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Abstract

This document compares the finite element shell formulations in the Sierra Solid Mechanics
code. These are finite elements either currently in the Sierra simulation codes Presto and Ada-
gio, or expected to be added to them in time. The list of elements are divided into traditional
two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements
that contain either modifications or additional terms designed to represent the bending stiffness
expected to be found in shell formulations. These particular finite elements are formulated for
finite deformation and inelastic material response, and, as such, are not based on some of the
elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each
shell element is subjected to a series of 12 verification and validation test problems. The un-
derlying purpose of the tests here is to identify the quality of both the spatially discrete finite
element gradient operator and the spatially discrete finite element divergence operator. If the
derivation of the finite element is proper, the discrete divergence operator is the transpose of
the discrete gradient operator. An overall summary is provided from which one can rank, at
least in an average sense, how well the individual formulations can be expected to perform in
applications encountered year in and year out. A letter grade has been assigned albeit some-
times subjectively for each shell element and each test problem result. The number of A’s, B’s,
C’s, et cetera assigned have been totaled, and a grade point average (GPA) has been computed,
based on a 4.0-system. These grades, combined with a comparison between the test problems
and the application problem, can be used to guide an analyst to select the element with the best
shell formulation.
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Chapter 1

Shell Element Formulations

1.1 Overview

The following is a list of the shell element formulations addressed in this summary. The
list is divided into traditional two-dimensional, plane stress shell finite elements, and three-
dimensional solid finite elements that contain either modifications or additional terms designed
to represent the bending stiffness expected to be found in shell formulations. These are finite
elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be
added to them in time. These particular finite elements are formulated for finite deformation
and inelastic material response, and, as such, are not based on some of the elegant formulations
that can be found in an elastic, infinitesimal finite element setting.

• 2-D Plane-Stress Formulations

KHQ4 Key-Hoff 4-Node Quadrilateral
KGQ4 Key-Gruda 4-Node Quadrilateral
NCT3 Node Centered 3-Node Triangle
ECT3 Element Centered 3-Node Triangle

• 3-D Multi-Stress Formulations

ESH8 Simo-Rifai Enhanced Strain 3-D Multi-Stress Hexahedron
K1H8 Key-Gullerud-Koteras 2-D Plane-Stress Hexahedron
K2H8 Key-Gullerud-Koteras 3-D Multi-Stress Hexahedron
TSH8 Wing Kam Liu Thick Shell 3-D Multi-Stress Hexahedron
SDH8 Selective Deviatoric 3-D Multi-Stress Hexahedron

The following table, Table 1-1, relates these element formulations to what is currently available
in the Sierra applications Presto and Adagio. The table includes current and future key words
for those formulations expected to be implemented.
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TABLE 1-1: Presto/Adagio Formulation Keywords
Name Section type Formulation keyword Status
KHQ4 Shell Section Formulation = KH Shell Wrk
KGQ4 Shell Section Formulation = KG Shell Nyi
NCT3 Shell Section Formulation = NC Shell Nyi
ECT3 Shell Section Formulation = EC Shell (default) Wrk
ESH8 Solid Section Formulation = Enhanced Strain Wrk
K1H8 Solid Section Formulation = HexShell Brk
K2H8 Solid Section Formulation = Tbd
TSH8 Solid Section Formulation = ThickShell Wrk
SDH8 Solid Section Formulation = Selective Deviatoric Wrk

Deviatoric Parameter = <value> Wrk
(Wrk = Working; Brk = Broken; Nyi = Not yet implemented; Tbd = To be determined)

1.2 Shell Element Brief Descriptions

1.2.1 2-D Shell Elements

All of the following 2-D shell finite elements at each vertex node have three translational de-
grees of freedom and three rotational degrees of freedom, that is, translational movement along
the three x,y,z-coordinate axises ux, uy, and uz, respectively, and rotational degrees of freedom
ωx, ωy, and ωz about the x,y,z-coordinate axises, respectively, following a right-hand rule. For
transient dynamic applications, velocities and accelerations are also included for all of these
degrees of freedom.

KHQ4: Key-Hoff 4-node quadrilateral. The Key-Hoff finite element is based on a
Mindlin-Reissner transverse shear shell theory and a bi-linear interpolation of displacements
and rotations at the four vertex nodal points. To obtain the membrane and bending stress
resultants that drive the equations of motion, a one-dimensional numerical integration in the
thickness direction is used; plane-stress constitutive models are evaluated at each numerical
quadrature location. The element contains a classical transverse shear correction factor of 5/6.
When the finite element becomes thin (the element’s aspect ration L/t becomes large2), the
transverse shear correction factor becomes a ‘Lagrange multiplier’ that depends on the ele-
ment’s aspect ratio L/t and limits the build up of transverse-shear strain energy that would
otherwise cause the element to lock.

KGQ4: Key-Gruda 4-node quadrilateral. The KGQ4 Key-Gruda plane-stress 4-node
quadrilateral shell finite element is a formulation that employs the hexahedral solid shell inter-
nals of the K1H8 solid 8-node finite element. However, it escapes the need to use nettlesome

2A shell finite element’s aspect ratio is defined as L/t =
√

Area/thickness
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through-thickness kinematic constraints. In addition, it employs nodal-based common fiber
vectors (initially surface normal vectors that have been rotated in time using nodal point rota-
tional rates) in the time-step-by-time-step reconstruction of the internal hexahedral frame. To
obtain the membrane and bending stress resultants that drive the equations of motion, a one-
dimensional numerical integration in the thickness direction is used; plane-stress constitutive
models are evaluated at each numerical quadrature location. The element contains a classical
transverse shear correction factor of 5/6. When the finite element becomes thin, the transverse
shear correction factor becomes a ‘Lagrange multiplier’ that depends on the element’s aspect
ratio L/t and limits the build up of transverse-shear strain energy that would otherwise cause
the element to lock. In its current form, the element also uses an areal integration on the middle
surface to obtain the bilinear distribution needed for the constant bending stress resultant Mrs
expected by the Mindlin-Reissner transverse shear shell theory.

ECT3: Element Centered 3-node triangle. The Element Centered finite element is based
on a Mindlin-Reissner transverse shear shell theory and a linear interpolation of displacements
and rotations at the three vertex nodal points. To obtain the membrane and bending stress
resultants that drive the equations of motion, a one-dimensional numerical integration in the
thickness direction is used within the finite element; plane-stress constitutive models are eval-
uated at each numerical quadrature location. The element contains a classical transverse shear
correction factor of 5/6. When the finite element becomes thin (L/t large), the transverse shear
correction factor becomes a ‘Lagrange multiplier’ that depends on on the element’s aspect ra-
tio L/t and limits the build up of transverse-shear strain energy that would otherwise cause the
element to lock.

NCT3: Node Centered 3-node triangle. The Node Centered finite element is based on a
Mindlin-Reissner transverse shear shell theory and a linear interpolation of displacements and
rotations at the three vertex nodal points. To obtain the membrane and bending stress resultants
that drive the equations of motion, a one-dimensional numerical integration in the thickness
direction is used at each nodal point; plane-stress constitutive models are evaluated at each
numerical quadrature location. The element contains a classical transverse shear correction
factor of 5/6. The element does not exhibit shear locking and, therefore, does not contain any
other factors for large values of L/t.

1.2.2 3-D Shell Elements

All of the following finite elements at each vertex node have three translational degrees of
freedom, that is, translational movement along the three x,y,z-coordinate axises ux, uy, and uz,
respectively. For transient dynamic applications, velocities and accelerations are also included
for all of these degrees of freedom.

ESH8: Simo-Rifai Enhanced Strain, 8-node, 3-D multi-stress hexahedron. The Simo-
Rifai 3-D multi-stress hexahedral element is based on a tri-linear interpolation of displacements
at the eight vertex nodal points. Improved bending characteristics are obtained from internal
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enhanced strain modes. The enhanced strain modes are statically determined based on mini-
mum strain-energy. The element is rather shape sensitive.

K1H8: Key-Gullerud-Koteras 8-node, 2-D plane-stress hexahedron. The Key-Gullerud-
Koteras 2-D plane-stress hexahedral element is based on a tri-linear interpolation of displace-
ments at the eight vertex nodal points. The bending characteristics are derived from a Mindlin-
Reissner transverse shear shell theory. Plane-stress constitutive relations are used. The equa-
tions of motion are driven by the mean stress, the linear variation of lateral stress through
the thickness, and a linear variation in transverse shear stress components in the in-plane direc-
tions of the element. Plane-stress constitutive models require the use of independently specified
through-thickness kinematic constraints at each corner of the element.

K2H8: Key-Gullerud-Koteras 8-node, 3-D multi-stress hexahedron. The Key-Gullerud-
Koteras 3-D multi-stress hexahedral element is based on a tri-linear interpolation of displace-
ments at the eight vertex nodal points. The bending characteristics are derived from a Mindlin-
Reissner transverse shear shell theory. Three-dimensional constitutive relations are used. The
equations of motion are driven by the mean stress, the linear variation of lateral stress through
the thickness, and a linear variation in transverse shear stress components in the in-plane di-
rections of the element, plus a bi-linear variation of stress normal to the middle-plane of the
element, that is, in the thickness direction. Classical plane-stress results are obtained as a
limiting condition to the extent allowed by boundary conditions and and interactions between
adjacent layers. In explicit transient dynamic simulations, the critical time step can depend on
the thickness dimension.

TSH8: Liu Thick Shell 8-node, 3-D multi-stress hexahedron. The Liu Thick Shell 3-
D multi-stress hexahedral element is based on a tri-linear interpolation of displacements at
the eight vertex nodal points. It is an ’almost’ mean-strain finite element to which has been
added a selected number of additional strain modes gotten from a Taylor series expansion
about the center of the element. In its published form, a decimated 2×2×2 Gauss numerical
quadrature is proposed that, however, gives an artificially skewed response; a full 2× 2× 2
Gauss quadrature is to be preferred. The element is rather shape sensitive. Note: All results
presented here using this finite element utilize two finite elements in the thickness direction
unless otherwise noted. The bending response for a single layer is about a factor of 2 too soft.

SDH8: Selective Deviatoric 8-node, 3-D multi-stress hexahedron. The Selective De-
viatoric 3-D multi-stress hexahedral element is based on a tri-linear interpolation of displace-
ments at the eight vertex nodal points. The element uses reduced integration, that is, only a
mean quadrature bulk strain is computed and used followed by only using a mean-quadrature
pressure for the equations of motion. The element is not necessarily tuned for bending; it was
conceived as an element using physically based hour-glass control and to that end contains
a parameter that allows the non-mean quadrature deviatoric stress components to be scaled
down. The element has no preferred orientation that can be associated with in-plane mem-
brane behavior, out-of-plane bending behavior, or transverse shear behavior – concepts and
terms common with shell formulations. It is included here only to document its behavior in
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beam bending and shell bending applications.
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Chapter 2

Testing Perspective

The underlying purpose of the tests here is to identify the quality of both the spatially discrete
finite element gradient operator and the spatially discrete finite element divergence operator. (If
the derivation of the finite element is proper, the discrete divergence operator is the transpose
of the discrete gradient operator.)

Though used here, explicit central difference time integration is not being tested here and
is, in fact, counted upon to not be a factor in any of the results reported here. Discrete explicit
central difference time integration is a technology that goes back to the origins of computational
mechanics in the 1940’s and is now well understood and has been routinely implemented in
any number of finite difference and finite element codes over the past 70 years. A number of
the test problems use vibrational results to differentiate one finite element from another, but the
frequency content (usually close to a first mode response) is very low compared to the highest
frequencies that the temporal integration can handle accurately.

The material models used are either elastic or perfectly-plastic, both of which use simple,
reliable incremental integration schemes. Coupled with the tiny step sizes dictated by the con-
ditionally stable explicit central difference temporal integration scheme, the material integra-
tion algorithms are more accurate than the gradient/divergence operators being tested. While
some of the test problems have decidedly non-infinitesimal strains and rotations, they are not
large enough to bring into question the the suitability of the invariant stress flux algorithms or
their implementation.

Several of the test problems involve no more than infinitesimal strains and displacements,
and might easily bring into question whether they are useful test problems for finite elements
intended for simulations that require large deformations and strains. But, what is significant is
the identification of the reduced capabilities that come from a departure from a regular mesh
lined up with the coordinate system. In this regard, the Irons Patch Test is very significant even
though it is routinely used with small displacements. It examines how well a small collection
(five to fifteen) of very irregularly shaped finite elements can reproduce a uniform strain state.
The irregularity of the finite elements used in the Irons Patch Test is typical of what would
occur to a regular mesh under large deformations. The Irons Patch Test is the opposite to
asking the question of how well can a refined uniform mesh approximate a complex solution
(a less significant question).
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The Irons Patch Test is fundamental; it is a go/no-go test. If a finite element fails to repro-
duce the uniform strain/stress state, then the discrete gradient calculation is defective. The next
step after the first-order uniform strain Irons Patch Test is a second-order linear strain Irons
Patch Test. The second-order linear strain test can reveal the shape sensitivity of the element;
one of the test problems utilizes this concept.
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Chapter 3

Shell Test Suite Results

Throughout the following plots for the individual shell test problems, the same color coding
for the overlayed curves will be used.

• 2-D Plane-Stress Formulations

Green KHQ4 Key-Hoff 4-Node Quadrilateral
Magenta KGQ4 Key-Gruda 4-Node Quadrilateral
Blue NCT3-table Node Centered 3-Node Triangle
Gray NCT3-tuned Node Centered 3-Node Triangle
Red ECT3 Element Centered 3-Node Triangle

• 3-D Multi-Stress Formulations

Black ESH8 Simo-Rifai enhanced strain 3-D Multi-Stress Hexah
Green K1H8 Key-Gullerud-Koteras 2-D Plane-Stress Hexah
Blue K2H8 Key-Gullerud-Koteras 3-D Multi-Stress Hexah
Red TSH8 Wing Kam Liu Thick Shell 3-D Multi-Stress Hexah
Gray SDH8 Selective Deviatoric 3-D Multi-Stress Hexah

Note that ‘NCT3-table’ refers to tuning parameters obtained internally from a tabulated-
function interpolation of tuning-parameters vs aspect-ratio based on five selected shell test
problems, while ’NCT3-tuned’ refers to tuning parameters identified for the individual test
problem for which the results are being plotted.

21



3.1 Test Problem 1: Cantilever Beam

Test Problem Statement. The beam, pictured in Figure 3.1, has a length of 10 inches, a depth
of 1 inch, and a width of 0.5 inches. The boundary conditions are those of a cantilevered beam,
namely, zero displacement and zero rotation at the root (far end), Figure 3.1.

Figure 3.1. Beam mesh consisting of a single strip of ten 8-node
hexahedral solid elements.

The loading is a constant gravity loading of 600 g’s applied at time equal to zero. (A “1 g”
gravity loading equals a body force in lbf/in3 of ρ×386 in/sec2.)

