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Abstract

Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atom-
scale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and
elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments,
several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and
extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of develop-
ing molecular dynamics simulation capabilities for modeling the response of materials to ramp compres-
sion. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii)
interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an
accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling
slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting
plastic strain from MD simulations. All of these methods have been implemented in Sandia’s LAMMPS
MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.
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Part I

Shock Compression
1 Dynamic compression of polymers

Principal Authors: Thomas R. Mattsson and J. Matthew D. Lane
This section contains a paper entitled “First-Principles and Classical Molecular Dynamics Simulation of

Shock Polymers ” that was published in Phys. Rev. B in 2010. It was authored by Thomas R. Mattsson, J.
Matthew D. Lane, Kyle. R. Cochrane, Michael P. Desjarlais, Aidan P. Thompson, Flint Pierce, and Gary S.
Grest. [SAND 2009-3918 J]

Abstract

Organic polymers and nanocomposites are increasingly being subjected to extreme environments.
Molecular-scale modeling of these materials offers insight into failure mechanisms and response. Den-
sity functional theory (DFT) molecular dynamics (MD) and classical MD simulations of the principal
shock Hugoniot are presented for two hydrocarbon polymers, polyethylene (PE) and poly(4-methyl-
1-pentene) (PMP). DFT results are in excellent agreement with experiment data, which is currently
available up to 80 GPa. Further, we predict the PE and PMP Hugoniots up to 350 GPa and 200 GPa,
respectively. For comparison, we studied two reactive and two non-reactive interaction potentials. For
the latter, the exp-6 interaction of Borodin et al. showed much better agreement with experiment than
OPLS. For the reactive force fields, ReaxFF displayed decidedly better agreement than AIREBO. For
shocks above 50 GPa, only the DFT results are of high fidelity, establishing DFT as a reliable method
for shocked macromolecular systems. We extend these results to include low-density polymer foams
using NEMD techniques. We find good quantitative agreement with both experiment and hydrocode
simulations. Further, we have measured local temperatures to investigate the formation of hot spots and
polymer dissociation near foam voids.

1.1 Introduction

Over the last few years, first-principles simulations in combination with increasingly accurate shock ex-
periments at multi-Mbar pressure have yielded important insights into how matter behaves under extreme
conditions. While comprehensive advances have been made for many light elements, for example deu-
terium [2,3] and carbon [4], progress has been slower for equally important, albeit more challenging, mate-
rials like molecular crystals and polymers [5].

Modeling a macro-molecular material requires trade-offs in system size and fidelity of the atomic inter-
action. It is not clear a priori how to best strike the balance between the competing requirements, since the
critical variable determining system response may in some cases be the size-specific structure/geometry, or
in other cases the bond reactivity and interaction fidelity. In order to resolve this important question, we
have simulated shock compression of two different polymers using first-principles Density Functional The-
ory [6] (DFT) and classical molecular dynamics (MD) simulations using four different interaction potentials:
ReaxFF [7], AIREBO [8], OPLS [9], and Borodin et al.’s exp-6 potentials [10].

Polymer foam is a crucial part of the dynamic hohlraum platform used to generate intense x-ray radiation
at Sandia’s Z-machine [11–13] and designs for Inertial Confined Fusion (ICF) often involve foams. As ex-
perimental designs are being refined – primarily as a result of an interplay between radiation-hydrodynamics
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modeling, improved diagnostics, and improved drivers – the importance of having accurate material models
based on a fundamental understanding of the material’s behavior is becoming increasingly clear. Model-
ing both the qualitative and quantitative aspects of shock propagation in polymers and polymer foams is
therefore of significant importance.

Figure 1: Simulation snapshots of the initial foam structure (top) and of the propagating shock front (bot-
tom). The shock shown is strong enough to dissociate the atoms of the polymer, which can be seen vaporized
within the void space ahead of the front. The snapshots are shaded to indicate depth. Black spaces are areas
in which void mergers allow unobstructed views through the entire sample.

For generality, we chose to study two polymers, polyethylene (PE) and poly(4-methyl-1-pentene) (PMP
or TPX). PE is an extensively used general-purpose plastic with the simplest possible linear alkane struc-
ture. Atactic PMP is commonly used in shock studies as a low-density polymer foam and has specialized
applications in target materials for inertially confined fusion (ICF) studies. PMP is a branched alkane with a
bulky side chain. The two polymers were selected to be representative of two different classes of polymers,
as PMP is amorphous at room temperature, while PE is semi-crystalline. We believe the results are likely
to be widely applicable to other macromolecular materials. Several experimental studies of shocked PE
have been reported [14–17] in addition to the quantitative data for both PE and PMP from the LASL shock
handbook [18].

In expanding our work to foams, we note the inherent difficulty presented by the multiple length scales
responsible for the shock response in foams. In addition to the atomic length scale response which we
have shown DFT and MD can capture well, foams introduce the larger scale of the void structure, wall
thickness, and even longer range density inhomogeneity within samples. The likely need to model these
larger scales drove us to shift our modeling from DFT/MD to MD/Mesoscale. Thus, although DFT was
notably successful in modeling dense polymers, we did not apply these techniques to foam systems. On the
mesoscale we report briefly on continuum hydrocode results for comparison with MD. Complete continuum
analysis [19] and experimental results [20] will be reported elsewhere.

1.2 Methodology

While DFT is a computationally costly method in which it is necessary to reduce the number of simulation
atoms to several hundred at most, it allows for a high-fidelity description of chemical bonds and inter-atomic
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repulsion. Reactive force-fields like ReaxFF [7] and AIREBO [8], which have been applied to study shocks
in hydrocarbons [21–23], cannot accurately capture the range of responses compared to DFT, however they
allow for chemical reactions and significantly larger system sizes. Non-reactive force-fields, like the OPLS
potential of Jorgensen et al. [9] and the exp-6 potential of Borodin et al. [10], are computationally much
more efficient and allow for even larger system sizes, but do not allow covalent bonds to break or form,
which can become important for strong shocks. The relative speed of the different methods is naturally of
interest, OPLS and exp-6 are the fastest potentials, AIREBO is approximately twice as slow while ReaxFF
is 30 times slower than OPLS and exp-6. All classical MD simulations were run in LAMMPS [1, 24] while
the DFT-MD simulations were performed with VASP 5.1.40 [25, 26].

1.2.1 Density Functional Theory with AM05

DFT is a formally exact representation of the Schrödinger equation. However, in practice, the choice
of exchange-correlation functional determines the accuracy. We employed the recently developed multi-
purpose Armiento-Mattsson (AM05) functional [27], it is a functional with no empirically determined pa-
rameters. It improves upon the local density approximation (LDA) by reproducing two model systems with
known solutions: the uniform electron gas and the surface jellium [27, 28]. AM05 has demonstrated high
fidelity for many solids [28, 29]; in reference [28], the performance of seven functionals was compared
for twenty representative semiconductors, simple metals, transition metals, alkali-halides, and oxides. For
AM05, the prediction bias (mean average error) in lattice constant is small while LDA and PBE both exhibit
significant bias. On average, AM05 is better than choosing between LDA and PBE for each solid separately
(Table I of reference [28]) and does as well as the decidedly more computationally demanding hybrid func-
tionals studied in Refs. [30] and [31]. Furthermore, AM05 also works well for hydrogen bonding in the
water dimer [32] and for chemical reaction energies for a large number of molecular reactions [33].

Both polyethylene and poly(4-methyl-1-pentene) are materials where van der Waals forces are impor-
tant. Although previous work using DFT by Byrd and Rice demonstrated a difficulty in modeling energetic
molecular solids at low pressure, they found an increasing accuracy as the external pressure increases [34],
and the behavior under strong shocks is dominated by the high pressure response. Furthermore, the lack of
van der Waals attraction in AM05 [29] makes it decidedly different from most other exchange-correlation
functionals. Since the functional displays a monotonic behavior upon expansion and compression [29], it is
arguably suitable for studying compression in van der Waals systems. The applicability of AM05 to shocked
energetic materials will be the subject of future work [35].

Finally, AM05 was recently the best suited functional to model quartz [36] up to 1 TPa in the development
of a high-pressure shock impedance standard. Taken together, there are ample reasons not only to employ
AM05, but to expect high-fidelity results for shock compression.

The DFT-MD simulations were performed with VASP 5.1.40 [25, 26] using stringent convergence set-
tings [3, 37, 38]. The plane wave cutoff was above 800 eV in order to converge the stress-tensor [3, 39].
Pulay errors are minimal due to the high cutoff and the appreciable changes in volume for the different cal-
culations along the Hugoniot [40]. The ionic timestep is between 0.1 and 0.5 fs depending on temperature.
Steady-state simulations in the NVT ensemble used a Nosé-Hoover thermostat with a time-constant of 80
timesteps. Velocities were scaled to control temperature in the ramped-temperature simulations. Partition of
kinetic energy between hydrogen and carbon was verified by monitoring the temperature for each element
separately [41]. Complex k-point sampling with mean-value point (1

4
,1
4
,1
4
) was used due to its high accu-

racy for disordered structures at high temperature. Electronic states were occupied according to Mermin’s
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finite-temperature formulation of DFT [42], a factor that is particularly important in the warm-dense matter
regime where electrons thermal excitations are significant.

1.2.2 Classical reactive interaction potentials

ReaxFF and AIREBO are reactive potentials which allow the possibility of dynamic bond formation and
breaking. ReaxFF uses bond-order and charge equilibration to model local chemical changes. It has been
used to simulate a wide variety of materials and processes, including molecular solids under shock and
detonation [23, 43, 44]. AIREBO is based on Brenner’s REBO potential augmented with explicit 6-12
dispersion terms and has previously been used to model shock propagation in short chain hydrocarbons [22,
45].

Both the AIREBO and ReaxFF calculations were performed using the standard LAMMPS parallel imple-
mentations [1], which have been validated against the original serial codes. For AIREBO, a 10.2 Å cutoff
was used. For ReaxFF, a 10 Å cutoff was used and the charge equilibration convergence tolerance was set
to 10−6. The specific form of the ReaxFF potential in LAMMPS is described in Chenoweth et al. [7]. The
ReaxFF parameter values are the same as those used by Strachan et al. [43].

1.2.3 Classical non-reactive interaction potentials

The OPLS and exp-6 potentials have pre-assigned non-breakable bonds. In these potentials, interactions
within and between molecules are described by a set of atomic potentials which include van der Waals,
electrostatic, molecular bond, angle, and torsion interaction terms.

Utot = Unonbond + Ubond + Uang + Utor (1)

where Unonbond is the sum of the van der Waals and Coulomb potentials. The bond potential and angle
potential are harmonic. The dihedral potentials for the OPLS and exp-6 force fields differ only slightly in
form.

An important difference between these potentials is in the form of the nonbonded interactions. The OPLS
nonbonded potential is composed of standard 12-6 Lennard-Jones (LJ) and Coulomb potentials [9,46], while
the exp-6 force field of Borodin et al. [47, 48] utilizes a Buckingham exponential-6 form for the nonbonded
pair potential. Nonbonded interactions are calculated between all atom pairs within different molecules and
between distant atoms within the same molecule. The respective functional forms are

U
OPLS
nonbond = 4�ij

��
σij

rij

�12

−
�

σij

rij

�6
�

+ kcoul

qiqj

rij

(2)

and

U
exp-6
nonbond = Aij exp(−Bijrij)−

Cij

r
6
ij

(3)

where �ij sets the energy scale, σij sets the separation scale for the ij pair, q is partial charge. Aij is the
strength of the potential’s repulsive component, B

−1

ij
is the characteristic decay length, and Cij indicates

the strength and range of the attractive component. The atoms in the exp-6 potential are uncharged. Both
potentials were cut off at 12 Å for the large simulation cells. An 8 Å cutoff was used to equilibrate the
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smallest PMP system before running in DFT. The different behavior under compression is shown in Fig 2
and is a most likely reason for the stark differences in shock pressure between the two.

Figure 2: Nonbonded contributions to the OPLS and exp-6 potential for C-C, C-H, and H-H. For C-H and
H-H pairs, the OPLS repulsive component is significantly larger than for exp-6 potential, with the largest
difference being in H-H.

Long-range Coulomb corrections were included using the Particle-Particle-Particle-Mesh (PPPM) method [49].
A complete set of OPLS and exp-6 force-field paramaters used in this study can be found in reference [50].

1.2.4 Construction of the simulation cells

Polyethylene (PE)
Two periodic crystalline PE samples of different sizes were constructed. The larger sample was built

using Accelrys Materials Studio [51] with the polymer builder module and converted to a LAMMPS data
structure. It consisted of 168 chains of C44H88 in a triangular lattice. This larger system, with 22,176
atoms, was used for all four classical potentials. For each potential, the sample was re-equilibrated at 300 K
and constant pressure to produce an initial state for the shock runs. The initial densities for the shock-
ready PE samples were ρ0,OPLS = 0.986 g/cm3, ρ0,exp−6 = 0.962 g/cm3, ρ0,ReaxFF = 0.930 g/cm3, and
ρ0,AIREBO = 0.915 g/cm3.

The smaller crystalline PE sample used in the DFT simulations was built entirely within VASP. It con-
sisted of 4 chains of hexadecane, C16H34 with 200 total atoms in a tetragonal unit cell. To produce the
reference state the unit cell lattice c/a ratio was adjusted in steps until the stress was minimized while main-
taining volume at a density of ρ0,DFT = 0.955 g/cm3. Reference energy and pressure were obtained by
equilibration for 11 ps.

Poly(4-methyl-1-pentene) (PMP)
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Two periodic amorphous PMP samples of different sizes were constructed. Both samples were built using
Accelrys Materials Studio with the polymer and amorphous cell builder modules and converted either to a
LAMMPS or VASP data structure. The larger sample consisted of 50 atactic chains of 50 repeat units for
a total of 45,100 atoms. Equilibrated samples at pressure of 1 bar and T = 300K were produced for each
classical potential. The OPLS sample was obtained by equilibrating at 600 K for 5 ns and cooling to 300 K
over 15 ns at a constant pressure of 1 bar. The exp-6 shock-ready state was reequilibrated for 3 ns from
the OPLS state. Similarly, the AIREBO and ReaxFF systems were obtained from the equilibrated exp-6
system. The initial densities for the shock-ready PMP samples were ρ0,OPLS = 0.822 g/cm3, ρ0,exp−6 =
0.829 g/cm3, ρ0,ReaxFF = 0.801 g/cm3, and ρ0,AIREBO = 0.756 g/cm3. This underestimation of ρ0,AIREBO

for AIREBO is consistent with previous results that found that this potential overestimated the pressure at
ambient density for a number of short linear and branched alkanes [8,52]. A generalization [52] of AIREBO
which allows the LJ σ and � parameters to each depend on local hybridization has been shown to predict
more accurately the pressure at ambient density. However since it still employs the LJ 12-6 form for the
interaction, it is not likely to do significantly better at high density than the original version.

The smaller sample consisted of 440 atoms in 4 atactic chains of 6 repeat units in a cubic cell. This sample
was equilibrated at 600 K, then cooled to 300 K over 1-2 ns with the exp-6 potential. Two geometries each
served as input to the DFT simulations. One was re-thermalized in VASP at 500 K then cooled to 300 K,
the second was continued directly. The energy shift from this initial exp-6 equilibrated state to the DFT
equilibrated state was less than 10 meV/atom (from −5.6799 to −5.6808 eV/atom). Thus near ambient
conditions (ρ0,DFT = 0.83 g/cm3), the DFT methods and non-reactive classical potentials produce nearly
identical reference configurations.

