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Abstract

The discipline of computer science is built on indirection. David Wheeler famously said, “All problems
in computer science can be solved by another layer of indirection. But that usually will create another
problem” [1].

We propose that every computer security vulnerability is yet another problem created by the indirections
in system designs and that focusing on the indirections involved is a better way to design, evaluate, and
compare security solutions. We are not proposing that indirection be avoided when solving problems, but
that understanding the relationships between indirections and vulnerabilities is key to securing computer
systems.

Using this perspective, we analyze common vulnerabilities that plague our computer systems, consider the
effectiveness of currently available security solutions, and propose several new security solutions.
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1 Foundations
The topic of this report is computer security. We must start by answering two questions:

• What is a computer?
• What is security?

These may seem like trivial questions to which everyone has answers. However, everyone seems to have
different answers for these questions and different definitions of the terms involved in describing them. Any
field of science needs a common set of terms to enable the unambiguous communication of ideas. This
section defines computer security terms based on fundamental principles of computer science, set theory,
and definitions developed by other researchers.

1.1 What is a Computer?
A computer is any system that is computationally equivalent to a bounded-tape universal Turing machine1.
Desktop computers, laptop computers, servers, virtual machines, video game consoles, personal digital as-
sistants (PDA), cell phones, and the microcontrollers in a multitude of products ranging from toaster ovens
to automobiles are all computers by this definition. The methods presented in this report for reasoning about
vulnerabilities and effective solutions are applicable to any of these computers.

1.1.1 Abstract Machine Hierarchies
We will represent any machine that is equivalent to a universal Turing machine as an abstract machine M.

Abstract machines M0,M1, · · · ,Mn and abstract program sets P0, P1, · · · , Pn are defined in [3] such that,
for 0 ≤ i ≤ n, Pi is a program set that runs on machine Mi. The combination of abstract machine Mi
with abstract program set Pi, written as 〈Mi, Pi〉, implements the abstract machine Mi+1, where 0 ≤ i < n.
Each program set Pi implements a mapping function between the state spaces of Mi and Mi+1. The abstract
machine hierarchy terminates at Mn because program set Pn either does not exist or does not define a new
Turing-equivalent machine.

For example, let the hardware platform define M0 and let the firmware and operating system kernel be in
program set P0. The combination 〈M0, P0〉 defines M1, which is commonly known as user-space. Inter-
preters or run-time environments for languages such as Perl, Python, Ruby, Visual Basic, or Java each define
a program set P1 that runs on M1. Each combination 〈M1, P1〉 defines a new M2, the abstract machine ac-
cepting that interpreted language or byte-code. Similarly, any virtual machine manager that runs on M1 is
in a program set P̂1. The combination 〈M1, P̂1〉 defines M̂2, a virtual machine. An operating system P̂2 can
then run on the virtual machine M̂2, defining a new user-space M̂3, and so on. The example abstract machine
hierarchy just described is depicted in Figure 1.1.

Any reader unfamiliar with Turing machines should consult a textbook on automata theory, such as [2].1
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M0 M1

M2P1

M̂2 M̂3
P̂2

P̂1

P0

Figure 1.1 Abstract machine hierarchy.

Understanding this hierarchy of abstract machines is critical because similar vulnerabilities occur throughout
the hierarchy. Vulnerabilities in different abstract machines Mi and M j may currently be viewed as different
classes of vulnerabilities, while they are actually instances of the same vulnerability at different locations in
the hierarchy of abstract machines. Principles used to mitigate vulnerabilities in Mi may work to mitigate
vulnerabilities in M j. Section 3 includes demonstrations of how existing defenses can be translated to new
locations in the abstract machine hierarchy.

1.2 What is Security?
Formal definitions of security concepts provide the foundation for reasoning about what a vulnerability is,
what security is, and how effective any given security solution can be.

1.2.1 Policies, Policy Violations, and Vulnerabilities
Informally, a policy defines what is allowed and disallowed for a system; a policy violation occurs when
something was allowed that should have been disallowed or when something was disallowed that should
have been allowed; and a vulnerability is the set of conditions that allowed the policy violation. Formal
definitions for security policies, policy violations, and vulnerabilities are presented in [4]. These definitions
are summarized here for their usefulness in defining security and insecurity.

Policy The function P : S × O × A → {allowed, disallowed} such that for any subject s ∈ S , object
o ∈ O, and action a ∈ A, P(s, o, a) = allowed if a on o by s is allowed, otherwise P(s, o, a) = disallowed. [4]

Additionally, the following four levels of policy are defined:

An Oracle Policy (OP) is the theoretical ideal that encapsulates perfect knowledge of the system and the
system owner’s intent. The OP is what the system owner wants the system to do and is not tied to any
specific implementation [4].

A Feasible Oracle Policy (FP) is an approximation of the OP that is feasible to implement on system x due
to the resource limitations of system x or the general limitations of what is computable [4].

The Configured Oracle Policy (CP) is the implementation on system x of the FP. The CP is what system x
is configured to do [4].

The Actual Policy (AP) is what the implementation of system x actually allows to happen [4].

Policy Violation Any tuple 〈s, o, a〉 where s ∈ S , o ∈ O, a ∈ A such that OP(s, o, a) 6= FPx(s, o, a),
FPx(s, o, a) 6= CPx(s, o, a), or CPx(s, o, a) 6= APx(s, o, a). [4]

Vulnerability Any tuple 〈Cx,Vx〉 where Cx is the nonempty set of conditions that enables the nonempty
set of policy violations Vx for some system x. [4]
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1.2.2 Security and Insecurity
A large portion of the computer security community tries to use absolute definitions of security and insecurity
such as:

Secure A system is secure if that system has no vulnerabilities.

Insecure A system is insecure if that system has one or more vulnerabilities.

While it is desirable to have a system that is proven secure or to have absolute security metrics for comparing
different systems, both of these desires have been proven to be unobtainable [5] [6].

An axiomatic approach is taken in [5] that considers sets of known and unknown vulnerabilities for system
owners and all possible adversaries, sets of mitigated and unmitigated vulnerabilities, and the intersections
of these sets. The result of the axiomatic reasoning is that absolute measures of security are not possible.
However, [5] demonstrates that while a system can not be proven to be secure, if no adversary knows any
unmitigated vulnerabilities, a system may be secure in practice.

