimate due to the frequency band 

size directly relates to the dynamic range.  Therefore, in general, a smaller frequency band will 

result in a higher dynamic range and a larger frequency band will result in a lower dynamic 

range.  However, it is crucial that the chosen frequency band fully encompasses the band of 

interest for the desired application, regardless of the impact on dynamic range. 

 

The maximum peak signal level may be obtained from the device’s datasheet, verified 

experimentally: 

 

     (    ) 

 

In the case of a signal that is assumed to be a pure sinusoid with peak amplitude      (    ), the 

relationship between its peak and RMS values is: 

 

    
    

√ 
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In this case, the dynamic range in decibels would be: 

 

                      (
     (    )

       (   )
 

 

√ 
)
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2.5 Response 
 

A response characterizes how a linear system transforms an input to produce an output.  

Responses are often used in applications such as modeling the behavior of a sensor or filtering 

digital time series.  There are several ways in which a response may be specified:  Pole Zero, 

Frequency Amplitude Phase values, and Finite Impulse Response values. 

 

2.5.1 Pole Zero 
 

A response may be defined parametrically in terms of its Amplitude (A), Poles (  ), and Zeros 

(  ).   A pole-zero response may be either analog (a function of s) or digital (a function of z). 

 

Analog: 

 

  ( )    
∏ (    )

      
   

∏ (    )
      

   

  

 

Digital: 

 

  ( )    
∏ (    )

      
   

∏ (    )
      

   

 

 

2.5.1.1 Evaluating an Analog Pole Zero Response 

 

An analog pole-zero response, such as the one defined below, may be evaluated at a given 

frequency f by using the following substitution: 

 

  ( )|       

 

The resulting value from the response at the defined frequency is a complex value with both a 

magnitude and phase response. 

 

2.5.1.2 Evaluating a Digital Pole Zero Response 

 

A digital pole-zero response, such as the one defined below, may be evaluated at a given 

frequency f by using the following substitution where    is the digital sampling rate (see 

Oppenheim, 1999, Pg. 95-96): 

 

  ( )|
   

    
  

 

 

The resulting value from the response at the defined frequency is a complex value with both a 

magnitude and phase response. 
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2.5.1.3 Analog to Digital Conversion 

 

In order to apply an analog response to a digital time series, it must first be transformed into a 

digital response.  This analog to digital conversion is also used when designing digital filters.  

This conversion is performed using a bi-linear transform (Oppenheim, 1999, Pg 450-454). 

 

The bi-linear transform allows for a simple substitution to convert between the S-domain and the 

Z-domain, accounting for the sampling period   : 

 

  
 

  
(
     

     
) 

So, given an analog response: 

 

  ( ) 
 

The discrete-time response is: 

  

  ( )     ( )|
  

 
  

(
     

     *
 

  
Re-arranging the z terms in the bi-linear substitution yields: 

 

  
 

  
(
     

     
)

 

 
 

 

  
 

  
(
   

   
* 

 

So, given the definition of an S-domain response, the Z-domain response becomes: 

 

  ( )    
∏ (    )

      
   

∏ (    )
      

   

|

  
 
  

.
   
   

/

 

 

Rearranging the terms of the response function results in: 
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∏ .

 
  

   /
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∏ (  
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   /
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Therefore, the bi-linear transformation may be easily performed using the following rules: 

 

1. For each S-domain zero,     
 

a. There is a Z-domain pole at -1 

b. There is a Z-domain zero at 
(

 

  
   *

(
 

  
   *

 

c. The gain is scaled by .
 

  
   / 

 

2. For each S-domain pole,   : 

 

a. There is a Z-domain zero at -1 

b. There is a Z-domain pole at 
(

 

  
   *

(
 

  
   *

 

c. The gain is scaled by 
 

(
 

  
   *

 

 

Naturally, many of the Z-domain poles and zeros introduced at -1 will cancel out. 

 

2.5.1.4 Applying a response to digital time series data 

 

The relationship between the input and output of a digital pole-zero response may be represented 

in the z-domain as shown in the diagram and equation below. 

  
Figure 11  Response Diagram 

 

       
 

If we have the response,  ( ), written in pole-zero form, we can represent the system as a 

difference equation: 

 

  ( )    
∏ (    )

      
   

∏ (    )
      

   

 

 

The numerator and denominator products may be expressed as a sum of exponents with 

coefficients: 

  

H  x[n]  y[n] 
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  ( )  
∑    

       
   

∑           

   

 

 

Adjusting the    terms to have a negative exponent quantity so that the coefficients can be 

expressed as delays results in the following, since there are inherently more poles than zeros as 

required for a causal system: 

 

  ( )  
∑    

               
   

∑    
               

   

 

 

Since  ( )     ( )  ( ): 

 

  ( )  
 ( )

 ( )
 

∑    
               

   

∑    
               

   

 

 

 ( ) ∑    
         

      

   

   ( ) ∑    
         

      

   

 

 

Recall the definition of the Z transform of   ( ) and  (    ): 

 

 * ( )+    ∑ ( )   

 

 

 

 * (    )+         ( ) 
 

Thus, the Z transform definition may be applied to re-write the response equation in the time 

domain: 

 

∑    [          ]

      

   

 ∑    [          ] 

      

   

 

 

Rearranging the terms to solve for  , - results in the equation below 

 

 , -  
 

       

*( ∑    [          ] 

      

   

) ( ∑    [          ]

      

    

)+ 
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2.5.1.5 Removing a response from digital time series data 

 

Removing a response from a digital time series y[n] to obtain an estimate of x[n] may be viewed 

as the inverse operation of applying a response (Havskov, 2006, Pg 165-167): 

  
Figure 12  Response Diagram 

 

  
 

 
 

 

However, from an implementation standpoint, this approach is problematic.  By inverting the 

response, the poles and zeros are reversed.  Except for the simplest of responses, this will result 

in an unstable system (Scherbaum, 2001, Pg 139-146).  

 

The second issue is that removing a response will not be able to reliably reconstruct any signal 

content outside of the response pass band.  There are fundamental limits on the signal resolution 

that restrict recovery of the attenuated portions outside of the pass band.  In addition, if there is 

any noise that has been added to the signal y[n] after the response had been applied, removing 

the response will serve to severely amplify that noise outside of the response pass band. 

 

The solution we have taken to removing a response from data depends upon whether the 

correction is being performed in the time domain or in the frequency domain. 

 

For the time domain correction, the response is evaluated at its calibration frequency (see 2.5.1.1 

Evaluating an Analog Pole Zero Response) to get a scalar value as an estimate of the response 

sensitivity.  The time series data is divided by the sensitivity to get back to the original units.  For 

example, if the time series data is in volts and the response has the unit of Volt/Meter, then 

dividing by the response sensitivity will result in a time series whose unit is Meters. 

 

 , -  
 , -

 ( )|         

 

 

This will yield a time series that is accurate within the pass band of the response, assuming that 

the response is flat across the pass band and the calibration frequency falls within the pass band. 

 

The response correction must be performed in the frequency domain when the power spectra of 

the data are to be analyzed (see 2.4 Power Spectral Density).  The PSD is shaped by the response 

evaluated at each of the discrete frequencies that make of the PSD.  

 

The PSD is defined: 

 

   , -         

H x[n] y[n] 
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Over frequencies (in Hertz): 

 

 , -         
 

The input PSD is estimated as: 

 

   , -  
   , -

 ( )|      , -
          

 

This will yield a power spectral density that has been corrected by the response 

 

2.5.1.6 Converting a seismic response between unit types 

 

Seismic sensors are transducers that measure the motion of a proof mass relative to a reference 

frame.  Depending upon the sensors design, the position of the proof mass is proportional to 

Displacement, Velocity, or Acceleration (Havskov, 2001, Pg 23).  The response functions below 

represent the relationship between the transfer function  ( ), proof mass displacement  ( ), and 

the ground displacement  ( ): 

  

Displacement:   ( )  
 ( )

 ( )
 

Velocity:   ( )  
 ( )

 ̇( )
 

Acceleration:   ( )  
 ( )

 ̈( )
 

 

The relationship between ground displacement, velocity, and acceleration can be obtained by 

either integration or differentiation (Poularikas, 1999, Pg. 3-3): 

 

 ̈( )     ̇( )     ( )  
 

Substituting this relationship back into the equations for the response yields: 

 

  ( )      ( )      ( ) 
 

  ( )  
 

 
  ( )      ( ) 

 

  ( )  
 

 
  ( )  

 

  
  ( ) 

 

Thus, a given response can be converted from its native unit to an equivalent form in a different 

unit by either multiplying or dividing by some multiple of  . 
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Often, seismic sensor testing involves making comparisons between the outputs of multiple co-

located sensors.  There is no guarantee that these sensors will all be of an equivalent type.  For 

example, one of the seismometers may output signals proportional to velocity while another 

outputs signals proportional to acceleration.  However, in order to make a comparison between 

the data collected from the sensors, it is necessary to convert the sensor output to a common 

measurement of some earth unit.  Therefore, prior to performing a response correction (see 

2.5.1.5 Removing a response from digital time series data), the seismic sensor responses must all 

be converted into a common unit using the equations above. 

 

2.5.2 Frequency-Amplitude-Phase 
 

A response may be defined non-parametrically in terms of a set of Frequency, Amplitude, and 

Phase values:  

 

*        +          
 

These non-parametric values may be the result of testing a sensor whose response is otherwise 

unknown.  The number of Frequency, Amplitude, and Phase data points that may be defined is 

arbitrary and the points may not uniformly sample the desired frequency range of the response. 

 

 

2.5.2.1 Estimating Analog Pole/Zero locations 

 

The analog pole and zero locations of a FAP response may be estimated by performing a least-

squared linear fit between the defined Frequency, Amplitude, and Phase values and a response 

function of the form: 

 

 ( )    
∑    

       
   

∑           

   

 

 

It is first necessary to assume the number of poles and zeros in the response model to be 

estimated.  If the number of poles and zeros are unknown, then it is also possible to iterate over a 

range of combinations to find a response with a minimal misfit.  This approach requires the 

involvement of someone familiar with the expected response characteristics of the sensor to 

ensure that a reasonably valid response is being estimated.  Otherwise, it is possible to generate a 

response that is unstable or varies considerably outside of the defined response points. 

 

For each Frequency, Amplitude, and Phase value compute the complex response: 
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   (   )

      

 
     (     )

      

] 
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   *
  (   )

    (   )
      

   
    (     )

      (     )
      

 (   )
   (   )

      

   
 (     )

   (     )
      

+ 

 

Solve for the coefficients of the response H(s): 

 

,      -  (    )    (    ) 
 

Since we know that the coefficients are real, the solution may be simplified: 

 

,      -   (    )     (    ) 
 

Note that the entries in the matrices above are complex and so the real portion of the complex 

matrix multiplies must be solved for. 

 

The a and b vectors represent the coefficients of the digital response. 

 

  ( )  
∑    

       
   

∑           

   

 

 

The poles and zeros of the response may be obtained by factoring the polynomial to obtain its 

roots and gain: 

  
       

       

 

 

  ( )    
∏ (    )

      
   

∏ (    )
      

   

 

 

 

2.5.2.2 Estimating Digital Pole/Zero locations 

 

The digital pole and zero locations may be estimated by performing a least-squared linear fit 

between the defined Frequency, Amplitude, and Phase values and a response function of the 

form: 

 

 ( )   
∑    

       
   

∑           

   

 

 

It is first necessary to assume the number of poles and zeros in the response model to be 

estimated.  If the number of poles and zeros are unknown, then it is also possible to iterate over a 
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range of combinations to find a response with a minimal misfit.  This approach requires the 

involvement of someone familiar with the expected response characteristics of the sensor to 

ensure that a reasonably valid response is being estimated.  Otherwise, it is possible to generate a 

response that is unstable or varies considerably outside of the defined response points. 

