

SANDIA REPORT
SAND2011-7374
Unlimited Release
Printed October 2011

Refinery Burner Simulation Design
Architecture Summary

G.M. Pollock, R. D. Halbgewachs, and M.J. McDonald

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States

Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto:reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

Page 1 of 82

SAND2011-7374
Unlimited Release

Printed October, 2011

Refinery Burner Simulation
Design Architecture Summary

G.M. Pollock (Cyber Research and Education);
R. D. Halbgewachs (Effects-Based Studies); and M.J. McDonald (Effects-Based Studies)

Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1914

Abstract

 This report describes the architectural design for a high fidelity simulation of a refinery and refinery

burner, including demonstrations of impacts to the refinery if errors occur during the refinery process.
The refinery burner model and simulation are a part of the capabilities within the Sandia National

Laboratories’ Virtual Control System Environment (VCSE). Three components comprise the simulation:
HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these

components run on different machines. This design, documented after the simulation development,

incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular
demonstration development. Key to the success of this model development and presented in this report are

the concepts of the multiple aspects of model design and development that must be considered to capture
the necessary model representation fidelity of the physical systems.

Page 2 of 82

ACKNOWLEDGEMENTS

 The authors gratefully acknowledge the National SCADA Test Bed (NSTB) program at the United
States Department of Energy’s Office of Electricity Delivery and Energy Reliability, which provided the funding

for this research. We further acknowledge Brian Nelson, Sandia National Laboratories, who developed the
Reboiler and Detailed Reboiler HMI.

Page 3 of 82

Contents
Abstract ... 1
Executive Summary ... 7
INTRODUCTION .. 9
SIMULATION OVERVIEW .. 10
System Component View .. 12

Umbra Simulation Model ... 12
HMI VMWare ... 12
PLC-SCADA Controller ... 15

Network View .. 19
Establishing Desired Network ... 19
IP Addresses .. 20
Network Protocol .. 20

Event View... 20
HMI – Burner States .. 22
HMI – Reboiler Info ... 24
HMI – Reboiler Detailed Info .. 26

Data Flow View ... 26
Main System Components ... 26
Burner System ... 28
Refinery System .. 30
Single Data Flow Trace .. 33
Visualization Data Flow ... 34

Mechanical View .. 34
Burner .. 34
Controller .. 37
HMI .. 38
Refinery ... 38

Physics View .. 45
Sensors .. 45
Flame ... 45
Fluid Flow .. 45
Heat ... 46

System Safety View ... 46
Gas Build-up .. 46
Presence of Flame ... 47
Gas Pressure Interlocks .. 47
Heat Calculation .. 47

Ladder Logic View ... 47
Timers .. 47
Switches .. 48
Lock-On ... 48
B10s -- Input ... 48
B11s -- Output ... 48
B20s -- Output ... 49
B21s -- Input ... 49
Buggy Ladder Logic Program .. 49

HMI Views ... 54
Refinery Reboiler HMIs ... 54
Refinery Burner HMI ... 72

Software Component View.. 75
Burner System Component ... 75
Storage Tank Controller .. 76

Page 4 of 82

Cooking Tank Controller .. 76
Components Logical View ... 76

Burner Component Logic ... 76
Storage Tank Logic .. 76
Cooking Tank Logic ... 76

Conclusions ... 77
Distribution: .. 79

Page 5 of 82

FIGURES
Figure 1: Refinery Burner System Component / Data Flow Overview. .. 10
Figure 2: Umbra Visualization of Refinery and Burner. ... 13
Figure 3: Reboiler System HMI. .. 13
Figure 4: Refiner Burner HMI – Model States / Actions ... 14
Figure 5: HMI Reboiler Design 2 – Expanded Details; Running. ... 14
Figure 6: PLC Ladder Logic Program State 0 – Waiting for “Power On” to be Pressed. 15
Figure 7: PLC Ladder Program States 1 and 2 – Burner Lit. ... 16
Figure 8: PLC Ladder Program States 3, 4, and 5 – Pilot Lit, Burner Off. .. 17
Figure 9: PLC Ladder Program States 4, 5, and 6 -- Burner Lit. .. 18
Figure 10: Network Configuration. ... 19
Figure 11: Burner State Diagram .. 21
Figure 12: Refinery HMI -- Preparing to Light Burner Automatically Upon Power On. 22
Figure 13: RefineryBurnerMonitor Definitions – HMI Pilot Lit. .. 23
Figure 14: Refinery Burner HMI -- Burner Lit. ... 23
Figure 15: Refinery Burner View -- Gas Dispersing. .. 24
Figure 16: Refinery / Reboiler Demo HMI. ... 25
Figure 17: Refinery Reboiler HMI – Design Mode. .. 25
Figure 18: System Component Data Flow. .. 27
Figure 19: Umbra Refinery Burner System Data Flow. .. 29
Figure 20: Refinery Cooking Tank Data Flow Diagram. ... 31
Figure 21: Refinery RTUs Data Flow. ... 32
Figure 22: Abstract Burner.. 35
Figure 23: Burner Visual.. 36
Figure 24: Refinery Burner View 1. .. 36
Figure 25: Refinery Burner View 2. .. 37
Figure 26: Real-World Refinery. ... 38
Figure 27: Distilling Tower at Hydrocracking unit DSCO3097. ... 39
Figure 28: Refinery Burner Simulation View 3. ... 40
Figure 29: Refinery Burner Simulation View 4. ... 40
Figure 30: Refinery Burner Simulation Headers View 1. .. 41
Figure 31: Refinery Burner Simulation Headers View 2. .. 42
Figure 32: Refinery Burner Simulation View 5. ... 43
Figure 33: Refinery Burner Simulation View 6. ... 43
Figure 34: Refinery Burner Simulation View 7. ... 44
Figure 35: Refinery Burner Simulation View 8. ... 44
Figure 36: Buggy Ladder Logic - View 1. ... 49
Figure 37: Buggy Ladder Logic - View 2. ... 50
Figure 38: Buggy Ladder Logic - View 3. ... 51
Figure 39: Buggy Ladder Logic - View 4. ... 52
Figure 40: Refinery Burner Simulation View 9. ... 53
Figure 41: Refinery Burner Simulation View 10. ... 53
Figure 42: C301 RTU Values. .. 55
Figure 43: C301 HMI. .. 55
Figure 44: C301 RTU Analog Point Specification 1. ... 56
Figure 45: C301 RTU Analog Point Specification 2. ... 56
Figure 46: C301 RTU Analog Point Specification 3. ... 57
Figure 47: C301 RTU Analog Point Specification 4. ... 57
Figure 48: C301 RTU Analog Point Modbus Specification. ... 58
Figure 49: C301 RTU Digital Point Specification 1. .. 58
Figure 50: C301 RTU Digital Point Specification 2. .. 59
Figure 51: C301 RTU Digital Point Modbus Specification. .. 59
Figure 52: C301 RTU Digital Point Control Specification. ... 60
Figure 53: C301 RTU Channel Definition. .. 61
Figure 54: C301 RTU Channel Primary Port. ... 61

Page 6 of 82

Figure 55: C301 RTU Holding Registers. ... 62
Figure 56: C301 RTU Input Registers. .. 62
Figure 57: C301 RTU Output Coils. .. 63
Figure 58: C301 RTU Scanner Output Coils. ... 63
Figure 59: Heater RTU Interface Values. .. 64
Figure 60: Heater RTU HMI. ... 64
Figure 61: Heater RTU Channel Definition. ... 65
Figure 62: Heater RTU Channel Primary Port. .. 65
Figure 63: Heater RTU Output Coils Primary Port. ... 66
Figure 64: Heater RTU Holding Registers. .. 66
Figure 65: Heater RTU Input Registers. ... 67
Figure 66: Heater RTU Output Coils. .. 67
Figure 67: Heater RTU Scanner Input Registers. .. 68
Figure 68: Supply RTU Values. ... 68
Figure 69: Supply RTU Definition. .. 69
Figure 70: Supply RTU Channel Definition. ... 69
Figure 71: Supply RTU Holding Registers Scanner Definition.. 70
Figure 72: Supply RTU Holding Registers Primary Port. ... 70
Figure 73: Supply RTU Scanner Input Registers. ... 71
Figure 74: Supply RTU Output Coils Scanner... 71
Figure 75: Burner Gas On Button Definition. .. 72
Figure 76: Burner State Definition. ... 72
Figure 77: Burner RTU Channel Definition. ... 73
Figure 78: Burner Input Discretes Scanner Top. .. 73
Figure 79: Burner Input Discretes Scanner Bottom. .. 74
Figure 80: Burner Input Discretes Primary Port. .. 74
Figure 81: Burner Output Coils Scanner. .. 75

Page 7 of 82

EXECUTIVE SUMMARY

 A simulation model of a refinery burner achieves a high fidelity by incorporating real-world Supervisory
Control and Data Acquisition (SCADA) software and a Programmable Logic Controller (PLC) to drive the

simulation. The refinery burner model and simulation is one of the capabilities included within Sandia
National Laboratories’ Virtual Control System Environment (VCSE). This model provides a platform to address

key security issues of interest to the Department of Energy and the Department of Homeland Security.

 To disseminate this technology and approach more widely, this report documents the project in terms of

its architectural design, enabling others to use and expand the model. Further, the initial illustrative example
of a refinery burner merged with a previous abstract refinery model demonstrates the high fidelity achievable

with this approach and further demonstrates the feasibility of this approach both economically, and
technically, in advancing key interests in homeland security threat reduction related to activities and

processes using the Internet. The model was developed for a broader community and not for specific

stakeholders. The use of control systems simulations such as this are extremely important since the
simulation capability permits a variety of tests to be performed that could not otherwise be conducted due to

cost and safety issues.