Secure in Practice A system is secure in practice if that system has no vulnerabilities that are known to
and exploitable by any adversary [5].

Using an approach based on automata, [6] defines two conceptual languages: SECURE and INSECURE 2.
A series of proofs based on Turing machines and computability are then outlined with two primary results.
First, proving that a system is secure is an undecidable problem. Second, determining if a system is currently
in a secure state is a decidable problem. The real-time determination of whether a system is currently in a
secure state enabled a useful definition of security.

Real-time Secure A system is real-time secure if and only if every configuration in its computation history
is authorized by the security policy [6].

The results from both [5] and [6] are that systems can not be proven to be secure. A system can be proven to
be insecure by demonstrating a vulnerability, but the strongest security statement possible is that a system is
not known to be insecure.

Since the ideal of a provably secure system is not possible, the security community must focus on practical
issues of designing and building systems that are secure in practice. In support of designing systems that are
secure in practice, there are various questions that can be considered: What are the known ways for systems
to be insecure? How can we eliminate, mitigate, or at least constrain entire classes of known insecurities?
What real-time security checks can be effectively implemented? These questions and a new way of looking
at these questions are the focus of the remainder of this report.

The language INSECURE is defined as the complement of the language SECURE [6].2
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2 Indirection and Insecurity

Indirection Indirect action or procedure. Not directly achieved [7].

The discipline of computer science is built on indirection. David Wheeler famously said, “All problems
in computer science can be solved by another layer of indirection. But that usually will create another
problem” [1]. The problems created by indirection are normally described as execution overhead (in time
or space) and design complexity. Consider the abstract machine hierarchy presented in Section 1.1.1. Each
program set Pi is a layer of indirection that enables program set Pn to indirectly run on the physical machine
M0. However, each Pi requires storage space and execution time on abstract machine Mi, which translates
into storage space and execution time on the physical machine M0.

We propose that all computer security vulnerabilities are problems created by indirection. Indirections en-
able or even provide the conditions that are required for vulnerabilities3. We are not proposing that indirec-
tion be avoided when solving problems, but that understanding the relationships between indirections and
vulnerabilities is key to securing computer systems. The use of indirection does not necessitate the existence
of vulnerabilities; however, Section 3 analyzes a variety of indirections that have a propensity to produce
vulnerabilities.

A better way to design security solutions is to identify the indirections involved and implement methods for
eliminating or mitigating the mismatch between the indirection and reality. In decreasing order of desirable-
ness, the spectrum of options are

1. Make the indirection and reality match by changing the indirection to match reality, changing reality
to match the indirection, or changing both indirection and reality to match. Making the indirection
and reality match is an inherent security solution since the root cause of the vulnerability has been
removed. Inherent security solutions eliminate possibilities for OP(s, o, a) 6= FPx(s, o, a), FPx(s, o, a) 6=
CPx(s, o, a), or CPx(s, o, a) 6= APx(s, o, a).

2. Add programmatic checks to ensure that the system is operating in the valid region of the indirection. If
the system leaves the valid region of the indirection, a fatal error has occurred and the system is stopped.
This method is a programmatic approximation of an inherent security solution and will be referred to as
a programmatic security solution. The root cause of the vulnerability is still present, but programmatic
checks are in place to detect and prevent attempts to exploit the vulnerability. Programmatic security
solutions contribute to the real-time security of the system by increasing the number of configurations
in the computation history that are checked against the security policy.

3. Make exploiting a vulnerable indirection computationally complex. This method is a probabilistic ap-
proximation of a programmatic security solution4 and will be referred to as a probabilistic security so-
lution since the vulnerability can still be successfully exploited with some (hopefully very small) prob-
ability.

Many security solutions (such as SELinux, chroot jails, and segmented networks) attempt to contain or
limit what can be done with the successful exploitation of a vulnerability. However, containing or limiting
a successful exploit is accomplished by using at least one of the three methods above at a lower layer in

Examples are provided in Section 3.3

The equivalence of diversity-based defenses to probabilistic, run-time type checking is shown in [8].4
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the abstract machine hierarchy. Consider again the abstract machine hierarchy presented in Section 1.1.1.
Changing abstract machine Mi to include any of the above three methods changes the operating environment
for program set Pi and, hence, abstract machine Mi+1. The program set Pi can still implement any Mi+1, but
the external behavior of Pi is contained within the limits established by Mi.

There is often value in combining a programmatic security solution for a given vulnerability with a proba-
bilistic security solution for the same vulnerability. The underlying vulnerability is still present with either
of these solution types, so combining a programmatic security solution with a probabilistic security solution
provides defense in depth against the vulnerability being exploited.

It is useful to consider two ways of describing indirection: mapping and abstraction.

2.1 Mapping
Mapping To assign (as a set or element) in a mathematical or exact correspondence. To be assigned in a
relation or connection [7].

Mapping is establishing a connection between sets of things. In mathematics, a function defines a mapping
from the input set to the output set and can be one-to-one, one-to-many, many-to-one, or many-to-many.
Mappings do not require the input and output sets to be similar.

How a mapping is established is important. Static mappings are defined by the system designer or owner and
remain constant. Dynamic mappings are established and periodically changed at run-time. Both static and
dynamic mappings are used by adversaries. Adversaries influence the establishing of dynamic mappings to
modify the operation of the system and rely on known static mappings to gain a foothold on a system. Some
of the ways in which adversaries leverage both dynamic and static mappings are covered in Section 3.

2.2 Abstraction
Abstraction Disassociation from any specific instance. The act of considering apart from application to
or association with a particular instance [7].

Abstraction is the generalizing or simplifying of a topic by removing details. Abstraction is what allows the
hierarchy of processor registers, L1 cache, L2 cache, system RAM, and swap space to be treated as a single
memory space by the programmer. Abstraction is what allows local file systems and networked file systems
to appear the same to the system user. Abstractions emphasize how a set of things are similar to each other.