The material is elastic with a Young’s modulus of E = 1.0×10+6 psi, a Poisson’s ratio of
ν = 0.25, and a density of ρ = 2.61×10−4 lbf-sec2/in4.

Shown in Figure 3.2 are the shell finite element meshes used. The triangular shell element
mesh has a symmetry boundry condition along one edge that removes an otherwise asymmetric
and inadequate response generated by this “biased” triangular element pattern.
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Figure 3.2. Beam mesh consisting of a single strip of 4-node
quadrilateral shell elements (left panel); beam mesh consisting of
a single strip of 3-node triangular shell elements (right panel). The
1 inch depth dimension is represnted by a 1 inch thickness specifi-
cation for each shell element.

Test Problem Characteristics. The problem is an elementry one-dimensional bending
test, and any finite element that is intended to represent the bending of beams, plates, or shells
using a mesh with only one finite element through the thickness needs to provide satisfactory
results on this problem. Of course, by their very nature quadrilateral and triangler shell finite
elements use only a surface to represent a beam, plate, or shell, and carry the beam depth, plate
thickness, or shell thickness as an “internal” geometric parameter.

Test Problem Results. Shown in Figure 3.3 is the 1×1×10 hexahedral solid finite element
mesh at both time equal to zero and the time of maximum tip deflection, 5.6 ms.

Shown in Figure 3.4 is the tip deflection vs time for the ESH8 Simo-Rifai Enhanced Strain
8-node, solid hexahedron (a solution that matches the 10-element beam reference solution),
the K1H8 Key-Gullerud-Koteras 8-node, plane stress hexahedron, the K2H8 Key-Gullerud-
Koteras 8-node, multi stress hexahedron, the SDH8 Selective Deviatoric 8-node hexahedron,
and the TSH8 Wing Kam Liu Thick-Shell 8-node hexahedron. Note that the ESH8 Simo-Rifai
reference solution, a black curve, is overlayed by the K1H8 green curve.

The element rank ordering here is ESH8, K1H8, K2H8, TSH8 with a double layer mesh,
SDH8.
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Figure 3.3. Beam mesh consisting of a single strip of 8-node
hexahedral solid elements; the peak dynamic deflected shape at
5.6 ms is depicted by the red mesh.

Shown in Figure 3.5 is the tip deflection vs time for the KHQ4 Key-Hoff 4-node quadrilat-
eral element, the NCT3 Node-Centered 3-node triangle using hand-tuned parameters of 0.17
and 0.17 for membrane and bending, respectively, the NCT3 Node-Centered 3-node triangle
using internal table-look-up tuning parameters, and the ECT3 Element Centered 3-node trian-
gle.

The element rank ordering here is KHQ4, NCT3-tuned, NCT3-table, ECT3. The ECT3
Element Centered 3-node triangle response is the stiffest (lowest amplitude, highest frequency)
finite element as expected.

Simulation Notes. For the hexahederal and quadrilateral meshes and associated underly-
ing element isoparameteric coordinates, the bending solution, and the coordinate axises are all
aligned. The net result is essentially a one-dimensional test, that is, there are no “off-diagonal”
terms that are required to obtain the expected results. Any finite element that fits this descrip-
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Figure 3.4. Beam vertical tip deflection histories for the 3-D
solid finite elements. The solid element ordering by color here is
ESH8, K1H8, K2H8, TSH8, SDH8. Note that the ESH8 Simo-
Rifai reference solution, a black curve, is overlayed by the K1H8
green curve.

tion (all of them except the triangular elements) and that does not do well on this test problem
cannot be expected to do better in a more complex setting.

On the other hand for the simple triangular finite elements here (the NCT3 Node Centered
3-node triangular finite element, and the ECT3 Element Centered 3-node triangular finite ele-
ment), this test problem is already a complex problem because there is no natural alignments
between finite element derivation, local axises or bending solution. For the node centered
NCT3 it is even worse because the nodal averaging algorithm is nearly defeated by the one
element wide strip mesh. Only through the use of a symmetry plane along one of the lateral
edges do the element algorithms have enough information to “find” the beam bending solution.
The result portends the advice that triangular shell finite elements should be used only where
the narrow dimension of a two-dimensional surface is meshed with several elements.
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Figure 3.5. In the left panel, beam vertical tip deflection histories
for four of the five 2-D shell finite elements. The shell element or-
dering by color here is KHQ4, NCT3-tuned, NCT3, ECT3. Note
that a 10-element beam reference solution, a black curve, is over-
layed by the KHQ4 green curve. In the right panel, beam vertical
tip deflection histories for the KGQ4 Key-Gruda plane-stress finite
element based on K1H8 internals employing surface fiber vectors
(initially surface normal vectors that have been rotated in time us-
ing nodal point rotational rates) for geometry definition (thin black
line) compared to the KHQ4 results (wide green line).
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3.2 Test Problem 2: Twisted Beam

Test Problem Statement. The twisted beam, pictured in Figure 3.6, has a length of 12 inches,
a depth of 0.32 inchs, and a width of 1.1 inches. The beam’s cross-section is rectangular,
but rotates by 90-degrees from a horizontal rectangular cross-section to a vertical rectangular
cross-section by the time the end of the beam is reached (near end). The boundary conditions
are those of a cantilevered beam, namely, zero displacement and zero rotation at the root (far
end), Figure 3.6.

Figure 3.6. Twisted Beam mesh consisting of a 1×2×12 strip of
8-node hexahedral solid elements.

The loading is a constant vertical shear loading of 1.0 lbf applied uniformly over the beam’s
cross-section at the tip at time equal to zero, and held constant.

The material is elastic with a Young’s modulus of E = 2.9×10+7 psi, a Poisson’s ratio of
ν = 0.22, and a density of ρ = 2.5×10−4 lbf-sec2/in4.
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Shown in Figure 3.6 is the 1×2×12 hexahedral solid finite element mesh at time equal to
zero. The small deflections of this test problem do not provide a useful overlayed deformed
mesh.

Shown in Figures 3.7 are the shell finite element meshes used. The quadrilateral mesh has
24 finite elements and the triangular mesh has 48 finite elements.

Figure 3.7. Twisted Beam mesh consisting of a double strip of 4-
node quadrilateral shell elements (left panel). The 0.32 inch depth
dimension is represnted by a 0.32 inch thickness specification for
each shell element. Twisted Beam mesh consisting of a double
strip of 3-node triangular shell element pairs (right panel)

Test Problem Characteristics. The test problem geometry is a non-planar warped geom-
etry. The significance of the warped geometry is particularly important to the 2-D shell finite
elements. At the clamped end of the beam, the solution is classical beam bending. At the
loaded end of the beam, the vertical shear load is applied as an in-plane or membrane traction.
The geometry assumptions incorporated into the finite element formulation are the determining
factor that allows the solution to transition from membrane shear to bending at the root. Early
shell finite elements assumed a “flat” geometry and a single fixed orientation of the surface
normal vector in their formulation. The result was minimal or no “connection” between the tip
load and the clamped support at the other end. Hence, this problem is primarily a test of the
geometry constructs incorporated in the finite element’s derivation.

Test Problem Results. Shown in Figure 3.8 is the tip deflection vs time for the ESH8
Simo-Rifai enhanced strain 8-node, solid hexahedron (reference solution), the K1H8 Key-
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Figure 3.8. Twisted Beam vertical tip deflection histories for the
3-D solid finite elements. The solid element ordering by color
here is ESH8, K1H8, TSH8 with a double layered mesh, K2H8,
Note that the ESH8 Simo-Rifai reference solution, a black curve,
is partially overlayed by the K1H8 green curve.

Gullerud-Koteras 8-node, plane stress hexahedron, the TSH8 Wing Kam Liu Thick-Shell 8-
node hexahedron, and the K2H8 Key-Gullerud-Koteras 8-node, multi stress hexahedron. Note
that the SDH8 finite element is omitted because of an overly stiff response.

The element rank ordering here is ESH8, K1H8, TSH8 with a double layer mesh, K2H8.

Shown in Figure 3.9 is the tip deflection vs time for the KHQ4 Key-Hoff 4-node quadrilat-
eral element, the NCT3 Node-Centered 3-node triangle using the internal table-look-up tuning
parameters of 0.2 and 0.2 for membrane and bending, respectively, and the ECT3 Element-
Centered 3-node triangle. Note that the ESH8 Simo-Rifai reference solution, a black curve, is
nearly overlayed by the KHQ4 green curve.

The element rank ordering here is KGQ4, KHQ4, NCT3, and ECT3.

29



Figure 3.9. In the left panel, twisted Beam vertical tip deflec-
tion histories for three of the four 2-D shell finite elements. The
shell element ordering by color here is KHQ4, NCT3, ECT3 (left
panel). Note that the ESH8 Simo-Rifai reference solution, a black
curve, is nearly overlayed by the KHQ4 green curve. In the right
panel, twisted Beam vertical tip deflection histories for the KGQ4
Key-Gruda plane-stress finite element based on K1H8 internals
employing surface fiber vectors (initially surface normal vectors
that have been rotated in time using nodal point rotational rates)
for geometry definition (thin black line) compared to the KHQ4
results (wide green line).

30



3.3 Test Problem 3: Point-Loaded Hemisphere

Test Problem Statement. The hemisphere, pictured in Figure 3.10, has a radius of 10 inches
and a thickness of 0.04 inches. The hemisphere is incomplete in that it has an 18-degree
polar angle opening at the “top.” The hemisphere (half of a sphere) is modeled using a 90-
degree sector and symmetry boundary conditions prescribing zero displacement normal to the
symmetry plane and restricting the rotation to be around an axis normal to the symmetry plane.

Figure 3.10. Quarter hemisphere mesh consisting of 10×10 8-
node hexahedral solid elements.

The loading is four point loads applied normal to the hemisphere’s surface at the free edge
and 90-degrees apart; they alternate in sign. The amplitude of each point load is 2.0 lbf. The
loading is applied at time equal to zero, and held constant. (For the quarter-symmetry model,
the two applied loads are +1.0 and -1.0) The static solution is obtained by damping the velocity
at all nodal points.
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The material is elastic with a Young’s modulus of E = 6.825×10+7 psi, a Poisson’s ratio
of ν = 0.30, and a density of ρ = 1.0×10−3 lbf-sec2/in4.

Shown in Figure 3.10 is the 1×10×10 hexahedral solid finite element mesh at time equal
to zero.

Shown in Figure 3.11 are the shell finite element meshes used at zero load. The quadrilat-
eral mesh has 80 finite elements and the triangular mesh has 160 finite elements, and both are
complete hemispheres.

Test Problem Characteristics. The hemisphere is a doublely curved shell with a radius to
thickness ratio R/t = 250 making it a “thin shell.” Hence, with the mesh resolution employed
here, the element aspect ratios are also small and, consequently, shear locking will be evidenced
by under predicting the deflections if it has not been properly managed in the finite element’s
derivation.

The meshes used are not particularly irregular and, therefore, shape sensitivity is not tested.

The point loads enter the shell as bending loads, and, diagonally across the elements
through the warping resultant component Mrs. An inadequate treatment (missing warping stiff-
ness) of the finite element’s warping response will produce excessive deflections.

Test Problem Results. The following two tables summarize the static results for the de-
flections under the point loads. The reference solution is based on an infinitesimal shell calcu-
lation, and fails to detect the “stiffening” geometric change (reduced radius of curvature) under
the outward deflection ux under the outward directed point load, and the “softening” geometric
change (increased radius of curvature) under the inward deflection uy under the inward directed
point load.

For the multi-stress 3-D solid shell finite elements, the ESH8 Simo-Rifai enhanced strain
8-node, solid hexahedron is overly stiff suggesting that for this very thin element geometry
some form of shear-locking is occurring. The K1H8 Key-Gullerud-Koteras 8-node, plane stress
hexahedron is predicting deflection amplitudes about 12% higher than the reference result. The
K2H8 Key-Gullerud-Koteras 8-node, multi stress hexahedron brackets the reference result, but
the amplitude is on average about 3.5% higher. The TSH8 Wing Kam Liu Thick-Shell 8-node
hexahedron is the cloest to the reference result, but the amplitude is on average about 1.0%
higher. The SDH8 Selective Deviatoric 8-node hexahedron is overly stiff by a factor of 9 as
expected.

For the plane-stress 2-D shell elements, KHQ4 and NCT3 both bracket the reference solu-
tion. The KGH4 finite element’s average deflection is 1.2% lower than the reference solution.
The KGQ4 finite element’s average deflection is 2.0% lower than the reference solution. The
ECT3 is overly stiff by a factor of 4 as expected.
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Solid Element Radial Deflections Under Point Loads
Formulation Geometry ux uy

ESH8 Simo-Rifai 3-D Stress Hexah 0.0303 -0.0305
K1H8 Key-Gullerud-Koteras 2-D Stress Hexah 0.1043 -0.1056
K2H8 Key-Gullerud-Koteras 3-D Stress Hexah 0.1041 -0.0903
TSH8 W. C. Liu Thick Shell 3-D Stress Hexah 0.0943 -0.0954
SDH8 Selective Deviatoric 3-D Stress Hexah 0.0106 -0.0105

Reference Results (infinitesimal formulation) 0.0940 -0.0940

Shell Element Radial Deflections Under Point Loads
Formulation Geometry ux uy

KHQ4 Key-Hoff 4-Node Quad 0.0933 -0.0947
KGQ4 Key-Gruda 4-Node Quad 0.0912 -0.0925
NCT3 Node Centered 3-Node Triangle 0.0931 -0.0956
ECT3 Element Centered 3-Node Triangle 0.0234 -0.0239
Reference Results (infinitesimal formulation) 0.0940 -0.0940

Figure 3.11. Quarter hemisphere meshes consisting of 80 4-node
quadrilateral shell elements (left panel), and 180 3-node triangular
shell elements(right panel); the 0.04 inch thickness is represented
by a 0.04 inch thickness specification for each shell element.
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3.4 Test Problem 4: Raasch Hook

Test Problem Statement. The hook, pictured in Figure 3.12, has a thickness of 2.0 inches,
a width of 20.0 inches, an initial 60-degree circular arc of radius 14.0 inches completed with
a 150-degree circular arc of radius 46.0 inches. The boundary conditions are those of a can-
tilevered beam, namely, zero displacement and zero rotation at the root (far end), Figure 3.12.

Figure 3.12. Raasch Hook mesh consisting of a 1×10×72 8-
node hexahedral solid elements.

The loading is a vertical in-plane membrane shear traction of 0.05 lbf/inch along the free-
end edge (near end), a total load of 1.0 lbf. The loading is applied at time equal to zero, and
held constant. The vertical static deflection equals 5.027 inches, Kemp, et al, [1998]. The
static solution is obtained either by damping the velocity at all nodal points, or by examining
the initial peak in kinetic energy and, to the extent that the response is dominated by a single
mode, the structure is then passing through the static equilibrium state.
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The material is elastic with a Young’s modulus of E = 3.3×10+3 psi, a Poisson’s ratio of
ν = 0.35, and a density of ρ = 2.5×10−6 lbf-sec2/in4.

