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Abstract

In the ACS Data Analytics Project (also known as “YumYum”), a supercomputer is modeled as a
graph of components and dependencies, jobs and faults are simulated, and component fault rates are
estimated using the graph structure and job pass/fail outcomes. This report documents the successful
completion of all SNL deliverables and tasks, describes the software written by SNL for the project, and
presents the data it generates. Readers should understand what the software tools are, how they fit
together, and how to use them to reproduce the presented data and additional experiments as desired.

The SNL YumYum tools provide the novel simulation and inference capabilities desired by ACS. SNL
also developed and implemented a new algorithm, which provides faster estimates, at finer component
granularity, on arbitrary directed acyclic graphs.



Page intentionally blank



Contents

I 1 i T P 7
1.1 Statement Of Work . .. ... 7
1.2 Tool Chain ... ... 8
1.3 Imstall or Build . .. ... 10

2 SIMULATOT . . oo 12
2.1 Generating the system graph (generator.py) ... ... ...ttt . 12
2.2 Generating the job list to simulate (JObList.R) .. ...ttt 12
2.3 Simulating jobs and faults (SSt.X) . . ...ttt 12

3 Analysis TOOLS . ..o 15
3.1 Determining “events” from job logs (walker.py and squirrell walker.py) .............. 15
3.2 Calculating event utilizations and weights (weighter.py) .......... .. . 15
3.3 Toward a single analysis tool (yummy) ... ... ... ..ot 16
3.4 Estimation of fault rates via the MLE algorithm (pfat.exe) .......... ... ... ... ... 17
3.5 Estimation of fault rates via the CMLE algorithm .. ...... ... . ... ... . .. ... . ... ..., 17

O I T 7 19
4.1 Comparison of MLE and CMLE results. ... ... ... . i 19
4.2  Estimation of individual node fault rates via the CMLE algorithm....................... 20

5 Concluding Remarks . .. ... 25

6 APPENDIX: Improvement Tdeas ... ...ttt e e 26
6.1  SImulator (SST.X) ...ttt 26
6.2 MLE t00l (DPEat.€Xe) . ...ttt 26
6.3 CMLE t00l (Dayes) . .. ...ttt 26
6.4 Single analysis t00l (FUmMIMY) ... .o\ttt 27

R OrenCes . . o oo 28



Page intentionally blank



1 Overview

1.1 Statement Of Work

This document’s structure follows SNL’s Statement of Work, which specifies the following three deliverables:

e Failure model and simulator source code along with any support libraries, modules, or documentation.

e Analysis tool source code and any support libraries, modules, or documentation.

e Any data generated for testing and validation.

Sections 2, 3, and 4 are dedicated to these deliverables, respectively. The primary delivery vehicle is an SVN
repository, referred to as yumyum' throughout this report. Table 1 summarizes the successful completion
of all project tasks and corresponding tools, and as such provides a worthwhile roadmap of this report.
Throughout this report, we use fault to refer to a component malfunction which results in a job failure.

Table 1: SNL Statement of Work tasks, with completion summaries and section numbers where additional
details are provided.

Task | Description Summary Section

3.1.1 | The contractor shall work together | Early in the project, the “4-data-model” was 2.3

with collaborators from the Advanced | mutually decided upon.
Computing System Research Program
(ACS), Lawrence Livermore National
Laboratory (LLNL), and Los Alamos
National Laboratory (LANL) to define
data requirements and interfaces for in-
put to the system analytics tool.

3.1.2 | The contractor shall collaborate with | At LANL’s request, SNL fully imple- 3.4
LANL in implementing the algorithm | mented the algorithm using SNL’s Trili-
provided by the ACS into a scalable | nos libraries. The parallelized tool is
and extensible analysis tool that is par- | in yumyum/trunk/frequentist/pfat/, takes
allelized for POSIX compliant architec- | weights as input, and outputs estimated fault
tures. rates.

3.1.3 | The contractor shall verify that no GPL | Verified: BSD-like dependencies are SST and
source code is used in the implementa- | Boost, GNU-Lesser dependencies are Trilinos
tion. and ParMETIS.

3.1.4 | The contractor shall assist in validation | SNL verified the complete 4
and testing of the analysis tool using | graph/simulator/analysis tool chain (see
data produced by the data collection | 3.1.7 below). No data from real systems was
tool and the simulation tool. analyzed, as all collaborators agreed that

graphs describing real systems were beyond
the scope of the current funding (analysis
requires both the data and the graph).

3.1.5 | The contractor shall develop and im- | A script was implemented to generate simple 2.1

plement a simple system failure model
for testing and validation of the analy-
sis tool.

graphs of components which define true fault
rates, and dependency structure. The script
is in yumyum/trunk/generator/.

Continued on next page

IThe yumyun repository is accessible via the following command: svn co svn+ssh://software.sandia.gov/svn/private/yumyun




Table 1 — continued from previous page

Task

Description

Summary

Section

3.1.6

The contractor shall implement the fail-
ure model into a simulator that pro-
vides the required system performance
data according to the agreed upon in-
terfaces. In addition, the simulator
must produce keys for validation of
analysis tool results.

The simulator was implemented using SNL’s
Structural Simulation Toolkit (SST), and is
found in yumyum/trunk/simulator/. It takes
an arbitrary directed acyclic graph and job list
as input, and outputs “4-data-model” records
and component fault logs. The latter deter-
mine observed fault rates.

2.3

3.1.7

The contractor shall freely provide sys-
tem performance data gathered with
the failure model and simulator as nec-
essary for validation of the analysis
tool.

