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Abstract

This report explores some important considerations in devising a practical and consistent 
framework and methodology for utilizing experiments and experimental data to support 
modeling and prediction. A pragmatic and versatile “Real Space” approach is outlined for 
confronting experimental and modeling bias and uncertainty to mitigate risk in modeling 
and prediction. The elements of experiment design and data analysis, data conditioning, 
model conditioning, model validation, hierarchical modeling, and extrapolative prediction 
under uncertainty are examined. An appreciation can be gained for the constraints and 
difficulties at play in devising a viable end-to-end methodology. Rationale is given for the 
various choices underlying the Real Space end-to-end approach. The approach adopts and 
refines some elements and constructs from the literature and adds pivotal new elements 
and constructs. Crucially, the approach reflects a pragmatism and versatility derived from 
working many industrial-scale problems involving complex physics and constitutive 
models, steady-state and time-varying nonlinear behavior and boundary conditions, and 
various types of uncertainty in experiments and models. The framework benefits from a 
broad exposure to integrated experimental and modeling activities in the areas of heat 
transfer, solid and structural mechanics, irradiated electronics, and combustion in fluids 
and solids.
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1 Introduction

Methodologies for modeling and prediction in the presence of bias and uncertainty are 
being actively researched and formulated by the modeling and simulation (M&S) 
community. Comprehensive and detailed frameworks are still elusive. References [1]–[82]
highlight various lines of thinking and progress in these areas. Refs. [42]–[52] develop key 
aspects of the author’s particular paradigm of modeling and prediction summarized in this 
report. The paradigm and procedures were developed within a larger context of integrated 
experimental-modeling-analysis programs with end-to-end scope involving experiment 
design and analysis, data conditioning, model conditioning1, model validation, 
hierarchical modeling, and extrapolative prediction under uncertainty. 

The majority of this report centers on model validation, although the other elements of the 
end-to-end process are also addressed. The author’s “Real Space” model validation 
approach (outlined in sections 3.2 and 3.3 of this report) was arrived at by working 
backwards from an end objective of “best estimate with uncertainty” (BEWU) modeling 
and prediction. The approach reflects a pragmatism and versatility derived from working 
many industrial scale validation problems in the following application areas:

• device thermal response and initiated failure [43], [46] 
• device thermal-structural response and failure [51]
• foam thermal pyrolysis and vaporization [28], [33], [53]
• fire and object-response modeling [40], [49]
• radiation-damaged electronic device response [56]. 

Working from this broad basis, the Real Space model validation (and conditioning) 
approach has evolved to address uncertainties of random and systematic; correlated and 
uncorrelated; interval and distributional; and aleatory, epistemic, and combined natures 
that commonly arise in modeling and experiments, including: 

• experimental variability in repeated experiments;
• associated epistemic uncertainty from limited numbers of repeated experiments; 
• measurement uncertainties in experimental inputs and outputs; 
• uncertainties that arise in data processing and inference from raw experimental 

and simulation outputs;
• parametric and functional-form uncertainties associated with the model;
• numerical solution uncertainty from model discretization effects.

1.  Model conditioning is a term signifying a superset of model initialization and corrective 
adjustment techniques in the presence of uncertainty. Model conditioning includes but extends 
beyond procedures otherwise variously known as parameter estimation, model calibration, model 
updating, etc. Model conditioning is the subject of section 7 of this report.
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Among the many model validation paradigms, frameworks, and methodologies surveyed 
in this report, the Real Space formulation has been found by the author to be uniquely 
capable (adaptable, robust, and practical) to handle the diverse set of challenging 
validation application problems and attributes cited above. The challenges emanate from: 

• analysis and processing of the experimental data and associated interpretation of 
results;

• model accuracy characterization—deciding on the formulation or metric for 
characterizing discrepancy between model and experiment results;

• model adequacy characterization—deciding the threshold or criterion for model 
adequacy (acceptable agreement with reality);

• extrapolation of validation information/results/products—deciding how to project 
results and outcomes from validation settings to other prediction settings 
subsequent to the model validation activity. (This item is not part of model 
validation, but is an essential consideration in the formulation of a useful validation 
approach.) 

The Real Space validation approach differs from others established frameworks in the 
literature in that model accuracy and adequacy relative to experimental data are not posed 
in terms of transform measures and acceptance criteria in a discrepancy transform space. A 
large variety of mathematical transforms exist in the literature to characterize discrepancy 
between experiment and simulation results (e.g., the subtractive difference transform in 
[6] and [17] and the distribution function ‘area’ validation metric in [20], [54]). The 
transform measures in the literature can be relatively involved, with varying transparency 
and interpretability of the physical and decision-making significance of the numerical 
values yielded by the measures. The transforms can also constrain what forms and types of 
uncertainty can be handled, as discussed in section 3.2 and Appendix A of this report. 
Furthermore, as explained in section 3.3.1, workable criteria to demarcate adequacy of 
model-experiment agreement in transform space remain elusive, whereas a simple and 
useful criterion can be applied in Real Space.

Besides greater transparency, intuitiveness, and interpretability, the Real Space 
discrepancy measure better reveals characteristic differences between model and 
experimental results that affect prediction risk. All transform metrics that the author is 
familiar with have non-exclusive mappings between real space and transform space; the 
same transform-space value can accompany different conditions in real space (see 
Appendix A). Therefore it can be risky to use transform space metrics to make validation 
judgments on model performance and adequacy, and to guide model conditioning and 
extrapolation. 

These considerations will be central items of discussion in this report. Before presenting 
the Real Space paradigm in section 3, section 2 considers some fundamental issues and 
conceptions regarding models and model validation. Attention is given to the appropriate 
definition of ‘model’ in ‘model validation’. The concepts of strong and weak models ([65]) 
are discussed. These are found to be consistent with, but not as useful as, the newer 
10



concepts of experiment models and traveling models ([45]-[52]), essential concepts which 
previous model validation literature appears to lack. A traveling model travels to use 
beyond the validation or conditioning activity, and is a subset of the larger model of the 
experiments. The traveling model and experiment model signify the two different 
modeling scopes that must be distinguished and treated appropriately in model validation 
and conditioning activities; uncertainties in the traveling model are handled differently 
than non-traveling uncertainties in the Real Space methodology. 

Section 4 of this report describes consistent (traveling) and non-consistent (non-traveling) 
bias and uncertainty in relation to extrapolation risk in going from model validation or 
conditioning settings to model application settings. The affiliated concept of Type X error 
in model validation or conditioning is discussed. Data conditioning procedures ([47]-[49]) 
that can effectively mitigate prediction risk associated with Type X error are also 
discussed. Connections are drawn between these new concepts to the literature and prior 
concepts of Type I and II errors and Model Builder’s risk and Model User’s risk. Section 5
considers how optimized design of model validation and conditioning experiments can 
reduce bias uncertainty and risk in extrapolation. Section 6 on model Endorsement, 
Accreditation, etc. considers the more subjective realm of deciding on the acceptability of 
extrapolation risk for particular model uses away from the validation or conditioning 
points in the modeling space. Section 7 summarizes important distinctions between 
various objectives, approaches, and methodologies that comprise the model initialization 
and corrective adjustment techniques of model conditioning. Some closing remarks are 
made in Section 8.
11



2 Model Validation—What is it? 
What does it Entail and Imply?

2.1 Terminology, Ambiguity, and Various Interpretations of ‘Model’, 
‘Model Validation’, and ‘Validated Model’

There seems to be fairly uniform agreement in the validation community on what model 
validation implies at a vague conceptual level, i.e., at the level of the following brief 
contemporary definition: Model Validation is the process of determining the degree to 
which a computer model is an accurate representation of the real world from the perspective 
of an intended use of the model. This statement and close variants of it are the accepted 
definition in the recognizing organizations [1] – [6] (there may be others). 

This statement is a concise expression of some fundamental notional aspects of model 
validation. However, despite broad agreement on this notional definition, at a detailed 
interpretational and implementational level there is room within the definition for 
considerable debate among validation methodology developers and practitioners 
concerning the specific procedures, steps, and products of model validation. As a result, 
phrases like “the model has been validated” can mean very different things to different 
people even within the model validation community.

Various conceptions of model validation are discussed below. A large variety of paradigms 
produce profound differences in the validation outlook, approach, procedures, and end 
products—including validation criteria, results interpretation and usage, and ultimately 
how the validation activity supports the objective of BEWU extrapolative prediction 
beyond the validation setting. For example, the definition statement above is originally 
from the DoD document [1], arising largely from a tradition of operations research and 
systems simulation. The statement was adopted consecutively in [2]-[6] essentially 
without change. However, the nature of the models and decision scopes pertinent in [1]
are largely different from those in [2]-[4], [6], and perhaps [5]. The models addressed in 
[1] vary from discrete-event and agent type models, e.g. for supply chain logistics, 
battlefield simulations, and theatre defense simulations, to computational physics type 
models for simulation of fluid mechanics, heat transfer, and structural mechanics 
phenomena, etc. The type of models addressed in [2]-[4], [6], and to large measure in [5]
are computational physics type models. Interpretation of the “standard” definition 
statement above is also substantially different in the DoD validation community versus the 
others cited. According to personal discussions with several validation practitioners in 
DoD, validation includes not only the process of assessing model performance vs. 
empirical data (if suitable data exists), but also the subjective process of adjudicating 
whether it appears that the model will perform acceptably for specified intended uses
outside the conditions where the model has been calibrated or tested against data. In 
contrast, the author perceives that [2]-[6] do not consider validation to involve a process 
for judging whether the model will extrapolate acceptably; this is seen as a largely 
subjective and situation-dependent endeavor that is a different element of the M&S 
process (e.g., BEWU extrapolative prediction, model accreditation, etc.).
12



Other ambiguities in the standard definition are discussed in the following. Other 
validation definitions from the literature are considered. These are leveraged to offer a 
new definition intended to clear up ambiguities in relation to validation of computational 
physics models (according to the author’s paradigm). Other terminology refinements are 
introduced to capture what is meant in this report by ‘model’, ‘model validation’, and 
‘validated model’. 

2.2 Definitions of ‘Model’ in Validation and Prediction Contexts

It is important to identify what model or set of models is being validated in a validation 
activity. Often, validation frameworks and activities are ambiguous in this respect, which 
can lead to confused interpretation and improper usage of validation results, as well as 
improper accounting steps regarding uncertainties and their propagation to predictions. 

Consider a 1-D heat conduction experiment involving a heated rod. If a finite-element 
model is built to simulate the experiment, how does one target or differentiate whether the 
1-D heat diffusion equation (partial differential equation, PDE) alone is being validated, or 
the validation applies to the larger set of models (equations and parameter values/ranges) 
consisting of the PDE and the geometry, material property, and boundary condition 
descriptions? The ‘model’ to be validated could also potentially include the affiliated 
discretization scheme and solution algorithm (see section 2.2.3 for a discussion).

Accordingly, it is necessary to be specific about which model or set of models is the focus 
of a validation exercise. This is important for planning and performing the validation 
activity and interpreting and using the results. The author’s mechanism for defining the 
boundary of the ‘model’ to be validated is explained next as the “traveling model” ([47]).

2.2.1 “Experiment Model” and “Traveling Model”

Here we provide a more precise definition of ‘model’ by recognizing two different 
modeling scopes in model validation, conditioning, and extrapolation. 

The notion of a traveling model is employed to delineate the set of models in a validation 
or conditioning activity that will be used (as a set) in subsequent predictions. This is a 
subset of the larger set of models employed in the validation activity, referred to as the 
experiment model or e-model. This larger set of models cannot be avoided. No matter 
what the model of traveling interest is—whether a set of PDEs, a material behavior model, 
a model of a hardware device, a process model, etc.—the experiment will have aspects that 
need to be modeled that are auxiliary to the traveling model of interest.

For example, consider an electromechanical device with specific behaviors of interest for 
which a model is being validated. The physical device is part of a larger hardware system. 
A finite-element (FE) model of the device is to be validated under certain loading 
conditions in validation experiments. The model is then to be used in a hierarchical 
system-level model to make predictions of device response under other loads that the 
device may experience within the assembled system subjected to loading at the system 
13



level. Here, the hardware device in the validation experiment is the traveling physical 
system, the FE model is the traveling model, and the applied loads in the validation 
experiment are not part of the traveling system or model. Here the traveling model 
includes the PDE equation sets and the mathematical descriptions of the device geometry 
and material properties. 

In contrast to the concrete image that a traveling hardware device and FE model would 
have, the traveling physical system and model might not have a definite image. This occurs 
when the physical system of traveling interest is a phenomenological behavior such as 
material property behavior, turbulence, etc. Here the traveling model is a 
phenomenological equation set with associated parameter values/ranges, but without a 
specific traveling geometrical-object form. 

Such amorphous phenomenological models can only be validated through some 
embodiment or instantiation of a particular physical problem. For example, to develop or 
validate a constitutive equation set for elastic-plastic behavior of a certain material, any 
associated experiments will involve a particular specimen of material, shape/geometry, 
initial state, and loading. A corresponding e-model is built of the physical instantiation. 
Any e-model aspects such as applied loading and specimen shape/geometry that are not 
part of a physical setting for which the constitutive model is later used are outside the 
traveling model of interest. 

Although only a certain portion of an experiment model travels to application/prediction 
settings away from the validation experiments, the uncertainty that issues with the 
traveling model is often accumulated from various uncertainties in the experiments, 
including those from the non-traveling aspects. Uncertainties in the non-traveling aspects 
depend on the design and implementation of the experiments; the diagnostic 
instrumentation used; and the chosen scope of the e-model, all of which should be 
optimized to reduce the non-traveling uncertainty as much as achievable within project 
constraints (see section 5 for elaboration). It is also important to note that uncertainties in 
the experiments are treated differently in the Real Space framework if the uncertainties are 
affiliated with traveling aspects versus non-traveling aspects ([49], [51], [52]). 

The traveling model can contain uncertainties that are inherently affiliated with the 
traveling model, such as an uncertainty range on parameter values in a turbulence or 
material model. These uncertainties are defined prior to the current experiment (they are 
not determined by or in the experiment) and come to the experiment model as a priori
uncertainties in model form and/or parameter values. See [28], [40], [46], [49], [51], [52], 
and [56] for illustration of how the framework handles these traveling “model-intrinsic” 
uncertainties in model validation and conditioning.

The model that travels from a validation or conditioning activity could even be the 
representation of the loads or boundary conditions in an experiment. One may want to 
develop or validate a model of an experimental facility’s applied loading or excitation, e.g. 
the spatial/temporal radiation intensity profile in a testing chamber. The model would be 
14



of continuing interest for use in predicting device response to simulated radiation shots in 
the test chamber.

The following is a poignant example where the traveling model concept would have been 
helpful in an eventful exchange ([64] - [66]) in the groundwater modeling literature 
regarding the boundaries of the ‘model’ being validated. Konikow & Bredehoeft [64] give 
an example where a calibrated groundwater flow model under 10 years of precipitation 
conditions was used to predict the next 10 years of ground-water flow, assuming that 
precipitation in the calibration period would be representative of the future. The actual 
precipitation (stream recharge) happened to be substantially different in the following 10 
years, contributing to disagreement with the actual ground-water flow measured in that 
period. De Marsily et al. [65] point out that Konikow & Bedeloft are “…mixing apples and 
oranges…In no way has any groundwater flow model claimed that it can predict climate 
variability [precipitation and stream recharge] in the future…the ten years following the 
model calibration are more humid than those used for the calibration, why should this in 
any way invalidate the groundwater flow model?” 