Shown in Figure 3.13 is the 1×10×72 hexahedral solid finite element mesh at both time
equal to zero and the static vertical tip deflection of 5.02 inches in red.

Figure 3.13. Raasch hook mesh consisting of a 1×10×72 8-
node hexahedral solid elements; the static, vertical deflected shape
of 5.02 inches is depicted by the red mesh.

Shown in Figure 3.14 are the shell finite element meshes used at zero load. The quadrilat-
eral mesh has 720 finite elements and the triangular mesh has 1440 finite elements.

Test Problem Characteristics. The Raasch hook deformation is primarily a torsional re-
sponse of the 2.0 inch by 20.0 inch rectangular cross-section where the two circular arches
meet near the root. There is a minor secondary overall warping response.

Test Problem Results. That the Raasch Hook is a difficult problem both computationally
and theoretically is demonstrated by the number of papers in the literature.
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Figure 3.14. Raasch hook mesh consisting of a 10×72 4-node
quadrilateral shell elements (left panel). Raasch hook mesh con-
sisting of a 1440 3-node triangular shell elements (right panel).

The work of Schoop, et al, [2002], after a detailed investigation assert that the correct
answer is 4.7189 inches, but they cite a publication by Wlassow [1964] giving 4.7561 as the
solution. The three shell finite elements in Table 4-2, based on the work of Schoop, et al, can
be expected to produce a deflection of 4.74± inches. The work of Schoop et al, [2002], is
recommended reading.

Schoop, et al,[2000], cite an ABAQUS finely resolved solid finite element solution of 5.035
inches, and Kemp, et al, [1998] reports a deflection of 5.027 inches. It would appear that 5.03±
is an acceptable value for the solid mesh employed here.

The solid elements, Table 4-1, including the SDH8 Selective Deviatoric 8-node hexahe-
dron, tend to do better on this test problem since all of them have good fidelity with respect to
the cylindrical geometry and torsional deformation of the rectangular cross-section.

Table 4-1
Solid Element Tip Deflections Under 1 lbf Tip Shear Loading
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Formulation Geometry uz t ms
ESH8 Simo-Rifai 3-D Stress Hexah 5.0915 176.0
K1H8 Key-Gullerud-Koteras 2-D Stress Hexah 5.0950 176.0
K2H8 Key-Gullerud-Koteras 3-D Stress Hexah 5.1390 damped
TSH8 W. C. Liu Thick Shell 3-D Stress Hexah 5.0798 176.0
SDH8 Selective Deviatoric 3-D Stress Hexah 5.0424 damped
Reference Results (shells based on solid elements) 5.03± static
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Table 4-2
Shell Element Tip Deflections Under 1 lbf Tip Shear Loading

Formulation Geometry uz t ms
KHQ4 Key-Hoff 4-Node Quad 15.278 300.0
KGQ4 Key-Gruda 4-Node Quad 4.9245 damped
NCT3 Node Centered 3-Node Triangle 5.0692 176.2
ECT3 Element Centered 3-Node Triangle 4.5077 165.0
Reference Results (infinitesimal formulation) 4.74± static

The shell elements, Table 4-2, on the other hand, exhibit quite different results. In particular,
the KHQ4 Key-Hoff plane stress 4-node quadrilateral (as it is currently implemented) gives
a large value for the vertical deflection, that is, a deflection some 300% above the expected
result.

Table 4-3 documents a significant difference in finite element modeling behavior for both
the KHQ4 Key-Hoff 4-node quadrilateral shell finite element, and the KGQ4 Key-Gruda 4-
node quadrilateral shell finite element. Both of these finite elements in their original form
utilize normal vectors constructed at the element verticies to define the extent of the material
that lies above and below the reference surface, that is, above and below the meshed 2-D
surface. Thus, on a curved surface there is a discrepancy along the element edges because
of the slight difference (usually slight but not always) in normal vector orientation from one
finite element to the next finite element. The missing part is not really the conceptual gaps
and overlaps in the surrounding material, but the difference in rotational velocity ϑ i obtained
by the respective finite elements, namely, ϑ i = ε i jkω jnk, the cross product ϑ = ω×n, where
ω j is the rotational variable carried at the nodal points and nk is a unit normal vector at the
nodal point. The implementation for both of these finite elements was modified to make use
of a common fiber vector (initially a surface normal vector that has been rotated in time using
nodal point rotational rates) at each nodal point, a one-time, pre-calculation initialization. Each
shell element at a node will use the same fiber vector and have the same rotational velocity ϑ i.

Table 4-3
Solid Element Tip Deflections Under 1 lbf Tip Shear Loading

Comparison between element-based vertex normals
and nodal-based fiber vectors

Formulation Geometry uz error
KHQ4 Key-Hoff w/ vertex normals 4-Node Quad 15.278 +322%
KHQ4 Key-Hoff w/ nodal fibers 4-Node Quad 4.256 -10%

Reference Results (infinitesimal formulation) 4.74±
KGQ4 Key-Gruda w/ vertex normals 4-Node Quad 10.345 +206%
KGQ4 Key-Gruda w/ nodal fibers 4-Node Quad 4.924 -2%

Reference Results (shells based on solid elements) 5.03±
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During the calculation, the orientation of the normal is updated at each time step with
a proper orthogonal rotation computed from the nodal rotational velocity ωi. Likewise, the
torque from the divergence of the bending stress resultant is computed with respect to the
nodal-based common fiber vector.

For both the KHQ4 and KGQ4 finite elements, the response of the Raasch Hook test prob-
lem changes dramatically for the better with nodal-based common fiber vectors. The difference
in the before and after results for the Raasch Hook test problem demonstrates the significance
of this particular test problem. The results from the modified KGQ4 Key-Gruda shell ele-
ment are halfway between the results expected for the solid finite elements and the shell theory
finite elements, a result that is fitting for the adaptation of the K1H8 Key-Gullerud-Koteras
plane stress 8-node hexahedron internals to a 4-node quadrilateral. The results for the modified
KHQ4 Key-Hoff are less favorable, but are still a significant improvement over the results from
the original implementation.

Simulation Notes. Based on surface contours of the vertical displacement uz, the actual
maximum vertical deflection occurs at the bottom nodal point under the distributed shear load.
All of the computed results reported here are for the vertical deflection uz of the center nodal
point under the distributed shear load. The difference is quite minor and my be more due to the
finite elements themselves. It is unknown at this time if the analytic solutions all exhibit this
behavior. To be slightly conservative, the nodal point halfway between the bottom edge and
the top edge was selected.
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3.5 Test Problem 5: Beam Bent into a Ring

Test Problem Statement. The beam, pictured in Figure 3.15, has a thickness of 1.0 inch, a
width of 3.0 inches, and a length of 36 inches. In addition, a beam finite element (depicted by
a red dash) has been attached to the solid; the beam cross-section matches the 1 inch by 3 inch
dimension of the solid finite elements. The beam finite element is 1 inch in length.

Figure 3.15. Beam mesh consisting of a 1×1×36 8-node hex-
ahedral solid elements; attached at the free-end (depicted by the
red dash) is a 1 inch long beam finite element with a matching
cross-section.

The boundary conditions are those of a cantilevered beam, namely, zero displacement and
zero rotation at the root (far end), Figure 3.15. The interface between the last solid hexahedral
finite element and the single beam finite element is a multipoint constraint (MPC) that ties
the translations and rotations of the beam nodal point to those of the 4-nodal points from the
hexahedral finite element face on which it lies. At the beams “free-end,” the beam’s rotational
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degrees of freedom are prescribed to be 370-degrees; the final result is pictured in Figure 3.17.
The static solution is obtained by damping the velocity at all nodal points.

The material is elastic with a Young’s modulus of E = 1.04×10+7 psi, a Poisson’s ratio of
ν = 0.30, and a density of ρ = 2.61×10−4 lbf-sec2/in4.

Shown in Figure 3.15 is the 1×1×36 8-node hexahedral solid finite element mesh along
with a single beam finite element depicted in red at time equal to zero.

Shown in Figure 3.16 is the two shell finite element meshes used at zero load. The quadri-
lateral mesh has 36 finite elements and the triangular mesh has 72 finite elements.

Test Problem Characteristics. The beam “bent into a ring” is almost exclusively a bend-
ing response. It is a large displacement, finite rotation, finite strain deformation. The final
deformation is “zero-dimensional” in that each solid (or shell) finite element along the beam
has opposing faces that each rotate 5-degrees to form a 10-degree wedge. The primary test
is one of implementation, that is, all of the kinematic variables, strain components, and stress
components are in the global x,y,z-coordinate system. Secondarily, the ring will fail to close
on itself if the stiffness representation is incorrect. Half way through the dynamic motion the
curvature of a portion of the solid finite element beam exceeds the final uniform circular result
and, thus, must “unwind” by the time it comes to rest, Figure 3.18. Hence, the implementation,
at every location around the ring, must produce what is a uniform circular result where each
finite element is at a different orientation with respect to the x,y,z-coordinate system, and has
undergone a different motion that ranges form nearly uniform in time to a load-unload cycle
while traversing an arc in space.

Test Problem Results. In Table 5-1, only three of the solid elements tested came accept-
ably close to forming a circular ring: the K1H8 Key-Gullerud-Koteras 8-node, plane stress
hexahedron; the K2H8 Key-Gullerud-Koteras 8-node, 3-D multi-stress hexahedron; and the
SDH8 Selective Deviatoric 8-node hexahedron.

While the double-layer TSH8 Wing Kam Liu Thick-Shell 8-node hexahedron gives the ap-
pearance of doing well in Table 5-1, it requires an x,z-symmetry plane to enforce a planar mo-
tion and reach a circular shape, but even then, a visible amount of conicity developed. (Without
the x,z-symmetry plane, the solution devolves into an out-of-plane double helix configuration.)

The ESH8 Simo-Rifai enhanced strain 8-node, solid hexahedron develops an irregular, non-
uniform, not-quite-circular solution just as it reaches closure, and then over-closes. The failure
is possibly due to the incremental accumulation of the enhanced strain components.

In Table 5-2, the three shell finite elements all came acceptably close to forming a circular
ring. However, all three finite elements relied on a pair of symmetry planes in order to achieve
the final result.
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Table 5-1
Solid Element Ring Closure Displacements

Formulation Geometry uy uz
ESH8 Simo-Rifai 3-D Stress Hexah -34.23 0.3318
K1H8 Key-Gullerud-Koteras 2-D Stress Hexah -35.99 0.0002
K2H8 Key-Gullerud-Koteras 3-D Stress Hexah -36.09 0.0269
TSH8 W. C. Liu Thick Shell 3-D Stress Hexah -36.16 0.0119
SDH8 Selective Deviatoric 3-D Stress Hexah -35.95 0.0020

Reference Results -36.00 0.0

Table 5-2
Shell Element Ring Closure Displacements

Formulation Geometry uy uz
KHQ4 Key-Hoff 4-Node Quad -36.00 0.0149
KGQ4 Key-Gruda 4-Node Quad -36.00 0.0149
NCT3 Node Centered 3-Node Triangle -35.95 0.0123
ECT3 Element Centered 3-Node Triangle -35.90 0.0191

Reference Results -36.00 0.0
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Figure 3.16. Beam mesh consisting of a 1×36 4-node quadri-
lateral shell elements (left panel);Beam mesh consisting of a 72
3-node triangular shell elements (right panel).

Figure 3.17. Solid finite element mesh closed on itself in the
final ring configuration.
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Figure 3.18. Solid finite element mesh at 15 ms during the tran-
sition from a straight beam into its final circular ring configuration.
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3.6 Test Problem 6: Irons Membrane Patch Test

Test Problem Statement. The rectangular collection of five solid 8-node hexahedral finite
elements pictured in Figure 3.19, constitutes an Irons membrane patch test. It is a 1.0 inch
square with a thickness of 0.25 inches. Note that the elements are displayed at 80% of their
true-size for easier visualization. The white wire-frame mesh is displayed at true-size; both the
top and bottom views are shown. Each finite element has a different material number, but all of
the finite elements are elastic and have the same material properties. The boundary conditions
consist of a prescribed in-plane motion at each of the eight outer vertex nodal points; the normal
displacement uz is zero for all nodal points.

Figure 3.19. Solid mesh consisting of five irregularly shaped 8-
node hexahedral solid elements; the finite elements are “shrunk”
with respect to the wire frame to aide in visualization. the front
side of the mesh is displayed in the left panel, and the obverse is
displayed in the right panel.

The Irons membrane patch test for the shell finite elements is pictured in Figure 3.20; for
the shell, the 0.25 inch thickness dimension is specified as a geometric parameter.

The material is elastic with a Young’s modulus of E = 1.0×10+6 psi, a Poisson’s ratio of
ν = 0.25, and a density of ρ = 2.61×10−4 lbf-sec2/in4.

45



Figure 3.20. Shell mesh consisting of five irregularly shaped
4-node quadrilateral shell elements, and ten irregularly shaped 3-
node triangular shell elements.

Test Problem Characteristics. The exact solution to the prescribed linear motion is a
constant membrane stress/strain state (uniform over the area and through the thickness) . The
object of an Irons patch test is to demonstrate that a geometrically irregular “patch” of finite
elements is capable of reproducing the constant stress/strain state, the exact solution to the
exterior applied linear displacement field. The internal nodal points must move as part of the
solution so as to generate the constant stress/strain state. If the simulation is able to predict
the correct constant stress/strain state, the test is passed, otherwise the element formulation is
defective. An Irons patch test is closely related to a proof of linear consistency for the spatially
discrete approximation.

Test Problem Results. Ideally, one would report the direct stress components and the
in-plane shear components, however, shell elements for the most part compute with stress
components in a local coordinate system, more or less aligned with the element orientation.
Thus, to get uniform results for reporting, three geometrically invariant results are used: (1)
strain-energy density, (2) pressure, and (3) effective stress. Collectively, these invariants reflect
the uniformity or non-uniformity element-to-element as the case may be.

With regard to the two tables, Tables 6-1 and 6-2, it should be noted that the K1H8 Key-
Gullerud-Koteras plane-stress 8-node hexahedron has been moved from the solids Table 6-1 to
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the shell Table 6-2 since it is based on plane-stress material models and has invariant values
that are comparable to results for the shell finite elements.

In Table 6-1, Three of the multi-stress solid elements exhibit acceptably small departures
from exact results. However, the TSH8 Wing Kam Liu Thick Shell does however push the
test boundaries to between ±1.4% and ±1.6% departures from the reference values. Given
the significantly distorted element shapes in the mesh, these departures are acceptable for the
membrane response.

