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Abstract

This document summarizes the results from a level 3 milestone study within the CASL
VUQ effort. It demonstrates the application of “advanced UQ,” in particular dimension-
adaptive p-refinement for polynomial chaos and stochastic collocation. The study calculates
statistics for several quantities of interest that are indicators for the formation of CRUD (Chalk
River unidentified deposit), which can lead to CIPS (CRUD induced powershift).
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1 Background

Stochastic expansion methods are attractive methods for uncertainty quantification due to their fast
convergence properties. For smooth functions (i.e., analytic, infinitely-differentiable) inL2 (i.e.,
possessing finite variance), exponential convergence rates can be obtained under order refinement
for integrated statistical quantities of interest such as mean, variance, and probability. Two stochas-
tic expansion methods are of interest: nonintrusive polynomial chaos expansion (PCE), which
computes coefficients for a known basis of multivariate orthogonal polynomials, and stochastic
collocation (SC), which forms multivariate interpolation polynomials for known coefficients.

Within the DAKOTA project, recent research in stochastic expansion methods has focused
on automated polynomial order refinement (“p-refinement”) of expansions to support scalability
to higher dimensional random input spaces [4, 3]. By preferentially refining only in the most
important dimensions of the input space, the applicabilityof these methods can be extended from
O(100)−O(101) random variables toO(102) and beyond, depending on the degree of anisotropy
(i.e., the extent to which random input variables have differing degrees of influence on the statistical
quantities of interest (QOIs)). Thus, the purpose of this study is to investigate the application of
these adaptive stochastic expansion methods to the analysis of CRUD using the VIPRE simulation
tools for two different plant models of differing random dimension, anisotropy, and smoothness.
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2 Computational Experiments

The previous VIPRE CRUD study [2] demonstrated fast PCE convergence for the four variable
“Plant A” problem, but results were less conclusive for the more challenging ten variable “Plant B”
problem. Here we take a closer look at the convergence behavior for these two problems using a
variety of algorithms from DAKOTA [1]. Starting with parameter studies, we explore the behavior
of mass evaporation response metrics over the parameter ranges of the random variables. Next, we
compare the performance of uncertainty quatification (UQ) methods, including Latin hypercube
sampling (LHS) with uniform refinement and stochastic expansions (PCE or SC) with uniform
or adaptive refinement. An important goal is to demonstrate the ability of the adaptive refinement
strategies to detect anisotropy and preferentially refine in the most important stochastic dimensions,
thereby improving scalability to higher dimensional UQ problems.

2.1 Plant A

Studies for Plant A include the effect of four random variables: pressure, temperature, flow, and
power. Each of these is modeled using a truncated normal distribution [2]. Metrics involve the
mass evaporation rate “m-dot-e” (abbreviated ME hereafter) over a set of spatial nodes, where
nonzero mass evaporation at a node indicates localized boiling, an indicator for CRUD formation.

2.1.1 Parameter studies

Figure 1 shows the results of a centered parameter study, which provides a set of one-dimensional
slices through each of the four response surfaces for each ofthe four variables. Its primary purpose
is to assess the smoothness of the different response metrics, although it also provides a partial
view of global sensitivity. The parameter ranges are centered at the mean values and extend to the
truncated normal bounds. It is evident that that there is a spectrum of smoothness from MEmean

and MEmax (which appear very smooth) to MEnnz (which displays moderate noise) to MEmeannz

(which displays significant noise). It is also evident that there is mild anisotropy in the importance
of the random variables and that global sensitivity over theinput ranges provided can be ranked in
descending order as temperature, pressure, flow, and power.