However, abstractions are not without defect. “All non-trivial abstractions, to some degree, are leaky” [9];
where leakymeans that artifacts or side-effects of the implementation are still observable through the abstrac-
tion. For example, there are speed differences between registers, cache, RAM, and disk that are evident in
how data and instruction locality impact performance. The differences in reliability and speed between local
storage media and network traffic leak through the local versus networked file system abstraction. Whenever
an abstraction is leaky, an adversary has the opportunity to obtain information about the system or to modify
the operation of the system. Several leaky abstractions are considered in Section 3.
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3 Case Studies
This section explores a variety of common indirections that have a history of producing vulnerabilities.
Each case study focuses on a particular indirection, known vulnerabilities enabled by that indirection, and
defenses against those vulnerabilities. The case studies are not exhaustive, but are intended to demonstrate
how a wide variety of vulnerabilities and security solutions can be studied through the lens of indirection.
Several new security solutions are also proposed to demonstrate how security solutions from one location in
the abstract machine hierarchy can be translated to other locations in the abstract machine hierarchy.

3.1 Instructions versus Data
Instruction A code that tells a computer to perform a particular operation [7].

Data Information in numerical form that can be digitally transmitted or processed [7].

Programmers find it useful to make a distinction between instructions and data that is not inherently present
in Turing machines, but that can be built into each Turing machine. Consider a Turing machine M that
enforces a distinction between instructions and data by partitioning the set of states Q and the set of input
symbols Σ as follows:

{Qinstructions ⊂ Q,Qdata ⊂ Q | Qinstructions ∩ Qdata = ∅ }

{Σinstructions ⊂ Σ,Σdata ⊂ Σ | Σinstructions ∩ Σdata = ∅ }
(3.1)

In other words, states and tape symbols can be associated with either instructions or data, but not both.

The transition function δ includes transitions from states in Qinstructions to states in Qdata and vice versa. For
the current state q and the current input symbol σ, if q ∈ Qinstructions and σ ∈ Σdata, the Turing machine will
reject the language for receiving a data symbol in an instruction accepting state. Similarly, if q ∈ Qdata and
σ ∈ Σinstructions, the Turing machine will reject the language for receiving an instruction symbol in a data
accepting state. In this way, Mi can enforce the distinction between instructions and data on any program
Pi running on Mi. However, Mi can not, in the general case, enforce a distinction between instructions and
data beyond Pi to Mi+1.

Proof: Let Mi be a universal Turing machine that distinguishes between instructions and data by parti-
tioning Q and Σ as shown in Equation (3.1). The machine Mi, therefore, enforces a distinction between
instructions and data on program set Pi. Let 〈Mi, Pi〉 implement a new Turing machine Mi+1. The program
set Pi can encode the set of input symbols Σ for Mi+1 using only symbols from Σdata for Mi. Unless Pi en-
forces a new distinction between instructions and data, there will be no distinction between instructions and
data in Mi+1. The distinction between instructions and data in Mi does not guarantee a distinction between
instructions and data in Mi+1. �

An alternate method of distinguishing between instructions and data is to have separate instruction and
data tapes. However, the use of separate tapes does not change the conclusion that Mi can not guarantee a
distinction between instructions and data in Mi+1.

Proof: Let Mi be a two-tape universal Turing machine where the first tape contains only instructions, the
second tape contains only data, and instructions are only executed from the instruction tape. Themachine Mi,
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therefore, enforces a distinction between instructions and data on program set Pi. Let 〈Mi, Pi〉 implement
a new single-tape Turing machine Mi+1 where the tape of Mi+1 maps into the data tape of Mi. Both the
instructions and data of the programs running on Mi+1 will be stored on the data tape of Mi. Unless Pi
enforces a new distinction between instructions and data, there will be no distinction between instructions
and data in Mi+1. �

Conversely, a Turing machine can be designed to enforce a distinction between instructions and data for the
programs running on that Turing machine, even when the underlying universal Turing machine does not
enforce a distinction between instructions and data.

Proof: Let Mi be a universal Turing machine that makes no distinction between instructions and data.
Let 〈Mi, Pi〉 implement a new Turing machine Mi+1. The program set Pi can enable a distinction between
instructions and data by defining separate instruction and data tapes for Mi+1 or by partitioning the sets
of states and input symbols for Mi+1 as shown in Equation (3.1). The machine Mi+1 enforces a distinction
between instructions and data on program set Pi+1 even though Mi makes no distinction between instructions
and data. �

Each Turing machine is responsible for enforcing its own separation between instructions and data.

The lack of distinction between instructions and data is one of the conditions that enables various security
vulnerabilities. Classic buffer overflows place data in memory that are later treated as instructions by the
processor. SQL injection presents data to the database engine (a machine that accepts SQL) that are later
treated as SQL commands (i.e., instructions). Cross-site scripting places data on a web page that are later
treated as JavaScript instructions by the user’s web browser (a machine that accepts JavaScript). Processor-
level code injection, SQL injection, and cross-site scripting are all instances of the same vulnerability in
different layers of the abstract machine hierarchy.

3.1.1 Converting Data into Instructions
When instructions in Mi+1 are encoded using data in Mi, Pi is the point of conversion from data to in-
structions. Examples include linkers that convert binary files into running processes and scripting language
interpreters that convert text files into running processes. Frequently, the point of conversion in Pi is exposed
as an interface in Mi+1, allowing programs in Pi+1 to submit data to Mi+1 for conversion to new instructions in
Pi+1, potentially circumventing any distinction between data and instructions provided by Mi+1. The points
of conversion from data to instructions are necessary, but they must be closely evaluated when reasoning
about security.

3.1.2 Applications versus Data Files
In many operating systems, running applications and opening documents are both accomplished by double-
clicking [10]. Double-clicking an application causes the operating system to convert data in the application
into instructions in a new running process. Double-clicking a document causes the operating system to in-
struct some process to open the document as data. The overloaded meaning of double-clicking is a leaky
abstraction that actively encourages users to not distinguish between instructions and data. The lack of dis-
tinction between applications and documents has enabled a wide range of social-engineering attacks where
a user thinks he is opening a data file, but is actually launching a malicious application.
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3.1.2.1 File Permissions and Mount Options

On UNIX-like operating systems, file permissions include execute permissions. By default, newly created
files do not have execute permissions enabled. Files without execute permissions are not automatically
converted from data to instructions.

Many file systems on UNIX-like operating systems can be mounted with a noexec option that disallows
execution (i.e., conversion to instructions) of all files in that file system.