 Architectural views of the refinery burner simulation present the key information necessary for an in-depth
understanding of the model. These views, developed after the fact, enhance understanding of this model by

identifying specifics related to the various aspects incorporated within the model, and identifying where

improvements may be made in the future.

 A number of views, or aspects, are presented in this report because they are necessary to fully
understand the demonstration of this simulation. These views are representative of the multiple aspects of

model design that must be considered for model representation of the controls for physical systems. The

views included are:
 a system component view,

 a network view,

 an event view,

 a data flow view,

 a mechanical view,

 a physics view,

 a system safety view,

 a ladder logic view,

 an HMI view,

 a software component view, and finally,

 a components view.

 This tool provides an excellent approach to control testing costs in the SCADA environment and is an
excellent training tool for researchers and developers to understand the impact of specific control exchanges

on expensive, critical, physical systems.

Page 8 of 82

(Intentionally left blank)

Page 9 of 82

INTRODUCTION

 Activities and processes utilizing computer networks accessed through the Internet have an exposure to
cyber threats in addition to the standard threats inherent in the same standalone physical systems. Security

support provided to the Oil and Gas Industry Sector requires certain of these activities to be analyzed for
threat awareness, in order to minimize and eliminate as many threats as possible. In addition, problems

occurring with certain processes may have a high cost related to several measures such as economics,

potential loss of life, scheduling impacts, and service disruptions.

 In particular, we focus on Supervisory Control and Data Acquisition (SCADA) systems and other similar
cyber-physical systems. Such systems use local area nets to send control information, status information,

and other necessary exchanges between the SCADA systems and the equipment or infrastructures that they
control. The SCADA systems, in turn, often exchange high-level data with corporate databases that, in turn,

are often indirectly connected to the Internet. These indirect paths between the Internet and infrastructures

are of particular concern.

 Testing the accuracy of these exchanges and what happens to the physical system when presented with
errors in the control directives can be prohibitively expensive and potentially quite dangerous to associated

personnel in regards to their safety. Our approach allows us to examine items of concern through a high

fidelity simulation that uses the real physical components to drive the simulation, while we model the
extremely expensive physical systems with enough fidelity to make whatever assessments we are focused on

during threat analysis. Key to the success of this model development and presented in this report are the
concepts of the multiple aspects of model design and development that must be considered to capture the

necessary model representation fidelity of the physical systems.

In this document, we focus on specifics related to aspects of the simulation’s resulting architectural designs;
understanding the utility and importance of this approach has been documented more extensively in another

of our reports. (See reference 7: ―Modeling and Simulation for Cyber-Physical System Security Research,
Development and Applications.‖)

 This document presents the Refinery Burner Simulation Design Architecture. This system represents a
typical oil refinery and burner with an actual Programmable Logic Controller (PLC) directing the refinery

processes. The refinery burner model and simulation is one of the capabilities included within Sandia
National Laboratories’ Virtual Control System Environment (VCSE). [7]

 The architectural design views include:
 a system component view,

 a network view,

 an event view,

 a data flow view,

 a mechanical view,

 a physics view,

 a system safety view,

 a ladder logic view,

 an HMI view,

 a software component view, and finally,

 a components view.

These views document an example system developed to show proof of concept of our approach. The initial
example focused on a simple event state process, and the subsequent design evolved from that example. In

this document, we focus on specifics related to aspects of the simulation’s resulting architectural design. The

Page 10 of 82

utility and importance of this approach is necessary to determine the components that must be considered in

modeling controls for complex, physical systems.

 The first section of this document provides a high level overview of the simulation we developed, while
the subsequent sections address the various architectural aspects of the overall model design. Finally, we

present our conclusions following the presentation of the various architectural views. We begin with the

simulation overview.

SIMULATION OVERVIEW

 The refinery burner simulation combines two different models. The first models a simple refinery process

that takes a fluid from a product tank, processes it by heating it to a specified temperature, siphons off the
resulting product, and stores it in a product tank. The second models a real burner that an actual PLC

controller turns on and off to maintain the fluid in the reboiler C301 tank within a specified range dictated by

the Heater Remote Terminal Unit (RTU). In their integrated form, the PLC-controlled heater responds to
control commands in the processing tank to cycle the burner’s flame. A commercial SCADA system interacts

with and depicts the current states of the simulation and the PLC.

Figure 1: Refinery Burner System Component / Data Flow Overview.

 Figure 1 depicts the simulation’s architecture. The simulation runs within three separate operating
systems that interact via an Ethernet network. Umbra is a modeling & simulation framework utilized with the

VCSE and is used extensively in this project. The SCADA HMIs run within a VMware virtual machine; the PLC
Controller is an industrial control computer, and the Umbra model executes on a third computer. The SCADA

software includes three HMI (Human Machine Interfaces) screens for interacting with different parts of the
plant model. The first is an abstraction that is used to interact with the PLC. The second is a plan that allows

the operator to interact with high-level plant functions. The third is a more detailed description of the

reboiler that allows the operator to control specific aspects of the reboiler circuit. The SCADA communicates
with the Umbra model and the PLC using Modbus, a communications protocol that is often used in real

industrial control systems. The Umbra model is configured to emulate three different RTUs (Remote Terminal

Page 11 of 82

Units) that have three separate network addresses. The PLC also interacts with Umbra through a Modbus

interface. (This later interface was chosen for convenience.)

 The system’s architecture and tools can be readily extended to represent many simulated RTUs and
incorporate many PLCs. It has also been tested with emulated PLCs that use the same operating system as

the real PLCs and otherwise act just like real PLCs with the main difference being that no industrial hardware

is used to contain the operating systems.

 A commercial PLC from SoftPLC interfaces with the simulation via the network to drive the simulation’s
burner model. This PLC also interfaces with the SCADA system to allow operators to control high-level

functions in the burner system through the SCADA HMI. Finally, it also interfaces with a developer host
computer used both to program the PLC and to monitor its internal state while developing and demonstrating

the software. The SoftPLC is programmed in a ladder logic language.

 The demonstration system includes two ladder logic programs. The first controls the burner in a safe and

efficient way. A second includes a software flaw that causes the burner system to fail catastrophically. We
discuss the correct and flawed versions of the ladder logic program in the section expounding on the ladder

logic view.

 The umbra model merges two different models: a refinery process model and a burner model.

 The refinery model is representative of a one of the more basic operations in oil refining. The example is

based upon training materials used to train plant operators to control refinery processes. (A Sandia industry
partner recommended this process to Sandia for a first proof-of-principal application of this VCSE model.) The

system being modeled pumps oil from a storage tank to a processing tank. Oil from the processing tank is

pumped through a heater circuit back to the processing tank. Processed oil can then be re-directed to a
product tank.

 The refinery model is based upon first-order physics equations and implemented using standard modular

modeling techniques developed for Umbra. Fluid accumulation within the tanks and heater is computed by
integrating flow rates over time. Temperature is computed by executing heat balance equations. The heated

element includes a damage model, which is activated when the temperature within the heated element

exceeds a given threshold. The model includes a 3D graphical representation that includes a 3D model of a
refinery and animation models to represent fluid volumes in tanks and accident scenarios. The model also

displays key process parameters, including temperatures and fluid volumes, above the model of each relevant
piece of equipment.

 The burner model is representative of typical industrial burners. The physical model is based upon a
burner sold by Lesman. [3] The PLC program and its architectural location in the system is representative of

safety interlock systems found in safety-sensitive burners used at oil refineries. A Sandia industry partner
had highlighted this as a best-practice architecture used throughout the refining industry. Sandia choose to

model it as an example of how high-fidelity VCSE models could be used to verify control software
functionality and assurance in safety-critical applications.

 The burner model is also based upon first-order physics equations and implemented using standard
modular modeling techniques developed for Umbra. The model includes physics models of each valve and

pipe in the burner. Burner ignition is modeled by modeling the accumulation, consumption and diffusion of
gas in the region around the ignition sources. The model allows gas to enter the burning region through

either a pilot light or the main burner gas plumbing. Prior to ignition, the model represents how gas can

accumulate in the region and diffuses slowly. Post-ignition, it represents how the flame consumes the gas
and produces heat.

Page 12 of 82

 The model represents how in normal operation, the pilot gas is introduced then an igniter is activated.

This starts a pilot flame that, in turn, heats a temperature sensor. The burner gas is then introduced which
lights and produces heat for the refinery process. It also represents how in abnormal operation, the igniter is

not activated before gas is introduced to the burner element and gas accumulates in the region around the
burner. (The gas dissipates slowly if the gas supply is turned off.) The model indicates that an explosion will

occur if the igniter is activated when an over-abundance of gas is in the region.

 The visual model of the burner presents an abstract representation of the components described as

generally used by an industrial burner. We documented our assumptions regarding the functioning of the
various components comprising the burner, in order to facilitate model validation at the appropriate time.

The PLC controller turns the burner on and off, depending upon whether the fluid being heated exceeds the
temperature ranges specified by the user through the HMIs. If the fluid becomes too hot, the burner turns

off; if the fluid becomes too cold, the burner turns on and the flame reappears in the visual graphic. The ―On

– Off‖ cycling of the burner occurs approximately two minutes into the simulation.

SYSTEM COMPONENT VIEW

 As noted previously, three system components comprise this simulation model: the HMI refinery controller

interface, the PLC Controller, and the Umbra model. The HMI views: 1) monitor the refinery and PLC states,

and 2) allow the user to interact with the refinery to set desired input values and limits. The PLC Controller
drives the simulation by turning various gates and switches on and off, as specified by an internal ladder logic

program according to the current system state and the occurrence of system events, such as new inputs or
outputs. The Umbra model simulates the physical systems of an actual refinery and burner. The following

subsections provide a high level review of each of these components before proceeding to discussion of the
various architectural views of the model design, as stated in the introduction.