Scripts to reproduce all data and plots are pro-
vided in yumyum/trunk/runs/. Plots compare
true, observed, and estimated fault rates as a
function of number of jobs, including confi-
dence intervals (see 3.1.9). Execution times
are also reported.

4.1

3.1.8

The contractor shall select, implement,
and optimize numerical solvers as nec-
essary in support of the analysis tool.

ACS’s MLE algorithm was implemented us-
ing Newton’s method, customized to robustly
handle convergence issues arising from insuffi-
cient fault observations (e.g. when simulation
time is short compared to fault rates).

3.4

3.1.9

The contractor shall develop algorithms
for computing confidence intervals and
implement them into the analysis tool
and provide capability for graphic out-
put (i.e. plots with error bars).

Confidence intervals for the MLE algorithm
are estimated using Fisher information, based
on the Jacobian of the likelihood surface min-
imized by the pfat tool. Confidence inter-
vals for the CMLE algorithm are measured
directly. See 3.1.7 summary above.

4.1

3.1.10

The contractor shall explore and de-
velop additional analytic capability
with the guidance of ACS.

SNL developed and implemented a Bayesian
algorithm (CMLE) after approval by ACS,
which allows for relaxation of the assump-
tion that components having matching divi-
sors (same “row” in the graph) also have
matching fault rates. The tool is in
yumyum/trunk/bayesian/ and outputs fault
rate estimates.

3.5

3.1.11

The contractor shall explore and de-
velop and implement an algorithm,
based on a directed graph, to generate
weight parameters required by the anal-
ysis tool.

Tools were developed which output weights,
given “4-data-model” records and an arbitrary
directed acyclic graph as inputs. Two com-
plete implementations are provided: Python
scripts in yumyum/trunk/walker/, and a
C++ program in yumyum/trunk/yummy/.

3.1

3.1.12

The contractor shall participate in
project meetings as required, either di-
rectly or remotely by teleconferencing
or other acceptable means.

SNL attended all teleconferences and traveled
to the customer site in MD to present to the
research and production groups (1/26/2011
and 4/20/2011 respectively).

1.2 Tool Chain

The tools developed in this project fit together to form a simulation and analysis chain, which is depicted
in Figure 1. A short example of the toolchain use is given in this subsection. In the yumyum/trunk/runs/
directory, a single make command generates a graph, runs the simulation, records the observed failure rates,




‘vs.sh’

“make N.lambdas.observed N.mle N.cmle.row

SIMULATOR N.dot—»dot-»N.pdf

" Nd.dot-»dot-»Nd.pdf
enerator.py

N.joblist.R vV S ANALYSIS TOOLS
N.xml  N.json walker.py

R-»joblist.csv—»sst.x N.events.csv N.others.csv

N.faults.log  N.joblog.csv————————#weighter.py

N.node_times.csv
N.weights.csv
prebayes.pl
\/
N.sets

makerow.pl

N.sets.row

Figure 1: Relationship of data files (non-bold), yumyum programs (bold blue) and scripts (non-bold blue), and
3rd-party programs (bold black) used in the yumyum/trunk/runs/ directory. The vs.sh script reproduces
the analysis presented in Section 4.1, and utilizes make, which manages execution of the toolchain for an
arbitrary number of compute nodes N.



and runs both the maximum likelihood estimator (MLE) and conditioned maximum likelihood estimator
(CMLE), for an arbitrary number of compute nodes N. The output of such a command is shown in Figure
2.

Estimating the fault rates using ACS’s MLE algorithm in “seconds to minutes” for “O(10) failure modes
with O(10°) events” is given as an initial performance target in Section 4.2.1 of the whitepaper provided
by ACS early in the project (found in yumyum/trunk/frequentist/whitepaper). An N=60 node compute
graph has 12 divisors (failure modes), and 750,000 jobs results in 1.06 million events (an event being a change
in the utilization state of the compute nodes in the system). Thus, our example is for N=60 (set via the
make target), and numjobs<-750000 set inside the joblist.R file?.

The total execution time of the tool chain shown in Figure 2 is 25 minutes (1500 seconds) on a four core
2.66 GHz Xeon MacPro with 3GB DRAM and SATA 7200RPM disk running MacOS 10.6.8. The calculation
of the weights requires the most time (55%), in this case 830 seconds (weighter.py). Estimation of fault
rates via these weights (ACS’s MLE algorithm) is the next largest consumer of time (15%) at 235 seconds on
four processors (mpirun -np 4 pfat.exe) - thus meeting the above initial performance target. pfat.exe
is currently the only parallelized tool in the chain. CMLE estimation of fault rates is next (9%, bayes), at
142 seconds. Preprocessing the data into a form more easily parsed by the bayes tool requires another 138
seconds (9%). These account for almost 90% of total time, with the next most significant runtimes visible
in Figure 2, and others omitted as negligible.

For finer control of the tool chain, any of the intermediate file names can be given to make as targets, and
any tool can be run manually, as detailed in following sections of this report. Or for a coarser level of control,
the vs.sh script can be used to reproduce all the analyses described in section 4.1. This script performs all
steps for a comparative analysis of the estimation methods, on various graph sizes (N=4,6,8,15,30,32), with
few to many jobs (100 to 8000), including confidence intervals.

1.3 Install or Build

Pre-compiled MacOS binaries and libraries, current as of the date of this report, are included in the yumyum
repository. To install and use them in a bash shell, do the following:

tar -C /usr/local -xf yumyum/trunk/MacOS_Binaries.tar.gz
source yumyum/trunk/.profile

These use /usr/local/yumyum as the install directory. You may need change the tar ... command to
sudo tar ... for sufficient write permissions. If an alternate directory or shell is preferred, simply untar
where desired, and use the provided .profile as a guide to modify your environment. All prerequisite
libraries are included, such that revision and building of the yumyum programs (pfat.exe, bayes, sst.x,
and yummy) is possible without building everything from scratch.