3.1.3 Processor Instructions versus Data
The von Neumann architecture consists of a central processing unit (CPU), a random access memory (RAM)
that is divided into fixed size words, and input and output facilities. Instructions and data are both stored
in the RAM. Most general-purpose computers that people are familiar with are based on the von Neumann
architecture. For example, Intel x86, AMD64, and PowerPC are all von Neumann architectures. Since
instructions and data are stored in the same RAM, many von Neumann architectures fail to distinguish
between instructions and data. Without a distinction between instructions and data, adversaries can load
data into RAM and cause the CPU to use the adversary-supplied data as instructions [11].

The Harvard architecture consists of a CPU, two RAMs that are each divided into fixed size words, and
input and output facilities. One RAM is called the instruction memory, and the other RAM is called the
data memory. Each RAM is in a separate address space and the CPU only executes instructions from the
instruction memory. Many microcontrollers and digital signal processing systems are Harvard architectures.

3.1.3.1 ¬W ∨ ¬X Memory Protection

Notwritable or not executablememory, written as¬W∨¬X (alternately,W+X), means each value inmemory
can be writable or executable, but not both. Data can be writable but should not be executable. Instructions
should be executable but should not be writable. For a pure Harvard architecture, this is accomplished by
partitioning the memory hierarchy into a read-only instruction memory and a read-write data memory. The
Harvard architecture hardware only fetches and executes instructions from the instruction memory. The two
separate memories of the Harvard architecture are an inherent security solution for distinguishing between
instructions and data on that machine. For a von Neumann architecture, this means that any specific symbol
in memory should be exclusively writable or executable. A check in hardware or software is required before
using any symbol in memory as either writable data or executable instruction and is therefore a programmatic
security solution for distinguishing between instructions and data on that machine5.

Hardware and operating system support for¬W∨¬X memory protection effectively addresses the instruction
versus data abstraction for CPU-native applications by making the reality provided by the machine match the
abstraction used by programmers. Various publications point out that adversaries can still exploit systems
with ¬W ∨ ¬X memory protection [13] [14] [15]. It is, however, important to note that the adversaries are
not directly violating the instruction versus data separation; the adversaries are using different indirections
or are using an insufficiently protected data-to-instructions conversion point.

AMD calls this feature in their processors a No eXecute (NX) bit. Intel calls this feature in their processors an eXecute Disable (XD)5

bit. OpenBSD support is called WˆX (i.e., exclusively writable or executable). Linux support is part of ExecShield [12]. Microsoft
Windows support is called Data Execution Prevention (DEP).
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3.1.3.2 Instruction Set Randomization

Some work has been done on Instruction Set Randomization (ISR) as a defense against code injection at-
tacks [16] [17]. An instruction set can be described as a static mapping between binary values and CPU
operations such as load, store, add, subtract, multiply, and divide. ISR randomizes this mapping so that
the adversary is faced with the (hopefully) computationally complex task of discovering a mapping from
adversary-supplied data to valid instructions. ISR is a probabilistic security solution for distinguishing be-
tween instructions and data on that machine. Several attacks against ISR techniques are presented in [18]
that reduce the complexity of discovering the data to instruction mapping used in [17]. However, alternate
ISR approaches could provide a stronger randomized mapping.

3.1.4 SQL Instructions versus Data
The Structured Query Language (SQL) is commonly used in relational database systems. When creating
applications that interface with a database, many programmers will dynamically build SQL commands using
user-supplied data. In an SQL injection attack, an adversary includes SQL syntax in the user-supplied data.
The adversary’s SQL is executed when the dynamically built command is sent to the database [19].

3.1.4.1 Prepared SQL Statements

Parsing an SQL statement is the point of conversion from data to instructions. For most databases, once an
SQL statement with placeholders for user-supplied parameters has been parsed and prepared, any parameters
later supplied when executing that prepared statement are treated as data and do not pass through the parser.
Since there are distinct instruction creation and data handling steps, prepared SQL statements provide an
inherent security solution for distinguishing between instructions and data on that machine and preventing
SQL injection attacks.

3.1.4.2 SQL Input Filtering

User-supplied data can be checked for SQL key words and escape characters before dynamically building
an SQL command. Checking the user-supplied data is a programmatic security solution for distinguishing
between instructions and data on that machine. However, due to the complexity of SQL syntax, support
for various character encodings, and the interfaces between various databases and programming languages,
properly checking the user-supplied data is error-prone and SQL injection attacks frequently slip past pro-
grammatic checks.

3.1.4.3 SQL Randomization

Randomizing SQL key words (i.e., instructions) has been demonstrated as a defense against SQL injection
attacks [20]. Again, randomization increased the computational complexity for the adversary to discover a
mapping from adversary-supplied data to valid SQL instructions. SQL randomization provides a probabilis-
tic security solution for distinguishing between instructions and data on that machine and preventing SQL
injection attacks.
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3.1.5 JavaScript Instructions versus HTML Data
The Hyper-Text Markup Language (HTML) was originally designed as a markup language for data. The
introduction of JavaScript added instructions to HTML. Example 3.1 is a simple example of an HTML
document that contains both legitimate JavaScript that is part of the design and malicious JavaScript that an
adversary placed in a product review or some other user-submitted data. When a web browser retrieves this
HTML document, there is very little to distinguish between the legitimate and malicious JavaScript in the
document.

<html>
<head>

<script type="text/javascript" src="external_file.js"></script>
<script type="text/javascript">

// Legitimate site-supplied JavaScript.
</script>

</head>
<body>

<!-- HTML data goes here. -->
...
<script type="text/javascript">

// Legitimate site-supplied JavaScript.
</script>
...
<!-- Server-generated content: such as user comments. -->
<!-- Adversary submitted script tag in a comment field. -->
<script type="text/javascript">

// Malicious adversary-supplied JavaScript.
</script>
...

</body>
</html>

Example 3.1 Vulnerable HTML document.

3.1.5.1 NoScript Firefox Add-On

NoScript [21] is an add-on for the Firefox web browser that disables execution of all JavaScript by default.
The user then explicitly allows execution of JavaScript that is downloaded from web sites that the user trusts.
If you view the Internet as a distributed memory, NoScript enables partitioning the Internet into separate
instruction and data memories.