 

For each Frequency, Amplitude, and Phase value compute the complex response: 

 

       
            

 

   [
   

 
     

] 

 

 

                   
 

   *
   

        
         

   
     

            
           

                  

   
                      

+ 

 

Solve for the coefficients of the response  ( ): 

 

,      -  (    )    (    ) 
 

Since we know that the coefficients are real, the solution may be simplified: 

 

,      -   (    )     (    ) 
 

Note that the entries in the matrices above are complex. 

 

The a and b vectors represent the coefficients of the digital response: 

 

  ( )  
∑    

       
   

∑           

   

 

 

The poles and zeros of the response may be obtained by factoring the polynomial to obtain its 

roots and gain: 
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2.5.2.3 Evaluating a FAP Response 

 

A FAP response may be evaluated at a given frequency by first estimating the poles and zeros 

for such a response, as described in 2.5.2.1 Estimating Analog Pole/Zero locations or 2.5.2.2 

Estimating Digital Pole/Zero locations. 

 

Once a pole-zero estimate of the FAP response is obtained, the estimated response may be 

evaluated as described in 2.5.1.1 Evaluating an Analog Pole Zero Response or 2.5.1.2 Evaluating 

a Digital Pole Zero Response. 
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2.6 Filters 
 

A digital filter is applied to waveform time series to selectively remove portions of the frequency 

content.  The design of a digital filter is fairly straight forward, given the initial selection of a few 

key parameters:  The filter type, order, and band pass frequencies. 

 

First, an analog low-pass filter with a cutoff frequency at 1 radian/second is designed (see 2.6.1 

Analog Filter Design). 

 

Second, the analog low-pass filter is pre-warped for the chosen frequency band (see 2.6.2 

Frequency Warping). 

 

Finally, the pre-warped filter is converted from analog to digital using a bilinear transformation 

(see 2.5.1.3 Analog to Digital Conversion). 

 

Once the digital filter has been completed, it may be applied to the digital time series (see 2.5.1.4 

Applying a response to digital time series data). 

 

2.6.1 Analog Filter Design 
 

The first step in designing a digital filter is to create an analog low-pass filter with a cutoff 

frequency at 1 radian/second.  The type of filter and its order may be selected in order to 

optimize various parameters such as the sharpness of the cutoff frequency, ripple inside the pass 

band, ripple outside the pass band, phase response, etc. 

 

The sections for each type of analog filter include several pole-zero and magnitude-phase plots 

for various orders. 

 

2.6.1.1 Butterworth 

 

A Butterworth filter (see Oppenheim, 1999, Pg 824-826) is designed such that its magnitude 

response is flat within the pass band.  An analog, low-pass, N
th

-order Butterworth filter with a 

cutoff frequency at 1 radian/second has no zeros and its poles are equally spaced around the left 

half of the unit circle: 

 

  ( )   
 

∏ (   
  (      )

  * 
   

 

 

The pole-zero plots and magnitude-phase plots are shown below for several different orders. 
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Figure 13  Butterworth Filter – 2nd Order 

  
Figure 14  Butterworth Filter – 3rd Order  

  
Figure 15  Butterworth Filter – 4th Order  
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Figure 16  Butterworth Filter – 5th Order  

 

2.6.1.2 Chebyshev 1 

 

A Chebyshev Type 1 filter (see Oppenheim, 1999, Pg 826-828) is designed such that its 

magnitude response error is distributed across the passband, which is readily visible as ripple.  

An analog, low-pass, N
th

-order Chebyshev 1 filter with a cutoff frequency at 1 radian/second has 

no zeros and its poles are equally spaced around an ellipse contained within the unit circle. 

 

The pole-zero plots and magnitude and phase responses are shown below for several different 

orders. 

 

  
Figure 17  Chebyshev Type 1 Filter – 2nd Order  
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Figure 18  Chebyshev Type 1 Filter – 3rd Order  

  
Figure 19  Chebyshev Type 1 Filter – 4th Order  

  
Figure 20  Chebyshev Type 1 Filter – 5th Order  

 

 

2.6.1.3 Chebyshev 2 

 

A Chebyshev Type 2 filter (see Oppenheim, 1999, Pg 826-828) is designed such that its 

magnitude response error is distributed across the stopband, which is readily visible as ripple.  

An analog, low-pass, N
th

-order Chebyshev 2 filter with a cutoff frequency at 1 radian/second is 

obtained by transforming a Chebyshev 1 filter. 
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The pole-zero plots and magnitude and phase responses are shown below for several different 

orders. 

  
Figure 21  Chebyshev Type 2 Filter – 2nd Order  

  
Figure 22  Chebyshev Type 2 Filter – 3rd Order  

  
Figure 23  Chebyshev Type 2 Filter – 4th Order  



 
 

42  

  
Figure 24  Chebyshev Type 2 Filter – 5th Order  

 

2.6.1.4 Bessel 

 

A Bessel filter is designed to have a phase response that is flat at zero frequency and linear phase 

through its pass band.  A Bessel filter has no zeros and the poles can be solved through analytic 

modeling.  However, they are more typically stored within a lookup table for faster computation 

(see Matlab command “besselap”). 

 

The pole-zero plots and magnitude and phase responses are shown below for several different 

orders.  

 

  
Figure 25  Bessel Filter – 2nd Order  
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Figure 26  Bessel Filter – 3rd Order  

  
Figure 27  Bessel Filter – 4th Order  

  
Figure 28  Bessel Filter – 5th Order  

 

 

2.6.2 Frequency Warping 
 

The second step in designing a digital filter is to warp the analog low-pass filter depending upon 

the desired frequency band limits of the filter.  Frequency warping accomplishes two primary 

tasks.  First, it converts the generic low pass analog filter into the specific band type that is 

desired.  Second, it corrects for the distortion in frequency that is introduced by the bi-linear 

transform that will be used in a later stage of the filter design. 
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The warping is performed by translating the locations of the poles and zeros.  For all of these 

types of filter bands, the frequency warping first begins with an analog low-pass filter with a 

cutoff frequency at 1 radian/second, as constructed in the previous section: 

 

 ( ) 
 

2.6.2.1 Low Pass  

 

A Low Pass filter has a single cutoff frequency.  Any frequency content below that cutoff is 

retained while any frequency above that cutoff is removed.  If the desired cutoff frequency in 

Hertz is at    with a sampling rate of   , then the Low Pass filter may be obtained from the 

following substitution (see Stearns, 1993, Pg 126-127*): 

 

         (
   

  
* 

 

   ( )    ( )|     ⁄  

 

*Note that the additional     factor that must be applied to the cutoff frequency is due to Stearn’s 

definition of the bilinear transformation on page 126 that does not account for the sampling rate 

as the standard bilinear transformation definition does (see 2.5.1.3 Analog to Digital 

Conversion). 

 

2.6.2.2 High Pass 

 

A High Pass filter has a single cutoff frequency.  Any frequency content above that cutoff is 

retained while any frequency content below that cutoff is removed.  If the desired cutoff 

frequency in Hertz is at    with a sampling rate of   , then the High Pass filter may be obtained 

from the following substitution (see Stearns, 1993, Pg 129): 

 

         (
   

  
* 

 

   ( )    ( )|     ⁄  

 

2.6.2.3 Band Pass 

 

A Band Pass filter has low and high cutoff frequencies.  Any frequency content within the 

cutoffs is retained while any frequency content outside the cutoffs is removed.  If the desired 

cutoff frequencies in Hertz are   and   with a sampling rate of   , then the Band Pass filter may 

be obtained from the following substitution (see Stearns, 1993, Pg 129): 

 

         (
   

  
* 
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         (
   

  
* 
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   ( )    ( )|
  

(     
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2.6.2.4 Band Stop 

 

A Band Stop filter has low and high cutoff frequencies.  Any frequency content outside the 

cutoffs is retained while any frequency content within the cutoffs is removed.  If the desired 

cutoff frequencies in Hertz are   and   with a sampling rate of   , then the Band Stop filter may 

be obtained from the following substitution (see Stearns, 1993, Pg 129): 
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2.7 Coherence 
 

2.7.1 Two Channel Coherence 
 

The Two Channel Coherence technique (Holcomb, 1989) allows for a limited estimate of the 

channel noise and the relative response between the two channels.  The generic system model for 

two systems with a common input, independent responses, and linearly additive noise sources is 

shown below. 

 
Figure 29  Two Channel Coherence System Diagram 

 

The common input to the two systems is represented by the time varying quantity x(t).  The 

system responses   ( ) and   ( ) describe the effect of the system on the amplitude and phase 

of the input.    ( ) and   ( ) represent additive noise sources coming after the responses.    ( ) 

and   ( ) represent the recorded signals. 

 

The frequency domain equations, in which capitalized variables represent the Fourier Transform 

of the time domain signals and responses, describing the observed outputs for the systems 

depicted above are: 

 

          

          
 

The corresponding auto and cross power spectra are: 

 

     
     

 

 (      )(      )
 

     
           

    
           

  

 
     

     
 

 (      )(      )
 

     
           

    
           

  

 
     

     
 

 (      )(      )
 

     
           

    
           

  

H1(s)  

H2(s)  

x(t) 

n1(t) 

n2(t) 

y1(t) 

y2(t) 
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Since it is assumed that the linearly additive noise sources are independent of each other and the 

input signal, we can assume that       ,      , and      .  The equations above 

simplify to: 

 

     
      

         
 

  |  |
          

 

 
     

     
          

 

 |  |
          

 

 
     

     
    

     
     

 

The mean squared coherence between the output channels is computed from the auto and cross 

power spectra (see 2.4 Power Spectral Density) of the two channels: 

 

    
|     

|
 

     
     

 

 

In order to compute an estimate of the relative response and noise, some assumptions must be 

made about the systems.  First, one of the channels, which is designated the reference channel, is 

assumed to have a unity system response, H(s).  Second, constraints must be placed on the 

linearly additive noise.  These constraints are referred to as being either “Lumped” or 

“Distributed”. 

 

2.7.1.1 Lumped Noise 

 

In the case of the lumped noise model, it is assumed that there is no noise present in the first 

reference channel and that all of the noise is present in the second channel.  This model is useful 

when the reference device is assumed to have noise characteristics that are significantly lower 

than that of the test device. 

  
Figure 30  Two Channel Coherence Lumped System Diagram 

 

 

The system model diagram above may be expressed as the frequency equations below: 

H(s)  

x(t) 

n(t) 

y1(t) 

y2(t) 
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Using the system model frequency equations, the auto and cross spectra may be expressed as the 

following: 

 

     
     

 

    

     
 

     
     

 

 (    )(    ) 

                      

 | |         
 

 

     
     

 

  (    ) 

          

       
 

The noise power estimate for the lumped noise model is: 
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The estimate for the relative linear transfer function is: 
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2.7.1.2 Distributed Noise 

 

In the case of the distributed noise model, it is assumed that the noise is equally distributed 

between the two channels.  This model is useful when the reference device is assumed to have 

approximately equal performance to the test device.  In this case, the two noise sources, n1(t) and 

n2(t), are assumed to be independent but possessing identical power spectra. 

  
Figure 31  Two Channel Coherence Distributed System Diagram 

 

The system model diagram above may be expressed as the frequency equations below 

 

       
 

        
 

Using the system model frequency equations, the auto and cross spectra may be expressed as the 

following 
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Solving these three equations for the noise power estimate for the lumped noise model: 

 

H2(s)  

x(t) 

n1(t) 

n2(t) 

y1(t) 

y2(t) 
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The estimate for the relative transfer function is: 
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2.7.2 Three Channel Coherence 
 

The Three Channel Coherence technique (Sleeman, 2006) allows for the noise estimate of each 

channel and the relative response between each pair of channels to be uniquely determined.  

