
SANDIA REPORT
SAND2011-7045
Unlimited Release
Printed September 2011

Peridigm Summary Report:
Lessons Learned in Development with
Agile Components

Michael Parks, David Littlewood, Andy Salinger, and John Mitchell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-7045
Unlimited Release

Printed September 2011

Peridigm Summary Report:
Lessons Learned in Development with Agile

Components

Michael Parks, David Littlewood, Andy Salinger, and John Mitchell
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185

Abstract

This report details efforts to deploy Agile Components for rapid development of a peridynam-
ics code, Peridigm. The goal of Agile Components is to enable the efficient development of
production-quality software by providing a well-defined, unifying interface to a powerful set
of component-based software. Specifically, Agile Components facilitate interoperability among
packages within the Trilinos Project, including data management, time integration, uncertainty
quantification, and optimization. Development of the Peridigm code served as a testbed for Agile
Components and resulted in a number of recommendations for future development. Agile Com-
ponents successfully enabled rapid integration of Trilinos packages into Peridigm. A cost of this
approach, however, was a set of restrictions on Peridigm’s architecture which impacted the abil-
ity to track history-dependent material data, dynamically modify the model discretization, and
interject user-defined routines into the time integration algorithm. These restrictions resulted in
modifications to the Agile Components approach, as implemented in Peridigm, and in a set of
recommendations for future Agile Components development. Specific recommendations include
improved handling of material states, a more flexible flow control model, and improved documen-
tation. A demonstration mini-application, SimpleODE, was developed at the onset of this project
and is offered as a potential supplement to Agile Components documentation.

3

4

Contents

1 Introduction . 7

2 The Agile Components Methodology . 7

2.1 The Agile Components Interface Paradigm: The ModelEvaluator Class . . . 8

3 Practical Experiences with Agile Components . 11

3.1 SimpleODE, an Agile Components Demonstration MiniApplication 11

3.2 Albany, an Agile Components Demonstration and Prototype Code 12

Albany QCAD: Quantum Device Simulation Tool . 13

Albany LCM: Computation Mechanics Research Code 13

3.3 Peridigm, A Peridynamics Code . 14

Handling Model State . 15

Data Distribution . 17

Time Integration . 18

Control Flow . 18

4 Other Remarks . 19

5 Recommendations . 19

References 21

5

List of Figures

1 Capabilities delivered by the Agile Components methodology via Trilinos compo-
nents. 9

2 The component-based Albany code: A deployment of capabilities from Figure 1
via Agile Components to form a demonstration application. 9

3 Direct interfaces between Trilinos components and application codes. Each solver
component implements its own interface that must be utilized by the application
code. 10

4 ModelEvaluator interface between Trilinos components and application codes. A
common interface facilitates use, deployment, and adoption of solver components. 10

5 Diagram of the Agile Components ModelEvaluator interface. 10

6 Diagram of the control flow in SimpleODE, showing two use cases of ModelEval-
uator. Execution begins with main(), which calls a ModelEvaluator-wrapped Ry-
thmos solver to solve an abstract problem g(p). The Rythmos solver integrates an
ODE in time, with the solver making calls to a separate ModelEvaluator-wrapped
model. 12

7 Graphical representation of the software components, interfaces, tools, and quality
practices that comprise Peridigm. 15

6

1 Introduction

The notion that software should be built from prefabricated components has been prominent since
the late 1960s. Software components have sometimes been referred to as software ICs [1], with
the visionary notion that component-based software can be as impactful to software development
as integrated circuit components were to modern electronics. Following in that vein, Agile Com-
ponents is a strategic effort at Sandia to to enable the efficient development of production-quality
software by providing a well-defined, unifying interface to a powerful set of component-based
software.