In the vernacular of the present report, Konikow & Bredehoeft include the model inputs of 
stream recharge rates as being in their traveling model; the recharge rates are included as 
part of the model from the 10-year calibration period that travels to the new prediction 
setting and is used to predict behavior in the next 10 years. De Marsily et al. argue that 
recharge rates should not be part of the model on trial; that recharge should not be 
assumed to remain consistent over the next 10 years. Instead, a variety of recharge 
scenarios should be run in the predictions to reflect the uncertainty (historic climatic 
variability) of future recharge in the next 10 years. Whether it was reasonable for Konikow 
& Bredehoeft to include the recent 10-yr. history of stream recharge rates in their traveling 
model is for the groundwater community to discuss and decide. Such a discussion would 
be focused and facilitated by the concept and terminology of the ‘traveling model’. In 
general, a precisely defined traveling model should be a routine aspect of the thinking in 
model conditioning, validation, and prediction. 

It is the traveling model that is the subject model of a validation or conditioning activity. 
The traveling model carries an implicit connotation that the physical attributes and 
phenomena it represents are proposed to carry-over consistently to the new prediction 
settings, such that the traveling model applies there as well. Hence, Konikow & Bredehoeft 
were implicitly proposing that the stream recharge rates measured in the previous 10 years 
would remain stable over the next 10 years. This didn’t turn out to be the case, although 
the geology was probably stable over the time period and hence that part of the model 
would carry over well to the new prediction setting.  

2.2.2 Strongly and Weakly Defined Models 

A related contribution of interest was put forward by Leijnse & Hassanizadeh [66]. They 
observed that “there is no unanimity within the groundwater modeling community on 
what constitutes a model.” They further observed that much of the difference of opinion 
between De Marsily et al. and Konikow & Bredehoeft was that ‘model’ and ‘validation/
15



validated’ were defined differently in the two view points. The present report recognizes 
their different definitions of ‘model’ as a difference in their scopes for the traveling model, 
i.e., where the boundaries of the traveling model were drawn. 

Leijnse & Hassanizadeh go on to introduce the concept of ‘weakly defined’ models like 
Darcy’s law and the Navier-Stokes equations. Such governing equations are considered 
weakly defined in that they do not involve set parameter values or boundary conditions, 
geometry, etc. When an instantiation of the equations of a weekly defined model occurs 
for a particular application, specific parameter values, boundary conditions, geometry, etc. 
become defined and the collection comprises a ‘strongly defined’ model in the Leijnse & 
Hassanizadeh terminology. They observe that models can exist anywhere in the spectrum 
between weak and strong extremes, with most models in practice involving both strongly 
defined elements (deterministic parameter values and model forms) and weakly defined 
elements (where parameter values and model forms are varied to express uncertainty). 

They argue that the rift between the view of Konikow & Bredehoeft that groundwater 
models cannot be validated, and the opposite view of De Marsily et al., is explainable by 
the fact that the two camps were talking about validation of models at very different places 
on the weak/strong spectrum. Leijnse & Hassanizadeh contend that it is easier for De 
Marsily et al. to validate their more weakly defined model (using measured precipitation 
for input to the model) than for Konikow & Bredehoeft to validate their more strongly 
defined model (involving stream recharge rates modeled as those from the previous 10 
year period). 

Leijnse & Hassanizadeh generalize that it is easier to validate weakly defined models than 
strongly defined ones. A different view is held in the current report. The difficulty that 
Konikow & Bredehoeft experienced was not necessarily that they defined their future 
recharge rates strongly, it was that the proposed recharge rates were inaccurate. If the 
strongly defined recharge rates were accurate, the model’s prediction accuracy would have 
been much better.  Conversely, it is not necessarily true that a more weakly defined model 
would have been easier to validate. Consider if the model was more weakly defined by 
modeling the future recharge rates as uncertain, say with a range ±x% about the strongly 
defined rate R(time). Then at one end of the uncertainty range, say (1 + x%)R(time), the 
model output results would be closer to the actual measured 10-yr. data. But at the 
opposite extreme of the uncertainty range, (1 – x%)R(time), the model predictions would 
presumably be further from the data. How does one deal with this new complication 
presented by the weaker model? A detailed discussion is given in sections 3.2 and 3.3 in 
connection with Figure 1. Anyhow, it is not necessarily easier to validate weaker models 
than stronger ones. 

More broadly, the following views are taken in this report:

1. Completely strong models with no uncertainty in their parameter values and/or 
model form cannot be validated to capture reality.

2. Weaker models that explicitly incorporate uncertainty in their parameter values 
and/or model form are eligible to possibly capture reality, and whether they do can 
16



be reasonably objectively determined and the model thereby substantiated or 
refuted as described in section 3.3.

3. Substantiating models defined in the weak limit (generic governing equation sets 
like Darcy’s law) is vastly more difficult than substantiating a model in 
circumstance 2 above. This is because substantiation of a generic equation set 
proposed to govern over a large range of physical instantiations requires non-
rejection over an immense number of particular instantiations of the weak model 
under diverse parameter values, geometries, boundary conditions, etc.2 In fact, the 
testing never stops with regard to laws and theories. Darcy’s law is said to hold, 
period (not “to hold within ±10%” as might be the relaxed standard of acceptance 
for a more strongly defined application model). 

For reasons associated with item 3, it is not realistic to speak of code validation because 
that would imply validation over all possible (infinite) particular instantiations of the 
code’s equations. Rather, we speak of instantiation-specific model validation. 

In the spirit of what Leijnse & Hassanizadeh may intend, the present author, as a long-
time modeler and non-purist, finds value in loose or “anecdotal” corroboration of weak 
models by way of a broad empirical basis of loosely quantitative affirming experiences 
with the model. References [41] and [6, Appendix C-9] recognize consensus community 
acceptance as a legitimate means of substantiating a model. Still, all seek a more rigorous 
approach to model substantiation for application-specific models not at the weak limit.    

The assessment in this paper is that the rift between De Marsily et al. and Konikow & 
Bredehoeft viewpoints is less an issue of where their respective models lie on the weak-
strong spectrum, and more aligned with what De Marsily et al. cite: A) a difference in their 
strictness of definitions of Validation; and B) their already-discussed difference on viable 
scope of the traveling model—whether the past 10 yr. record of recharge rates should have 
been proposed to represent the future 10 years. Regarding their definitions of validation, 
in the vernacular of the present report Konikow & Bredehoeft use a strict internal-
correctness criterion for model validation, while De Marsily et al. use a more relaxed 

2. Popper ([39]) argues that a theory cannot be proven true because at some point evidence can 
come along to overturn the theory. This has happened repeatedly in history. The best that can be 
done is to continually subject the theory to as many diverse tests as possible and if/while it sur-
vives the tests, not reject the theory. A related issue is that non-rejection of a hypothesis in indi-
vidual tests does not imply trueness of the hypothesis because noisy and uncertain experimental 
data can leave much room for bias error to go undetected (see Section 3.3.1-Validation Setting 
I). However, the odds that the theory is valid would appear to increase as non-rejection evidence 
mounts over a large number of diverse tests; non-rejection in individual cases is not convincing, 
but taken together the assembly of evidence becomes convincing—though not absolute proof. It 
is conceivable that statistical arguments can be made that non-rejection in a large number of di-
verse cases statistically averages out the bias “parallax” in the individual tests such that a proba-
bility can be estimated that the law/theory/model is valid. However, the author is aware of no 
such methodology applied to positively substantiate (within estimated statistical uncertainty) 
weak models such as Darcy’s law or the Navier-Stokes equations. Their broad acceptance is as-
sumed to be based on less rigorous anecdotal evidence, although a lot of it. 
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definition that concerns model effectiveness—whether the model, though unavoidably 
erred to some degree, is good enough to be useful for particular analysis and forecasting 
needs. These two viewpoints will be discussed in Section 2.3-Part I. 

The current report largely takes the De Marsily et al. view, a widely held view in the 
validation community. However this report takes a different view than expressed in the 
last paragraph of De Marsily et al., “…we do not validate our models…we try to show that 
they are not invalidated by the data.” There is a nuanced problem with this view as 
discussed at the end of section 2.3-Part I and illustrated in section 3.3.1. 

2.2.3 Cases where the Discretization Grid is part of the Traveling Model

As pointed out by Roache in the section “Does Model Include the Grid?” in [41], mesh 
discretization dependence is built into the modeling scheme for many types of geophysics 
models, such as groundwater flow, climate, ocean, and weather models. Physics subgrid 
models are tuned to the particular grid spacing being used, and solution results are 
produced on that grid. There is no notion similar to the one in engineering computational 
mechanics (e.g. [2], [4], [6]) of refining grid size to obtain solutions with negligible error 
relative to the exact solution of the governing PDEs, or of generating several successively 
refined solutions from which convergence behavior can be used to estimate solution error 
by various “calculation verification” or “solution verification” methods (see e.g. [38], [41]). 

For geophysics models where the grid and grid-dependent subgrid models travel as a 
coupled set from the tuning setting to validation or other prediction settings, the grid is 
considered in this report to be an integral, and traveling, aspect of these models. For 
engineering computational mechanics models, in contrast, current modeling strategies the 
author is aware of do not involve explicit preservation of mesh spacing in going from 
validation or conditioning settings to new prediction settings. Grid related solution error 
is assumed to be appreciably different in both settings and is to be estimated within 
quantified uncertainty by calculation verification procedures. Associated grid refinement 
studies are conducted to levels separately feasible in each settings, so a particular grid does 
not usually travel between the two settings (grid is not part of the traveling model). For 
industrial scale models, grid refinement procedures are often difficult and 
computationally expensive, frequently prohibitively so. Even if estimates of solution error 
and associated uncertainty can be obtained, they are often suspect because solutions that 
can be afforded rarely exhibit the convergence smoothness or other properties that current 
calculation verification techniques require for accuracy. For more background see ([13], 
[58], [89]-[99]).

Even in theory, convergence to exact solution of the governing PDEs is undermined or 
precluded in engineering models that involve grid-dependent submodels like turbulence 
models and material behavior and failure models. Such models may only enable solution 
accuracy for grid sizes (and even discretization element types and stress states) that the 
submodel was developed at or tuned to; spatial filtering scales in turbulence models can 
interact with grid discretization scales when discretization in application settings becomes 
too coarse or fine. Changes in the problem geometry itself can also occur with grid 
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refinement (e.g. the fractal geometry problem in [15]). For the many reasons cited it seems 
worthwhile to further investigate paradigms where mesh dependence of solutions is 
inherent to the modeling and prediction schemes, i.e. where mesh dependency is a part of 
the traveling model. In this vein, strategies from the geophysics modeling communities 
may be helpful for dealing with discretization dependency (solution bias) in 
computational mechanics modeling and prediction. 

2.3 Accuracy and Adequacy Aspects of Model Validation

Part 1: ‘accuracy’ pertains to the model’s mapping of inputs to output results, not to 
accuracy/correctness of the model’s internal representations of reality

In the standard definition statement the following words “…degree to which the model is 
an accurate representation of the real world…” can engender a misconception of what 
model validation is capable of ascertaining. Without going too deeply into scientific 
philosophy and logic in the following discussion, it is necessary to be aware of the 
fundamental constraints on what model validation can actually establish. 

An important aspect of the present framework is the recognition of the basic nature of 
models and modeling. A concise and popular expression that contrasts model validation 
from code verification is the following: model validation is concerned with “solving the 
right governing equations” whereas code verification is concerned with “solving the 
governing equations right.” This phraseology was first used in [13], cited as a 
computational fluid dynamics adaptation of the software engineering phraseology in [83]: 
“Validation is doing the right job and verification is doing the job right.” At one level the 
succinct statement concerning model validation is useful, but it requires further 
refinement when thinking at a deeper level about models, modeling, and model validation. 
Because models are mathematical abstractions of physical properties, processes, and 
behaviors of real systems, it is not proper or productive to approach model validation as 
an activity in assessing or judging how “right” or “correct” in a strict sense particular 
modeling equations and parameters are. 

For example, a homogeneous material property treatment of mass density in a continuum 
description of a steel plate might be very effective in modeling certain thermal or 
mechanical behaviors. Nonetheless, this does not correspond to equation/parameter 
correctness; the steel material is in reality mostly vacant space with mass concentrated at 
numerous discrete locations (atoms). Although clearly not correct, the model 
representation is effective in this case. Would turbulence modelers claim that their 
equations model the rich phenomena in turbulence in a mechanistically correct or right 
manner? What about crack-propagation models, or thermal contact resistance models, or 
convection correlation models? Hence, when equations/models seem to work well in 
particular circumstances, ‘model effectiveness’ seems the better way to think about and 
term things than ‘model correctness’ does. Zeigler ([72]) frames this as ‘predictively valid’ 
models versus ‘structurally valid’ models. In the latter the model structure agrees with the 
internal workings of the real system. Predictively valid models predict well even though 
they may not faithfully represent all the internal workings of the system.  
19



Continuum mechanics partial differential equations (PDEs), as the foundation of the 
engineering models of interest in this report, while very effective for certain modeling 
tasks and purposes, are not correct in a strict sense. These simplifications of reality are 
only superficially representative of the underlying systems and phenomenology. They do 
not and cannot represent the full rich physics in real systems.

The words ‘right’ and ‘correct’ also convey a notion of model uniqueness. The implication 
is that a uniquely right or correct mathematical model/basis exists that describes the 
underlying phenomena in some system for which a model is being validated. However, 
even if the model exactly matches the output data of the system it cannot logically be 
concluded that the present model is the only one capable of this. Other models that are 
perturbations of the said model, or even dramatically different from it, might also be able 
to produce exact matches to the experimental data. For example, in parameter estimation 
and model calibration one must deal with the usual circumstance that non-unique 
combinations of parameter values give the same output results of the model. There are 
even numerous non-unique model paradigms and structures that yield effectively the 
same solutions in regimes of overlap, e.g. Lagrangian vs. Eulerian formulations of 
transport phenomena, Newtonian Mechanics vs. Einstein Relativistic Mechanics, and 
Navier-Stokes vs. Euler vs. Potential Flow. 

Therefore, even if a model exactly matches the output data of a validation experiment, it 
cannot be concluded that the model is uniquely the right one; that the equations/
parameter values are the right ones; or that the model is correct in a strict sense. 