Foam PMP systems
PMP foam samples of several densities were created by introducing appropriately sized voids into a dense

polymer sample. Our construction methods for the dense polymer have been previously reported [53]. Voids
were introduced by growing spherical inclusions at a temperature of 400 K. The system was run at constant
pressure in an NPT ensemble. This allowed the overall dimensions of the simulation cell to expand as the
inclusions grew. The samples used in this work contained 400 chains of 50 repeat runs or 360,800 atoms.
The voids were formed in a regular face center cubic lattice. When the void expansion was completed,
the samples were cooled to 300 K over 1 ns, the inclusions were removed and the systems were allowed to
equilibrate. The final densities of foam used in this study were 0.245 g/cc and 0.300 g/cc, compared to a bulk
polymer density of 0.801 g/cc [53]. The final size of the foam sample was approximately 20× 20× 20 nm.
Larger samples, of 1.44 million atoms, suitable for shock propagation were produced by replicating these
cubical foams to produce elongated samples with dimensions of approximately 20× 20× 80 nm. A sample
system is shown at the top of Figure 1.

The 0.300 g/cc foam, on which we will concentrate, had voids of radius of 8 nm. During equilibra-
tion, these voids shrunk slightly, and opened into each other, so that both the void and the polymer were
contiguously connected across the samples.

1.3 Modeling shock response

A shock changes the thermodynamic state of a material; the density ρ, pressure P , internal energy U , and
temperature T all jump to new values behind the shock front. Although the detailed time-resolved behavior
of a shock wave is complex, the Hugoniot state itself is a state in thermodynamic equilibrium with well-
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Figure 3: One-dimensional spatial profiles of the propagating shock, with piston velocity of 10 km/s, in
0.3 g/cc PMP foam after 4.5 ps (solid) and 5.5 ps (dashed).
defined thermodynamic properties. We have used two methods to determine the shocked state.

In all DFT simulations, the principal Hugoniot curve is mapped by applying the hydrostatic Rankine-
Hugoniot equation

(U − U0) =
1
2
(P + P0)(V0 − V ), (4)

which is valid for a solid when the applied stress greatly exceeds the yield stress [54]. It relates the final
thermodynamic state variables far behind a planar shock wave for a given set of initial thermodynamic state
variables. These thermodynamic variables are the initial and final internal energies U0 and U , respectively;
the pressures P0 and P ; and, the volumes V0 and V .

The DFT Hugoniot points were found using an iterative compression procedure beginning from an equili-
brated initial reference state. To determine each Hugoniot state point, the system was instantaneously com-
pressed isotropically and allowed to equilibrate. The ionic- and electronic temperatures are then ramped
at a rate of between 0.3-1.0 K/fs, depending on the temperature range, until the sampled thermodynamic
variables satisfied Eq. 4. To verify these ramped-temperature Hugoniot points, several densities were simu-
lated for long times (tens of ps) in the NV T ensemble, at temperatures just above and below the Hugoniot
temperature allowing the Hugoniot pressure to be interpolated.

Classical MD Hugoniot points were produced using a modification of the constant stress uniaxial Hugo-
niostat (NPzzHug) method of Ravelo et al. [55], replacing their integral feedback (Nose-Hoover dynamics)
with linear feedback (Berendsen dynamics), in order to avoid oscillatary transients. The relaxation time
constants were set to 200 ps for the non-reactive potentials and 20 ps for the reactive potentials. Simulation
durations varied depending on the potentials (ranging from 200 ps to 2 ns), and were selected to guarantee
that steady final strains and internal energies had reached the values predicted by Eq. 4.

For the foam systems shock waves were driven by moving a warm momentum mirror into the sample,

13



using nonequilibrium molecular dynamics (NEMD). The sample was initially thermalized at 300 K and had
periodic boundary conditions in the directions transverse to the shock propagation. The free surface opposite
the piston was frozen to prevent surface relaxation. The simulation duration depended on the speed of shock
propagation, but was typically on the order of tens of picoseconds. Simulations were run on 800 processors
of Sandia’s Red Sky supercomputer for four days per Hugoniot point. The shock strength was controlled
by setting the piston velocity, which was held constant throughout the simulations. Piston velocities ranged
from 10 km/s to 30 km/s. These velocities produced pressures ranging from tens to hundreds of GPa. All
observables were calculated by averaging per-atom quantities over 1 Å wide bands perpendicular to the
propagation direction.

Since the modeling methods required slightly different procedures for MD versus DFT calculations, we
verified that the results were not overly sensitive to these differences. For example, for the exp-6 potential
at target pressures of 40 GPa for PMP, we found that using the DFT procedure (i.e. a single compression
stage followed by a temperature ramp) applied to the MD system gave Hugoniot pressures within 1.5% of
the result of the Hugoniostat procedure.

All MD simulations were run with the LAMMPS parallel molecular dynamics code [1,24]. The numerical
integration was performed using the velocity Verlet algorithm with a time step of 0.025 fs. Even at the
highest temperatures, our 0.025 fs was sufficiently small. Select simulations, which were rerun with a 5
times smaller timestep, showed identical results.

1.4 Results in dense polymer

In traditional flyer plate impact experiments, the pressure and density can be straightforwardly deduced
from measurements of shock transit times and/or direct shock speeds in combination with shock impedance
matching using a known standard [36]. Measuring the temperature, on the other hand, remains a sizeable ex-
perimental challenge. In simulations, thermodynamic variables like temperature, internal energy, pressure,
and specific heat are readily accessible. While the calculated pressure/density relationship of the principal
Hugoniot can be directly compared to experiments, the resulting calculated shock temperatures are used to
better understand the final state as well as develop equation of state models. The chemical composition of
the material is also accessible from simulations, providing additional information about phase transitions
and chemical changes taking place under shock conditions.

1.4.1 Shock Hugoniot

The main focus of this work is a detailed comparison of calculated shock pressure with existing experimen-
tal data and predictions for multi Mbar shocks. As stated in the introduction, DFT has demonstrated high
fidelity for shock compression of many elements and compounds, for example deuterium [3], carbon [4],
quartz [36], water [56], and liquid xenon [57]. However, it was not clear, a priori whether one could ex-
pect similar agreement between simulation and experiment for polymer systems. Complications might have
arisen from long relaxation times, or from polymers systems’ significant van der Waals force contributions
which often dominate over covalent bond forces.

Polyethylene (PE)
The experimental data presented for shocked polyethylene (PE) in Fig. 4 is taken from the LASL shock

handbook [18]. The data is for samples with an initial average density of 0.916 g/cm3. The later high-
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pressure experiments [14] were performed on samples with a higher initial average density (0.952 g/cm3).
Although a small difference, we adjusted for it in Fig. 4 by scaling the shock handbook data to the nominal
density of semi-crystalline PE (0.955 g/cm3) as follows: ρ

� = ρ0us/(us − up) and P = ρ0usup, where
ρ0 is the new reference density and us (shock velocity) and up(particle velocity) are the experimental data
in reference [18]. Likewise, the theoretical results of reference [5] are scaled to the nominal density of
semi-crystalline PE.
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Figure 4: Hugoniot for polyethylene in US-UP (top) and P-ρ (bottom). Experiments: shock handbook [18]
scaled to 0.955 g/cm3 (black filled circles) and Nellis et.al. [14] (blue filled triangle up). Simulations:
AIREBO (gray square), OPLS (purple filled triangle down), exp-6 (magenta circle), ReaxFF (brown dia-
mond), tight-binding [5] (pink triangles), DFT-AM05 temperature-ramp (red filled square), and DFT-AM05
steady-state (green filled diamond).

Our PE Hugoniot results, (see Fig. 4) demonstrate that for shocks above 50 GPa, which leads to a final
state density of ∼ 1.9 g/cm3, only DFT predicts mechanical response in close agreement with experimental
data. In this regime, both the ramped and steady-state techniques discussed earlier show good agreement,
while at lower pressures, the steady-state DFT method is in better agreement with experiment. As a general
rule, the classical potentials provide too stiff of a response at high pressures. At lower pressures, closer to
ambient conditions where they are parametrized, the model potentials become more quantitatively accurate.
Below 30 GPa, a density of 1.7 g/cm3, ReaxFF deviates from DFT and experiment by less than 10%. Be-
low 15 GPa, a density of 1.3 g/cm3, the exp-6 potential gives reasonably good agreement. The OPLS and
AIREBO potentials are decidedly too stiff, they do not offer accurate predictions for the mechanical loading
at pressures significantly above a few GPa. Results from tight-binding calculations [5] are also shown in
Fig. 4, demonstrating the long-standing challenge to predict properties for matter under shock compression.
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Poly(4-methyl-1-pentene) (PMP)
Our PMP Hugoniot results (see Fig. 5) demonstrate that the DFT simulations are in excellent agreement

with experimental data, effectively capturing even the subtle curvature in US-UP. As before, the ReaxFF
potential is the most accurate classical potential, followed by the exp-6 potential. These are quantitatively ac-
curate to within 10% at experimental pressures of 30 GPa and 15 GPa, respectively. The OPLS and AIREBO
potentials have too stiff of a response in both hydrocarbon polymers even for very weak shocks. Since the
OPLS potential does very well in describing normal and branched alkanes at ambient pressures [58], this
result suggest that the LJ 12-6 is in general too stiff [59] to model shocks; softer potentials such as the exp-6
appear to be more appropriate.
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Figure 5: Hugoniot for poly(4-methyl-1-pentene) in US-UP (top) and P-ρ (bottom). Experiment: shock
handbook [18] (black filled circle). Simulations: AIREBO (gray square), OPLS (purple filled triangle
down), exp-6 (magenta circle), ReaxFF (brown diamond), DFT-AM05 geometry 1 (red filled square), and
DFT-AM05 geometry 2 (blue filled triangle up).

The temperature of the shocked state is important in determining the phase, rates of chemical reactions in
the shock front, final equilibrium chemical composition, and transport properties like thermal- and electrical
conductivity; it is therefore important to model and analyze also the shock temperature. The Hugoniot state
can be viewed in the pressure-temperature plane, shown in Fig. 6. Although the stiffness of the Hugoniot in
the pressure-density plane (Fig. 4) is also manifest in temperature-density (Fig. 7), the P-T plot reveals that
pressure and temperature, with minor exceptions, follow each other closely.

A shock to a certain compression/density reaches a higher temperature and pressure when modeled in
AIREBO or ReaxFF than it does in DFT. A shock to a certain pressure, on the other hand, will display
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similar temperature in DFT and the model potentials, but for strong shocks result in different compressions
of the final state.
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Figure 6: Calculated temperatures as a function of pressure along the polyethylene principal Hugoniot.
AIREBO (gray square), OPLS (purple filled triangle down), exp-6 (magenta circle), ReaxFF (brown di-
amond), DFT-AM05 temperature-ramp (red filled square), and DFT-AM05 steady-state (green filled dia-
mond).

In Fig. 7, the calculated temperature along the Hugoniot is shown for polyethylene. The overall behavior
of the shock temperature when comparing the different methods is analogous to that of the pressure. A
particular shortcoming of classical potentials as well as ground-state/zero-Kelvin type DFT simulations is
the lack of treatment of the effect of temperature on the electronic ground state, which results in a too stiff
shock Hugoniot [60]. Since the DFT results for pressure are in agreement with experiments, we will in the
following discussion compare the temperatures in the model potential simulations to those from DFT.

AIREBO yields too high temperature compared to the DFT results already for weak shocks, and the de-
viation grows rapidly with shock strength. The large discrepancy in temperature is particularly problematic
for AIREBO since chemical reactivity depends sensitively on the temperature. If the DFT simulations of
temperature are of high fidelity, it appears difficult to draw conclusions regarding chemical reactivity under
shock conditions from simulations employing AIREBO.

ReaxFF, the second reactive potential investigated, instead shows behavior for compressions smaller than
50% (densities below 1.5 g/cm3) that agree with DFT. For compressions beyond that, also ReaxFF yields
a higher shock temperature than DFT does. As discussed in the next section, these differences occur well
below the threshold of dissociation, suggesting that ReaxFF could display significant uncertainties in pre-
dictions of chemical reactions resulting from stronger shocks.

Of the non-reactive potentials, exp-6 of Borodin et al. behaves well for shock compression below 1.5
g/cm3 while the temperature raises rapidly compared to the DFT result for stronger shocks. The OPLS
potential exhibits a rapid increase in shock temperature beginning already at 30% compression.

The DFT results show an interesting behavior at 21

2
-fold compression (2.4 g/cm3) where the temperature

rise is suppressed. The feature is more pronounced in temperature than it is in pressure and US-UP, although
it is visible in the upper panel of Fig. 4 as a change in curvature at UP = 10 km/s. The reason is the gradual
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Figure 7: Calculated temperatures as a function of density along the polyethylene principal Hugoniot (top)
and relative to the DFT-AM05 temperature (bottom). AIREBO (gray square), OPLS (purple filled triangle
down), exp-6 (magenta circle), ReaxFF (brown diamond), DFT-AM05 temperature-ramp (red filled square),
and DFT-AM05 steady-state (green filled diamond).
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transition into the dissociated/atomic regime; the temperature increases rapidly again after dissociation is
complete. The transition occurs at pressures greater than those of existing gas-gun experiments but is within
the pressure range of laser- or magnetically launched flyer plate driven experiments. We expect this range
of shock compression to be investigated experimentally in the future.

1.4.2 Chemical structure/dissociation

Shock induced dissociation is one of the aspects driving the transition into a dense plasma and is of partic-
ular interest due to the many changes associated with it. Although the ambient state of most polymers are
electrical insulators, the dense dissociated state is conducting. This leads to substantial changes in thermo-
physical properties like specific heat and thermal conductivity. From a computational perspective, the onset
of dissociation determines the range of applicability for non-reactive potentials like the Borodin exp-6 and
OPLS.
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Figure 8: Average fraction of carbon atoms bound in the back-bone in the DFT-AM05 simulations as a
function of density along the Hugoniot. When there are two points at the same density, they are for two
different temperatures bracketing the Hugoniot state. The error bars are one standard deviation. The cutoff
distances used to define bonded atoms were 1.9 Å for C-C, 1.3 Å for C-H, and 0.8 Å for H-H. Results are
shown for two cutoff times: 20 fs (large blue circle) and 50 fs (small red circle).

We analyzed the DFT simulations for bond-breaking by recording all neighbors within a cut-off distance
of an atom and counting a bond as permanent/steady if it lasted longer than a cutoff time. Although the exact
recorded chemical composition depend on the cutoff distances and time [38], the estimation of the density
where significant dissociation occurs is not sensitive to the choice of cutoff parameters.

Fig. 8 shows the structural integrity of polyethylene along the Hugoniot as measured by the fraction of
carbon atoms in a linear chain. Carbons in the chain will have two C and two H neighbors, except for the
end atoms which will have one C and three H neighbors. The initial polyethylene strands are C16H34, hence
the initial fraction of back-bone carbon atoms is 14/16 or 87.5 %. The polymer back-bone is no longer
intact when the ratio is reduced from that value, so by monitoring how the ratio changes, it is possible to
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follow the structural disintegration of the polymer.
In the timescale accessible to the DFT simulations, there is no appreciable dissociation below 1.8 g/cm3

and no signature of a carbon back-bone remaining above 2.5 g/cm3. The region of partial dissociation (2.2
- 2.4 g/cm3) corresponds directly to the plateau in temperature along the pressure Hugoniot shown in Fig. 7
and the inflection in the US-UP relation of Fig. 4.