This report details efforts to test and evaluate the Agile Components methodology by deploying
it for the rapid development of a peridynamics code, Peridigm. Peridynamics was selected as the
driver application because it is unlike the PDE-based finite element models for which Agile Com-
ponents is most commonly used. Peridynamics is based upon integral equations, not PDEs, and
is commonly discretized using a meshfree method, requiring a different computational structure
than that of mesh-based finite elements. The Peridigm code requires the ability to track history-
dependent material data, dynamically modify the model discretization, and interject user-defined
routines into the time integration algorithm – capabilities prior applications had not demanded of
Agile Components. These requirements helped to illuminate assumptions made by the interfaces
utilized in Agile Components. This provided for a clear identification of the set of ideal target
applications for Agile Components, as well as recommendations for modification to Agile Com-
ponents to broaden their scope and impact.

In §2 we review the Agile Components methodology, including the ModelEvaluator interface.
We discuss the practical experiences with Agile Components in §3, discussing the SimpleODE, Al-
bany, and Peridigm codes. In particular, we detail in §3.3 specific issues encountered in deploying
Agile Components within Peridigm, including the handling of state within models, history depen-
dence in material models, load rebalance and mesh adaptivity, data distribution, time integration,
and control flow. In §5 we make specific recommendations to address the development issues we
encountered, which we feel will broaden the scope of Agile Components.

2 The Agile Components Methodology

Agile Components is a strategic effort at Sandia to maximize both developer efficiency and the
impact of our computational science libraries. The intent is to coordinate Sandia software devel-
opment efforts through a common set of interfaces to better utilize and deliver our computational
science capabilities, in particular those tied to the Trilinos Project, for the modeling and simulation
of physical systems (primarily PDEs). The strategic goals of the Agile Components methodology
are:

7

• Enable rapid development of new production codes,
• Embed these codes with transformational design, analysis, and decision-support capabilities

(e.g., embedded uncertainty quantification (UQ), sensitivity analysis, and optimization),
• Reduce redundancy.

The Agile Components methodology utilizes software components and software quality tools
from the Trilinos Project, a Sandia effort to develop algorithms and enabling technologies within an
object-oriented software framework for the solution of large-scale, complex multi-physics research
and engineering problems [3]. Some Trilinos capabilities are shown in Figure 1.

The Agile Components methodology focuses on delivering capabilities of Trilinos software
components through a set of well-designed interfaces. As a practical example, a schematic of the
Albany Agile Components code is shown in Figure 2, which depicts several of the capabilities
from Figure 1 connected through interfaces. The design of these interfaces is key to delivering
capabilities through Agile Components to an end-user application. Each software component in
Trilinos implements its own interface, requiring a component-based code to adhere to the different
interfaces of each of the Trilinos software components it consumes, as depicted in Figure 3. This
increases time to deployment, and requires code to be refactored every time a component inter-
face changes. Figure 4 illustrates the Agile Components approach to Trilinos solver components;
application codes are presented with a single interface with which to consume solver capabilities.
In addition to supplying a unified interface to component functionality, this interface can provide
metadata analysis utilities such as embedded UQ, sensitivity analysis, and optimization. Applica-
tions codes adhering to an Agile Components interface receive these additional capabilities without
additional burden on the developer.

Remark 2.1. The primary roles of Agile Components are to (1) deliver interfaces to software
components to facilitate their use, deployment, and adoption, and (2) deliver metadata anal-
ysis tools (embedded UQ, sensitivity analysis, optimization, etc.)

2.1 The Agile Components Interface Paradigm: The ModelEvaluator Class

To achieve the strategic goals of the Agile Components methodology, a set of sufficiently general
interfaces is required. This includes interfaces to linear solvers, mesh databases, solver applica-
tions, and may include architecture-aware compute kernels. Of central importance to the Peridigm
application is the ModelEvaluator, the abstraction utilized by solver components (such as nonlinear
solvers and time integrators) which must be implemented by model developers.

The leftmost column in Figure 5 lists the mathematical problems for which solvers exist within
Trilinos. These solvers address mathematical problems without specific knowledge of the right-
hand-side, f. Model developers provide specific instances of f. The ModelEvaluator interface
represents a contract between the solver and the model. The ModelEvaluator supports the solu-
tion of nonlinear equations, stability analysis, explicit first-order ODEs, implicit first-order ODEs,

8

Figure 1. Capabilities delivered by the Agile Components
methodology via Trilinos components.

Figure 2. The component-based Albany code: A deployment of
capabilities from Figure 1 via Agile Components to form a demon-
stration application.