To build and install everything from scratch, execute make in the yumyum/trunk directory. The Makefiles
download, configure, build, and install all prerequisites and yumyum tools. The only exception is compilers,
for example on MacOS the XCode package should be manually installed first. For an alternate install direc-
tory, change PREFIX in yumyum/trunk/Makefile,
yumyum/trunk/simulator/Makefile, and yumyum/trunk/bayesian/Makefile before building. For non-
MacOS builds, you will also need to make the small edit described at line 46 of yumyum/trunk/simulator/Makefile.
See the comments in the Makefiles for additional information. For help, contact the first author of this
report.

2Simply edit joblist.R to set number of jobs as desired.

10



$ /usr/bin/time make 60.lambdas.observed 60.mle 60.cmle.row
../generator/generator.py --min 1 --max 24 -n 60 --lambdas=60.lambdas
Save new Lambdas file to 60.lambdas

Done

perl -ne ’/"maxjobsize/?print "maxjobsize<-60\n":print’ joblist.R > 60.joblist.R
/usr/bin/time R CMD BATCH 60.joblist.R
11.95 real 11.42 user 0.29 sys

/usr/bin/time sst.x --sdl-file 60.xml &> 60.sst
57.26 real 44.21 user 5.26 sys # (extracted from 60.sst for this figure)

mv failures.log 60.failures.log
mv joblog.csv 60.joblog.csv
./observe_lambdas.pl 60.failures.log > 60.lambdas.observed

/usr/bin/time ../walker/squirrel_walker.py -g 60.json -j 60.joblog.csv -t 60.others.csv -e 60.events.csv
joblog reader 0K
processing line 10000 from joblog file

Warning[16203]: Job 16206 has identical start and stop times (t=128131157).

processing line 800000 from joblog file
Wrote others data to ’60.others.csv’.
Wrote events data to ’60.events.csv’.
Done.
81.01 real 77.88 user 1.49 sys

/usr/bin/time ../walker/weighter.py -g 60.json -j 60.joblog.csv -o 60.others.csv -e 60.events.csv -w 60.weights.csv -t 60.node_times.csv
events reader 0K

joblog reader 0K

others reader 0K

Processed 10000 event file lines.

Processed 1110000 event file lines.
Wrote weights data to ’60.weights.csv’.
Wrote node_times data to ’60.node_times.csv’.
Done!
830.39 real 809.54 user 7.72 sys

/usr/bin/time mpirun -np 4 pfat.exe --filename=60.weights.csv > 60.mle
235.08 real 700.54 user 22.08 sys
./summarize_mle.pl 60 >> summary.mle

/usr/bin/time ../bayesian/prebayes.pl 60.node_times.csv

138.36 real 134.50 user 2.81 sys
./makerow.pl 60.sets > 60.sets.row
/usr/bin/time bayes -i 60.sets.row -o 60.cmle.row -s 60.bayes.summary.row
Assuming rowconstant lambdas!

142.15 real 141.84 user 0.22 sys
./summarize_cmle_row.pl 60 >> summary.cmle.row

1500.21 real 1922.82 user 40.04 sys # (total toolchain execution time)

Figure 2: Example toolchain execution in yumyum/trunk/runs/.
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2 Simulator

This section describes the tools in the chain from graph generation to simulation.

2.1 Generating the system graph (generator.py)

generator/generator.py is a Python script which generates directed graphs. Its usage appears in Figure 5.
Given a total number of compute nodes (N), it determines all the divisors of N and connects them according
to YumYum specification. Each node in the graph has a fault rate attribute (“lambda”, in faults per year),
the value of which is assigned by a uniform random number generator, ranging from the requested --max and
--min. The unit of faults per year was selected because this is a typical unit for node faults in real systems.
The fault rates of all components in a given divisor row are equal, unless ——unique_fault_rates is given
in which case all components are assigned a unique fault rate. Failure rates are sorted from highest at leaf
nodes to lowest at root node, unless —-unsorted is given in which case they are unsorted. If the filename
given to the --lambdas option exists, the fault rates therein are used, otherwise the rates are randomly
generated and saved in this file. The easiest way to manually set fault rates is to run the command once
such that it creates the lambdas file as output, edit the file, and then rerun generator.py which will read
it as input.

The graph is saved in several formats. The .xml is ingested by the sst.x simulator, the . json is used
by the simulator postprocessing tool walker.py, and the .dot files are used by the publicly downloadable
GraphViz program to visualize the graphs, if desired. These include the full graph N.dot and a graph of only
the divisors Nd.dot, as shown in Figures 3 and 4. These can be produced via the commands make N.pdf
and make Nd.pdf respectively in the yumyum/trunk/runs directory.

All downstream tools in the chain operate on arbitrary acyclic graphs, except for pfat.exe whose model
is based on YumYum graph structure.

2.2 Generating the job list to simulate (joblist.R)

This is a very short script for the open-source R program, enabling job distributions and parameters to be
easily explored by editing the script. It currently results in joblist.csv having three columns: jobid,
duration, size. The first are integers ascending from 1, duration indicates the number of seconds the
job will try to run, and size indicates the number of compute nodes the job requires. The latter two are
drawn from an exponential random number generator. The mean job duration is set to 1 day, the mean job
size is set to N/4. Random job sizes greater than N are set to N (aggregating the tail of the distribution
at N, such that job sizes are not strictly exponentially distributed). The number of jobs is also hard-coded
- simply edit the file to change it (or the distribution which sizes and durations are drawn). make edits
numjobs automatically, resulting in an N. joblist.R. While running this script, R always saves the joblist to
joblist.csv, since this filename is currently hardcoded in sst.x.

