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Abstract 
 
Previously developed techniques that comprise statistical parametric mapping, with 
applications focused on human brain imaging, are examined and tested here for new 
applications in anomaly detection within remotely-sensed imagery.  Two approaches to 
analysis are developed: online, regression-based anomaly detection and conditional 
differences.  These approaches are applied to two example spatial-temporal data sets: data 
simulated with a Gaussian field deformation approach and weekly NDVI images derived 
from global satellite coverage.   Results indicate that anomalies can be identified in spatial 
temporal data with the regression-based approach.  Additionally, la Nina and el Nino 
climatic conditions are used as different stimuli applied to the earth and this comparison 
shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon 
Basin and in Southern India. 
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Introduction 
A general problem in a number of fields is rapid and accurate identification of anomalous 
measurements from time series data.  The problem of anomaly detection is complicated 
when the time series is composed of more than one variable (multi-variate) and becomes 
even more complex when the multiple variables make up a random field with spatial 
correlation.  The temporal and spatial correlation of the signal rules out the application of 
standard statistical tests for change detection.  Change detection in these spatial-temporal 
data sets has received considerable attention over the past 15-20 years within the medical 
imaging research community (Brett et al., 2003; Friston, et al., 1994 and 1995; Worsley et 
al., 1994 and 1996) and a significant development of this research has been Statistical 
Parametric Mapping (SPM).   
 
The practice of statistical parametric mapping has been developed in the field of medical 
imaging, particularly in brain imaging and in the practice of functional magnetic resonance 
imaging (fMRI) of the brain while the subject is performing various tasks (functions).  
Friston et al. (1995, p. 190) provide a concise definition of SPM: “one proceeds by analyzing 
each voxel using any (univariate) statistical parametric test.  The resulting statistics are 
assembled into an image, that is then interpreted as a spatially extended statistical process”.  
In other words, each pixel (voxel) in an image can be analyzed using a univariate statistical 
test (e.g., t-test) and the resulting values of the test statistic at each pixel are then displayed 
as a map.  The underlying spatial correlation of the image is reflected in the map of the test 
statistics.  This resulting map is analyzed using theory underlying stationary Gaussian 
fields and techniques developed for excursion sets of these fields.  Properties of truncated 
Gaussian fields (e.g., Adler and Hasofer, 1976; Adler, 1981; Adler and Taylor, 2007; Adler et 
al., 2009) serve as the basis of the SPM techniques.   
 
In this work, the techniques developed for medical imaging are applied to analysis of 
spatial-temporal fields measured from satellite imagery of the earth and focused on images 
of properties that are related to climatic variables.  In particular, this study is focused on 
analysis of spatial-temporal images of vegetation density.  Several significant differences 
are drawn between the work of this study, focused on identification of change detection in 
climatic indicators and the body of work in medical imaging:  

1) Symptoms of climatic change are expressed by a single patient.  While this sounds 
obvious, there is a single earth available for study and elements of clinical trials and 
experimental design that are important aspects of medical imaging (e.g., replicates, 
treatments, pre-existing conditions, various covariates, etc.) are not always available 
in the study of the earth.  Additionally, the lag time between cause and effect in the 
human brain is on the order of milliseconds and is used effectively to determine 
which regions of the brain respond to certain stimuli.  An equivalent lag time 
between application of a stimulus to the earth and a detectable response in the 
system may be decades or centuries.  As described below, several techniques are 
utilized to provide some semblance of replication and treatments for the earth in 
order to better determine relationships between applied stimuli and responses. 

2) Functional imaging of the brain is centered on the collection and analysis of 3D 
images.  Each image is discretized into a number of 3D voxels.  The climatic 
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indicator data utilized here are observed from satellites, or derived from 
combinations of satellite imagery and other inputs to create 2D images discretized 
into a number of pixels. 

 
To date, the SPM approach has not been applied outside of medical imaging, but it appears 
to be a technique that could be successfully applied in a number of areas.  The goals of this 
work are to both understand the basis of SPM and then apply SPM to an environmental 
data set obtained from satellite-based remote sensing of the earth. 

Anomaly Detection with Statistical Parametric Mapping 
Anomaly detection is defined here as the identification of a region in time and/or space 
that is anomalous in its shape, size (duration) and/or values within the region (intensity). 
Two approaches to anomaly detection in spatial-temporal data sets are explored here: 1) 
Anomaly detection in an online mode where prior data are used to predict future values of 
the measured variable and anomalies occur in areas and/or times where the predictions 
are inconsistent with the corresponding measurements; 2) Anomaly detection in historical 
data sets where differences in some treatment or external forcing condition is suspected to 
cause a difference in the measured variable.  The anomalies in this case are significant 
differences in measured variables taken observed with and without activation of the 
external condition. 
 
The subject of this study is anomaly detection in imagery where each image can be 
considered a two dimensional “time-slice” of an observed variable.  Multiple time slices of 
the same region are available and examined as part of this work.  Observational data 
provide a single variable at each location in space and time and the observed data are 
assumed to be spatially and temporally correlated, and this correlation has to be taken into 
account in the anomaly detection.  Two measures of anomaly detection are employed: 
omnibus and localized.  Omnibus detection uses a set of calculations to determine if the 
current image, taken as a whole, is anomalous.  Localized detection determines one or 
more locations within the image where the anomaly occurs.  Both measures are examined 
here. 
 