Under compression, the linear chains break up and structures of carbon atoms with three or more carbon
neighbors begin to emerge. An example of that is shown in Fig. 9, where the character of carbon atoms at
2.2 g/cm3 and 3100 K is plotted as a function of time. At even higher compression, H2 molecules begin to
form and carbon-carbon coordination becomes more pronounced.
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Figure 9: Distribution of carbon as a function of time in the DFT-AM05 simulation at 2.2 g/cm3 along
the Hugoniot at 3100 K presented as sliding averages over 10 fs intervals. Carbon in the back-bone (red
line +), carbon at the end of a strand (green line ∗), and carbon with three carbon neighbors (blue line ♦).
The dashed lines show the fractions of perfects chains with 87.5 % of carbon atoms in the back bone (red
dashed triangle up) and 12.5 % at the end of a strand (green dashed square). The backbone fraction has been
reduced to 45% while 24% is bonded to three other carbons; the fraction of carbon atoms at the end of a
strand fluctuates above the initial value. The composition changes over the first 3 ps as the system reaches
equilibrium. During the last 3 ps, the count of backbone carbon atoms shows no trend, suggesting that the
system can reach equilibrium over the timescale accessible in the first-principles simulations.

1.5 Results in polymer foam

Our nonequilibrium molecular dynamics (NEMD) simulations were limited in duration because our samples
were relatively small. Thus, total shock propagation times were limited to tens of picoseconds. It is not clear
whether the shock profiles have reached true steady state profiles, in the sense required by the Hugoniot-
Rankine equations. However, we do observe profiles, such as those presented in Figure 3 which are spatially
homogeneous behind the shock front. This allows us to compute average values for the thermodynamic
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variables, such as uniaxial pressure, density, temperature, etc.
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Figure 10: Hugoniot response of PMP foam, showing shock velocity, US, vs particle velocity, UP. Results
of experiment, continuum and MD simulation are plotted together.

1.5.1 Shock Hugoniot

Figure 10 shows the Hugoniot response in shock velocity, US, versus particle velocity, UP, space. For com-
parison, we include both experimental and hydrocode simulation results which will be thoroughly reported
elsewhere [19, 20]. As seen in Figure 10 we find good quantitative agreement with both experiment and the
hydrocode results in the range of piston velocities explored.

Figure 11 shows the Hugoniot response in uniaxial pressure, PZZ, versus density, ρ, space. MD results are
plotted along with both experimental and hydrocode simulation results. Here we find good agreement with
the hydrocode simulations, but the experimental results demonstrate significantly more spread in the final
shock density of the foam. This is almost certainly due to significant variation in the initial foam ambient
densities both between samples, and even within individual samples. The foam’s final shocked density and
pressure are both affected by this variation in initial density. In contrast the foams produced for simulation
are uniform on the nanometer scale, and densities are precisely known. The MD results run through the
center of the spread in experimental values.

1.5.2 Shock temperature and void collapse

Showing good agreement with experimentally observable quantities gives us confidence in using MD to
explore quantities which are not easily measured experimentally. Primary among these, is the local temper-
ature of the samples. In Figure 3 we show a profile of the temperature at two simulation times. In Figure 12
we show the average final shock temperature behind the shock front for several shock pressures and for two
different initial foam densities. Temperatures are much higher than for comparable shock pressures in dense

21



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
density (g/cc)

0

20

40

60

80

100

120

140

160

180

200

220

240

260

P ZZ
 (G

Pa
)

Z exp. 0.31 +/- 0.025 g/cc
MD simulation 0.300 g/cc
Continuum Alegra 0.300 g/cc

Figure 11: Hugoniot response of PMP foam, showing uniaxial pressure, Pzz, vs density, ρ. Results of
experiment, continuum and MD simulation are plotted together.
polymer. In fact, the introduction of voids causes an order-of-magnitude increase in shock temperatures.

Our measured temperatures are high enough that one should begin to question whether molecular dynam-
ics can properly model the physics – which is likely to increasingly depend on the electronic degrees of
freedom. At 100,000 K, for instance, one would expect that nearly every atom would be ionized to form a
plasma. At that temperature, clearly MD would not capture the important physics. It is reasonable to assume
that MD results much above 50,000 K would be suspect.

Unlike in the dense polymer case, we see significant dissociation of the PMP polymer in shocked foams.
The lower image in Figure 1 shows the vaporized atoms which are blown out as ejecta as the shock propa-
gates through each void. These ejecta can travel faster than the shock speed, and therefore can blur the front
for cases where the void spaces are contiguous. In the dense polymer we observed dissociation only above
180 GPA, but in foams, it is observed at our lowest pressures, approximately 50 GPa. This dissociation
produced by local heating and hot spot formation is an area that we plan to pursue further.

1.6 Conclusions

We have simulated the behavior under shock compression for two polymers using DFT based molecular
dynamics with the AM05 density functional and four different classical force-fields. We conclude that the
response to weak shocks in both PE and PMP are well described by the exp-6 of Borodin et al. and ReaxFF
force-fields, with the latter being valid over a larger range in density and pressure. OPLS and AIREBO both
yield significantly too high pressure along the Hugoniot already for weak shocks. For strong shocks, only
the DFT based simulations are of high fidelity when compared to existing experimental data up to 80 GPa.
Based on the first-principles simulations, we predict a feature in the polyethylene Hugoniot at UP = 10 km/s
due to gradual dissociation between 2.2 and 2.5 g/cm3.

It is notable that all of the classical model potentials tested begin deviating from the DFT simulations
at significantly lower densities, pressures, and temperatures than those required for bonds to break. This
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Figure 12: Plot of average temperature vs average uniaxial pressure, Pzz , of states behind the shock for two
PMP foam densities.
finding carries implications for future development of force-fields, both reactive and non-reactive. Non-
reactive force fields for hydrocarbons have a potential maximum range of validity in shock applications
of 1.8 g/cm3, but an improved fidelity for high density will require changes in the non-bonded interaction
parameterization. The behavior of AIREBO is incorrect when compared to experimental data for pressure at
20% compression, 1.2 g/cm3, a region where no dissociation occurs in the DFT simulations, implying that
significant revisions are necessary for the potential to be useful for shock problems. ReaxFF has a longer
range of validity when compared to experimental pressure data for both PE and PMP, but the temperature
difference to DFT above 1.9 g/cm3 is a point of concern for shock applications.

Further, we have used NEMD to study the shock propagation and material response of polymer foams.
Building on the findings of previously published work in dense polymers, we have shown that molecular
dynamics, using the ReaxFF interaction, can quantitatively capture the Hugoniot response in hydrocarbon
foam. Moreover, MD allows us to explore aspects which are elusive in experimental studies, such as the
measurement of local temperatures and the formation of hot spots around voids. We see qualitatively differ-
ent response in foams, most notably in the pressures at which polymers dissociate.

We expect that the results outlined throughout this paper will provide guidance when it comes to select-
ing interaction potentials for work employing classical molecular dynamics simulations to study shocks in
organic materials in general and hydrocarbon polymers in particular.
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2 Dynamic compression of silicon and germanium

Principal Authors: J. Matthew D. Lane and Aidan P. Thompson
This section contains a paper that appeared in the Proceedings of the Conference of the American Physical

Society Group on Shock Compression of Condensed Matter, held in Nashville, Tennessee June 28-July 3,
2009. It was authored by J. Matthew D. Lane and Aidan P. Thompson and published in AIP Conference
Proceedings 1195, p. 1157 (2009). [SAND 2009-5082 C]

Abstract

Results from shock-wave loading of Germanium are presented. Germanium is known to transition
from ambient cubic diamond (cd) phase to the high-pressure body-centered tetragonal (bct) or β-tin
phase at pressures between 10 and 12 GPa. Large-scale molecular dynamics (MD) simulations were
used to study the phase transition in single-crystal Germanium under uniaxial compression along the
�001� and �111� orientations. We observed that the transition from the cd phase to the bct phase nu-
cleates through shear banding and advances to relieve uniaxial strain. The macroscopic properties are
compared with experimental results for both the Modified Embedded Atom Method (MEAM) and Ter-
soff potentials.

2.1 Introduction and methods

Germanium is an elemental semiconductor which shares many properties with silicon. Both elements
form a cubic diamond (cd) phase at low pressures and temperatures. At higher pressures, both elements
transition to a body-centered tetragonal structure (bct). Below 20 GPa, both cd and bct transition to liquid
at higher temperatures [61]. This phase similarity makes germanium a good surrogate for studying the
properties of the much more technologically significant silicon. Since germanium exhibits each transition
at lower pressure and temperature than silicon, its transitions to be studied experimentally with less intense
shock pressures. For laser ablation studies this means high-quality 1D studies of the transitions can be
accomplished without significant pre-heating or petawatt laser intensities.

Figure 13: The energy profiles for MEAM (left) and Tersoff (right) potentials plotted as a function of the
lattice ratio c/a and the unit-cell volume V . The two local minima in each plot are the low-density cd phase
and the high-density bct phase.

Classical MD simulations were run in the publicly-available LAMMPS [24] code. Two potentials, Ter-
soff [62] and the Modified Embedded Atom Method [63] (MEAM), were used independently to model the
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Figure 14: Image of the partial transition of Tersoff germanium. Atoms are colored by coordination number
such that the cd phase (coord #≤ 6) are gray and the bct phase (coord # > 6) are red. Transverse dimensions
were 10 nm. Inset shows rotated detail of lattice planes of transformed bct phase.
germanium interactions. The Tersoff potential uses a two-body term and explicit three-body angle terms
to model covalent bonding. MEAM is a more general potential which has been parameterized for many
elements and alloys. MEAM uses a two-body term as well as an environment dependent term constructed
from the effective electron densities of local atoms. The Tersoff potential is less computationally expensive,
however, it was initially unclear whether it would be capable of capturing the high-density phase transition.
The parameters and cutoffs for both potentials were taken from work cited.

In Figure 13 we plot the energy contour profile for germanium as a function of the ratio of the tetragonal
crystal dimensions c/a and the volume V of the the unit cell. As discussed in Ref. [64], the cd structure
is a high-symmetry special case of the tetragonal structure making it is possible to move continuously in
these variables from the cd to the bct structure. For cd the c/a ratio is

√
2. Figure 13 shows the contours

for both the MEAM and Tersoff potentials. Both potentials exhibit the ambient low-density (cd) and high-
density (bct) states as local minima, with good agreement near ambient. For high-density (bct) state, the two
potentials predict slightly different c/a ratios and have differing energy contours.

The pressure-induced transition was explored by measuring the cd and bct enthalpies as a function of
pressure for each potential during isothermal (NPT ensemble) compression from 0 to 20 GPa. Both po-
tentials demonstrated a crossing of the cd and bct enthalpies very near 12 GPa, in good agreement with
experiment [61]. The enthalpy crossing determination of the transition pressure does not require an actual
structural transition between the states. Therefore, the transition was further confirmed by demonstrating
the transition by uniaxial compression along the c axis for both potentials.

The coordination number with cutoff 3.55 Å was used to clearly distinguish between the phases. The cd
phase has 4 neighbors within this cutoff, while bct has 10. This criterion was demonstrated to be robust even
at high temperature and pressure.

Shock waves were produced by striking single crystal germanium with a warm piston along either the
�001� and �111� directions. Orientation did not alter the qualitative response, so we report results only for
the �001� direction. The sample was initially thermalized at 300 K and had periodic boundary conditions in
the directions transverse to the shock propagation. The ambient density was 5.3 g/cc and the ambient unit
cell had dimensions 0.4 × 0.4 × 0.27 nm3. The transverse dimensions were either 10 nm, 20 nm or 40 nm
square. The system was approximately 200 nm long in the propagation direction initially, but grew as large
as 0.8 µm as the simulation continued. In order to allow for this system growth, the free surface opposite
the piston was frozen to prevent surface relaxation. Whenever the shock front came within 25 nm of this
surface a 1 nm slab of lattice-matched material was added so that the shock front could continue to run. A
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20 nm region of pristine material ahead of the shock front was kept at 300 K with a Langevin thermostat.
This method was described in principle in prior work. [65]

2.2 Results and discussion

We explored shock strengths just above onset of the solid-solid phase transition in germanium. Piston
velocities ranged from 0.9 to 1.0 km/s. Figure 14 shows the typical qualitative response of the system. The
piston drives an initial elastic shock into the cd crystal which is compressed uniaxially. As the elastic front
propagates, stacking faults nucleate in the elastically compressed material. In the image above, these planar
faults begin at the piston face and nucleate a shear induced phase transition which runs forward at an angle
– advancing through the system as a shear wave. Competition between several planes results in a single
propagating plane which wraps around the periodic boundary conditions of the simulation cell. The image
shows the planar phase transitioned bct crystal in red, interspersed with compressed cd crystal in gray. The
bct region does not grow with time after the shear wave passes. The transformed material is a single crystal
bct structure through the sample rotated by 30 degrees from the propagation direction, with compressed and
rotated cd phase in between (see Figure 14 inset). This qualitative shear band response is unlike the familiar
planar transitions seen in previous literature. [66]

Figure 15: (Top) The shock density profiles showing elastic, transition and relaxation fronts all moving to
the right. Each profile is 20 ps separated in time and each shifted upward by 0.1 g/cc on the density scale
for clarity. (Bottom) The same simulation presented in x − t form showing the fronts and clearly showing
the nucleation delay of the transition. Transverse dimensions were 10 nm.
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A two wave response can been clearly seen in which an elastic precursor leads a second partial-transition
front. Figure 15 (top) shows the density profile as the shock travels through the material. The shear induced
cd-bct transition produces further compression and an associated relaxation wave which travels forward
toward the elastic front. Figure 15 (bottom) shows the propagation of the elastic wave, the transition wave,
and the relaxation wave in an x− t plot. The system boundary is also plotted to demonstrate that the system
is growing to accommodate the travelling wave. Note that the wave traverses nearly a micron of material
in the simulation. Finally, it should be noted that this system did not reach the steady state necessary to
compare quantitatively to experimental Hugoniot pressures. Steady state would be reached once the elastic
wave front was overtaken by the relaxation wave.

Figure 16 shows the stress state of the system after the phase transition. The mean pressure, P̄ in the elas-
tically compressed state was approximately 25 GPa. P̄ was not significantly relaxed by the phase transition
(see Fig 16A). The uniaxial pressure, Pzz , however, is significantly lower within the bct transformed state.
Clearly the transition, while not significantly reducing the overall stress state, distributes the stress and strain
to the transverse directions. This is most clearly illustrated in the bottom image of the shear stress in the
material, τ = Pzz − (Pxx + Pyy)/2. The shear stress in the elastically compressed state was approximately
12 GPa. τ dropped to nearly zero in the bct phase and to approximately 5 GPa in the remaining cd material.
It is hypothesized that the shear stress is the driver for the cd to bct transition in the shocked material. There-
fore, the near-total shear stress relaxation explains arrest of the transition and the partial transformation to
the bct phase.

A

B

C

Figure 16: The (A) mean pressure P̄ , (B) uniaxial pressure Pzz and (C) the shear stress τ = Pzz − (Pxx +
Pyy)/2. Pressure ranges from white, yellow, orange, red, purple, blue to black from 0 GPa to 35 GPa.
Transverse dimensions were 10 nm.

System size effects are clearly important to the analysis presented. Because the transition propagates
along shear planes which are not oriented along the simulation box, the forward moving transition front
wraps around the simulation box and thus a single planar disturbance creates a periodic response. Since
general statements about the response must be independent of system size, systems with larger transverse
dimensions were studied.

Figure 17 shows the bct phase produced by an identical shock in a system which is twice as large in each
of the transverse dimensions. Several important features are immediately apparent. First, that the number
of transition nucleation sites grows with the system size, as expected. Second, that the thickness of the bct
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Figure 17: Shock-induced cd-bct transition in Tersoff germanium. Only the bct phase is imaged. Multi-
ple planes of transformed material, emanating from multiple nucleation points interact in larger systems.
Transverse dimensions were 20 nm.
phase grows with system size. That is, the systems with twice the transverse dimensions has nearly twice the
volume of transformed material per unit propagation. Third, the longitudinal distance separating consecutive
sections of a single shear-band increases as the transverse dimension. Finally, multiple transition nucleation
points produce multiple planes of bct material which interact as they propagate through the system.