There is no assumption of how the noise is distributed between the channels, as there is with the 

Two Channel Coherence technique. 

 

The three-sensor coherence analysis technique assumes that the three channels are all measuring 

a common input signal.  Each channel has its own response, Hi, and some amount of 

independent, incoherent noise, ni. 

  
Figure 32  Three Channel Coherence System Diagram 

 

From the system diagram above, the frequency domain equations relating the common input and 

the 3 channels of output are: 

 

          

          

          
 

The cross power spectrum between each pair of channel outputs can be computed as: 

 

        
  

 

If we assume that the internal noise,   , and the input signal,  , are independent such that 

      , then the cross power spectrum becomes: 
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If we further assume that the noise in each channel is uncorrelated such that       for    , 

then the relative transfer function between any two channels (for      ) then becomes: 

 
  

  
 

   

   
 

 

It is also possible to show that the noise auto power spectrum is: 

 

        
      

   
 

 

Note that that this method of computing the noise spectra often results in a complex estimate.  It 

is necessary to compute the magnitude of the noise estimate to obtain its value.  

 

2.7.3 N Channel Coherence 
 

If we have an arbitrary number of channels, N, where N >= 3, then it is possible to 

simultaneously solve for the all of the noise auto power spectra and relative transfer functions by 

examining the signal cross and auto power spectra. 

 

As in the 3 Channel Coherence case, the underlying assumption is that the noise in each channel 

is uncorrelated with the input signal and with the noise in the other channels. 

 

The relative transfer function is computed by averaging across all possible combinations 
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The auto power noise spectrum is computed by averaging across all possible combinations of the 

remaining channels taken two at a time.  
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2.8 Sine Fit 
 

The Sine Fit algorithm performs a least-squared fit to determine the sinusoid parameters (DC 

Offset, amplitude, frequency, and phase) that most closely matches the supplied time series data.  

There are two methods for computing a Sine Fit.  The first method is a three parameter Sine Fit 

in which the frequency is known beforehand and there is a simple close-formed least-squared 

solution for the amplitude, phase, and DC Offset.  The second method is a four parameter Sine 

Fit algorithm that solves for frequency, amplitude, phase, and DC Offset.  The four parameter 

algorithm requires an iterative solution with initial guesses for the parameters. 

 

Note that although the algorithm is termed “Sine Fit”, the parameters that are estimated are 

actually for a cosine function. 

 

2.8.1 Three Parameter Sine Fit 
 

The Three Parameter Sine Fit algorithm (IEEE Std 1241-2000, Pg. 26) solves for the three 

parameters (A0, B0, and C0) for which the model below best fits the supplied data: 
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by minimizing the RMS error between the supplied data and the model: 
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Where the supplied data: 

 

           
 

Is taken at times: 

 

           
 

The angular frequency,       , is assumed to be known.  Let: 
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And 

    [
  

  

  

] 

 

Set up the linear system of equations: 

 

      
 

Solve for the A0, B0, and C0 parameters: 
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Convert the three parameters into the form: 
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Where: 
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2.8.2 Four Parameter Sine Fit 
 

The Four Parameter Sine Fit algorithm (IEEE Std 1241-2000, Pg. 27) solves for the four 

parameters (A0, B0, C0, and ω0) for which the model below best fits the supplied data: 
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by minimizing the RMS error between the supplied data and the model: 
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Where the supplied data: 
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Is taken at times: 

 

           
 

 

This algorithm must be solved iteratively due to the necessity to perform a non-linear estimation 

of the frequency.  Because of the iterative method of solution, the four parameter sine fit 

algorithm can be unstable if a poor choice is made for the initial frequency. 

 

Follow sequence of steps below: 

 

a) Set index the index i to an initial value of 0.  The initial estimate of ωi is made by 

counting the number of zero crossings in the supplied data yn and normalizing that count 

by the sampling rate.  Perform a pre-fit using the Three Parameter Sine Fit to determine 

initial estimates of A0, B0, and C0.   

 

b) Increment the index i by one for the next iteration. 

 

c) Update the angular frequency 

 

              
 

d) Create the following matricies: 
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e) Solve the linear system of equations: 
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f) Go to step b and repeat until the changes in Ai, Bi, Ci, and ωi are suitably small.  For our 

case, a normalized tolerance of less than 10
-12

 is sufficient: 
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g)  Convert the parameters to the form: 
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2.9 Interpolation 
 

2.9.1 Linear Interpolation 
 

Linear interpolation is a method of identifying any arbitrary intermediate data point located 

between two known data points, assuming that a straight line connects the two points, as shown 

in the figure below: 

 

 
Figure 33  Bilinear Interpolation 

 

The following equation describes the relationship between the two known data points and the 

intermediate point: 

 
    

    
 

     

     
 

 

Solving this equation for y, given a known value of x, results in the following: 
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Solving this equation for x, given a known value of y, results in the following: 
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2.9.2 Whittaker Interpolation 
 

Whittaker interpolation is a method of reconstructing a bandlimited signal from sampled values 

of the signal (Oppenheim, 1999, Pg 150).  This method of interpolation has the advantage of 

perfectly reconstructing a bandlimited signal without adding any additional frequency content.  

However, this result relies upon the assumption that the signals are of infinite duration.  Also, the 
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computational requirements for this method of interpolation are greater than for other simpler 

methods, especially for longer signals. 

 

Whittaker interpolation may be performed in either the time or frequency domains. 

 

2.9.2.1 Time Domain 

 

In the time domain, Whittaker interpolation is conceptually equivalent to inserting zero values 

between the existing data points.   The effect of inserting the zero values in the frequency domain 

is to generate spectral copies of the existing frequency content.  

 

 
Figure 34  Frequency Domain Spectral Copies 

 

A sinc filter may be applied to low-pass filter the signal and remove the spectral copies.  

 

 
Figure 35  Sinc Filter 

 

The frequency domain equivalent to the time domain sinc filter is shown below. 
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Figure 36  Low-pass Filter to remove spectral copies 

 

For a sequence,  , -, of length N interpolating by a factor of D may be performed by applying 

the following equation: 
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2.9.2.2 Frequency Domain 

 

Whittaker interpolation may also be performed in the frequency domain for increased 

performance.  The two methods (time and frequency domain) are theoretically equivalent to one 

another, using the Fourier Transform.  However, floating point errors may result in slight 

differences between the two results.  In the frequency domain, the interpolation algorithm is 

shown below. 

 

The sequence of data is zero padded to have a length that is a power of 2 and the Fourier 

Transform of the data is performed (see 2.2 Discrete Fourier Transform): 
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The Fourier Transformed data has zeros inserted in the middle to simulate an increase in the 

sampling rate.  This is conceptually equivalent to inserting zeros between samples and 

performing an idealized sinc filter in the time domain. 
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Finally, the inverse Fourier Transform (IFT) is performed: 
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2.10 Time Tag Measurements 
 

Time Tag measurements are made by recording on a digitizer the on-the-minute or hour analog 

pulse triggers that can be outputted from a GPS receiver.  The transition time of such pulses from 

a typical GPS receiver have a timing error that is less than 1 microsecond.  By comparing the 

digitizers claimed time-tag for the trigger to the expected minute or hour transition, the amount 

of timing error can be computed.  Therefore, such timing triggers can be used to measure the 

amount of timing error in the recorded signal of the digitizer.  

 

 
Figure 37  GPS Timing System Diagram 

 

An important consideration is to recognize that the digitizer time tag errors (generally on the 

order of 10’s of microseconds) that are estimated using this technique do not represent an 

absolute accuracy value.  The estimated error values can vary considerably (by 100’s of 

microseconds) simply by modifying the methods used for estimating the various parameters 

used.  There is no suitable justification for why a given result is more accurate than another.  

However, so long as the estimation parameters are held constant, then the time tag error values 

that are estimated are consistent with one another.  This relative accuracy of the error results is 

crucial for the application of the time tag error measurements when examining quantities such as 

the sample-to-sample jitter of the digitizer or the digitizer’s clock drift and recover when GPS 

lock has been lost. 

 

In addition, waveform time stamps are generally stored in a double precision floating point 

number as seconds since January 1, 1970.  For the range of time values observed at the time this 

document was written, this numeric format restricts the resolution of the timestamp to 

approximately 0.2 microseconds. 

 

First, to define terms related to the rising edge of the trigger pulse, the figure below (IEEE 

STD181-2003, Pg. 37) represents such a pulse. 
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Figure 38  Timing Trigger Definition 

 

A trigger has a low baseline level prior to the pulse represented by S1 and a high level baseline 

level after the pulse represented by S2.  The mean point of the trigger is half-way between S1 

and S2 and is the 50 % Reference Level.  The 50% Reference Level occurs at the 50% Reference 

Level Instant, or trigger time.  The trigger time, as identified by the digitizer’s time tag, should 

occur on the appropriate time transition (minute or hour).  Any difference between the measured 

trigger time and expected trigger time is defined to be the digitizers timing error for that pulse. 

 

In order to measure the timing error, there are several steps that must be taken in the analysis: 

 

1. Identify the rising transition region.   

 

The first step in measuring timing error is to identify the trigger pulse.  Identification of 

the time period encompassing the trigger pulse is performed by examining the first 

difference, or numeric derivative, of the time series.  The transition region is defined as 

being anywhere that the first difference is above a threshold of 0.001 Volts.  This 

threshold was selected to ensure that it was greater than the sample-to-sample variability 

observed in the low and high baseline flat regions being outputted from the timing 

source.  In addition, the transition region is expanded to include other transition regions 

that are within 100 time samples.  This merging of the transition regions is performed to 
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ensure that there are valid and adequately long low and high level baselines both before 

and after the trigger, respectively. 

 

To illustrate, the pulse below shows a triggers with the transition regions colored blue 

and the non-transition, or flat, regions colored magenta. 

 
Figure 39  Example Timing Trigger 
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Figure 40  Example Timing Trigger 

 

 

2. Estimate the low and high baseline levels that occur before and after the pulse (defined 

within the transition region). 

 

The low baseline level is identified by examining the first difference starting 5 samples 

prior to the start of the transition region and looking backwards up to 500 samples.  The 

same threshold of 0.001 Volts is applied to ensure that the low baseline level is flat. 

 

The high baseline level is identified by examining the first difference starting 5 samples 

after the end of the transition region and looking forwards up to 500 samples.  The same 

threshold of 0.001 Volts is applied to ensure that the high baseline level is flat. 

 

It is highly desirable to obtain a large time window for the low and high baseline levels in 

order to compute an accurate estimate of the low and high baseline levels.  Even though 

the baselines appear to be flat, looking at the baselines more closely reveals that the GPS 

timing source contains some amount of variability.  The plots below reveal the baseline 

regions to have a peak-to-peak range of approximately 0.001 Volts, which is also the 

threshold level that was chosen for the sample-to-sample differencing.  In order to ensure 

the most accurate averaging, the baseline windows are made as long as possible before 

the sample-to-sample difference exceeds the defined threshold. 
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Figure 41  Low baseline level 
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Figure 42 High baseline level  

 

 

3. Compute the 50% Reference Level as being the average of the low and high baseline 

levels. 

 

The estimates of the low and high baseline levels can have a dramatic affect on the 

measured timing error.  Any variability in these values will directly affect the 50 % 

Reference Level and thus shift the time instant at which the 50 % Reference Level is 

crossed. 
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Figure 43  50% Reference Level 

 

 

4. Perform a reconstruction of the rising transition region of the pulse (see 2.9.2 Whittaker 

Interpolation). 

 

The window of data that is interpolated is selected to be a total of 10 seconds in length.  