For even our most revered and fundamental continuum-level behavioral models (PDEs) 
and simple geometries and boundary conditions, matching the behavior of real systems 
requires adjustable parameter values to make up for the limited causal representation in 
the models.3 For more complex models with many governing equations, materials/
properties, complex geometry, multiple parts and pieces with boundary interactions like 
thermal contact resistance and frictional contact, and coupled nonlinear 
phenomenological interactions, it is expected that a priori parameter values input to the 

3.  Parameters like thermal conductivity, modulus of elasticity, and viscosity in the governing equations are 
state-variable-dependent (e.g., temperature-dependent conductivity). This signifies that the extent of the 
modeling scheme's predictive capability is limited. For example, Fourier’s Law of heat diffusion does not 
explicitly include terms for the increased molecular vibration at elevated material temperatures, which 
normally increases the effective thermal conductivity. This lack of explicit representation in the model is 
compensated by inverse-calculating the conductivity values that produce the best match to experimental 
results at various temperatures. The outward appearance is a temperature-dependent material property 
(thermal conductivity) which, when coupled with Fourier’s Law outwardly appears to be predictive over a 
range of temperatures. However, this is only true in a post-dictive sense, where a temperature dependence 
relationship for conductivity is developed over the temperature range to prevent empirical divergence of 
the model predictions otherwise. Even so, models that explicitly incorporate the essential physics mecha-
nisms and principles would appear to have the best opportunity for predicting well in extrapolation, so 
would be preferable for extrapolative predictions purposes—although this is not necessarily true for inter-
polative prediction purposes, where physics-free statistical models may do better if sufficient data is avail-
able for these models.
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model cannot possibly make up for the various model-form deficiencies. This reflects back 
to point 1 in section 2.2.2. An important implication is that it seems therefore 
inappropriate to propose validation as a determination of whether model results are 
different from experimental results. The expectation is that they will be different. The 
relevant issues are how much different and whether the difference is acceptable for an 
envisioned use purpose of the model, such as scoping and sensitivity analysis, design and 
decision-making support, and assessment of system performance and/or safety margins 
relative to stated requirements.

If a validation assessment finds that model output results are very close to experimental 
results (for now assuming exact solution of the equations and experiments with no error 
or uncertainty), the hope is that this is the result of negligible errors in all the aspects of the 
model. Unfortunately this cannot be strongly concluded. Numerous possibilities exist 
where relatively large errors occur in the various modeling aspects but the errors offset 
each other to a large degree. In fact, the probability of “right for the wrong reasons” would 
appear to be substantially greater than the probability of “right for the right reasons” in 
situations where complex models have not been assembled incrementally with careful 
experimental validation as each new significant element of the model is added. 

However, such incremental validation cannot occur with more granularity than physical 
and experimental factors allow. This limits the granularity with which “right for the right 
reasons” can be established. It can be difficult or impossible to separate strongly 
comingled physics for individual validation of the contributing elements. For example it is 
not possible experimentally to build up to a fire (as the full system of interest) by 
incrementally adding combustion, then turbulence, then soot generation/agglomeration, 
then radiative participation, etc. Here one cannot claim that agreement of model and 
experimental results at the full system level is “right for the right reasons”. Nonetheless, 
model credibility in this respect can be alternatively built in the spirit of Footnote 2. by 
investigating a diverse set of conditions/scenarios in a validation matrix and showing that 
the model performs well (robustly) over the diverse tests. 

Another type of granularity constraint in engineering projects is that time and resource 
constraints present practical restrictions which almost always limit hierarchical 
decomposition to something much coarser than what a detailed in-depth understanding 
of the system would require. As a practical matter it is often not necessary or advantageous 
to pursue understanding of system internal workings beyond a certain level of granularity. 
Beyond that level, characterizing what's “under the hood” becomes counter-productive 
from cost and unnecessary-complexity standpoints. 

In general, a validation activity at a given level of modeling can only be used to make 
assertions on the predictivity of the tested model at that level, but not to make statements 
on the accuracy or correctness of the individual elements of the model. Any statements on 
the accuracy of the underlying elements must come from probing and characterizing them 
individually. 
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The validation concerns brought up in this section are prevalent in the natural sciences 
modeling community and are cogently discussed in e.g. [64] – [71]. It is not possible with 
natural systems (geological, biological, ecological, climatological, astrophysical, etc.) to 
pursue incremental system construction and characterization accompanied by 
incremental hierarchical model validation. Much of the thinking from those modeling 
realms is directly applicable to engineering validation where incremental model validation 
is not or cannot be pursued (e.g. modeling of as-built and in-place structures and systems). 

The author agrees with the sentiment in [64] – [71] that model uniqueness and internal 
causal correctness are not definitively establishable via validation or otherwise. The author 
also agrees with the majority sentiment in [64] – [71] that ‘absolute validation’ of internal 
causal correctness is not what model validation is intended to establish anyway (contrary 
to some views in that community, e.g. [64] and [68]). While it might be that absolute 
causal correctness of a model (if even a theoretical possibility) could ensure accurate 
extrapolative prediction beyond the validation conditions, this does not require that 
absolute validation of model causal correctness is the goal. A more practical and 
productive goal is to assess whether the model, even though admittedly imperfect, predicts 
acceptably well in significant extrapolative tests relevant to specific use purposes of the 
model.  

Hence the wording of the standard definition statement is somewhat troublesome in that 
the following interpretation in brackets [~] could easily be taken: “…determining the 
degree to which a computer model is an accurate [internal causal] representation of the real 
world…” The following early (1979) consensus definition of model validation seems less 
troublesome in this regard, although it has other weaknesses as will be discussed. From the 
SCS Technical Committee4 on Model Credibility of the Society for Modeling and 
Simulation International [57]:

 “Model Validation is the substantiation that a computerized model within its domain of 
applicability possesses a satisfactory range of accuracy consistent with the intended 
application of the model.”

Close variants of this definition have been used for over three decades in the significant 
body of V&V work by Sargent and Balci (e.g. [75]-[82]). References [75]-[78] have 
valuable surveys of pre-1980 concepts and definitions of verification and validation, many 
of which have survived the test of time and are relevant today. These references provide a 
good compliment to the current report’s survey of more recent validation literature.

4.  It is noteworthy that the SCS Committee was “...composed of members from diverse disciplines 
and backgrounds, with the intent that it [the committee’s set of definitions] could be employed 
in all types of simulation applications. Great care was taken to develop the definition which 
would be equally applicable to simulations of physical systems that embody readily measurable 
phenomena, and social and biological systems for which data may be ill-defined...” ([57]). Rep-
resentation on the committee came from Europe, Canada, and the US, spanning engineering 
(aerospace, electrical, and mechanical), maritime studies, natural resources studies, Dept. of Ag-
riculture, Dept. of Defense, and the US Air Force Human Resources Lab. 
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Some important points from the SCS definition are inferred below for discussion.

1. ‘range of accuracy’ is read to imply that model predictions are regarded to have 
some error/uncertainty. 

2. ‘satisfactory range of accuracy’ connotes that discernment of the adequacy or 
acceptability of the model’s accuracy is a key aspect of model validation. 

3. ‘Model Validation is the substantiation that’ connotes that model validation entails 
more than a process of assessing model accuracy and adequacy. It entails making 
an evidence-based statement that the model’s accuracy has been found to be 
satisfactory. Thus, the term ‘validated model’ indicates satisfactory model quality; 
the model has been substantiated to be adequate, not merely assessed for accuracy 
and adequacy by applying a model validation assessment process (the outcome of 
which could be that the model is found inadequate). In contrast, the standard 
definition statement in [1]-[6] only mentions “…a process of [assessing]…”

Perhaps because one cannot establish that a model has internal causal correctness even if 
its results match those of the real system, some in the V&V community contend that the 
most positive statement that can be made regarding substantiation of a model is that “The 
model was not invalidated.” In other words, “We cannot definitively establish that the 
model is correct, but neither did the validation results show definitively that the model was 
flawed.” However, using this as a basis for model corroboration will accept arbitrarily 
biased models within the uncertainty in the validation exercise (see section 3.3.1-
Validation Setting 1, the ‘not inconsistent’ criterion). The not-invalidated paradigm for 
model validation is conceivably applicable if many non-refuting results are obtained over a 
diversity of validation instantiations (see Footnote 2.), but the norm with engineering 
application models is that validation assessments are very limited in the number of model 
instantiations investigated.

Besides this technical argument, the not-invalidated paradigm is philosophically 
inconsistent with how validation of application models is more reasonably viewed and 
posed. The concept that one can only establish that a model is not invalidated derives 
([68]) from Popper’s arguments ([39]) that a theory cannot be proven true by evidence 
that supports the theory, but can only be proven false (if/when any evidence comes along 
to overturn the theory). Thus, the terminology ‘model not invalidated’ has a strong natural 
association with the adjudication system for scientific theories. The natural connotation is 
therefore that the model is being proposed as something capable of being causally correct 
and that a non-refuting validation result is something that does not prove the model 
correct, but also does not disprove it. While it is true that a non-refuting result does not 
disprove the model, it is also true that for the vast majority of engineering models that 
would be the subject of validation in practice, these would not be proposed to be unflawed 
representations of reality in the first place. Rather, the hope would be to show that the 
model, as an approximate representation of the real system, is effective in predicting 
results that match experimental results to within acceptable error tolerances for particular 
engineering needs. One would not similarly talk about acceptable error tolerances of ±X% 
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regarding the trueness of a theory, in the realm where the concept and language of ‘not 
invalidated’ comes from.  

Indeed, the applicable validation question is whether the model is “good enough” for a 
particular use purpose. The objective in validation is to ascertain the answer with 
reasonable definitiveness and evidentiary basis. 

Part 2: Accuracy and Adequacy Measures and Objectives in Model Validation

In the standard definition statement of model validation there is substantial ambiguity 
regarding accuracy and adequacy determination of the model’s predictive performance. 
One could reasonably conclude from the definition statement that model validation 
involves just the quantification of model accuracy versus reality, for various experiment 
and model output quantities. From the definition statement it is fair to say, “We compared 
the model results against experimental data and found a discrepancy of x (in some 
particular error measure). Therefore we have validated the model. The model has been 
validated.” 

This accuracy-quantification-only viewpoint is not at odds with the wording of the 
definition statement, and some validation frameworks stop with accuracy quantification 
only (e.g. [6], [54]). Nonetheless it seems evident that pronouncements like “the model has 
been validated” should connote that some reasonable standard of model quality/
usefulness/acceptability has been met with respect to anticipated application needs. This 
cannot be established by simply quantifying model discrepancy. Hence it seems that a 
complete validation methodology should address model adequacy as well. 

Indeed the question of model adequacy is so central to what is of concern to users and 
customers of model validation work that determination of model adequacy (not just 
quantification of model accuracy) has been recognized to be a central element of model 
validation in the ASME standard [4] (work is underway on a supplemental document [7]
that proposes some approaches to model adequacy determination). As a practical matter, 
it is the author’s experience that project funding for model validation work usually comes 
with expectations beyond just quantification of model discrepancy. The real deliverables 
sought are quantitative evidence and analysis supporting a decision regarding model 
adequacy for an intended use purpose. Certainly this is the perspective of DoD ([1]) and 
many in the DoE ([3]) and perhaps NASA as well ([5]). 

The practical difficulties of adjudicating model adequacy for extrapolatory uses of the 
model are daunting. The difficulties are reflected in a dearth of methodology in the 
literature. Nonetheless, some progress has been made. This is the subject of section 3.3 of 
this report. 

Besides the recognizing bodies [1], [3], [4] that view adequacy assessment as being an 
essential element of model validation, this is also central to the view of the geohydrological 
community ([71]). Older works like the SCS standard [57] and the notable 1988 work of 
Miser & Quade [34] specifically emphasize model adequacy. From Miser & Quade: 
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“Validation is the process by which the analyst assures himself and others that a model is a 
representation of the phenomena being modeled that is adequate for the purposes of the 
study of which it is a part.” 

2.4 A Restatement of the Definition of Model Validation intended to 
clarify things

The early definition statements of model validation by SCS and Miser & Quade have the 
common-language connotation that model validation implies a positive, successful, or 
desirable outcome concerning model adequacy: a substantiation of model predictive 
quality. The more recent standard definition statement does not specifically make this tie. 
Thus, varying interpretations of what model validation entails are found among [1] – [6]
and others subscribing to the standard definition statement. The newer and older 
definitions convey some validation elements in common, but also have some disjoint 
elements. None clearly convey all essential elements, and all have some problematic 
wording that can lead to troublesome interpretations.

For instance consider the following terminology problem. The standard definition 
statement and the Miser & Quade definition can be construed to define that validation is 
just the process of assessment because they respectively state ‘…the process of…’ and ‘…the 
process by which…’. However, if model validation is just an assessment process it is fair to 
say, “We applied a model validation process of accuracy and adequacy assessment. We 
validated the model by this process.” This can be said whether the model is found to be 
adequate or not. “We validated the model to be inadequate” is even fair to say. Certainly 
this usage is not desirable or transparent from a common-language standpoint or from a 
standpoint that promotes reliable communication about model quality. Clearly, model 
validation should entail more than the said processes—it also involves making meaningful 
characterizations and judgments about the model itself, i.e. about its predictive 
performance. Validation processes must produce meaningful products, ultimately model 
accuracy and adequacy characterizations, in order to yield value (and perceived value) in 
most engineering pursuits—thereby justifying funding and resource allocations.

The emphasis on process may have to do with the popular notion expressed by Miser & 
Quade and [1] – [6] and much validation literature that, in the spirit of Footnote 2., model 
validation entails a continuing process of testing a model and hopefully building 
“confidence” in it by amassing evidence of model corroboration in various use settings. 
The complementary notion is that by noting where the model fails, a map can be 
effectively constructed to delineate regions in the parameter space where the model is and 
is not valid for specific use purposes. These are appealing sentiments. However, it is not 
evident how the currently adhoc processes of confidence building and mapping out 
regions of model adequacy and inadequacy are quantitatively formalizable or 
accomplishable beyond the anecdotal stage—whether for fully weak models or for more 
strongly defined models. Furthermore, the paradigm of on-going testing toward these 
objectives is not practical in most model validation activities, where time and resources for 
model validation testing are usually very limited.
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A related point is that ‘confidence’ in a model or its predictions does not seem to be 
quantifiable on any measurable absolute scale. It is reasonable to say that confidence 
increases as a model passes various validation tests, but how is this confidence quantified 
and measured? How is it used as a quantitative caveat or qualifier for new prediction 
results beyond the validation setting? Viable answers do not appear to be currently 
available so the author prefers to frame things in terms of uncertainty in models and 
predictions rather than confidence in models and predictions. While any uncertainty 
estimates won’t be perfect, an absolute scale is involved and a workable framework and 
methodology presently exists to address the validation problem and objectives in terms of 
quantitative uncertainty. 

Because confidence also has a technical meaning in the field of statistics, use of this word in 
the context of model validation can lead to confusion and misunderstanding, so the 
author avoids associating this word with model quality. Indeed, in the statistical context 
increased confidence is associated with larger uncertainty intervals. In a connected matter, 
some may argue that uncertainty bars corresponding to statistical confidence levels can be 
determined for extrapolative predictions (e.g. [11]), but this presumes that computational 
physics model accuracy does not change in extrapolation. This is generally not a reliable 
assumption, especially under geometry and boundary condition changes. Model 
‘credibility’ (e.g. [57], [73], [75]) seems to be a better term to express built-up belief in a 
model’s trustworthiness.

Although it is not evident how to pursue (practically or technically) approaches of 
establishing model confidence and mapping out regions of model adequacy and 
inadequacy, a concrete conception of validation is presented in sections 3.2 and 3.3 that is 
practical, self contained (not ongoing or open ended), and based on quantitative 
uncertainty. The methodology has been successfully demonstrated on the variety of 
challenging validation projects cited in Section 1. 