The interaction rules between the several propagating bct transition planes are not completely clear. In
some cases, opposing planes compete with one another and one plane arrests. In other cases two planes ap-
pear to coexist and move forward entangling. This leads to the conclusion that although each shear-induced
transition plane has a characteristic length which is tied to the system-size, there is likely a characteristic
lengthscale which is dictated by the nucleation frequency (i.e dislocation density) and the interaction dy-
namics of the transition planes. So long as the system size is larger than this characteristic length, then the
results will be independent of system size. This hypothesis has not yet been tested.

2.3 Conclusion

We observe the solid-solid phase transition in Germanium from cubic diamond to a body-centered tetragonal
structure at an appropriate pressure range for both the MEAM and Tersoff potentials. The transition in the
�001� direction is notable as it propagates in shear bands which appear to nucleate from sheared stacking
faults. The transition is partial and leaves untransformed cd phase material behind. Large-scale simulations
is underway to allow direct comparison with experiment.
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3 Laser-driven dynamic melting of silicon

Principal Authors: Todd Ditmire and Hernan Quevedo
This chapter consists of a report documenting experimental work performed in the High Intensity Laser

Science Group at the University of Texas at Austin. The work was funded in part by this LDRD project
with the goal of developing femtosecond resolution experimental measurements for validating molecular
dynamics simulation of shock melting. The report was authored by Todd Ditmire and Hernan Quevedo.

Abstract

The work presented here aims to use circularly polarized third harmonic generation probing to in-
vestigate shock-induced phase transitions in silicon and germanium. Results show that the non-linear
probing might suggest a phase change while linear reflectivity can present no change or a metallic state
response.

3.1 Introduction

Non-linear optical probing has become a very powerful technique for diagnosing the crystalline structure of
materials. Initial measurements used second-harmonic generation (SHG) to study semiconductors such as Si
and GaAs that are good sources of non-linear light [67,68] These studies lead to time-resolved measurements
of laser-induced melting in such materials, with time scales of hundreds of femtoseconds for such events
[69]. More recently third-harmonic generation (THG) has been used to study crystalline structure and phase
transitions [70]. This is particularly important in centrosymmetric crystals like silicon where SHG in the
bulk has a very small contribution. In addition, the use of circular polarized light for THG proved to be
very sensitive to laser-induced melting [71] . In this case, the material becomes amorphous and isotropic
and THG from the crystal bulk drops becoming negligible since the light angular momentum can no longer
be conserved. Experiments conducted in Si and GaAs showed this behavior when melted using intensities
>300 mJ/cm2 with 40 fs pulses at 800 nm [72]. The transition to a melted state occurred in a ∼350 fs time
scale, 20% faster than the increase in linear reflectivity as a result of a transition to a metallic state of the
sample when electrons were promoted to the conduction band. These experiments heated and probed the
same surface of the sample.

The work presented here aims to use circularly polarized THG probing to investigate shock-induced
phase transitions. In particular, we measured the temporal behavior of the crystalline structure of silicon
as it was shocked at pressures of 100s of kbars. To perform these time-resolved studies, a pump beam
is focused onto an ablator coating on the front surface of the material under study. The coating ablates,
expands backwards in the direction of the beam and sends a shock wave through the material. This shock
compresses and heats the material to states predicted by the Hugoniot equations. When the shock arrives
at the rear surface of the material, a highly synchronized time delayed laser beam probes the crystalline
structure. Previous results showed a decrease in the THG before the shock arrival to the rear surface,
implying some kind of disordering [73]. However, the pressures used were significantly lower than what
was expected to melt the material. Figure 18 shows the P -T phase diagram of silicon and germanium that
present similar phases [74, 75]. Shocking from room temperature and atmospheric pressure to above 120
kbar, transitions both materials from the diamond or gray tin phase to the β-tin or white tin phase. To
shock melt the materials at pressures achievable by our laser system, <300 kbar, some sort of pre heating is
required. A higher initial temperature close to the melting point at atmospheric pressure lowers the shock
pressure required to melt the material. In this regard, we present in Appendix the development of a resistive
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heater to preheat samples close to these conditions. Germanium is preferable to silicon because of its lower
melting point however the fabrication of targets is considerably more difficult.

Figure 18: P -T phase diagram of silicon (left) from Tsujino (2008) [75] and germanium (right) modified
from McQueen (1964) [74]. The red line indicates the Hugoniot with initial conditions at STP, whereas the
green line indicates a potential Hugoniot with an elevated initial temperature.

A shocked material increases its temperature upon compression as shown in Figure 18. This rise in
temperature is accompanied by light emission in the form of blackbody radiation. As the temperature
increases, the radiation becomes stronger and the peak emission occurs at a frequency given by Wien’s
Displacement law. When shocking at ∼1.5 Mbar, a temperature around ∼1 eV can be attained [76] and the
radiation is strongest near 250 nm similar to the THG frequency of our experiment. Part of this emission
will still be present when we shock at an order of magnitude lower pressure. Since we do not have an
apparatus to separate the nanosecond contribution from the blackbody emission and the weak femtosecond
THG generation, special care needs to be taken to minimize the blackbody collection and maximize the
amount of probe light used.

3.2 Experimental setup

This series of experiments were performed at the University of Texas using the THOR laser. THOR is a 800
nm Ti:sapphire laser that uses chirped pulsed amplification (CPA) technique. The maximum output energy
is ∼1 J and it can be recompressed to 35 fs with a contrast of >105. For these time-resolved studies the
beam was split in two: the pump and the probe. The pump beam drove the shock in the material using 0.55
J of energy and remained stretched to ∼550 ps FWHM pulse duration. The probe beam sampled the shock
breakout and used ∼2 mJ of energy while compressed to 40 fs. Figure 19 shows the experimental layout
after the main beam was split. The pump beam passed through a delay leg to compensate for the travel time
of the probe beam inside the compressor. The pump beam was focused down by an f/20 lens to a focal spot
of tens of microns at the target to generate laser intensities of 1013 − 2 × 1014 W/cm2. The target resided
in a vacuum chamber at ∼10 mTorr. The probe beam left the compressor through a vacuum window; it
was down collimated to ∼1 inch diameter and traveled in air to a ∼600 mm delay stage. The stage allowed
delaying the probe with respect to the pump to sample the history of the shock breakout at the rear side of
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the target for ∼4ns.

Figure 19: Experimental layout.
The probe beam was split in two after the delay stage, one part formed a 2D Mach-Zehnder interferom-

eter at oblique incidence and the other one was used for reflectivity and THG at normal incidence. The
interferometer was used to determine the target particle velocity and shock pressure by taking multiple 2D
snapshots of the shock breakout at different temporal delays and calculating the back surface displacement
d as given by

d =
λφ(x, y)
4π cos θ

(5)

where θ is the probe angle of incidence, λ is the laser wavelength and φ(x, y) is the unwrapped 2D phase
shift from the interferograms. The target arm of the interferometer was sent to the rear side of the target
at θ = 59.5 ± 0.5 degrees and contained a telescope to image the small region of the shock breakout onto
a regular CCD camera. The reference arm remained in air and contained the same imaging properties.
As a result of the long f/# of the collection optic, this diagnostics might not be suitable for reflectivity
measurements since light can be reflected out of the optic at breakout. This diagnostics also allowed the
positioning of the target with ∼1 µm accuracy as a result of the short pulse coherence distance.

THG and linear reflectivity were used to study the crystalline structure and electronic response of the
shocked material respectively. The third harmonic polarization source P(ω) for materials like silicon and
germanium is given by [68]

P
NL

i (3ω) = 3χ
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xxyyEi(E ·E) +
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�
E

3
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where E is the incident electric field at the fundamental frequency and χ
(3) is the third-order non-linear

optical susceptibility. When using circularly polarized light E = E0(x̂∓ iŷ), as done in our experiment, the
first term vanishes (E ·E = 0) and only the anisotropy term remains. For a cubic crystalline structure the
two susceptibility terms are different resulting in a non-zero contribution. On the contrary, for an isotropic
medium such as amorphous or melted silicon χ

(3)
xxxx = 3χ

(3)
xxyy, and the non-linear contribution for THG

vanishes. In the first case one 3ω circularly polarized photon is generated while three 1ω photons of the
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opposite polarization are annihilated with a total angular momentum change of 4�. This angular momentum
is taken by the (100) cubic lattice that has a four-fold symmetry and accepts changes in angular momentum
in units of 4�. Amorphous or melted states do not accept the angular momentum change and THG is not
allowed. This is a very powerful technique to determine if a material transitions to a melted state or even to
a different crystalline structure with the consequent change in χ

(3) and THG response.
Linear reflectivity is measured to study the electronic response of the material and to compare it with

THG. Reflectivity depends on the index of refraction of the material and in turn on the dielectric function

�(ω) = 1 + χinterband(ω) + χDrude(ω) (7)

where the second term represents the contribution from interbank transitions while the last term includes the
effect of free carriers using the Drude model for metals

χDrude(ω) = −
ω
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pτ

2

1 + ω2τ2
+ i

ω
2
pτ

ω(1 + ω2τ2)
(8)

with ωp being the plasma frequency dependent on the number density of carriers and τ the collisional time.
When the interband contribution dominates the dielectric function the material is referred to as cold. As
the material is heated and melted the Drude contribution dominates and for normal incidence a reflectivity
increase of 2.26 is expected compared to cold silicon [73].

The part of the probe beam used for THG and reflectivity was properly delayed to arrive at the target
rear surface simultaneously with the interferometer beam. After the delay stage, the beam passed through
a half waveplate-polarizer combination to adjust the energy to ∼2 µJ. The beam went through a 266-800
nm dichroic mirror that transmitted the 800 nm light that was circularly polarized afterwards using a quarter
waveplate. The beam entered the vacuum chamber afterwards and was focused down to a ∼5 µm radius
spot size where depending on the crystalline structure THG generation occurred. The fluence was set to
∼250 mJ/cm2 to minimize damage of the rear surface while probing. Both THG and linearly reflected 800
nm traveled back to the focusing lens where they were collimated and separated by the dichroic mirror. The
266 nm light was reflected into a photomultiplier tube (PMT) while the 800 nm light was converted back to
linear polarization and reflected off the cube polarizer into another PMT. A lens-iris combination before the
THG PMT imaged the rear surface of the target acting as a confocal laser scanning microscope to remove
as much as possible unwanted light at 266 nm.

We decided to use silicon and germanium as targets because of their crystalline structure and also they
are good sources of third harmonic generation (THG), which is the main diagnostic used to identify phase
changes from shocks. We have experience manufacturing and working with silicon targets while germanium
has the advantage of been already simulated with a molecular dynamics code developed at Sandia National
Laboratories. Germanium also presents a lower melting temperature making it easier to pre-heat for shock-
induced melting (∼400 ◦C compared to∼700 ◦C for silicon). We fabricated single crystal 20 µm thick [100]
silicon targets by etching SOI wafers (Figure 20 left). These targets were easily mounted by a ∼500 µm
thick handle layer (not etched portion of the wafer). The targets were coated with 100 nm aluminum or
copper as an ablation layer to absorb the laser energy for driving the shocks. The resulting surface was very
smooth as observed under the microscope (Figure 20 left inset). We originally used aluminum to compare
with previous experiments. However, it melts at 660 ◦C which is not suitable for pre-heating samples near
similar values. We also used copper as the ablation layer that melts at 1085 ◦C, much higher than the
required pre-heating temperatures. The surface quality was similar to the aluminum coating. The technique
used to make silicon targets could not be reproduced in germanium. Instead we purchased a 2 inch diameter
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400 µm thick [100] germanium wafer and had it ground down to 20 µm by Valley Design with a mirror
finish surface (Figure 20 right). The front surface was coated with copper as the ablator. The problem with
the grounding approach is handling a 20 µm thick brittle material without any handle layer. We tested this
method first in silicon by etching a full wafer that was cheaper than germanium grounding. The result was
a 20 µm layer of silicon that would curl and break in pieces a few cm2 that were still possible to handle
and sandwich in the target holder. Germanium during the removal process did not curl and broke in smaller
pieces ∼0.5 cm2 that were impossible to handle for shooting. For these reasons silicon targets were shot in
these experiments while a new technique for making germanium targets needs to be developed in the future.

Figure 20: Left: 20 µm thick [100] silicon targets with 100 nm aluminum coating. The inset shows the
smooth target surface under a 50× magnification. Right: 20 µm thick [100] germanium target ground down
from 2 inch diameter wafer.

3.3 Results

All three beams (pump, interferometer and TGH/reflectivity) in these experiments were timed up with an ac-
curacy of 20 ps by scattering at the target plane into a 818-BB-21 Newport fast photodiode with <300 ps rise
time. Initial shock tests revealed the importance of a good laser pulse contrast in this type of experiments.

Figure 21 left shows the pump beam temporal profile along with the interferometer image captured at
t = 0 (The probe delay is set to zero when the pump reaches peak intensity at the front surface). The
fringes in the interferogram present a significant shift and a dark spot that is a signature of less reflectivity
in the material or deflection of the light out of the long f/# collection optics. This amount of displacement
is the result of a ∼3.5 × 10−2 pedestal in the pump beam as shown in the trace before the main pulse. A
small misalignment of the seed beam in the regenerative amplifier allowed for extra amplified spontaneous
emission in the laser. Better alignment of the seed pulse resulted in no visible pedestal and an oscillation
that averaged to zero as Figure 21 right shows. The fringes present a slight shift associated to pre-expansion
attributed to the unavoidable pre-pulses and small pedestal or rising edge of the main pulse arrival.

Non-linear diagnostics and THG in particular were used before in laser melting experiments, but here
we were probing shocked materials which impose more restrictive conditions. The required shock spot
size was small; a few tens of microns, with the current laser system to achieve high pressure states and
phase transitions. Accordingly, the probe spot size had to be ∼10 microns and well centered with the pump
beam. Radiation either from the ablator or the shocked material was emitted at the same wavelength as
the THG so there was a minimum probe energy required for a reasonable signal to noise ratio. The THG
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Figure 21: Left: 3.5 × 10−2 pedestal before main pulse. Right: no pedestal observed at this resolution
(05/11/2010).
from such a small spot required a probe pulse as short as possible so the probe intensity and THG were
maximized. Increasing the probe fluence well beyond the damage threshold of silicon ∼130 mJ/cm2 would
create conditions where the probe can modify the material being sampled. It takes ∼300 fs to damage the
material, time that is much longer than the probe beam; however this time is reduced as the intensity is
increased beyond the damage threshold [69].

Since the probe beam compression was optimized in vacuum, going through the different materials in
this experiment such as windows, waveplates, filters, and lenses changed the time duration of the pulse.
Figure 22 shows a compression scan performed to maximize the intensity of the probe pulse generating the
third-harmonic at target. The laser energy was kept constant while the light was measured by the THG PMT
and reflectivity PMT. Each position corresponds to 10 probe beam pulses averaged on fresh, not previously
probed, silicon for each sample without shocking the material on the front surface. The 1ω signal remains
constant as it should since linear reflectivity does not depend on the pulse length. The 3ω signal reaches a
peak at around -0.8 mm that corresponds to a minimum pulse width at the target for a maximum intensity
and highest THG. As the distance departs from this position, the pulse width increases and the intensity and
THG drop.