3.1.5.2 Create Separate Code and Data Sections in HTML

We propose that a noexec attribute be added to the HTML specification. The noexec attribute would instruct
the browser to disable JavaScript parsing and execution on the document sub-tree within any element that
has the noexec attribute. For documents that don’t use JavaScript, the document authors could apply the
noexec attribute to the <html> element to prevent all JavaScript execution. For documents that only contain
JavaScript in the <head> element, the document authors could apply the noexec attribute to the <body>
element. For documents that have legitimate JavaScript in the <body> element, the document authors could
apply the noexec attribute to any <div> or similar element that might contain user-supplied data.
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Web browser support for a noexec attribute would provide a way for legitimate sites to protect their users
against adversary-supplied JavaScript by specifying the author-intended distinction between instructions and
data in the document. Support for a noexec attribute would not protect users against malicious sites that
intentionally mark their adversary-supplied JavaScript as executable. This parallels ¬W ∨ ¬X memory
protection that prevents adversary-supplied instructions from being injected into legitimate applications but
does not prevent users from executing malicious applications.

3.2 Pointers
Pointers are an excellent example of indirection. Pointers are data, but they can contain the addresses of
either instructions or data. Classic stack-smashing buffer overflows [11], return-into-libc exploits [13], and
return-oriented programming [22] are some of the vulnerability classes that rely on manipulating pointers.

3.2.1 Remove Pointer Access
Haskell, Java, Python, and Ruby are examples of programming languages that remove pointers from the pro-
grammer’s direct control to provide an inherent security solution against pointer manipulation for programs
written in those languages. It must be noted that the language interpreters or compiled executables still use
pointers internally and that defects in the interpreter or compiler may generate pointer vulnerabilities.

3.2.2 Pointer Value Checks
If there is a specific range or set of addresses that can be defined as the valid region for a pointer to reference,
programmatic checks can be added at each pointer dereference to ensure the pointer’s value is in the valid
region. Pointer value checks are a programmatic security solution for pointer manipulation.

3.2.3 Address Space Layout Randomization
Address space layout randomization (ASLR) randomizes where in the address space of each new process
various program sections are located. ASLR is a probabilistic security solution for pointer manipulation
because it creates a randomized mapping between memory content that an adversary wants to access (such
as libraries, the stack, and items on the heap) and memory addresses (i.e., pointers). However, on 32-
bit platforms, the number of bits that can be randomized in ASLR is limited to k < 14, allowing brute
force discovery of the randomized mapping [23]. On 64-bit platforms, k can be larger, making brute force
discovery less feasible.

3.2.4 Pointer Encryption
PointGuard [24] modifies the compiler to generate additional object code that encrypts pointers as they are
moved from registers to memory and decrypts pointers as they are moved from memory to registers. The
encryption and decryption are done in the registers, so the decrypted pointers are never present in memory.
Pointer encryption is a probabilistic security solution for pointer manipulation because it creates a mapping
between pointers in memory and pointers in registers that is computationally complex for an adversary to
discover. If an adversary modifies an encrypted pointer in memory, the value of the decrypted pointer in a
register is not predictable for the adversary.



18

3.3 Data Structures versus Unstructured Memory
Computers have unstructured memory corresponding to the tape in a universal Turing machine. A data struc-
ture6 is an abstraction that imposes structure and meaning on a region of otherwise unstructured memory. In
a language like C, the abstraction mismatch is that the programmer is designing in terms of data structures,
but the interfaces to those data structures are through direct access to the underlying memory. In particu-
lar, C arrays and structs are data structures, but access to them is through pointer arithmetic and memory
access functions such as memcpy, strcpy, strncpy, and gets, that have no inherent knowledge of data
structures. It is the programmer’s (often error-prone) job to manage the mapping between these layers of
abstraction. When the programmer fails to properly manage the mapping, vulnerabilities are introduced into
the system. From this perspective, there are two basic techniques that can be applied to reduce the abstrac-
tion mismatch between data structures and unstructured memory: remove access to unstructured memory or
add a run-time enforced structure to memory.

3.3.1 Remove Unstructured Memory Access
Object-oriented languages provide complex data structures but also provide interfaces to those data struc-
tures that are at a higher layer of abstraction and contain knowledge of the data structures being accessed.
Several object-oriented languages, such as Java, remove the option of unstructured memory access from the
programmer, providing an inherent security solution for the vulnerability-prone mapping of data structures
into unstructured memory. In the C++ programming language, the programmer can write object-oriented
classes but still retains access to unstructured memory. C++ class interfaces can include checks that en-
code knowledge about data structures to provide a partial programmatic security solution for mapping data
structures into unstructured memory. The reduced mismatch between data structures and the methods of
accessing them is the reason object-oriented languages are less prone to memory access errors than C.

3.3.2 Stack Smashing Protection
A contrived program is presented in Example 3.2 that includes multiple buffer overflow vulnerabilities. This
example will allow us to discuss buffer overflows and some of the current defenses against buffer overflows.
When the code from Example 3.2 is compiled and func() is called, the top of the stack will be structured
as shown in Figure 3.1.

After the publication of [11], attacks using buffer overflows became common. StackGuard [25] introduced
a way of detecting and stopping stack-smashing buffer overflows by placing a special value called a canary7
above the saved instruction pointer on the stack. The value of the canary is checked immediately before
the function returns. If the canary is unchanged, the function returns normally. If the canary has been
altered, the program will abort without returning from the function. However, the saved frame pointer is not
protected by the canary with StackGuard version 1 or 2, which allows an adversary to bypass the StackGuard
protections without overwriting the canary [26]. Based on the ordering of local variables in the function,
local pointer variables could also be overwritten without overwriting the canary, which enables various
multi-step attacks [27].

Examples of data structures include arrays, linked lists, stacks, queues, heaps, trees, and graphs.6

The name canary came from the canary birds that were used by miners to detect if the air in a mine shaft was becoming toxic. If7

the canary died, the miners would evacuate the mine shaft.
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#include <stdio.h>
#include <stdlib.h>

int func(int arg_data_variable,
int *arg_data_pointer,
int (*arg_func_pointer)(int))

{
int data_variable = 7;
int (*func_pointer)(int*);
char *buffer0 = malloc(64);
char buffer1[64];

gets(buffer0);
gets(buffer1);

func_pointer(arg_data_pointer);
arg_func_pointer(data_variable);

return (0);
}

int main (int argc, char* argv[])
{

return (func(5, NULL, NULL));
}

Example 3.2 Vulnerable C program.

(bottom of stack)
...