Finally, a potential conflict comes into focus between all the quoted validation definitions 
and the fact that an affirmative validation conclusion (model is adequately accurate) at 
validation points in the modeling space does not necessarily imply that the model will 
retain acceptable accuracy in extrapolative prediction settings. If tested at new prediction 
points the model could be found not adequately accurate for the intended purposes of the 
predictions. The phrases ‘from the perspective of the intended use’ and ‘intended domain of 
applicability’ and ‘purposes of the study of which it is a part’ in the quoted definitions 
signify extrapolative predictions where the model is anticipated to be used. (A resolution 
of this logical conflict is proposed at the end of this section.) Besides degenerate cases of 
limited practical interest it appears otherwise impossible to determine a model’s accuracy 
for prediction settings different from the points at which the actual validation assessments 
are conducted. Establishing model adequacy in extrapolations (per the zeroth order
criterion explained in section 3.3) is only slightly less tenuous. Accordingly the author tries 
to avoid the phraseology ‘validate a model for an intended use’ in favor of ‘validate a 
model with respect to an intended use’. (It is found that [67] also uses the latter 
phraseology, but does not cite any particular reasons.)
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By now it is clear that substantial variation has historically existed and presently exists 
regarding philosophy, terminology, and definitions of model validation and validated 
models. ‘Model validation’ and ‘validated model’ can mean any number of different things 
to different people and in different contexts. The terms are treacherously ambiguous when 
communicating among modelers, analysts, decision makers, and customers. This calls for 
appropriate refinement of the concepts and terminology. 

In this report the terms model substantiation or corroboration, model refutation, 
substantiated model, corroborated model, refuted model are used to signify the particular 
conclusion from a validation adequacy assessment. Saying “the model has been 
substantiated according to stated adequacy criteria” or “the model was refuted according 
to stated adequacy criteria” are much less ambiguous than saying “the model has been 
validated according to stated adequacy criteria.” Furthermore, an operational definition of 
model validation as interpreted and applied in this report follows. 
Operational definition of model validation—the compilation of useful indicators 
regarding the accuracy and adequacy of a model’s predictive capability for output quantities 
(possibly filtered and transformed) that are important to predict for an identified purpose, 
where meaningful comparisons of experiment and simulation results are conducted at points 
in the modeling space that present significant prediction tests for the model use purpose. 

The definition entails not only the act or process of assessing via appropriate validation 
experiments and procedures, but also the insights gained from the process as reflected in 
the validation products of model accuracy and adequacy results and conclusions. 
Significant prediction tests go as far toward the intended model-use settings and input 
conditions as can be accomplished in the validation project.

This operational definition reflects that we can rigorously determine model accuracy and 
adequacy only where experimental data exists. The idealized objective of model validation 
is to establish that a model will be adequate when used beyond validation points in the 
modeling space. This is the desired objective, but unfortunately is not wholly possible to 
attain. Because this idealized objective is present in the SCS, standard, and Miser & Quade 
definition statements, the author considers these not to be definitions of model validation 
per se (that can be put into practice), but instead to be objective statements for model 
validation. It is fine to be optimistic when stating objectives, as the SCS, standard, and 
Miser & Quade statements are, but operationally a different definition is needed. 

Toward the idealized objective of model validation, if model adequacy per the 
methodology in sections 3.2 and 3.3 can be established at the validation points, then this 
constitutes a zeroth order satisfaction of the idealized objective of model validation. 
Nonetheless, other analysis procedures should also be brought to bear in judging whether 
a model will perform satisfactorily in specific uses subsequent to the validation tests, see 
section 6.
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3 Several Fronts of Current Procedural Difficulty in Model 
Validation, and a Workable Real-Space Approach

Discerning whether the model is “good enough” is difficult on at least the following fronts. 
• Deciding what is adequate in terms of an abbreviated basis of raw and processed 

output quantities for validation comparisons. 
• Deciding on the formulation or metric of discrepancy (accuracy) characterization.
• Deciding the threshold or criterion for model adequacy (acceptable agreement 

with reality).
• Deciding how to project results and outcomes from the validation setting/s to other 

prediction settings—dealing with extrapolation of validation information/results/
products. (This item is not part of model validation, but is an essential 
consideration in the formulation of a workable validation paradigm.) 

Many modeling frameworks consider the above items (or some of them) to be separable, 
and devise sub-frameworks to address them separately. However, the present framework 
considers these items to be strongly interdependent. It is reasoned that only by 
considering them together can a comprehensive and workable end-to-end framework be 
formulated.

This interconnectivity bears not only on the technical procedures of model validation, but 
also on the interpretability and usability of the information and products from the model 
validation activity, which is paramount in importance. It is not worthwhile to go through 
the expense and rigors of a validation exercise unless the results can be interpreted in a 
useful manner, where salient and meaningful conclusions can be drawn and what is 
learned can be used to quantitatively characterize and perhaps improve the model. The 
key point here is one of information generation versus knowledge/value generation. If a 
large amount of information is generated but cannot be interpreted or used meaningfully, 
then the utility of the exercise is questionable and difficult to justify in terms of funding 
and resources. Therefore, to be relevant beyond just qualitative insights, there must be a 
plan for how the information gained will be packaged and interpreted to provide a useful 
quantitative characterization of model accuracy and adequacy in a larger context of 
downstream model use for predictions beyond the model validation setting. These 
considerations pertain similarly to model conditioning and are addressed by the 
framework similarly.

3.1 Deciding what is an adequate validation basis of comparisons — 
Scalar vs. Field comparisons, State Variables vs. “Resultant Effect” 
quantities, etc. 

One important issue in model validation assessments is the “representativeness” of raw or 
processed experiment and model output quantities that are compared in a validation 
assessment. For example, we might be interested in how well a computational fluid 
dynamics (CFD) fire simulation represents a hydrocarbon fire in calm wind conditions. 
We could contemplate performing validation comparison of the simulation’s field 
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variables (e.g., pressure, three components of velocity, species concentrations, etc., all as a 
function of time and space) against corresponding quantities measurable in the 
experiment (e.g., with  laser sheets and particle image velocimetry). Then there are 
potentially as many scalar or individual validation assessments to be made as there are 
points of data (in time, space, and category = pressure, x-direction velocity, etc.). 

The problem would necessarily be reduced to comparisons for a manageable number of 
data points, say on a regular grid on the time-space domain, or using a randomly selected 
statistical sample of time-space data points for comparison. Unfortunately, current 
validation theory does not appear to exist for how much thinning of the data can be done 
and the remaining comparison points still be considered to be representative of the larger 
set of time-space information. 

A possible simplification is that the time dimension might be managed by comparing 
whole time histories of the various quantities at a manageable number of spatial locations 
in the domain. Additional reduction could be gained by comparing time-averaged or 
steady-state values, etc. Further reduction could be gained by employing suitable spatial 
integration or averaging. Another type of reduction would consider only a subset of the 
categories of output (velocity but not pressure, etc.).

All of these potential reductions from the full-field validation problem make things more 
manageable from a validation practice standpoint, but have the unavoidable consequence 
of  reducing the veracity of the validation test and the strength of the conclusions that can 
be drawn about model accuracy and adequacy. The power for asserting the model is “right 
for the right reasons” is commensurately diminished. Indeed, a sufficiency condition for 
such claims is probably only reachable in concept. One might alternatively appeal to 
statistical arguments to establish validation sufficiency in practical terms (e.g., odds 
associated with the hypothesis “right for the right reasons”), but this is beyond the scope of 
current model validation theory. At present it appears that only necessary conditions for 
“right for the right reasons” are approachable.     

A different type of reduction in the difficulty of the validation problem, but also with 
weakening of the power to assert the model is “right for the right reasons”, comes from 
comparing derived resultant quantities of application-specific interest that are computed 
from (some of) the primitive-variable field data. For instance, the prediction of total drag 
on a vehicle is often the focus of interest instead of point details or statistical quantities of 
the pressure and velocity fields; or the focus of interest may be the time between when two 
parts in a heated device reach their failure temperatures, rather than the temporal-spatial 
temperature field that occurs in the device (the said field would probably not even be 
determinable with current experimental techniques).

In the fire example, instead of comparing field quantities the resultant effect that the fire 
has on a number of sensors or transducers of the field would normally be compared in the 
validation activity. Such sensors could be flux gauges distributed throughout the fire, or 
suitably located and oriented calorimetric plates, objects, and walls outfitted with 
thermocouples. Because the fire is stochastically fluctuating in time and space, the sensor 
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data would have to be processed to provide sufficient time and space averaging to get well-
behaved quantities for comparison. By evaluating such quantities, the computed effects of 
the fire can be compared to measured effects. 

Again, even if predicted effects compare favorably with measured effects, this is necessary 
but not sufficient to conclude that the predicted physics field details would compare 
favorably with the actual fire field details. In fact, more detailed comparisons might 
compare quite poorly. Because no model is a perfect representation of reality, it is 
unavoidable that at some level of examination, agreement will break down. We can only 
strongly conclude, then, that the particular effects we have quantified are similar, and not 
that the full fields are similar. Nonetheless, even if the modeled physics is not precisely 
correct at a detailed level, but the aggregate effect is sufficiently accurate, the model can be 
quite useful—the empirical evidence is that use of imperfect models and modeling has 
been quite productive in science and engineering.

Even so, in model validation one would like to produce and compile as much evidence as 
practical that the full physics fields themselves are not drastically dissimilar. The more 
spatially and temporally diverse (well-distributed) the sensors are, and the more categories 
of quantities monitored (velocity and pressure, etc.), the greater the chances of identifying 
any significant dissimilarities. This drives toward using as many diverse sensors as 
affordable in validation experiments. 

Although a best effort is made, ultimately it is only practical to compare experimental and 
simulation results for a small number of possible output indicators, with some or all of the 
compared indicators often being indirect: transformed integral, averaged, or resultant-
effect measures. An inevitable incompleteness of model substantiation evidence always 
exists (usually to a great degree) and we are left with acknowledging that it is only possible 
at best to achieve incomplete circumstantial corroboration of model predictiveness. 
Nonetheless, carefully designed and executed model validation assessments usually add 
greatly to the modelers’ and the model users’ knowledge about the performance of the 
model. This is an essential element of due diligence and applied risk management in 
developing and using models. 

3.2 Deciding on the Formulation or Metric of Discrepancy 
Characterization

Meaningful and relevant accuracy characterization of a model’s mapping of inputs to 
outputs is also a difficult issue. It is not as simple as quantifying discrepancy or non-
equivalence (in whatever norm one chooses) between output results of the experiment and 
of the model. This would be the case only if the true experimental conditions (e.g. 
boundary conditions) applied to the real system are also input to the model. When the 
applied loads and conditions in the experiment like temperature, species concentration, 
humidity, flow inlet turbulence intensity, etc. are uncertain to some degree, then this 
complicates matters. 
31



The author’s experience is that inexact control of experimental input conditions, and 
uncertainty in their values due to measurement uncertainty, is typically a leading source of 
uncertainty concerning the mapping of experimental system inputs to outputs. Such 
uncertainty is often quite substantial, and can lead to “Type X” error in model validation 
and conditioning if it is ignored (see [47] and Section 4 of this report). Type X error is a 
systematic-uncertainty analogue to the random-uncertainty Type II hypothesis testing 
error associated in [77] with “model user’s risk”. Experiment output data must be properly 
conditioned to reflect important sources of systematic uncertainty in experimental inputs 
(e.g. [47]-[52]). This consideration appears to be overlooked by other model validation 
and conditioning frameworks in the literature. 

The real-space validation framework is also different from most others in the literature in 
that model accuracy and adequacy relative to experimental data are not posed in terms of 
transform measures and acceptance criteria in a discrepancy “transform space”. A large 
variety of mathematical transforms exist in the literature to characterize discrepancy 
between experiment and simulation results (e.g. the linear subtraction transform in [6]
originated in [17], and the “Area CDF” discrepancy metric in [7] and [54] originated in 
[20]). The transform measures can get relatively sophisticated and involved, with varying 
degrees of transparency or interpretability of the physical and decision-making 
significance of the numerical values yielded by the discrepancy measures. The transforms 
can also put constraints on what forms and types of uncertainty can be handled (see [52]). 
Indeed, workable criteria to demarcate adequacy of model-experiment agreement in the 
transform space of the various mathematical measures are found to be rather elusive (see 
next section).

Instead, by considering the problems of model accuracy characterization and adequacy 
determination to be coupled (in anticipating the need for transparency and 
interpretability in model adequacy determination), the real-space approach was developed 
([42]-[52]). Project requirements of pragmatism, versatility, and demonstrated value have 
led to the approach, which is sketched next.

Figure 1 concisely expresses the real-space comparison paradigm for model accuracy and 
adequacy assessment. Analogues exist for assessment of time-varying and space-varying 
(vector) output (see e.g. [46], [49], [56]), as opposed to just the single (scalar) output cases 
shown in Figure 1. Three different categories of comparison outcomes are shown, where 
uncertainty bars of a model prediction are compared to uncertainty bars of experimental 
data. The construction of the uncertainty bars is briefly outlined below. The three 
categories of comparison outcome regarding model adequacy are interpreted in the next 
section.  
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Figure 1. Generic categories of comparison outcomes in the framework's model validation and 
model conditioning real-space comparisons of uncertainty intervals of experimental versus 
simulation results for a scalar output quantity.

The uncertainty bars on the experimental output data in Figure 1 depict the range of 
uncertainty associated with experimental output response. This uncertainty can come 
from various aleatory and epistemic sources.5 In general the net experimental uncertainty 
may include contributions from: 

A. test-to-test stochastic variability, including: 

i.  the tested systems and/or phenomena (e.g. part geometries, material 
properties, stochastic behavior, etc.); 

ii. measurement and processing errors on system outputs; 

iii. measurement and processing errors on system inputs (environmental 
conditions, applied loading/excitation, etc.);

B. epistemic uncertainty on applicable response statistics or quantities determined 
from limited sampling of the above stochastic factors in a limited number of 
repeated experiments (see e.g. [101]); 

C. systematic bias uncertainties associated with measurement of system outputs and 
any procedures and models used to process, correct, and/or interpret the 
measured data; 

D. systematic measurement and processing of uncertainty on system inputs and 
experimental factors, including apparatus/setup, test conditions, and boundary 
conditions. 

The uncertainty bars on the model results depict the net uncertainty associated with the 
predictions. These issue from uncertainties in numerical discretization effects and results 
processing, from input uncertainties in the model simulations (e.g. uncertainty in the 
experimental conditions), and from model-intrinsic uncertainties (different plausible 

5.  Many complications, choices, and caveats are involved in forming uncertainty bars on experi-
mental data, so they are always somewhat subjective. Nonetheless, reasonably objective results 
are obtainable in engineering validation activities, with readily accessible uncertainty quantifica-
tion and propagation tools and procedures.  
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model forms and/or parametric model-form uncertainty). Note that in the framework’s 
bookkeeping scheme, uncertainties from numerical discretization and processing of 
model output results normally decrease the size of the simulation uncertainty bar relative 
to the experimental uncertainty bar. This is due to the way the framework uses the relative 
sizes of the experimental and simulation uncertainty bars to gauge model adequacy. See 
[47], [49], [52] for further explanation and examples. 