Figure 22: Compression grating scan to maximize THG at target (08/15/2010).
Plasma emission and blackbody radiation limit the minimum amount of probe light that can be used for
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THG. The tests were performed shocking the material and reading the 3ω PMT while blocking the probe
beam. The chamber walls were covered with black foil and a black mask with a small aperture for probing
was used next to the rear side of the target to remove part of the spurious light. Figure 23 left shows one
test shot where a reference signal (ref) was recorded with the probe beam unblocked without shocking the
material and a shot signal (shot) was taken in the opposite configuration. The amount of spurious light
recorded in the shock was about half of the THG in the reference and appeared simultaneously. Increasing
the amount of probe light by an order of magnitude would exceed the damage threshold of silicon by the
same amount and the probe would most probably affect the measurement. After installing the lens-iris
combination similar to a confocal microscope, the spurious light was reduced by about a fourth as shown
in Figure 23 left. Even though the result was good we could not exploit the full benefit of this approach
because it was difficult to align a tight iris to the image of the probe spot of about ∼200 µm diameter. Only
a few shots could be taken without repositioning the targets and the THG generation changed non-linearly
as a result of pulse duration fluctuations or small changes in spot size. This made scanning the field stop a
difficult task. We used an aperture of 1.5 ± 0.5 mm instead of ∼200 µm with the reasonable results shown.

Figure 23: THG (ref) and spurious light (shot) without (left) and with (right) a lens-iris combination
(05/14/2010).

We studied the effect of probe energy on silicon without shocking after minimizing the pulse duration and
setting a lower THG limit imposed by the spurious 266 nm light. Figure 24 left shows the response of the
THG (3ω) and reflectivity (1ω) PMTs when probing the same location of the target consecutively at 0.35
J/cm2 fluence per shot. The probe beam energy and linear reflectivity remain roughly constant. The THG
fluctuates shot to shot but does not seem to damage the material permanently. No light was being scattered
into the interferometer camera imaging the rear side of the target. A cumulative effect appears when the
probe beam energy is increased as shown in Figure 24 right. The THG and the reflectivity drop after shot
#2 and after shot #8 the interferometer camera showed scattered light from the normal incident probe beam
and with a clear damaged spot. The fluence is high enough to permanently damage the material. In these
experiments, we lowered the probe energy as much as possible to avoid damaging the material while keeping
it ∼5× stronger than the spurious 266 nm light that could occur.

The THG intensity (I3ω) at normal incidence using circularly polarized light should follow the cubic
relationship I3ω ∝ E

2
3ω
∝ (E3

1ω
)2 ∝ I

3
1ω

. We tested this correlation by probing the sample without
shocking and varying the incident light while measuring the linear reflectivity and THG. The target was
repositioned at each sample test to probe fresh material. Varying the angle of the waveplate in the probe
line allowed a continuous change of the incident light. Figure 25 left shows the reflectivity as a function of
waveplate angle where 89 ± 1◦ corresponds to no light being transmitted. The relationship follows Malus’
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Figure 24: THG (3ω) and reflectivity (1ω) for 0.35 J/cm2 per pulse (left) and 3.5 J/cm2 per pulse (right).
law I = I0 cos2(θ − θ0) so the linear reflectivity is proportional to the incoming probe intensity. The THG
signal follows and exponential relationship with the incident intensity however the exponent is 1.53 instead
of 3. This behavior has not been explained yet.

Figure 25: THG (3ω) and reflectivity (1ω) as a function of incident energy (06/23/2010).
The response of shocked silicon at an intensity of ∼1.4× 1013 W/cm2 is shown in Figure 26. The probe

delay is set to zero when the pump intensity reaches the peak at the front surface. The shocked data is
normalized to non-shocked (cold) silicon values. The normalized linear reflectivity remains about unity
for t <1 ns while a small pre-expansion occurs as a result of a precursor created possibly by the leading
edge of the laser. At t ∼1 ns the shock arrives at the rear surface and the reflectivity drops to <0.1 in 0.25
ns. The normalized THG is ∼1 up to t ∼0 ns after which it drops to a value of <0.25 at t ∼0.3 ns and
then remains constant during the pre-expansion phase while dropping a little more after shock arrival. This
information suggests that during pre-expansion when the linear reflectivity does not change, the material
dielectric function does not change either leaving the linear and non-linear Fresnel factors unchanged. This
implies that any change in the THG is related solely to a change in χ

(3) and in the lattice structure. The drop
in THG indicates that some type of change in the crystalline structure (phase change) might be occurring
during this period. After shock arrival both signals drop to ∼0.1. This could be the result of scattering
from surface fragmentation when releasing into vacuum or loss of light in the collection optics as a result of
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rear surface expansion. The collection of the normal incidence light by the interferometer camera (oblique
angle) for some of these images suggests fragmentation.

Figure 26: Shocked silicon at ∼1.4× 1013 W/cm2.
Figure 27 shows shocked silicon at an intensity of∼1.4×1014 W/cm2. The plots show two different data

runs. The data in Figure 27(a) were taken in the same run as the data in Figure 26 while data in Figure 27(b)
corresponds to a previous data run. Both data runs show a similar trend for the reflectivity and THG signals
with quantitative differences. The plot on the left shows the normalized linear reflectivity increasing by 1.6×
during pre-expansion, t <∼0.65 ns. At t ∼0.65 ns the shock arrives at the rear surface and the reflectivity
drops to <0.3 in about 0.6 ns. The normalized THG remains ∼1 up to t ∼−0.35 ns after which it drops
for about 0.65 ns to a value of <0.15 and then remains constant during the rest of pre-expansion phase. At
shock arrival and afterwards, the THG drops to <0.1 similarly to the linear reflectivity. Shocking at an order
of magnitude higher intensity makes the shock arrive ∼0.35 ns earlier than at the lower intensities shown
in Figure 26. The increase in reflectivity in the pre-expansion phase suggests a transition to a metallic state
of the material as the Drude model predicts (2.2 increase at normal incidence). The difference between the
measured 1.6 increase and the 2.2 predicted could be the result of fewer electrons promoted to the conduction
band as compared to previously measured values [77]. This metallization as a result of the change in the
dielectric constant might be the reason why THG, which also depends on the dielectric constant through
the non-linear Fresnel factors, drops. This conjecture requires further analysis. After shock arrival, the
reflectivity drops similarly to the low intensity case probably as a result of fragmentation. THG that is
already low also drops. The plots in Figure 27(b) are qualitatively similar to the ones in Figure 27(a), but
they present a few differences. The linear reflectivity increases to about 3.5 in the pre-expansion phase and
the shock arrival occurs ∼0.3 ns earlier. This might be result of the 10% higher intensities used which
probably made the pre-expansion wave travel faster while promoting more electrons into the conduction
band setting the material into a more metallic state.

3.4 Conclusions

We found that the third-harmonic generation response is quite different compared to linear reflectivity when
probing shocked materials. At laser intensities ∼1013 W/cm2 and during the pre-expansion phase of the
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Figure 27: Shocked silicon at ∼1.4× 1014 W/cm2.
material (before shock arrival), no transition to a metallic state was seen as reflectivity remained similar to
cold silicon values; however THG presented a substantial drop. Since reflectivity did not change during this
phase we could assume that the dielectric function did not change leaving the linear and non-linear Fresnel
factors unchanged. This conjecture implies that any change in the THG is related solely to a change in χ

3

and so to a change in the lattice structure. Then, this data suggests that THG can be used to detect changes in
the crystalline structure materials. At laser intensities∼1014 W/cm2 an increase in reflectivity was observed
during the pre-expansion phase suggesting a transition to a metallic state that did not seem to affect the
crystalline structure of the material since THG remained roughly constant during that period. After shock
arrival the reflectivity dropped close to zero as the result of possible scattering from surface fragmentation
when releasing into vacuum. THG at low intensities also dropped for the same reason as the reflectivity but
it remained constant and very low at high intensities which has not been explained yet.

If fragmentation occurs at shock arrival, the current setup needs to be modified to study shock-induced
phase transitions. Adding a backing window to match the impedance of silicon could forbid fragmentation
and allow probing the material structure and not its surface. Also, pre-heating of the samples close to their
melting point would allow shock-melt experiments at pressures� 120 kbar available with our laser system
that might not fragment the material upon release.

Upcoming experiments should be aimed to lower the error bars and detect the amount of spurious light
collected, for example by using a photomultiplier tube to collect light at a wavelength close to the THG.
Shocking with a more energetic beam would allow larger shock breakouts to reduce the pointing error with
the probe beam; the probe spot size could also be increased for a better averaging.

3.5 Appendix

Pre-heating of silicon and germanium targets reduces the pressure needed to shock-induce melting to <120
kbar (Figure 18) that can be achieved with the THOR laser. Uniformity in the target heating is desirable
to provide similar initial conditions for shocks probed at different time delays. At low target temperatures,
the dominant heat loss mechanism in vacuum is by conduction with the mount. As the target temperature
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Figure 28: Modified mount used as electrodes to provide current to the ablation layer for ohmic heating.

Figure 29: Dummy target that reached 400 ◦C (left) compared to a one that reached 600 ◦C (right).
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rises, radiation from the target surface area (A) becomes a dominant loss, and the radiated power (P) at a
temperature (T) is given by:

P ∼ A�σT
4 (9)

where � is the emissivity of the surface and σ the Stefan-Boltzmann constant. For a 1 inch square sample and
assuming perfect emissivity (blackbody) at ∼700 ◦C the dissipated power is ∼30 W. The heating element
has to be able to deliver this power to the sample. We decided to use Ohmic heating of the targets (Figure
28) that produced favorable results. We used the ablation coating of the samples as the heat conducting
surface. The advantage of this approach is homogenous heating however it requires the ablator be a good
conducting surface. The resistivity of copper at room temperature is ∼17 nΩm and about 4 times higher
at ∼700 ◦C. A square sample connected to the electrodes that serve as the holder presents a total electrical
resistance (R):

R = η/t (10)

where η is the electrical resistivity and t the thickness of the conductor. A 100 nm thick ablation layer results
in a total resistance of ∼0.7 Ω at ∼700 ◦C. We used a power supply that delivered 10 A and 7 V across the
electrodes with a total power of ∼70 W. This technique proved to be successful in heating up the targets,
reaching temperatures of 600 ◦C as measured on the rear side of the targets with a thermocouple. The
coating appears degraded at these high temperatures and after venting the chamber compared to samples
that only reached 400 ◦C (Figure 29). The effect of the coating degradation in laser absorption is unknown.
The damage might be the result of copper oxidation even under mTorr vacuum (effect that was seen when
testing in air). The temperature of the front surface could also be higher than the probed rear side making
the copper closer to its melting point. However this might be unlikely, the temperature gradient should be
only a few degrees with the thermal conductivity of silicon ∼35 Wm−1 K−1 at 600 ◦C.

Figure 30: Ohmic heating holder design for non conduction ablators.
Another option to heat up the targets is to sandwich them in a heated holder (Figure 30). An ohmic heater

(not present in the figure) is attached to the holder that would conduct the heat to the sample by physical
contact. This approach could create thermal gradients in the sample depending on how good the contact is,
however it does not require the ablation coating to be a conductor.
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4 Dynamic compression of aluminum

Principal Authors: Jonathan A. Zimmerman, J. Michael Winey, Yogendra M. Gupta
This section contains a paper entitled “Elastic anisotropy of shocked aluminum single crystals: use of

molecular dynamics simulations” that was published in Phys. Rev. B in 2011. It was authored by Jonathan
A. Zimmerman, J. Michael Winey and Yogendra M. Gupta. [SAND 2011-0728 J]

In this section, molecular dynamics (MD) calculations are used to examine shock wave propagation along
[100], [111], and [110] directions in aluminum single crystals. Four different embedded-atom method
(EAM) potentials were used to obtain wave profiles in ideal (defect-free) crystals shocked to peak lon-
gitudinal stresses approaching 13 GPa. Time-averaged and spatially-averaged continuum variables were
determined from the MD simulations to compare results from different potentials and to provide a direct
comparison with results from nonlinear elastic continuum calculations that incorporated elastic constants
up to fourth order. These comparisons provide a basis for selecting the optimal potential from among the
four potentials examined. MD results for shocks along the [100] direction show significant differences for
stresses and densities determined from simulations using different EAM potentials. In contrast, the con-
tinuum variables for shocks along the [111] and [110] directions show smaller differences for three of the
four potentials examined. Comparisons with the continuum calculations show that the potential developed
recently by Winey, Kubota and Gupta [78,79] provides the best overall agreement between the MD simula-
tions and the continuum calculations.

4.1 Introduction

In recent years, classical molecular dynamics (MD) simulations have been used increasingly to examine the
shock compression response of crystalline solids. [80–82] Such simulations can provide important insight
into the microscopic mechanisms governing material phenomena such as inelastic deformation and struc-
tural phase transformations. Despite the potential usefulness of classical MD simulations for understanding
the dynamic response of solids, it is difficult to evaluate the validity of the calculated results since direct
comparisons with experiments pose a challenge: the length and time scales of the simulations and exper-
iments differ by orders of magnitude. Also, not all material details (e.g. defects, heterogeneities) can be
incorporated realistically into the MD simulations.

Although the above indicated differences are well recognized and they constitute an important impetus for
advances in computational capabilities, [83] there is also a fundamental scientific issue that needs attention.
Because results from MD simulations depend on the choice of the inter-atomic potentials, establishing the
applicability of the potentials for the loading conditions of interest constitutes an important need. Here, we
address this need by focusing on the following two key questions: how to ascertain the applicability of a
potential for simulations involving shock wave compression, and how to choose the optimal potential when
several choices are available.

Our approach to address these questions consists of using MD simulations to examine and analyze shock
wave propagation along different crystal orientations in idealized (or defect-free) crystals. The lack of de-
fects in the simulated crystals results in purely elastic deformation for shock loading to peak stresses that
would otherwise result in yielding and inelastic deformation in crystals having defects. Therefore, our
approach enables a direct comparison between the thermo-mechanical variables determined from MD sim-
ulations of shock wave compression and the thermo-mechanical variables from nonlinear elastic continuum
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calculations that utilize known second-, third-, and fourth-order elastic constants. By making such com-
parisons for each of the different inter-atomic potentials, we have a basis for selecting between different
potentials. To the best of our knowledge, this approach to selecting an optimal potential has not been carried
out previously for MD simulations of shock compression of crystals.

In the present work, we examine the anisotropic response of shocked aluminum single crystals. Aluminum
was selected for this study because it is representative of face-centered cubic (FCC) metals having high
stacking fault energies and because several embedded-atom method (EAM) potentials for Al are available.
[78, 79, 84–87] To address the scientific questions indicated above, we have focused on elastic shock wave
propagation along [100], [110], and [111] orientations in Al single crystals. Continuum averages from
MD simulations, carried out using four different EAM potentials, are compared with each other and with
nonlinear elastic continuum calculations that utilize elastic constants up to fourth order.

4.2 Computational Methods

4.2.1 MD Simulations

MD simulations of defect-free Al single crystals shocked along the [100], [111], and [110] directions were
performed using four different EAM potentials: Voter and Chen (VC); [84, 85] Ercolessi and Adams (EA);
[86] Mishin, Farkas, Mehl and Papaconstantopoulos (MFMP); [87] and Winey, Kubota and Gupta (WKG).
[78, 79] All of our MD simulations were performed using the LAMMPS code. [1] To simulate shock wave
propagation in aluminum single crystals, atomic systems containing ∼1 million atoms were constructed
having approximate dimensions 640 Å (x1) by 160 Å (x2) by 160 Å (x3), where xi refer to a coordinate
system in which the shock wave propagates along the x1 direction. Free surface boundary conditions were
used in the longitudinal (x1) direction, whereas periodic boundary conditions were applied in the transverse
(x2andx3) directions. Shock wave propagation was examined along the [100] direction (x1 - [100], x2 -
[010], x3 - [001]), the [111] direction (x1 - [111], x2 - [1̄10], x3 - [1̄1̄2]), and the [110] direction (x1 -
[110], x2 - [1̄10], x3 - [001]) . The systems were equilibrated for 10 ns (107 timesteps of 1 fs each) to
bring them to zero stress and 300 K temperature. To produce planar shocks in the equilibrated systems,
four atomic layers at one end of the crystal were assigned a fixed velocity for the duration of the simulation,
resulting in the propagation of supported shock waves having prescribed particle velocities. Previous work
has shown that shock wave propagation in MD simulations is insensitive to the method by which the shocks
are produced. [80] The simulations presented here utilized a small timestep (0.01 fs) to adequately capture
the dynamics associated with the propagating shock wave.