In Table 6-2, all five plane-stress formulations have ranges that are quite close to the refer-
ence values and reflect finite elements that meet the objectives of the patch test to reproduce a
uniform membrane stress/strain state.

Table 6-1
Irons Membrane Patch Test Results

Solid Bending-Formulated Finite Elements
(SED = Strain Energy Density)

Element Range: SED Range: p Range: σe f f
ESH8 1.788 1.803 1329 1335 1055 1059
K2H8 1.799 1.799 1330 1334 1018 1021
TSH8 1.770 1.825 1325 1338 1043 1078
SDH8 1.789 1.803 1329 1335 1056 1059

Reference 1.800 1333 1057

Table 6-2
Irons Membrane Patch Test Results

Plane-Stress Finite Elements
(SED = Strain Energy Density)

Element Range: SED Range: p Range: σe f f
K1H8 1.529 1.531 888 889 1501 1502
KHQ4 1.531 1.532 888 889 1501 1502
KGQ4 1.529 1.535 888 890 1501 1503
NCT3 1.531 1.532 888 888 1501 1502
ECT3 1.529 1.534 887 889 1500 1503

Reference 1.5315 888 1501

Pictured in Figure 3.21 are the contour results for the linear ux displacement solution showing
that the solution for the interior nodal points moved to reproduce the constant strain solution.

Simulation Notes. The NCT3 Node Centered 3-node triangular shell finite element formu-
lation required that all the elements in the mesh be of one material to get satisfactory uniform
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results. The node-centered formulation recognizes material boundaries passing through a nodal
point, and maintains two or more one-sided sets of calculations, thus making the five-material
model extremely complex.
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Figure 3.21. Front and back final deformed contours for dis-
placement ux from the ESH8 Simo and Rifai. Enhanced Strain
8-node hexahedral Irons membrane patch test.
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3.7 Test Problem 7: Inflated Sphere Patch Test

Test Problem Statement. The rectangular spherical segment pictured in Figure 3.22, has a
thickness of 0.2 inches, and a radius of 10.1 inches. The segment is defined by four planar
slices tilted ±15o with respect to the z-axis and passing through the center of the sphere. The
boundary conditions along all four edges are symmetry boundary conditions. For the 8-node
hexahedral mesh it means that the circumferential displacements along each edge are zero, and,
additionally, for the shell elements, rotations along the edge are prescribed to be zero about all
three axises. These boundary conditions are compatible with a sphere loaded by either internal
or external pressure.

Figure 3.22. The spherical hexahedral solid final mesh consisting
of 1×16×16 8-node hexahedral solid elements for a total of 256
elements; the mesh is a “rectangular” patch of a full sphere.

The loading is an internal pressure p = 50.0 psi. The pressure is applied via a cosine-ramp
and then held constant. A static solution is obtained with velocity damping applied to each
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nodal point.

The material is elastic with a Young’s modulus of E = 1.0×107 psi, a Poisson’s ratio of
ν = 0.30, and a density of ρ = 1.0×10−2 lbf-sec2/in4.

Shown in Figure 3.23 are the shell finite element meshes. The quadrilateral mesh has 256
finite elements and the triangular mesh has 512 finite elements.

Figure 3.23. The spherical planar quadrilateral final mesh con-
sisting of 16×16 4-node quadrilateral shell elements for a total of
256 elements (left panel), and the spherical planar triangular final
mesh consisting of 16×16 3-node triangular shell element pairs
for a total of 512 elements (right panel). The meshes are a “rect-
angular” patch of a full sphere.

Test Problem Characteristics. The test problem geometry is a moderately thin-walled,
perfectly spherical shell. Since the finite elements here are linear triangles, bilinear quadri-
laterals, and trilinear hexahedral geometries, the curvature of the sphere is represented by the
element-to-element change in the normal vector orientation as each edge is crossed. The pur-
pose of this test problem is a two-fold test: (1) to test that the geometric approximation to the
curvature is valid, and (2) to test that under mesh refinement the analytic result is obtained.

An ideal elastic thin-walled hollow sphere loaded with internal pressure has an infinites-
imal solution. The membrane stress is uniform and the same in all in-plane directions, irre-
spective of location and material properties that are isotropic, and is given by σ = (Pressure×
Radius)/(2× thickness). For the pressure and dimensions here, the in-plane or membrane
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Table 7-1
Solid ESH8 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 817.02 817.02 817.02
4×4 814.23 816.50 818.77
8×8 815.35 816.91 818.48

16×16 816.57 817.01 817.46
Exact 816.88 816.88 816.88

stress is σ = 1262.5 while the through the thickness direct stress is small and taken to be zero
in thin shell theories. The first invariant of the membrane stress (I = σ k

k /3) is I = 841.666 . . ..
The sphere’s response is dominated by membrane stretching.

The sphere used here is only moderately thin, and, thus, has a three dimensional stress dis-
tribution. However, the solid finite element stress components reported here are mean quadra-
ture stress components, that is, volume-averaged stress components. Accordingly, the mean
quadrature in-plane direct stress is 1237.577 and the mean quadrature radial stress is −24.505
which gives a mean quadrature pressure of 816.883. The fact that the three-dimensional stress
component values match the thin-shell solution to within 2% indicates that the sphere is “mod-
erately thin.” A contributing factor to the differences between the shell theory results and the
three dimensional solution is the two different radial locations where the internal pressure is
applied: for the shell the pressure is applied at a radius of 10.1 and for the three-dimensional
solid solution, it is applied at a radius of 10.0.

The use of a sphere under internal pressure is used here as a patch test. A sequence of
uniform meshes is used and examined for the degree of uniformity in the membrane stress in-
variant I = σ k

k /3. The departure from a uniform stress indicates the departure from satisfying
the patch test requirement that a uniform stress be reproduced. The kinematic boundary con-
ditions allow only pure radial motion along each edge; no in-plane motion is permitted. The
shell elements have rotational degrees of freedom at each nodal point on the boundary that are
prescribed to be zero. These boundary conditions match the motion of the inflation of an ideal
thin sphere. It should be noted that because uniform, regular meshes are used, the effect of
element distortion on the uniformity of the stress field is not tested.

Test Problem Results. Tables 7-1 through 7-5 tabulate the results for the solid elements.
All four of the solid finite elements designed to use three-dimensional material models (ESH8,
K2H8, TSH8, and SDH8) replicate the analytic results from the three-dimensional thick-shell
solution. Of note are the results from the 2×2 starting mesh – due to the symmetry of the
problem and boundary conditions all four elements in the mesh have the same results and the
results are very close to the analytic solution. As an example, Figure 3.24 illustrates the near
uniformity in the pressure (the first stress invariant) and the strain energy density for the ESH8
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Table 7-2
Solid K1H8 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 811.55 811.55 811.55
4×4 821.12 821.12 823.68
8×8 813.64 825.39 826.70

16×16 824.52 825.01 825.50
Exact 841.67 841.67 841.67

Table 7-3
Solid K2H8 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 817.21 817.21 817.21
4×4 814.62 817.72 820.81
8×8 815.80 817.16 818.53

16×16 816.82 817.20 817.58
Exact 816.88 816.88 816.88

Table 7-4
Solid TSH8 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 817.03 817.03 817.03
4×4 814.00 817.56 821.11
8×8 815.20 816.89 818.58

16×16 816.48 817.18 817.89
Exact 816.88 816.88 816.88
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Table 7-5
Solid SDH8 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 817.21 817.21 817.21
4×4 816.74 817.05 817.36
8×8 816.53 816.97 817.42

16×16 816.76 817.00 817.24
Exact 816.88 816.88 816.88

Table 7-6
Shell KHQ4 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 827.26 827.26 827.26
4×4 835.30 840.20 845.10
8×8 839.78 841.23 842.68

16×16 839.73 841.63 843.53
Exact 841.67 841.67 841.67

Table 7-7
Shell KGQ4 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 830.92 830.92 830.92
4×4 840.48 838.07 852.24
8×8 845.47 847.50 849.54

16×16 845.94 847.58 849.22
Exact 841.67 841.67 841.67
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Table 7-8
Shell NCT3 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 823.35 827.54 831.73
4×4 830.61 838.07 845.55
8×8 839.29 841.27 843.25

16×16 838.80 840.88 842.96
Exact 841.67 841.67 841.67

Table 7-9
Shell ECT3 Mean Quadrature Pressure

Stress Invariant I (I = σ k
k /3)

Mesh Low Average High
2×2 715.82 799.27 882.72
4×4 794.95 830.83 866.71
8×8 825.03 836.81 848.58

16×16 836.47 841.16 845.81
Exact 841.67 841.67 841.67

Simo-Rifai Enhanced Strain 8-node hexahedron at the finest mesh resolution.

As a second example, the results for K1H8 Key-Gullerud-Koteras plane-stress 8-node hex-
ahedron (a hexahedron that is based internally on a Reissner-Mindlin shell theory), converges
to a uniform value of 825.01±0.05% that is halfway nominally between the thin-shell answer
and the three-dimensional elasticity mean-quadrature result, Table 7-2. There is not yet an
explanation for this result.

Tables 7-6 through 7-9 tabulate the results for the shell elements. The three shell finite
elements KHQ4, NCT3, and ECT3 converge to the thin shell result, and, for example, Figure
3.25 illustrates the near uniformity in the pressure (the first stress invariant) and strain energy
density for the KHQ4 Key-Hoff 4-node quadrilateral at the finest mesh resolution.

In Table 7-7, the KGQ4 Key-Gruda plane-stress 4-node quadrilateral using the three-dimensional
solid shell K1H8 internals in a reconstructed 8-node hexahedral frame using nodal-based sur-
face unit-fiber vectors (initially surface normal vectors that have been rotated in time using
nodal point rotational rates), is converging to a mean quadrature pressure value nearer to 848±
rather than the plane stress result of 841.67. There are two obvious sources of error in this cal-
culation: (1) the nodal-based initial normal vector construction, and (2) the reduced quadrature
performed to sample the stress distribution within the finite element’s hexahedral volume. The
following provides more detail for these two issues:
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1. Surface Normal/Fiber Vectors. As a practical matter, the surface initial normal vectors
at the nodal point are constructed from the mesh by averaging finite element corner nor-
mals assembled at the nodal points with area weighting. The construction is a one-time
initialization that occurs before the calculation starts. In this test problem, the obvious
surface normal is one always aligned with the sphere’s radius vector. The reconstructed
surface normal vectors with uniform meshing are aligned with the radius vector except
at the four corner nodal points where only a single element contributes to the averag-
ing, and along the four boundaries where only two elements share each nodal point.
Hence, the reconstructed surface normal vector matches the element corner normal and
is not aligned with the sphere’s radius vector, and, similarly, along the four edges. The
perturbation to the solution is clear from an element-by-element pressure plot. Ideally,
when the mesh is constructed using preprocessor-based mesh generation with surfaces
defined geometrically, proper surface normal vectors at the nodal points should be sup-
plied, thereby, avoiding a somewhat ad hoc reconstruction of the surface normal vectors
with limited accuracy. Note that the initial surface normal vectors are rotated in time us-
ing nodal point rotational rates, and, hence, become material fiber vectors characterizing
any transverse shear strains that develop during the shell’s motion.

2. Reduced Stress State Sampling. Since the constant membrane and bending stress re-
sultants are the dominant contributors to the shells response (which includes bilinear
contributions from the transverse shear stress components in the finite element’s shell
theory), a minimal volume sampling of the stress field has been implemented, namely, a
through-thickness integration to capture the membrane and bending stress combined with
a middle-surface areal quadrature to capture the required bilinear variation in the trans-
verse shear stress components. This approach to stress state sampling suffers from incor-
rectly capturing the true mean quadrature values for the constant membrane and bend-
ing stress resultants. Ideally for an elastic analyses, an iterated 2-point Gauss quadrature
sampling should take place resulting in eight sampling points and a proper capture of the
constant mean quadrature membrane and bending stress resultants.
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Figure 3.24. ESH8 Simo-Rifai Enhanced Strain 8-node solid
element pressure distribution (817.0± 0.006%) and strain-energy
density distribution (0.1090±0.12%).
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Figure 3.25. KHQ4 Key-Hoff 4-node quadrilateral shell element
pressure distribution (841.63± 0.23%) and strain-energy density
distribution (0.1157±0.09%).
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3.8 Test Problem 8: Pinched Cylinder

Test Problem Statement. The cylinderical panel, pictured in Figure 3.26, has a thickness of
3.0, a radius of 300.0, and a length of 36.0 units. The cylinderical panel is a 90.0-degree sector
from a full cylinder 72.0 units long, that is, the panel is an octant defined by symmetry planes
of the full cylinder. The ends of the cylinder are constrained by a “ridgid diaphragm” that
requires the cylinder’s cross-section to remain cicular as it deforms but does not restrict axial
movement or rotation.

Figure 3.26. Cylinderical panel mesh consisting of a 1×32×32
8-node hexahedral solid elements; the panel is an octant of a full
cylinder.

The loading is a pair of diametrially opposed point-loads applied halfway along the length
of the cylinder. Given the complexity of the deformation, the point-loads are imposed via a
prescribed motion, Figure 3.27.

The material is elastic-plastic with a bulk modulus of k = 2500.0, a shear modulus of µ =
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1154.0, a yield stress of ty = 24.3, a linear tangent hardening modulus of Et = 272.758 (plastic
hardening modulus of H = 300.0), and a density of ρ = 2.0×10−8. The plastic hardening is
isotropic.

Shown in Figure 3.28 are the shell finite element meshes used at zero load. The quadrilat-
eral mesh has 1024 finite elements and the triangular mesh has 2048 finite elements.

Figure 3.27. Cylinderical panel mesh consisting of a 1×32×32
8-node hexahedral solid elements; deformed configuration under
opposing point loads. (In place of the point load, the deformation
is imposed through a surrogate displacement boundary condition
of uz = 250.)

Test Problem Characteristics. The cylinder pinched between opposing loads results in a
rather extreme motion. The motion is a large displacement, finite rotation, finite strain inelastic
deformation that has modest buckling events shifting from one deformation pattern to another
as the load increases. Unfortunately, as a test problem there does not exist a definitive answer
against which comparisons can be made. Nearly repeatable results from a number of finite
element formulations are reported by Hauptman, Schweizerhof and Doll, [2000], where a peak
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Figure 3.28. Mesh of the cylinderical section consisting of a
32×32 4-node quadrilateral shell elements (left panel), and a mesh
of the cylinderical section consisting of a 2048 3-node triangular
shell elements (right panel). The cylindrical section is one-eighth
of a full cylinder.

load at full deflection of 2500 is shown. There are also results at 3010 and 2485, but during the
first 70% of the deflection the reaction forces match, Figure 3.29.