Umbra Simulation Model

 The Umbra Simulation Model runs on a separate computer. The Umbra simulation receives input from the
PLC Controller, updates the visual graphic models of the refinery and refinery burner based upon the current

values of the gates and switches output to Umbra from the PLC Controller. Changes determined by the
Umbra processing component result in values being passed back to the PLC Controller, which results in

possible changes in the settings for the various gates and switches controlled and monitored by the PLC
controller. The Umbra Simulation Model does not interact directly with the HMI screens, only indirectly

through the PLC Controller. Figure 2 illustrates the visual graphic model of the refinery and burner. The

small, neon green object in the middle of the picture represents the ―blower‖ for the refinery burner. We
present more views in later sections.

HMI VMWare

 The HMI represents the refinery control panel that portrays the current status of the refinery components
in real time. This simulation used commercial software packages to develop multiple HMI’s for the

simulation. We used WonderWare [16] for the initial design, and then transitioned to ClearScada. One HMI
view utilizes icons and images to portray the reboiler system interface in a format familiar to the refinery

worker managing a typical refinery control panel (see Figure 3). Another, more abstract, HMI view portrays

the simple event states associated with the refinery burner used by the reboiler system in maintaining the
specified temperature for the material being processed (see Figure 4). Finally, a third HMI view provides

greater detail in a schematic format for the reboiler process (see Figure 5). We discuss particulars for each of

Page 13 of 82

these HMI screens/views in greater detail in the following sections, and specifically within the section devoted

to the HMI views.

Figure 2: Umbra Visualization of Refinery and Burner.

Figure 3: Reboiler System HMI.

Page 14 of 82

Figure 4: Refiner Burner HMI – Model States / Actions

Figure 5: HMI Reboiler Design 2 – Expanded Details; Running.

Page 15 of 82

PLC-SCADA Controller

 Real hardware in the form of an actual PLC controller is used to drive the refinery / burner simulation,

resulting in a high fidelity simulation that allows real world control programs to be tested and evaluated in a
laboratory setting. Consequently, ladder logic programs must be written to run the controllers. Figures 6

through 9 illustrate the various logic rungs within the ladder logic program at various states during the

simulation. These figures are independent of each other in the sense that each figure depicts the system at
different times. In other words, these figures and states are not contiguous in time relative to the simulation

execution. However, they do show which gates and switches are on and off during particular situations that
occur when the simulation runs. Further, these four figures collectively depict each rung within the ladder

logic program. The ladder logic view section, which appears much later in this document, discusses the

details for these figures, this current section simply presents the various system components at a high level
and we proceed with the next section, which outlines the network view for our simulation.

 Figure 6: ―PLC Ladder Logic Program State 0 – Waiting for ―Power on‖ to be Pressed‖, shows the first

three rungs of the ladder logic program. All gates are off, depicting that the burner is turned off and will not
be turned ―On‖, until the associated HMI ―Power On‖ button is pressed. Figure 7: PLC Ladder Program

States 1 and 2 – Burner Lit shows the next two program rungs. Their current status, as depicted, indicates

that the pilot light has been lit. Figure 8: PLC Ladder Program States 3, 4, and 5 – Pilot Lit, Burner Off
shows the next three rungs; here, the pilot light has been lit, but the burner has not. Figure 9: PLC Ladder

Program States 4, 5, and 6 -- Burner Lit shows the last few rungs; the burner is now lit. These figures come
from screenshots of a tool, (SoftPLC TOPDOC) that allows one to view the executing PLC program.

Figure 6: PLC Ladder Logic Program State 0 – Waiting for “Power On” to be Pressed.

Page 16 of 82

Figure 7: PLC Ladder Program States 1 and 2 – Burner Lit.

Page 17 of 82

Figure 8: PLC Ladder Program States 3, 4, and 5 – Pilot Lit, Burner Off.

Page 18 of 82

Figure 9: PLC Ladder Program States 4, 5, and 6 -- Burner Lit.

Page 19 of 82

Figure 10: Network Configuration.

NETWORK VIEW

 We configured the simulation components on a standalone network separate from our corporate network
to facilitate presenting the demonstration at various locations. This provided us with an isolated sandbox for

our tests. Figure 10 specifies the exact configuration used by the refinery burner simulation.

Establishing Desired Network

 We programmed and executed a short script that established the desired network addresses:

Page 20 of 82

netsh interface ip set address name="Local Area Connection" static addr=192.0.1.50
 mask=255.255.255.0 gateway=192.0.1.50 1
netsh interface ip add address name="Local Area Connection" 192.0.1.100 255.255.255.0
netsh interface ip add address name="Local Area Connection" 192.0.1.101 255.255.255.0
netsh interface ip add address name="Local Area Connection" 192.0.1.102 255.255.255.0
ipconfig
pause

 When we concluded our work with the simulation, we ran another .bat file to restore our network:

netsh interface ip set address name="Local Area Connection" dhcp
ipconfig
pause

IP Addresses

 The main host computer ran the SOFTPLC TOPDOC program, which allows one to monitor the ladder

program being executed on the PLC controller dynamically. The host had an IP address of 192.0.1.50.
The umbra model also ran on the host computer at 192.0.1.50, but the configuration within the Umbra model

also specified three additional RTUs at 192.0.1.100, 192.0.1.101, and 192.0.1.102, for the Supply RTU, the
C301 RTU, and the Heater RTU used by the refinery model.

 The HMI views ran in a VMWare set to 192.0.1.107, and the PLC Controller had an IP address of
192.0.1.110. The Burner model ClearScada HMI running in VMWare at 192.0.1.107 provided output from the

Abstract HMI to the PLC controller at 192.0.1.110. The SoftPLC Controller at 192.0.1.110 receives input from
the VMWare running the HMI at 192.0.1.107 and from Umbra running at 192.0.1.50; then processes the

input and outputs via the same IPs to cycle through the simulation. The simulation essentially processes the

input, then generates the output, then repeats the cycle.

 The Umbra model has four RTUs, one for each of the major components within the model. These four
IPs are used to send and receive status and control information for each of those main components: the

SupplyRTU, the C301RTU, the HeaterRTU, and the TrustAnchorRTU, which is the RTU used by the burner.

Network Protocol

 This simulation used the MODBUS network protocol to exchange data as required between the IP

addresses. The TOPDOC tool from SoftPLC allowed us to specify the network configuration, including the
drivers for the client and server processes. The ClearSCADA tool, also allowed the necessary specifications to

configure the network as designed.

EVENT VIEW

 The event view depicts the initial state diagram developed for the refinery flame burner. We defined

possible states for the burner; then, we identified what events would cause a transition from any one of the

states, to any of the other states. Figure 11 shows the initial refinery flame burner state diagram. There
were five states initially, and then the diagram was reworked to streamline the events. Figure 12 shows the

final version and actual Abstract HMI design used with the refinery burner simulation demonstration.

Page 21 of 82

Figure 11: Burner State Diagram

Page 22 of 82

Figure 12: Refinery HMI -- Preparing to Light Burner Automatically Upon Power On.

HMI – Burner States

 The system is initially in the ―Off‖ state. One must turn the gas on to advance to the ―Ready‖ state.
Once there, a timer begins and the pilot light tries to light. If the pilot lights, state 4 is achieved. Pressing a

button to light the burner causes advancement to state 5. If the burner pilot light does not light within a
specified time, the burner system cycles to the ―Clear‖ state to allow the gas that has built up to dissipate.

Once a set amount of time has passed, the burner system again enters the ―Ready‖ state and the timer

countdown for the pilot light to light begins again. The system cycles amongst these three states until the
pilot is lit. Once the pilot light is lit, the burner system is ready to turn on the main burner. Pressing the

―Light Burner‖ button will cause the main burner to turn on.

 Three buttons are used in this abstract HMI view, and each button has two functions. One function

occurs when the button is pressed and is up, while another function occurs when the button is pressed and is
down. Whichever state, up or down, is current when pressed, the button will then transition to the other

state. If a button is up when pressed, it will enter the down state; if it is down when pressed, it will enter the
up state. The power on button located under the ―Off‖ state, is used to both ―Power On‖ and ―Shutdown‖

the burner system. When the main burner is lit and the system is shutdown, the burner system enters the

―Disperse‖ state, which enforces a delay before the burner can be relit in order to allow any gas that has built
up to disperse as a safety measure. Figure 13, Figure 14, and Figure 15 show what the HMI looks like in

these various states. The state indicators are either red or green. Green indicators indicate that a state has

Page 23 of 82

been reached; a red indicator means the state has not been reached. Reset and start comprise one button;

and a single button is used to turn the gas either ―On‖ or ―Off‖.

Figure 13: RefineryBurnerMonitor Definitions – HMI Pilot Lit.

Figure 14: Refinery Burner HMI -- Burner Lit.

Page 24 of 82

Figure 15: Refinery Burner View -- Gas Dispersing.