4.2.2 Continuum Variables from MD Simulations

To calculate mass density, Cauchy stress and temperature from our MD results, we used the method in-
troduced by Hardy, [88] in which two descriptions of a material system are considered. One description
constitutes the continuum viewpoint, where the variables are point-wise functions of fixed spatial positions
and time. The other description is that the system consists of atoms, each of which has an associated mass,
momentum, potential energy and kinetic energy. The two descriptions are connected using a prescribed
localization function ψ, which enables the properties of the atoms to be averaged over a localized region
surrounding the spatial point and allows the atoms to contribute to continuum properties at that point. For

42



example, mass density at fixed spatial position xi is given by

ρ (xi, t) =
N�

α=1

m
α
ψ (xα

i − xi), (11)

where N is the number of atoms in the system, m
α is the mass of atom α, and x

α

i
is the spatial position of

atom α. By using expressions similar to Eq. (11) for mass, momentum and energy densities in the balance
laws of continuum mechanics, Hardy was able to derive an expression for Cauchy stress (assumed positive
in compression here), [88]
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vj (xi, t) is the continuum velocity field calculated by dividing momentum density by mass density. Within
this report, we use the shorthand Px to refer to P11, Py to refer to P22 and Pz to refer to P33. Although not
derivable from the continuum balance laws, Hardy also defined an expression for localized temperature,
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where kB is Boltzmanns constant. Further details about Hardy’s method and its use in thermo-mechanical
problems can be found in references [89] and [90], as well as elsewhere within this report.

We defined spatial points as the vertices (nodes) on a rectangular grid. For our simulations, this grid
consisted of 4,672 elements, each having approximate dimensions: 10 Å by 20 Å by 20 Å. To allow for
translation of the atomic system, the grid extended a length of 730 Åin the longitudinal direction to encom-
pass the atomic system plus some free space. Linear interpolation functions between nodes were used to
create a tent-shape localization function in three dimensions. Continuum variables were calculated at the
spatial points every 0.01 ps (1000 timesteps).

To reduce the statistical uncertainties in the continuum variables, averaging methods were used. First,
the 64 nodes located at the same longitudinal position were averaged to create a single value for each
continuum variable. Next, to arrive at steady-state estimates of continuum properties behind the shock front,
the continuum variables were averaged spatially over a domain of 200 Å and temporally over a domain of
3 ps.

4.2.3 Nonlinear Elastic Continuum Calculations

For comparison with the MD results, continuum variables for shocked Al single crystals were calculated
using nonlinear elasticity theory. [91–93] It is convenient to express the differential changes in stress and
temperature in terms of the elastic strain increments and entropy change: [91, 92]

dtij = Cijkldηkl − ρ0ΓijTdS (14)

dT = −TΓijdηij + TdScη (15)
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where Cijkl are the isentropic elastic coefficients and both the thermodynamic (2nd Piola-Kirchhoff) stresses
tij and the Lagrangian strains ηij are referred to the initial configuration. In our calculations, both the
Grüneisen tensor Γij [91] and the specific heat at constant strain cη were held constant.

The isentropic elastic coefficients Cijkl are defined as the second derivatives of the internal energy with
respect to strain at constant entropy. [92, 93] Therefore, from a truncated expansion of internal energy in
powers of elastic strain, the elastic coefficients are given by [93]

Cijkl (S, η) = C̄ijkl + C̄ijklmnηmn +
1
2
C̄ijklmnpqηmnηpq, (16)

where C̄ijkl, C̄ijklmn, and C̄ijklmnpq are the second-, third-, and fourth-order elastic constants, respectively,
and the overbar indicates evaluation at the initial configuration. Measured values for the second- and third-
order constants for aluminum were taken from Refs. [94] and [95], respectively. For the elastic loading
calculations considered here, the entropy dependence of the elastic coefficients can be neglected. For elastic
shock waves propagating along [100], [110], or [111] directions in a cubic crystal, the Lagrangian strains
are uniaxial and can be written as

η11 = −e +
1
2
e
2
, (17)

where e = 1 − ρ0/ρ is the engineering strain and x1 is along the wave propagation direction. For uniaxial
strain, the Cauchy stresses (positive in compression) are related to the thermodynamic stresses by

Px = − (1− e) t11 (18)

Py = − t22

(1− e)
(19)

Pz = − t33

(1− e)
. (20)

In terms of the Cauchy stresses and engineering strain, the entropy change encountered in shock wave
loading is [96]

2ρ0TdS = edPx − Pxde. (21)

To determine Cauchy stresses and temperature for shocked Al single crystals, numerical methods were used
to obtain a simultaneous solution for Eqs. (14)-(21). The stresses and temperatures determined from the
continuum calculations were then compared with analogous quantities from the MD simulations.

The fourth-order elastic constants used in the nonlinear elastic continuum calculations were determined
by fitting to available wave propagation data [97] for shock loading and unloading along the [100], [110],
and [111] directions in Al single crystals. Because of the limited data available, the Cauchy relations [98]
were invoked to reduce the number of independent fourth-order elastic constants from 11 to four. The
fitting was performed using a previously developed anisotropic approach for wave propagation simulations
in single crystals, [99] along with the known second-order [94] and third-order [95] elastic constants. The
resulting fourth-order elastic constants are: C1111 = 25000 GPa, C1112 = 3000 GPa, C1122 = 3000 GPa and
C1123 = 500 GPa.
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4.3 Results

4.3.1 Elastic shock wave profiles

We first wish to quantify the range of piston speeds (up) for which only elastic shock wave propagation will
occur. The longitudinal stress corresponding to maximum of this range is commonly known as the Hugoniot
Elastic Limit (HEL). Figure 31 shows shock wave propagation in the [100] direction at two distinct times
(1.5 and 3.0 ps) within a small (128,000 atom) system modeled with the WKG potential. Three piston speeds
were examined: 300 m/s, 600 m/s and 1200 m/s. Figure 31 clearly shows that no defects are generated for
the two smaller piston speeds, but stacking faults are generated at the largest speed.

(a) (b)

Figure 31: Aluminum atomic system (modeled using the WKG interatomic potential) during shock wave
propagation at (a) 1.5 ps and (b) 3.0 ps after initial motion of the left-hand piston. Three systems are shown
in each sub-figure for the piston speeds of 300 m/s (top), 600 m/s (middle), and 1200 m/s (bottom). Atoms
filtered and colored by centrosymmetry parameter.

Using this result, simulations were also performed for the other potentials and crystal orientations of
interest. These simulations, snapshots from which are shown in Figure 32 for up = 600 m/s, confirm that
shock waves are elastic in character for up ≤ 600 m/s in all cases. It is interesting to note that while
no discernible crystal defects indicative of plasticity (e.g. stacking faults, dislocation lines) are present in
Figure 32, filtering via the centrosymmetry parameter reveals many more isolated atoms for the EA and
(even more-so for) the VC potentials than for the WKG and MFMP potentials. Such behavior usually
corresponds with atoms displaying variable thermal motion, indicating that temperature rises behind the
shock fronts may be higher for the EA and VC potentials (a hypothesis that will be confirmed as will be
shown).

4.3.2 [100] Compression

Instantaneous profiles of shock wave propagation

Before comparing space- and time-averaged variables with continuum calculations, we first examine
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(a) WKG - [100] (b) WKG - [111] (c) WKG - [110]

(d) MFMP - [100] (e) MFMP - [111] (f) MFMP - [110]

(g) EA - [100] (h) EA - [111] (i) EA - [110]

(j) VC - [100] (k) VC - [111] (l) VC - [110]

Figure 32: Aluminum atomic systems during shock wave propagation with up = 600 m/s. Atoms filtered
and colored by centrosymmetry parameter. Subfigures are labeled with the interatomic potential used, and
crystal direction along which planar shock waves are traveling.
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some features of the continuum fields and their fluctuations. Figure 33 shows the longitudinal stress
field (σx = −Px) for elastic shock wave propagation (up = 300 m/s) at a time of 3.0 ps after the piston
has initiated motion. We note a few interesting features from this figure: first, spatial fluctuations of
σx are present in the material both before and after the shock wave has passed. Second, we observe
higher magnitudes of compressive stress for the WKG potential, with increasingly lower magnitudes
in the MFMP, EA and VC potentials, respectively. Third, we observe that the shock wave travels
significantly faster in the WKG material, somewhat faster in MFMP, and slower in the EA and VC
materials.
Although this section focuses on compression along the [100] crystal direction, we take this opportu-
nity to compare this spatially-varying field with fields created for compression along [111] and [110]
for the WKG potential. These fields are shown in Figure 34. As before, this figure shows spatial
fluctuations for all three orientations. We also note that the shock propagates at comparable speeds in
all three cases (with the [111] orientation somewhat slower than [100] or [110]), and that non-planar
features are present for compression in the [110] direction. This latter observation is no doubt due to
the crystal asymmetry that exists as compared with the [100] system.
As noted earlier, our analysis of these continuum fields first involves taking a spatial average among
64 nodes located along the same longitudinal (x1) position to create a single value to represent the
cross-sectional rectangular slab centered on that position. This process is used to generate field pro-
files along the longitudinal direction at any specified instant of time. As such fields still displayed
some aberrant characteristics associated with the discreteness of the atomic lattice, it was decided to
combine the values from each slab with its adjacent neighbors (three slabs in all) and recompute av-
erage field values at those longitudinal positions. The resulting profiles for longitudinal velocity (vx,
hypothetically equal to up), mass density (ρ), and temperature (T ) are shown in Figure 35 for both
up = 300 m/s and up = 600 m/s, and the profiles for normal stress components (σx, σy and σz) are
shown in Figure 36.
A few notable features are present in these figures. First, we observe very little deviation in the
longitudinal velocity far behind the shock front from the prescribed piston speed. Second, although
the points making up these profiles represent spatial averages over thousands of atoms, it still appears
that some discreteness of lattice affects the resulting mass density profiles. Third, we note that unlike
the EA and VC potentials the WKG potential (and to a lesser degree, the MFMP potential) displays a
prominent peak at the shock front for the continuum fields of longitudinal velocity, mass density and
stress (all components) at the higher piston speed of 600 m/s. This peak is absent at the lower piston
speed of 300 m/s. Finally, we also notice that a shock front peak in temperature field is characteristic
of all the potentials examined, although not as prominent in the EA potential as the other three.
An efficient way to combine the information from these time-instantaneous profiles is to view so-
called “x − t” plots. These plots combine profiles over a range of times using color contours to
express field magnitude. Use of x − t plots to examine shock deformation was done extensively by
Kubota et al. [100], as we use it similarly here. Figure 37 shows x − t plots for continuum fields in
smaller-sized (128,000 atom) VC and WKG systems under [100] compression for a piston speed of
300 m/s. Figure 38 shows similar plots for a piston speed of 600 m/s, and Figure 39 for a piston speed
of 1200 m/s.
Many of the features noticed earlier, such as the temperature peaks observed for all potentials and the
density and stress peaks for the WKG potential, are found in these x− t plots. In addition, dual elastic
and plastic shock wave fronts are visible in the x − t plots for the 1200 m/s piston speed case, along
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Figure 33: Side view of longitudinal stress field (σx = −Px) for up = 300 m/s at time = 3.0 ps. Stress is in
units of bars, where 104 bars = 1 GPa. Each system is labeled with the potential used.
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Figure 34: Side view of longitudinal stress field (σx = −Px) for up = 300 m/s at time = 3.0 ps for the
WKG potential. Stress is in units of bars, where 104 bars = 1 GPa. Each system is labeled with the crystal
direction along which compression occurs.
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Figure 35: Longitudinal velocity, mass density and temperature profiles during elastic shock wave propaga-
tion at (a),(c),(e) up = 300 m/s and (b),(d),(f) up = 600 m/s along with [100] crystal direction. Color key:
WKG, MFMP, EA, VC.
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Figure 36: Stress profiles during elastic shock wave propagation at (a),(c),(e) up = 300 m/s and (b),(d),(f)
up = 600 m/s along with [100] crystal direction. Color key: WKG, MFMP, EA, VC.
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(a) VC - Temperature (b) WKG - Temperature (c) VC - Density

(d) WKG - Density (e) VC - σx (f) WKG - σx

(g) VC - |σx − σy| (h) WKG - |σx − σy|

Figure 37: x − t plots of the spatial and temporal distributions of continuum fields for the VC and WKG
potentials for [100] compression with up = 300 m/s. Horizontal axis is in units of Å and vertical axis is in
units of 0.01 ps.
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(a) VC - Temperature (b) WKG - Temperature (c) VC - Density

(d) WKG - Density (e) VC - σx (f) WKG - σx

(g) VC - |σx − σy| (h) WKG - |σx − σy|

Figure 38: x − t plots of the spatial and temporal distributions of continuum fields for the VC and WKG
potentials for [100] compression with up = 600 m/s. Horizontal axis is in units of Å and vertical axis is in
units of 0.01 ps.
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(a) VC - Temperature (b) WKG - Temperature (c) VC - Density

(d) WKG - Density (e) VC - σx (f) WKG - σx

(g) VC - |σx − σy| (h) WKG - |σx − σy|

Figure 39: x − t plots of the spatial and temporal distributions of continuum fields for the VC and WKG
potentials for [100] compression with up = 1200 m/s. Horizontal axis is in units of Å and vertical axis is in
units of 0.01 ps.
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Table I: Steady-state averaged continuum fields for [100] shock wave propagation. Also shown are the
maximum standard deviations for each column’s field.

up (Å/ps) potential ρ/ρ0 Px (GPa) Py (GPa) Pz (GPa) T (K)
±0.013 ±0.001 ±0.029 ±0.024 ±0.025 ±3.1
3.002 WKG 1.043 5.851 2.917 2.915 331.9
2.989 MFMP 1.046 5.442 3.297 3.298 322.1
3.000 EA 1.050 5.107 3.504 3.504 323.5
2.994 VC 1.049 4.999 3.317 3.316 346.4
6.000 WKG 1.083 12.54 6.028 6.024 355.4
5.988 MFMP 1.089 11.74 6.830 6.829 353.5
6.000 EA 1.102 10.49 8.307 8.310 365.2
5.994 VC 1.097 10.61 7.095 7.093 399.1

with inhomogeneity of the deviatoric stress field (|σx − σy|) behind the shock front, which indicates
plastic defect generation has occurred.

Averaged properties behind the shock front

We now analyze space- and time-averaged subsets of our simulated data to estimate steady-state con-
tinuum properties behind the shock front. In Fig. 40, the averaged stresses from the MD simulations,
for each of the four potentials, are plotted as a function of density compression for shock wave prop-
agation along the [100] direction. For shocks having a given particle velocity, Fig. 40(a) shows that
density compression ρ/ρ0, longitudinal stress Px, and lateral stress Py values determined from the
MD simulations are significantly different for the different EAM potentials. Similarly, the stress dif-
ference Px - Py, shown in Fig. 40(b), differs significantly for different potentials.

Also shown in Fig. 40 are the continuum stress-density curves. Comparisons between the MD results
and the continuum curves show that simulations using the WKG potential provide the best agreement
with the continuum calculations. Although all the Py values from the MD simulations are close
to the continuum curve in Fig. 40(a), this agreement is somewhat misleading because the density
compression values are quite different. Perhaps the most telling results are those shown in Fig. 40(b)
for the higher shock amplitude (particle velocity of 600 m/s). The mean stress and the stress difference
values are markedly different for the four potentials. The continuum curve provides the basis for
selecting between the four potentials. Specific values for the averaged continuum properties for the
various interatomic potentials can be found in Table I.