...
...

arg_data_variable

arg_data_pointer

arg_func_pointer

saved instruction pointer
saved frame pointer
other saved registers
data_variable
func_pointer

buffer0
buffer1[]

(top of stack)

frame pointer

stack pointer

stack growth

buffer writes

unprotected

Figure 3.1 i386 stack: Unprotected.

ProPolice [28] is based on ideas from StackGuard, but incorporates a safe frame structure model. The safe
frame structure model moves the location of the canary on the stack to protect all saved registers (includ-
ing the saved instruction and frame pointers) and re-orders the function’s local variables so that any arrays
and array-containing structures are placed on the stack below non-buffer local variables. In the safe frame
structure model, buffer writes move away from the non-buffer local variables and toward the stack canary.
To protect function pointer arguments from being overwritten and later dereferenced within the function,
the function pointer arguments are copied into the non-buffer local variable section and these safe copies
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of the function pointer arguments are dereferenced within the function instead of dereferencing the actual
arguments.

(bottom of stack)
...

...
...

arg_data_variable

arg_data_pointer

arg_func_pointer

saved instruction pointer
saved frame pointer
other saved registers
canary
buffer1[]
data_variable
func_pointer

buffer0
copy of arg_func_pointer

(top of stack)

frame pointer

stack pointer

stack growth

buffer writes

unprotectedb

protectedb

unprotecteda

protecteda

Figure 3.2 i386 stack: ProPolice.

The result of applying ProPolice’s safe frame structure is shown in Figure 3.2. If a buffer overflow occurs, the
overflow is writing in the direction away from the non-buffer local variables (i.e., protecteda in Figure 3.2),
preventing the non-buffer local variables from being overwritten. The saved instruction pointer, saved frame
pointer, and other saved registers (i.e., protectedb in Figure 3.2) are not used until the function returns and
are, therefore, protected by the canary. The basic ProPolice model has been adopted by several compilers and
is available through GCC’s -fstack-protector or -fstack-protector-all options and Microsoft
Visual Studio’s /GS option.

Stack smashing protections are a good example of how focusing on the indirections involved can enable better
security solutions. StackGuard originally focused on protecting the return address. ProPolice focused on
protecting as much of the stack as possible. The evolution of stack smashing protections have incrementally
added an enforced stack frame structure to unstructured memory. By reducing the abstraction mismatch
between unstructured memory and data structures, buffer overflows have been prevented that would have
otherwise been possible.

However, certain buffer overflows are still possible because stack smashing protections have only reduced,
and not eliminated, this abstraction mismatch. For example, heap overflows [29] are not prevented. Format
string vulnerabilities [30] can index into the stack, skipping over the canary, and overwrite the saved instruc-
tion pointer or other stack values. An overflow of buffer1 can overwrite the function arguments passed on
the stack (i.e., unprotectedb in Figure 3.2). This overflow will corrupt the canary, but the overwritten func-
tion arguments may be used in the function, to the adversary’s advantage, before the canary is checked [26].
Any objects with both data buffers and virtual member functions group together data and a pointer to a table
of function pointers, which can limit the effectiveness of the safe frame structure when such objects are on
the stack.
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3.4 Integer Errors
At a young age, humans learn to use the countably infinite set of non-negative integers N and the countably
infinite set of integers Z where:

N = {0, 1, 2, 3, · · ·}
Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·}

Unfortunately, the basic integer types supported by processors can only represent a finite number of integer
values.

A k-bit unsigned integer can only represent the finite set of non-negative integers

Uk = {0, 1, · · · , 2k − 1}

A k-bit, two’s-complement, signed integer can only represent the finite set of integers

Sk = {−2k−1, · · · ,−1, 0, 1, · · · , 2k−1 − 1}

The C99 integer types defined in the <stdint.h> header file provide several concrete examples of Uk

and Sk that are available in common processors: uint8_t is U8, uint16_t is U16, uint32_t is U32,
uint64_t is U64, int8_t is S8, int16_t is S16, int32_t is S32, and int64_t is S64.

The abstraction mismatch between human programmers thinking in N or Z and the processor operating on
Uk or Sk is the source of a class of problems known as integer errors.

When considering the relationships between these sets:

Uk ⊂ Uk+n ⊂ N for all n > 0
Sk ⊂ Sk+n ⊂ Z for all n > 0
N ⊂ Z

Uk 6⊂ Sk because {2k−1, · · · , 2k − 1} 6⊂ Sk

Uk ⊂ Sk+1

Table 3.1 lists the requirements to accurately represent binary operations over these finite sets.

Table 3.1 Integer operations.

Binary Operations Required for Correctness Implemented by Processors
unsigned addition Uk × Uk → Uk+1 Uk × Uk → Uk

signed addition Sk × Sk → Sk+1 Sk × Sk → Sk

unsigned subtraction Uk × Uk → Sk+1 Uk × Uk → Uk

signed subtraction Sk × Sk → Sk+1 Sk × Sk → Sk

unsigned multiplication Uk × Uk → U2k Uk × Uk → Uk

signed multiplication Sk × Sk → S2k Sk × Sk → Sk

Note that in the correct form for each of these binary functions, the domain is a proper subset of the codomain.
Whenever a binary function produces a result in the codomain that is not in the domain, an integer overflow
error will occur. Integer sign errors occur when converting in either direction between Uk and Sk if the
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intended value is not in both sets. Integer truncation errors occur if the intended value is not in both sets
when converting from Uk+n → Uk or when converting from Sk+n → Sk for any n > 0.

Integer errors can contribute to vulnerabilities by causing incorrect decisions to be made based on the results
of the integer error or by enabling incorrectly bounded access to memory [31] [32]. There are three methods
of processing an integer error [33]:

1. Strict interpretation: an operation that results in an integer error has a non-existent result and the offend-
ing program terminates.

2. Firm boundary (saturation): an operation that results in an integer error has a result that is the appropriate
maximum or minimum representable value.

3. Modulo arithmetic: an operation that results in an integer error has a result that is computed modulo the
size of the set of representable integers.

Most processors perform modulo arithmetic and set flags in a status register to indicate if integer errors may
have occurred. Either a strict interpretation or a firm boundary can be emulated by adding instructions that
check the appropriate flags and conditionally raise an error or set the result to the boundary value.