2.1.2 Uncertainty quantification

There are several different options for defining the grids within the stochastic domain, including
unstructured grids from random sampling or structured grids from tensor-product quadrature, cu-
bature, or Smolyak sparse grids. In this study, we focus on LHS using unstructured grids, uniform
refinement of PCE and SC using isotropic sparse grids, and adaptive refinement of PCE and SC
using generalized sparse grids [5].
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Figure 1. Assessment of response smoothness for Plant A using
a centered parameter study.
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Table 1 shows results for uniform refinement for LHS, PCE, and SC. These results differ
slightly from those in [2] due to modifications to VIPRE to increase the output precision of the
mass evaporation rate to full double precision (since highly resolved stochastic expansions are
extracting high-order modes, it is important for loss of precision to not induce or conceal these
modes). Comparing, for example,σ for MEmean, it appears that four digits of accuracy (3.203)
are achieved in fewer than 1000 evaluations for PCE and SC, but will require greater than 100000
LHS evaluations.

Tables 2 and 3 shows results for adaptive refinement of MEmeanand MEmax, respectively, using
PCE and SC on generalized sparse grids (GSG) [5]. Different rows correspond to different con-
vergence tolerances within the adaptive procedure, applied to the change in the response variance
for each algorithm iteration. In the latter MEmax case, a convergence tolerance of 1.e-4 was not
quite achievable due to the restricted range (levels 0 through 5 only) of nested Genz-Keister rules
for transformed normals.

Since a “truth” reference solution is not readily available, we instead investigate relative con-
vergence; in particular, the absolute value of the change instatistical QOI versus the total eval-
uations required for a particular level within the refinement study. The relative convergence of
σ for MEmeanand MEmax is shown in Figure 2 for LHS and uniform and adaptive refinement of
stochastic expansions. For these two smooth metrics, it is evident that the stochastic expansion
approaches with global basis polynomials achieve a much higher rate of convergence than LHS,
as expected. In addition, the adaptive refinement approaches outperform the uniform refinement
despite the lack of strong anisotropy in the importance of the four random variables.

Table 1. Plant A four variable problem, uniform refinement.
Stochastic expansions employ isotropic sparse grids, global basis
polynomials, and nested quadrature rules for transformed Askey
distributions (Genz-Keister for normal).

UQ Fn MEmean MEnnz MEmeannz MEmax

Method Evals µ σ µ σ µ σ µ σ
LHS 10 5.2024283 3.0484628 676.50000 286.18225 128.44912 25.756736 362.90413 51.316263
LHS 100 5.3811040 3.2365378 689.95000 296.55767 129.20760 26.014010 364.30704 51.633028
LHS 1000 5.3537813 3.1966980 688.34200 292.56409 129.1596425.493298 364.29270 51.078414
LHS 10000 5.3541864 3.2058056 688.43740 292.96176 129.14142 25.414158 364.32952 50.774176
LHS 100000 5.3549242 3.2029750 688.35309 292.71069 129.15984 25.454925 364.31772 50.833965
PCE L1 9 5.3659585 3.1364040 687.66667 290.37055 129.38399 25.611976 364.34780 50.188754
PCE L2 57 5.3622758 3.2093874 685.83687 292.53889 129.7679625.889725 364.30435 50.929430
PCE L3 233 5.3554087 3.2050689 687.80375 292.85255 129.31060 25.359233 364.30650 50.903587
PCE L4 793 5.3524636 3.2030337 689.83644 295.20852 128.92811 24.983725 364.31110 50.867450
PCE L5 2089 5.3549595 3.2036871 688.70472 292.87033 129.05825 25.560947 364.31107 50.873928
SC L1 9 5.3659585 3.1011071 687.66667 289.43950 129.38399 25.613615 364.34780 50.060639
SC L2 57 5.3622758 3.2102752 685.83687 292.79278 129.7679625.861697 364.30435 50.944095
SC L3 233 5.3554087 3.2054364 687.80375 292.66517 129.31060 25.320585 364.30650 50.904241
SC L4 793 5.3524636 3.2033290 689.83644 294.92151 128.92811 24.895490 364.31110 50.867862
SC L5 2089 5.3549595 3.2036382 688.70472 292.68151 129.05825 25.483007 364.31107 50.874157
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Table 2. Plant A four variable problem, adaptive refinement of
MEmeanusing generalized sparse grids, global basis polynomials,
and nested quadrature rules for transformed Askey distributions
(Genz-Keister for normal).