Anomaly detection is not done directly on the observed images but on a difference of 
images for each time slice.  The differences are calculated in one of two ways 
corresponding to the online or historical comparison goals of the anomaly detection: 1) 
differences between an expected, or predicted, image and an observed image.  For example, 
a statistical or mathematical model is used to predict the expected image at a future time 
step and the difference between this prediction and the image observed at that future time 
is calculated; and 2) differences of two average values where each average is calculated 
over a set of images collected under a specific condition.  For example, in studies of the 
human brain, images are often collected under “resting” and “stimulated” conditions and 
the average image from each condition is then used to create a difference map. 
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In both cases, the end result is a difference between two images.  These difference maps 
represent values of a t-statistic at each location.  The t-distribution is symmetric, has a 
mean of zero and converges to the standard normal distribution for an infinite number of 
degrees of freedom.  In practicality, for degrees of freedom > 100, the t-distribution is well 
approximated by the standard normal distribution.   Analyses here are done on both the t-
statistic map or on z-score maps where the t-statistic values have been transformed to 
standard normal values in keeping with the original development of the SPM approach.   
The transformation from t-statistic to z-score is accomplished using the appropriate 
degrees of freedom.  In the terminology of random fields, the z-score, or standard normal 
maps, represent multiGaussian fields. 
 
SPM was developed to directly address a problem in statistical testing.  Direct application 
of most statistical tests requires independence of the observations, but for many problems, 
including those studied here, correlation between adjacent observations is generally the 
norm.  Therefore, the results of the statistical tests for adjacent, or even nearby, pixels 
cannot be effectively evaluated using standard techniques.  SPM considers a single map 
comprised of the results of all local statistical tests and provides a number of measures for 
comparison of the values in the map to a critical threshold level.   

MultiGaussian Fields 
The basis of the SPM approach is the analysis of the number, size and degree of excursions 
from a multiGaussian (mG) random field.  For a concise, statistical description of mG fields, 
see Adler et al., 2009, page 27.  In the testing and verification section of this report, mG 
fields are created and/or modeled as the convolution of a Gaussian kernel with an 
uncorrelated (white noise) field.  The Gaussian kernel is defined as  
 

G(x,y)  
 

  | |   
   ( 

 

 
      ) 

 
where d is the distance vector containing distances dx and dy from any location (x,y) to the 
origin of the Gaussian function x0, y0 (here (0, 0) for the standard normal distribution). In 
this work, the covariance matrix, =2I, (where I is the identity matrix) is diagonal for the 
specific case of the kernel being aligned with the grid axes. 
 
An often-used measure of the size of the Gaussian kernel is the “full width at half 
maximum” (FWHM): 
 

      √       

 
If the mG field is not created, but is obtained from some type of imagery or other analyses, 
then there is no known underlying kernel and it is necessary to estimate the FWHM 
directly from the image.  Estimation can be done using the variance matrix of the partial 
derivatives of the image values with respect to the discretization of the image.  In 2D, the 
covariance matrix is: 
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This covariance matrix can be seen as a measure of the roughness/smoothness of the 
image.  
 
Estimation of  and here 
the simple relationship defined by Worsley et al. (1992) between the FWHM values in each 
of the principal directions and  is utilized.  However, if the image being analyzed has been 
collected, not created, the FWHM values are most likely unknown and this approach is not 
practical.   
 
Another approach is numerical calculation of the derivatives within .  For each spatial 
dimension, differences between adjacent pixels are calculated as: 
 

         {                  }   

         {                  }   
 

 
where x and y are the dimensions of the image pixels in the x and y directions.  The 
variances and covariances of the differences are then used to approximate the variances 
and covariances of the derivatives: 
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These variance and covariance estimates are used to estimate : 
 
 

  [
      
      

] 

 
Finally, the FWHM in the X and Y directions are calculated as: 
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Calculating the SPM 
The Statistical Parametric Map is the difference image between individual pairs of images 
or average images, which is typically transformed from a map of t-statistics to a map of 
Gaussian z-score values.  The different methods used in this study for calculating the SPM 
are described in this section. 

Conditional Differences 
Following the approach of Worsley, et al., 1992, to look for regions of brain activation in 
subjects under different conditions, the earth is considered as the single subject of the 
study.  The earth is mapped under different conditions (e.g., background temperature 
anomaly and either el Nino or la Nina conditions) with the goal of detecting areas of 
activation under the stimulus by subtracting the image under the background condition.  
The matrices A(x,y) and B(x,y) are the average values at pixels with coordinates (x,y) under 
the two conditions A and B.  The number of images that went into these average 
calculations may be relatively small (i.e., 4 to 10), but should be similar for the two 
conditions.  The two average images are normalized to have the same mean value and then 
subtracted to provide normalized differences (x,y): 
 

       
      

 ̅
 

      

 ̅
 

 
where and are the spatial average of the observed variable values across all pixels in 
the study region under conditions A and B, respectively.    
 
The t-test is a traditional measure of the difference between two means (e.g.,Walpole and 
Myers, 1989).  Quite simply, the t-statistic is the difference between two values, at least one 
of which is a population or sample mean, normalized by the standard error of the mean: 
 

  
 ̅   

  
 

 ̅   

 √   
 

 
where  ̅ is a sample mean,  is a population mean, se is the standard error of the mean 
which is the standard deviation of the observations, s, that make up the data vector X 
multiplied by the square root of 1 over the number of samples within X. The cumulative 
probabilities for any value of t are available from the Student’s t distribution and require 
knowledge of the degrees of freedom, , within the test.  For the analyses done here,  is 
generally n-1.   
 