The framework’s expression of experimental and simulation uncertainties ultimately in 
terms of uncertainty intervals embraces the non-probabilistic nature of uncertainty that is 
unavoidably present in experimental and modeling projects and is usually dominant 
relative to probabilistic distributional uncertainty. Indeed, for a framework to be fully 
general and viable it must suitably handle non-probabilistic types of uncertainty like 
interval uncertainty and discrete model-form uncertainty among alternate plausible 
models. See for [47] - [49] and [51] - [52] for examples of how the Real Space framework 
propagates and aggregates distributional, interval, and discrete uncertainties into a 
representative uncertainty intervals of experimental and simulation uncertanities for 
validation comparison (c.f. Figure 1).

In contrast, most model validation and conditioning frameworks in the literature are 
based on a probability distribution model of uncertainty. The thinking might be that the 
framework should be fashioned around this type of description because it is the best one 
can do in terms of specificity of uncertainty. However, it is perhaps too optimistic to base a 
framework on this ideal limit of what can be achieved in terms of knowledge of 
uncertainty. 

The present framework derives from a standpoint at the other extreme: almost never in 
real experimental and modeling programs are probabilistic uncertainty distributions 
available or achievable. In fact, very often no direct probabilistic or statistical information 
is available for many of the driving uncertainties. Rather, much of this uncertainty is 
estimated by extrapolation from other experiments; by expert judgment; or by modeling 
and analysis rather than actual empirical data. The current framework proceeds from this
perspective as the problem description.

The author is aware of no validation framework founded on a probabilistic basis that has 
been demonstrated to adequately handle problems dominated by interval and/or discrete 
model-form uncertainty. However, this is not to say that such frameworks do not or 
cannot exist. 

Much of the framework’s uncertainty representation and comparison machinery is the 
same whether the purpose is model conditioning or model validation (e.g. [46], [56]). In 
contrast, many of the discrepancy metrics and formulations in the literature do not 
quantify model error in real space, even though real-space characterization is often 
necessary to affect a correction to the model before proceeding to prediction (see e.g. [46] 
and Appendix A).
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Another important consideration in devising or choosing a formulation or metric to 
characterize discrepancy concerns discrimination ability. For example, let the center and 
leftmost cases in Figure 1 represent 5th and 95th percentiles of probability distribution 
functions (PDFs) of independent uncertainties associated with experimental and 
simulation results. Let the experimental uncertainty be from measurement uncertainty on 
the experiment output results, and let the simulation uncertainty be from model-affiliated 
intrinsic traveling uncertainty (e.g. a material property uncertainty). If, for instance, the 
methodology of the ASME V&V standard [6] is applied, it yields a transformed 
discrepancy measure that does not differ between the left and center cases in Figure 1 (see 
Appendix A). The “Area” discrepancy measure from [20], [38], [54] also gives the same 
value for the left and center cases in Figure 1. Appendix A shows that both metrics mask 
another fundamental mode of discrepancy that can exist between experimental and 
simulation results. Indeed, all such discrepancy transform measures that the author is 
familiar with have non-exclusive mappings of real-space results to transform space. This 
can undermine model adequacy determination in validation assessments; the next section 
describes how the left and center cases in Figure 1 are crucially different in terms of model 
adequacy with regard to prediction risk in downstream use of the model for design, 
analysis, or decision-making purposes. Appendix A also shows the shortcomings of using 
transform quantification of model discrepancy to extrapolate model error or corrections. 

Hence, if the scope of use of a discrepancy measure includes model adequacy 
determination, extrapolation support, and prediction risk in downstream use of the 
model, the Real Space approach has significant advantages over transform discrepancy 
characterizations like the subtraction and Area transform metrics, for example. 

From a limited scope of just accuracy assessment it could be argued that the real-space 
comparison finds no difference between the Figure 1 center and left cases in terms of 
amount of mismatch error between experiment and simulation: the shortfall errors in the 
central case are the same magnitude as the overshoot errors in the leftmost case. However, 
a broader scope of consideration anticipates the adequacy question. Then directionality 
(not just magnitude) of the error matters and the Real Space metric also represents this 
important aspect. 

Furthermore the Real Space characterization does not constrain model error to be posed 
in terms of a singular bias of the model, either downward or upward by some value. That 
is, the real-space metric allows model results to be simultaneously biased upwards and
downwards relative to the experimental data, as the center and leftmost cases in Figure 1
indicate. This can be contrasted to e.g. the formulation in [6] which poses model error/
bias as a single but unknown value.6 

Another advantage of the Real Space portrayal of the relative sizes and positions of the 
experimental and simulation uncertainty bars is a transparent and easily interpretable 
presentation of the discrepancy. The discrepancy characterizations from transform 
approaches are less intuitive. This impedes adjudication of model adequacy. Workable 
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criteria for model adequacy are found to be more accessible for the Real Space approach 
than for the transform approaches. This is elaborated in the next section.

In summary, many transform discrepancy metrics exist, but none appear to have practical 
advantage over the simple and versatile Real Space comparison approach. Transform 
metrics add complexity (and sometimes constraints) in the analysis, and present difficulty 
in deriving useful meaning that supports analysis insight and decision making. In 
particular, it is not evident how transform-space criteria are determined for deciding 
whether models are adequate.

3.3 Deciding the Threshold for Model Adequacy

3.3.1 Two Potentially Different Validation Settings regarding  Accuracy 
Requirements for Model Adequacy Determination

Validation Setting 1. Consider an example where a CFD fire model is being developed, say 
at a university. Let the model development context be devoid of a particular engineering 
application for which the model is to help resolve certain issues, answer specific questions, 
or make decisions. The goal at this stage is simply that the model replicate an actual fire 
“well.” What criteria can be applied in characterizing the quality and usefulness of the 
model? In more stark validation terms, if one wants to assert that the model adequately 
matches experimental data, then what standard or threshold must the model pass? 

Other examples of models in this type of validation setting include material property and 
constitutive models, turbulence models, convection correlations, thermal contact-
resistance correlations, etc. These types of models are usually developed in relative 
isolation from analysis, design, and decision making associated with an engineering 
project having accuracy requirements specified for the modeling. 

Lacking an external accuracy criterion, one could look for some type of natural or intrinsic 
criterion. Since the objective in these settings is simply that the model replicate the target 
phenomena “well”, one approach might be to apply a statistical hypothesis test for whether 
the model results can pass as being the “same” as the data with respect to particular 
measures like similar experimental and predicted probability distributions of response, or 
similar means of the results. The point-null hypothesis is that the model and experiment 
agree, and the evidence is weighed for rejecting this hypothesis. This is in accord with the 

6. The framework [6] concentrates on systematic uncertainty categories C and D listed earlier. The formula-
tion holds that one value exists for each uncertain quantity in the experimental and modeling uncertainty 
sources, but the value is unknown to within the prescribed uncertainty. However, for modeling and vali-
dating stochastic systems (most systems are stochastic to some degree), uncertainties in categories A and 
B arise concerning populations of many results, rather than just one value but unknown to within a spec-
ified range or probability distribution. Figure A.3 in Appendix A presents a case where the subtractive dif-
ference metric does not accommodate stochastic uncertainty in repeated experiments. Conversely, an 
early draft of the ASME V&V-10 document [7] considered methodology for only stochastic uncertainty 
(category A). Ref. [7] is currently being revised. All categories A – D are treated in the Real Space frame-
work, see [49], [51], [52]. Appendix A and reference [112] compare several validation frameworks.
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paradigm that a theory or model cannot be proven to be valid or correct, but is subject to 
being unseated by contrary evidence. The hypothesis test sorts through the statistical 
uncertainty associated with random variability in repeat experiments and quantifies the 
level of statistical significance at which the hypothesis of “sameness” of model and 
experimental results can be rejected. 

Since relatively strong (statistically significant) evidence of inconsistency between model 
and experimental results is required before the model is rejected, the approach has a 
drawback in that the greater the stochastic variability in the tested systems and/or 
experimental conditions, and/or the smaller the number of repeat experiments, the 
relatively smaller the chances of detecting and therefore rejecting a biased model. Barring 
strong evidence of inconsistency, a significantly biased model could enjoy a “free lunch” in 
that non-rejection can be misinterpreted as implying model goodness. However non-
rejection does not necessarily imply model goodness because noisy and uncertain data can 
leave much room for model bias error to go undetected. This is the classical Type II error 
in statistical hypothesis testing, designated model user’s risk in [77]. In fact, the greater the 
probabilistic certainty sought that one is not incorrectly rejecting an unbiased model 
(where incorrect rejection is called Type I error), the greater the chance of committing 
Type II error of not rejecting a biased model. Ref. [47] and section 4 of this report 
demonstrate an analogue of Type II error for systematic uncertainty as opposed to the 
random uncertainty in statistical hypothesis testing. Hence, that the model is “not 
inconsistent” with the data is not a reliable indicator of model accuracy or adequacy.   

The converse problem is that the more precise the experiments are, and the greater their 
number, the more likely the hypothesis test is to find that the model is biased, as one 
would normally expect. Indeed, it appears to be an improper formulation that the classical 
point-null hypothesis test is posed to support the less reasonable hypothesis (that the 
model has zero error) unless overturned by strong evidence. These shortcomings  underlie 
the problem with the anti-invalidation conception of model validation discussed at the 
end of section 2.3-Part I.

The more proper question is whether the model has acceptably small bias. Accordingly, 
“interval null” hypothesis tests (see e.g. [74]) judge whether model bias is smaller than 
some specified level. But as pointed out in [74] and [85], the problem remains that the 
hypothesis test formulation is skewed toward a finding of “not inconsistent” with the 
allowed discrepancy tolerance. This does not provide positive evidence that a model is 
unbiased to within the allowed tolerance.    

Several validation approaches are proposed in [74] that get away from the not-inconsistent 
type of testing and toward more direct indicators of model accuracy/quality. Bayesian 
interval-hypothesis testing is introduced, along with a “model reliability metric as the 
probability of data falling within model predictions”, but these approaches focus on the 
accuracy of predicted vs. experimental mean results, as do the point-null and interval-null 
hypothesis tests. Unfortunately, testing whether the model matches mean experimental 
results (within some specified allowable bias error) is usually insufficient to validate model 
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predictivity for design and decision-making purposes (see Figure 2 and related text 
below). 

References [17] and [58] introduced what could be viewed as an analogue of the means 
hypothesis testing approach—for systematic uncertainties in modeling and experiments 
instead of the random uncertainty in multiple experimental trials that traditional 
hypothesis testing is affiliated with. They observed that the combined experimental and 
model parameter uncertainty provide an uncertainty “noise” level or resolution floor 
below which any model bias cannot be detected. This is analogous to the principle that 
statistical hypothesis tests work on. They held that the combined experimental and 
modeling uncertainty, the “validation uncertainty” of magnitude scale uV, is an 
uncertainty measure with special significance in model validation as a natural or intrinsic 
criterion that bears on model acceptability. They proposed that validation is achieved at a 
uV level of uncertainty if the mean indication of model bias (i.e. the bias E between the 
means of the experimental and simulated response distributions) is less than the 
combined experimental and modeling uncertainty uV. (However, in actuality the model 
could be biased by as much as 2uV and still satisfy their criterion for validation at the 
proclaimed uV level.) Note that all three cases in Figure 1 would pass their test for model 
validity at the uV level, but the center and rightmost cases possess major risk liabilities (in 
post-validation downstream predictions) that the leftmost case does not. 

The uV-level criterion for validation of the model at that accuracy level was dropped in the 
subsequent ASME effort [6], but most of the uncertainty characterization and propagation 
framework was kept for quantifying model accuracy in terms of bias from experimental 
data. Indeed, the standard [6] is limited to model accuracy characterization and says that 
validation only provides an uncertainty statement on the model: the model is ‘validated’ to 
have a bias within the range E ± xuV, where x is a proposed “coverage factor” set by the 
modeler based on various considerations. The determination of whether the model is 
adequate with respect to a particular use is not addressed: “…validation does not include 
acceptability criteria, which are relegated to certification or accreditation…[model] 
intended use is very general (with specific intended use being tied to acceptability criteria 
embedded in project-specific certification rather than validation).” Somewhat 
inconsistently, the same Appendix C-9 also states that “full validation” can be considered 
to include pass/fail determination of whether the bias is acceptable or adequate for a 
particular application. However, no guidance is given for how acceptability criteria might 
be rationally determined for project-specific model adequacy determination. A particular 
approach is introduced with the notion of coupled hierarchical adequacy determination 
under Validation Setting 2, below. Substantial practical difficulties are involved, although 
not necessarily insurmountable. It is presently more practical to use the non-project-
specific (stand-alone or uncoupled) nearly universal criterion for model adequacy 
described next. 

Consider the simple illustrative example in Figure 2. One possible validation criterion in a 
real-space approach is that the model results lie within the net uncertainty bounds of the 
experimental data, as in the figure. Many validation approaches in the literature advocate 
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this paradigm. However, this conception has the undesirable “free lunch” property where 
the larger the uncertainty in the experiments, the easier it is to find the model valid. So less 
precise experiments are rewarded with easier findings of model adequacy by this 
criterion—a bad property to have in a model validation scheme. 

Figure 2. Material property measurements as a function of temperature, with vertical and horizontal 
uncertainty bars associated with the measurements, and net uncertainty bounds (dashed 
lines) for the set of data. At any given temperature it is expected that actual property values 
will fall within the experimental uncertainty bounds depicted at that temperature. The solid 
line shows model predictions of the material property value as a function of temperature. 

A contemplation of model use after the validation assessment condemns the criterion even 
more strongly. Although model predictions lie within the uncertainty of the experimental 
data, actual property values deviate significantly from the prediction curve. Thus, the 
deterministic model does not suffice to fully represent material-property expectations at a 
given value of temperature. If the model (claimed ‘validated’ according to the said 
criterion) is utilized in downstream simulations and evaluated over the same temperature 
range, the model would significantly misrepresent the material property as being much 
more precisely known than it actually is. This would under-represent the actual material 
property uncertainty in downstream model use. Therefore, to claim a model validated 
because its results lie within the uncertainty of the experimental data in validation settings 
appears to be inappropriate and inviting of trouble in model-use settings. 