UQ Conv Fn MEmean

Approach Tol Evals µ σ
PCE GSG 10 9 5.3659585 3.1364040
PCE GSG 1 25 5.3656145 3.1746208
PCE GSG 1e-1 39 5.3629245 3.2056836
PCE GSG 1e-2 133 5.3549026 3.2038212
PCE GSG 1e-3 199 5.3539898 3.2032185
PCE GSG 1e-4 541 5.3520119 3.2032980
SC GSG 10 9 5.3659585 3.1011071
SC GSG 1 25 5.3656145 3.1627265
SC GSG 1e-1 39 5.3629245 3.2052408
SC GSG 1e-2 133 5.3549026 3.2045450
SC GSG 1e-3 199 5.3539898 3.2038557
SC GSG 1e-4 541 5.3520119 3.2034992

Table 3. Plant A four variable problem, adaptive refinement of
MEmax using generalized sparse grids, global basis polynomials,
and nested quadrature rules for transformed Askey distributions
(Genz-Keister for normal).

UQ Conv Fn MEmax

Approach Tol Evals µ σ
PCE GSG 10 57 364.30435 50.929430
PCE GSG 1 133 364.31150 50.881781
PCE GSG 1e-1 271 364.31023 50.877890
PCE GSG 1e-2 621 364.30900 50.873714
PCE GSG 1e-3 1293 364.31124 50.865815
PCE GSG 2e-4 2525 364.31102 50.867865
SC GSG 10 57 364.30435 50.944095
SC GSG 1 133 364.31150 50.885042
SC GSG 1e-1 271 364.31023 50.879527
SC GSG 1e-2 621 364.30900 50.873670
SC GSG 1e-3 1485 364.31168 50.867080
SC GSG 2e-4 3929 364.31179 50.870868
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Figure 2. Relative convergence of standard deviation using LHS,
PCE/SC uniform refinement, and PCE/SC adaptive refinement.

2.2 Plant B

As compared to Plant A, Plant B introduces six “model form” random variables (AFCCoeff, Ht-
dLen, LRCCoeff, DBCoeff, GHTCoeff, and ExpPBM), all uniformly distributed about a nominal
value [2]. These augment the previous pressure, temperature, flow, and power random variables,
which are again modeled as truncated normal distributions (although the distribution parameters
differ in general for the different plant).

2.2.1 Parameter studies

Figure 3 shows the results of another centered parameter study, where the one-dimensional slices
for the four response metrics are now shown for each of the tenvariables. The parameter ranges
are centered at the mean values and extend approximately to the truncated normal or uniform
bounds. A spectrum of smoothness is again evident, ranging from MEmean and MEmax (which
appear relatively smooth) to MEnnz (which displays moderate noise) to MEmeannz(which displays
significant noise). Upon closer inspection of MEmeanand MEmax in Figure 4, however, it is evident
that these response functions now contain discontinuitieswith respect to some of the model form
variables. The combination of higher random dimensionality and discontinuous response functions
makes the uncertainty quantification much more challengingfor stochastic expansion methods
based on global polynomial basis functions. In terms of the relative importance of the different
parameters, significant anisotropy is now present as the global sensitivity of several of the six
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Figure 3. Assessment of response smoothness for Plant B using
a centered parameter study.
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Figure 4. Nonsmoothness within MEmeanand MEmax for selected
model form variables.

model form parameters is much lower than that of the four operational parameters.

2.2.2 Uncertainty quantification

Table 4 shows results for uniform refinement for unstructured or isotropic structured grids. As for
Plant A, these results differ slightly from those in [2] due to modifications to VIPRE to increase
the output precision of the mass evaporation rate. It is evident that convergence has been impeded
by the discontinuities in the response surfaces shown previously in Figure 4. Discontinuities are
known to induce Gibbs oscillation in global polynomial approximations, which leads to slow con-
vergence in integrated L2 measures. Significant oscillation is evident in the convergence of mean
and standard deviation for MEnnz, MEmeannz, and MEmax. Only MEmeanapppears to be reasonably
well behaved.