The window starts 5 seconds prior to the theoretical trigger time and extends 5 seconds 

past the trigger time.  The data samples are interpolated such that there is at least one 

interpolation sample every millisecond. 

 

In the case of a timing pulse that is sampled at 40 Hz by the digitizer, a data sample is 

recorded every 25 milliseconds.  The number of data samples included in the 

interpolation would be 400, with 200 prior to the trigger time and 200 after the trigger 

time.  The interpolation would be performed to achieve an interpolated sample spacing of 

at least 1 millisecond.  For performance concerns when performing the interpolation in 

the frequency domain, a factor of two interpolation scaling factor must be used.  For this 

example, the interpolation scale factor would be 32.  This method of timing estimation is 

intended for timing errors that are on the order of 10’s of microseconds.  This represents 

a timing error of roughly 1 part in 1000.  Although there may be discrepancies in the 

absolute level of timing error for a given timing pulse, so long as consistent methods and 

parameters are used in estimating the timing errors, it is possible to make relative 

comparisons between the error measurements.  

 

2300 2320 2340 2360 2380 2400 2420 2440 2460 2480 2500

0

1

2

3

4

5

6

7

8

9

V
o
lt
s

Sample



 
 

68  

 
Figure 44  Timing Trigger Whittaker Interpolation 

 

5. Identify the two points on the interpolated trigger that bound the 50 % Reference Level. 
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Figure 45  Timing Trigger nearest points 

 

6. Perform a linear interpolation between those two points to identify the 50 % Reference 

Level Instance (see 2.9.1 Linear Interpolation). 
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Figure 46  Timing Trigger bilinear interpolation 

 

 

7. The timing error is then taken to be the difference in time between the 50 % Reference 

Level Instance and the minute or hour transition. 
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Figure 47  Timing Trigger Error 
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3 TEST ANALYSIS 
 

This section describes the analysis that is performed for each of the test modules for the 

Component Evaluation project.  For a general description of the tests and their procedures, see 

the appropriate Digitizer, Seismic, or Acoustic test definition document (Kromer, 2007). 

 

Each test module section provides an overview of the analysis that includes equations and plots 

where relevant.  In addition, tables are included at the end of each section listing the relevant 

waveforms to be collected, user defined input parameters, and the critical results of the analysis. 

 

3.1 Generic Component Tests 
 

Generic component tests are tests that can be applied to any component, regardless of its type 

(digitizer, seismometer, infrasound sensor, etc). 
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3.1.3 Power Consumption 
 

The Power Consumption test is used to measure the amount of power that an actively powered 

electrical component consumes during its operation.   

 

The power supply voltage level is first quantified by connecting the power supply to a meter and 

collecting a time series of the voltage value.  This measurement is made prior to connecting the 

electrical component to the meter. 

  
Figure 48  Power Supply Calibration Diagram 

 

 

   , -          
 

Then, the power supply is disconnected from the meter and connected to the resistor and 

component as shown in the diagram below.  The voltage across the resistor is measured with the 

meter.   

  
Figure 49  Power Consumption Diagram 

 

The voltage is sampled for the same duration as when collecting the power supply voltage values 

so as to obtain equivalent statistics for the two quantities.  Note that it is assumed that the power 

supply is of sufficient quality and capacity that its output voltage values do not change 

significantly when the electrical component’s load is placed upon it. 

 

  , -         
 

Even though              are not independent, they are related to one another by the resistor 

and the load impedance of the component being tested.  This load impedance is unknown and 

may not even be purely resistive.  Therefore, sample estimates for the mean and standard 

deviations are obtained from the collected power supply and resistor voltage time series: 

Power 

Supply 

+ 

  

 

 

― 
Component 

+ 

  

 

 

― 

vps v 

R 

+ - 
vr 

Meter 

+ 

  

 
 

― 

Power 

Supply 

+ 

  

 

 

― 
Meter 

+ 

  

 

 

― 

vps 



 
 

75  

 

    
  

 

 
∑    , -

   

   

 

 

   
  

 

 
∑   , -

   

   

 

 

    
  √

 

   
∑ .   , -      

/
 

   

   

 

 

   
  √

 

   
∑(  , -     

)
 

   

   

 

 

The average current through the resistor with resistance R is estimated using Ohm’s law 

(Thomas, 1994, Pg. 25): 

 

   
   

 
  

 

The current standard deviation may be estimated as a scaling of the resistor voltage standard 

deviation (need a reference here): 

 

   
   

 
 

 

The average voltage across the electrical component may be estimated using Kirchoff’s Voltage 

Law (Thomas, 1994, pg. 34-35): 

 

       
    

  

 

The standard deviation of the voltage across the electrical component may be estimated by 

treating it as the sum of two independent random variables: 
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Finally, the average power consumption of the electrical component may be estimated by 

employing the equation for electrical power (Thomas, 1994, Pg. 9): 
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The standard deviation of the power consumption is somewhat more complicated as it must be 

modeled as the product of two independent random variables: 
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Table 1:  Test Waveforms 

Waveform Unit Source 

Power Supply Waveform Volt Meter 

Resistor Waveform Volt Meter 

 
Table 2:  Test Parameters 

Parameter Unit 

Resistance Ohm 

 
Table 3:  Test Results 

Result Unit 

Power Consumption Mean Watt 

Power Consumption 

Standard Deviation 

Watt 
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3.2 Digital Waveform Recorder Tests 
 

3.2.3 AC Accuracy 
 

The AC Accuracy test is used to measure the DC offset and bitweight of a digitizer channel by 

recording a sinusoid with known frequency and amplitude of the form: 

 

       (    ) 

 

The function generator is connected to the digitizer as shown in the block diagram below: 

  
Figure 50  AC Accuracy Diagram 

 

Compute a Sine Fit (see 2.8 Sine Fit) on the recorded data to determine the measured amplitude, 

frequency, and DC offset.  
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Compute the DC offset, ensuring that it is expressed as an integer multiple of the bitweight: 
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Compute the corrected bitweight: 

 

                     
     

    
           

 

Compute the % error in the bitweight: 
 

              
                             

                   
 

 
Table 4:  Test Waveforms 

Waveform Unit Source 

Sinusoid Waveform Volt DUT 

 
Table 5:  Test Parameters 

Parameter Unit 

Function 

Generator 
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Reference Voltage Volt 

Reference Frequency Hz 

 
Table 6:  Test Results 

Result Unit 

Sinusoid Amplitude Volt 

DC Offset Volt 

Corrected Bitweight Volts/count 

Percent Error % 

Sine Fit Error Volt rms 
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3.2.4 AC Clip 
 

The AC Clip test measures the digitizer clip level and behavior by feeding a sinusoid signal into 

a channel of the digitizer.  The amplitude of the sinusoid is set to a level slightly below (no less 

than 10%) the digitizer clip level.  The function generator is connected to the digitizer as shown 

in the block diagram below: 

  
Figure 51  AC Clip Diagram 

 

Warning, applying a voltage input greater than digitizer’s full scale voltage level may result in 

irreparable damage to the digitizer.  Therefore, the amplitude is slowly increased while 

monitoring the digitizers output.  When the sinusoid begins to flatten, proceed to increase the 

amplitude until both the peak and trough of the sinusoid flatten.  Allow 5 – 10 cycles to be 

recorded and then decrease the amplitude of the sinusoid to below the clip level. 

 

The waveform is loaded and displayed to the tester.  Only a few cycles of the clipped sinusoid 

are necessary.  The digitizer behavior is observed by inspection whether it flattens out, ripples, 

wraps around between positive and negative, etc. 

 

The tester defines the waveform segments that represent the positive and negative clip regions of 

the sinusoid: 
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Using these segments, the positive and negative mean and standard deviation are computed: 
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The tester qualitatively determines whether the clipping behavior has passed. 

 

 
Table 7:  Test Waveforms 

Waveform Unit Source 

Sinusoid Waveform Volt DUT 

 
Table 8:  Test Parameters 

Parameter Unit 

Digitizer Clip Level Volt 

Sinusoid Amplitude Volt 

Sinusoid Frequency Hz 

 
Table 9:  Test Results 

Result Unit 

Positive Mean Volt 

Positive Standard Deviation Volt 

Negative Mean Volt 

Negative Standard 

Deviation 

Volt 

Passed boolean 
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3.2.5 Analog Bandwidth 
 

The Analog Bandwidth test measures the -3 dB roll-off point of the digitizer in order to estimate 

its bandwidth.  This test is performed by feeding white noise from a function generator into one 

or more of the digitizer channels as shown in the block diagram below.  

 

  
Figure 52  Analog Bandwidth Diagram 

 

The first step in the test analysis is to compute the power spectra using a Hann window and 5/8 

overlap (see 2.4 Power Spectral Density) of the white noise channels: 

 

 , -         
 

Next, the power spectra are smoothed by averaging over an odd number of frequency bins, M, 

specified by the tester.  The smoothing is performed to ensure that the estimation of the -3 dB 

point is more accurate.  Otherwise, the estimate may be overly impacted by random variability in 

the power spectra. 
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For each of the waveforms, a reference frequency is selected that is equal to ½ of the Nyquist 

rate. 

 

       
          

 
         

 

The -3 dB, or ½, value is computed for each of the channels: 
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The -3 dB frequency is computed for each of the channels: 
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                   |                [      ]|              

 

Finally, the power and attenuation (relative to the reference frequency) at the Nyquist rate are 

computed: 
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Table 10:  Test Waveforms 

Waveform Unit Source 

White Noise Waveforms Volt DUT 

 
Table 11:  Test Parameters 

Parameter Unit 

PSD Parameters  

White Noise Amplitude Volt 

White Noise Bandwidth Hz 

Number of smoothing bins  

 
Table 12:  Test Results 

Result Unit 

Reference Frequency Hz 

Reference PSD dB (V^2/Hz) 

-3 dB Frequency Hz 

-3 dB PSD dB (V^2/Hz) 

Nyquist PSD dB (V^2/Hz) 

Attenuation at Nyquist dB 
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3.2.6 Common Mode Rejection Ratio 
 

The Common Mode Rejection Ratio test measures the ability of a digitizer to reject a common 

mode signal on a differential input channel.  For this test, a function generator is used to generate 

a sinusoid with known frequency and amplitude of the form: 

 

       (      ) 

 

The function generator is connected to the digitizer as shown in the block diagram below: 

  
Figure 53  Common Mode Rejection Ratio Diagram 

 

The positive and negative lines on the digitizer input channel are shorted as close to the digitizer 

as possible to minimize the introduction of any possible non-common mode noise from 

interference.  The positive terminal of the function generator is connected to the shorted digitizer 

input channel.  The negative terminal of the function generator is connected to the digitizer’s 

analog ground. 

 

The waveform, in volts, from the digitizer under test is collected: 

 

 , -         
 

Since the digitizer input channels are differential and are shorted together, the digitizer should 

not be recording any signal.  However, some amount of common mode signal will still be present 

on the digitizer input channel.  To measure the amount of residual common mode signal, 

compute a Sine Fit (see 2.8 Sine Fit) on the recorded data to determine the measured amplitude, 

frequency, and DC offset: 
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The Common Mode Rejection Ratio, in dB, is then: 
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Table 13:  Test Waveforms 

Waveform Unit Source 

Common Mode Waveform Volt DUT 
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Table 14:  Test Parameters 

Parameter Unit 

Reference Frequency Hz 

Reference Amplitude Volts (peak) 

 
Table 15:  Test Results 

Result Unit 

Measured Amplitude Volts (peak) 

CMR Ratio dB 
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3.2.7 Crosstalk 
 

The Crosstalk test measures how much of a signal recorded on one channel of a digitizer is also 

present on another channel as noise.  For this test, a function generator is used to generate a 

sinusoid with known frequency and amplitude of the form: 

 

       (      ) 

 

One of the channels is terminated with a resistor, typically 50 Ohms, and the remaining digitizer 

channels are connected to the function generator as shown in the block diagram below: 

 

  
Figure 54  Crosstalk Diagram 

 

Different configurations of the input sinusoid and the terminating resistor can be used to test 

either the best case or worst case levels of cross talk.  The configuration represented here 

represents the worst case configuration. 