9

Trilinos Solvers

Applications

NOX/LOCA MOOCHO Rythmos

Albany SimpleODE Peridigm

…

…

Figure 3. Direct interfaces between Trilinos components and ap-
plication codes. Each solver component implements its own inter-
face that must be utilized by the application code.

Trilinos Solvers

Applications

NOX/LOCA MOOCHO Rythmos

Albany SimpleODE Peridigm

…

…

ModelEvaluator

Figure 4. ModelEvaluator interface between Trilinos compo-
nents and application codes. A common interface facilitates use,
deployment, and adoption of solver components.

Figure 5. Diagram of the Agile Components ModelEvaluator
interface.

10

explicit first-order ODE forward sensitivities, implicit first-order ODE forward sensitivities, con-
strained optimization, unconstrained optimization, and ODE constrained optimization.

Remark 2.2. The contract enforced by the ModelEvaluator assumes that the models f are
stateless, referentially transparent, pure mathematical functions.

This is a reasonable assumption, as an optimizer must evaluate a model for many different
inputs without regard to the order in which evaluations occur. An important property of pure math-
ematical functions is that they are referentially transparent. A referentially transparent function f
always provides the same output when given the same input, as it contains no state.

Definition 2.1. An expression is referentially transparent if it can be replaced with its value without
changing the behavior of a program [2].

3 Practical Experiences with Agile Components

The Agile Components methodology has been deployed for the development of several application
codes, including the multiphysics finite element code Albany, the peridynamics code Peridigm, and
the demonstration mini-application, SimpleODE. An overview of the development process for each
of these codes is given below, with an emphasis on the use of Trilinos Agile Components.

Remark 3.1. Models that fit into the assumptions and implicit contract enforced by the Mod-
elEvaluator interface (cf. Remark 2.2) can naturally and relatively effortlessly utilize this
interface for rapid development. Models that violate the assumptions of this interface can
not.

3.1 SimpleODE, an Agile Components Demonstration MiniApplication

During the course of the development of Peridigm, the MiniApp SimpleODE was created to
demonstrate the use of Agile Components on the simplest problem we could conceive:

ẋ =−cx, x(0) = x0, (3.1)

with c > 0 a constant. The principle purpose of SimpleODE is to provide a template for other
developers wishing to create their own agile component code. Unlike Albany (cf. §3.2), which
is a full-blown Agile Components application, SimpleODE contains all of the Agile Components
infrastructure without a complex application model to obscure that infrastructure.

The execution control flow of SimpleODE is presented in Figure 6. Control flow begins with
main() making a call to a ModelEvaluator, which wraps a Rythmos solver. The Rythmos solver,
in turn, makes calls to a provided instance of a ModelEvaluator that returns −cx when given x.
Note that the first model evaluator encapsulates the entire problem.

11

Figure 6. Diagram of the control flow in SimpleODE, showing
two use cases of ModelEvaluator. Execution begins with main(),
which calls a ModelEvaluator-wrapped Rythmos solver to solve
an abstract problem g(p). The Rythmos solver integrates an ODE
in time, with the solver making calls to a separate ModelEvaluator-
wrapped model.

The problem solved by SimpleODE fits completely and naturally into the assumptions and con-
tract enforced by the model evaluator interface, as the function f(x) =−cx is a pure mathematical
function, and thus referentially transparent.

3.2 Albany, an Agile Components Demonstration and Prototype Code

The Albany code is the original code designed to drive and demonstrate the Agile Components
vision [9]. Albany serves as an early adopter and ripener of new algorithm libraries, a place to
design and mature interfaces, and as a prototype Trilinos-based application with a functioning
software quality environment.

Trilinos, in its role as a delivery vehicle for software libraries, has rapidly expanded beyond
solvers to include numerous other computational science libraries. Albany has helped mediate this
growth by being an early adopter of many of these new capabilities. Albany has been a place to
mature the usability, robustness, flexibility, and scalability of these algorithms. It has also been a
place to devise a larger domain model, so that the aggregate of capabilities does not have gaps or
overlap.