Test Problem Results. In Table 8-1, Only one of the solid elements tested came acceptably
close to the final load: the K1H8 Key-Gullerud-Koteras 8-node, plane stress hexahedron. The
K2H8 Key-Gullerud-Koteras 8-node, 3-D multi-stress hexahedron, and the ESH8 Simo-Rifai
enhanced strain 8-node, solid hexahedron are both on the stiff side by about 20%. The SDH8
Selective Deviatoric 8-node hexahedron is overly stiff as expected.

The double-layer TSH8 Wing Kam Liu Thick-Shell 8-node hexahedron failed early in the
calculation as a result of severe hourglassing.

In Table 8-2, Three shell elements came acceptably close to matching the peak force at
full deflection reported by Hauptman, Schweizerhof and Doll [2000]: the KHQ4 Key-Hoff 4-
node quadrilateral, the KGQ4 Key-Gruda 4-node quadralateral with nodal-based surface fiber
vectors, and the NCT3-tuned (0.20) node-centered 3-node triangle. The NCT3-table (0.02)
node-centered 3-node triangle is too soft by about 20%. The ECT3 element-centered standard
3-node triangle is overly stiff as expected.
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Table 8-1
Solid Element Maximum Force and External Energy

at a Deflection of 250
Formulation Geometry Fz Ext. Eng.

ESH8 Simo-Rifai 3-D Stress Hexah 3161 2.5×105

K1H8 Key-Gullerud-Koteras 2-D Stress Hexah 2587 2.1×105

K2H8 Key-Gullerud-Koteras 3-D Stress Hexah 2817 2.5×105

TSH8 W. C. Liu Thick Shell 3-D Stress Hexah ∗ ∗
SDH8 Selective Deviatoric 3-D Stress Hexah 3998 4.4×105

Reference Results “2500”

Table 8-2
Shell Element Maximum Force and External Energy

at a Deflection of 250
Formulation Geometry Fz Ext. Eng.

KHQ4 Key-Hoff 4-Node Quad 2460 2.0×105

KHQ4 Key-Gruda 4-Node Quad 2509 2.0×105

NCT3-table Node Centered 3-Node Triangle 2088 1.7×105

NCT3-tuned Node Centered 3-Node Triangle 2551 2.1×105

ECT3 Elem’t Centered 3-Node Triangle 3070 3.2×105

Reference Results “2500”
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Figure 3.29. Pinched Cylinder Load Deflection Diagram: Fz

vs uz at the center point from Hauptman, Schweizerhof, and Doll
[2000].

In Figure 3.29 taken from Hauptman, Schweizerhof, and Doll [2000], at a deflection of
135 there is a mild, but notable, buckling event where the deformation pattern shifts. (There
are other deformation pattern shifts that take place, as well, for example, at about 240.) In
Figure 3.30, two of the solid elements (K1H8, ESH8) exhibit the same buckling event but at a
deflection of 160. In Figure 3.31, all of the results exhibit a mild buckling event at a deflection
of about 60. Later events are not all uniformly occurring at the same deflection. The difference
between the deflections at which the buckling events occur for the KHQ4 element and the two
NCT3 elements (NCT3-table and NCT3-tuned) suggest that there are mesh artifacts (quadrilat-
eral versus triangular meshes) present in the results. Of note, is the grouping and similarity of
results for the three KHQ4, NCT3-table, and NCT3-tuned elements up to a deflection of about
150.

Of particular note is the response predicted by the KGQ4 Key-Gruda plane-stress 4-node
quadrilateral using nodal-based suface fiber vectors, Figure 3.31, righthand panel. The KGQ4
finite element naturally reports the maximum deflection force of 2509 that approximates closely
the results reported by Hauptman, Schweizerhof and Doll [2000] without the use of tuning pa-
rameters required by the NCT3 Nodal Centered 3-node triangles.

Figures 3.32 and 3.33 depict the final deformations (uz = ±250) for the solid K1H8 Key-
Gullerud-Koteras plane stress 8-node hexahedron and the NCT3-tuned Node-Centered 3-node
triangular elements, respectively. The images are constructed by reflecting the original cylin-
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derical octant solution to obtain a half-model of the full cylinder. The results for the NCT3-
tuned (0.20) triangular shell finite element in Figure 3.33 more nearly matches the final geo-
metric shape reported by Hauptman, Schweizerhof and Doll [2000].

Figure 3.30. Cylinderical panel load vs deflection curves for the
3-D solid finite elements. The solid element ordering by color
is K1H8, K2H8, and ESH8. Note that the KHQ4 Key-Hoff 4-
node quadrilateral solution is the thin black line and has a peak
load of 2460 that approximates the results reported by Hauptman,
Schweizerhof and Doll [2000].
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Figure 3.31. Cylinderical panel load vs deflection curves for the
2-D shell finite elements. The shell element ordering by color
is KHQ4, NCT3-tuned, NCT3-table, and ECT3 (lefthand panel).
Cylinderical panel load vs deflection curves for the 2-D shell fi-
nite elements KHQ4 and KGQ4 (righthand panel). Note that the
KGQ4 Key-Gruda 4-node quadrilateral solution is the dashed ma-
genta line and has a peak load of 2509 that approximates closely
the results reported by Hauptman, Schweizerhof and Doll [2000].
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Figure 3.32. Soild finite element mesh using reflections to build
a half-model of the final pinched cylinder configuration (K1H8).

Figure 3.33. Shell finite element mesh using reflections to build
a half-model of the final pinched cylinder configuration (NCT3-
tuned). 66



3.9 Test Problem 9: Vibrating Plate

Test Problem Statement. The cantilver plate, pictured in Figure 3.34, has a thickness of 2.0
mm, a length of 100.0 mm, and a width of 50.0 mm. The red configuration of the plate is the
final deformed shape. The 25.0 mm edge, far end, is clamped such that no translations are
permitted, and, in the case of shell finite elements, no rotations are permitted.

Figure 3.34. Cantilevered plate solid mesh consisting of a 1×
25×50 8-node hexahedral solid elements; the red configuration of
the plate is the final deformed shape.

Shown in Figures 3.35 and 3.36 are the shell finite element meshes. The quadrilateral mesh
has 1250 finite elements and the triangular mesh has 2500 finite elements.

The loading is a uniform pressure p = 0.1066 MPa applied to the lower surface of the plate.
The pressure is increased linearly from p = 0.0 MPa at time t = 0.0 ms to p = 0.1066 MPa
at time t = 100.0 ms after which the pressure is held constant until time t = 200.0 ms. The
simulation is complete at time t = 200.0 ms.
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The material is elastic with a Young’s modulus of E = 1.0×102 GPa, a Poisson’s ratio of
ν = 0.30, and a density of ρ = 8.0×103 kg/m3.

Figure 3.35. Cantilevered plate shell mesh consisting of a 25×
50 4-node quadrilateral elements.

Test Problem Characteristics. The test problem geometry is a simple flat plate. The pur-
pose of this test problem is two-fold: (1) to test that the static solution is obtained, namely,
an infinitesimal beam-theory “static” deflection of 0.999375 cm, and (2) to test that the ele-
ment formulation during the portion of the response where the plate is vibrating under load is
conservative, that is, both the amplitude and mean of the vibrational response remain constant.

Test Problem Results. In Table 9-1, The following three solid finite elements obtained
static deflection results that are within ±7% of the infinitesimal beam-theory result: the ESH8
Simo-Rifia Enhanced Strain 8-node hexahedron, the K1H8 Key-Gullerud-Koteras plane-stress
8-node hexahedron, and the Wing Kam Liu Thick Shell 8-node hexahedron with a double layer
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Table 9-1
Brian Hogg Plate Static Deflection

Solid Bending-Formulated Finite Elements

Formulation Geometry uy
ESH8 Simo-Rifai 3-D Stress Hexah 0.9495
K1H8 Key-Gullerud-Koteras 2-D Stress Hexah 0.9468
K2H8 Key-Gullerud-Koteras 3-D Stress Hexah 0.7942
TSH8 W. C. Liu Thick Shell 3-D Stress Hexah 1.0672
SDH8 Selective Deviatoric 3-D Stress Hexah 1.1484

Reference Results 0.9994

Table 9-2
Brian Hogg Plate Static Deflection

Shell Finite Elements
Formulation Geometry uy

KHQ4 Key-Hoff 4-Node Quad 0.9551
KGQ4 Key-Gruda 4-Node Quad 0.9445
NCT3 Node Centered 3-Node Triangle 0.9263
ECT3 Element Centered 3-Node Triangle 0.8660

Reference Results 0.9994
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Figure 3.36. Cantilevered plate shell mesh consisting of a 1250
3-node triangular element pairs.

mesh. The K2H8 Key-Gullerud-Koteras multi-stress 8-node hexahedron is 20% too stiff; the
SDH8 Selective Deviatoric 8-node hexahedron is 15% too soft.

In Table 9-2, Three of the shell finite elements (the KHQ4 Key-Hoff plane-stress 4-node
quadrilateral, the KGQ4 plane-stress 4-node quadrilateral using nodal-based surface unit-normal
vectors, and the NCT3 Node Centered 3-node triangle) obtained static deflection results that are
within 6% of the infinitesimal beam-theory result. The ECT3 Element Centered plane-stress
3-node triangle is 13% to stiff as expected.

The vibrational response was satisfactory for all of these finite elements. For example,
Figure 3.37 is the free-end tip deflection for the ESH8 Simo-Rifia Enhanced strain 8-node
hexahedron finite element, and Figure 3.38 is the free-end tip deflection for the KHQ4 Key-
Hoff plane-stress 4-node quadrilateral.

Simulation Notes. The “clamped” boundary condition with all three translational degrees
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Figure 3.37. Cantilevered plate solid ESH8 Simo-Rifia En-
hanced Strain 8-node hexahedral finite element deflected vibra-
tional response.

of freedom set to zero is somewhat restrictive. A second calculation was conducted with the
following minimal set of kinematic restraints:

1. The lower line of nodal points along the clamped-end was given a “hinge” boundary
condition, namely, if the x-axis is along the length of the plate, the y-axis is normal to the
plate, and the z-axis is across the width of the plate, then boundary conditions of nomal
movement ux = 0, vertical movement uy = 0, and no restriction on lateral movement uz
were specified, and

2. The upper line of nodal points along the clamped-end was given a ux = 0 boundary condi-
tion, and, thus the line of nodal points could move freely both vertically and horizontally.

In spite of the fact the less restrictive boundary conditions that are incorporated into infinitesi-
mal beam theory were used, there was no appreciable difference in the deflection and vibration
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Figure 3.38. Cantilevered plate shell KHQ4 Key-Hoff plane-
stress 4-node quadrilateral finite element deflected vibrational re-
sponse.

results between these two sets of kinematic boundary conditions.
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3.10 Test Problem 10: Crushed Spherical Shell

Test Problem Statement. The hollow sphere, pictured in Figure 3.39, has a radius of 114.0
mm and a thickness of 1.52 mm; also pictured are two rigid plattens. The two plattens move
toward each other collapsing the sphere on itself.

Figure 3.39. Hollow Sphere mesh consisting of 9,602 4-node
quadrilateral shell elements. The color change in the sphere rep-
resents the top half and lower half side-sets used with the contact
algorithms.

The simulation is focused on collapsing or crushing the sphere, Figure 3.40. Each platten
is modeled with single 4-node quadrilateral finite element. Rather than appling forces to the
plattens, a prescribed motion of the vertex nodes is utilized. There are three contact algorithms
running: (1) the top half of the sphere against the upper platten, (2) the bottom half of the sphere
against the lower platten, and (3) the top half of the sphere against the bottom half of the sphere.
The contact interaction between the sphere and the plattens is frictionless. The crushing of the
sphere is completed in a modeled time scale of 20.0 ms. and takes approximately 150,000 time
steps for the KHQ4 4-node quadrilateral plate element. The ESH8 Simo and Rifai Enhanced
Strain 8-node hexahedral soild element takes approximately 122,000 time steps.

The material is elastic-perfectly plastic with a Young’s modulus of E = 2.0× 105 MPa, a
Poisson’s ratio of ν = 0.25, a yield stress of σy = 300 MPa, a linear hardening tangent modulus
of Etan = 0.0, and a density of ρ = 8.0×10−9.

The solid and shell finite element meshes are visually indistinguishable except for the tri-
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Figure 3.40. Hollow Sphere with an original diameter of 228
mm crushed to 38.12 mm.

angular mesh where each quadrilateral has been subdivided into a pair of triangles.

Test Problem Characteristics. The test problem is a validation calculation as opposed
to a verification calculation. The problem parameters have been drawn from experimental re-
sults that used 33 common industrial-grade hollow spherical floats, Pepin and Thacker [2003].
Of particular interest is the number of lobes in the buckle pattern that develop as the sphere
deforms, namely five lobes and reported to be consistent with the spheres that were crushed
experimentally. Secondarily, the force versus deflection needed to crush the sphere is an indi-
cator of the quality of the results obtained in the simulation. In the simulations conducted by
Pepin and Thacker, three separate material property regions are utilized. Here, only a single
set of material properties for the entire sphere are used.

Test Problem Results. The buckling patterns at a nominal platten separation of 90.0 mm,
down from the initial 228 mm platten separation, are shown in Figures 3.41 through 3.47.
Each finite element tested exhibited a different buckling pattern. One solid and one shell finite
element (K1H8 and KGQ4) exhibit a distinct 5-lobe buckling pattern that matches the experi-
mental results of Pepin and Thacker, [2003]. The shell finite element (KHQ4) exhibits a less
distinct 5-lobe pattern on one side that appears to be influenced unduly by the pattern of the
mesh. Another shell finite element (NCT3) exhibits an unusual, but 5-lobed, buckling pattern
in that one lobe is much more advanced in amplitude than the remaining four lobes, a char-
acteristic seen in the buckling pattern on both sides. The total internal energy, dominated by
inelastic dissipation, versus deflection for these four finite elements is pictured in Figure 3.50

The remaning solid and shell finite elements are notable for their less than impressive re-
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sults. Two of the elements (K2H8, ECT3) exhibit minimal or no buckling.

• ESH8. In Figure 3.41, the sphere modeled with the Simo and Rifai Enhanced Strain
8-node hexahedron exhibits on both sides either a 6-lobed or a 8-lobed buckling pattern
depending on how the amplitudes enter into the count.

• K1H8. In Figure 3.42, the sphere modeled with the Key-Gullerud-Koteras plane-stress
8-node hexahedron exhibits a decided 5-lobed buckling pattern on one side and a 4-lobed,
maybe a 5-lobed, pattern on the other side.

• K2H8. In Figure 3.43, the sphere modeled with the Key-Gullerud-Koteras multi-stress
8-node hexahedron exhibits a zeroth-order buckling pattern.

• TSH8. In Figure 3.44, the sphere modeled with the Wing Kam Liu Thick Shell 8-node
hexahedron exhibits either a 4-lobed, maybe a 6-lobed, buckling pattern on both sides.