HMI – Reboiler Info

 The reboiler HMI view (Figure 16) running in VMWare, provides a more realistic control panel for viewing
and assessing the status of the refinery. The Supply Tank, the C301 Tank, the Heater, and even the Product

tank are clearly identifiable. Pipes show how the fluid flows amongst these components. The status, as to
whether the refinery processing is running or not, is clear; and the associated temperatures of the fluid at key

points in the refinery process are tracked and displayed. A switch allows the user, or refinery controller, to

switch between manual and automatic control. Feedback mechanisms are clearly indicated through the pipe
structures. This HMI utilizes IP addresses 192.0.1.100, 192.0.1.101, and 192.0.1.102 to exchange data with

the Umbra simulation and visualization system component running on 192.0.1.50. If the fluid temperature
drops below the minimum temperature, or exceeds the maximum temperature, the umbra component sends

information to the PLC controller on IP address 192.0.1.110 to either turn the main burner on to heat up the

fluid, or to turn it off to allow the fluid to cool off for a while.

Page 25 of 82

Figure 16: Refinery / Reboiler Demo HMI.

Figure 17: Refinery Reboiler HMI – Design Mode.

Page 26 of 82

HMI – Reboiler Detailed Info

 The detailed reboiler HMI screen entitled ―ClearSCADA Reboiler HMI‖ (Figure 17) provides an even more

realistic representation of a typical control panel one might see at a real-world refinery. This HMI view can
be used to turn valves and switches on and off in the Umbra refinery simulation and to track the current

status of those same valves, as well as the temperature of the fluid being processed.

DATA FLOW VIEW

 The Refinery Burner Simulation incorporates strong data abstraction principles. Each component has an
invariable data flow boundary. This approach mirrors that of the Umbra environment. The Umbra

simulation process uses data abstraction as a keystone principle. Once a simulation has been initialized, the

simulation just loops over and over. During each loop, the system passes data between the components in a
prescribed order: the components complete their calculations using their current/updated input values, then

they update their own output values (including any feedback loops), and then the simulation cycle is ready to
repeat. The order of updates follows the specified dataflow sequences. Therefore, understanding how the

data flows between each of the components provides a strong foundation for understanding the overall
architectural design for this simulation. In addition, the user needs to understand that numerous aspects of

this simulation are non-deterministic and they cannot expect statements to always be executed in the order

they are presented.

 We consider multiple data flow aspects: 1) the data flow between the three main system components
including the ClearSCADA HMIs running on a VMWare, the PLC controller running on a SoftPLC controller, and

the graphic visualization of the physical refinery and burner being generated by the Umbra simulation code

running on the host computer; and 2) the data flow between software components in the Umbra simulation
code modeling the burner system and the refinery system. We consider several viewpoints for each of those

aspects: first, we review the overall flow, and then explain how to read the data flow schematics developed
for this simulation, and finally we trace a single data flow through the system.

Main System Components

 The three main system components, the HMIs, the PLC Controller, and the Umbra visual simulation,

exchange data via the MODBUS TCP network protocol. Figure 18 identifies the bit values passed between

these components. Bit values pass from the Abstract Burner State HMI to the PLC controller and map to the
B10 gates/switches within the PLC Controller. Data values within the PLC Controller are, in general, bit

values that indicate whether a gate is ―On‖ or ―Off‖.

 The only way to reference data values within ladder logic programs is to use a reference such as ―B10/0‖.
―B10/0‖, means bit zero starting at Block 0. Block B10 is used within our PLC ladder logic program to contain

the bit values coming as input from the abstract event HMI. Block B11 is used to transfer output values from

the PLC Controller to the HMI.

 Bits in Block 21 are used to receive the bit values coming as input from the Umbra simulation and block
20 bits are used to output values from the PLC Controller to the Umbra simulation to direct the simulation as

to which gates are ―On‖ or ―Off‖. The Umbra simulation uses those bit values to dynamically change the

physical system visualization, such as turning the flame ―On‖ or ―Off‖.

 From the data in Figure 18, one may determine that the functions to either ―Power on‖ or ―Shutdown‖ the
refinery burner are merged into a single button, whose value is represented by the bit B10/0. The PLC

Page 27 of 82

Figure 18: System Component Data Flow.

Page 28 of 82

repeatedly cycles through the ladder logic program. During each cycle, the system rechecks the values of all

of the input and output coils—input coils contain the B10 bits and output coils contain the B11 bits, according
to the way we configured and designed this simulation. If B10/0 has a value of ―1‖, the sequence to turn the

system ―On‖ initiates; if it has a value of ―0‖, the shutdown sequence begins. The start and reset button are
merged together in a similar fashion, and the button to light the burner has the alternate function

of turning the main burner flame off.

 Accordingly, B10/1, B10/2, B10/5, B10/7 and B10/8, although initially designed to have specific functions,

currently are available for expansion. This compression occurred in order to limit the input to the PLC
controller to 8 bits or fewer from the main components. The HMI transmits 4 bit values, and the Umbra

Burner RTU (trust Anchor) transmits back 3 bits, leaving one bit for expansion. The yellow highlighting
identifies the actual bits being used during one validation project. Because the B10s are input coils, the PLC

controller cannot change any B10 bit value, it can only read or determine the current B10 bit values. The

merged simulation of the refinery and burner together also uses B21/3 and B21/6.

 The B11 bit values have a value of 0 or 1, depending upon whether the associated gates within the PLC
ladder logic program are ―On‖ (value of 1) or ―Off‖ (value of 0). These output gate values are ―On‖, if

current is able to flow through the ladder logic program rungs to that point in the program. ―AND‖ and ―OR‖

gates are used within the ladder logic program to direct, and/or block, the current flow as needed to achieve
the desired logical functioning of the ladder logic program.

 The HMI uses the B11 bit values to determine whether to set the indicator lights located in the middle of

each oval event state (refer back to Figure 15) to red or green. A green indicator indicates a current state
has been reached, or is enabled; a red state means the state has not been reached, or has been disabled for

the moment. The B11 bits are ―read only input‖ to the HMI view, whereas the PLC controller sets the values

of the B11 bits. ―Read only input‖ means the HMI cannot change these values -- it can only read or
determine their values. Therefore, the B11 bits are input to the HMI from the PLC controller.

 Based on the directives from the HMI view, and the coded logic, the PLC controller sets the appropriate

bits for the B20s to be output to the Umbra simulation code. The Umbra simulation code reads these values

as input and processes the visualization/simulation accordingly. The Umbra code cannot change the B20
values, it can only read them. As Umbra processes its’ internal loop, it will in turn set the appropriate values

of the variables linked as output to the B21 bit values read by the PLC controller. The PLC controller can only
read those values. Any change in those values by Umbra precipitates changes in the switches controlled by

the PLC and the processing loop continues.

 The reboiler HMI and the detailed Reboiler HMI views pass additional bit values through similar input and

output coils that are exchanged with the Umbra refinery simulation. Those bits do not pass through the PLC
Controller. These HMIs and the refinery were initially designed as a separate project, and then were merged

with the burner system. A close examination of the ClearScada configuration and the Umbra software will
identify the functioning and meaning of each bit value. We will leave that as an exercise for the developer

with access to this simulation who wishes to either expand this simulation or delve more deeply into the nuts

and bolts of the coding.

Burner System

 As indicated above, a similar data abstraction, or encapsulation, occurs within the Umbra simulation code.
The names of the B20 and B21 bit values identified in Figure 18 are the same names used within the Umbra

code. Figure 19 illustrates the data flow throughout the burner system that is embedded within the larger
refinery simulation. (You may need a magnifying glass to read this figure, we do. However, this figure

clearly shows the data encapsulation and overall data flow concepts.)

Page 29 of 82

Figure 19: Umbra Refinery Burner System Data Flow.

Page 30 of 82

 The orange rectangles that extend outside of the main greenish tinted box are the data values coming as

input into the burner system code from the PLC controller. These bindings have the same names as those in
Figure 18. Also, the associated B20 bit value is marked for each variable. The orange rectangles to the far

right are the output values that progress back as input into the PLC controller. Again, the names are the
same and the B21 bit values are noted.

 The blue rectangles are variables coming as input into the burner system from the encompassing refinery
system. These variables are set by, and are outputs from, other software components comprising the

refinery simulation. The blue rectangles to the far right are values that feed as output from the burner
system to become input into other components in the refinery code.

 Each grey box with a green ―lid‖ is a software component within the burner system. The green lid

contains text specifying the type of the component (we use six component types within the Umbra Refinery

Burner: ANDgates, ORgates, Switches, StorageTanks, Burners, and one Manifold); and a text entry
specifying the name for that particular instantiation of the stated component type. The bright yellow

rectangles outlined in grey to the left of each grey component specify the required input values for the
component execution. Grey lines indicate the sources of these required input values.

 The lighter yellow rectangles outlined in grey on the right edges of the grey components indicate the
output values. These values may be bit values, string values, integer values, real values, etc. The output

data type may be indicated in the text, or the specific name for that output value may be listed to avoid
naming conflicts when there are multiple outputs of the same data types. Solid grey lines indicate where the

data values flow, whether they proceed onwards to another component within the simulation, or are passed
back to the PLC controller via the controller’s input coils. Some data values flow forward to two locations, as

indicated by the multiple lines proceeding forth from the variable specification.

 The clear grey rectangles inside the grey components specify static data variables that are initialized

within those components. The system must be recompiled to change those values.

 The bright yellow rectangles outlined in orange on the left and right sides of the grey components are

feedback variables. The leftmost variable receives its input value from subsequent iterations as the
simulation progresses. The dotted grey lines indicate the data flow for these values in terms of origin and

destination. Since these are feedbacks, the data value flows forward from the right most component linked
by the dotted line back to the leftmost component, as indicated in the diagram.

Refinery System

 The refinery system essentially has the same coding data flow structure as the refinery burner; however,

the reboiler HMI view and the detailed reboiler HMI view also pass data values via input and output coils to

the Umbra refinery system. The PLC controller does not process data from those two HMIs, except for one
switch; a single input and output bit variable linking the refinery system and the burner system that indicates

when the burner flame needs to be switched on or off based on the specified temperatures. The PLC
controller controls the burner flame switch based on input through the B21 bit value provided, and controlled,

by the Umbra code.