A large fraction of the new capabilities vetted in Albany are tailored to partial differential
equations and finite element methods, and are not directly relevant to Peridigm. However, the
use of the model evaluator as the application abstraction (application abstract interface in Figure
2) occurred within Albany, as did the wrapping of transient and nonlinear solvers (Rythmos and
NOX) within this abstraction, as described in §3.1. Much of this work was concurrent with, and

12

was influenced by, Peridigm development.

In its role as a prototype code, Albany has a small physics set as part of the main code base.
This includes heat transfer, incompressible fluid flow, and a thermo-electrical model. These are
meant to be sufficient for testing the full infrastructure (from input file parsing to uncertainty quan-
tification). The embedded uncertainty quantification research program of Phipps uses Albany, and
these physics sets, to demonstrate and evaluate their algorithms. In addition, application-oriented
projects have put physics sets within Albany. We describe those projects briefly in the following
subsections.

Albany QCAD: Quantum Device Simulation Tool

The QCAD project is building a quantum device simulation tool within Albany [5]. The goal
is to evaluate and design structures built from the tools of the semiconductor industry (doped
semiconductors, oxide layers, gates) to isolate quantum dots. The primary computational science
focus has been on development of a nonlinear Poisson solver to solve for the electrical potential
in the device as a function of design and applied voltage. As a second step, a Schrödinger solver
has been developed and coupled to the nonlinear Poisson solver to capture quantum effects in the
region of the device with few free electrons.

The QCAD application was an ideal fit for the current state of the Agile Components vision and
the pieces already assembled and matured in the Albany infrastructure. The application’s models
are stateless, referentially transparent pure mathematical functions, satisfying the assumptions of
the ModelEvaluator interface. The application could make full use of the finite element mesh
database, discretization algorithms, automatic differentiation technology, rapid insertion of new
physics modules, nonlinear solvers, eigensolver, and optimization algorithms. As a result, this
project is on its third-year milestones at the end of one year and is being used by customers as
a production code. Much of the infrastructure improvements motivated by QCAD involve post-
processing capabilities. Many of these capabilities reside in Albany, and some have migrated
back to Trilinos in terms of bug fixes and enhancements to the SIERRA toolkit (STK) and Sandia
Engineering Analysis Code Access System (SEACAS) I/O tools.

Albany LCM: Computation Mechanics Research Code

The Laboratory for Computational Mechanics (LCM) project is creating a research and develop-
ment platform for mechanics, particularly failure and fracture models [6]. Its serves as a platform
to rapidly and flexibly test new ideas and algorithms, with subsequent migration into associated
production codes. As an open source code, it also serves as a vehicle for external collaborations.

The LCM is written as a (configure-time) physics set within the Albany code. As with QCAD,
the LCM project has made excellent progress in just one year, being an excellent fit with much

13

of the finite-element based technology in Albany. However, the LCM project also presents some
of the same issues as the Peridigm application, exposing assumptions or gaps in the current Ag-
ile Components instantiation. These include the potential statefulness of the model, where the
current residual evaluation depends on the history and not just the current state. In the case of
solid mechanics, this can be the residual stress field or a model for material damage. The LCM
and Peridigm projects have leveraged each other’s experience in dealing with state data. As with
Peridigm, the time-dependent LCM applications are second order in time. One implicit and one
explicit second-order time integrator have been written into the Trilinos package Piro, but currently
function only with a modified ModelEvaluator interface.

3.3 Peridigm, A Peridynamics Code

The Peridigm code, through consequence of its computational structure and material models, vi-
olates several assumptions of the ModelEvaluator interface. We first discuss the mathematical
formulation of the peridynamic equation of motion, followed by specific details of each develop-
ment issue encountered, concluding with specific recommendations for future Agile Components
development.

In the peridynamic theory, the deformation at a point depends collectively on all points inter-
acting with that point. Using the notation of [10], we write the peridynamic equation of motion
as

ρ(x)ü(x, t) =
∫
Hx

{
T [x, t]

〈
x′−x

〉
−T

[
x′, t
]〈

x−x′
〉}

dVx′+b(x, t), (3.2)

where ρ represents the mass density, T the force vector state, and b an external body force density.
A point x interacts with all the points x′ within the neighborhood Hx, assumed to be a spherical
region of radius δ > 0 centered at x. δ is called the horizon, and is analogous to the cutoff radius
used in molecular dynamics. For more on the peridynamic equation of motion, see see [10].