• SDH8. In Figure 3.45, the sphere modeled with the Selective Deviatoric 8-node hexa-
hedron exhibits a distinctly uniform 6-lobed buckling pattern on both sides that shows
a common mesh configuration preference for each lobe, but does not always develop a
lobe at the otherwise prefered mesh configuration.

• KHQ4. In Figure 3.46, the sphere modeled with the Key-Hoff 4-node quadrilateral shell
exhibits an irregular 5-lobed buckling pattern on one side, and either a 3-lobed or a 7-
lobed pattern depending on how the amplitudes enter into the count on the other side.

• KGQ4. In Figure 3.47, the sphere modeled with the Key-Gruda plane-stress 4-node
quadrilateral using the K1H8 internals on a by time-step reconstructed hexahedral frame
that employs surface fiber vectors (initially surface normal vectors that have been rotated
in time using nodal point rotational rates) exhibits a near ideal 5-lobed buckling pattern.

• NCT3. In Figure 3.48, the sphere modeled with the Node Centered 3-node triangular
shell exhibits a 5-lobed buckling pattern with one lobe much more advanced in amplitude
than the remaining four lobes on both sides. The “advanced” lobes occur at two different
locations when comparing one side to the other side.

• ECT3. In Figure 3.49, the sphere modeled with the Element Centered 3-node triangu-
lar shell exhibits virtually no buckling under the plattens. (There is a possible 4-lobed
buckling pattern around the equator.)

Simulation Notes. The objective of the simulation is to reproduce the collapse response
observed when the sphere is crushed in a laboratory test machine. While the test is conducted
as rapidly as the test machine can reliably perform, from the perspective of the structure it
is still a static test. Computationally, the simulation is conducted using an explicit transient
dynamic simulation because the technology utilized has a high level of certainty and reliability
for such a complex event, however, there is a trade-off in time scale that must be considered. If
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Figure 3.41. ESH8 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.

Figure 3.42. K1H8 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.
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Figure 3.43. K2H8 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.

Figure 3.44. TSH8 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.

77



Figure 3.45. SDH8 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.

Figure 3.46. KHQ4 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.
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Figure 3.47. KGQ4 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.

Figure 3.48. NCT3 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.
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Figure 3.49. ECT3 hollow Sphere with an original diameter of
228 mm crushed to 90± mm. Upper and lower lobe patterns are
shown.

the platten movement is simulated at too long a modeled time scale, say, in seconds, then the
wall-clock time will be in days, If the platten movement is simulated at too short a modeled
time scale, say, in sub-milliseconds, then the wall-clock time will be a few hours, but there
will exist in the response true transient dynamic behavior that will be “recorded” in the elastic-
plastic history in the material. Here, 20 ms has been selected, and at the time of peak kinetic
energy (11 ms), the kinetic energy is 4% of the internal energy.

In the experimental set-up the lower platten is stationary while the upper platten moves
downward statically crushing the sperical shell. In the simulation, both plattens move towards
each other allowing a more nearly static response compared to one stationary platten and one
moving platten producing the same deflection in 20 ms.
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Figure 3.50. External Energy versus Deflection for the four fi-
nite elements that exhibit one or more 5-lobed buckling patterns:
K1H8, KHQ4, KGQ4, and NCT3.
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3.11 Test Problem 11: Element Shape Sensitivity

3.11.1 3-D Hexahedral Shell Elements

Test Problem Statement. The beam, pictured in Figure 3.51, has a length of 10 inches, a depth
of 1.0 inch, and a width of 1.0 inch. The boundary conditions are those of a cantilevered beam,
namely, zero displacement and zero rotation at the root (far end), Figure 3.51.

Figure 3.51. Beam mesh consisting of a single strip of ten 8-node
hexahedral solid elements.

The loading is a pure bending moment applied to the free end (near end) of the beam. There
are concentrated forces at the top two nodal points in ‘compression,’ and concentrated forces
at the bottom two nodal points in ‘tension’ each with a magnitude of 725 lbf. The loading is
zero at time t = 0.0 and is increased in time following a 12.0 ms duration cosine ramp to 725.0
lbf at which point the concentrated forces are held constant.
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The material is elastic with a Young’s modulus of E = 1.0×10+6 psi, a Poisson’s ratio of
ν = 0.25, and a density of ρ = 2.61×10−4 lbf-sec2/in4.

Test Problem Characteristics. The reference problem is a one-dimensional bending test
that has a reference peak tip deflection of 1.0 inch (0.99974) at 11.0 ms (11.040), Figure 3.52.
As a test of element shape sensitivity, random axial coordinate positions are introduced, and
both change in the peak tip deflection uy at 11.0 ms and the amplitude of any tip lateral motion
uz from imperfect numerical cross coupling introduced by the irregular mesh are examined.
The irregular meshes are pictured in Figures 3.53 and 3.54.

Figure 3.52. The ESH8 reference solutions for the tip displace-
ment uy vs time, left panel, and for the deformed mesh at 11.00
ms, right panel.

The uniform constant bending along the axis introduced by this loading means that all of
the finite elements participate equally in the solution as opposed to, say, a tip loaded cantilever
beam where the bending deformation is concentrated at the clamped end.

Test Problem Results. The results of the study are tabulated in Table 11-1. Note that δuy
and δuz are with respect to each element’s regular-mesh displacement history, not with respect
to the ESH8 reference result. As an example, pictured in Figure 3.55 is the uniform mesh and
irregular mesh results for the TSH8 Wing Kam Liu Thick Shell 8-node hexahedron.

Viewed as a percentage change in peak tip deflection, the solid finite elements rank as
follows: K1H8 (2.7%), ESH8 (6.9%), K2H8 (10.3%), TSH8 (10.6%), and SDH8 (16.4%).
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Table 11-1
Beam Tip Deflections Due to a Uniform Axial Bending Resultant

(uy is the irregular-mesh peak deflection)

Formulation Geometry uy δuy δuz
ESH8 Simo-Rifai 3-D Stress Hexah 0.9306 -0.0694 -0.0004
K1H8 Key-Gullerud-Koteras 2-D Stress Hexah 0.9684 -0.0271 -0.0566
K2H8 Key-Gullerud-Koteras 3-D Stress Hexah 0.7663 -0.1031 -0.0023
TSH8 W. C. Liu Thick Shell 3-D Stress Hexah 1.0252 -0.1062 -0.0021
SDH8 Selective Deviatoric 3-D Stress Hexah 1.0586 -0.1640 -0.0002

Reference Results (ESH8 formulation) 1.0000 0.0000 0.0000

Figure 3.53. The random axial nodal point positions for the the
ESH8, K1H8, K2H8, and SDH8 finite elements used to test ele-
ment shape sensitivity, left-side and right-side views, respectively.
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Figure 3.54. The random axial nodal point positions for the the
TSH8 finite element used to test element shape sensitivity, left-side
and right-side views, respectively.
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Figure 3.55. TSH8 Wing Kam Liu Thick Shell 8-node hexahe-
dron finite element vertical tip deflection uy vs time t, left panel.
and a cross-plot of uy vs lateral tip deflection uz, right panel; black
curves are from the uniform mesh results, and red curves are from
irregular mesh results.
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3.11.2 2-D Quadrilateral Shell Elements

Test Problem Statement. The square plates, pictured if Figure 3.56, are 4.0 inches by 4.0
inches, with a thickness of 0.01 inch. The boundary conditions are clamped, that is, zero
displacement and zero rotation on all four sides. The reference solution comes from a 37×37
uniform mesh.

Figure 3.56. Square plate meshes with progressively finer res-
olution with their irregularity controlled by a fixed, interior ellip-
tic boundary. The resolution sequence is nominally 8×8, 13×13,
22×22, 37×37.
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The loading is a constant gravity loading of 100 g’s applied at time equal to zero. (A “1 g”
gravity loading equals a body force in lbf/in3 of ρ×386.4 in/sec2.) The loading is zero at time
t = 0.0 and is increased in time following a 10.0 ms duration cosine ramp to a value of 100.0
g’s at which point the gravity forces are held constant until a time of t = 40.0 ms is reached.
The static solution is obtained by using velocity damping at each nodal point. At t = 40.0 ms,
the solution is fully damped to 4 significant digits.

The material is elastic with a Young’s modulus of E = 30.0×10+6 psi, a Poisson’s ratio of
ν = 0.3, and a density of ρ = 5.0×10−4 lbf-sec2/in4.

Test Problem Characteristics. The reference problem is a standard, uniformly loaded,
thin, square plate with clamped boundary conditions. The loading is sufficiently low that the
central deflection is −0.01222 inches, just slightly more than the plate’s thickness of 0.01
inches. The solution is bending dominated, that is, membrane stiffening due to finite deflec-
tions normal to the plate are not yet significant. The irregular meshes are “defined” by a fixed
elliptical contour followed by using a paved mesh, a technique for generating quadrilateral
meshes that conform to irregular boundaries. Ordinarily, the elliptical contour would represent
a part with an opening or hole in it. Here, one may think of the elliptical contour as a step
along the way to defining an outer coarse mesh and an inner fine mesh. The ultimate question
being, can an irregular mesh utilizing shell elements produce a smooth and accurate bending
solution when such meshes are needed? This test problem was crafted by Crane [2010]. The
resolution sequence is nominally 8×8, 13×13, 22×22, 37×37. The actual numbers of 4-node
quadrilateral finite elements in the irregular meshes are 70, 197, 511, and 1461, respectively.

Test Problem Results. The results of the study are tabulated in Table 11-3. The KGQ4
Key-Gruda plane-stress 4-node quadrilateral shell finite element exhibits 1% or less departure
from the reference solution for all four irregular mesh resolutions; it is minimally affected
by the mesh irregularities tested. The KHQ4 Key-Hoff plane-stress 4-node quadrilateral shell
finite element exhibits a decided and unsatisfactory sensitivity to this sequence of irregular
meshes. Very few of the individual quadrilateral elements depart in significant ways from rect-
angles, nonetheless, the overall result is a 38% degradation in deflection at the finest irregular
37×37 mesh.

Figures 3.57 and 3.58 are comparisons of normal deflection contours for the irregular and
the regular meshes for the 37×37 resolution. What is evident is that the KGQ4 Key-Gruda
plane-stress 4-node quadrilateral shell finite element exhibits only a small amount of sensitivity
due to the irregular mesh in deflection amplitude and deflection pattern. The KHQ4 Key-Hoff
plane-stress 4-node quadrilateral shell finite element exhibits a significant amount of sensitivity
due to the irregular mesh both in deflection amplitude and in deflection pattern. Both finite
elements perform well on regular meshes.
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Table 11-3
Plate Center Deflection uz Due to a Uniform Gravity Loading

(The reference solution was obtained from a 37×37
uniform mesh using the KGQ4 finite element.)

Irregular Mesh KHQ4 KGQ4
8×8 −0.01155 −0.01232

13×13 −0.01108 −0.01217
22×22 −0.00961 −0.01225
37×37 −0.00763 −0.01220

Reference Result −0.01222 −0.01222

Figure 3.57. Irregular and regular fine mesh (37×37) solution
contours for the KHQ4 shell finite element; contours are at the val-
ues of −0.0115, −0.010, −0.008, −0.006, −0.004, and −0.002
for displacement uz. The irregular mesh (left panel) only exhibits
the lowest three contours: −0.002, −0.004, and −0.006.

89



Figure 3.58. Irregular and regular fine mesh (37×37) solution
contours for the KGQ4 shell finite element; contours are at the val-
ues of −0.0115, −0.010, −0.008, −0.006, −0.004, and −0.002
for displacement uz.

90



3.12 Test Problem 12: Thick Shell to Thin Shell Transition

Test Problem Statement. The cantilever beam, pictured in Figure 3.59, has a length of 10
inches, a sequence of depths that varies from 5.0 inches to 0.1 inch, and a width of 1.0 inch.
The boundary conditions are those of a cantilevered beam, namely, zero displacement and zero
rotation at the root (far end), Figure 12.1.

Figure 3.59. The end-members of a sequence of beam meshes
consisting of a 1×1×10 strip of 8-node hexahedral solid elements.
The length to thickness ratio L/t varies from 2, the left panel, to
100, the right panel, the end-points of the L/t sequence (2, 5, 10,
20, 50, 100).

The loading is a constant gravity loading of 10 g’s applied at time equal to zero. (A “1 g”
gravity loading equals a body force in lbf/in3 of ρ×386 in/sec2.) The static solution is obtained
by nodal velocity damping.

The material is elastic with a Young’s modulus of E = 1.0×10+6 psi, a Poisson’s ratio of
ν = 0.25, and a density of ρ = 2.61×10−4 lbf-sec2/in4.

Test Problem Characteristics. The test problem is a sequence of six beam geometries
that vary in thickness (or ‘depth’ if one prefers) from 5 inches to 0.1 inch. At the start of the
sequence the beam is deep compared to its length (10 to 5), and the continuum solution for the
tip deflection due to a 10-g gravity load and a Timoshenko transverse-shear theory of bending
with a 5/6 “correction” factor are very nearly equal. At the end of the sequence the beam is
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thin compared to its length (10 to 0.1) and the tip deflection to a 10-g gravity load is given
by a Kirchhoff bending theory. Between these two extremes the solution transitions from the
transverse shear solution to the Kirchhoff solution. Here, the finite elements are based on a
transverse shear formulation that incorporates the 5/6 correction factor.

A beam, plate, or shell transverse shear formulation has the characteristic that the strain en-
ergy density in the transverse shear term(s) grows faster than the bending strain energy density
as the thickness goes to zero and, ultimately, approaches a Kirchhoff theory result. Com-
putationally, a finite element based on a transverse shear formulation that becomes thin with
respect to its in-plane dimension becomes quite ill-conditioned and “locks” giving erroneous
results. The finite elements here (except ESH8) contain an anti-locking correction that limits
the build-up of transverse shear strain energy density. Thus, the purpose of this test problem is
to demonstrate that the finite elements give the transverse shear solution for a thick beam and
properly transition to the classical Kirchhoff beam bending result as the beam becomes thin –
without locking.

Test Problem Results. The results of the study are tabulated in Table 12-1.