In the case of comparing two sample means to each other at each location ,i.e., A(x,y) and 
B(x,y), instead of comparing a sample mean to a theoretical population mean, the value of se 
must be calculated from both sample sets as: 
 

 

A B

se = sp
1

n1

+
1

n2
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where n1 and n2 are the number of images that were used in calculating the average maps A 
and B and sp is the average pooled standard deviation: 

 

 

 
Here we are assuming that n1 and n2 are constant for all locations and therefore not a 
function of (x,y).  The t-statistic image (map), based on the pooled standard deviation, is: 

 

 

 
Here, a location (pixel)-based calculation of the standard deviation is used.  Another 
approach is to calculate the pooled standard deviation across the image (image-based) and 
arguments for using the image-based standard deviation are given by Worsley, et al. 
(1992).  Typically, the number of observations under each condition is small, less than a 
dozen, and therefore the effective degrees of freedom for T(x,y) is generally small and 
needs to be used in the transformation of the t-field to a standard normal Gaussian field.   
 
The cumulative probability of a t-statistic is found from the T distribution function with the 
appropriate degrees of freedom.  This probability is then used with the inverse of the 
Gaussian distribution function to get the z-score value: 

 

 

 
The resulting fields are now multiGaussian SPM’s and the anomaly detection algorithms 
developed for SPM analysis can be applied 

Regression Models 
There are two goals for the imagery analysis in this study: Anomaly detection from 
historical data and online anomaly detection.  To accomplish this second goal, it is 
necessary to investigate? anomalies in spatial-temporal data sets as those data sets become 
available.  One widely used approach to anomaly detection is to predict the expected value 
of an observation prior to taking that observation and then examine the residual between 
the predicted and observed values.  Here, non-linear regression models are used to make 
predictions of future values based on previously observed values.  
 
In particular, we examine the following simple periodic model to predict values of a 
variable Z the next time step (t + 1) from a data vector collected at previous times, t:  

sp(x, y) =
(n1 -1)s1

2(x, y)+ (n2 -1)s2
2 (x, y)

n1 +n2 - 2

t(x, y) =
D(x, y)

sp(x, y)
1

n1

+
1

n2

P(Y £ y) =T(y;n )

z =G-1(P(Y £ y))
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where dd is the period of the periodic process and the vector of regression coefficients, ’s, 
are determined through solution of the linear system: 
 

 ̂       
 
where X is a design matrix containing the operations in the regression model applied to all 
times t through (t-P) where P is the number of terms in the regression model and Z is the 
vector of the P previously observed values (data vector).  The coefficients, 0 through 3, 
modulate the intercept, linear trend, cosine and sine components of the model, 
respectively. 
 
Here, the regression model is utilized to predict the next time slice of the observed spatial-
temporal process.  Parameters of the regression model are identified independently for 
each spatial index (i,j) within the image at each time step.  It is also possible to make the  
vector a function of location and employ a model of spatial correlation between the 
regression coefficients to potentially improve the regression estimates, but that approach 
is left to a future study. 

 
Calculation of the t-statistic is based on the assumption of independent samples within the 
vector X.  Here, we will calculate the t-statistics using a regression model that exploits the 
temporal correlation within a one-dimensional data vector to estimate the value at the next 
time step.  The regression estimate is a mean of the previous n observations, but these 
observations are not independent.  In order to account for correlation within the data set, 
the standard error, se, within the t-statistic calculation is replaced with (Gilbert, 1987, p. 
184): 
 

 [
 

 
(   ∑  ̂ 

   

   

)]

   

 

 
where the  ̂  are the values of the autocorrelation of the data set for each of the ith lag 
spacings.  This replacement decreases the size of the resulting t-statistic to account for 
correlation inherent in the data set.  The degrees of freedom, , remains unchanged at n-1.   
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Anomaly Detection 
Anomaly detection here is broken into two types: Omnibus and localization.  The former 
indicates that an anomalous feature is present, but does not provide information on the 
location of the feature.  The latter provides an approximate location for the anomaly. 

Omnibus Detection 
Omnibus detection is defined here as the ability to detect a change in an image relative to 
other images without any localization (i.e., change detection without determining the 
location of the change).  Omnibus tests as defined here are single tests that pertain to the 
entire image.  This definition is consistent with that of Fox et al. (1988) and Worsley et al. 
(1992) but not that of the more locally specific definition proposed by Friston et al. (1995).   
 
Omnibus detection approaches are applied to the SPM, not to the images directly.  Several 
approaches to omnibus change detection have been developed in the brain imaging 
literature and two of them are evaluated here: 1) the significance of the maximum value in 
the image, Tmax, relative to a threshold value; and 2) the number of distinct regions in an 
image that are above a threshold value.    
 
In this discussion, the calculated value of Tmax and the resulting p value can be calculated 
for either a t-statistic field or a z-score field (standardized Gaussian). In the absence of any 
activation signal that would change the nature of the field, the T field can be well 
approximated by a mean-zero Gaussian field with unit variance and second-order 
stationarity.   The maximum value of an mG field is defined by the Gaussian distribution 
and the level of spatial correlation in the field relative to the domain size.   The probability 
that the maximum of an mG field exhibiting spatial correlation is above a threshold, t, 
where t is relatively high (e.g.,  3.0), has been the subject of study by a number of 
researchers.  Both Adler and Hasofer (1976) and Adler (1981) have developed general 
expressions for the p-value of the maximum of an mG field in multiple dimensions.  For the 
2D case of concern here, Worsley et al. (1992) provide an expression for this p-value as: 
 

      
                                

 
where     

  is the maximum of the 2D “slice” in the nomenclature of Worsley et al. (1992).  
The number of resolution elements, or Resels, R, is a measure of the spatial correlation of 
the field calculated as the number of FWHM values that fit within the study domain: 
 