Our method of identifying Hugoniot states using shock wave compression within MD simulations
was verified by performing Hugoniotstat simulations for this [100] compression case. The Hugo-
niotstat algorithm involves inducing a prescribed homogeneous longitudinal pressure to a small sys-
tem (about 4,000 atoms) and then driving the system to obey the Rankine-Hugoniot relation, E0 =
E − 1

2
(Px + Px0) (V0 − V ), where quantities with the subscript “0” are those properties in the mate-

rial prior to the shock wave passing and quantities without this subscript are those properties after the
shock wave has passed and a steady-state has been reached. Further details about the Hugoniotstat
algorithm can be found elsewhere in this report.

Figure 41 shows the longitudinal and transverse stresses (Px and Py, respectively) for the Hugoniot
states for [100] compression of the various potentials as determined with the above-described algo-
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Figure 40: (a) Longitudinal (Px) and lateral (Py) stresses versus density compression and (b) mean stress
(Pm) and stress difference (Px - Py) versus density compression for Al single crystals shocked along the
[100] direction. The lines are continuum stress-density curves calculated using nonlinear elasticity. The
symbols denote averaged stresses determined from MD simulations of elastic shock compression. Error bars
are shown for simulation results where the statistical uncertainties are larger than the size of the symbols.
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rithm. Superimposed are the states quantified using shock compression simulations. We observe
that for each potential, the values from the shock compression simulations lie directly on the curve
that traces out all Hugioniot states. This confirms that the shock compression simulations are pro-
ducing Hugoniot states even though they’re not constrained to do so. This analysis also shows that
the Hugoniot curves for the WKG and MFMP potentials exhibit concave downward behavior past
a certain value of density compression (approximately 1.1 for WKG and 1.3 for MFMP), behavior
inconsistent with curves measured experimentally for Al. This behavior is most likely an artifact of
using a small and highly-constrained atomic system in a compressive regime usually corresponding
with plastic behavior. It is not clear that use of the Hugoniostat algorithm will produce meaningful,
size-independent results in regimes where generation of crystalline defects is expected. More work in
refining this simulation method is warranted.

4.3.3 [111] Compression

Instantaneous profiles of shock wave propagation

As was done for [100] compression, we construct instantaneous-in-time profiles of continuum fields
vx, ρ, T , σx, σy and σz for piston speeds of 300 m/s and 600 m/s as functions of longitudinal positions.
These profiles can be seen in Figures 42 and 43. As in the [100] compression case, we observe very
little deviation in the longitudinal velocity far behind the shock front from the prescribed piston speed
as well as oscillations in the mass density profiles showing interference between the discreteness of
the atomic system and the continuum grid. We also notice that while the temperature field still shows
a characteristic peak at the shock front for all potentials, the WKG and MFMP no longer display
leading peaks in the other continuum fields.

Averaged properties behind the shock front

In Fig. 44, averaged stresses from the MD simulations are plotted as a function of density compres-
sion for shock wave propagation along the [111] direction. Compared to the [100] results shown in
Fig. 40(a), the MD simulation results in Fig. 44(a) show that differences for the stresses and density
compression values, corresponding to the four potentials, are less pronounced. Although the results
from the WKG potential again provide the best overall agreement with the continuum curves, the
other three potentials show reasonable agreement with the continuum curves. Similar to Fig. 40(b),
the stress difference results in Fig. 44(b) are helpful in discriminating between the different poten-
tials. Specific values for the averaged continuum properties for the various interatomic potentials can
be found in Table II.

4.3.4 [110] Compression

Instantaneous profiles of shock wave propagation

We again construct instantaneous-in-time profiles of continuum fields vx, ρ, T , σx, σy and σz for
piston speeds of 300 m/s and 600 m/s as functions of longitudinal positions. These profiles can be
seen in Figures 45 and 46. These profiles are very similar to the profiles shown for [111] compression
regarding the attributes discussed earlier. Once noticeable difference is how the steady-state values of
the two transverse stresses (σy and σz) differ from one another. Not only are the values themselves
different, but the ordering between potentials has changed. The ordering of σy shows that the WKG
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Figure 41: (a) Longitudinal (Px) and (b) lateral (Py) stresses versus density compression or Al single crystals
shocked along the [100] direction, as calculated using a Hugioniostat algorithm.
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Figure 42: Longitudinal velocity, mass density and temperature profiles during elastic shock wave propaga-
tion at (a),(c),(e) up = 300 m/s and (b),(d),(f) up = 600 m/s along with [111] crystal direction. Color key:
WKG, MFMP, EA, VC.
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Figure 43: Stress profiles during elastic shock wave propagation at (a),(c),(e) up = 300 m/s and (b),(d),(f)
up = 600 m/s along with [111] crystal direction. Color key: WKG, MFMP, EA, VC.
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Figure 44: (a) Longitudinal (Px) and lateral (Py) stresses versus density compression and (b) mean stress
(Pm) and stress difference (Px - Py) versus density compression for Al single crystals shocked along the
[111] direction. The meanings of lines, symbols and error bars is the same as stated in the caption for
Fig. 40.
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Figure 45: Longitudinal velocity, mass density and temperature profiles during elastic shock wave propaga-
tion at (a),(c),(e) up = 300 m/s and (b),(d),(f) up = 600 m/s along with [110] crystal direction. Color key:
WKG, MFMP, EA, VC.
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Figure 46: Stress profiles during elastic shock wave propagation at (a),(c),(e) up = 300 m/s and (b),(d),(f)
up = 600 m/s along with [111] crystal direction. Color key: WKG, MFMP, EA, VC.
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Table II: Steady-state averaged continuum fields for [111] shock wave propagation. Also shown are the
maximum standard deviations for each column’s field.

up (Å/ps) potential ρ/ρ0 Px (GPa) Py (GPa) Pz (GPa) T (K)
±0.015 ±0.003 ±0.035 ±0.021 ±0.021 ±4.2
3.001 WKG 1.044 5.783 2.928 2.925 333.5
2.999 MFMP 1.042 6.030 2.579 2.580 321.7
3.004 EA 1.042 5.976 2.576 2.574 322.5
3.006 VC 1.045 5.433 2.822 2.819 343.8
6.000 WKG 1.083 12.63 6.196 6.195 378.4
5.999 MFMP 1.079 13.09 5.209 5.209 359.3
6.003 EA 1.080 13.10 5.412 5.412 366.1
6.003 VC 1.087 11.81 5.850 5.848 399.4

potential has the largest magnitude, with |σy|WKG > |σy|MFMP > |σy|VC ∼ |σy|EA. In comparison,
this ordering has changed for σz to |σz|MFMP � |σy|VC > |σy|EA ∼ |σy|WKG. This clearly shows the
strong anisotropic behavior that occurs for shock wave compression along the [110] direction.

Averaged properties behind the shock front

In Fig. 47, averaged stresses from the MD simulations are plotted as a function of density compression
for shock wave propagation along the [110] direction. In Fig. 47(a), the two lateral stresses Py and
Pz are plotted separately because they are not equivalent for shocks along [110]. The stresses and
density compression obtained for three of the four potentials (WKG, MFMP, and EA potentials) are
in good agreement with each other. In contrast, the longitudinal stress Px, mean stress Pm, and stress
difference Px - Py resulting from using the VC potential show differences when compared to the
other potentials. Results using the WKG, MFMP, and EA potentials agree well with the continuum
calculations, whereas the agreement for results using the VC potential is not as good.

Results from both the MD simulations and the calculated continuum curves show that the stress differ-
ence Px - Py is large for shock propagation along the [110] direction and is comparable to the mean
stress Pm. This result is in contrast to the results for shock propagation along the [100] and [111]
directions, where Px - Py is significantly smaller than Pm. As before, specific values for the averaged
continuum properties for the various interatomic potentials can be found in Table III.

4.3.5 Temperature Calculations

As expected, temperature increases achieved in both the MD simulations and the continuum calculations
for shock propagation along all three crystal orientations are quite modest for the elastic loading examined
here; calculated results in Fig. 48 are shown primarily for completeness. Compared to results for the [111]
and [110] orientations, temperature-density values from MD simulations of shock wave propagation along
the [100] orientation are significantly different. In addition, differences in the temperature-density values,
corresponding to the four different potentials, are significantly larger for the [100] orientation, compared to
the other orientations. For all the orientations examined, temperatures obtained from the simulations using
the VC potential are higher than those obtained using the other potentials.

In contrast to the MD results, the continuum temperature-density curves for shocked Al show only modest
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Figure 47: (a) Longitudinal (Px) and lateral (Py) stresses versus density compression and (b) mean stress
(Pm) and stress difference (Px - Py) versus density compression for Al single crystals shocked along the
[110] direction. The meanings of lines, symbols and error bars is the same as stated in the caption for
Fig. 40.
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Table III: Steady-state averaged continuum fields for [110] shock wave propagation. Also shown are the
maximum standard deviations for each column’s field.

up (Å/ps) potential ρ/ρ0 Px (GPa) Py (GPa) Pz (GPa) T (K)
±0.016 ±0.001 ±0.041 ±0.028 ±0.030 ±5.2
3.002 WKG 1.042 5.938 2.771 2.712 333.1
2.995 MFMP 1.042 5.959 2.385 2.970 322.1
2.994 EA 1.043 5.894 2.315 2.944 323.8
3.001 VC 1.045 5.463 2.535 2.913 344.4
6.002 WKG 1.079 13.28 5.522 5.183 377.3
5.997 MFMP 1.078 13.26 4.513 5.794 363.6
5.992 EA 1.079 13.18 4.423 6.082 372.1
6.006 VC 1.083 12.23 4.870 5.699 404.4

!
Figure 48: Temperature versus density compression for Al single crystals shocked along the [100], [110],
and [111] directions. The meanings of lines, symbols and error bars is the same as stated in the caption for
Fig. 40.
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differences for shock wave propagation along different crystal orientations. Compared to the other EAM
potentials, results obtained using the WKG potential provide somewhat better overall agreement with the
continuum curves. Tabulated values of temperature values for the individual potentials can be found in
Tables I, II and III.

4.4 Discussion

Our analysis shows important aspects of MD simulations of shock wave compression, and how results
from such simulations can be interpreted in a continuum mechanical framework. The results presented
specifically in Figs. 40-47 provide a basis for examining the applicability of inter-atomic potentials for
use in MD simulations involving shock wave compression. In particular, comparison of results from MD
simulations of shock waves in defect-free single crystals with the results from nonlinear elastic continuum
calculations enables the optimal potential to be selected from the available choices. Although our method
is not the only way that different interatomic potentials can be compared, it provides the only approach
currently available for directly comparing results from MD shock wave simulations against a benchmark
derived from experimental results.1

Examining the stresses plotted in Fig. 40, the significant differences in the results from MD simulations
using different EAM potentials clearly demonstrate the importance of comparing inter-atomic potentials to
determine their applicability for shock wave compression. Also, differences in the stresses obtained from
simulations using different potentials are considerably larger for shock wave propagation along the [100]
direction (Fig. 40), in contrast to the [111] and [110] directions (Figs. 44 and 47). This finding demonstrates
the need to test inter-atomic potentials by examining shock wave propagation along several orientations, and
shows the importance of crystal anisotropy for evaluating different potentials.

For the simulation results shown in Figs. 40-47 the stress difference Px - Py exhibits the largest overall
variation for MD simulations using different potentials. Therefore, the calculated Px - Py values provide the
best discriminant for choosing among the potentials examined. In contrast, the differences in the calculated
mean stress Pm using different potentials are less pronounced. Hence, examination of Pm alone does not
provide a good basis for selecting between available potentials.

For MD simulations of shock wave propagation along the [110] direction (Fig. 47), the stress difference
Px - Py and the mean stress Pm are of comparable magnitude, in contrast to results for the [100] and [111]
directions, where Pm is significantly larger than Px - Py. This feature, resulting from the anisotropic elastic
response of Al single crystals, provides an additional constraint for choosing between different potentials.

Because the stress difference Px - Py is related to the shear stresses that cause inelastic deformation, the
large differences in Px - Py for shocks along the [100] direction suggest that MD simulations of the elastic-
plastic response in Al single crystals, with defects, will likely be different for different EAM potentials.
Thus, our results demonstrate the need to consider the anisotropic elastic response, in addition to properties
such as the stacking fault energy, width of extended dislocations, etc., when choosing the optimal potential
for simulating shock wave propagation in crystals having defects, where inelastic deformation is anticipated.
Whether the differences observed here for elastic compression will also hold for elastic-plastic compression

1We note that atomistic simulation codes such as LAMMPS [1] can be used to perform static uniaxial strain compression
calculations along different crystal directions. Such calculations, which provide stress-density values along the T = 0K isotherm,
require much less effort compared to the shock wave propagation simulations presented here (as pointed out by a reviewer). Because
the focus of our work is on establishing the applicability of interatomic potentials for MD simulations of shock wave propagation
at room temperature and higher, we did not undertake static, isothermal, uniaxial strain calculations at T = 0K.
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is a question that needs to be explored in the future.
Comparing the MD results with the calculated continuum curves in Figs. 40-48 shows that MD sim-

ulations using the WKG potential [78, 79] provide better overall agreement with the continuum results,
compared to the other potentials. Therefore, the WKG potential is recommended for use in simulations of
shock wave propagation in aluminum single crystals. This conclusion represents the end result of our eval-
uation and demonstrates the efficacy of our approach for selecting an optimal potential for MD simulations
involving shock wave compression.

The differences in Px and Py for MD results using different potentials, shown in Fig. 40(a), indicate
that the elastic coefficients governing shock compression, which depend on second- and higher-order elastic
constants (see Eq. (16)), are significantly different for different EAM potentials. In contrast, previous simu-
lations showed that the second-order elastic constants of Al resulting from using different potentials are not
much different at ambient pressure and temperatures less than 400 K. [78, 79] Therefore, the differences in
stresses and density compression shown in Fig. 40(a) are due to differences in the higher-order elastic con-
stants resulting from using different potentials. These results indicate the importance of using higher-order
elastic constants in the development of interatomic potentials, as was done for the WKG potential, [78, 79]
because the higher-order constants contain information about anharmonicity and crystal anisotropy under
mechanical loading that is not contained in the second-order constants.

4.5 Concluding Remarks

The applicability of available inter-atomic potentials for molecular dynamics (MD) simulations involving
shock wave compression was examined by simulating shock wave propagation along [100], [111], and
[110] directions in defect-free Al single crystals using four different EAM potentials. MD results for shocks
along the [100] direction show significant differences for stresses, density compression, and temperatures
determined from simulations using different EAM potentials. In contrast, the continuum variables for shocks
along the [111] and [110] directions show smaller differences for three of the four potentials examined.
These results demonstrate the need to test potentials using simulations of shock wave compression along
more than one crystal orientation and, more generally, indicate the importance of crystal anisotropy in the
evaluation of potentials.

Our results also show that the stress difference Px - Py provides the best overall discriminant among the
different potentials. In addition, the large differences in Px - Py for shock wave compression along the [100]
direction (Fig. 1b) suggest that the elastic-plastic response resulting from shock wave simulations of Al sin-
gle crystals using different EAM potentials will likely be different. Therefore, testing the anisotropic elastic
response under shock wave compression is an important factor (along with stacking fault energy, width of
extended dislocations, etc.) for selecting a potential for use in MD simulations involving shock-induced in-
elastic deformation. Comparison of the MD results with the nonlinear elastic continuum calculations shows
that the potential developed recently by Winey, Kubota and Gupta (WKG) [78, 79] provides better overall
agreement among continuum variables, compared to the other three potentials considered here.

In general, the work presented here shows that MD simulations of elastic shock wave propagation in
defect-free single crystals, in combination with nonlinear elastic continuum calculations, constitute an im-
portant step in establishing the applicability of classical MD potentials for shock wave simulations.