Table 12-1
Cantilever Beam Tip Deflection Under a 10g Gravity Loading

(m,n) = (ranking for L/t = 2, ranking for L/t = 100)

Mesh 1×10 1×1×10 1×1×10 1×1×10 2×1×10
L/t KHQ4 (2,2) ESH8 (3,4) K1H8 (1,3) K2H8 (4,5) TSH8 (5,1)
2∗ -7.4773×10−4 -7.4773×10−4 -7.4773×10−4 -7.4773×10−4 -7.4773×10−4

2 -7.5560×10−4 -7.2997×10−4 -7.5523×10−4 -7.1646×10−4 -9.2211×10−4

5 -3.9291×10−3 -3.8937×10−3 -3.9163×10−3 -3.6437×10−3 -4.5963×10−3

10 -1.5263×10−2 -1.5130×10−2 -1.5098×10−2 -1.3622×10−2 -1.6726×10−2

20 -0.6060×10−1 -0.5972×10−1 -0.5875×10−1 -0.4802×10−1 -0.6250×10−1

50 -0.3779×10−0 -0.3677×10−0 -0.3599×10−0 -0.2693×10−0 -0.3902×10−0

100 -1.4865×10−0 -1.4170×10−0 -1.4173×10−0 -1.0623×10−0 -1.5185×10−0

100∗ -1.5112×10−0 -1.5112×10−0 -1.5112×10−0 -1.5112×10−0 -1.5112×10−0

2∗ Reference, L/t = 2 : 2-D plane-stress solution (100×50 mesh)
100∗ Reference, L/t = 100: 1-D Kirchhoff linear beam solution, Roark

All of the elements (except K2H8 and TSH8) exhibit a creditable response in modeling
beam bending that ranges from thick (L/t = 2) to thin (L/t = 100) geometries. However,
even with two TSH8 Wing Kam Liu Thick Shell finite elements through the thickness, the
bending response for the thick beam example used here is 23% too great while for the thin
beam example used here the bending response is quite close at 0.5% high. The K2H8 Key-
Gullerud-Koteras multi-stress finite element while exhibiting a thick beam bending response
of only 4% too stiff continues to stiffen as the beam becomes thin to the point where it is 30%
too stiff.

92



Simulation Notes. This test problem leaves the mesh fixed while reducing the beam’s
depth. No exploration has been done regarding convergence with respect to mesh refinement.
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Chapter 4

Evaluation Summary

4.0.1 Overview

While the text in Chapter 3 for each test problem contains details about how well each finite
element formulation satified the objectives of the test problem, it remains to provide an overall
summary from which one can rank, at least in an average sense, how well the individual for-
mulations can be expected to perform in applications encountered year in and year out. To that
end, a letter grade has been assigned albeit sometimes subjectively for each test problem. The
number of A’s, B’s, C’s, et cetera assigned have been totalled, and a grade point average (GPA)
has been computed, based on a 4.0-system.

The test problems are suffciently varied that even the “best” formulation (KGQ4) received
three B grades, and the “second best” formulation (K1H8) received two C grades. Unfortu-
nately, the K1H8 finite element is the least practical formulation tested since it requires rigid
links at the corners, a feature that can easily lead to “dueling” kinematic boundary conditions in
everyday applications, and, hence, is a finite element that analysts will quickley come to avoid.
In defence of the K1H8 finite element, its formulation and results, in an acdemic setting, are
quite useful.

The following two tables, Tables 4-1 and 4-2, contain the aggragated results. Regarding
the hexahedral solid finite elements in Table 4-1, they line up as follows in order of GPA:
K1H8(3.54), ESH8(2.69), TSH8(2.15), K2H8(2.08), and SDH8(1.45). Regarding the quadri-
lateral and triangular shell finite elements in Table 4-2, they line up as follows in order of GPA:
KHQ4(3.73), KHQ4(3.00), NCT3(2.8), and ECT3(1.20). Note that both the SDH8 Selective
Deviatoric 8-node, hexehedral solid finite element and the ECT3 Element Centered 3-node tri-
angular shell finite element were expected to perform poorly overall and did so even though
they each collected several “A” ratings.
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Summary Table 4-1
Test Result Letter Grade vs Solid Element Formulation

Test Problem ESH8 K1H8 K2H8 TSH8 SDH8
1. Cantilever Beam A A D E E
2. Twisted Beam A A E C F
3. Point-Loaded Hemisphere E C B A F
4. Raasch Hook A A B A A
5. Beam Bent into a Ring E A B E A
6. Membrane Patch Test A A A B A
7. Sphere Patch Test A A A A A
8. Pinched Cylinder C A B E F
9. Vibrating Plate B B D B E

10. Crushed Spherical Shell C B E C C
11. Shape Sensitivity B A C C D
12. Thick Shell Shear Limit B A C E -
12. Thin Shell Shear Limit C C D A -
Number of A’s (+4.0) 5 9 2 4 4
Number of B’s (+3.0) 3 2 4 2 0
Number of C’s (+2.0) 3 2 2 3 1
Number of D’s (+1.0) 0 0 3 0 1
Number of E’s (+0.0) 2 0 2 4 2
Number of F’s (−1.0) 0 0 0 0 3
Grade Point Average (GPA) 2.69 3.54 2.08 2.15 1.45

Briefly,

• ESH8 Better for thick shells than for thin shells.

• K1H8 Generally good, but impractical due to required corner constraints.

• K2H8 Does not readily produce a plane-stress result.

• TSH8 Can’t be expected to be reliable; requires double-layer meshes when bending is
important.

• SDH8 Poor, not formulated for good bending results.
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Summary Table 4-2
Test Result Letter Grade vs Shell Element Formulation

Test Problem KHQ4 KGQ4 NCT3 ECT3
1. Cantilever Beam A A D E
2. Twisted Beam A A C F
3. Point-Loaded Hemisphere A B B F
4. Raasch Hook F A C B
5. Beam Bent into a Ring A A A A
6. Membrane Patch Test A B A A
7. Sphere Patch Test A A A A
8. Pinched Cylinder A A C E
9. Vibrating Plate B B C D

10. Crushed Spherical Shell B A A F
11. Shape Sensitivity F A - -
12. Thick Shell Shear Limit A - - -
12. Thin Shell Shear Limit B - - -
Number of A’s (+4.0) 8 8 4 3
Number of B’s (+3.0) 3 3 1 1
Number of C’s (+2.0) 0 0 4 0
Number of D’s (+1.0) 0 0 1 1
Number of E’s (+0.0) 0 0 0 1
Number of F’s (−1.0) 2 0 0 4
Grade Point Average (GPA) 3.00 3.73 2.8 1.20

Briefly,

• KHQ4 Generally good except for the Raasch Hook and Shape sensitivity test problems.

• KGQ4 Best overall performer, reliable and consistent.

• NCT3 Based on a mixing rule with ECT3; does not have a reliable coefficent rule.

• ECT3 Poor. (At best, it is a “place-holder” finite element.)

4.0.2 Comments on Individual Formulations

The following comments focus on the individual formulations to add insite for the tabulated
ratings contained in the above Tables 4-1 and 4-2.

ESH8. The ESH8 Simo-Rifai Enhanced Strain 8-node hexahedral solid finite element is
a formulation that introduces incompatible strain modes element-by-element to produce the
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bending response characteristically associated with 1-D finite elements formulated from beam
bending theory. The formulation has no preferred orientation and uses 3-D stress-strain con-
stitutive material models. As a result, it can be meshed without concern for a plane-stress
thickness direction. However, the ESH8 finite element is not ideally shape insensitive, test
problem 11, nor can it model thin shells where it appears to develop shear locking, test prob-
lems 3 and 12. Its inelastic buckling capabilities are limited, test problems 8 and 10. It does
satisfy the 2-D Irons patch test used here, test problem 6, and can be shown to satisfy a 3-D
Irons patch test.

K1H8. The K1H8 Key-Gullerud-Koteras plane-stress, 8-node hexahedral solid finite ele-
ment is a formulation that starts with a Taylor-series expansion of the stress field and obtains
a set of exact analytically evaluated discrete gradient/divergence operators, that is, the opera-
tors take into account the finite element’s exact geometrical shape irrespective of the departure
from a regular hexahedron. The numerical quadrature is used to “sample” the stress field and
project it onto the respective operator subspaces. Only constant membrane and bending stress
resultants are retained when applying the divergence operators that produce the nodal point
forces that drive the motion, or, in the case of a static solution are combined to satisfy equilib-
rium. The plane-stress material modeling means that there is a preferred element orientation
which must be observed when generating a mesh. The K1H8 finite element reaches its limit
of usefulness in the case of very thin shells, test problems 3 and 12. From a practical stand-
point, it requires rigid links at the corners, a feature that can easily lead to “dueling” kinematic
boundary conditions in everyday applications.

K2H8. The K2H8 Key-Gullerud-Koteras 3-D stress, 8-node hexahedral solid finite element
is a formulation that parallels the development of the K2H8 finite element except that it uses
full three-dimensional stress-strain constitutive models. Thus, the K2H8 finite element obviates
the need for the kinematic constraints required by the K1H8 finite element’s zero stiffness in
the thickness direction engendered by the plane-stress constitutive models. The K2H8 finite
element always has a mean quadrature thickness stress, and, consequently, tends toward a
thick-shell solution, test problem 7.

TSH8. The TSH8 Wing Kam Lui 3-D stress, 8-node hexahedral solid finite element is a
formulation that utilizes a mean quadrature core and retains a selected number of non-locking
higher-order strain modes that provides a three-dimensional stress field without zero-energy
hourglass modes. In its published form it relies on a four-point quadrature (a decimated 2×2×2
Gauss quadrature) for efficiency. However, the element’s response becomes sufficiently non-
symmetric that only full 2×2×2 Gauss quadrature results are used here. In a single-layer mesh
(a 1×m×n mesh), the element’s bending response is nonminally a factor of two too soft, and
as a result all of the meshes used in the test problems were two-layer meshes. Even with the
advantage of a two-layer mesh, it performed very poorly in a number of cases, namely, test
problems 1, 5, 8, and 9.

SDH8. The SDH8 Selective Deviatoric 3-D stress, 8-node hexahedral solid finite element
is a formulation that was not designed with superior bending performance in mind. The SDH8
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finite element is a reduced integration element in that it has a mean quadrature bulk strain and
pressure field also referred to in the literature as a “constant pressure” finite element. A user-
selectable scaling is available that allows a reduction in the non-constant deviatoric stress and
strain fields such that the finite element can be reduced to a pure mean quadrature formulation,
however, for all of the work presented here the scaling was set to its default value of 1.0. The
poor results in many of these test problems were predictable; the SDH8 was included in the
test suite to document what would happen should it by chance be employed to model shells.

KHQ4. The KHQ4 Key-Hoff plane-stress 4-node quadrilateral shell finite element is a
formulation that starts with the Mindlin-Reissner transverse shear plate bending theory and in-
troduces the warped geometry that occurs with quadrilateral surfaces and focuses on constant
membrane and bending stress resultants as its objectives (in place of a flat geometry approx-
imation and a reduction to constant stress). The derivation elucidates the subtle transpose
relationship between the gradient operator that produces the strain rates and the divergence op-
erator that produces nodal forces and torques from the membrane and bending stress resultants.
The KHQ4 finite element performs admirably well except for test problem 4, the Raasch Hook,
the details of which can be found in the discussion of test problem 4, and test problem 11, Shape
Sensitivity, the details of which can be found in the discussion of test problem 11. (It should be
noted that a shell element with the sobriquet Key-Gruda, a 4-node quadrilateral finite element
with internals obtained from the K1H8 plane-stress 8-node hexahedron has brought to light a
need for converting the existing shell finite elements from using element-based vertex normal
vectors to using globally defined nodal-based shell-surface fiber vectors. Some discussion of
this is found in the comments of test problem 4.)

KGQ4. The KGQ4 Key-Gruda plane-stress 4-node quadrilateral shell finite element is a
formulation that employs the hexahedral solid shell internals of the K1H8 solid 8-node finite el-
ement. However, it escapes the need to use nettlesome through-thickness kinematic constraints.
In addition, it employs nodal-based surface unit-fiber vectors in the time-step-by-time-step re-
construction of the internal hexahedral frame. (Some discussion of the reason for using surface
fiber vectors, as opposed to element-based corner normal vectors is found in the discussion of
test problem 4.) The efficacy of this shell finite element is evident from it 3.73 GPA with only
‘A’ and ‘B’ ratings, Table 4-2 above. While at this stage of its development the KGQ4 finite el-
ement is computationally more expensive than the KHQ4 shell finite element, the KGQ4 shell
finite element is consistently more accurate than all of the other solid and shell finite elements
that are evaluated here.

NCT3. The NCT3 Nodal Centered plane-stress, 3-node triangular shell finite element is
a formulation that uses area-weighted nodal velocity gradients to produce nodal-based mem-
brane and bending stress resultants. The intent being to avoid the overly stiff response found
with the conventional element-centered, one-point integrated 3-node triangular shell finite ele-
ment. To-date, the formulation is overly soft and requires an only partially adequate “mixing”
parameter defined as a function of element aspect ratio. The “mixing” parameter is used to
blend in the overly stiff response of the ECT3 finite element, thus, obtaining more accurate
results. Ideally, the mixing parameter should be a fixed value and result in between 1% to 5%
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usage of the overly stiff results from the conventional element-centered, one-point integrated
3-node triangular shell finite element. It remains to be seen if the nodal-centered concept can
be advanced to the point where it can be used reliably and routinely in everyday applications.

ECT3. The ECT3 Element Centered plane-stress, 3-node triangular shell finite element is
a formulation that is best described as a one-point quadrature to find the gradient/divergence
operators and multipoint quadrature through the thickness to compute the membrane and bend-
ing stress resultants. From a programming perspective, the element is at best a place-holder for
a proper triangular shell finite element. Its performance in the test problems with grades from
“A” through “F,” means it is not recommended for use in everyday applications. However, it is
fine for modeling the geometry of shells (or enclosed volumes) that are going to be treated as
rigid bodies.
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Chapter 5

Supporting Literature

5.1 Finite Element Formulations

5.1.1 ESH8, Simo-Rifai Enhanced Strain Hexahedron

The ESH8 Enhanced Strain finite element is thoroughly documented in the publication by
Simo and Rifai [1990]. The publication by Simo and Rifai is their summary and founda-
tional presentation of the enhanced strain concept put forward by a number of other finite
element researchers in the years before 1990. On the surface, the enhanced strain concept is
not complicated. The traditional bilinear quadrilateral and trilinear hexahedral displacement fi-
nite elements do not possess complete quadratic displacement fields, and, therefore, have quite
deficient linear strain descriptions. The bilinear and trilinear displacement fields of these finite
elements are missing the ability to describe the “bending” behavior common to beam theory,
Figure 5.1.

Figure 5.1. The bilinear deformation of a quadrilateral to which
are added “enhanced strain” fields intended to provide the bending
response embodied in beam bending theory.

The addition of enhanced strain fields is an element-by-element process and, therefore,
produces slight implied discontinuities between neighboring finite elements due to spatial gra-
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dients in the displacement field. If the enhanced strains are introduced as prescribed by Simo
and Rifai, the discontinuities vanish as the mesh is refined since each finite element only needs
to represent a constant stress state in the limit.

Within each finite element, the amplitudes of the enhanced strain modes are computed to
minimize the strain energy density in the finite element. The minimization occurs at each load
step in obtaining a static solution, and at each time step in computing a transient dynamic
response. In the event that there is non-linear material behavior and/or nonlinear geometry
changes included, the finite element’s minimum energy solution requires an iteration sequence,
generally, a Newton iteration.