2.3 Simulating jobs and faults (sst.x)

sst.x is the binary name generated by the Structural Simulation Toolkit (SST). SST reads in an .xml file
describing components, attributes, and connections. It then performs a simulation of the system. It can be
used to simulate a wide variety of systems, ranging from circuits at the gate level to supercomputers at the
node level (YumYum’s case).

Two SST components have been written for the YumYum project. The resil component is a node which
generates a fault event randomly drawn from an exponential distribution parameterized by the node’s fault

12
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Figure 3: A sample N=12 components graph (12.pdf). The top number in each box is the node name D.i,
indicating the i’th component on divisor row D. Fault rates appear below the node name, which sst.x uses
to parameterize the random number generator used to generate node failure times. This value is in terms
of faults per year, and we refer to it as the “true” fault rate. The longer a simulation runs, the closer the
“observed” fault rate will be to the “true”.
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Figure 4: The 12d.pdf divisors graph corresponding to the components graph in in Figure 3. The fault rate
below the divisor indicates the maximum for all components in that divisor “row”.
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$ generator.py --help

Usage:
-n <N> Set the number of nodes, N. (REQUIRED)

Must be a positive integer, greater than 1.

-v Verbose Mode (OPTIONAL)
-d Debug Mode (OPTIONAL)
--lambdas=<filename> Filename storing a CSV list lambdas.
--max=N Max number of faults per year (default=1)
--min=N Min number of faults per year (default=0)
--unique_failure_rates Assign a unique fault rate per component (default=False)
--unsorted Do not sort fault rates (default=False)
--help Print help message and exit

Output:
N.xml : SST input XML file for an N-component graph.
N.json : JSON array representation of an N-component graph.
N.dot : GraphVIZ file for an N-component component graph.
Nd.dot : GraphVIZ file for an N-component divisor graph.

Figure 5: generator.py usage

rate (its “lambda” attribute in N.xml). Via connections to other resil components, the effects of these
faults propagates through the system, eventually leading to job failures at leaf nodes.

The other component is sched, which reads in the aforementioned joblist.csv, and allocates them to
leaf nodes in the graph (which represent compute nodes). The allocation process is very basic: given a job
of size J, if at least J nodes are available (not already running a job), they are allocated to the job in lexical
order of the D.i names. It writes joblog.csv when jobs finish successfully (no fault encountered), or fail
due to a fault on the leaf node or an upstream node (as determined by the graph structure). joblog.csv
includes jobid, start time, end time, pass or fail (0 for pass, 1 for fail), and a list of the compute nodes the
job utilized. This is the “4-data” model. In addition, it writes a joblog-stream.csv file. This is the same
as joblog.csv, but includes job start records and is sorted by order of occurrence (like job logs from real
systems), which enables streaming evaluation by the yummy tool (see section 3.3). The simulation terminates
when all the jobs in joblist.csv have been simulated.

The time granularity of faults and jobs is a second. Fault propagation happens at subsecond granularity.
Faulted nodes are availalbe for use by another job at the following second - the scheduler currently requires
one simulated second between a job end and start. Jobs which start and end within the same simulated
second (start, fault, fail) are omitted by downstream tools by default.

A faults.log file is also written, consisting of two columns: component name and time of fault. This is
postprocessed into the N. lambdas_observed.txt file. The longer a simulation runs, the closer the “observed”
fault rates will be to the “true” fault rates in the N. json graph. The faults.log file was also used to verify
that simulated faults match their specified distributions.

14



$ walker.py --help
Usage: walker.py [options]

Options:

-h, --help show this help message and exit

-g GRAPH_FILE, --graph=GRAPH_FILE
INPUT : Graph data file, in JSON format. Default:
graph. json

-j JOBLOG_FILE, --joblog=JOBLOG_FILE
INPUT : CSV JobLog file. Default: joblog.csv

-e EVENTS_FILE, --events=EVENTS_FILE
OUTPUT : Event changes list. Default: events.csv

-t OTHERS_FILE, --others=0THERS_FILE
OUTPUT : Other job components listing. Default:
others.csv

--stats Save and print out some stats (under development).
Default= none

-v, --verbose Verbose mode, adds some progress messages, etc.
Default= none

-d, --debug Debug mode. Adds lots of debugging trace information.
Default= none

--profile Enable profiling of the app. Default= none

--experimental Enable experimental code (developers only). Default=

Figure 6: walker.py usage.

3 Analysis Tools

This section describes the portion of the tool chain from the reading of simulation results to the writing of
fault rate estimates.

3.1 Determining “events” from job logs (walker.py and squirrell walker.py)

This is a python script which loads the .json graph into memory, and then makes a single pass through
joblog.csv in streaming fashion (it does not load the entire file into memory). It forms the set of all
non-compute nodes depended upon by each job, and writes them to others.csv (two columns, jobid and
components). As is does this, it also determines event boundaries, defined as a change in the utilization
state of nodes in the system. After all jobs have been processed, it writes these to events.csv, along with
a list of which jobs are starting, ending, or still running at the time. This is basically a Turing tape which
maps jobs into events. walker.py’s usage appears in Figure 6.

walker.py walks the graph for every event, whereas squirrel_walker.py walks it once at startup and
uses a hash during event processing, which makes it a bit faster. Otherwise they are identical.

3.2 Calculating event utilizations and weights (weighter.py)

This python script computes the utilization and weight of each D’th row for each event, by making a single
pass through events.csv in streaming fashion. It also reads through joblog.csv and others.csv in order
to determine which components are used during which events, which jobs passed or failed, and thus which
components may have caused the job failure(s). Its usage appears in Figure 7.