                  

 
where S is the area of the study domain.  R provides the degrees of freedom in the T test.  
The p value is interpreted as the probability of obtaining     

 
 under two different null-

hypothesis scenarios: 1) there is no difference between the map predicted by the 
regression model and the observed image; and 2) the case where there is no difference 
between the two average maps each calculated from sample maps under the two different 
conditions. 
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Isolated Regions of Activation 
A second approach to omnibus detection is comparison of the number of regions within a 
map that exceed a given threshold level (“regions of activation”) to a reference model of the 
expected number of such regions. Truncation of a Gaussian field at a threshold t defines the 
t-level excursion set: 

 

Xt = x Î RD :Y (x) ³ t{ }  

 
A large body of literature on the properties of excursion sets (regions of exceedence) in 
Gaussian random fields is available (e.g., Adler, et al., 2009; Friston et al., 1994; Lantuejoul, 
2002).   From this area of research, Friston et al. (1994) characterize three related 
properties of excursion sets in truncated Gaussian random fields: 
 
N the number of pixels above the truncation threshold, u, 
m  the number of distinct regions (inclusions) above the threshold, and 
n  the number of pixels in each region, 
 
with expectation relationship E[N] = E[m]E[n]. For threshold value, u, the number of cells 
above that threshold, N, is provided by the Gaussian cdf and the size of the domain, S: 
 

 [ ]   ∫               
 

 

   

 
A measure of the number of isolated regions above the threshold can be obtained from the 
Euler Characteristic, EC.  In two dimensions, the EC represents the number of connected 
excursion sets in the domain minus the total number of holes within those sets. Therefore 
EC goes to 0.0 at t = 0 and EC becomes negative when t < 0.0 as the truncated field 
represents a single domain-spanning set containing a large number of holes.  In 2D, and at 
relatively high truncation thresholds, EC is equivalent to the number of regions above the 
threshold, E[m]. 
 

 [ ]     |                           | 
 
where W is an alternative measure of the spatial correlation of the mG field defined as a 
fraction of the FWHM: 
 

W FWHM √        

 
For a given threshold, u. the average area of the individual regions is found from the 
expectation relationship: 
 

 [ ]  [ ]  [ ]  [ ] [  ] 
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Figure 1, from McKenna et al (2011) compares a direct calculation of EC using the Matlab 
Image Processing toolbox (Matlab, 2009) with estimates made using the Euler 
characteristic equation above across a range of u values increasing from left to right. The 
corresponding binary fields (500 × 500 cells) are also shown for several representative 
threshold values.  Note, that here we are interested in both extreme ends of the graph 
corresponding to t values (truncation thresholds) with absolute values of 2.5 or greater. 
 
 
 

 
 

Figure 1.  Observed (calculated) and estimated Euler characteristic for a truncated mG 
field as a function of the truncation threshold, t. The corresponding excursion sets for t > 0 
are black regions in the binary fields at the top of the image (after McKenna, et al., 2011). 

For each difference map and threshold t, the quantities N, m and n (Worsley, et al., 1994) 
are calculated directly and compared to the theoretical values as determined for an mG 
field with a FWHM as observed in the difference map.  Additional omnibus tests are then 
simple comparison of the observed and theoretical values of these quantities: 

 
Nobs(t,FWHM ) > Ntheo(t,FWHM )

mobs(t,FWHM ) >mtheo(t,FWHM )

max(nobs(t,FWHM )) >> ntheo(t,FWHM )

 

 
If the observed values of the number of pixels, Nobs, exceeding the threshold and/or the 
number of excursion regions, mobs, is larger than their theoretical counterparts, that 
serves as additional evidence for an anomaly.  The third test is comparison of the maximum 
observed excursion size against the theoretical mean excursion size.  No significance levels 
are applied to these tests here.  Some work has been done on determining p-values for 
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these quantities (Worsley, et al., 1994) and other authors have used Monte-Carlo 
simulation to define approximate confidence intervals for these quantities.  Here, we 
simply examine the ratios of the observed to theoretical quantities as indicators of 
anomalies. 

Localized Anomaly Detection 
Further analysis of the excursion sets leads to information on the location of the detected 
anomalies.  The excursion set maps themselves can be examined to see where the 
excursions are occurring.  The location of the centroid of the largest excursion is recorded 
to define the location of the anomaly. 
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Process Validation 
Two fundamental aspects of the algorithmic approach defined above, calculation of the 
FWHM from an image and calculation of the p-value of the maximum t-statistic, are tested 
here to determine their range of applicability. 

Validation of the FWHM Estimation 
The relationships outlined above depend on accurate knowledge of the spatial correlation 
of the mG field as defined by the FWHM value.  In the case of a constructed field, the FWHM 
is a known parameter.  In the case of an observed field, the FWHM must be estimated 
directly from the field (image).  Here, those estimation approaches are tested against fields 
created with known FWHM values. 
 
A set of mG fields are created using the convolution approach for each level of increasing 
FWHM values.  These mG fields are then used as input to the pixel differences approach to 
calculating FWHM and the actual and estimated FWHM values are compared (Figure 2). 
 

  
 
Figure 2. Results of testing the estimation of FWHM and the resulting number of resels 
(the red line in the right image defines the true resel values).  Each circle represents a 
unique result from a generated mG field.   

 
A range of  values from 1.0 to 30.0 were evaluated.  These  values correspond to FWHM 
values ranging from 2.35 to 70.6 units.  For each FWHM value, 15 realizations were run.  
The domain used in these evaluations is 500x500 units square.  At FWHM values of 20 or 
less (4 percent or less of the domain size) the estimated FWHM values are accurate and 
very precise relative to the true FWHM values.  At FWHM values larger than 20.0, the 
estimates become less precise, but they remain relatively unbiased.  The increase in 
variation is due to ergodic effects as the correlation length (FWHM) of the field increases to 
become a larger fraction of the field size. 
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The right image of Figure 2 shows that the increasing variation in the estimated FWHM at 
larger sizes is also reflected in increasing variation in the estimated value of R (resels).  
However, the right image of Figure 2 shows that the estimates of R are robust across the 
range of FWHM values.   
 