Peridigm solves (3.2) with appropriate initial and boundary conditions. Based upon Trilinos
components, Peridigm inherits standard software practices and tools used in Trilinos development,
some of which are depicted graphically in Figure 7. Peridigm provides parallel simulation, peri-
dynamic material models such as the linear peridynamic solid (LPS) model [10], a peridynamic
plasticity model [4], and a peridynamic viscoelastic model. Peridigm provides both explicit and
implicit time integration. A contact algorithm is available in the case of explicit time integration.
It has the capability to dynamically load balance running simulations to achieve better parallel
performance. It is capable of reading Exodus meshes as input or internally generating meshes of
simple geometric solids. Output is to VTK-format files. The user can define their own “compute”
styles to output quantities of interest to them.

Remark 3.2. Differences between peridynamics and PDE-based finite element models have
motivated new development in Agile Components. Key driving factors were the need for
history-dependant material models and load rebalance within Peridigm.

14

MailMan

Mailing Lists UQ
Optimization

Error Estimation
Calibration

Load Balancing (Zoltan)

Parallelization Tools
Data Structures (Epetra)

Solver Tools
Iterative Solvers (Belos)

Preconditioners (IFPack)
Multilevel (ML)

Nonlinear Solvers (NOX)

Services
Interfaces (Thyra)

Tools (Teuchos, TriUtils)
Field Manager (Phalanx)
ModelEvaluator (EpetraExt)

Service Tools

VTK
Visualization Toolkit

Version Control

Subversion

Build System
Testing (CTest)

CMake

Project Management
Issue Tracking

Wiki

Trac

Visualization

Paraview

DAKOTA Trilinos

Figure 7. Graphical representation of the software components,
interfaces, tools, and quality practices that comprise Peridigm.

Handling Model State

The ModelEvaluator interface assumes stateless models. When implementing Peridigm, we en-
countered two significant issues regarding the handling of model state. The first arises because
many material models of interest contain state in the form of history dependence, and these models
violate the assumption made by the ModelEvaluator of a stateless model. The second issue was
discovered when attempting to implement load rebalance. Each ModelEvaluator-derived class
creates and stores its own parallel data distribution across processors, which is a form of state
data. This behavior is ostensibly in violation of the ModelEvaluator contract that they be stateless.
This only manifests as a problem when attempting to redistribute data across processors, which is
necessary when performing either load rebalance, or mesh adaptivity.

History Dependence in Material Models Practical peridynamic material models contain state
in the form of history dependence. This history dependence is not unique to peridynamics – the

15

majority of material models in practical computational solid mechanics applications are not state-
less. Within Peridigm, specifically, all models contain a fracture rule governing the breaking of
peridynamic bonds, which is a history-dependent phenomenon. Additionally, Peridigm also con-
tains a peridynamic plasticity model, which uses history-dependent state [4].

To address the ModelEvaluator assumption of statelessness, we utilized an observer design
pattern.

Definition 3.1. The observer pattern is a software design pattern in which an object (called the
subject) maintains a list of its dependents (called observers) and notifies them of any state changes,
usually by calling one of their methods.

Specifically, we implemented our material models as a ModelEvaluator-derived class, storing the
model state within the class. This is ostensibly a violation of the ModelEvaluator contract, but
does not manifest for explicit or implicit time integration. An observer was called from the time
integrator to inform the material model that a time step had been completed, and that the material
model should update its internal state.

While this approach is effective for time integration, it’s not clear that this remedy would work
for more complicated scenarios, such as adaptive time stepping or optimization.