 

Typically, this test will be repeated a sufficient number of times to allow for each channel on the 

digitizer to be input terminated while the remaining channels are fed a tonal signal. 

 

The first step in the test analysis is to compute the power spectra using a Hann window (see 2.3.2 

Hann) and 5/8 overlap (see 2.4 Power Spectral Density) of the input terminated channel and all 

of the tonal channels: 
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For the purposes of convention, the resistor terminated channel is assumed to be the 0th channel 

and the tonal channels are 1 through N-1.  The frequency and RMS value of the maximum peak 

in each of the power spectra are identified and computed as described in 3.2.22 Total Harmonic 

Distortion: 
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The crosstalk (expressed in dB) between the ITN channel and each of the tonal channels is 

computed: 

                   (
      

      
*
 

         

 

The mean crosstalk value is also computed: 

 

                       [
 

   
∑

      

      

   

   

]

 

 

 
Table 16:  Test Waveforms 

Waveform Unit Source 

Input Terminated Waveform Volt DUT 

Tonal Waveforms Volt DUT 

 
Table 17:  Test Parameters 

Parameter Unit 

PSD Parameters  

Terminator Resistance Ohms 

Signal Voltage Volt 

Signal Frequency Hz 

 
Table 18:  Test Results 

Result Unit 

Peak Frequencies (one per 

channel) 

Hz 

RMS of each peak (one per 

channel) 

Volt RMS 

Crosstalk ratio(ratio 

between ITN and each 

Tonal channel) 

dB 

Mean Crosstalk ratio dB 
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3.2.8 DC Accuracy 
 

The DC Accuracy test is used to measure the DC offset and bitweight of a digitizer channel by 

recording a known positive and negative dc signal at a reference voltage from a precision voltage 

source: 

 

     

 

There are two waveform time series associated with the DC Accuracy test.  The positive 

waveform time series,     , -, is at a DC voltage of: 

 

     

 

To collect the positive waveform time series, the voltage source is connected to the digitizer as 

shown in the block diagram below. 

  
Figure 55  DC Accuracy Positive Measurement Diagram 

 

The negative time series,     , -, is at a DC voltage of: 

 

      

 

To collect the negative waveform time series, the voltage source is connected to the digitizer 

with its polarity reversed as shown in the block diagram below. 

  
Figure 56  DC Accuracy Negative Measurement Diagram 

 

The positive and negative waveform time series segments should be of equal length so that 

estimates of mean and standard deviation are statistically equivalent. 

 

Compute the mean and standard deviation for both the positive and negative segments where N 

is the number of data samples: 
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Compute the range between the positive and negative voltages: 

 

                         

                   

 

Compute the DC offset, ensuring that it is expressed as an integer multiple of the bitweight: 

 

                (
           

           
*            

 

Compute the corrected bitweight: 

 

                     
     

               
           

 

Compute the % error: 
 

              
                     

     
 

 
Table 19:  Test Waveforms 

Waveform Unit Source 

Positive DC Waveform Volt DUT 

Negative DC Waveform Volt DUT 

 
Table 20:  Test Parameters 

Parameter Unit 
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Reference Voltage Volt 

 
Table 21:  Test Results 

Result Unit 

Positive Mean Volt 

Positive Standard Deviation Volt 

Negative Mean Volt 

Negative Standard 

Deviation 

Volt 

Voltage Range Volt 

DC Offset Volt 

Corrected Bitweight Volts/count 

Percent Error % 

 

  



 
 

90  

3.2.9 Infrasound System Noise & Bandwidth Limited Dynamic Range 
 

The Infrasound System Noise test measures the digitizer’s noise and dynamic range expressed in 

the units of an infrasound sensor.  The test is performed identically to the Input Terminated 

Noise and Maximum Potential Dynamic Range test (see 3.2.12). 

 

The only difference comes in the analysis.  An appropriate response is selected for the digitizer 

and a response corrected PSD is computed (see 2.4 Power Spectral Density and 2.5.1.5 

Removing a response from digital time series data): 

 

   , -         

 

Over frequencies (in Hertz): 

 

 , -         
 

 

Compute the rms value over a user defined frequency band of the PSD (see 2.4.2 RMS 

Estimates): 

 

            
 

Estimate the Bandwidth Limited Dynamic Range (BLDR) for over the frequency band, using a 

user defined value for the sensor peak output (see 2.4.3 Dynamic Range Estimation): 

 

             (
            √ ⁄

           
)

 

 

 
Table 22:  Test Waveforms 

Waveform Unit Source 

Test Infrasound Waveform Pascal DUT 

 
Table 23:  Test Parameters 

Parameter Unit 

Frequency(s) Hz 

Peak Sensor Output Pascal 

 
Table 24:  Test Results 

Result Unit 

Noise RMS Pascal 

BLDR Decibel 
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3.2.10 Input Impedance 
 

The Input Impedance test measures the input impedance of a digitizer channel.  A meter is 

configured to measure impedance and is connected to the digitizers input channel.  

  
Figure 57  Input Impedance Diagram 

 

The waveform, in ohms, is collected from the meter and analyzed. 

 

 , -         
 

The average of the waveform time series is estimated to be the digitizers input impedance 

 

       
 

 
∑  , -

   

   

 

 
Table 25:  Test Waveforms 

Waveform Unit Source 

Input Shorted Waveform Ohm Meter 

 
Table 26:  Test Parameters 

Parameter Unit 

None  

 
Table 27:  Test Results 

Result Unit 

Input Impedance Ohm 
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3.2.11 Input Shorted Offset 
 

The Input Shorted Offset test measures the amount of DC offset present on a digitizer by 

collecting waveform data from an input channel that has been shorted.  Thus, any signal present 

on the recorded waveform should be solely due to any internal offset of the digitizer.  

  
Figure 58  Input Shorted Offset Diagram 

 

The waveforms, in volts, from the sensor under test are collected and analyzed. 

 

 , -         
 

The average of the waveform time series is estimated to be the digitizers internal offset 
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Table 28:  Test Waveforms 

Waveform Unit Source 

Input Shorted Waveform Volt DUT 

 
Table 29:  Test Parameters 

Parameter Unit 

None  

 
Table 30:  Test Results 

Result Unit 

DC Offset Volt 
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3.2.12 Input Terminated Noise and Maximum Potential Dynamic Range 
 

The Input Terminated Noise test measures the amount of zero state noise present on a digitizer 

by collecting waveform data from an input channel that has been terminated with a resistor.  

Thus, any signal present on the recorded waveform should be solely due to noise generated 

internally by the digitizer.  The resistor should be chosen to match the load impedance of a 

known sensor.  The resistance, R, is often in the range of 10 – 100 Ohms.  However, the 

resistance value can also be as low as 0 ohms, representing a shorted connection. 

  
Figure 59  Input Terminated Noise Diagram 

 

The tester specifies a frequency pass-band over which the RMS voltage and dynamic range will 

be computed. 

 

In addition, the tester specifies what the full scale (peak) voltage is for this configuration of the 

digitizer.  This peak voltage,      , is used to estimate the dynamic range over specified 

frequency bands. 

 

First, compute the power spectra over the waveform segment (see 2.4 Power Spectral Density): 

 

   , -         
 

Over frequencies (in Hertz): 

 

 , -         
 

 

Compute the RMS voltage for the selected frequency band (see 2.4.2 RMS Estimates): 

 

     
 

The noise level may also be reported in counts: 

 

         
    

         
 

 

Estimate the maximum potential dynamic range (MPDR) for the frequency band, ensuring to 

convert the digitizers peak voltage to an RMS quantity (see 2.4.3 Dynamic Range Estimation): 

 

Digitizer 

+ 

  

 

 

― 

Analog 

Ground 



 
 

94  

             (
     √ ⁄

    
)

 

 

 

For the purpose of comparison, the theoretical level of noise due to quantization in an ideal 

digitizer (Oppenheim, 1999, Pg 193-197), assuming a uniformly distributed random quantization 

error and a digitizer with a peak full scale of      and B bits, is: 

 

                   
(         ⁄ )

 

  
 

 

Since this noise is assumed to be uniformly distributed, it may also be overlaid against the input 

terminated power spectral density, where    is the sampling frequency, at the level: 

 

               
(         ⁄ )

 

   
  

 

 

 

Note that the quantization noise is spectrally distributed across one half of the sampling 

frequency due to the fact that our power spectra density estimates are single sided with the 

negative frequencies doubled over. 

 
Table 31:  Test Waveforms 

Waveform Unit Source 

Input Terminated Waveform Volt DUT 

 
Table 32:  Test Parameters 

Parameter Unit 

PSD Parameters  

Terminator Resistance Ohms 

PSD Frequency Band Hz 

Digitizer Full scale Volt 

 
Table 33:  Test Results 

Result Unit 

Input Terminated Noise Volt RMS 

Input Terminated Noise Count RMS 

Maximum Potential 

Dynamic Range 

dB 
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3.2.13 Modified Noise Power Ratio 
 

The Modified Noise Power Ratio test (McDonald, 1994) compares the performance of a pair of 

identical digitizers to the performance of an ideal digitizer at various bit lengths by calculating 

the SNR as a function of signal power.  This test is able to demonstrate the linearity of a digitizer 

across a range of amplitudes. 

 

For this test, a function generator is connected to two different digitizers or digitizer channels as 

shown in the block diagram below. 

  
Figure 60  Modified Noise Power Ratio Diagram 

 

The function generator is configured to output bandwidth limited, typically low-pass filtered 

below 20 Hz, Gaussian white noise over a range of user configurable amplitudes.  The digitizers 

have a manufacturer’s defined full scale input voltage range, Vfs, and the amplitude of the 

function generator output should ideally span that range over approximate 10 dB intervals.  The 

tester collects time series data from the two digitizers for each of the amplitudes: 

 

                    
 

    , -                          

    , -                          

 

The corresponding pairs of time series are analyzed to determine the noise spectra using 

coherence analysis with a distributed noise model (see 2.7.1 Two Channel Coherence): 

 

     , -                          

 

The tester defines an appropriate frequency band over which to compute the RMS estimates of 

signal and noise.  The noise RMS voltage,         , is computed from the noise spectra and the 

signal RMS voltage,          ,  is computed from either digitizers signal spectra (see 2.4.2 RMS 

Estimates).  The noise power ratio data point for this amplitude is then computed as the ratio 

between the signal and noise voltages: 
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A “loading factor”, Ki, is computed as the ratio between the digitizers full scale voltage and the 

signal RMS voltage: 

   
   

         
 

 

The noise power ratio data point is plotted in dB, 20log10(NPRi) versus the loading factor in dB, 

-20 log10(Ki). 

 

The theoretical noise levels for a digitizer, where n is the number of bits, assume that the only 

two sources of noise are quantization noise: 

                            

   (
 
    ( ))

   (      ) 
 

 

and saturation noise: 

 

                          *(    )   ( )   
    

  

 

√  
+ 

 

Where  ( ) is the partial area under the normalized Gaussian curve (due to the signal source 

being Gaussian): 

 ( )    
 

√  
∫      ⁄   

 

 

 

 

The theoretical noise power ratio is then the inverse of the sum of the quantization and saturation 

noise ratios.  The noise power ratio, in dB, is then plotted versus -20*log10(K). 