Table 5 shows results for adaptive refinement of MEmeanvariance using PCE or SC on gener-
alized sparse grids, where different rows correspond to refinement convergence tolerances in the
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Table 4. Plant B ten variable problem, uniform refinement.
Stochastic expansions employ isotropic sparse grids, global basis
polynomials, and nested quadrature rules for transformed Askey
distributions (Genz-Keister and Gauss-Patterson for normal and
uniform).

UQ Fn MEmean MEnnz MEmeannz MEmax

Method Evals µ σ µ σ µ σ µ σ
LHS 10 6.4583938 7.1019694 492.80000 439.37375 141.90488 121.92322 293.98242 243.18689
LHS 100 6.0354837 7.9765695 482.62000 472.57435 137.08093 105.22836 299.28587 205.55896
LHS 1000 5.8417074 7.5517979 481.49300 461.27668 139.93617103.14638 305.62411 199.51242
LHS 10000 5.8388456 7.7294552 481.06170 465.54077 139.55339 102.98826 305.70088 198.93159
LHS 100000 5.8346719 7.6948522 481.33838 466.77452 139.05364 102.81946 305.01128 199.11421
PCE L1 21 6.0963634 6.7580396 438.50000 427.34519 137.44868121.72384 282.75861 241.06341
PCE L2 249 5.8492224 7.7725066 515.52214 477.76385 126.67750 110.29644 309.72904 197.55537
PCE L3 2121 5.8408327 7.6841480 461.88990 462.81354 144.82442 113.66851 302.09471 213.25019
PCE L4 14329 5.8606195 7.7018543 465.61125 483.94538 152.11892 104.51174 308.94206 199.65995
SC L1 21 6.0963634 6.3818259 438.50000 423.18019 137.44868122.15485 282.75861 236.31031
SC L2 249 5.8492224 7.8040605 515.52214 458.45618 126.67750 104.88659 309.72904 191.24337
SC L3 2121 5.8408327 7.6704579 461.88990 464.31351 144.82442 106.60457 302.09471 207.06866
SC L4 14329 5.8606195 7.6832159 465.61125 476.35690 152.11892 91.743840 308.94206 189.09085

Table 5. Plant B ten variable problem, adaptive refinement of
MEmeanusing generalized sparse grids, global basis polynomials,
and nested quadrature rules for transformed Askey distributions
(Genz-Keister and Gauss-Patterson for normal and uniform).

UQ Conv Fn MEmean

Approach Tol Evals µ σ
PCE GSG 10 25 6.0985463 6.8213492
PCE GSG 1 49 6.0175205 7.5473652
PCE GSG 1e-1 169 5.8002740 7.5976745
PCE GSG 1e-2 535 5.8408538 7.7749293
PCE GSG 1e-3 3159 5.8402871 7.7141125
PCE GSG 1e-4 11953 5.8300648 7.6895616
SC GSG 10 25 6.0985463 6.4485081
SC GSG 1 65 5.8128055 7.4332141
SC GSG 1e-1 205 5.8626848 7.7592240
SC GSG 1e-2 719 5.8413910 7.7641182
SC GSG 1e-3 3933 5.8523593 7.6913452
SC GSG 1e-4 15805 5.8307209 7.6860392
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range of 10 to 10−4. When erroneous oscillations are being induced due to discontinuities, one
might conjecture that use of greedy adaptive algorithms (such as generalized sparse grids) could
be counter-productive since selecting the refinement increments that induce the largest changes in
the statistical QOI could be the ones that are most dominatedby numerical instability or approx-
imation error. However, it is evident that the generalized sparse grid procedure does reasonably
well in capturing an accurate solution and does not fall victim to chasing errors.