The same values of  were evaluated again with anisotropic Gaussian fields.  The level of 
anisotropy was set such that the FWHM in the X-direction is 5 times that of the FWHM in 
the Y-direction.  The results of these validation runs are shown in Figure 3.  The true 
FWHM values are accurately estimated in both directions.  The true value of R is also 
estimated accurately; although, at the smallest FWHM values the true value of R is under-
estimated. 
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Figure 3.  Predicted and estimated FWHM values for the X (left top image) and Y (right top 
image) directions for the anisotropic case.  The bottom image shows the estimated resels 
compared to the true values.  Each circle represents a unique result from a generated mG 
field. 
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Validation of the P(Tmax>t) Estimation 
The equation for calculation of the significance of the maximum t value (P(tmax > t) given 
above (Worsley, et al.,  1992) provides an estimate of P(Tmax > t).  This estimator was 
derived to apply to fields with spatial correlation.  The accuracy of this estimator is checked 
by creating Gaussian fields with a given level of spatial correlation and determining the 
proportion of these fields where the observed Tmax exceeds the threshold value t.  The 
proportions of fields for which the maximum exceeds the threshold are compared directly 
to the calculations from the equation in Figure 4.  For each set of simulations, the 
proportion of fields where Tmin < t is also calculated and because the T distribution is 
symmetric, the Tmin < t values can be used as another observation at each threshold value.  
For each image in Figure 4, 1000 Gaussian fields were simulated to calculate the observed 
exceedance proportions.  Figure 4 shows that the accuracy of the P(Tmax > t) estimates 
improves as the FWHM increases. The calculations are also most accurate for P(Tmax > t) 
values  0.20, which is expected as this calculation is most often applied to higher 
thresholds where the chances that the maximum T value exceeds the threshold are smaller. 
 
Another solution to estimating the probability of a value exceeding the threshold is tested.  
Following the discussion by Brett et al. (2003), consider a single t-test with 40 degrees of 
freedom that produces a t-statistic of 2.42.  Comparison to the t distribution shows a 1% 
probability of a value this high or higher occurring by chance from background (null 
hypothesis) conditions.  In an omnibus test applied to image analysis, the question is not 
the probability of whether one location (pixel) is from the background distribution, but the 
probability that the entire image could have come from the background distribution.  The 
acceptable risk of assuming the t-statistics in the image came from the background 
distribution when in fact they did not is called the family-wise (or group-wise) error 
(FWE).  Control of the FWE is set by identifying a threshold that takes into account the 
number of tests within the family.  For example, if there are n = 1000 individual t-tests each 
having 40 degrees of freedom, then 10 of those tests should result in t-statistics of at least 
2.42.  The goal is to redefine the threshold such that there is a 1% chance of at least one t-
statistic being at or above the threshold and the Bonferroni Correction has been developed 
to calculate this threshold.   
 
For small , the approximation PFWE <= nis valid a threshold for the single pixel 
probability, , can be found that produces the desired PFWE:  = PFWE/n.  The value of PFWE is 
the probability of any t value exceeding the threshold across all n pixels.   
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Figure 4.  Validation results for calculation of P(Tmax>t).  Each graph shows results for a 
different FWHM value as shown in the titles.  The theoretical result is shown by the red line 
and the empirical results (black circles) are the proportion of times that Tmax > t over 
1000 fields.  There is a separate black circle for Tmax > t and Tmin < t for each value of t.   

This correction is demonstrated here with an example.  For a regression model with 40 
time steps (degrees of freedom = 39) and a threshold value, t, of 4.0, the cumulative 
probability of the T distribution is 0.9999 and the probability of exceeding the threshold is 
1.37E-04.   This is the  value of the test.  For a relatively small image with 2500 pixels, 
there will be 2500 t-tests and in order to get a FWE equivalent to a single t-value exceeding 
4.0, the modified  value for each individual test is now /n = 1.374E-04/2500 = 5.48E-08. 
Going back to the null distribution, this corresponds to an adjusted single test threshold 
value of 6.45.   
 
The Bonferroni correction assumes independence between the statistical tests and this is 
some of the reason why the resulting values are overly conservative for t-tests.  The 
coordinate pair from the example calculation (6.45, 5.48E-08) would not even show up in 
the images of Figure 4 that contain the observed P(Tmax > t) for t values expected to be 
used in this work.  If the size of the image increases to more practical levels (e.g., 10,000 or 
more pixels), the adjusted  value decreases further and the corresponding threshold 
increases.  Based on these calculations, the Bonferroni correction to P(Tmax > t) is not 
considered further.   
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Example Applications 
Two data sets are used as example applications for the techniques described above, 
collectively referred to here as “SPM”.  Each example data set represents a spatial-temporal 
process.  The anomaly detection focus here is on the maximum and minimum SPM values, 
either t-statistics or z-score values, and the statistical significance of these values and on 
the size of the maximum regions of excursion above or below a threshold level.   For the 
second application to the NDVI data, the observed levels of spatial correlation, the FWHM, 
are also examined.   

Data Set 1: Simulated Data 
The first example applications are demonstrated using a synthetic data set.  Such a data set 
allows for complete knowledge of what is background variation and what are the true 
anomalies of interest.  
 
The synthetic data set is constructed as the linear combination of two independent, second-
order stationary mG fields using the deformation approach developed by Hu (2000).  The 
combination is done as a function of a non-dimensional time, v, that allows for the temporal 
evolution of the combined field to be dependent on previous states of that field. 
 