3.4.1 Multiple-Precision Integers
On a k-bit processor, multiple-precision integers are implemented with multiple k-bit words in memory
and algorithms to perform the required sequences of operations over those multiple words. The classical
multiple-precision arithmetic algorithms are presented in [34]. Multiple-precision integers are an inherent
security solution implemented by programmatic checks in another layer of abstraction.

3.4.2 Run-Time Error Detection
The integer error detection and protection in [35] address the programmer’s flawed abstractions bymodifying
the compiler to generate additional object code that checks the processor’s status flag after each binary integer
operation or integer type conversion. The strict interpretation is implemented by terminating the program
if the compiler-generated checks detect an integer error. The compiler-generated checks in [35] provide a
programmatic security solution to the class of integer errors.

GCC’s -ftrapv option and Microsoft Visual Studio’s /RTCc option each instruct the compiler to gener-
ate certain limited run-time checks for integer errors [36]. Similarly, the boost::numeric_cast C++ li-
brary [37] throws an exception on integer truncation or sign conversion errors that occurwhen boost::numeric_cast
is used to explicitly perform the conversion.

3.5 The Network Stack
The Open Systems Interconnection (OSI) reference model depicted in Figure 3.3 contains multiple layers of
indirection in the network stack.
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Figure 3.3 OSI reference model.

In Figure 3.3, solid arrows represent direct communication and dotted arrows represent indirect communi-
cation. Each layer of the OSI reference model directly provides functionality to the layer above it, directly
relies on functionality provided by the layer below it, and indirectly communicates with its peer layer on
another system. Ethernet is the most common data link layer encountered in an office environment today.
The Internet Protocol (IP) version 4 (IPv4) [38] is the standard network layer in use today, and IP version 6
(IPv6) [39] is starting to be deployed as the next generation network layer.

The mappings between the OSI layers are popular targets for adversaries.

3.5.1 CAM Table Flooding
The content addressable memory (CAM) in an Ethernet switch implements a mapping between Ethernet
Media Access Control (MAC) addresses and physical ports on the switch. Switches are designed primarily
to boost network performance, but there is also an improvement in network confidentiality since Ethernet
frames are no longer broadcast to every device in the Ethernet network. Ethernet frames are only sent out
the switch port associated with the Ethernet destination MAC address in the switch’s CAM table.

However, CAM tables can hold a finite number of mappings. An adversary can spoof a large number of
Ethernet MAC addresses on a switch port to flood the switch’s CAM table with more entries than it can
hold. Once the switch’s CAM table is full, new valid mappings can not be stored. When a destination
Ethernet MAC address is not found in the CAM table, the switch broadcasts the Ethernet frame out all ports.
The adversary can then observe the broadcast frames.

3.5.1.1 Restricted Mappings Between Ethernet MAC Addresses and Switch Ports

Many business-grade switches can be configured with static mappings between Ethernet MAC addresses
and switch ports. Alternately, many business-grade switches can specify a limit on the number of Ethernet
MAC addresses mapped to each switch port. If an unauthorized mapping is encountered or the number of
allowed mappings in exceeded, the offending switch port is disabled. Both approaches are programmatic
security solutions for protecting against CAM table flooding because the switch performs run-time checks
as Ethernet frames enter ports on the switch.
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3.5.2 ARP and NDP Redirection
The Address Resolution Protocol (ARP) [40] is used to build a mapping between Ethernet MAC addresses
and IPv4 network addresses. Similarly, the Neighbor Discovery Protocol (NDP) [41] is used to build a map-
ping between Ethernet MAC addresses and IPv6 network addresses. By influencing the mapping between
Ethernet addresses and IP addresses, an adversary can compromise traffic between systems on that Ethernet
network.

Let hosts A, B, andC be part of the same Ethernet network. Host A has IP network address IPA and Ethernet
address MACA. Host B has IP network address IPB and Ethernet address MACB. Host C has Ethernet
address MACC . When hosts A and B need to communicate, the ARP or NDP is used to establish a mapping
from IPA to MACA on host B and to establish a mapping from IPB to MACB on host A. An adversary
controlling host C can manipulate ARP or NDP so that the incorrect mapping from IPA to MACC exists
on host B and the incorrect mapping from IPB to MACC exists on host A. All IP traffic between hosts A
and B will then be sent over Ethernet to the adversary-controlled host C where the traffic can be monitored,
modified, or discarded by the adversary.

The fact that an adversary can influence the dynamically established mapping between IP addresses and
Ethernet MAC addresses is the reason that ARP and NDP redirection is possible.

3.5.2.1 Static Mappings Between Ethernet MAC Addresses and IP Addresses

System owners can enter static entries into the ARP cache. Since the static ARP cache entries are not
dynamically established and do not expire, adversaries can’t control that mapping between Ethernet MAC
address and IP address. Static ARP cache entries are an inherent security solution for protecting the mapping
between Ethernet MAC addresses and IPv4 addresses. The downside of static ARP caches, and why they are
infrequently used, is that maintaining the set of static mappings on every system is a burden on the network
administrators.

IPv6 addresses are 128 bits long. The current subnet definition is the most significant 64-bits, leaving the
least significant 64-bits for the local identifier. One common method for dynamically obtaining an IPv6
address is to derive the local identifier portion of the IPv6 address from the 48-bit Ethernet MAC address
using the process specified in [42]. This allows a simple new defense against NDP spoofing in any network
that has a policy of only allowing IPv6 addresses that are derived from Ethernet MAC addresses. Systems
simply verify that the Ethernet MAC address and the IPv6 address in any NDP messages are consistent with
the EUI-64 based mapping specified in [42]. If the Ethernet and IPv6 addresses are not consistent with the
expected mapping function, then a system is either using a different algorithm for obtaining an IPv6 address
(violating policy) or NDP spoofing is occurring (violating policy). Systems can ignore any NDP messages
that are not consistent with the expected mapping function to achieve the security benefits of static ARP
tables without the administrative overhead. This expected mapping function is a programmatic security
solution for protecting the mapping between Ethernet MAC addresses and IPv6 addresses.