Consideration of model use downstream from the validation activity is essential in 
devising or choosing viable model adequacy criteria to apply in the validation setting. If 
the modeled phenomenological mechanisms extrapolate consistently (see Section 2.2.1) 
from the validation to the prediction setting, then for the middle and rightmost cases in 
Figure 1 a similar relationship will hold in new prediction settings—much of reality will lie 
outside of model predictions in new settings. Clearly, this is not what most designers, 
analysts, and decision makers would want from model predictions. Rather, they would like 
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to be reasonably assured that reality lies within the uncertainty of the model predictions—
indicating the leftmost case in Figure 1 as being the most desirable of the three cases. To 
the extent that extrapolation behavior can be anticipated, risk mitigation in prediction is 
best served by a validation criterion that the uncertainty bounds of the prediction in the 
validation setting should encompass reality. Then if the modeled phenomena extrapolates 
consistently a similar relationship will hold in new prediction settings—reality will lie 
within the model predictions. This supports the objective of BEWU modeling and 
prediction and satisfies to zeroth order the idealized validation objective discussed at the 
end of Section 2.4. Of course, other analysis should also be sought in judging whether a 
model will perform satisfactorily in specific uses subsequent to the validation tests. More 
research needs to be conducted in this area. This could lead to higher-order satisfaction of 
the validation objective. 7

Model adequacy also requires that the upside and downside model overshoot errors in the 
leftmost case are small enough that the model will be useful in downstream predictions. 
For instance, infinite uncertainty bars on the simulation results (say due to infinite model-
intrinsic uncertainties in the model) would contain the experimental results in the figure, 
but the model with its infinite uncertainty would not be useful for prediction purposes. 
Therefore it could not be considered to be an adequate (acceptably accurate) model. The 
broader issue of acceptable magnitude of model overshoot and undershoot errors in the 
three cases of Figure 1 is discussed in the following.

Validation Setting 2. Recall the setting discussed in Section 3.1 where the engineering or 
programmatic objective is to predict heat loads on an object of interest in a fire. Perhaps 
for this situation, given concrete system-level prediction accuracy targets, it is possible that 
commensurate accuracy targets could be set for validation of the fire CFD model as a 
submodel of the larger hierarchical system-level model. This case has a different validation 
contextualization than Validation Setting 1, which is devoid of a specific engineering 

7.  For example, zeroth-order satisfaction of the idealized validation objective is presently said to 
occur whether the leftmost case in Figure 1 exists, or as an extreme alternate possibility, the un-
certainty bars of the simulation just barely encompass the experimental uncertainty (essentially 
equaling the range of the experimental uncertainty). From the standpoint of the validation ob-
jective the latter case leaves less room (effectively no room) for model accuracy loss in extrapo-
lative predictions. The leftmost case in Figure 1 has larger margin for model accuracy loss in 
extrapolation, and therefore has a tangibly larger chance that the validation objective will be met. 
Thus it is foreseen that refinements along these lines can be made to the present zeroth-order 
model validation criterion. It is also emphasized that models with lower embedded uncertainty 
are not necessarily better for prediction; they are necessarily less robust to model-form error (e.g. 
[86]). The validation methodology should reflect this. However, many validation conceptions in 
the literature intrinsically favor a validated/adequate model with less internal uncertainty to a 
validated/adequate model with more internal uncertainty (however adequacy is defined). Such 
automatic preference lacks an end-to-end view that sufficiently includes downstream prediction 
in the scope of the thinking about model validation. These considerations also affect the amount 
of uncertainty that should be mapped to models for model conditioning. Perhaps appropriate 
factors of safety should be used in model validation and conditioning to buffer against model ac-
curacy degradation in extrapolative prediction. These are important subjects for research.       
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application and associated accuracy requirement. The difference is significant as regards 
model adequacy assessment. 

It is first necessary to discuss the feasibility of mapping top-level program requirements 
for performance, safety, etc. of an engineered system to accuracy requirements on the 
various system-model elements (submodels) in a hierarchical model validation 
conception. Assume that performance, tolerance, or safety “requirements”8 at the system 
level could be transformed into modeling accuracy allowables on performance predictions 
at the system level. Say that a requirement is stated that the predicted temperature-
induced failures of components in a fire-engulfed weapon not differ by more than 10% 
from actual component failure temperatures in a validation experiment. Then, in trying to 
map this error budget at system level into error budgets for the various elements of the 
system model, an infinite number of combinations will satisfy the top-level error budget. 

For example, let the 10% accuracy requirement be parsed (perhaps arbitrarily) into 
equivalent top-level effects of no more than 6% error contributed by the fire-heating 
submodel, plus up to 2% error from modeling weapon/component thermal response, plus 
up to 2% error from modeling the temperature thresholds at which the components fail. 
Then, fractally downward, within the thermal modeling for instance, it is possible for an 
infinite number of different combinations of error budgets for its modeling elements 
(foam vaporization, material properties, geometry, thermal contact resistance, etc.) to 
meet an aggregate error of 2%. How is the 2% error budget best, or even non-arbitrarily, 
parsed among the submodels?

References [45] and [46] elaborate on the non-uniqueness issue and the associated 
technical problems and trial-and-error difficulty involved with trying to parse a system-
level modeling accuracy budget to corresponding budgets of the individual submodels. 
Besides the difficulty of devising a defensible parsing scheme for the reverse-mapping 
problem, significant computational difficulty and expense would exist in solving the 
reverse problem. Even if successful, the submodel error budgets may not be mappable to 
individual validation experiments for the submodels. In many cases an explicit parametric 
map does not exist between a submodel’s instantiation in the system setting and its 
instantiation in the validation setting, particularly when changes in device geometry or 
spatial/temporal loading are necessitated for practicality in the validation experiment. 
Without a parametric map the error budget cannot be mapped to the equivalent accuracy 
requirements at the validation setting. Ultimately, the paradigm of downward-mapping to 
obtain submodel accuracy requirements for validation is severely impractical, if not 
impossible; not a viable paradigm. 

8.  Such “requirements” at the system level are themselves unavoidably subject to some degree of 
arbitrariness from: uncertainty in program objectives and constraints; multiple program objec-
tives (some even conflicting) that disallow a unique project optimum (create a Pareto front) 
among the tradeoffs involved; flexibility or negotiability of objectives and constraints; decision-
maker knowledge limitations and subjective variabilities in risk perception and tolerance based 
on individual predispositions and experiences; etc.
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However, an approach is now outlined for deciding whether submodel accuracy meets 
top-level accuracy requirements specified for a project. Submodel adequacy is cast in 
integral terms such that all submodels together meet top-level accuracy needs, or fail as a 
group. The discussion assumes a real-space characterization of discrepancy between 
experimental and model results, but analogues may be devisable for transform metrics of 
discrepancy. 

In the general case where multiple submodels of a hierarchical model are being assessed, a 
coupled validation problem exists where all the submodels’ overshoot and shortfall errors 
(potentially from all three generic classes shown in Figure 1) can be combined via forward 
propagation through the system model. The resultant can be compared against the system 
level error budget. All of the assessed submodels together, with their overshoot and/or 
undershoot errors cancelling and adding as they do, are found to be acceptably accurate as 
a set, or are found to be unacceptably inaccurate as a set. Thus, any submodels in the 
center and rightmost classes in Figure 1 may be found to be adequately accurate for their 
use in the system model at the validation conditions, even though individually they do not 
meet the stand-alone adequacy criterion of capturing reality within their prediction 
uncertainty. Although these individual submodels push the system model toward under-
prediction of uncertainty, their shortfall errors may be small enough to result in acceptably 
accurate predictions at the system level. Another possibility is that all submodels 
individually qualify to the stand-alone adequacy standard (leftmost class in Figure 1), but 
together the propagated overshoot errors result in unacceptably large overshoot error at 
system level. Then the submodels when used in combination are not accurate enough. 

This scheme can be recognized as a propagation of errors associated with submodels, e.g. 
in contrast to propagation of errors associated with model parameters. In cases of system-
model inadequacy, the individual submodels that contribute most error to the system-
level results would be the ones to consider improving first to reduce error in system-level 
predictions.

Coupling and involvement exists that is not mentioned with the principle commonly 
advocated in the literature of hierarchical model validation where submodels are to be 
individually validated before assembly into the system model. This strives to establish to 
the degree practical that a system model if substantiated is right for the right reasons 
because the submodels have been substantiated individually (“bottom-up validation” of 
the system model, [22])—and not just the integral result from the combined system level 
model has been validated (“top-down validation”, [22]). The principle is certainly 
appealing. 

The principle appears to be advocated (e.g. in the ASME works [4] and [7]) under the 
assumption that rational a-priori accuracy thresholds for submodel acceptance can be 
issued before the validation experiments and simulations are run and processed. This 
would be ideal for implementation of the principle. 

However, as already said, a downward (reverse) mapping of system-level model accuracy 
requirements to submodel accuracy validation requirements is generally not feasible. 
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Then the vision of validating models to a priori adequacy criteria (specified before the 
validation experiments) would seem to depend on some other way of arriving at accuracy 
requirements. There is little in the literature to indicate how this might be done. The 
author has seen a few instances where validation accuracy requirements have been 
stipulated a priori, but no technical basis or methodology for arriving at these objectively 
was provided. Without providing such a basis the outward appearance is that the accuracy 
“requirements” are substantially subjective and arbitrary—not quantitatively grounded. 
One must be prepared for internal and external scrutiny and critical review of a validation 
project, where the question may need to be answered, “What is the scientific or technical 
basis behind your model adequacy criteria?” 

This is critical because model validation exercises usually take significant time, planning, 
and resources. Why go through the rigors and expense of a model validation exercise just 
to validate against arbitrary accuracy requirements? This does not seem to be a reasonable 
way for a project to use precious resources. Moreover, posing arbitrary accuracy 
requirements is liable to be counter-productive. Such requirements can have profound 
implications on model acceptance and reliance—either through overconfidence or 
unreasonable aspersion ascribed to the model, depending on whether it passes the 
arbitrary criterion or not. This can lead to unnecessary, unjustified, and counter-
productive courses of action regarding project strategies and resource allocations.

Furthermore, a lower-bound constraint on validation accuracy requirements is set by the 
uncertainty in the validation experiments—one cannot substantiate a model to better 
accuracy than the accuracy to which reality is known. Thus, any a priori accuracy criteria, 
however obtained, must meet this lower-bound constraint. Since this lower bound is not 
known until after the experiments are run and processed, validation accuracy 
requirements arrived at a priori are subject to being found infeasible after the experiments 
are run. What happens with infeasible “requirements”? To avoid derailing the validation 
project the validation accuracy “requirements” would in all practicality be altered to meet 
the experimental uncertainty lower-bound constraint. If so, then they really weren’t 
requirements. 

It is suggested in the literature that validation experiments be designed and executed with 
the necessary experimental techniques, instrumentation, data processing procedures, etc. 
to achieve accuracy levels well below any prescribed validation accuracy requirements. 
This would avoid the requirements infeasibility problem. However, this might be like “the 
tail wagging the dog.” An extremely difficult inverse experiment-design and execution 
problem arises, with ominous cost, time, and resource implications. It is exceeding 
difficult to get a project to commit money and resources to the cost-unconstrained 
problem of meeting experimental accuracy requirements when the requirements cannot 
be substantiated to be rigorous or unique. Instead, the cost-constrained circumstance 
usually predominates: given a negotiated budget for validation experiments, the 
experimentalists work to minimize total experimental uncertainty within their resource 
constraints. A certain realizable level of accuracy is obtained in the experiments, 
irrespective of what the accuracy goals were. Importantly, the experimental uncertainty 
usually has contributions from stochastic variabilities inherent to the tested system of 
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interest. This aleatory uncertainty is usually not known a priori and cannot be limited or 
reduced in trying to get more accurate experiments per some a priori posed uncertainty 
requirement. 

A priori specification of suitable accuracy requirements for transform-space discrepancy 
measures seems even less plausible. Thus, paradigms and frameworks that pursue 
validation procedures and judgments based on specification of a priori accuracy 
requirements seem implausible. Hierarchical model validation has been traditionally 
advocated under the questionable assumption of readily attainable rational a priori
requirements. Nonetheless the principle is important and should be pursued. One 
foreseeable approach is a posteriori coupled (simultaneous) validation assessment of the 
submodels in the validation hierarchy. The forward propagation is cumbersome but 
tractable, and does not suffer from the non-uniqueness or technical difficulties of 
downward propagation of accuracy requirements, nor from any arbitrariness of submodel 
accuracy requirements somehow conjured up.

3.3.2 Hierarchically Coupled Adequacy Determination vs. Stand-alone Adequacy 
Determination

The demands of the coupled validation scheme may not be affordable or be considered 
necessary or “worth it” to the project. Indeed, for validation at the submodel level, the 
author has yet to experience all the required elements in place to pursue anything but 
uncoupled validation determinations. Such validation is much easier to accomplish. 
Additionally, it can be done early in hierarchical modeling efforts where no system level 
model exists, or when error tolerances at the system modeling level have not been 
specified (the usual situation).

In stand-alone validation the integrity of a conclusion of model adequacy rests on the 
correctness of the assumption that the model overshoot errors are not so large that this 
becomes troublesome in downstream predictions. Often the satisfaction of this 
assumption is clear. Conversely, it may be obvious that the overshoot errors are too large 
for the model to be useful, so it is therefore inadequate. In non-obvious cases it should be 
made clear that a conclusion of ‘adequate model’ rests on the said assumption. 

Establishing that the model is validated to encompass experimental reality, with 
reasonable indication that its uncertainty is not too large to undermine the model’s 
applicability in downstream use, is a relatively strong statement of indicated model fitness 
for prediction (in as much as trend consistency can be anticipated in extrapolation). This 
is far beyond what is currently done in most modeling efforts.
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4 Projecting Results and Outcomes from the Validation 
Setting to the Model Intended-Use Setting—Dealing with 
Extrapolation

4.1 “Type X” Validation Error and Lack of Consequence when Bias 
and Uncertainty travels “consistently” from Validation to 
Extrapolation Settings

Here we consider any aspects of a physical system (geometry, materials, and 
phenomenology aspects) that differ inconsequentially between the validation and 
prediction settings. 

Consider a hardware device employed in a validation experiment. The device is eventually 
to be used in somewhat different deployment conditions, and predictions of its 
performance under those conditions are to be made. If the geometry and materials of the 
device are the same in the validation and deployment settings, then these modeled aspects 
in the validation setting “flow through” to the prediction setting. 

If such traveling aspects of the system are mismodeled in the validation setting but the 
model as a whole is substantiated nonetheless, then the mismodeling error can, under 
conditions to be explained next, be inconsequential as regards model performance in 
downstream predictions. Consider the following cantilever beam example. 

Let D signify the cantilever beam’s deflection at the free end of the beam and in the 
direction of an applied load P there. Assume the typical model-problem conditions ([102]) 
of zero deflection (D=0) and zero slope (dD/dx = 0) of the beam where it horizontally 
protrudes from a rigid unyielding vertical wall. Let D be the vertical deflection pointing in 
the direction of the vertical load, which is perpendicular to horizontal coordinate x that 
starts at the wall (x=0) and runs along the length of the beam to its free end at x=L. 

The deflection equation for this classical problem, which involves other assumptions 
([102]) is:

          
 

2 2

2 2
( ) ( )

d d
IE D x w x P x L

dx dx


 
   

   EQ1

where L is the length of the beam, E is its modulus of elasticity, I is its cross-sectional 
moment of inertia with respect to the loading direction, and w(x) represents a generalized 
distributed load on the beam wherein the point load P in our example is represented by a 
delta function of x that recovers the point load P at x=L (see [102]).

The solution of this problem is 

              Dm = PL3/(3EI) EQ2
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where the subscript m refers to a result from the model.