For each time step, Y(v) is a Gaussian random function defined in 2D.   
 

                         
 
If Y1 and Y2 are zero-mean Gaussian functions, then Y(v) is also a zero mean function and 
the spatial covariance model of Y(v) is that of Y1 and Y2.  The cos and sin operators act as 
weights to normalize the variance and the resulting Y(v) is also a Gaussian function due to 
its construction as the linear combination of two other Gaussian functions. 
 
Moving from the random functions to specific realizations of these functions, the 
relationship above provides a chain of realizations (time slices) that vary smoothly as 
function of v: 
 

                         
 
and the smaller the time step,v, the smoother the transition from one time slice to the 
next will be.  A full cycle of v from 0 to 2 creates all possible fields.  In order to continue to 
simulate unique data, some level of measurement noise as well as a trend, here linear, can 
be applied to the simulated values. 
 
As an example, two Gaussian fields are constructed by convolving two uncorrelated mG 
fields with an isotropic Gaussian kernel having a FWHM value of 10.0 ( = 4.25).    These 
two fields are the initial conditions for creation of time varying field using the Gaussian 
deformation approach.  The time step is set such that there are 62.667 time steps per cycle 
(≈10*2.  The simulation is run for three complete cycles (188 time steps) and both noise 
and a decreasing linear trend are added to the simulated data.  The spatial domain is 
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discretized into 100x100 pixels, and for each pixel and for each time step, a random 
Gaussian variable is drawn and added to the simulated data.  This Gaussian noise 
distribution has a mean of zero and a standard deviation of 0.10.  The linear trend is also 
added to the simulated value to decrease them by 0.01 per time step.  Figure 5 shows an 
example resulting combined field for 9 time steps. 
 
 

 
 
Figure 5.  Example time slices from the simulated data set.   

The online anomaly detection approach is applied to simulated data sets created using the 
Gaussian deformation algorithm.  The simulations use the deformation approach described 
above in a domain that is 100x100 and has an isotropic FWHM of 10.0 (correlation length is 
1/10th of the domain size).   The simulated values are drawn from a standard normal 
multiGaussian distribution.  The deformation approach is periodic and from a given pair of 
starting realizations, any simulated values separated by one period in time will be exactly 
the same.  To eliminate the repeating values, both noise and a linear trend are added to the 
simulated values.  A decreasing linear trend with a slope of -0.01 is added to the simulated 
values after which noise is added as a zero-mean, uncorrelated Gaussian process with a 
standard deviation of 0.10.  The Gaussian deformation process is run to simulate 188 time 

steps where each time step is 0.10.    
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The regression model defined previously is used here with a window size (P) of 50 time 
steps and a fixed period of 1.0 (10 time steps).  The regression model is used to predict the 
values of the spatial-temporal process for each time steps from time step 101 through 125.  
Maps of the t-statistic derived from the differences between the regression model estimate 
and the observed values at each time step are then analyzed for anomalies.  It is noted that 
the SPM approach typically converts the t-maps into Gaussian z-score maps prior to 
analysis, but here the t-statistic maps are used directly.  
 
A number of tests are completed in which an anomaly is placed into the data sets at time 
step 110.  Different combinations of anomaly size, strength and shape are tested and the 
following performance measures are recorded through time: the number of individual 
pixels exceeding the threshold (N), the Euler characteristic (m, or the number of regions 
exceeding the positive value of the threshold) and the minimum and maximum t-statistic 
values.  Figure 6 shows example results for circular, square and kernel anomalies of an 
intensity of 5.0 and a size of 6.0.  The intensity value is added directly to the background 
data for the circular and square anomalies and defines the maximum increase above 
background at the center of the kernel shaped anomaly.  The size defines the radius, the 
side length or the standard deviation () of the Gaussian kernel for the circular, square and 
kernel anomalies, respectively.  These definitions lead to kernel anomalies being wider and 
having a lower average intensity relative to the circular and square anomalies.  In all cases, 
the anomaly is added to the background data for a single time step 110.   
 
Results in Figure 6 (left column) show extreme values of the maximum and minimum t-
statistics at early time steps.  A number of these values exceed the Y-axis limits of the 
graphs (-5.0, 5.0), especially at the earlier time steps.  The probability of the maximum, or 
minimum, observed t-statistic exceeding an absolute value of 5.0 for a 500x500 field with a 
FWHM of 10.0 is 0.008 (see Figure 4).  The reason for the large numbers of values that 
exceed 5.0 is not clear and it is possibly related to the start up of the regression model.  
From the graphs below, the clearest evidence of the anomaly is seen for the kernel shape 
where the maximum t-statistic jumps off the graph at time step 110.   
 
The right column in Figure 6 shows the observed and estimated Euler characteristic.  All 
three graphs present different results with strong changes in both EC measures at time 
step 110 for the circular and square anomalies, but little if any change for the kernel 
anomaly.  The estimated EC is derived from the FWHM values calculated on the image at 
each time step.  The results below indicate that the FWHM values on the image must 
change significantly in the presence of the anomalies added here. 
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Figure 6.  Example anomaly detection measures for simulated data.  The left column shows 
the minimum and maximum T values at each time step and the right column shows the 
observed Euler characteristic (“ECcalc”) and the Euler characteristic estimated from the 
spatial structure of the field and the threshold value (“ECest”).  All results are for a threshold 
of 3.5 an anomaly size of 6.0 and an anomaly intensity of 5.0.   
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Increasing the intensity of the anomaly results in increasing numbers of pixels exceeding 
the threshold t in the difference maps.  Results for t =2.50 and a kernel anomaly (Figure 7) 
show that an increase in the anomaly intensity from 1.0 to 10.0 results in approximately a 
5X increase in the number of pixels exceeding the threshold.  For all intensities examined, 
the number of pixels exceeds the expected value of pixels (“Nexceed Est”).  The variation in 
the trend is due to each point on the graph being the result of a single simulation.  