 Figure 20 shows the general data flow diagram for a basic cookingTankController component that the

Umbra refinery simulation uses. The variables in the pink filled rectangles were added to link the refinery
burner simulation with the refinery simulation. ―Heat On‖ exiting the Cooking Tank diagram feeds back to bit

B21/6 in the PLC controller input coils and to the variable ―heatSwitchOnOff‖ used as input to the refinery
burner system, as seen in Figure 19. The cooking Tank diagram presents the abstract flow for this type of

component; an actual implementation may incorporate additional variables, either inputs or outputs as

needed (See Figure 21, which has two instances of cookingTankController -- each with slight variations.)

Page 31 of 82

Figure 20: Refinery Cooking Tank Data Flow Diagram.

Page 32 of 82

Figure 21: Refinery RTUs Data Flow.

Page 33 of 82

 We see several instances of cookingTankController, as we look at the data flow for a larger group of

components used within the refinery system in Figure 21. Figure 21 shows the data flow interactions
between the refinery components that link to the reboiler and detailed reboiler HMIs. Yellow ―RTU‖ tags

indicate the links to the input and output coils transmitted to the HMIs running on VMWare at 192.0.1.107.

 We do not include the complete set of data flow diagrams for the Umbra refinery model in this document

as they constantly change due to evolving project requirements, and thus, would be out of data by the time
this document reaches publication. However, the included diagrams were accurate at one time. (See

reference 6 for the most current documentation.)

Single Data Flow Trace

 We start with the HMIs to trace a single data flow. Looking at the abstract HMI, pressing the ‖Power On‖
button will set the appropriate bit in the HMI output coil to ―1‖ (and set the ―power on‖ button in the down

position, which changes its text from ―Power On‖ to ―Power Off‖ with a magenta background). The HMI
output coils are sent to and read by the PLC controller. The PLC controller, after reading the coils from the

HMI accordingly sets bit B10/0 to ―1‖. Refer back to We start with the HMIs to trace a single data flow.

Looking at the abstract HMI, pressing the ‖Power On‖ button will set the appropriate bit in the HMI output
coil to ―1‖ (and set the ―power on‖ button in the down position, which changes its text from ―Power On‖ to

―Power Off‖ with a magenta background). The HMI output coils are sent to and read by the PLC controller.
The PLC controller, after reading the coils from the HMI accordingly sets bit B10/0 to ―1‖. Refer back to

Figure 6 and examine the first rung in the PLC controller ladder logic program. The gate B10/0 will now turn

―On‖. In turn, the switches B11/0 and B20/10 go ―On‖ simultaneously, as well.

 The next time Umbra completes a processing loop, it will receive the new B20 output coils from the PLC
Controller. The Umbra software is configured to link the bit B20/10 to the ventValve variable in the

simulation, thus the external variable labeled ―ventValve (B20/10) in the left hand side of the Umbra Refinery

Burner Schematic switches to ―1‖ from a value of ―0‖. (―0‖ is the initialization value for these variables.)
Nothing further happens at this time in regards to the burner schematic; but, the burner visualization graphic

will change the color of the ventValve in the 3d visualization of the burner a lighter, more vibrant and
luminescent shade of green -- making it appear as though the ventValve turned on, similar to a neon sign

turning on and exuding a brighter color. In this case, the large ―blower‖ (the large lime green object looking
like the letter ―P‖ on its back) also turns on in the visualization.

 When the switch B11/0 goes ―On‖ the bit value also changes to ―1‖ within the B11 output coils. The next
iteration of the processing loop within the HMI will result in those coils being read and processed, thus the bit

value of ―1‖ for B11/0 results in the red indicator in the ―Off‖ state, the oval at the top of the Refinery Burner
Controls Abstract HMI, lighting up and turning green.

 Nothing happens further until the ―Gas On‖ button to the upper right is pressed. This button may be left
on the same way a person may leave the radio on in their car, and have it turn on the next time the car is

started. If the ―Gas On‖ button (B10/6) is already on, then the current in the ladder logic program will
progress further and additional actions will happen. We will allow the reader to trace through the code as an

exercise to determine what will happen next. However, you can see the definition of this bit as the first bit in
the Abstract HMI output coils, if you refer back to Figure 13. Look at the database panel to the left of the

image. You can see the definition under the RefineryBurnerMonitor folder. Examine the third rung in the

ladder logic program (Figure 6) to determine what happens next with the data flow.

 The data flow processing for the Reboiler and Detailed Reboiler HMI progresses in exactly the same way.
The user may change specific values for several variables, such as the requested fill rate or the requested

temperature, or the heat rate, etc. These values, in turn, are sent via the output coils using MODBUS TCP to

the Umbra code. The bits/values in the output coils feed into the components (see Figure 21) and on the

Page 34 of 82

next processing loop, Umbra makes whatever changes must occur as the data values input from the HMI

change. The resulting output values from the various components then filter back to the HMI via a similar
process. In addition, the user may flip switches on the HMIs. Images of switches are used to present a

more real-world feel to the design. Once clicked, the switch with move down (if up) and up (if down). The
appropriate data value indicating the position of the switch progresses via the HMI output coils to Umbra and

the associated actions and visualization changes occur as programmed within Umbra.

Visualization Data Flow

 The visualization works in a slightly different manner. The Tool Command Language (Tcl), a string-based

control language, and Tk (a toolkit for programming graphical user interfaces) are utilized by Umbra. [17]
Tcl/Tk code is used to handle the graphics for these models. Essentially a number of visual states are

defined based on the values of specified variables. The state definition specifies what is present or not in the
visualization and what it looks like. This gives a semblance of dynamic reaction and action within the

visualization. The burner simulation uses the same variables passed as B20 and B21 input and output coils
from the PLC controller. If one of those bits is ―On‖ with a value of 1, the color of that item (or related visual

objects) changes colors.

 Headers over the key refinery components also display their changing values, such as the temperature

over the heater and the C-301 component. The supply tank and product tank may show fluctuating levels of
fluid depending upon how long the simulation has run and what parameters have been set by the HMI.

 If certain conditions occur, explosions and fires may erupt.

MECHANICAL VIEW

 From a mechanical perspective, we gathered as much data as we could find to produce as accurate a

model as our resources permitted. This included visiting actual refineries, and gathering what information we

could from websites, and querying staff members who we knew had prior refinery experience. We primarily
concerned ourselves with mechanical operations that could be operated via a cyber component. However,

some components displayed in the visualization had/have a strictly mechanical operation with no cyber
connection. We briefly discuss the burner components, relevant refinery components, the controller, and the

HMIs to identify mechanical aspects incorporated into this simulation. The following subsections address

each of these elements in turn.

Burner

 We found a web brochure with a diagram of a burner, and we used that design as the basis for our
abstract burner. First we recreated the diagram; Figure 22 shows the results of the recreation. There were

twenty items identified as individual components on the burner, as can be seen in the list at the top right of
Figure 22. A number of the items appear to be duplicated in both the pilot pipe line, and the main burner

pipe line. Items that we considered to be the same type were coded in the same color. Some assumptions

were made regarding the functions of these components. Figure 23 shows the abstract visual model
constructed representing the components used for a functioning burner as depicted by the research diagram

used as the basis for the burner design. Figure 24: Refinery Burner View 1.‖ shows a close-up of the
abstract burner embedded within the refinery simulation.

Page 35 of 82

Figure 22: Abstract Burner.

Page 36 of 82

Figure 23: Burner Visual.

Figure 24: Refinery Burner View 1.

Page 37 of 82

Figure 25: Refinery Burner View 2.

 The PLC Controller turns on and off most of these components. Purely mechanical components that the
controller cannot manipulate include: the manual reset, the two manual shut off cocks, and the two test

cocks. The manual shut-offs only appear in certain versions of the simulation since they cannot be
manipulated. We do not have a separate component for the Gas Pilot Burner Assembly; we just assume one

is there, supporting the burner. A similar assumption is made with the primary control relay mounting base.
The high limit safety shutdown is incorporated within the processing for the thermocouple sensors. We made

the assumption that the remaining items can by controlled via cyber commands issued by the PLC Controller.

 In Figure 25, we can see the lighted burner. We assume pipes link from the tank being heated, to the

other relevant tanks. Those pipes were not added because we had limited resources when the burner was
embedded into the refinery simulation. Similar assumptions were made in regards to any structures

supporting the burner assembly.

 Multiple documents developed by the authors further identify the process flow for igniting the burner.

(See references.) However, understanding how the valves operate is the most important information
required in understanding the overall burner processing. We assumed they operate similar to water valves in

a house. A main valve controls water flow from the city to the house. Other valves found under the sinks
control whether water may progress to the particular sink. Finally, valves present at the sinks determine

whether hot or cold water will flow through the choice of valve, and when the water flows is determined

when the valve is turned ―On‖.

Controller

 Many controllers will have the ―switches‖ that they control actually implemented mechanically. Our simple
model defines a number of bits as input and output and sets bit values to send to the other two components

within the simulation. (Please refer back to Figure 18.)

Page 38 of 82

HMI

 Similarly, older SCADA HMIs used by the Refinery controllers may have mechanical implementations, but

ours utilize MODBUS TCP to specify which values / switches may have changed. Abstract icons or images
may be utilized to represent the mechanical components, as in the Reboiler HMI view -- Figure 16.