3.5.2.2 Cryptographic Mappings Between Ethernet MAC Addresses and IP Addresses

Secure Neighbor Discovery (SEND) [43] relies on cryptography and a set of certification authorities to verify
that NDP messages originated from certified routers and to verify the integrity of the NDP messages. SEND
is a probabilistic security solution for protecting the mapping between Ethernet MAC addresses and IPv6
addresses.
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3.5.3 DNS Redirection
The Domain Name System (DNS) [44] provides a mapping between human-friendly host names and IP
network addresses. Host A has the IP network address IPA. Host B has the name NameB and the IP network
address IPB. When host A has a message to send to host B, host A will use the DNS to establish a mapping
from NameB to IPB. An adversary controlling host C with IP network address IPC can manipulate the DNS
so that the incorrect mapping from NameB to IPC exists on host A. When host A tries to communicate with
host B by using NameB, host A will actually be communicating with the adversary-controlled host C at IPC .

DNS redirection is very similar to ARP redirection. While the technical details of their implementation
differ, DNS redirection and ARP redirection are examples of the same vulnerability at different layers of
indirection.

3.5.3.1 Static Mappings Between Host Names and IP Addresses

Static DNS entries are a direct parallel to static ARP cache entries. Eliminating the dynamic establishment
of the mapping provides an inherent security solution for protecting the mapping between host names and
IP addresses. However, like static static ARP cache entries, static DNS entries are infrequently used due to
the burden of managing the static mappings that is placed on the network administrators.

3.5.3.2 Cryptographic Mappings Between Host Names and IP Addresses

DNS Security Extensions (DNSSEC) [45] rely on cryptography and a set of certification authorities. With
DNSSEC, DNS answers are digitally signed so the receiving host can verify that the answer originated from
a certified DNS server and can verify the integrity of the answer. DNSSEC is a probabilistic security solution
for protecting the mappings between host names and IP addresses.

3.5.4 Security Solutions that Cross Layers of Indirection
Each of the network security solutions described in this section span two or more layers of the network
stack. An additional example is how firewall rules typically specify combinations of properties from OSI
layer 4 (i.e., TCP or UDP source and destination port numbers) and OSI layer 3 (i.e., IPv4 or IPv6 source
and destination addresses). Security solutions that span multiple layers of indirection provide the context
necessary to protect some of the mappings between layers of the network stack.

3.6 The Hardware and Software Stack
The hardware and software stack depicted in Figure 3.4 is a graphical representation of an abstract machine
hierarchy as described in Section 1.1.1 and a reasonable approximation of modern personal computers. The
operational environment of each layer is defined by the layers below it in the abstract machine hierarchy.

Historically, adversaries have focused on the higher layers of the hardware and software stack (e.g., viruses
at the application layer, Trojan horses at the system services and operating system layers, and rootkits at the
operating system layer). But in recent years, there has been a focus on finding vulnerabilities in the lower
layers of the stack. As vulnerabilities are mitigated in Mi, adversaries are targeting Mi−1.
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M5: M4 + Applications

M4: M3 + System Services

M3: M2 + Operating System

M2: M1 + Virtual Machine Manager

M1: M0 + Firmware

M0: Hardware

Figure 3.4 Hardware/Software stack.

3.6.1 Operating System Rootkits
The Interrupt Descriptor Table (IDT) provides a mapping between hardware events and event handlers in
the OS. IDT hooking modifies this mapping to execute malware. The System Services Descriptor Table
(SSDT) or System Call (syscall) table provides a mapping between user-space system calls and functionality
in the OS. SSDT hooking or syscall hooking modifies this mapping to execute malware whenever the hooked
system call is invoked.

3.6.2 Malicious Virtual Machine Managers
Historically, operating systems have been designed to run directly on the machine defined by the hardware
and firmware. The introduction of virtual machine manager technology has added a layer of indirection
between the operating system and the machine defined by the hardware and firmware. Multiple publications
have described how a malicious virtual machine manager can be used to subvert the security of the operating
system [46] [47] [48].

3.6.3 Malicious Firmware
Various publications have described how modifications to boot-related firmware can be used to bootstrap
malicious functionality before the OS loads [49] [50] [51].

3.6.4 Malicious Hardware
Amaliciously-modified CPU is demonstrated in [52]. First, the modified CPU allows unprivileged software
to access privileged memory regions via the addition of 959 logic gates that disable memory protections
when a special sequence of data traverses the data bus. Second, the modified CPU provides a new shadow
execution mode via the addition of 1,341 logic gates that reserve instruction and data cache lines for malware
and trap events from normal mode into shadow mode. The unmodified CPU had 1,787,958 logic gates, so
the addition of both malicious features increased the size of the design by only 0.13%.
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3.6.5 Security Solutions that Cross Layers of Indirection
The Trusted Platform Module (TPM) provides a hardware-based random number generator, protected gen-
eration and storage of cryptographic keys, attestation of boot process integrity, and sealing (i.e., encryption)
of data based on attestation values. Attestation involves calculating a cryptographic hash of boot-related
firmware, boot loaders, and the OS. The resulting cryptographic hashes for each stage of the boot process
are compared against trusted values before transferring execution to that stage. The chain of cryptographic
hashes in attestation spans multiple layers of indirection and provides a probabilistic security solution for
protecting some of the mappings between layers of the software stack.
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4 Conclusion
We proposed that focusing on the indirections in system designs is a better way to design, evaluate, and
compare security solutions. We demonstrated how a wide variety of common vulnerabilities can be analyzed
using this approach and how vulnerabilities at different locations in the abstract machine hierarchy can be
grouped together into vulnerability classes. By translating security solutions across vulnerabilities in the
same class, wewere able to propose new security solutions to defend against NDP redirections and JavaScript
injected into HTML documents.

Our method also simplifies the comparison of security solutions. If two security solutions address different
indirections, then the two security solutions are complementary. If two security solutions address the same
indirection, then the two security solutions can be compared by whether each is an inherent, programmatic,
or probabilistic security solution and by how completely each security solution deals with the underlying
indirection.

We proved that certain classes of security solutions, such as enforcing a distinction between instructions and
data, do not, in general, propagate across abstract machine boundaries. The implication is that each abstract
machine in an abstract machine hierarchymust implement its own security solutions to defend against certain
classes of vulnerabilities.

We expect our method to be useful in developing security metrics and requirements. Example security
metrics include:

• What percentage of systems enforce a distinction between instructions and data?
• What percentage of systems protect against unstructured memory access?

Design review or procurement requirements could require a list of the Turing-equivalent abstract machines
in the design and a list of the security solutions implemented in each abstract machine. We will explore such
metrics and requirements in a future report.
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