The ESH8 Simo-Rifai enhanced strain hexahedron in spite of its elegant derivation is shape
sensitive, that is, when it departs from an orthogonal hexahedron the efficacy of the enhanced
strain modes noticeably diminishes.

Before reading the publication by Simo and Rifai [1990], it may be helpful to review the
slides by Key [2007] where an overview of the the Simo and Rifai enhanced-strain, plane-stress
quadrilateral formulation, the finite element internal numerical procedure, and example results
are presented.

5.1.2 K1H8, Key-Gullerud-Koteras Plane-Stress Hexahedron

The K1H8 Key-Gullerud-Koteras plane-stress hexahedral finite element is documented in the
publication by Key, Gullerud, and Koteras [2003]. The publication by Key, Gullerud, and
Koteras starts by presenting and extending the mean quadrature concept to all of the stress-
strain modes present in the trilinear displacement 8-node hexahedron. The publication then
continues with adapting these ideas in a way that allows Reissner-Mindlin shell assumptions to
be introduced, that is, only the stress components leading to constant membrane and bending
stress resultants are retained. The balance of the stress-strain modes are retained with small co-
efficients multiplying them in order to control what would otherwise be zero-energy hourglass
modes.

A particular advantage this finite element possesses is an exact set of gradient operators,
the transpose of which are the divergence operators, that ‘track’ the finite element’s shape
and deformation exactly. Numerical quadrature is used only for sampling the element’s stress
state and projecting the stress state onto the respective stress-strain subspaces to obtain stress
‘coefficients’ for use with the subspace divergence operators. While the finite element is com-
putationally expensive, it is the least shape sensitive of the finite elements tested here.

The KGQ4 Key-Gruda plane-stress 4-node quadrilateral below, uses this derivation and
these same algorithms.

Because of plane-stress material modeling common in plate and shell theories, the element
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requires rigid links in the thickness direction between the lower surface quadrilateral and the
upper surface quadrilateral. From an every-day application perspective, the required introduc-
tion of these kinematic constraints makes the finite element rather unattractive.

5.1.3 K2H8, Key-Gullerud-Koteras Multi-Stress Hexahedron

The K2H8, Key-Gullerud-Koteras multi-stress hexahedron differs from the K1H8 finite ele-
ment only in that it uses three-dimensional constitutive models and has no need of the rigid
kinematic constraints connecting the upper and lower surface quadrilaterals. To date, however,
the finite element does not use any numerical schemes to achieve a plane-stress solution, and,
as a result, exhibits an undesirable, overly stiff response.

5.1.4 TSH8, Wing Kam Liu Thick Shell Hexahedron

The TSH8, Wing Kam Liu Thick Shell hexahedron finite element is documented in the pub-
lication by Liu, et al [1998]. There are missing important details for implementation, but the
publication explains the major aspects of the finite element’s derivation. The basic concept
centers on an element that is nominally a mean quadrature element that retains a selected set
of non-constant strain modes in terms of isoparameteric coordinates. The selection is based
on omitting locking modes. It utilizes a local, physical r,s,t-coordinate system that has the r-
coordinate and the s-coordinate directions while orthogonal, as nominally diagonal directions
in the ‘middle-surface’ plane of the hexahedron. Further, as presented, the finite element uses
a decimated 2×2×2 Gauss quadrature that has only four integration points, and, as a result,
has a slightly non-symmetric response. The implementation tested here uses a full 2×2×2
Gauss quadrature as an improvement over the published finite element. The element is shape
sensitive.

5.1.5 SDH8, Selective Deviatoric Hexahedron

The SDH8 Selective Deviatoric hexahedron has no publication associated with it. However,
it is an ordinary mean quadrature bulk strain, mean quadrature pressure, but otherwise fully-
integrated trilinear hexahedral finite element. In the technical literature, the finite element is
sometimes called a B-bar (B̄) finite element or a reduced integration finite element. As part of
its implementation, it has a scale factor that allows the user to selectively reduce (hence the ini-
tials SD) the remaining non-constant deviatoric stress field; the factor can have values between
0.0 and 1.0, with the default value being 1.0. When the the selective deviatoric factor has a
value of 0.0, the element becomes a mean quadrature hexahedron with no hourglass control.
Because of the constant pressure feature the finite element does not have an artificially high
stiffness in bending distortions, but it is not tuned to have the correct stiffness in bending. The
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selective deviatoric finite element has no preferred orientations in the sense that the preceding
finite elements have plane-stress orientations and traditional shell ‘middle-surfaces,’ even if
implicitly.

Here, all of the testing of the SDH8 Selective Deviatoric element is conducted using a value
for the SD factor of 1.0.

5.1.6 KHQ4, Key-Hoff Plane-Stress Quadrilateral

The KHQ4 Key-Hoff plane-stress 4-node quadrilateral finite element is documented in the
publication by Key and Hoff [1995]. Using the current geometry of the finite element the ver-
tex translational and rotational velocities are interpolated with bilinear shape functions. The
derivation of the shell finite element centers on capturing the true geometric shape of the el-
ement by constructing normal vectors at the corner nodal points that are then interpolated
over the surface with bilinear shape functions. The gradient and divergence operators are con-
structed in closed form through projections using a constant stress over the area of the quadri-
lateral plus linearly varying stress through the thickness, and, in addition, the transverse shear
stress has components that vary linearly over the finite element’s surface to capture the essen-
tial details needed to obtain a proper warping component for the bending stress resultant. The
element performs very well in all of the test problems except for Test Problem 4, the Raasch
Hook. The shortcomings of the finite element with respect to this test problem are discussed
there.

The implementation details can be found in the Fma-3D Theoretical Manual, FMA Devel-
opment, LLC [2010].

5.1.7 KGQ4, Key-Gruda Plane-Stress Quadrilateral

The KGQ4 Key-Gruda plane-stress 4-node quadrilateral finite element uses the same internal
mechanics as the K1H8 Key-Gullerud-Koteras plane-stress, 8-node hexahedron, but without
the need for kinematic constraints controlling the thickness dimension. Internally, the KGQ4
has a preamble, if you will, that sets up a hexahedral frame after which the same computa-
tions used in the K1H8 element are initiated. The gradient operator preamble carries out the
following operations.

Element-by-Element KGQ4 Gradient Preamble

a) Gather nodal point coordinates, and translational and rotational velocities at the half-step
time tn+1/2.

b) Construct a local r,s, t-coordinate system with associated base vectors ri,si, ti.
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c) Convert element geometry and kinematic variables to the local r,s, t-coordinate system.

d) Using the finite element’s quadrilateral shape in three dimensions, numerically compute
an accurate current surface area.

e) Using the initial volume and a constant-volume rule, compute the element’s current
thickness.

f) Using nodal-based surface common fiber vectors (initially surface normal vectors that
have been rotated in time using nodal point rotational rates), construct an 8-node hex-
ahedral frame. (Why the use of nodal-based common fiber vectors is important in the
reconstruction of the hexehedral frame can be found in the discussion of results for Test
Problem 4.)

g) Convert traditional shell finite element kinematic nodal variables to translational velocity
at the eight nodal points of the hexahedron.

h) Initiate the three-dimensional finite element calculations on which the K1H8 hexahedral
shell is based.

A similar preamble is used for the divergence operator construction at the end of the time
step at time tn+1. Thus, the KGQ4 finite element has all of the advantages offered by the K1H8
hexahedral shell, but does not require the use of rigid corner links to control the lack of stiffness
in the thickness direction.

The results of the test problems used here have placed this formulation at the top of the list
in terms of quality, however, it is computationally expensive. There is every indication that its
expense can be reduced.

5.1.8 NCT3, Node-Centered Plane-Stress Triangle

The NCT3 Node Centered plane-stress 3-node triangular finite element has yet to be docu-
mented, however, its construction is easily outline as follows:

1. Loop Over Elements

a) Gather nodal point coordinates, and translational and rotational velocities at the half-step
time tn+1/2.

b) Construct the element-centered gradient operators in element-local r,s, t-coordinates.

c) Construct the element-centered velocity gradient vi, j at the half-step time tn+1/2.

d) Transform the velocity gradient to global x,y,z-coordinates.
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e) Disburse an area-weighted velocity gradient to the element’s respective nodal points.

f) Update the element-centered stress from time tn to tn+1

2. Loop Over Nodal Points

a) Construct nodal-centered r,s, t-base vectors.

b) Transform the velocity gradient to r,s, t-coordinates.

c) Construct nodal-centered stretching Drs

d) Update the nodal-centered stress from time tn to tn+1

e) Transform nodal-centered membrane and bending stress resultants to global x,y,z-coordinates
and store.

3. Loop Over Elements

a) Copy element’s nodal-centered stress resultants and transform to local r,s, t-coordinates
at time tn+1/2.

b) Blend in element-centered stress resultants to control short wave length modes that are
too soft.

c) Gather nodal point coordinates, and translational and rotational velocities at the full-step
time tn+1.

d) Construct element-centered r,s, t-base vectors at time tn+1

e) Construct divergence operators at time tn+1.

f) Compute divergence of blended stress resultants.

g) Rotate forces and moments to global x,y,z-coordinates, store locally for subsequent
nodal-pull assembly.

There are a couple of items to note in this computational sequence. First, the nodal-centered
surface normal base vector ti in Step 2.a is constructed from area-weighted normal base vectors
obtained from the attached finite elements. Second, the nodal-centered stress resultants are
converted to global x,y,z-coordinate components using nodal base vectors at time tn+1/2 in
Step 2.e and are pulled to the element’s configuration in Step 3.a at tine tn+1/2 and transformed
to local element r,s, t-coordinates at time tn+1/2, thus, the blending in Step 3.b with the element-
centered stress resultants occurs in the same configuration where both were generated.

The blending of membrane and bending stress resultants is done separately and both are
based on (α,1−α)-rules. The objective is to take advantage of the too-stiff element-centered
behavior of the ECT3 finite element to ameliorate the overly soft, short wave length modes
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found in the pure nodal-centered formulation described above. Ideally, fixed factors in the
range of 1% to 5% of the element-centered stress resultants are sought. To date, however,
tuning done on the test problems here, have required a wide range in values for the blending
factors that have no discernible pattern with respect to something such as finite element Aspect
Ratio.

If the NCT3 formulation is going to see widespread acceptance in practical applications,
some method of internally generating these blending factors will be required.

5.1.9 ECT3, Element-Centered Plane-Stress Triangle

The ECT3 Element Centered plane-stress, 3-node triangular finite element is based on follow-
ing a “standard textbook” formula for deriving a finite element. The geometry is a simplex
triangle in three-dimensional space within which the displacement and rotational degrees of
freedom of a Reissner-Mindlin shell theory are linearly interpolated. Because the finite element
is a simplex, the strain field is constant over the area of the triangle and, thus, the concepts of
one-point quadrature and mean quadrature are indistinguishable. The only variation in strain
and stress within the finite element is through the thickness due to bending. The constitutive
evaluations through the thickness at a series of Gauss points is for the purpose of obtaining
membrane and bending stress resultants. The integration through the thickness occurs only
conceptually at the center of the finite element. There is nothing that can be done with un-
der integration to improve the finite element’s performance at the element level. The ECT3
finite element is overly stiff, and at best, is a placeholder waiting to be replaced with a more
capable finite element. Nonetheless, this finite element is more than adequate for modeling the
geometry of rigid bodies to which has been added an inertia tensor.

5.2 Reference Solutions

The majority of the test problems qualify as verification problems for which there is either
an analytic solution or an independent source of results, possibly based on inference from
assorted other attemps to quantify the result. Test Problem 10 is a validation calculation in that
the expected results are from a rather complete suite of experimental results.

The publications from which the reference soulitions were obtained are listed here by test
problem.

Test Problem 1: Cantilever Beam

Roark, R.J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Company
(1971).
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Test Problem 2: Twisted Beam

MacNeal, R.H., and R.L. Harder, “A ProposedStandard Set of Problems to Test Finite
Element Accuracy,” Journal of Finite Elements in Analysis and Design, Vol. 1, 3-20
(1985).

Test Problem 3: Point-Loaded Hemisphere

MacNeal, R.H., and R.L. Harder, “A ProposedStandard Set of Problems to Test Finite
Element Accuracy,” Journal of Finite Elements in Analysis and Design, Vol. 1, 3-20
(1985).

Test Problem 4: Rassch Hook

Schoop H., J. Hornig, and T Wenzel, “ Remarks on Raasch’s Hook,” Technische Mechanik
Band 22 Heft 4 259-270 (2002)

Wlassow, W.S., “Dünnwandige Elastische Stäbe”, Band 2 VEB Verlag für das Bauwesen
Berlin (1964).

Knight Jr., N.F., “The Raasch Challange Problem for Shell Elements,” AIAA Journal Vol.
35 375-381 (1997).

Kemp, B.L., C. Cho, and S.W. Lee, “A Four-Node Solid Shell Element Formulation with
Assumed Strain,” International Journal of Numerical Methods in Engineering, Vol. 43
909-924 (1998).

Hibbitt, Karlsson & Sorensen, Inc., ABAQUS Theory Manual, Version 6.2 (2001)
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Test Problem 5: Beam Bent into a Ring

There is no reference for this test problem. The results are self-evident, that is, the
initially straight beam is deformed into a circular ring by clamping one end and rotating
the other end by 360 degrees. The exact answer is that the rotated end “arcs over” to
match exactly the clamped end forming a perfect circle.

Test Problem 6: Irons Membrane Patch Test

MacNeal, R.H., and R.L. Harder, “A ProposedStandard Set of Problems to Test Finite
Element Accuracy,” Journal of Finite Elements in Analysis and Design, Vol. 1, 3-20
(1985).

Test Problem 7: Inflated Sphere Patch Test

Roark, R.J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Company
(1971).

Test Problem 8: Pinched Cylinder

Hauptmann, R., K. Schweizerhof, and S. Doll, “Extension of the Solid-Shell Concept
for Application to Large Elastic and Large Elastoplastic Deformations,” International
Journal for Numerical Methods in Engineering, Vol. 49 Issue 9, 1121-1141 (2000).

Test Problem 9: Vibrating Plate

Roark, R.J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Company
(1971).

Test Problem 10: Crushed Sphereical Shell

Pepin, J.E. and B.H. Thacker, “A Probabilistic Analysis to Quantify the Uncertainty
in the Collapse Loading of Spherical Marine Floats,” 44th AIAA/ASME/ASCE/AHS
Structures, Structural Dynamics, and Materials Conference, 7-10 April 2003, Norfolk,
Virginia, USA, Paper No. AIAA 2003-1485 (2003).

Test Problem 11: Element Shape Sensitivity

Roark, R.J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Company
(1971).
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Crane, N.K., Personal communication, Sandia National Laboratories, Albuquerque, New
Mexico (2011).

Test Problem 12: Thick Shell to Thin Shell Transition

Roark, R.J., “Formulas for Stress and Strain,” 4th Edition, McGraw-Hill Book Company
(1971).
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