Similar to Figure 2, Figure 5 shows relative convergence ofσ for MEmeanfor LHS and uniform
and adaptive refinement of stochastic expansions. It is evident that the relative convergence rate is
more rapid for uniform refinement of PCE/SC than for LHS, and that the initial rate for adaptive
refinement is more rapid than uniform refinement. However, the relative convergence trajectory
for adaptive refinement becomes noisy as the convergence tolerance is tightened, indicating some
sensitivity to the nonsmoothness in this problem. The most refined LHS and adaptive PCE/SC
results agree that(µ,σ) = (5.83,7.69) when rounded to three digits. Thus, it appears that the
adaptive PCE/SC results are more converged than the most resolved uniform refinement results
(L4 in Table 4), where both sets are obtained for comparable expense.
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Figure 5. Relative convergence of MEmean standard deviation
using LHS, PCE/SC uniform refinement, and PCE/SC adaptive re-
finement.
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3 Observations

Deployment of advanced UQ methods to uncertainty quantification of CRUD has led to the fol-
lowing primary observations:

• Centered parameter studies uncovered important information related to smoothness of the
four response metrics, anisotropy in random variable importance, and discontinuities with
respect to model form parameters. This insight helped guidestudy selection and explain
observed differences in algorithm performance.

• Stochastic expansion methods for UQ (PCE and SC) exploit smoothness when present to
provide more rapid convergence than random sampling approaches (e.g., LHS). For smooth
Plant A metrics, PCE and SC were clearly superior, and for Plant B, PCE and SC were still
more efficient than LHS despite the impediment of approximating discontinuous functions
with smooth global basis polynomials.

• Adaptive p-refinement has been shown to be more efficient thanuniform p-refinement for
smooth problems that exhibit anisotropy. However, some caution is warranted when apply-
ing adaptive p-refinement methods to problems that are nonsmooth. In particular, greedy
adaptive algorithms that select increments that induce thegreatest change in statistical QOIs
cannot discern among increments that increase accuracy through resolution and increments
that might induce greater oscillation or numerical error. In the current studies, some sensi-
tivity of the adaptive algorithms to nonsmoothness was detected, although they were still the
top performers for both smooth and nonsmooth cases.

• Adaptive h-refinement is expected to be an effective option for dealing with nonsmooth re-
sponse variations such as the discontinuities observed with the model form parameters used
with Plant B. Initial capabilities have been developed for dimension-adaptive h-refinement
using local bases (linear value-based or cubic gradient-enhanced) within global sparse grids;
however, enabling local refinement based on local error estimates is expected to extract the
full potential from adaptive h-refinement formulations. These capabilities are currently un-
der development.

In addition, the following details were observed:

• Sharp discontinuities (Figure 4 for Plant B) appear to be moreproblematic that small-scale
noise (Figure 1(b,c) for Plant A and Figure 3(b,c) for Plant B)in terms of their effect on
PCE/SC convergence behavior (comparing noisy MEnnz and MEmeannnzmetrics in Table 1
versus Table 4). The smoothing of noise on top of global trends is an interesting topic for
future study.

• For PCE and SC techniques based on sparse grids (that extract high order modes from eval-
uations at precise Gauss points), it is important to pay attention to the precision of the input
pre-processing and output post-processing. LHS is less sensitive to this issue. Since VIPRE

17



is a Fortran program that uses fixed formatting, increasing the input/output precision requires
modifications to the VIPRE source code. While issues with output precision were addressed,
similar issues with input precision (only 5 digits were allowed following the decimal) were
not discovered until after the numerical studies were completed. Future studies should ad-
dress this; it is expected that the convergence behavior forhigher order grids could be further
improved.

• For Plant B, comparing LHS and uniform refinement for ten inputvariables displays a
cross-over where LHS initially appears better for low samples, but the faster convergence of
stochastic expansions appears to result in greater accuracy for higher samples. This is as ex-
pected, as relative efficiency comparisons between these methods are dimension dependent.
Since the convergence rate of random sampling is slow but dimension independent and the
convergence rate of stochastic expansions is fast but dimension dependent, this cross-over
point will tend to shift to the right as dimension increases.A goal of adaptive refinement
is to reduce this dependence on dimensionality by reducing the effective dimension through
preferential refinement.
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