Now consider a particular problem with the following parameter values and uncertainties. 
Let E, I, and the applied load Po in the validation experiment be known with certainty, but 
let uncertainty exist in the measured length Lo of the beam; its length lies within two ruler 
tick marks with values Lo-Low and Lo-High that differ by 1%: 

Lo-High = 1.01Lo-Low.

Let the beam response model give a result that is biased 2% high relative to the actual 
(experimental) beam response. Let the physical and modeled beam deflections at the end 
of a beam of length L be respectively given by:

         De =  0.98PoL3/(3EI) EQ3

         Dm =  PoL3/(3EI). EQ4

To simplify the problem, let Po/(3EI) have a magnitude of unity. Then the experimental 
and model responses are respectively given by:

De = 0.98L3;     

Dm = L3      .

Figure 3 shows experimental and modeled cantilever beam end-deflections as functions of 
hypothetical values of beam length L. (Note that the abscissa in Figure 3 corresponds to 
total beam length L and not to the running value x of distance along the beam.)

Now consider a validation assessment. The framework dictates that the prediction 
uncertainty for system response (here beam deflection) must reflect that the experimental 
quantity of beam length is not precisely known (it is uncertain to within the range [Lo-Low, 
Lo-High]). This length uncertainty when propagated through the model yields uncertainty 
in predicted beam deflection shown by the uncertainty bar in Figure 4. (as obtained from 
Figure 3). Given this same range of length uncertainty, the experimental result could come 
in anywhere within the experiment uncertainty range shown in Figure 4. (as obtained 
from Figure 3). 

If the actual beam length in the experiment is between Lo-Low and 1.0067Lo-Low, then the 
experimental deflection would be outside the model-predicted deflection range in Figure 
4.. The modeler would be warned that bias exists in the model. Appropriate caveats, 
model correction, etc. could then be pursued if desired. 
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Figure 3. Beam deflection results from the physical beam and from a biased model. (Curves only 
illustrative.) Low and high limits of possible experimental and model results are shown for 
an uncertainty range [Lo-Low, Lo-High] in beam length. A deception “risk zone” is shown (see 
also Figure 4.) where a realization of experimental input and corresponding system 
response would not lie outside the uncertainty of model response computed with the 
known input uncertainty range [Lo-Low, Lo-High] in beam length.

Figure 4. High and low deflection values defining ranges of possible experimental and model output 
consistent with the uncertainty [Lo-Low, Lo-High] in beam length. The high and low response 
values here are those in Figure 3. A deception risk zone for Type X validation error is shown, 
where an experimental realization could occur, and because it lies within the uncertainty 
intervals of the associated model prediction, would provide no indication or warning that 
the model is biased, even though it actually is.
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However, if the actual beam length is between 1.0067Lo-Low and Lo-High, then the 
experimental deflection will lie within the indicated deception “risk zone” in Figure 4.. 
This is called the risk zone because any experimental result in this zone lies within the 
model-predicted deflection uncertainty. Then no explicit indication of bias exists in the 
validation assessment even though the model is biased. Non-indication of model bias in 
this circumstance is termed “Type X” validation error ([47]). Type X error occurs when 
model bias is obscurred by systematic uncertainty in one or more inputs to the 
experiment. (This differs from classical Type II error of incorrectly accepting a biased 
model or hypothesis in statistical hypothesis testing. Type II error occurs when a biased 
hypothesis/model is accepted, where imprecision error from sampling of random
uncertainty of output data of a system obscures the fact that the model/hypothesis is 
biased. See [47] for more discussion.)

What about the unrevealed model bias associated with Type X validation error? Will this 
have downstream prediction consequences? This depends on the particulars of the 
physical system and model that travel to a new application setting. One set of particulars is 
investigated next, while a converse set of circumstances is investigated in the next section. 

Let the actual beam length be Lo-actual and let the traveling physical system be the 
cantilever beam used in the validation experiments. Let the applied load in the new 
prediction setting change to P'  from the non-traveling value Po in the validation 
experiment. All the other physical conditions are the same (they travel) between validation 
and prediction settings because the same physical beam is to be employed in the new 
setting, at the same temperature and wall attachment conditions as in the validation 
setting. Then the traveling model includes the beam deflection equation EQ1 and its 
solution EQ2, both specialized to the said parameter values. In the new prediction setting, 
accounting for the known uncertainty in beam length (same beam, so same length 
uncertainty [Lo-Low, Lo-High] in the validation and prediction settings) yields the following 
prediction bounds for deflection:

         Dm-Low =  P' Lo-Low
 3/(3EI) EQ5

     Dm-High =  P' Lo-High
3/(3EI) = P' (1.01Lo-Low)3/(3EI). EQ6

It can be shown by substitution that any value of actual beam length Lo-actual within the 
risk range 1.0067Lo-Low  Lo-actual  Lo-High yields prediction bounds EQ5 and EQ6 that 
contain the experimental result in the new setting:

         De =  0.98P' Lo-actual
3/(3EI). EQ7

In fact this is true for P'  of any load magnitude in the new (prediction) setting—as long as 
the load is not high enough to cause a change in the applicable physics in the new setting 
such that the governing behavior equation (EQ1) no longer applies. Here the system 
internal state and output values change because the excitation load in the problem changes 
between the validation and new application settings. A linear rescaling of the results in 
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Figures 3 and 4 occurs as the load value changes, but the system’s physical mechanisms 
that convert inputs to outputs (as described by the governing PDEs and material models) 
do not change. 

Even though the model is biased here, if the equations and parameter values/uncertainties 
as a set bound reality in the validation setting, they also bound reality in the new 
prediction setting. This is because the model in the validation setting travels to the new 
prediction setting with a consistency that reflects the physical consistency between the two 
settings. This will not be the case in the next section, where the physical consistency in 
beam length does not travel, so related modeling aspects must be removed from the 
traveling model.

The demonstration here shows that biased models can have non-adverse consequences in 
downstream predictions under conditions where traveling consistency exists between 
validation and new prediction settings. That is, imperfect models (as they all are) can 
extrapolate reliably under certain conditions. This is fortunate because models of complex 
devices or systems can have multitudes of parts and materials modeled with “strong” 
deterministic property values and geometry descriptions that are incorrect to some degree 
(assuming that not all can be modeled as uncertain where actual values lie within the 
stipulated uncertainties). These input errors combine with physics modeling errors, such 
as lack of modeled contact resistance or contact friction at the part interfaces, to yield 
biased models to some degree. Nonetheless, such models can be productively utilized if the 
necessary consistency exists between validation (or conditioning) and extrapolative 
prediction settings. 

Another type of consistency between validation (or conditioning) and  prediction settings 
is the following. Consider a material property that varies as a function of temperature. Let 
the temperature range experienced by the material in the validation experiment be 
different from the temperature range in the new setting. If both temperature ranges are 
spanned by a consistent enveloping database9 of property characterization, then the 
property is deemed to be “mappably associated” between the validation and prediction 
settings, where a consistent representation for the phenomena spans and includes the 
validation and application settings. 

Another type of consistency between validation (or conditioning) and application settings 
concerns any common-mode error in postprocessing of model and experiment results 
([43], [47]). Other types of potentially consistent traveling quantities are material or 
component failure thresholds that are keyed e.g. to consistently biased models or 
discretization-dependent solution results in both settings. Section 2.2.3 cites some types of 
sub-grid models that rely on consistency of grid-dependent solution bias between 
validation and prediction settings. Approximate traveling consistency of grid related 
solution bias (relative to exact solution results) can exist over a modeling space and can be 

9. Here a consistent enveloping database would span the temperature range exercised in the validation and 
the application settings, and any error in the measured property value would be contained within the pub-
lished uncertainty of the data (e.g., as a ±percentage of a nominal property value) at any given temperature.
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taken advantage of to decrease computational cost of parameter space sampling in 
optimization and uncertainty quantification. See related discussion and empirical 
examples in  [95], [103], [104].  

4.2 Absence of Traveling Consistency between Validation and 
Prediction Settings, associated Extrapolation Risk from Type X 
Validation Error, and “Data Conditioning” to Mitigate the Risk

In this subsection prediction risk associated with model bias is shown to be consequential 
when traveling consistency is not present. In the example below this occurs when 
continuity in a physical aspect of the cantilever beam is not maintained between the 
validation and prediction settings.

Consider a case where the beam in the validation experiment (Beam 1) has an actual 
length somewhere in the risk range 1.0067Lo-Low  Lo-actual  Lo-High as portrayed in 
Figure 4. No model bias is indicated in the validation assessment although the model is 
actually biased. 

Let a nominally identical second physical beam (Beam 2) be used in the new application 
setting. Beam 2 has a different length, but also within the same measurement and 
modeling uncertainty range as the validation Beam 1 (Beam 2 length also lies within the 
two ruler tick marks Lo-Low and Lo-High). Assume that everything else is the same between 
the validation and prediction settings: E, I, Po, P' , and phenomenological behavior of the 
beams. Let the  actual length of Beam 2 lie within the range Lo-Low  Lo-actual  1.0067Lo-
Low. Then the actual deflection in the new setting (7) is outside the predicted bounds given 
by equations 5 and 6. Of course, this would also be the case in the validation setting if 
Beam 2 was used there. Then the validation assessment would reveal an obvious bias 
where the experimental result lies below the bottom extent of the prediction uncertainty 
bar in Figure 4. This was not caught because different beams were used in the validation 
and application settings.

We ran into trouble here because beam length was modeled as though it flows through to 
the prediction setting as part of the traveling model, when really beam length changes 
between the two settings in changing from Beam 1 to Beam 2. Physical beam length in this 
example is not consistent between the validation and prediction settings even though both 
beam lengths lie within the modeled uncertainty range [Lo-Low, Lo-High]. A different 
example with similar implications (when a physical factor is not consistent between 
validation and application settings) is illustrated in [47]. 

Actual beam deflection in the new setting would lie within the predicted bounds 
(equations 5 and 6) if beam length (Beam2) happens to be between 1.0067Lo-Low and 
1.01Lo-Low. To avoid dependence on any such serendipity the Real Space framework takes 
a defensive measure for the most significant systematic uncertainties in the non-traveling 
aspects of the validation experiment. If it is known in advance that the beams in the 
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validation and prediction settings are nominally identical but not exactly the same (i.e., 
have characteristics only within the same range of uncertainty), then the framework would 
treat beam length and its other geometric and material characteristics as non-traveling. 
Uncertainties in these beam characteristics would be treated according to “data 
conditioning” procedures demonstrated in [47]–[52]. The procedures makes appropriate 
accommodations to avoid Type X error of undetected model bias in model validation and 
conditioning activities. The precautionary measures help avert associated adverse 
consequences in downstream predictions.  

The data conditioning procedures address risk from model bias that can be masked by 
uncertainties in aspects of the validation experiments that do not travel. Those aspects 
designated as traveling are considered or assumed to be consistent between the validation 
and new prediction settings. There is always risk that some aspects designated for the 
traveling model will not be consistent in the new prediction setting. Beyond aspects like 
geometry and material properties, whether the same “physics” applies in both situations is 
often very open to question. Will the behavioral equations and parameter values/
uncertainties that were corroborated in the validation setting apply in the new setting? In 
the new temperature regime, will the equation for specific heat as a function of 
temperature still work with the rest of the traveling model to capture reality in the new 
physical regime? Will the different submodels that bound model-form uncertainty for 
laminar-to-turbulent transition length and for turbulence behavior still adequately bound 
these in the new physical setting? This is the implicit hope going into prediction if the 
traveling aspects have been corroborated at the validation conditions. Whether this hope 
is reasonable depends on many things that only a diversity of experience and viewpoints 
may help assess and divine (see Section 6, accreditation). 

Rigorously, all bets are off in extrapolation. Even if good agreement exists at the tested 
points, it is unknown and unknowable whether a model will hold up well in extrapolation. 
Whenever physical conditions change, physics modalities change. How large the effect will 
be on the validation quantities of interest, and how well the validation-corroborated 
model will account for these new modes, is very difficult to reliably predict. 

Consider the potential consistency of a fire dynamics model traveling between a setting 
where an object does not exist in a fire and one where an object does exist within the fire. 
Putting the object in the fire produces significant interaction effects which add new 
physics to the situation. For instance, the presence of the object adds surface-shear-driven 
vorticity to the flow field at the object surface. Since the fire in isolation has only 
buoyancy-driven shear vorticity generation, the shear, vorticity, and turbulence 
generation models might not suitably handle (travel to) the new type of surface-driven 
phenomena, even though they might perform well in the isolated fire conditions where the 
fire dynamics model was initially developed and validated. Hence, the surface-shear-
driven turbulent mixing of fuel and air may not be adequately modeled, and since mixing 
strongly affects combustion, the local combustion and consequent heating of the object 
may not be represented well.
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As another example, it is generally regarded that models of complex structures do not 
extrapolate well from the conditions at which they are calibrated. Another example 
familiar to the author is foam thermal pyrolysis and charring/ablation/vaporization 
models ([18], [28], [53] [55], [105]-[107]). The agreement between present day state-of-
the-art models and actual foam behavior can vary quite sensitively at different foam 
densities, venting conditions, applied heat fluxes, heating rates, and spatial application of 
heating. These models are generally considered  unreliable in extrapolation.

Thus, validation conclusions can only be drawn at specific validation points in the 
parameter space, and these conclusions cannot be expected to reliably extrapolate to 
significantly different conditions. It is unknowable what “significantly different” is until 
actual testing determines this. 

Therefore it is not appropriate to claim that a model substantiated in validation settings 
will be valid at, or is to be considered validated for, new application settings. Instead, the 
framework speaks only of BEWU prediction at the new settings. This is intended to be a 
less misleading statement than “We’re using a validated [validation-substantiated] model 
for these extrapolative predictions...‚” when the model was actually substantiated at 
different conditions. 
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5 Design of Model Validation (and Conditioning) 
Experiments and Scope of the Experiment Model 

Because of the vagaries that extrapolation presents, it is essential to plan validation 
experiments as close as possible to the actual conditions of the applications for which the 
model will be used. This is of course also the best philosophy for conditioning of models. 
This maximizes the applicability and relevance of the validation or conditioning results to 
the intended applications. 

In the prior example of fire modeling, where the prediction problem involves heat loads 
on an object in the fire, the physical regime is one where the object’s presence substantially 
affects the fire, through its impact on the flow field and because its thermal mass has a 
coupling affect that moderates fire intensity. Therefore it is best to design one or more 
fire-model validation experiments that involve a representative object. Validation 
exercises would ideally be performed with objects of different size, thermal mass, and 
surface roughness, and locations within and apart from the fire.

Countervailing objectives and constraints often cause validation experiments to be 
relatively simple and far (in modeling parameter space) from the intended model 
application conditions. One driver is the need to control conditions in the validation 
experiments in order to maximize resolution power to isolate model bias. Cost and 
technical practicality also often drive validation experiments to be simpler than the 
eventual applications. In many cases, such as nuclear weapons testing and nuclear power 
plant accidents, tests in the intended application space are not feasible. 

Balanced judgment over all the considerations involved must be applied to derive the most 
benefit from validation experiments and assessments. Other aspects of good experiment 
planning to be discussed next include:

i. the use of modeling to help design the validation or conditioning experiments 
and diagnostic instrumentation; 

ii. optimizing the scope/boundaries of the experiment model (e-model) and of 
the traveling model to reduce uncertainty and increase resolution in the 
validation assessment. 