It outputs weights.csv which has many columns. The first is a time (in seconds), corresponding to
the end of an event period. It then has one column for each divisor (in ascending order), indicating the
percentage of each divisor row which was utilized by jobs during the event. It then has one column for each
divisor (in numerical D’th ascending order), indicating the percentage of each divisor row which could have
contributed to the event ending with a job interruption. These are labeled UD and WD where D is the
divisor.

15



$ weighter.py --help

Usage: weighter.py [options]

Options:
-h, --help

show this help message and exit

-g GRAPH_FILE, --graph=GRAPH_FILE

INPUT : Graph data file, in JSON format. Default:
graph. json

-j JOBLOG_FILE, --joblog=JOBLOG_FILE

INPUT : CSV JobLog file. Default: joblog.csv

-e EVENTS_FILE, --events=EVENTS_FILE

INPUT : Event changes list. Default: events.csv

-o OTHERS_FILE, --others=0THERS_FILE

INPUT : Other job components listing. Default:
others.csv

-w WEIGHTS_FILE, --weights=WEIGHTS_FILE

OUTPUT : CSV file containing the weights. Default:
weights.csv

-t NODE_TIMES_FILE, --node-times=NODE_TIMES_FILE

OUTPUT : CSV file containing the node times. Default:
node_times.csv

-m MIN_SETS_FILE, --min-sets=MIN_SETS_FILE

OUTPUT : file containing the min sets for each event.
Default: min_sets.dat

-c COUNT_MIN_SETS_FILE, --count-min-sets=COUNT_MIN_SETS_FILE

--keep-zero-time-jobs

--stats
-v, --verbose
-d, --debug

--profile

The script reads as far into joblog and others as needed to process each line in events, adding and pruning
memory as it goes. If the first job starts at ¢ = 0 and is the last to finish, the entire contents of the jobs and
others is kept in memory and swapping or out-of-memory errors could occur. This has not been observed,
even with N=1890 (32 divisors, including the first five primes: 2,3,5,7,9, resulting in 5760 components) and

10 jobs.

weighter.py also outputs an N.node_times.csv file, which has four columns: TIME, NODE, DURA-
TION, and INTERRUPT. One line is written each time any node transitions from being utilized by a job
to going idle. DURATION indicates how long the node was utilized when the transition occurred. The
simply reformats this data into a form more easily parsed by the bayes tool (reformat-

prebayes.pl script

OUTPUT : file containing the count of nodes in each
min set for each event. Default: count_min_sets.dat

Keep jobs that start and stop on same cycle. The
default behavior is to ignore jobs that started and
ended on the same clock cycle (i.e., event). If this
option is provided then those jobs will beincluded in
the calculations. Default=none

Save and print out some stats (under development).
Default= none

Verbose mode, adds some progress messages, etc.
Default= none

Debug mode. Adds lots of debugging trace information.
Default= none

Enable profiling of the app. Default= none

Figure 7: weighter.py usage.

ting is easier in Perl than C).

3.3 Toward a

The yumyum/trunk/yummy/ tool was written to address a number of issues:

e squirrell walker.py consumes 55% of total tool chain execution time (as described in section 1.2).

e squirrell walker.py and weighter.py each pass through the full simulation results (two passes

total).

e Neither tool addresses the “same-event binning” issue described in section 3.1.2 of ACS’s whitepaper

single analysis tool (yummy)
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(yumyum/trunk/frequentist/whitepaper/YUMYUM. pdf).

e Neither tool supports dynamic graphs (where the graph structure changes during the simulation).
While this capability is not within scope of this contract, it is relevant for future work.

e The tool chain could be shortened.

yummy is written in C++ and uses the Boost library for set and graph operations (a parallelized ver-
sion of the graph library is also available). Our long-term goal is for yummy to replace the entire analy-
sis section of the tool chain - a single parallelized binary which reads simulation results and writes fault
rate estimates in streaming (single-pass) fashion. However, it currently only replaces the functionality of
squirrell walker.py, weighter.py, and prebayes.pl, via a single pass on joblog-stream.csv (described
in section 2.3). Its runtime is comparable to the sum of those scripts (no optimization has been attempted),
and does not yet support dynamic graphs or “same-event-binning”. Furthermore, it is currently limited to
simulations whose duration in seconds can be represented by a long integer, whereas the scripts have no such
limit. Thus, yummy is not yet the preferred tool, but it is the recommended path for future work. See section
6.4 for next steps.

3.4 Estimation of fault rates via the MLE algorithm (pfat.exe)

A 1030-line C++ implementation of ACS’s maximum likelihood estimation (MLE) algorithm is in
yumyum/trunk/frequentist/pfat/. It is parallelized using MPI, and utilizes SNL’s Trilinos solver libraries.
Extensive documentation on the algorithm is available in yumyum/trunk/frequentist/whitepaper/YUMYUM. pdf,
with section 4.2.2 providing detailed notes on the Newton solver method used. The tool’s usage appears

in figure 8. The only required option is --weights, which specifies the name of the input weights file.
Other options control the maximum number of Newton iterations (--max-iters), solver tolerance threshold
indicating convergence (--tol), and initial values of the fault rates being solved for (--init-value and
--init-value-filename).

In order to deal with convergence difficulties arising when a small number of faults is observed, the method
has been customized to dynamically set unknowns to zero and remove them from the set of equations. This is
described in section 4.2.3 of the aforementioned YUMYUM. pdf whitepaper. pfat.exe automatically performs
this elimination dynamically, but unknowns can also be eliminated manually via the —-make-zero option.