 
 
 
Figure 7.  Number of pixels exceeding the threshold t as a function of increasing anomaly 
intensity for a kernel anomaly.  For these simulations, the threshold, t, is set to 2.50. 

 
Adding discrete anomalies to simulated spatial-temporal data allows for testing of the 
algorithms used here.  However, additional testing is needed with multiple runs of the 
simulated background data and the added anomalies before any strong conclusions can be 
made.   
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Data Set 2: Normalized Difference Vegetation Index (NDVI) Data Set 
 
The NDVI data set provides total global coverage of the earth on a weekly sampling 
frequency for the past 30+ years.  The Wikipedia site: 
http://en.wikipedia.org/wiki/Normalized_Difference_Vegetation_Index 
provides a high-level overview of NDVI and its application.  Data obtained for this project 
run from 1981 into early 2011, although much of the 1994 data are missing.  For that 
reason, the analyses presented here are for the 1995-2011 data.   
 
NDVI is calculated from multi-spectral satellite measurements and provides a normalized 
measure of the amount of green vegetation for a region on the earth’s surface.  NDVI is 
calculated as the difference between the near infrared (NIR) and visible regions (VIS) 
normalized by the sum of these two quantities: 

 

 

 
Calculated values of NDVI range from -1.0 to 1.0.  NDVI is based on the ability of chlorophyll 
in plant leaves to strongly absorb visible light (wavelengths between 0.4 and 0.7 m) to 
drive photosynthesis.  Contrary to light in the visible range, plant leaves are strong 
reflectors of light in the near infrared range (0.7 to 1.1 m).   In general, increasing 
amounts of green vegetation in an image pixel results in increasing amounts of reflected 
light in the NIR wavelengths and decreasing amounts of reflected light in the VIS 
wavelengths leading to increasing NDVI values.   
 
Typical values of NDVI in areas of dense vegetation are 0.3 to 0.8.  Regions of cloud cover or 
snowfields, with little to no absorption of visible light will result in negative NDVI values.  
Water bodies tend to have low reflectance in both NIR and VIS wavelengths resulting in 
NDVI values near zero.  Bare soils have smaller positive NDVI values up to 0.2.  Direct 
relationships between NDVI and photosynthetic capacity and energy absorption of plant 
communities have been developed (Sellers, 1985; Myneni et al., 1995). An example image 
of NDVI for the 40th week of 1995 for North America is shown in Figure 8.  Week 40 is 
nearly 77% of the way through the year, early October, and the harvest has already 
occurred in the Great Plains resulting in relatively low NDVI values.  NDVI values are 
extremely low in the northern latitudes, upper one-third of the image, as would be 
expected for this time of year.  NDVI values are still relatively high in the Appalachians and 
in the southern US as well as Caribbean islands and in Central America.  The image shown 
below is 424 x 835 pixels and is one of 835 weeks of available imagery in the NDVI data set. 
 
 
 

NDVI =
(NIR-VIS)

(NIR+VIS)
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Figure 8.  Example NDVI imagery for North America.  This image is for early October in 
1995.  
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Online Detection (Regression) 
The NDVI data are also analyzed using the online anomaly detection mode.  The regression 
model is paramterized with a window-size (P) of 40 weeks and a period of 52 weeks.  In 
contrast to analysis of the simulated data sets, here the t-statistics are transformed to mG z-
score fields prior to the anomaly detection.  Ten years (520 weeks) of weekly data are 
available for analysis.  Two locations within the tropics are chosen for analysis: Amazon 
Basin and Southern India.  Details on these two regions are provided in Table 1. 
 
Error! Not a valid bookmark self-reference. 

 Amazon Basin Southern India 
Latitude Limits -72 to -58 degrees -80 to -74 degrees 
Longitude Limits -10 to 0 degrees -21 to -14 degrees 
Dimensions in pixels (rows 
and columns) and total 

69 x 97 (6693) 49 x 42 (2058) 

Approximate Area (km2) 1.5E+06 4.6E+05 
 
 
Figure 9 shows three consecutive example weeks from the end of 1999 to 2000 of NDVI 
data (left column) collected for the Amazon Basin with the corresponding SPM in units of z-
scores as calculated through the regression-based approach (right column).  A similar view 
of consecutive weeks of NDVI data collected in late 2000 is shown for the Southern India 
region in Figure 10. 
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Figure 9. Example images from the Amazon Basin region showing three weeks of NDVI 
data (left column) and the corresponding SPM maps (right column). 
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Figure 10.  Example images from the Southern India region showing three weeks of NDVI 
data (left column) and the corresponding SPM maps (right column).  

 

  



 

 35 

 

Figure 11 shows a comparison of the calculated FWHM values and indicates that the SPM’s 
are isotropic at both locations (the values for the X and Y directions are approximately the 
same) and that the FWHM values are somewhat smaller for the Amazon Basin (Figure 11, 
left) than those for Southern India (right).   

 

  
Figure 11.  Comparison of the calculated FWHM values at each time step for the Amazon 
Basin (left) and South India (right).   

Figure 12 compares the maximum and minimum observed SPM values, here z-score 
values, for the Amazon Basin (left) and Southern India (right).  Using the area of each 
region in pixels and the approximate average FWHM values from the previous figure, the 
values of P(Tmax>t) for t = 5.0 are calculated as 0.0098 and 0.0017 for the Amazon Basin 
and Southern India, respectively.  The Amazon Basin results show only a few excursions of 
the SPM values outside of the -5.0, 5.0 bounds while the Southern India results are much 
more variable and show many excursions outside these bounds. 
 