The validation experiment does not usually dictate a unique scope for the experiment 
model. For example, a bank of heat lamps in an experiment warms a heat-spreader plate, 
which then radiates to a test object of interest. The heating conditions on the test object 
(traveling model) are needed. The scope of the e-model could stop at the heat spreader 
plate that radiates to the test object, or could extend further to include the banks of heat 
lamps in the model. It is much easier and less uncertain to paint the heat-spreader plate 
with an emissivity-controlling paint and instrument it with thermocouples (providing a 
reasonably accurate radiative heating condition applied to the test object) than to try to 
model the complex geometries of the heating lamps and accurately determine and specify 
their effective temperatures and emissivities. 
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As another illustration, consider a fuel-pool fire being modeled with a fire CFD code. If 
the fuel-level regression rate of the pool of fuel is measured in the fire experiment, then the 
fuel vaporization rate that feeds the fire can be calculated from fundamental principles and 
other experimental measurements of ambient pressure and liquid fuel pool temperature. 
The fuel vaporization rate could then be used as input data to the fire CFD model. 
Alternatively the fire CFD code may offer a modeling option to calculate fuel vaporization 
from inputs to the model of measured ambient pressure and initial fuel pool temperature. 
From these and the fire simulation’s calculated heat flux to the pool surface and 
consequent evolution of fuel surface temperature, the fuel vaporization rate that feeds the 
fire can be calculated internally. Thus, various utilizations of the measured data, traded off 
with internal modeling, affect the scope and form of the e-model and its uncertainty. 

Thus, when one sets out to “model a validation experiment”, there are often multiple 
options regarding the model's scope: what are the model boundaries and what is to be 
phenomenologically modeled versus what is to be input to the model from experimental 
measurement or published values or empirical relationships? Although a unique option 
does not exist with regard to scope of the experiment model, a best choice can be made. 
This is the choice that most reduces uncertainty in the validation activity, given the 
available freedoms in the experiments and modeling. That is, the best choice is the one 
that allows the smallest uncertainty in the traveling model. (This includes any uncertainty 
mapped to the traveling model due to uncertainty in non-traveling aspects of the 
experiments as demonstrated in [46], [47], [49], [56] and discussed in section 7 of this 
report.) 

Whatever the case, the uncertainty of all the options should be assessed up front with a 
goal of uncertainty minimization, which may impact:

• design of the experiment, and scope of the e-model;
• measurement and sensor types, locations, and spatial and temporal resolution;
• procurement of more and/or better equipment for measurement of outputs, 

measurement of inputs, and/or control of inputs such as applied excitations;
• procurement of sufficient information regarding material properties, geometry,  

boundary conditions, equipment accuracy, calibration accuracy, etc.

Optimized experiment design in these respects is crucial. Optimized design usually 
benefits immensely from computational modeling and simulation. With model-assisted 
experiment design the experiments and planned measurements are modeled before the 
experiments are finalized, with the goal of identifying to the greatest extent possible the 
best experiment parameter settings, measurements, instrumentation, and e-model that 
minimize traveling-model uncertainty. Model-assisted experiment design examines the 
uncertainties in various experiment and modeling facets and options to help arrive at the 
most revealing experiments and model-experiment comparisons possible under the 
constraints in the model validation or conditioning project. Model-assisted experiment 
design includes but goes beyond the concepts of traditional statistical design of 
experiments (e.g. [108]). This traditionally deals with planning trials or runs to sample a 
parameter space of system operation for efficient discernment and analysis of process or 
product variation over noise variables and exploratory/control/operational variables.
54



6 Model Acceptance, Endorsement, Accreditation, etc.

Although validation conclusions cannot be assured to accurately project to extrapolation 
conditions, quantitative substantiation at validation points in the space does provide some 
corroborating evidence that lends credibility to the model. Such corroboration, combined 
with other evidence of substantive quality control and risk management in the modeling 
process, can be used to support a decision to tentatively accept or even formally endorse
([5], e.g. formally Accredit, Certify, or Qualify) the model for certain design, analysis, and 
decision-support uses. Acceptance or endorsement is ultimately a subjective decision 
based on circumstantial evidence and human judgment regarding the model’s anticipated 
trustworthiness in resolving a given issue. Hence, technical expertise in the particular 
modeling realm is essential in the decision-making process, both to make a reasonable 
decision and to project to others the credibility of the decision. The deliberation should 
always weigh potential risks against benefits of model use. 

Thus, model acceptance or endorsement is based on a subjective belief (leap of faith) that a 
model will perform sufficiently well in extrapolation to support effective resolution of 
issues of interest. In contrast, model validation involves direct quantitative discernment. 

If a model is refuted in validation assessments at points in the parameter space near the 
extrapolation conditions, it is difficult to defensibly argue that it should be endorsed for 
making predictions there. However, since endorsement is a subjective value judgment, 
one cannot unequivocally say that the model should not be endorsed. If, for instance, only 
minimal model conditioning involving a small isolated model fix is necessary to bring the 
model into line with the experimental data at the tested points in the parameter space, 
then it might be reasonable to endorse the conditioned model for certain use purposes.  

Indeed, reference [1] offers detailed considerations and formal procedures concerning 
model accreditation when actual validation substantiations are unavailable because 
experiments and data are unavailable. This is for modeling endeavors like battlefield 
simulations, but might also apply to things like weapon accident and nuclear power plant 
accident modeling. The accreditation process weighs potential risks and benefits of model 
use, and forms statements of what the models can reasonably be used for, e.g. “To be used 
only for ascertaining which of several accident perturbations appears to be worst, or to 
determine which model parameters affect outcomes most.” Such ordinal ranking purposes 
tend to be fairly forgiving of model inaccuracies. For such endorsement deliberations it is 
crucially important to assemble appropriately diverse and credentialed experts and  utilize 
independent peer review of their deliberation processes and conclusions. 

The latter might be more aptly called 'model acceptance' rather than 'model endorsement' 
because of the greater reassurance of prediction quality implied by ‘endorsement’ (or 
‘accreditation’ or ‘certification’). As an engineering example, consider the task of modeling 
3-D heat diffusion through an object. Let the thermal conductivity to be used (assumed to 
be isotropic) come from a material property characterization using a 1-D version of the 
heat equation and a heated rod of the same material as the object. Even if the thermal 
conductivity is characterized in the 1-D activity over the relevant temperature range for 
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the 3-D application conditions, there could be significant inconsistencies between the 1-D 
and 3-D settings that would cause the thermal conductivity properties to not travel 
appropriately. Lack of isotropy of the material property is one possible issue; another is 
that mismodeled phenomena like convective and radiative boundary conditions in the 1-
D parameter estimation activity could yield incorrect property values that would manifest 
as modeling error in 3-D settings. Nonetheless, the author’s experience is that 
extrapolations of this nature between the 1-D and 3-D settings are generally low-risk. 
Hence, the material property model might be accepted for cautionary 3-D use, but 
endorsement might involve much greater formalism—closer examinaton of the 1-D 
characterization activity; testing for isotropy; etc. 
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7 Model Conditioning

What if the model does not meet the validation accuracy criteria? It is presumed that 
generally the model is the best one that can be afforded and obtained, given that model 
validation activities are fairly complex and expensive endeavors—not applicable at will to 
just any model. Hence, the model will normally not be rejected and abandoned if it does 
not meet the validation accuracy criteria. Rather, as the best available codification of 
knowledge of the physics and solution approach for the problem, efforts may be made to 
better reconcile the model with reality. Generally the model or some modification of it will 
be leveraged for prediction needs, even if with lowered expectations and reduced 
prediction duties and domain of application.

Reconciliation can come from an investigation of experimental and modeling factors 
perceived to contribute most to the failure to meet the acceptance criteria, with 
remediation of the factors as feasible. This can take the form of more accurate and precise 
measurement and control of experimental inputs and conditions in the experiments; more 
experiments if experimental uncertainty is being driven by a small number of trials of 
stochastically varying phenomena; improved data processing procedures; reducing the 
discretization-related uncertainties in the model solutions, etc. 

If the remediation actions do not fully reconcile things, then it may be decided that the 
best chance for success in upcoming uses of the model is to condition it to match the 
validation data as well as possible. It is illustrated in [46] that this can reduce error in 
extrapolative prediction; the conditioned model will be more accurate in at least a local 
neighborhood of extrapolative prediction, and this advantage may extend to larger 
extrapolations. 

Hence, even if the model is found inadequate, model conditioning can be used to extract 
value from the validation characterization before going forward with predictions. Model 
conditioning applied to the center and rightmost categories in Figure 1 would bias correct 
and/or add uncertainty to the model to yield results that match the uncertainty range of 
the experimental data as closely as can be achieved. The left-most category of results in 
Figure 1 may also require or benefit from model conditioning, especially if the uncertainty 
carried in the model is excessive such that the model predictions are very suboptimal or 
effectively non-useful. 

What is the best procedure for conditioning a model? There is no single approach that 
works best in all circumstances. Approaches in at least the following two categories exist. 
A combination of these approaches can also be used.

Approach 1: correction or uncertainty “layer function” superposed-on or scaled-to the 
prediction results of the unaltered model (also called “add factoring” [70]). Reference [46]
summarizes a project app. where Approach 1 worked and Approach 2 was not suitable.

Approach 2: adjust or ‘calibrate’ model parameter values to correct the output results. A 
simple  approach is demonstrated in [47] and [56], where interval uncertainty is mapped 
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to the calibration parameters. The approach is simpler and less expensive than approaches 
like Bayesian calibration and Maximum Likelihood estimation, which provide uncertainty
distributions on the calibrated parameter values ([14], [63]). (The term ‘calibration’ also 
applies to methods that yield point values for the calibration parameters such that model 
response matches e.g. the mean of the experimental data, or yields the best fit to the data in 
a Least Squares sense. For purposes of model conditioning as defined in this report, the 
calibration problem involves addressing the full span of the experimental uncertainty.)

The best model parameter(s) to manipulate in a given model conditioning circumstance 
can depend on the particular model extrapolations in mind and are a matter of expert 
judgment in the model and the physics of the problem.  Extrapolation in one direction in 
the parameter space might be best achieved by manipulating one set of parameters, while 
extrapolation in another direction might be best accomplished with a different set. 
Alternatively, a correction layer (Approach 1) might work best in the given circumstance.

If the model will be used for extrapolations in a number of different directions in 
parameter space, then one desires conditioning that is robust over the various 
extrapolations. Selection of the optimal parameters and method to best accomplish a given 
model conditioning purpose is presently more an art than a science.

A constraint on the allowable set of conditioning parameters is that they must be 
parameters of the traveling portion of the E-model. Often, the most versatile traveling 
parameters for model conditioning are material property and constitutive model 
parameters and other physics submodel parameters. 

It is somewhat common in the literature to blur distinctions between model validation 
(which tests predictive ability of the model in an extrapolative setting where the validation 
data has not been used to condition the model) and model conditioning or “updating” 
where the model is adjusted to match the validation data. There are many papers in the 
literature that affix the label ‘model validation’ to procedures like Bayesian and Maximum 
Likelihood model calibration and parameter estimation10. As discussed in [46], this 
distinction can be somewhat arbitrary under certain conditions such as interpolative use 
of the model within its calibration data base (e.g. the application in [43]). However, it is 
necessary to make and emphasize the distinction when the intended use of the model is 
extrapolatory, in which case validation implies testing the model’s predictive ability in 
meaningful extrapolations away from the calibration conditions.  

10. Parameter estimation is algorithmically similar to model calibration. However, parameter esti-
mation is considered by the author to occur at the modeling stage where a parameter's value is 
initially characterized and represents a physically related parameter in the modeling equations. 
If the parameter value is subsequently manipulated to make model predictions better match ex-
perimental data in point-of-use settings where model deficiency shows up, then such readjust-
ment or updating is viewed as model calibration instead of parameter estimation. When a 
parameter does not represent a physically related parameter in the modeling scheme, but instead 
exists as one or more non-physical degrees of freedom in the model that are adjusted to attain 
model agreement with data, then this is considered to be model calibration (not parameter esti-
mation). However, these distinctions are somewhat subtle and are not universally agreed upon.  
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8 Closing

Modeling and simulation are increasingly being utilized and depended upon for analysis, 
design, and decisions of consequence. Therefore it is increasingly important to develop 
and implement quality control procedures and risk management in modeling and 
prediction. Associated methodologies are presently in a vigorous state of research and 
development within and outside Sandia. A large variety of viewpoints and precedents were 
surveyed in this report, as were constraints and difficulties in devising a viable 
methodology that accommodates the end-to-end experiments-to-prediction problem. 
New concepts, definitions, and terminology were presented to address perceived gaps. 

A novel Real Space approach was presented and discussed. Rationale was given for the 
various choices taken in developing the Real Space approach. The approach is driven by 
pragmatic requirements of reasonable simplicity and straightforwardness; affordability of 
the methodology and procedures; limited data availability and versatility of the types of 
uncertainty that must be accommodated; and readily interpretable results for decision 
makers who are non-specialists in modeling and uncertainty quantification.

An important contribution of the approach is its end-to-end project perspective. 
Workable process elements are required. The Real-Space framework’s pragmatic 
discrepancy measures and acceptance criteria and associated uncertainty representation 
and processing machinery are the same whether the purpose is model conditioning or 
model validation. Other methodologies in the literature appear to address only isolated 
portions of the end-to-end problem.

Although validation assessments can only yield limited circumstantial corroboration of 
model predictiveness, carefully designed and executed assessments can add greatly to the 
modelers’ and the model users’ knowledge about the performance of the model. This is an 
essential element of due diligence and applied risk management in developing and using 
models. Likewise, although accuracy of predictions cannot be guaranteed, contextualizing 
and improving the predictions as much as possible through appropriate methodology 
should be pursued. We can seek to maximize accuracy potential through careful design 
and analysis of experiments and model development, validation, and extrapolation 
procedures optimized toward the desired prediction tasks. Additionally, modeling risk can 
be assessed through InfoGap type analyses [111] to determine the degree to which a model 
can be incorrect before changing the conclusion obtained with it (see e.g. [44]). This 
having been said, quality assessment and control in modeling and simulation are in the 
very early stages of development. Much still needs to be done to bring these young 
engineering sciences to maturity. 
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Appendix A: Summary Comparison of Real Space Validation 
Approach vs. Two Other Established  
Frameworks

The following figures are extracted from a slide presentation ([112]) that compares the 
Real Space valdation approach against established validation frameworks [6] and [54]. A 
number of advantages of the Real Space approach are shown. See [112] for more details. 

Figure A.1.  Real Space vs. Transform Space Representations of Model Discrepancy
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Figure A.2.  Real Space vs. Transform Space Discrepancy Metric Support for Extrapolation
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Figure A.3. ASME V&V-20 Subractive-Difference Metric limitation for Some Types of Random Variability 
in Repeated Experiments
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Figure A.4. Roy & Oberkampf skew toward Model User’s Risk arising from Systematic Uncertainties in 
Experimental Input Conditions
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Figure A.5. Summary Table of demonstrated Capabilities and Features of the Compared Model 
Validation Frameworks
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