Although the above method has yielded the greatest level of robustness, an “interior point” algorithm has
also been implemented. This algorithm was explored in an attempt to mimic Mathematica’s behavior, and
is described in detail in pages 39-41 of the Constrained Optimization Tutorial® of the Wolfram Mathematica
Tutorial Collection. The --barrier-p options control this algorithm, but we found the above elimination
strategy to provide better results, so it is the default robustness strategy in pfat.exe.

3.5 Estimation of fault rates via the CMLE algorithm

After multiple discussions with ACS and LANL collaborators, SNL developed and implemented a conditioned
MLE (CMLE) algorithm to estimate component fault rates. This algorithm is extensively documented in
yumyum/trunk/bayesian/whitepaper/YumYum notes.pdf and
yumyum/trunk/bayesian/whitepaper/IEEE/yumyum_ieee.pdf, the latter of which has been submitted for
publication in the IEEE Transactions on Reliability journal.

A 388-line C program in yumyum/trunk/bayes/ implements this algorithm. It also contains a sliver of
C++ in order to use random number generators from Boost (rather than GSL, per task 3.1.3 in section

3See http://www.wolfram.com/learningcenter/tutorialcollection/ConstrainedOptimization/
ConstrainedOptimization.pdf

17



$ pfat.exe --help
Usage: pfat.exe [options]

options:
--help Prints this help message
--pause-for-debugging Pauses for user input to allow attaching a debugger
--echo-command-line Echo the command-line but continue as normal
--verbose bool Enable verbose output.
--no-verbose (default: --no-verbose)
--max-iters int Maximum nonlinear iterations
(default: --max-iters=100)
--weights string Filename for weights csv data
(default: --filename="")
--tol double Solver tolerance, e.g. converged if L2-norm of residual vector is < tol*initial_L2-norm.
(default: --tol=le-12)
--init-value double Initial value used for all problem unknowns

[ use EITHER this option OR --init-value-filename option ]
(default: --init-value=20)

--init-value-filename string filename from which to read in initial values for each problem unknown
[ use EITHER this option OR --init-value option ]

(default: --init-value-filename="")

--barrier-p-init double Initial value for barrier parameter used to constrain pi-values > O.
(default: --barrier-p-init=0)

--barrier-p-final double Final value for barrier parameter used to constrain pi-values > 0.
(default: --barrier-p-final=0)

--make-zero string Select indices to force pilindex] = 0.0.

(default: --make-zero="")

Figure 8: pfat.exe Usage

$ ./bayes --help
Usage: bayes [options]

options:

--help Prints this help message.

--input Input filename containing sets of suspect nodes.

--output Output filename containing sample estimates.

--scale Gamma scale parameter (fault rate prior, default is 20).
--shape Gamma shape parameter (strength of prior, default is 1).
--burnin Number of burn-in iterations to perform (default is 500).
--iterations Number of iteration samples to output (default is 300).
—--summary Filename to save summary info to.

Figure 9: bayes Usage

1.1). Tts usage appears in figure 9. The only required options are —-input and --output, which determine
the files read from and written to. The --scale and --shape options control the Bayesian prior, which are
the parameters of the Gamma distribution function from which the estimated fault rates are drawn. After
performing a fixed number of burn-in iterations, it outputs a fixed number of samples and terminates. These
are controlled via the --burnin and --iterations options respectively.
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4 Data

This section describes example data produced by the YumYum tool chain. These results are fully reproducible
using the tools described in previous sections. In particular, the vs.sh script mentioned in section 1.2
reproduces the data and plots described in section 4.1.

4.1 Comparison of MLE and CMLE results

While the MLE and CMLE acronyms are similar, the algorithms they refer to are mathematically distinct
in nature. MLE is a frequentist approach, because it treats the unknowns (fault rates) as fixed values to
be solved for, given data and a model (which assumes statistical distributions for the unknowns). CMLE
is Bayesian, because it treats the unknowns as random variables (of assumed distributions), and solves for
the distribution parameters which best fit the data. Their formulations and yumyum implementations are
completely distinct.

Figure 10 visualizes the estimated fault rates from each approach, as a function of simulation length.
The intent of these plots is to compare the approaches regarding how much data is needed in order to obtain
accurate and certain answers. Following the model in ACS’s whitepaper
(yumyum/trunk/frequentist/whitepaper/YUMYUM. pdf), all components within a distinct divisor row (D.x)
have identical true fault rates for these experiments. In addition, D.x fault rates are unchanged among
multiple graph sizes (via use of generator.py’s —-lambda option), for example the true fault rate of 4.z
nodes is always 20 faults/year. The ordinate (Y-axis) labels indicate the maximum and minimum estimated
fault rates (in black), with the true rate given in red (and a corresponding red line which indicates ground
truth for each divisor row). The abscissa (X-axis) exactly matches among all panes within a subfigure,
whereas only the scale of the ordinate matches (panes may have different Y-offsets). This facilitates a visual
comparison of uncertainties across divisor rows, but unfortunately bounds detail by the least certain row.

Red circles indicate the observed fault rate, which are determined from the faults.log file described in
section 2.3. The estimates from both methods generally follow the observed rate, which converges to the
true fault rate as simulation length increases. A green dot indicates the MLE solution, and a blue square
indicates the median sample of the CMLE output. The high degree of agreement between MLE and CMLE
provides some cross-verification of their formulations and implementations.

Not only do their estimates (blue and green dots) generally agree, but their 90% confidence intervals
do as well (blue and green bars), with MLE’s tending to be slightly tighter. The significance of the tighter
bounds is unclear however, as MLE’s intervals are estimated, versus CMLE’s which are directly measured.
This contrast is a direct consequence of their frequentist vs Bayesian roots. Details on estimating MLE’s
confidence interval are given in section 7 of the aforementioned YUMYUM. pdf, but it is based on the sharpness
of the likelihood surface at its solved peak (Fisher information).