 

               
 

                                                
 

 
Table 34:  Test Waveforms 

Waveform Unit Source 

Time Pulse Waveform Volt DUT 

 
Table 35:  Test Parameters 

Parameter Unit 

PSD Parameters  

Low Frequency Band Hz 

High Frequency Band Hz 

 
Table 36:  Test Results 

Result Unit 

K values dB 

NPR values dB 
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3.2.14 Relative Transfer Function 
 

The Relative Transfer Function test measures the amount of channel-to-channel timing skew 

present on a digitizer.  The test is performed by feeding white noise from a function generator 

into two of the digitizer channels as shown in the block diagram below.  

 

  
Figure 61  Relative Transfer Function Diagram 

 

The relative response function between the two channels (see 2.7.1 Two Channel Coherence) is 

computed assuming a distributed noise model: 

 

 , -         
 

The tester defines a frequency range over which to measure the skew: 

 

 , -       
 

The amount of skew, in seconds, is computed by averaging the relative phase delay between the 

two channels (Oppenheim, 1999, Pg 242): 

 

     
 

     
∑
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Table 37:  Test Waveforms 

Waveform Unit Source 

Channel 1 White Noise Volt DUT 

Channel 2 White Noise Volt DUT 

 
Table 38:  Test Parameters 

Parameter Unit 

PSD Parameters  

White Noise Amplitude Volt 

White Noise Bandwidth Hz 

PSD Frequency Band Hz 
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Table 39:  Test Results 

Result Unit 

Skew Seconds 
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3.2.15 Seismic System Noise & Bandwidth Limited Dynamic Range 
 

The Seismic System Noise test measures the digitizer’s noise and dynamic range expressed in 

the units of a seismic sensor.  The test is performed identically to the Input Terminated Noise and 

Maximum Potential Dynamic Range test (see 3.2.12 Input Terminated Noise and Maximum 

Potential Dynamic Range). 

 

The only difference comes in the analysis.  An appropriate response is selected for the digitizer 

and a response corrected PSD is computed (see 2.4 Power Spectral Density and 2.5.1.5 

Removing a response from digital time series data): 

 

   , -         

Over frequencies (in Hertz): 

 

 , -         
 

Compute the rms value over a user defined frequency band of the PSD (see 2.4.2 RMS 

Estimates): 

 

         
 

Estimate the Bandwidth Limited Dynamic Range (BLDR) for over the frequency band, using a 

user defined value for the sensor peak output (see 2.4.3 Dynamic Range Estimation): 

 

             (
                √ ⁄

        
)

 

 

 
Table 40:  Test Waveforms 

Waveform Unit Source 

Test Infrasound Waveform Seismic 

Earth Unit 

DUT 

 
Table 41:  Test Parameters 

Parameter Unit 

PSD Parameters  

Frequency(s) Hz 

Peak Sensor Output Seismic 

Earth Unit 

 
Table 42:  Test Results 

Result Unit 

Noise RMS Seismic 

Earth Unit 

BLDR Decibel 
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3.2.16 Sine Calibrator Amplitude 
 

The purpose of the Sine Calibrator Amplitude test is to determine whether the digitizer’s 

calibrator is outputting correct amplitude levels.  The digitizer’s calibrator output is configured 

by the tester to output sinusoids with a known frequency,   , and over a range of amplitudes,   : 

 

      (       ) 
 

The output from the digitizer’s calibrator is connected to a calibrated meter and the output is 

recorded. 

  
Figure 62  Sine Calibrator Amplitude Diagram 

 

The tester provides the expected frequency and amplitude values as well as the waveform 

segments for each of the sinusoids.  The analysis is then to perform a sine fit (see 2.8.1 Three 

Parameter Sine Fit) on each of the waveform segments.  The resulting sine fit amplitudes are 

then compared to the expected amplitudes to compute a percent error: 

 

      (       )      
 

               
     

  
 

 
Table 43:  Test Waveforms 

Waveform Unit Source 

Test Digitizer Waveform Volt DUT 

 
Table 44:  Test Parameters 

Parameter Unit 

Frequency Hz 

Amplitude Value(s) Volt 

 
Table 45:  Test Results 

Result Unit 

Sine Fit Amplitude(s) Volt 

% Error(s) % 

 

  

Meter 
+ 

  

 

 

― 

~ Digitizer  
Calibrator 

Output 

+ 

  

 

 

― 



 
 

101  

3.2.17 Sine Calibrator Current Amplitude 
 

The purpose of the Sine Calibrator Current Amplitude test is to determine the current output 

capacity of the digitizer’s calibrator.  The positive terminal of the calibrator output is connected 

to ground through a high precision resistor with a known resistance value.  The negative terminal 

of the calibrator output is connected directly to ground.  A calibrated Meter is then used to 

measure the voltage drop across the resistor, as shown in the diagram below. 

 

  
Figure 63  Sine Calibrator Current Amplitude Diagram 

 

The digitizer’s calibrator output is configured by the tester to output sinusoids with a known 

frequency,   , and amplitude,  : 

 

     (       ) 
 

The resistance value is selected relative to the sinusoid amplitude, A, such that the current across 

the resistor is slightly less than the rated capacity of the calibrator output.  For example, if the 

selected output sinusoid has a peak amplitude of 10 Volts and the calibrator output is rated to 

have a current output limit of 1 mA, then the desired resistance value would be no less than: 

 

  
 

 
 

        

    
       

 

A segment of data from the meter is recorded and a sine fit is applied (see 2.8.1 Three Parameter 

Sine Fit) on to the waveform segment to determine the amplitude of the voltage drop across the 

resistor: 

  
     (       )      

 

The resulting sine fit amplitude,  , and resistance,  , is then used to determine the output current 

from the calibrator using Ohm’s law (Thomas, 1994, Pg. 25): 

 

        
 

 
 

 

The results of this test verify that the calibrator can output at least the amount of current 

indicated by the voltage across the resistor.  Note that if the selected voltage, A, and measured 

voltage, a, have considerably different values or if there is considerable RMS error in the sine fit, 
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then this would tend to indicate that the calibrator output is current limited.  The solution in this 

case would be to either reduce the selected sinusoid amplitude or increase the load resistor. 

 
Table 46:  Test Waveforms 

Waveform Unit Source 

Test Digitizer Waveform Volt DUT 
 
Table 47:  Test Parameters 

Parameter Unit 

Frequency Hz 

Amplitude Value Volt 

Resistance Ohm 

 
Table 48:  Test Results 

Result Unit 

Sine Fit Amplitude Volt 

Sine Fit RMS Error Volt RMS 

Current Amp 
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3.2.18 Sine Calibrator Frequency 
 

The purpose of the Sine Calibrator Amplitude test is to determine whether the digitizer’s 

calibrator is outputting correct frequencies.  

 

  
Figure 64  Sine Calibrator Frequency Diagram 

 

The output from the digitizer’s calibrator is connected to a calibrated meter and the output is 

recorded. The digitizer’s calibrator output is configured by the tester to output sinusoids with a 

known amplitude,   , and over a range of frequencies: 

 

      (       ) 
 

The tester provides the expected frequency and amplitude values as well as the waveform 

segments for each of the sinusoids.  The analysis is then to perform a sine fit (see 2.8.1 Three 

Parameter Sine Fit) on each of the waveform segments.  The resulting sine fit amplitudes are 

then compared to the expected amplitudes to compute a percent error: 

 

      (       )      
 

               
     

  
 

 
Table 49:  Test Waveforms 

Waveform Unit Source 

Test Digitizer Waveform Volt DUT 

 
Table 50:  Test Parameters 

Parameter Unit 

Frequency(s) Hz 

Amplitude Value Volt 

 
Table 51:  Test Results 

Result Unit 

Sine Frequency(s) Hz 

% Error(s) % 
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3.2.19 Sine Calibrator THD 
 

The Sine Calibrator THD test is performed identically to the THD test (see 3.2.22 Total 

Harmonic Distortion).  The only difference is that instead of using a low distortion oscillator, the 

digitizer is configured to generate its own sine wave from its calibrator and this signal is 

recorded by an independent calibrated meter.  The reason for performing this test is to quantify 

the expected THD levels when using the digitizer’s own calibrator.  This way, the results of later 

in place field testing of the digitizer can be compared to a known reference value. 

 

  
Figure 65  Sine Calibrator THD Diagram 
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3.2.20 Time Tag Accuracy 
 

The Time Tag Accuracy test measures the digitizer’s timing accuracy for the pulse per hour 

trigger output from an independent GPS Timing reference.  The timing trigger output from a 

GPS receiver is connected to an input channel of the digitizer. 

  
Figure 66  Time Tag Accuracy Diagram 

 

A single timing trigger pulse at an hour crossing from the GPS Receiver is recorded and analysed 

to determine the timing error.  See 2.10 Time Tag Measurements for a description of how the 

time tag measurements are analyzed. 

 
Table 52:  Test Waveforms 

Waveform Unit Source 

Time Pulse Waveform Volt DUT 

 
Table 53:  Test Parameters 

Parameter Unit 

  

 
Table 54:  Test Results 

Result Unit 

Trigger Time Seconds 

Trigger Error Seconds 
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3.2.21 Time Tag Drift 
 

The Time Tag Drift test examines the digitizers timing accuracy while it has a stable GPS lock, 

how the timing accuracy drifts once it has lost GPS lock, and how the timing accuracy recovers 

once the digitizer has re-acquired GPS lock.   

 

  
Figure 67  Time Tag Drift Diagram 

 

For this test, the input channel of the digitizer is connected to the timing trigger output of an 

external GPS Timing Reference.  The digitizer is initially allowed to lock onto the GPS and 

achieve a stable timing error.  Next, the digitizers GPS receiver is disabled by either 

disconnecting the GPS receiver from the digitizer or covering the antenna, depending upon the 

digitizer model.  The digitizer is allowed to run for a period of approximately 1 hour without a 

GPS lock.  After one hour, the digitizer’s GPS receiver is enabled and the timing is allowed to 

recover. 

 

The pulse-per-minute triggers from this entire test are analyzed as described in 2.10 Time Tag 

Measurements.  The set of trigger times and errors are: 

 
 , -         

 , -         
 

The tester defines the start and end times for the drift and recovery periods: 

 

                                        
 

The slope of the drift and recovery periods are computed by solving the linear system of 

equations for the slope a: 
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For the drift period: 
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For the recovery period: 
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Table 55:  Test Waveforms 

Waveform Unit Source 

Time Pulse Waveform Volt DUT 

 
Table 56:  Test Parameters 

Parameter Unit 

Drift start time Seconds 

Drift end time Seconds 

Recovery start time Seconds 

Recovery end time Seconds 

 
Table 57:  Test Results 

Result Unit 

Drift Rate Microseconds/hour 

Recovery Rate Microseconds/hour 
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3.2.22 Total Harmonic Distortion 
 

The Total Harmonic Distortion (THD) test measures the amount of distortion present in a pure 

sine wave from an ultra-low distortion oscillator that is fed into an input channel of a digitizer.  It 

is assumed that the oscillator is capable of generating a higher quality sinusoid than the digitizer 

is capable of sampling.  The function generator is connected to the digitizer as shown in the 

block diagram below: 

  
Figure 68  Total Harmonic Distortion Diagram 

 

The power-spectra of the input signal will contain a single fundamental peak at the frequency of 

the tonal input signal.  Any distortion of the sinusoid will be present in the power-spectra as 

peaks at integer multiples, or harmonics, of the fundamental frequency. 

 

First, compute the power spectra of the waveform segment, using a Kaiser Bessel window (see 

2.3.4 Kaiser Bessel) and 5/8 overlap (see 2.4 Power Spectral Density). 

 

   , - 
 

Over frequencies (in Hertz): 

 

 , - 
 

The Kaiser Bessel window is used because of its relatively narrow main lobe and minimal side 

lobes.  These qualities serve to minimize the amount of spectral smearing, allowing for greater 

frequency resolution. 