Refinery

 To construct visualization, we started with pictures of real refineries we had visited to use as the basis for

our abstractions. Figure 26 and Figure 27 show pictures from those visits that we used to model abstract
components within our simulated refinery. We did not include all of the relevant pipes etc, between our

components, although we assumed they were there for computational purposes. This includes the
mechanical valves and sensors used to turn flows on and off and to sense levels and other key aspects.

Omitting such features allowed us to minimize clutter in the visualization, while presenting the true overall
sense of a refinery.

 There are four RTUs embedded within the visualization: the SupplyRTU, the HeaterRTU, the C-301RTU,
and the BurnerRTU. With the exception of the BurnerRTU, the other RTUs have labels floating above them in

the visualization space. We show a number of views to allow the reader to consider the simulation from
different angles. Figure 28 and Figure 29 show how the burner is embedded within the overall model.

Figure 30 and Figure 31 show enlarged views to more clearly see the labels for the RTUs. These labels show

three RTUs and the product tank. We also see towers that could be raffinate splitters; however, they are not
all used in this particular scenario. Other figures are abstract representations of refinery objects, such as

blow down drums, storage tanks, etc. Figure 32 thru Figure 41 show the simulation from different angles.

Figure 26: Real-World Refinery.

Page 39 of 82

Figure 27: Distilling Tower at Hydrocracking unit DSCO3097.

Page 40 of 82

Figure 28: Refinery Burner Simulation View 3.

Figure 29: Refinery Burner Simulation View 4.

Page 41 of 82

Figure 30: Refinery Burner Simulation Headers View 1.

Page 42 of 82

Figure 31: Refinery Burner Simulation Headers View 2.

Page 43 of 82

Figure 32: Refinery Burner Simulation View 5.

Figure 33: Refinery Burner Simulation View 6.

Page 44 of 82

Figure 34: Refinery Burner Simulation View 7.

Figure 35: Refinery Burner Simulation View 8.

Page 45 of 82

PHYSICS VIEW

 The support to incorporate true physics in calculations related to this simulation is one of the more unique
and valued aspects of this particular simulation using the Umbra software package. We implemented simple

physics calculations in various aspects and designed the code so we can easily increase the physical fidelity
later, as resources become available for additional development/improvements. The simulation considered

the physics of the sensors, the flames produced, the fluid flows (including the product being produced by the
refinery and the fuel used during the refining process), and heat generation. We consider each of these

briefly.

Sensors

 All of the sensors in this project/demo are simulated; they are not actual physical components of the

simulation. However, we do depict some (flame detector, heat thermocoupler, etc.) sensors as components
in the visualization. The Umbra component codes provide timing calculations for variations in the sensors for

now.

 The flame detector sensor goes on within a few seconds when both: 1) the pilot light gas is flowing, and

2) the PLC Controller turns on the solid-state ignition transformer. Another placeholder in the code allows a
calculation to determine when the flame is hot enough to actually light the burner. For now, it is a simple

calculation of a few seconds in time, and then the Umbra code turns on ThermocouplerSensorAPilot.

 Additional calculations allow the code to decide whether or not the heat being generated is too hot, which

is related to gas volume being burned. When that occurs, the system turns on ThermocouplerSensorBTemp.

 Currently, there is no implementation for the high and low pressure interlocks, which are presumed to be
some type of mechanical interlocks. However, we have defined places for information related to these

interlocks within the code and have defined rungs to be used in the future with the PLC ladder logic program
if the interlocks are to be included in the simulation.

Flame

 We did not do a lot of physics calculations with the flame in the current simulation. We used an existing

flame system and adjusted the size and color and texture of the flame to what we considered reasonable and

similar to what we expected based on some experience with pilot lights and flame burners. Additional work
needs to be done in this area; accordingly, we implemented input variables into the software components

that, in time, would allow the user to specify the exact type of fuel being used so that future calculations
could be made to adjust the flame color, height, and ultimately heat calculations as noted below.

 Further, we did not calculate the geographical dispersion of any gas buildup, which could be affected by

wind flow, to determine exactly how big a ball of flame to produce, but we made a general assumption that

the flame produced would be bigger initially, similar to what happens when turning on a gas stove burner.

Fluid Flow

 In regards to the fuel fluid flow, we did include a simple formula to calculate how much fuel was being
burned in comparison to how much fuel had flowed (was flowing) out of the pilot light pipe line and the main

burner pipe line, and how much fuel may have dissipated on the wind. We did not actually calculate the
diameter and actual flow rate from the fuel pipes based on outside air temperatures and altitude; although

Page 46 of 82

that could affect the end results, we left that for a future improvement. Further we did not calculate or

consider buildups within the pipes as causing any obstructions to affect the flow for either the burner fuel or
the product being processed at the refinery. However, if too much gas has flowed, the system ―explodes‖.

 In regards to the flow of the product being refined, we did not calculate how much fluid is actually in the

pipes, rather considered the amount of fluid present to be a zero sum between the various tanks – that is,

the amount taken from one tank equaled the amount placed in another tank. We do not take into
consideration the pressure in the pipes for this simulation.

Heat

 We included just enough physics to reach the fidelity required for our scenario regarding the heat

produced. Additional opportunities exist to expand this aspect. As noted above, we did not adjust the color
of the flame to indicate heat levels. Physically, in the real world, the color of the flame potentially provides

information about the type of fuel being burned and how high a temperature the flame has reached. The
size of the flame based on the amount of fuel burning, can also be used in calculating the heat produced.

The outside temperature may also have an effect, as well as the amount of oxygen in the air, possibly related

to altitude. We did not consider those aspects for this learning simulation.

 In addition, we did not calculate heat flow patterns within the tank; thus, we did not calculate the actual
heat differentials between the top and bottom of the tank, in those cases where thermal levels form.

 We did provide a simple calculation to specify how much heat (in BTUs) was being generated.

 The system also determines the temperature of the liquid being processed, and turns the burner either
―On‖ or ―Off‖ to maintain the temperature within a desired range.

SYSTEM SAFETY VIEW

 From a system safety view, we are not familiar with all aspects of system safety at real oil refineries.

Therefore, we only address a few issues that we assume are actually addressed in such refineries. We
implement simple features to address: 1) the gas build-up; 2) the presence of a flame; 3) the gas pressure;

and 4) the heat generated.

Gas Build-up

 In our model, the gas has to be turned on before the pilot light or the main burner light can be turned on,
however, once on, our model will respond if the gas is turned off. According to the ladder logic program,

turning the gas off after it has been turned on will cause the pilot light or burner to go out, assuming they

had been lit.

 Our model causes forced dispersion of gas if too much gas builds up prior to the pilot light being lit. The
system loops between a dispersal state and a ready state until the pilot light ―lights‖. The dispersal state is

entered because the system has calculated that too much gas is building up, and therefore, it turns off the

gas momentarily to allow some of the gas that has built up to disperse, then it turns the gas back on and
waits for the flame detector sensor to indicate that a flame is present. A timer specifies how long to wait for

the gas dispersal.

Page 47 of 82

 This same method occurs when turning off the burner. The system has a forced timing to allow gas

dispersion. That is, the system enters and remains in a locked state for a pre-specified amount of time
before the user can attempt to relight either the pilot light or the main burner.

 If too much gas builds up, the system signals that an explosion occurs and the visualization changes

appropriately.

 We do not calculate the material in the pipes to determine if there are erosion problems within the pipes

or that the pipes themselves may present a problem in any way.

Presence of Flame

 This system requires that the Pilot light is burning before the main burner can light.

 A simulated sensor determines that the flame present is hot enough before the main burner flame can
light. This requirement was included based upon information from websites that indicated such a sensor was

used in some systems.

 Another simulated sensor turns the burner off if it senses that the flame has become too hot.

Gas Pressure Interlocks

 While we do not currently utilize the gas pressure interlocks, there is a low and a high pressure interlock

designed for the refinery burner. However, we do not currently have the fidelity to detect gas pressure, so
implementations using the interlocks are left for future expansion.

Heat Calculation

 We calculate the heat being generated (in BTUs) and if the calculation is too high compared to an internal
value previously specified, an explosion occurs. This happens by signaling through a key variable that the

visualization must change.

 Further, if the fluid temperature becomes too hot based on this calculation, the system can shut down the
burner.

LADDER LOGIC VIEW

 We briefly describe the components used in developing the ladder logic program, such as timers, and the

various types of gates and switches. Then we list and describe a ―buggy‖ program we developed to test with
our refinery simulation.

Timers

 Timers are used to achieve several functions within the ladder logic program running on the PLC

Controller. The first set of timers appears in the fourth rung of the program. Both timers initiate at the same

time. Once they initiate, they send an electrical signal that remains on while the timer counts down the

Page 48 of 82

specified time. Once that specified time is reached, the signal terminates. These two timers accomplish the

gas dispersal delay between the dispersal state and the ready state when attempting to light the pilot light on
the refiner burner. When both timers start, the next rung, rung five is evaluated. If the ending gate, B11/4

goes ―On‖, then the pilot light has been lit and the system advances to rung seven in the ladder logic
program. Two events must occur before B11/4 turns ―On‖: 1) the first timer must still be on, or counting

down its time; and 2) the flame detector sensor must go ―On‖.

 In other words, if the system detects a flame within the timer period, the pilot light is lit, and the burner

advances to the next state; if not, then a third timer initiates in rung six, which waits a set period and then
returns the burner to the ready state to attempt to light the pilot light again. The system cycles in this

manner until the pilot light is lit or the system is turned off. The second timer is necessary to allow a short
period of time to switch states if the pilot light is not lit; otherwise, with the simultaneous termination of all

gates, the system cannot sense that it must enter the dispersal state. With the completion of the dispersal

state (rung six) all three timers are reset. A similar process is used for the shutdown process.