  
 
Figure 12.  Comparison of the maximum and minimum observed SPM (z-score) values at 
each time step for the Amazon Basin (left) and South India (right). 
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Figure 13 shows the maximum size of the region that exceeds a threshold t  = 4.0 for the 
Amazon Basin (left) and Southern India (right).  Large areas of exceedence are indicative of 
anomalous NDVI conditions and the locations of these regions can be determined.  The 
Amazon Basin has a maximum excursion region of 3 pixels, while Southern India has two 
time steps where the maximum excursion exceeds 30 pixels.  Both of these are negative 
excursions indicating that the regression model underestimated the amount of NDVI at 
these times. 
 

  
 
Figure 13.  Sizes in pixels of the maximum excursions above and below a threshold of 4.0 (-
4.0) for the Amazon Basin (left) and Southern India (right).   
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Conditional Differences 
In addition to the online, regression-based anomaly detection, the NDVI data can also be 
analyzed in a manner that is more similar to the brain scan studies for which the SPM 
approaches have been developed.  In particular, external stimuli that should produce a 
rapid response in the subject, the earth, as measured with NDVI are available.  Here we 
consider the el Nino Southern Oscillation (ENSO), more commonly referred to as el Nino 
and la Nina as the external conditions that influence the expression of NDVI.  Additionally, a 
third condition, the “background” conditions in the absence of either el Nino or la Nina 
conditions can be examined.  Figure 14 shows the occurrence of these conditions over the 
extent of the NDVI data set.  
 

 
 
Figure 14.  ENSO anomaly in degrees C for the 1950-2011 period.  Warmer periods shown 
in red correspond to el Nino events and cooler temperatures in blue define la Nina events.  

  
Table 1 shows the years selected as representative of each condition within the 1995-2011 
dataset (compare with Figure 14).  Each year listed in Table 1 is the start of the “water 
year” which extends from October 1st through September 30th of the following year. 
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Table 1.  Classification of years since 1995 for use in constructing average conditional data 
sets. 

El Nino Years La Nina Years Background Years 
1997 1999 1996 
2002 2000 2001 
2006 2007 2005 
2009 2010 2008 

 
The t-statistic is calculated as: (activated state – normal state), and here that calculation is: 
(NDVI during el Nino) – (NDVI during la Nina).  Therefore, positive t values, and the 
positive corresponding z-score values, are the case where the activated state (el Nino) 
results in higher NDVI (higher vegetation density) relative to the normal state (la Nina).  
Negative values are due to less vegetation density in the activated condition relative to the 
background condition. 
 
The FWHM values for this analysis are shown in Figure 15.  These are similar to the values 
calculated above in the regression-based anomaly detection with the Amazon Basin 
(Figure 15, left) being near or below 1.5 and the values for Southern India (Figure 15, 
right) generally at or below 2.0. 
 

  
Figure 15.  Comparison of the calculated FWHM values at each time step for the Amazon 
Basin (left) and South India (right).  The time steps are for the calendar year and the results 
are average values for el Nino years compared to la Nina years. 

The maximum and minimum z-score statistics across the calendar year are shown in 
Figure 16 for the Amazon Basin (left) and Southern India (right).  There are few, if any, 
points where the maximum t-value exceeds 5.0.  However, for both regions, the minimum 
z-score values exceed -5.0 frequently.  This result indicates that NDVI during la Nina is 
higher than NDVI during el Nino.  The values of P(Tmax>t) for t = 5.0 (-5.0) are the same as 
above in the regression-based anomaly detection and calculated as 0.0098 and 0.0017 for 
the Amazon Basin and Southern India, respectively.   
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Figure 16.  Maximum and minimum SPM values (z-scores) for the Amazon Basin (left) and 
Southern India (right) under conditional differences.   

 
A somewhat unexpected result in both analyses was the minimal correlation lengths 
(FWHM values) of the resulting z-score maps.  Both regions examined here, as well as 
several others, produced z-score maps with mean FWHM values in the range of 1.5 to 3.0 
pixel lengths.  This result is indicative of the regression model functioning as designed and 
producing relatively accurate predictions of the NDVI values at the next time step.  
However, the resulting small FWHM values are not optimal for the SPM approach.  Recall 
the validation of the P(Tmax > t) calculations where smaller FWHM values led to increasing 
bias in the analytical estimation of P(Tmax > t).   
 
One interesting result occurs when using el Nino as the activated condition and la Nina as 
the “normal” condition.  The majority of the significant deviations are negative – meaning 
those areas have lower NDVI (less vegetation) in el Nino years relative to la Nina years. 
This result may be consistent with underlying factors contributing to increased incidence 
of civil conflict seen with increasing level of temperature in the ENSO cycle (Hsiang et al., 
2011).  At this point, no direct connection between decreased NDVI during el Nino relative 
to la Nina and decreasing levels of agricultural vegetation, has been identified, but NDVI 
may turn out to be one of several explanatory factors for civil conflict.   
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Summary 
This work summarizes previous techniques developed as statistical parametric mapping, 
with applications focused on human brain imaging, and interprets those techniques for 
new applications in anomaly detection within remotely-sensed imagery.  Two approaches 
to analysis are developed: online, regression-based anomaly detection and conditional 
differences.  These approaches are applied to two example spatial-temporal data sets: data 
simulated with a Gaussian field deformation approach and weekly NDVI images derived 
from global satellite coverage.   Results indicate that anomalies can be identified in spatial 
temporal data with the regression-based approach.  Additionally, compared to la Nina 
years, el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin 
and in Southern India. 
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