Load Rebalance and Mesh Adaptivity Peridynamics is commonly used for modeling frag-
mentation problems, where material initially contained in a relatively small spatial region becomes
spread over a much larger spatial region during the course of the simulation. In order to pre-
serve parallel load balance, it is periodically necessary to redistribute data across processors. In
the Trilinos framework, data assignment to processors is encapsulated within a map class, such
as Epetra::Map or Epetra::BlockMap. To perform a rebalance, Peridigm asks the Zoltan pack-
age to determine a near-optimal data distribution across processors in the current configuration,
which can be used to determine a new map. Given the current map (containing the current data
distribution across processors) and the new map (containing the desired data distribution across
processors), an import/export operation can be called to migrate data between processors.

Mesh adaptivity, or adaptive mesh refinement, also involves redistributing data. During the
course of a computation one may desire to adaptively refine a mesh, for example, to reduce error
in localized regions of the computational domain. This dynamically introduces more degrees of
freedom into the problem, necessitating that one migrate data from an old map (the coarse mesh)
to a new map (the fine mesh).

Load rebalance and mesh adaptivity have proven problematic with the ModelEvaluator inter-
face. ModelEvaluator-derived classes have the property that they produce their own input parame-
ter and output response data structures, as can be seen in this code segment taken from SimpleODE:

SimpleODE::SolverFactory slvrfctry(xml file name, appComm);
Teuchos::RCP<EpetraExt::ModelEvaluator> App = slvrfctry.create();

16

EpetraExt::ModelEvaluator::InArgs params in = App->createInArgs();
EpetraExt::ModelEvaluator::OutArgs responses out =
App->createOutArgs();

This behavior is beneficial in that it makes the model self-contained. However, each model
makes its own maps and control its data distribution across processors, as seen here, where the
ModelEvaluator-derived class “App” returns a map:

Teuchos::RCP<Epetra Vector> g
= Teuchos::rcp(new Epetra Vector(*App->get g map(0)));

This property of ModelEvaluator-derived classes presented an issue when trying to perform a
rebalance with Peridigm. The maps are a form of state data contained within the ModelEvaluator-
derived classes, ostensibly in violation of the ModelEvaluator contract that they be stateless. Un-
like the issue with history-dependant material models, discussion with other Trilinos developers did
not reveal a clear path forward. One idea proposed was to generate a “meta-ModelEvaluator” that
would transform a ModelEvaluator-derived class (using an old map) to a ModelEvaluator-derived
class (using a new map). This idea was not pursued as it would require a substantial coding effort,
in part because each ModelEvaluator-derived class would require an associated expert-developed
meta-ModelEvaluator class to effect a rebalance. An alternative approach is to destroy the existing
ModelEvaluator objects, creating new ones in their place. This process is equivalent to the process
that would need to occur, for example, if a simulation running on N1 processors was checkpointed
and then restarted on N2 processors.

To overcome this obstacle and proceed with Peridigm development, we instead developed a
ModelEvaluator-like class (Peridigm::ModelEvaluator) that mimics the interface of the Mod-
elEvaluator used in the Agile Components frameworks, but does not create its own maps. Instead,
maps are created externally and passed into the Peridigm::ModelEvaluator.

Data Distribution

Another issues encountered during Peridigm development was the requirement by the ModelE-
valuator interface that Epetra::Map and Epetra::Vector data structures be used, rather than
the more general Epetra::BlockMap and Epetra::MultiVector data structures. In the Epe-
tra inheritance diagrams, an Epetra::Vector inherits from an Epetra::MultiVector, and an
Epetra::Map inherits from an Epetra::BlockMap, meaning that the block map and multivector
data structures are more general.

In peridynamics, we frequently have multiple degrees of freedom per node (for example,
all 3D vector fields have three degrees of freedom per node). The Epetra::BlockMap and
Epetra::MultiVector data structures were designed for this use case, and are more natural to
use within material model evaluation routines. To utilize the ModelEvaluator interface, it was

17

necessary to use the Epetra::Vector and Epetra::Map data structures, which required mapping
from Epetra::MultiVectors to Epetra::Vectors and back every time step. Implementing this
mapping was tedious and time-consuming, and impaired rapid code development. Additionally, in
addition to requiring extra computation, this led to redundant data structures in the code (e.g., one
Epetra::BlockMap and one or more Epetra::Maps for every given field variable).