Switches

 Switches are turned on when they are reached at the end of the rungs in the ladder logic program. They
may then subsequently be accessed via an ―AND‖ or an ―OR‖ gate. Two vertical parallel lines indicate a gate

and a black oblong appears between the lines when the gate is ―On‖. The same with a line crossing from top
to bottom indicates a ―NOT‖ and the black oblong appears when the gate is ―Off‖ (or rather is NOT ―On‖). If

the black oblong does not appear, the current is not flowing past that gate.

 ―AND‖ operations are achieved by placing gates in sequence, and ―OR‖ functions occur when the rung

branches into parallel lines and the gates appear on separate rungs vertically. One of the rungs must have
all gates activated for the current to flow past the parallel branches, thus achieving the ―OR‖ function.

Lock-On

 ―OR‖ functions are used throughout the ladder logic program to ―lock-On‖ actions. Once a rung has been

enabled, the switch at the end of the rung goes ―On‖. If that same switch is used in an ―OR‖ function at the

beginning of the rung, the rung may effectively be ―locked-On‖. Thus, a button can be pressed and released
in the HMI and have the same effect as the power-on button for computers. The button does not have to

stay pressed down for the desired action to initiate.

B10s -- Input

 The B10 gates are input to the PLC Controller from the HMI. They indicate the status of the buttons on
the HMI. Figure 18 documents which button associates with which gate.

B11s -- Output

 The B11 gates provide information being outputted from the PLC Controller back to the HMI. They tell

the HMI the particular states that the process has reached, or is in, during the process of lighting the main

burner. Those states then appear ―lit‖ in the abstract burner HMI.

Page 49 of 82

B20s -- Output

 The B20s are output from the PLC Controller to the Umbra software components. They signal which

switches have been turned ―On‖ and which are turned ―Off‖.

B21s -- Input

 The B21s are the sensor switches that are set by the Umbra software components. They pass as output

from Umbra and input to the PLC Controller. Several additional filler switches have been defined for future
developments.

Buggy Ladder Logic Program

 The buggy ladder logic program we developed demonstrates the power of this high fidelity simulation

approach. The program appears in Figure 36 thru Figure 39. This program is exactly the same as the
program described earlier, but we added a few errors to see how the system would respond: we switched

the first two timers and mistakenly turn on the valves for the main gas line instead of the pilot light gas line.
Figure 40 and Figure 41 show the resulting explosions and fires from near and far views.

Figure 36: Buggy Ladder Logic - View 1.

Page 50 of 82

Figure 37: Buggy Ladder Logic - View 2.

Page 51 of 82

Figure 38: Buggy Ladder Logic - View 3.

Page 52 of 82

Figure 39: Buggy Ladder Logic - View 4.

Page 53 of 82

Figure 40: Refinery Burner Simulation View 9.

Figure 41: Refinery Burner Simulation View 10.

Page 54 of 82

HMI VIEWS

 We created the multiple HMI views used with this simulation with ClearSCADA commercial software. We
have created both abstract and more detailed HMI views, as seen in the earlier figures within this document.

In this section, we discuss in detail how we specified each of these HMI screens. First we discuss those HMI
views designed for the Refinery Reboiler process, and then the abstract HMI version for tracking the Refinery

Burner states. We categorize the details by the RTUs defined within the project. The reboiler process used
three RTUs: the C301 RTU; the Heater RTU, and the Supply RTU. The burner used a single RTU.

 Although we have included some screenshots for consistency of data, we have not included all of the data
for every object because of the duplication of the definitions. Therefore, we do not include all duplicative

data, making note where relevant, so the reader can refer to the appropriate figures for any data perceived
as missing. Further, we do not include data where we simply used the system defaults. Further details on all

files can be obtained from the authors as needed.

Refinery Reboiler HMIs

C301 RTU:
 We only display nine figures containing the specifics for defining the particulars related to the C301 RTU.

Each type of component defined within the HMI Software has one or more specification pages associated
with it. As many of the pages are not used with this particular simulation, or simply use the default values,

we will not exhaustively present all of that data. We instead present a sampling of relevant data essential to

our HMI specification.

 Figure 42 displays the HMI view that allows the user to interface with the reboiler in specifying the input
parameters driving the simulation. The values in pink text (pink indicating that the HMI is not currently

running) specify the HMI default values. These values indicate the working parameters for the refinery
simulation and transmit back and forth between the HMI and the UMBRA software through the C301 RTU

using the MODBUS TCP/IP protocol. Each parameter entry specifies either an analog point, or a digital point.

We will see specification examples of each later in this document. These definitions appear in the left panel
of the figure.

 Figure 43 shows the design for the C301 RTU portion of the Reboiler HMI. The dots in the background

indicate design mode for the displayed data. The pink text indicates the default values. This figure merges

with similar partial figures for both the Heater RTU and the Supply RTU to create the Detailed HMI figure
viewed earlier in this paper. (See Figure 17)

 Figure 44 displays the particulars for defining an analog point. The user may provide specification details

on eight panels within the ClearSCADA software, including categories of: Identification, User Methods, Alarm,
Redirection, Analog Point, Historic, Modbus and Control. These specifications define the particular details to

associate with this particular analog point during the simulation execution. We either did not use, or simply

used the default values on most of these panels. However, we did specify information on the Analog Point,
and Modbus panels. Figure 44 thru Figure 47 illustrate the details provided on the Analog Point panel. Note

that the database panel was closed in several of those figures. This information is duplicated for all of the
analog points, so we only show the details for the analog point, ―Actual Outflow Heat.‖ Figure 48 shows the

details for the Modbus specification panel for the same point. We did not use any of the other panels for the

simple point we defined.

 In contrast, Figure 49 and Figure 50 provide the details to define a digital point. Figure 51 specifies the
information necessary to use the Modbus protocol and Figure 52 specifies the Control panel information. This

Page 55 of 82

Figure 42: C301 RTU Values.

Figure 43: C301 HMI.

Page 56 of 82

Figure 44: C301 RTU Analog Point Specification 1.

Figure 45: C301 RTU Analog Point Specification 2.

Page 57 of 82

Figure 46: C301 RTU Analog Point Specification 3.

Figure 47: C301 RTU Analog Point Specification 4.

Page 58 of 82

Figure 48: C301 RTU Analog Point Modbus Specification.

Figure 49: C301 RTU Digital Point Specification 1.

Page 59 of 82

Figure 50: C301 RTU Digital Point Specification 2.

Figure 51: C301 RTU Digital Point Modbus Specification.

Page 60 of 82

Figure 52: C301 RTU Digital Point Control Specification.

information allows us to identify what the significance of the resulting value is for the specified digital point;

in this case, when it signifies either open or closed.

 Figure 53 specifies the C301 RTU Channel definition. This same definition is used for all of the RTUs we

used. This channel definition only used the Modbus and Control panels. Figure 54 specifies the connection
protocol type for the channel primary port.

 Figure 55, Figure 56, and Figure 57 specify the scanning details for the holding registers, the input
registers, and the output coils. Figure 55, and Figure 57 show the top portion of the panel; Figure 56 shows

the lower portion of the scanner panel. The lower portion of the scanner panel is the same for all scanners
defined in our simulation.

 Figure 58 shows the primary port used for scanning the output coils. This information is the same for the

holding registers and the input registers. To determine whether an analog or digital point is specified

through either the input registers or the output coils, double click the value on the HMI to select what
information is wanted concerning that point.

 For example, you can determine what references a point, or the status of the point. The status provides

all information stored in the internal database concerning that point. The first four analog points are read

from the input registers, the next three analog point values are kept in the holding registers. The last analog
point is read from the input registers. The two digital points are processed through the output coils. All of

this information, and more, can be obtained by highlighting each point respectively in the database panel,
right clicking, and then selecting ―view status‖. To provide all of that detail in this document is unnecessary

to understand the overall architectural design and would be too exhaustive to include everything. If
additional information is needed, please contact the authors.

Page 61 of 82

Figure 53: C301 RTU Channel Definition.

Figure 54: C301 RTU Channel Primary Port.

Page 62 of 82

Figure 55: C301 RTU Holding Registers.

Figure 56: C301 RTU Input Registers.

Page 63 of 82

Figure 57: C301 RTU Output Coils.

Figure 58: C301 RTU Scanner Output Coils.

Page 64 of 82

Heater RTU:

 The heater RTU definition is very similar to the C301 RTU definition. We do show some duplication of the
data in this section so the reader may understand the general specification process.

 Figure 59 shows the interface values. Figure 60 shows the HMI for just the Heater RTU. The definitions

for the analog points and digital points are essentially the same, so we do not duplicate that data for the

remaining RTU definitions. The Heater RTU channel is defined in Figure 61 and Figure 62; it is a duplicate of
the data used for the C301 RTU. However, the primary port, shown in Figure 63 for the Output Coils, is

different. We show the upper portion of the scanner panel for the holding registers, the input registers, and
the coils in Figure 64, Figure 65, and Figure 66. These specifications are essentially the same as those for

the C301 heater, except for the number of data values being passed / held in the various registers. Figure 67
shows that the primary port for the input registers is the same as that previously shown for the output coils;

this port is also the same for the holding registers.

Figure 59: Heater RTU Interface Values.

Figure 60: Heater RTU HMI.

Page 65 of 82

Figure 61: Heater RTU Channel Definition.

Figure 62: Heater RTU Channel Primary Port.

Page 66 of 82

Figure 63: Heater RTU Output Coils Primary Port.

Figure 64: Heater RTU Holding Registers.

Page 67 of 82

Figure 65: Heater RTU Input Registers.

Figure 66: Heater RTU Output Coils.