 

Next, identify the start and stop locations of all of the peaks in the power spectra using the 

algorithm represented in the following diagram that looks for at least two consecutive increases 

followed by at least two consecutive decreases.  In addition, the maximum value of the peak 

must exceed an average baseline value of the prior power spectra values plus the 90 % 

confidence interval (see 2.4.1 PSD Confidence).  Finally, the peak must be located at an integer 

multiple of the fundamental frequency. 
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Figure 69  THD Peak Identification Algorithm 

 

The result of this algorithm is that the start and end indices of each peak are identified and stored 

in the following vectors where M is the number of peaks identified: 

 

     , -         

   , -         
 

The frequencies corresponding to these start and end indicies are: 

 

 [     , -]  [   , -] 
 

Estimate the frequency at which each peak occurs using a trapezoidal fitting function: 
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     , -    (    , -    
      ,    , -   -      [    , -]        ,    , -   -

   ,    , -   -      [    , -]     ,    , -   -
) 

 

Next, compute the RMS voltage in the frequency bands identified around each of the peaks (see 

2.4.2 RMS Estimates) where L is the length of the FFT: 

 

   , -  √
 

   
∑    , -

   , -

       , -

          

 

The fundamental peak is identified as being the first peak within the power spectra.  All of the 

remaining peaks are assumed to be harmonics of the fundamental. 

 

  
Figure 70  Example THD 

 

If the peak search algorithm is unable to identify a peak for at least one harmonic of the 

fundamental frequency, then the value of the PSD at the next integer multiple of the fundamental 

frequency is used: 

 

    , -  √
 

   
   , -                                        

 

Compute the Total Harmonic Distortion, in dB, as the ratio between the power in all of the 

identified harmonics and the power in the primary frequency (IEEE Std 100-2000, Pg. 1191):  
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Table 58:  Test Waveforms 

Waveform Unit Source 

THD Waveform Volt DUT 

 
Table 59:  Test Parameters 

Parameter Unit 

PSD Parameters  

 
Table 60:  Test Results 

Result Unit 

Peak Frequencies Hz 

Peak RMS values Volt RMS 

Total Harmonic Distortion dB 
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3.3 Seismic Sensor Tests 
 

3.3.1 Seismic Sensor Self-Noise 
 

The Seismic Sensor Self Noise test measures the noise level of a seismic sensor under test 

relative to either one or two reference seismic sensors.  The seismic sensor under test and the 

reference sensors with known response characteristics are co-located so that they are both 

measuring a common seismic signal. 

 

  
Figure 71  Seismic Sensor Self-Noise Diagram 

 

 

The waveforms, in volts, from the reference sensors and the sensor under test are collected and 

analyzed. 

 

     , -                

     , -                

     , -                

 

The appropriate response is selected for each of the reference and test sensors and the response 

corrected auto and cross PSDs are computed (see 2.4 Power Spectral Density, 2.5.1.6 Converting 

a seismic response between unit types, and 2.5.1.5 Removing a response from digital time series 

data): 

 

If there is one reference sensor, then the 2 Channel Coherence technique (see 2.7.1 Two Channel 

Coherence) is applied to the PSDs to compute the coherence between the two sensors and the 

amount of noise present in the sensor under test.  If the reference sensors noise is lower than the 

sensor under test, then a lumped noise model is used.  If the reference sensor and the sensor 

under test are of a common sensor type and have equivalent noise levels, then a distributed noise 

model is used. 
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If there are two reference sensors, then the 3 Channel Coherence Technique (see 2.7.2 Three 

Channel Coherence) is applied to the PSDs to compute the coherence and the amount of noise 

present in the sensor under test.  Note that the 3 Channel Coherence Technique should only be 

applied if the sensors have similar response and noise characteristics. 

 

If the seismic test sensor response is correct, then across the sensors common pass bands the 

coherence should be 1, the relative gain should be 0 dB, and the relative phase should be 0 

degrees.  Otherwise, the response is not correct. 

 
 Table 61:  Test Waveforms 

Waveform Unit Source 

Reference Infrasound 

Waveform(s) 

Pascal 

(Pressure) 

Reference Sensor 

Test Infrasound Waveform Pascal 

(Pressure) 

DUT 

 
Table 62:  Test Parameters 

Parameter Unit 

PSD Parameters  

 
Table 63:  Test Results 

Result Unit 

Coherence Unitless 

Relative Gain dB 

Relative Phase degrees 
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3.3.2 Seismic Sensor Response Verification 
 
The Seismic Sensor Response Verification test measures the response of a seismic sensor under 

test relative to a reference seismic sensor.  The seismic sensor under test and the reference sensor 

with known response characteristics are co-located so that they are both measuring a common 

earth motion. 

 

  
Figure 72  Seismic Sensor Response Verification Diagram 

 

The waveforms, in volts, from the reference sensor and the sensor under test are collected and 

analyzed. 

 

     , -                

    , -                

 

The appropriate response is selected for each of the reference and test sensors and the response 

corrected auto and cross PSDs are computed (see 2.4 Power Spectral Density, 2.5.1.6 Converting 

a seismic response between unit types, and 2.5.1.5 Removing a response from digital time series 

data): 

 

   , -    , -    , - 
 

The 2-Channel Coherence technique (see 2.7.1 Two Channel Coherence) is applied to the PSDs 

to compute the coherence between the two sensors and the relative gain and phase.  If the seismic 

test sensor response is correct, then across the sensors common pass bands the coherence should 

be 1, the relative gain should be 0 dB, and the relative phase should be 0 degrees.  Otherwise, the 

response is not correct. 

 
 Table 64:  Test Waveforms 

Waveform Unit Source 

Reference Seismic 

Waveform 

Earth 

Motion 

Reference Sensor 

Test Seismic Waveform Earth DUT 
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Motion 

 
Table 65:  Test Parameters 

Parameter Unit 

PSD Parameters  

 
Table 66:  Test Results 

Result Unit 

Coherence Unitless 

Relative Gain dB 

Relative Phase degrees 
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3.4 Infrasound Sensor Tests 
 

3.4.1 Infrasound Sensor Frequency Response 
 

The Infrasound Sensor Frequency Response test measures the sensitivity of an infrasound sensor 

under test at multiple discrete frequency values.  The infrasound sensor under test and a 

reference sensor with known response characteristics are placed inside of a pressure isolation 

chamber.  The isolation chamber serves to attenuate any external ambient variations in pressure.   

 

  
Figure 73  Infrasound Sensor Frequency Response Diagram 

 

A piston-phone is attached to an inlet port on the isolation chamber.  The piston-phone is driven 

with a sinusoid from a signal generator or the analog calibration output from a digitizer.  The 

piston-phone serves to generate a pressure wave with characteristics defined by the signal 

generator.  This pressure wave is recorded by both the reference sensor and the sensor under test. 

 

The waveforms, in volts, from the reference sensor and the sensor under test are collected and 

analyzed. 

 

    , -                

     , -                

 

The frequency of the signal being outputted by the signal generator is adjusted across a range of 

discrete, user defined frequency values so as to sample the response of the test sensor. 

 

 , -                    

 

The tester provides data windows for the reference and test sensors for each of the frequencies 

being tested.  The length of the data segments is a user-defined parameter expressed as the 
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number of cycles for each defined frequency value.  The number of cycles is divided by the 

frequency being examined to obtain the window length in seconds.  

 

For each data segment, the 3-parameter sine fit algorithm (see 2.8.1 Three Parameter Sine Fit) is 

applied to successive windows of the time series data collected from the reference sensor. 

 

     (     )     
 

     , -     , -                    

     , -     , -                         

     , -     , -                    

     , -     , -                    

 

The phase offset that is stored is relative to the reference sensor: 

 

     , -      , -       , - 
 

From the RMS error, an SNR value in dB can be computed: 

 

   , -          (
     , - √ ⁄

     , -
)

 

 

 

In addition, the user selects an instrument response that defines the sensitivity in Volts/Pa of the 

reference sensor.  

 

    ( ) 

 

    , -   |    ( )|      , -
 

 

Given the peak amplitude values, in volts, for the reference sensor and the sensitivity, the peak 

pressure may be computed: 

 

    , -  
    , -

    , -
 

 

Using the peak pressure from the reference sensor, the sensitivity values, in Volts/Pa, for the test 

sensor may then be estimated: 

     , -  
     , -

    , -
 

 
Table 67:  Test Waveforms 

Waveform Unit Source 

Reference Infrasound 

Waveform 

Pascal 

(Pressure) 

Reference Sensor 
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Test Infrasound Waveform Volt DUT 

 
Table 68:  Test Parameters 

Parameter Unit 

Frequency(s) Hz 

Amplitude Value Volt 

 
Table 69:  Test Results 

Result Unit 

Sine Frequency(s) Hz 

Sine Fit Amplitude Volt 

Sine Fit Phase Radian 

Sine Fit DC Offset Volt 

Sine Fit Error Volt RMS 

Sine Fit SNR dB 

Peak Pressure Pascal 

Sensitivity Volt/Pascal 
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3.4.2 Infrasound Sensor Amplitude Response 
 

The Infrasound Sensor Amplitude Response test measures the sensitivity of an infrasound sensor 

under test at multiple discrete amplitude values at a fixed tonal frequency.  The infrasound sensor 

under test and a reference sensor with known response characteristics are placed inside of a 

pressure isolation chamber.  The isolation chamber serves to attenuate any external ambient 

variations in pressure.   

 

A piston-phone is attached to an inlet port on the isolation chamber.  The piston-phone is driven 

with a sinusoid from a signal generator or the analog calibration output from a digitizer.  The 

piston-phone serves to generate a pressure wave with characteristics defined by the signal 

generator.  This pressure wave is recorded by both the sensor under test and the reference sensor. 

 

  
Figure 74  Infrasound Sensor Amplitude Response Diagram 

 

The waveforms, in volts, from the reference sensor and the sensor under test are collected and 

analyzed. 

 

    , -                

     , -                

 

The amplitude of the signal being outputted by the signal generator is adjusted across a range of 

discrete, user defined amplitude values so as to sample the sensitivity of the test sensor. 

 

 , -                   

 

The tester provides data windows for the reference and test sensors for each of the frequencies 

being tested.  The length of the data segments is a user-defined parameter expressed as the 
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number of cycles for each defined frequency value.  The number of cycles is multiplied by the 

frequency being examined to obtain the window length in seconds.  

 

For each data segment, the 3-parameter sine fit algorithm (see 2.8.1 Three Parameter Sine Fit) is 

applied to successive windows of the time series data collected from the reference sensor. 

 

     (     )     
 

     , -     , -                    

     , -     , -                         

     , -     , -                    

     , -     , -                    

 

The phase offset that is stored is relative to the reference sensor: 

 

     , -      , -       , - 
 

From the RMS error, an SNR value in dB can be computed: 

 

   , -          (
     , - √ ⁄

     , -
)

 

 

 

In addition, the user selects an instrument response that defines the sensitivity in Volts/Pa of the 

reference sensor.  

 

    ( ) 

 

    , -   |    (    , -)| 
 

Given the peak amplitude values, in volts, for the reference sensor and the sensitivity, the peak 

pressure may be computed: 

 

    , -  
    , -

    , -
 

 

Using the peak pressure from the reference sensor, the sensitivity values, in Volts/Pa, for the test 

sensor may then be estimated: 

     , -  
     , -

    , -
 

 
Table 70:  Test Waveforms 

Waveform Unit Source 

Reference Infrasound 

Waveform 

Pascal 

(Pressure) 

Reference Sensor 
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Test Infrasound Waveform Volt DUT 

 
Table 71:  Test Parameters 

Parameter Unit 

Frequency Hz 

Amplitude Value(s) Volt 

 
Table 72:  Test Results 

Result Unit 

Sine Frequency(s) Hz 

SineFit Amplitude(s) Volt 

SineFit Phase(s) Radian 

SineFit DC Offset(s) Volt 

SineFit Error(s) Volt RMS 

Peak Pressure(s) Pascal 

Sensitivity(s) Volt/Pascal 
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3.4.3 Infrasound Sensor Response Verification 
 

The Infrasound Sensor Response Verification test measures the response of an infrasound sensor 

under test relative to a reference infrasound sensor.  The infrasound sensor under test and the 

reference sensor with known response characteristics are co-located so that they are both 

measuring a common pressure field. 