Time Integration

When initially developing Peridigm, we attempted to use Rythmos, the lone time integration pack-
age in Trilinos. Unfortunately, none of the explicit integrators in Rythmos are for second-order
ODEs, and all of the explicit integrators in Rythmos are unconditionally unstable when applied
to the peridynamic equation of motion when it is reformulated as a first-order ODE. This is not
a shortcoming of the Agile Components approach, but simply an observation that the solver tools
needed by Peridigm were not initially present in any Trilinos package.

Motivated by the needs of Peridigm, a second-order explicit integrator has been added to the
Piro package within Trilinos.

Control Flow

Another issue encountered during Peridigm development was managing the execution control flow.
The standard Agile Components approach is to cast the problem to be solved as a single ModelE-
valuator instance, and evaluate that model to return the solution. This is depicted in Figure 6.

However, a standard expectation of developers of computational solid mechanics codes is that
one has the ability to intervene and modify simulation data at arbitrary points during the simulation.
As a practical example, it is standard practice to execute contact resolution algorithms between
atomic steps of an explicit time integration algorithm to ensure that solids do not interpenetrate
each other.

This issue lead to a reformulation of the control flow within Peridigm. Originally mimicking
the control flow of SimpleODE in Figure 6, the control flow of Peridigm now has only one instance
of a ModelEvaluator object (that encapsulates the material model), and a main() routine that
allows the simulation data to potentially be modified between atomic steps of time integration
routines. The rationale for this decision is that it is not the providence of the material model nor
the solver to perform tasks such as contact resolution or rebalance. Such tasks naturally fall to a
main() routine, at the the highest level of control in the program.

18

4 Other Remarks

The Phalanx package for evaluating field variables was among the more recently developed Trili-
nos components utilized in Peridigm [7]. Phalanx was integrated within Peridigm with no sig-
nificant stumbling blocks, and was found to be an effective tool for managing field evaluators.
We expect this is the case because Phalanx was developed based on practical experience gained
from the Charon and Aria codes. Feedback from production codes into new software components
provides a highly effective mechanism for immediately delivering mature capability.

5 Recommendations

Although some development issues were encountered deploying the Agile Components method-
ology in Peridigm, we are supportive of the goals of Agile Components and view this report as
an opportunity to further broaden the scope of applications suitable for use in the Agile Com-
ponents framework. For models satisfying the assumptions of the ModelEvaluator interface, the
Agile Components methodology has proven to facilitate rapid development of powerful application
code. For applications outside these target use cases, the potential rapid development capabilities
that Agile Components may provide are simply too tantalizing to overlook. To that end, we make
the following recommendations which we feel will strengthen the impact of Agile Components,
and broaden its scope to new applications.

Documentation Attempting to learn the Agile Components methodology by reading Albany code
is somewhat like drinking from a fire hydrant. Although Agile Components developers are
always happy to explain any concept, this approach is not scalable if we want the Agile
Components methodology to be widely adopted beyond the current expert users. We recom-
mend improved documentation along with an easy-to-understand demonstration code, such
as SimpleODE. This will greatly shorten the learning curve for new users, and help them
to understand how their application fits within the Agile Components methodology. Sim-
pleODE may be useful as a starting template for new users to develop their own application
based upon Agile Components.

Graceful Handling of Model State We recommend that all service modules, such as ModelE-
valuator-derived classes, be made referentially transparent (c.f. Defn. 2.1). This would
eliminate any and all issues with regard to rebalance and mesh adaptivity, the biggest ob-
stacles encountered. The consequence of this is that ModelEvaluator-derived classes must
no longer allocate their own maps, data structures, etc., but that these must be passed in
externally. Referring to the control flow diagram of Figure 6, it is not the role of the mathe-
matical model f nor of the solver to create these data structures, meaning that they must be
created at the level of main() (by the application developer) and passed in. This requires a
mechanism for the developer to gracefully and naturally hand in model state as input, have

19

the ModelEvaluator class potentially transform that state, and then hand that state back out.
The ModelEvaluator becomes less self-contained, but at the benefit of increased usability
and flexibility. This recommendation comes at the cost of a substantial refactor of all agile
component based code, and may not be feasible.