Page 68 of 82

Figure 67: Heater RTU Scanner Input Registers.

Supply RTU:

 Again, the Supply RTU design is similar to the previous two RTUs specified above. Figure 68 thru Figure
74 show the some of the same panels for the Supply RTU as shown for the C301 RTU and the Heater RTU to

illustrate the duplicative nature of the information.

Figure 68: Supply RTU Values.

Page 69 of 82

Figure 69: Supply RTU Definition.

Figure 70: Supply RTU Channel Definition.

Page 70 of 82

Figure 71: Supply RTU Holding Registers Scanner Definition.

Figure 72: Supply RTU Holding Registers Primary Port.

Page 71 of 82

Figure 73: Supply RTU Scanner Input Registers.

Figure 74: Supply RTU Output Coils Scanner.

Page 72 of 82

Refinery Burner HMI

 The required data to specify the Burner RTU, is the same type of data. Refer to Figure 75 thru Figure 81

for the specific details.

Figure 75: Burner Gas On Button Definition.

Figure 76: Burner State Definition.

Page 73 of 82

Figure 77: Burner RTU Channel Definition.

Figure 78: Burner Input Discretes Scanner Top.

Page 74 of 82

Figure 79: Burner Input Discretes Scanner Bottom.

Figure 80: Burner Input Discretes Primary Port.

Page 75 of 82

Figure 81: Burner Output Coils Scanner.

SOFTWARE COMPONENT VIEW

 In general the Umbra simulation software links together various predefined software components to

derive a new simulation. Wherever possible we used preexisting components to describe and process the

necessary data flow. For the burner simulation, we defined a new burner system component. For the
refinery simulation, components were defined for the CookingTankController, and the StorageTankController.

Refer back to Figure 19, Figure 20, and Figure 21.

Burner System Component

 The Burner System Component takes four external inputs: A bit value, indicating whether or not the solid
state ignitor is turned ―On‖; a double value indicating the flow rate; another double value indicating the

quantity of gas available to burn; and third double value indicating the simulation time.

 There are three internal inputs that are pre-initialized: an integer value indicating the type of ignition

fuel; a double value specifying the heatLimit that is set internally to 1000.0; and, another double value that is
used as the explosionThreshold, which is also initialized to 1000.0.

 There are three outputs, and one feedback variable. Two of the outputs are Boolean values: one

indicating whether or not an explosion is underway, and another indicating whether or not the burner is lit.

The feedback specifies the rate at which the available gas is being burnt.

Page 76 of 82

 Essentially, during the update process, the component completes the initializations based upon the input

values, and determines the amount of heat (in BTUs) being generated. If the burner is not burning, the
output heat is set to zero; otherwise, the burner is burning so the calculated heat is set. If the calculated

rate is greater than the heat limit, then the explosion indicator is set to true.

 If an explosion has not occurred, the system sets the burner either ―On‖ or ―Off‖, depending upon the

input conditions. If gas is burning, the system calculates how much gas has either burned or dissipated due
to environmental conditions.

Storage Tank Controller

 The storage tank controller operates similar to a manifold process. Figure 21 indicates the requisite

inputs and outputs for our simulation.

Cooking Tank Controller

 The cookingTankController component is used for both the Heater and the product tank for this
simulation. Figure 20 indicates particulars related to the internal working of the cookingTankController. The

indicated double switches control the logic flow in processing the fluid in the tanks. For additional

information contact the authors. Figure 21 provide further information about the inputs and outputs for this
component when used for the Heater and for the product tank.

COMPONENTS LOGICAL VIEW

Burner Component Logic

 Essentially, during the update process for the burner component, the component completes the
initializations based upon the input values, and determines the amount of heat (in BTUs) being generated. If

the burner is not burning, the output heat is set to zero; otherwise, the burner is burning so the calculated

heat is set. If the calculated rate is greater than the heat limit, then the explosion indicator is set to true.

 If an explosion has not occurred, the system sets the burner either ―On‖ or ―Off‖, depending upon the
input conditions. If gas is burning, the system calculates how much gas has either burned or dissipated due

to environmental conditions.

Storage Tank Logic

 The storage tank, based on the input flow and the output flow, determines the net flow, the actual

outflow, the quantity of fluid in the tank, and the overflow rate.

Cooking Tank Logic

 The cooking tank essentially takes the heatRateIn, which is the amount of heat going into the cooking
Tank from the burner; the heatOut, which is the heat lost from the system; and, the inflowTemp, which is the

temperature of the material flowing into the tank. The component then determines the temperature of the

Page 77 of 82

material in the tank. Thus, this component is essentially a storage tank that can be heated. The material

comes into the tank at one temperature then mixes instantly. With no heat, the temperature goes toward
the weighted average of the new material plus the old material.

CONCLUSIONS

 We have created this architecture after the fact, thus it does not simply follow standard architectural

descriptions. We have included views/aspects that are not typically included with other software applications,
but that are necessary to understand this demonstration. Further, this test bed was developed for a broader

community and not specific stakeholders. Key to the success of this model development and presented in
this report are the concepts of the multiple aspects of model design and development that must be

considered to capture the necessary model representation fidelity of the physical systems. The refinery

burner model and simulation is one of the capabilities included within Sandia National Laboratories’ Virtual
Control System Environment (VCSE).

 We have determined this is an excellent approach to control testing costs as we use real-world equipment

linked with software simulations substituting for those real-world components that might otherwise be
damaged or destroyed during processing with inherent errors. Thus, many scenarios may be tested in real-

world settings with minimal cost. Consequently, our particular simulation makes an excellent training tool for

understanding the impact of control exchanges during the refinery process.

 For next steps, we recommend increasing the physical fidelity of those aspects of the simulation that are
related to key operational concerns for this type of refinery. We need to further explore existing safety

features and make sure those aspects are included in this test bed. We need to further explore aging aspects

of the tanks to address how that would impact future functioning. We should calibrate our assumptions in
regards to the refinery process with specific processes, such as isomerization units that are utilized at various

refineries. We should further validate the model with known issues that have occurred and have been
analyzed over the years related to refinery processes. We should explore new technologies to address any

safety or other issues identified to improve these refinery processes in addressing the security of these

control systems and facilities.

Page 78 of 82

REFERENCES

1. Anderson, W.E.; Chavez, A.R.; Lee, E.; and Trevino, C.M.; Generalized Code Obfuscation.

SAND2010-6673. Albuquerque, NM, USA: Sandia National Laboratories.

2. Bass, L., Clements, P., & Kazman, R. Software Architecture in Practice, Second Edition. Carnegie
Mellon Software Institute.

3. Brochure, L. I. (2008). It's On Fire Catalog 2008 Volume BCS-2008. Retrieved February 2009, from
www.lesman.com.

4. Cassidy, R.H., Chavez, A.R.; McDonald, M.J.; Pollock, G.M. and Richardson, B.T.; ―Protecting SCADA

Supply Chain Using Trust Anchors,‖ under development, SAND2011-XXXX. Albuquerque, NM, USA:

Sandia National Laboratories.

5. CBS Safety Video: Explosion at Bp Refinery, Texas City, Texas. March 05, 2007,
http://www.youtube.com/watch?v=c9JY3eT4cdM.

6. ClearSCADA, www.clearscada.com, 2009.

7. McDonald, M. J., et.al. (2010, February). Modeling and Simulation for Cyber-Physical System Security
Research, Development and Applications. SAND2010-0568. Albuquerque, NM, USA: Sandia National

Laboratories.

8. McDonald, M. J., (2010), Personal Umbra Refinery Working Papers. Albuquerque, NM, USA: Sandia

National Laboratories.

9. Pollock, G. M. (2009) BURNER OBJECTS-Definitions_v2.docx, personal working papers.

10. Pollock, G. M. (2009) BurnerObjectsFunctionsList_v2.docx, personal working papers.

11. Pollock, G. M. (2009) Burner Valves Definitions.docx, personal working papers.

12. Pollock, G. M. (2009) Initial_States_and_Transitions_v2.docx, personal working papers.

13. Pollock, G. M. (2010, July). Umbra Refinery. SAND2010-5254P. Albuquerque, NM, USA: Sandia

National Laboratories.

14. Pollock, G. M. (2010, July). Directions to Conduct the Refinery Burner Simulation. SAND2010-6259P.

Albuquerque, NM, USA: Sandia National Laboratories.

15. TOPDOC NexGen User’s Guide, SoftPLC Corporation, Spicewood, TX, www.softplc.com, 2008.

16. Wonderware, http://global.wonderware.com/EN/Pages/default.aspx, 2008.

17. Welch, Brent B. and Jones, Ken, Practical Programming in Tcl and Tk,

http://www.beedub.ccom/book/ .

http://www.lesman.com/
http://www.youtube.com/watch?v=c9JY3eT4cdM
http://www.clearscada.com/
http://www.softplc.com/
http://global.wonderware.com/EN/Pages/default.aspx
http://www.beedub.ccom/book/

Page 79 of 82

DISTRIBUTION:
(Electronic Copies)

1 MS 1248 B.P. Clifford, 5623

1 MS 1073 B.K. Cook, 5624
1 MS 0671 J.M. Depoy, 5628

1 MS 1248 S.M. Rinaldi, 5643
1 MS 1027 G.M. Pollock, 5624

1 MS 1248 R.D. Halbgewachs, 5623

1 MS 1027 M.J. McDonald, 5623
1 MS 0671 B.T. Richardson, 5628

1 MS 0671 J. Mulder, 5628
1 MS 0671 A.C. Riehm, 5628

1 MS 0671 W.D. Atkins, 5628

1 MS 0899 Technical Library, 9536