  
Figure 75  Infrasound Sensor Response Verification Diagram 

 

The waveforms, in volts, from the reference sensor and the sensor under test are collected and 

analyzed. 

 

    , -                

     , -                

 

A response is selected for each of the reference and test sensors and the response corrected auto 

and cross PSDs are computed (see 2.4 Power Spectral Density and 2.5.1.5 Removing a response 

from digital time series data): 

 

   , -    , -    , - 
 

If there is one reference sensor, then the 2 Channel Coherence technique (see 2.7.1 Two Channel 

Coherence) is applied to the PSDs to compute the coherence, relative gain, and relative phase 

between the two sensors.  If the reference sensors noise is lower than the sensor under test, then a 

lumped noise model is used.  If the reference sensor and the sensor under test are of a common 

sensor type and have equivalent noise levels, then a distributed noise model is used. 

 

If there are two reference sensors, then the 3 Channel Coherence Technique (see 2.7.2 Three 

Channel Coherence) is applied to the PSDs to compute the coherence, relative gain, and relative 
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phase between the three sensors.  Note that the 3 Channel Coherence Technique should only be 

applied if the sensors have similar response and noise characteristics. 

 

 If the infrasound test sensor response is correct, then across the sensors common pass bands the 

coherence should be 1, the relative gain should be 0 dB, and the relative phase should be 0 

degrees.  Otherwise, the response is not correct. 

 

 

 
 Table 73:  Test Waveforms 

Waveform Unit Source 

Reference Infrasound 

Waveform 

Pascal 

(Pressure) 

Reference Sensor 

Test Infrasound Waveform Pascal 

(Pressure) 

DUT 

 
Table 74:  Test Parameters 

Parameter Unit 

PSD Parameters  

 
Table 75:  Test Results 

Result Unit 

Coherence Unitless 

Relative Gain dB 

Relative Phase degrees 
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3.4.4 Infrasound Sensor Self Noise 
 

The Infrasound Sensor Self Noise test measures the response of an infrasound sensor under test 

relative to either one or two reference infrasound sensors.  The infrasound sensor under test and 

the reference sensors with known response characteristics are co-located so that they are both 

measuring a common pressure field. 

  
Figure 76  Infrasound Sensor Self Noise Diagram 

 

The waveforms, in volts, from the reference sensors and the sensor under test are collected and 

analyzed. 

 

     , -                

     , -                

     , -                

 

The appropriate response is selected for each of the reference and test sensors and the response 

corrected auto and cross PSDs are computed (see 2.4 Power Spectral Density and 2.5.1.5 

Removing a response from digital time series data): 

 

If there is one reference sensor, then the 2 Channel Coherence technique (see 2.7.1 Two Channel 

Coherence) is applied to the PSDs to compute the noise present in the sensor under test.  If there 

are two reference sensors, then the 3 Channel Coherence Technique (see 2.7.2 Three Channel 

Coherence) is applied to the PSDs to compute the noise present in the sensor under test. 

 

The tester defines the sensors peak pressure and a frequency band over which to compute the 

RMS: 
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Compute the rms pressure over a user defined frequency band of the PSD (see 2.4.2 RMS 

Estimates): 

 

            
 

Estimate the dynamic range for over the frequency band, using a user defined value for the 

sensor peak output (see 2.4.3 Dynamic Range Estimation): 

 

                      (
            √ ⁄

           
)

 

 

 

 
Table 76:  Test Waveforms 

Waveform Unit Source 

Reference Infrasound 

Waveform(s) 

Pascal Reference Sensor 

Test Infrasound Waveform Pascal  DUT 

 
Table 77:  Test Parameters 

Parameter Unit 

PSD Parameters  

Peak Sensor Output Pascal 

Frequency (min) Hz 

Frequency (max) Hz 

 
Table 78:  Test Results 

Result Unit 

Noise Pascal RMS 

Dynamic Range Decibel 
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3.4.5 Infrasound Sensor Isolation Noise 
 

The Infrasound Sensor Isolation Noise test measures the internal noise of an infrasound sensor 

under test when the ambient infrasound signals present are below the sensor noise.  The 

infrasound sensor is placed inside of a pressure isolation chamber.  The isolation chamber serves 

to attenuate any external ambient variations in pressure that would otherwise be recorded. 

 

  
Figure 77  Infrasound Sensor Isolation Noise Diagram 

 

The waveforms, in volts, from the sensor under test are collected and analyzed. 

 

 , -                

 

An appropriate response is selected for the sensor and the time series is converted to Pressure 

(see 2.5.1.5 Removing a response from digital time series data):  

 

 , -                

 

A response corrected PSD is computed (see 2.4 Power Spectral Density): 

 

   , -         

 

Over frequencies (in Hertz): 

 

 , -         
 

The tester defines the sensors peak pressure and a frequency band over which to compute the 

RMS: 
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Compute the rms pressure over a user defined frequency band of the PSD (see 2.4.2 RMS 

Estimates): 

 

            
 

Estimate the dynamic range for over the frequency band, using a user defined value for the 

sensor peak output (see 2.4.3 Dynamic Range Estimation): 

 

                      (
            √ ⁄

           
)

 

 

 
Table 79:  Test Waveforms 

Waveform Unit Source 

Test Infrasound Waveform Pascal  DUT 

 
Table 80:  Test Parameters 

Parameter Unit 

PSD Parameters  

Peak Sensor Output Pascal 

Frequency (min) Hz 

Frequency (max) Hz 

 
Table 81:  Test Results 

Result Unit 

Noise Pascal RMS 

Dynamic Range Decibel 
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APPENDIX 
Window Comparison 
 

Matlab script to display the time and frequency domain characteristics of a given window. 

 
function window_comparison(w, name) 

%  

%  Display the time and frequency domain characteristics 

%  of the provided window w. 

% 

  

w = w(:)'; 

  

N=length(w); 

k=0:N-1; 

  

dr = 100; 

  

B = N*sum(w.^2)/sum(w)^2;    % noise bandwidth (bins) 

  

H = abs(fft([w zeros(1,7*N)])); 

H = fftshift(H); 

H = H/max(H); 

H = 20*log10(H); 

H = max(0,dr+H); 

  

figure; 

area(k,w,'FaceColor', [0 .4 .6]); 

xlim([0 N-1]); 

set(gca,'XTick', [0 : 1/8 : 1]*(N-1)); 

set(gca,'XTickLabel','0| | | | | | | |N-1'); 

grid on; 

ylabel('amplitude'); 

xlabel('samples'); 

title(['Window function (' name ')']); 

  

figure; 

stem(([1:(8*N)]-1-4*N)/8,H,'-'); 

set(findobj('Type','line'),'Marker','none','Color',[.871 .49 0]); 

xlim([-4*N 4*N]/8); 

ylim([0 dr]); 

set(gca,'YTickLabel','-100|-90|-80|-70|-60|-50|-40|-30|-20|-10|0'); 

grid on; 

ylabel('decibels'); 

xlabel('DFT bins'); 

title(['Frequency response (' name ')']); 
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PSD Confidence 
 

Matlab scripts to compare the effects of window function and overlap on the PSD confidence 

interval. 
 

function psd_confidence  

% 

%  Display a plot of various confidence intervals 

% 

 

L = 1024; 

overlap = L:-1:1; 

N = 100000; 

  

windows = [ rectwin(L) hann(L) hamming(L) kaiser(L,21.0813) bartlett(L) ]; 

windows_title = { 'Rectangular', 'Hann', 'Hamming', 'Kaiser', 'Bartlett' }; 

window_color = { 'b', 'g', 'r', 'c', 'm', 'y', 'b', 'w' }; 

  

figure; 

grid on; 

box on; 

hold on; 

     

xlabel('Step Size as a fraction of window length'); 

ylabel('90% Confidence Interval (dB)'); 

  

for i = 1:size(windows,2) 

     

    conf = zeros(size(overlap)); 

     

    for j = 1:length(overlap) 

         

        conf(j) = confidence_90(windows(:,i), overlap(j), N); 

         

    end 

     

    plot(overlap/L, conf, [ window_color{i} '-' ], ... 

        'LineWidth', 2, 'LineSmooth', 'on'); 

end 

  

legend(windows_title{:}, 'Location', 'NorthWest'); 

  

  

  

function conf = confidence_90(w, R, N)  

% 

%  Compute the 90% confidence interval, in dB, for 

%  the provided window and overlap over a range of sample lengths 

% 

 

L = length(w); 

weight = window_weight(w,R); 

  

% 

%  Compute K, the number of windows 

% 

K = ceil((N-L)/R+1); 

  

% 

%  Compute the scale factor 

% 

scale = ones(length(N),1); 

for j = 1:length(weight) 

    scale = scale + 2 * (K-j)./K * weight(j); 

end 

  

conf = 14.1 ./ sqrt(2.*K./scale-0.8333); 
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function weight = window_weight(w, R) 

%   

%  Compute the window weighting function given the window w 

%  and step size R 

% 

  

L = length(w); 

K = ceil(L/R)-1; 

  

power = sum(w.^2)^2; 

  

weight = zeros(K,1); 

  

for j=1:K 

     

   index = 1:(L-j*R); 

    

   weight(j) =  sum(w(index).*w(index+j*R))^2 / power; 

     

end 
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Filters 
 

Matlab script to display poles, zeros, amplitude response, and phase response of a filter. 
 

function filters(z,p,k) 

% 

%  Display information for the provided zeros, poles, and gain 

% 

  

% 

%  Display the pole-zero plot 

% 

figure; 

hold on; 

box on; 

grid on; 

xlabel('Real'); 

ylabel('Imaginary'); 

axis equal; 

%axis square; 

plot(real(p), imag(p), 'rx', 'MarkerSize', 14, 'LineWidth', 2, 'LineSmooth', 'on'); 

plot(real(z), imag(z), 'bo', 'MarkerSize', 14, 'LineWidth', 2, 'LineSmooth', 'on');  

plot( ... 

    sin(linspace(0,2*pi,100)), ... 

    cos(linspace(0,2*pi,100)), ... 

    'k-', 'LineWidth', 2, 'LineSmooth', 'on');  

  

% 

%  Display the magnitude/phase plot 

% 

[ b, a ] = zp2tf(z,p,k); 

  

W = linspace(0,2,100); 

H = freqs(b,a, W); 

  

fig = figure; 

a1 = axes( ... 

    'Parent', fig); 

a2 = axes( ... 

    'Parent', fig, ... 

    'YAxisLocation', 'right', ... 

    'Color', 'none'); 

  

hold( a1, 'on'); 

hold (a2, 'on'); 

  

xlabel(a1, 'Radians/second'); 

ylabel(a1, 'Magnitude (dB)'); 

ylabel(a2, 'Phase (degrees)'); 

  

box on; 

grid on; 

  

% 

%  Plot the magnitude and phase 

% 

b = plot(a1, W, 10*log10(abs(H)), 'g-', 'LineWidth', 2, 'LineSmooth', 'on'); 

c = plot(a2, W, unwrap(angle(H))*360/pi, 'r-', 'LineWidth', 2, 'LineSmooth', 'on'); 

  

legend([b,c], 'Magnitude', 'Phase'); 
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