When MLE iterations fail to converge due to constraining unknowns to non-negative values (negative fault
rates would not be a physically meaningful solution), pfat.exe automatically sets the troubling unknown
to zero and restarts. This corresponds to the manual --make-zero option described in section 3.4. Fault
rates for which this has occurred (values of exactly zero) are circled in black, and have no error bars. In
effect, pfat.exe gives up on these unknowns and does the best it can on the others. This generally occurs
when there are too few fault observations to work with. In some cases, this unfortunately results in severe
overestimation of remaining rows. Yet, we have found this strategy to yield better results than the interior
point method also available in pfat.exe, as mentioned in section 3.4.

CMLE’s response to the sparse data challenge is different. Instead of convergence issues, it simply follows
the prior it was given. MLE is given an initial value for the unknowns themselves, and CMLE is given initial

4 Also see http://www.weibull.com/LifeDataWeb/confidence_bounds_exp.htm equations 15 through 18. The 90% confidence
intervals in figure 10 are computed using K, = 1.645 for a = 0.05.
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values for distribution parameters describing the unknowns (the “prior”). For figure 10, initial rates of
20 faults/year are used in both approaches, via the default values of pfat.exe --init-value and bayes
--scale. The more data given to CMLE, the less the effect of the prior on the final solution. How quickly
the prior is overwhelmed by the data is controlled via bayes’s —-shape option. For additional information,
readers are directed to yumyum/trunk/bayesian/whitepaper and references therein on Markov chain Monte
Carlo methods.

Due to the unique structure of the graphs which generator.py produces, there are always a total of NV
1.z nodes, versus a single N.x node. Since this results in a factor of N more simulated 1.z node hours than
N.z node hours, the 1.z nodes have tighter confidence bounds (more data, more certainty). The higher the
divisor, the lower the number of simulated node hours, and the greater the uncertainty. Also note that the
more compute nodes there are in a system (), the shorter the simulation time required to simulate a given
number of jobs (e.g. 1.98 yrs to run 1500 jobs on N = 4 versus 0.81 yrs on N = 16). These combined facts
make the direct comparison of subfigures in figure 10 difficult. The problem being solved is complex, and
more exploration is needed in order to fully understand the results. This document describes tools which
enable such exploration.

Early in the project, the unit of faults/year for fault rate was chosen because it is a commonly used to
describe node failure rates in real systems (e.g. node MTTF of 5 years). This unit may give the unfortunate
impression that the estimation methods require far more data than would be practical for real systems - no
one would wait years for an estimate. However, the time unit is irrelevant to the purpose of the experiments
- e.g. replace 20 faults/year with 20 faults/day, and observe that actionable estimates are available within
days. The YumYum tools enable exploration of what can be known about complex systems from single bits
of event information (pass/fail) and dependency structure. This is a general capability, versus units which
are case-specific.

A comparison of MLE and CMLE execution times for an N=210 graph are shown in figure 11a. For
this problem, on a single processor, the CMLE tool runs in roughly one quarter of the time required by the
MLE tool. Since the MLE tool uses a convergence criteria and the CMLE tool does not, it is expected that
as number of jobs grows large, MLE time will be less than CMLE time (which will always linearly increase
with number of jobs). We recommend the addition of a convergence criteria to the bayes tool in section
6.3. As requested by ACS, the MLE tool has been parallelized, Figure 11b shows its scaling characteristics
for a large N=1890 graph and 100,000 jobs. pfat.exe scales well only for a small number of processes -
additional optimizations are possible if greater scalability at larger process counts is desired.

4.2 Estimation of individual node fault rates via the CMLE algorithm

A key assumption in the original problem statement is that all nodes within a divisor row have identical
fault rates. This presents a useful starting point, but does not necessarily describe real systems. Whereas it
is reasonable to expect similar fault rates among similar component types, defective or damaged components
will exhibit unusual fault rates. Efficient and confident identification of such components is important for
real systems. As the MLE algorithm was being rethought (YUMYUM.pdf section 6), it was recognized that a
CMLE approach would enable a natural relaxation of this assumption. A small amount of code in bayes
effects adherence or relaxation. It may also be possible to revise the MLE formulation and tool, but this
was not attempted.

Figure 12 depicts the probability density functions (PDFs) for the estimated fault rates of each node in
an N=8 graph. The only experiment parameter which changes between subfigures is the simulation length.
It is easy to observe that longer simulations yield sharper peaks, indicating less uncertainty. When seeking
to resolve problems, the uncertainty of the options must be weighed against their costs. For supercomputers,
the certainty of a component being a root cause must be weighed against the cost of replacing or servicing
it (which may require system-wide downtime). Non-financial costs must also be considered. The degree of
overlap among choices is critical to the decision making process, and CMLE’s ability to quickly estimate
complex PDF's offers significant value.
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In figure 12, long simulation times are required in order to conclude with certainty that nodes 1.3 and 2.3
have higher true fault rates than their divisor-row-peers. This is not surprising, as the amount of information
is very small - a single job pass/fail bit combined with the graph structure to determine sets of suspect nodes®.
Additional information such as anomaly signals from system logs could be folded into the CMLE analysis,
reducing uncertainty without extending observation time. Hooks for adding such information to the CMLE
method are mentioned in section 2.3 of yumyum/trunk/bayesian/YumYum notes.pdf. This is a topic of
future work.