Data Distribution If possible, we recommend moving the ModelEvaluator interface and Model-
Evaluator-derived solvers to support BlockMap and MultiVector data structures. A Map is a
special case of a BlockMap, and a Vector is special case of a MultiVector, so this would not
impact any current use cases.

Control Flow The control flow of Figure 6 could be preserved so long as the application developer
has the opportunity and freedom to intervene during solver execution and modify simulation
data in essentially arbitrary ways. One way to achieve this is by inserting callbacks be-
tween atomic steps in all ModelEvaluator-derived solvers. The application developer would
then have complete freedom to specify how simulation data should be transformed between
atomic solver steps, without the solver itself ever having to know anything about contact
resolution, rebalance, etc.1 For a specific example, see Algorithm 1, showing callbacks put
in between steps of the velocity Verlet explicit time integrator.2

Algorithm 1 Velocity Verlet with Callbacks
1: initial integrate()
2: vn+1/2

i = vn
i +

∆t
2ρi

fn
i

3: yn+1
i = yn

i +∆tvn+1/2
i

4: post force()
5: vn+1

i = vn+1/2
i + ∆t

2ρi
fn+1
i

6: final integrate()

1Such use of callbacks is common practice within Sandia’s LAMMPS molecular dynamics code [8]. The code
makes callbacks to user-defined functions between atomic steps in time integration or minimization processes, and has
been used to great effect.

2This is exactly the callback structure used in LAMMPS.

20

References

[1] Brad J. Cox and Andrew J. Novobilski. Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, 1991.

[2] Richard Helm, Erich Gamma, John Vlissides, and Ralph Johnson. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[3] Michael Heroux, Roscoe Bartlett, Robert Hoekstra Vicki Howle, Jonathan Hu, Tamara Kolda,
Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, Andrew Salinger, Heidi
Thornquist, Ray Tuminaro, James Willenbring, and Alan Williams. An Overview of Trilinos.
Technical Report SAND2003-2927, Sandia National Laboratories, 2003.

[4] John A. Mitchell. A nonlocal, ordinary, state-based plasticity model for peridynamics. Tech-
nical Report SAND2011-3166, Sandia National Laboratories, May 2011.

[5] Rick Muller, Suzie Gao, Erik Nielsen, Andy Salinger, and Ralph Young. QCAD web page.
https://development.sandia.gov/Albany/qcad.html.

[6] Jake Ostien, James Foulk, Alejandro Mota, and Andy Salinger. LCM web page. https:
//development.sandia.gov/Albany/lcm.html.

[7] Roger Pawlowski, Eric Phipps, and Pat Notz. Phalanx web page. http://trilinos.
sandia.gov/packages/docs/dev/packages/phalanx/doc/html/index.html.

[8] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys.,
117:1–19, 1995.

[9] Andy Salinger, Eric Phipps, and Jake Ostien. Albany web page. https://development.
sandia.gov/Albany/.

[10] Stewart A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari. Peridynamic states and
constitutive modeling. J. Elasticity, 88:151–184, 2007.

21

DISTRIBUTION:

1 MS 1322 John Aidun, 1425
1 MS 1320 Scott Collis, 1442
1 MS 0372 Eliot Fang, 1524
1 MS 0372 Mike Glass, 1545
1 MS 1318 Bruce Hendrickson, 1440
1 MS 1318 Robert Hoekstra, 1426
1 MS 0380 Joe Jung, 1542
1 MS 0825 Joel Lash, 1510
1 MS 1322 David Littlewood, 1444
1 MS 1322 John Mitchell, 1444
1 MS 1322 Rick Muller, 1425
1 MS 0316 Larry Musson, 1425
1 MS 1320 Michael Parks, 1444
1 MS 1318 Roger Pawlowski, 1444
1 MS 1318 Eric Phipps, 1441
1 MS 9042 Jake Ostien, 8246
1 MS 1318 Andy Salinger, 1442
1 MS 1321 Randall Summers, 1444
1 MS 0380 David Womble, 1540
1 MS 0899 Technical Library, 9536 (electronic copy)

22

v1.36