S5MLE uses even less information - per-divisor summary statistics on sets of suspect nodes and total utilization.
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Figure 10: Comparison of the accuracy and uncertainty of MLE and CMLE fault rate estimates. Red lines
indicate the true fault rate of D.x components, red dots indicate corresponding observed fault rate (the
longer the simulation, the closer observed will be to truth). Bars indicate 90% confidence intervals.
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Figure 11: Example analysis tool runtimes.
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(c) Simulation length of 20,000 jobs (16.8 yrs). (d) Simulation length of 40,000 jobs (33.8 yrs).

Figure 12: Probability density functions of the CMLE fault rates for each node of an N=8 graph (compute
nodes are 1.1, 1.2, ..., 1.8). The black triangle indicates the true fault rate for each node, with a black bar
drawn to the median of the Bayesian estimate. A half-circle indicates the observed fault rate, annotated
with the number of faults observed. The plots thus visualize the accuracy (size of black error bar) and
uncertainty (width of peak) of Bayesian estimates, both of which improve as simulation length increases.
Nodes are sorted by decreasing median. Note that in this example the true fault rate of nodes 1.3 and 2.3
do not match the others in their divisor row D.i (which share a common color).
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5 Concluding Remarks

This document describes the software written by SNL for the ACS Data Analytics Project, and provides a
glimpse of the data it generates. The tools enable experiments on inferring the root cause of job failures on
supercomputers, given limited information. SNL has successfully completed all tasks and deliverables. The
project was also successful in increasing the dialog between ACS, SNL, LANL, and LLNL on this important
research topic, and significantly broadened the range of expertise being applied to HPC resilience at SNL,
yielding commensurate advances. SNL is greatful to ACS for the opportunity to participate in the project,
and welcomes follow-on work. A proposal for such has been delivered separately.

ACS provided excellent problem definition, algorithms, and ongoing guidance. The implementation of
these algorithms shows them to be effective. SNL also found the opportunity to develop additional analytic
capabilities to be rewarding. The resulting CMLE algorithm is more robust to sparse-data conditions, faster
to execute (1/4 of execution time vs MLE, using a single processor), and simpler to implement (1/3 the lines of
code). It estimates the fault rates of individual nodes or groups of nodes (e.g. divisor rows), and eliminates
graph structure assumptions (other than directed acyclic). By treating fault rates as random variables,
further statistical analysis is possible, including straightforward measurement of confidence intervals (rather
than complex estimation). We consider it to be a particularly valuable contribution to the program.
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6 APPENDIX: Improvement Ideas

In this section, we recommend tasks to improve the yumyum tool chain. Rather than scattering such items
throughout the report, they are collected here as a to-do list for future work. Items range from minor to
major in both effort required and significance to project goals. They are grouped by tool, and sorted by
decreasing priority recommendation within groups.

6.1

1.

6.2

6.3

4.

Simulator (sst.x)

The current simulator exits when the input job list is exhausted. An sst.x option to indicate a
maximum simulation time would enable more intuitive control of experiments - via time rather than
number of jobs (which are themselves parameterized by duration and size distributions). Generation
of job lists inside sst.x would also be handy, but the ability to trace jobs from arbitrary sources (e.g.
real systems) should be retained.

The current simple allocator being used results in low compute nodes (low in lexical D.i order) being
utilized significantly more than high compute nodes. Allocating nodes in numerical i’th order would
offer a slight improvement during results review. More significantly, a realistic SST scheduler com-
ponent is being developed in another SNL project, and recommended as a simulation enhancement,
especially if the project targets deployment to real systems.

Nodes currently have zero repair time, which is not realistic.

MLE tool (pfat.exe)

. Another barrier parameter could be added, such that both upper and lower constraints are enforced.

The values of these constraints could be automatically determined, using the logic mentioned in
YUMYUM. pdf section 4.2.3 and implemented in yumyum/trunk/frequentist/hpc_sim/bound_parse_data.

CMLE tool (bayes)

. Currently, bayes terminates at fixed number of iterations (controllable via the -—iterations option).

A convergence criteria and associated command-line option could be added, such that iterations would
stop upon convergence or a maximum number of iterations, whichever occurs first. This would ensure
that the estimates had reached a sufficiently steady state, and that unnecessary iterations are not
performed.

With a little more parsing logic, bayes’s input file could be much shorter. yummy outputs such a file,
and weighter.py could be revised to as well. This would render prebayes.pl unnecessary.

Instead of relying on the ID column of the input file to map components into same-fault-rate-groups,
an option could be added which specifies a filename containing an arbitrary node-to-fault-rate-group
mapping. makerow.pl could then generate this file instead of munging the ID column based on the D
in D.i node names.

The CMLE algorithm could be easily parallelized®, enabling shorter execution times.

6See http://darrenjw.wordpress.com/2010/12/14/getting-started-with-parallel-mcmc/
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6.4 Single analysis tool (yummy)

1. The current representation of time as integers in the“4-data” model limits the total possible time span,
unless arbitrary precision libraries are used. yummy suffers from this limitation. Larger data types could
be used, but the real fix would be for joblog times to be formatted and parsed as proper timestamps
(e.g. YYYY-MM-DD HH:MM:SS), as they are in real system logs.

2. yummy could be linked with the estimation routines of pfat.exe and/or bayes, yielding a single bi-
nary that reads job logs and writes fault rate estimates. Weights and sets would become optional
intermediate outputs for verification or alternate analysis tools.

3. yummy could be made fully streaming and used as an online tool for monitoring jobs in a live fashion
and updating fault rate estimates accordingly (as mentioned in YUMYUM.pdf section 4.2.1). Both the
MLE and CMLE approaches are amenable to this, via initial values and priors respectively.
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