68



Part II

Ramp Compression
5 Dynamic Compression of Beryllium

Principal Authors: Aidan P. Thompson, J. Matthew D. Lane and M. I. Baskes

5.1 Introduction

Our goal is to develop a potential for beryllium that accurately describes mechanical properties and phase
equilibria up to and including melting on the principal Hugoniot curve, corresponding to a pressure of
approximately 200 GPa, and a temperature of 5000 K. At ambient conditions, beryllium exhibits a variety
of unusual properties, such as very low Poisson ratio and non-ideal hexagonal crystal structure. Many of
these anomalies are likely due to the presence of directional bonding not normally found in metals [101,102].
While the effect of directional bonding is less important at elevated temperatures and pressures, we can not
ignore this effect in our potential, for the following reason. The vast majority of experimental measurements
on beryllium are performed at ambient conditions. Attempting to fit this data using a model that is missing
important effects may produce a potential that does not extrapolate well. For this reason, we decided not
to attempt fitting to spherically-symmetric potentials such as EAM or its close relative Sutton-Chen [103].
Instead we focused on the MEAM potential, which explicitly includes directional-dependent contributions.

For pure elements, MEAM has about ten freely-adjustable parameters. We refer to a set of specific val-
ues for these parameters as a parameterization. Two previous MEAM parameterizations for beryllium have
been published [104,105]. Initial testing indicated that while these potentials very accurately represented the
properties of beryllium in its ground state hexagonal close-packed crystal structure (HCP), they exhibited
unphysically low melting points (< 100 K). We have developed a new parameterization, which we refer to
as Ba09i. Independently, Dremov et al. have recently produced an improvement on their original parame-
terization, which we refer to here as Dr09 [106]. Both of these parameterizations are listed in Table IV. For
a complete description of how these parameters define the MEAM potential, see Ref. [107].

Ba09i was arrived at by an iterative process of trial-and-error, via the unpublished parameterizations
Ba09a through Ba09h. At each iteration, the parameters were first adjusted to reproduce zero-temperature
properties such as the lattice and elastic constants, unrelaxed vacancy energies, stacking fault energies and
relative stabilities of different crystal structures. The parameterization was then used to calculate the static
compression curve up to 200 GPa and the melting temperature at zero pressure. The equilibrium melting
curve and Hugoniot calculations were not used as part of the iterative parameterization process, and so can
be regarded as predictions.

5.2 Physical Properties

In Table V the experimentally-determined physical properties of beryllium are compared with calculated
values using Dr09 and Ba09i. All calculations were performed using the MEAM potential implemented in
the LAMMPS molecular dynamics (MD) package [1, 24]. HCP lattice constants a and c were determined
by energy minimization w.r.t. periodic cell dimensions. Elastic constants were determined by applying
small strains in appropriate directions, followed by energy minimization w.r.t. atom positions. The elastic
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Parameters Dr09 Ba09i
reference hcp fcc
G(Γ) exp (Γ/2) exp (Γ/2)
α 3.8501 3.9
β

(0) 0.24826 2.0
β

(1) 0.0041610 5.0
β

(2) 0.33524 6.0
β

(3) 3.8426 ×10−7 2.0
re 2.2433361 3.19
Ec 3.43 3.43
A 1.1801 0.93
τ

(0) 1.0 1.0
τ

(1) 4.5561 10.0
τ

(2) 21.956 8.0
τ

(3) -10.234 -5.0
δ 0.01 0.02
Cmin 1.1 0.6
Cmax 1.5 2.8
rcut 3.5 4.2

Table IV: MEAM potential parameterizations for Beryllium: Dremov et al. (Dr09) [106] and this work
(Ba09i).
constants were then computed as the change in the appropriate component of the stress tensor divided by
the strain. By converging the minimization to high accuracy (||F || < 10−10), we were able obtain results
that were very insensitive to strain magnitudes in the range 10−4 − 10−8.

Both Dr09 and Ba09i underpredict the atomic volume υ and the predicted c/a ratios are closer to the
ideal HCP value of

�
8/3 than is observed in nature. The elastic constants agree reasonably well with

experiment [108], with the most significant errors arising in C12 and C44.
The static compression curves were generated by first equilibrating a 5× 5× 5 HCP crystal at 300 K and

zero pressure. The applied pressure was then ramped from 0 to 200 GPa over the course of a 10 ps MD
simulation using NPT dynamics [109]. The instantaneous pressure and volume were averaged over 1 ps
intervals. In Fig. 49, we compare the results from Dr09 and Ba09i with the diamond anvil cell measurements
of Evans et al. [110]. In both cases the agreement with experiment is excellent. In particular, there is no
evidence of plastic deformation or phase change.

5.3 Phase Diagram

The melting point for Ba09i at low pressure was determined using the two-phase method. First, a 32×4×4
HCP crystal was equilibrated at an estimated melting point T0 and an average stress tensor equal to zero.
Then, with the cross-section fixed, but constant stress still enforced in the x direction, half of the crystal was
melted at a high temperature, followed by re-equilibration at T0, followed by further relaxation without a
thermostat, corresponding to the NPxxAyzH ensemble. Finally, 2.5 ns of NVE dynamics was run, using a
timestep of 0.25 fs. As can be seen from Fig. 50 this resulted in the establishment of a stable solid-liquid
interface at zero average stress. From the average temperature, we estimate Tm = 1390 K, somewhat lower
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Quantity Units Expt. Dr09 Ba09i
B [GPa] 117 113 115
C11 [GPa] 294 331 259
C33 [GPa] 357 309 329
C12 [GPa ] 27 -11 77
C13 [GPa ] 14 18 9
C44 [GPa] 162 19 65
C66 [GPa] 133 171 91
υ [Å3] 16.2 16.0 16.1
c/a [–] 1.57 1.60 1.62
M.P. [K] 1550 — 1390

Table V: Comparison of experimental and calculated properties using the MEAM interatomic potential for
beryllium: Dremov et al. (Dr09) [106] and this work (Ba09i).
than the experimental value of 1550 K. We attempted to apply the same methodology to the Dr09 potential.
However, we were unable to produce a stable HCP/liquid interface with this potential, because the HCP
crystal became unstable at about 600 K, transforming to another crystal phase.

Starting with the low-pressure result for Ba09i, we extended the low-pressure melting point calculation
to the entire melting curve up to a pressure of 300 GPa and a temperature of 5450 K. The intersection of
the principal Hugoniot with this melting curve provides an estimate of where shock-melting is expected to
occur. We started with a two-phase configuration of 2,048 atoms containing a slab of HCP crystal sand-
wiched between layers of liquid. A Langevin thermostat was used to maintain an average temperature of
1390 K, the previously established ambient melting point. The three periodic cell dimensions were coupled
to independent Berendsen barostats, so as to maintain zero average stress in the three principal directions.
Starting from this equilibrated state, we ran a short (2.5 ps) MD simulation during which the barostat set
pressure was ramped from zero to 10 GPa and the thermostat set temperature was ramped from 1350 K
to 1700 K. The latter value was found by trial and error to prevent either rapid freezing or melting of the
sample. This was followed by a longer (25 ps) MD simulation at the final set points of the thermostat and
barostat. Starting from this equilibrated state, several 25 ps MD simulations were performed at slightly
higher and lower temperatures. The growth of the solid or liquid phase was observed by monitoring the
average potential energy per atom as a function of time. In this way, a robust estimate of the equilibrium
melting temperature could be obtained. The procedure was repeated for pressures of 20, 40, 70, 100, 150,
200, 250, and 300 GPa. In each case, the starting point was an equilibrated state at the previous pressure.
The MD timestep was 0.125 fs, the thermostat relaxation time was 100 fs, and the barostat relaxation rate
was 0.01 fs−1GPa−1.

Fig. 51 (top) shows the potential energy trajectories used to estimate the melting point at 150 GPa. At
4100 K, all of the liquid layer freezes in about 10 ps. Conversely, at 4400 K, all of the solid melts in about the
same time. These results provide reliable upper and lower bounds on the melting point. In the simulation
at 4200 K, the solid slab appears to be slowly melting. Linear regression of melting/freezing rate versus
temperature predicted zero melting rate at a temperature of 4170 K. The simulation at this temperature
verified that the net melting is indistinguishable from zero after 25 ps. Fig. 51(bottom) shows a snapshot
taken from the final trajectory at 300 GPa, confirming that the two-phase structure (HCP and liquid) was
preserved throughout the entire set of simulations. The full set of estimated melting points are plotted in
Fig. 52. The agreement with the previous estimates using DFT [111] and a recently published equation of
state [101] is surprisingly good. We conclude that the Ba09i MEAM potential provides a good description
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of the important regions of the potential energy surface for the HCP and liquid phases up to pressures and
temperatures relevant for dynamic melting.

5.4 Dynamic Compression

In order to efficiently survey the dynamic response of beryllium as represented by Dr09 and our Ba09i
potential, we have used uniaxial Hugoniostat MD simulations. The method is that of Selezenev et al.
[114], and is similar to the NPzzHug method developed by Ravelo et al. [115]. The primary difference
is that instead of controlling temperature and pressure using integral feedback with damping (akin to the
Nose-Hoover thermostat), we use linear feedback (akin to the Berendsen thermostat). Beginning with an
equilibrated HCP crystal, 10 × 10 × 10 4-atom units cells, the system was uniaxially compressed to a
specified axial stress while scaling the atom velocities to meet the Rankine-Hugoniot jump conditions. The
compression rise time was 10 ps, while the total duration of each simulation was 50 ps. The average
final volume, temperature and stress tensor were obtained from the final 5 ps of the simulation. An MD
timestep of 0.5 fs was used. Except for the case of elastic-plastic shockwaves occuring at intermediate
shock strengths, the final states from these Hugoniostat simulations can be expected to closely match those
obtained from direct NEMD simulation of a shockwave travelling through a long sample.

In Fig. 53 we show axial stress for different degrees of compression oriented along the a-axis (top)
and c-axis (bottom). For both orientations and both potentials, we see qualitatively similar results. A
smoothly increasing initial elastic response at low shock strength is followed by a rather jumpy plastic
response at higher shock strengths, and finally a smoothly increasing response at the highest shock strengths
corresponding to molten beryllium. The elastic-plastic transition, or Hugoniot elastic limit (HEL), occurs
at much higher shock strengths than is observed in experiments on polycrystalline beryllium [113], where
the HEL is less than 1 GPa. This is to be expected, since the usual mechanisms for initiating plasticity,
pre-existing defects and grain boundaries, are absent from the simulations. Above the HEL, both potentials
exhibit a plastic reponse that agrees quite well with the experiments, although our Ba09i potential exhibits
quite large jumps in compression. We expect that for larger system sizes, these jumps will tend to smooth
out. The location of the melting transitions for both potentials are indicated by the solid (Dr09) and dashed
(Ba09i) horizontal lines.

The melting transitions are more apparent in Fig. 54, where we have plotted axial stress versus tem-
perature. For both orientations and both potentials, we observe a drop in temperature at the melting point
(indicated by the solid (Dr09) and dashed (Ba09i) vertical lines), corresponding to a jump from the solid
Hugoniot to a point on the liquid Hugoniot. For Dr09, this transition occurs around 180 GPa and 2500 K
for both orientations, which is substantially below that predicted by previous DFT calculations [111]. For
our Ba09i potential, the transition occurs around (4500-5500 K, 225-230 GPa). The solid Hugoniot extends
to somewhat above the equilibrium melting curve, which is consistent with a small amount of superheat-
ing. The liquid Hugoniot begins below the equilibrium melting curve, indicating that the liquid is slightly
supercooled. For both orientations, the Ba09i solid and liquid Hugoniot points near the melting transition
fall quite close to previous DFT calculations [111]. This indicates that the Ba09i potential quite accurately
captures the potential energy surface of HCP and liquid beryllium over the entire range of pressures from 0
to 300 GPa.
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Figure 49: Pressure versus degree of compression for static compression of beryllium. MD simulations of
single crystal using the Dr09 (circles) and our Ba09i (triangles) parameterizations; quasihydrostatic mea-
surements on polycrystalline beryllium (line) [110].
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Figure 50: a) Temperature from NVE MD simulation of equilibrated solid-liquid interface using Ba09i:
instantaneous temperature (black dots), temperature averaged over 0.5 ns blocks (red crosses), and overall
average temperature (red line); b) Visualization of final state from NVE MD simulation. Atoms are shaded
by coordination number.
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Figure 51: Top: Variation of potential energy during two-phase calculations at 150 GPa; Bottom: Visualiza-
tion of configuration from two-phase simulation at 300 GPa and 5450 K. Atoms are colored by the value of
their centrosymmetry parameter φ [112], green/dark indicating φ < 3.8, yellow/light indicating φ > 3.8.
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Figure 52: Equilibrium melting line (temperature versus pressure) for the Ba09i potential (diamonds). Also
shown are estimates from DFT calculations of HCP and liquid Hugoniot states (crosses) [111], the melting
line estimated from these calculations (solid line), and the melting line from the equation of state of Benedict
et al. (dotted line) [101]
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Figure 53: Plot of axial stress versus compression ratio from Hugoniostat MD simulations using the Dr09
(circles) and our Ba09i (diamonds) potentials. Results for compression along the a-axis (top) and c-axis (bot-
tom) crystal orientations are compared to experimental data for polycrystalline beryllium (crosses) [113].
The horizontal lines indicate the location of the shock melt pressure for Dr09 (solid) and our Ba09i (dashed)
potentials.
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Figure 54: Plot of temperature versus axial stress from Hugoniostat MD simulations using the Dr09 (circles)
and our Ba09i (diamonds) potentials. Results for compression along the a-axis (top) and c-axis (bottom)
crystal orientations are shown. The vertical dashed lines indicate the location of the melt pressure for
Dr09 (solid) and our Ba09i (dashed) potentials. Also shown is the equilibrium melting curve for the Ba09i
potential (solid line with diamonds), DFT calculations of HCP and liquid Hugoniot states (crosses) [111],
the melting line estimated from these calculations (solid line), and the melting line from the equation of state
of Benedict (dotted line) et al. [101]
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6 Time-Position Scaling relation in ramp-loading

6.1 Introduction

Sandia leads the world in characterizing materials in off-Hugoniot regions of phase space using experimental
ramp wave loading. However, leadership in dynamic material response also requires state-of-the-art theory
and modeling. Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to
atom-scale physics such as structural transitions, non-equilibrium dynamics, and elastic-plastic deformation.
There are, however, significant difficulties in utilizing MD for extreme environments. First, as has already
been discussed, current atomic potentials are based on ambient material properties and are inadequate for
multi-megabar and high-temperature regimes. Second, ramp loading on Z, shock-induced transitions, and
melting occur over time scales too long to be simulated with today’s MD methods. By generalizing recent
innovative methods developed for shock loading, we have extended MD timescales by orders of magnitude,
enabling us to model ramp compression and other longer timescale phenomena. The techniques we have de-
veloped will allow us to contribute significantly to the understanding of shock and quasi-isentropic physics,
as well as to substantially expand understanding of several current critical areas of material behavior.

Previous work by Lane [65] had shown that ramp loading could be applied to reduced systems to model
the shock conditions near the shock front. In that work, it was shown that velocity ramp rate, v̇p , system size
L and the ambient wave speed Co are related by a non-dimensional ramp-rate ˙̃vp = v̇pL/C

2
o . We describe,

here, a similar method which we have proposed and tested that scales time and position while holding the
piston velocity loading path constant.

6.2 Method of characteristics

The method of characteristics has long been used to analyze and visualize complex solutions to the wave
equations. Characteristics, or characteristic curves, are a visual representation of a wave’s evolution through
time and space. For a one dimensional wave a characteristic can depict concisely the entire spatio-temporal
history of a propagating wave in a 2D x-t plot. The ability to extract characteristic curve representations from
a molecular dynamics simulation means that we can represent the history of a ramp wave as it propagates
and steepens into a shock wave. Further, we can compare two such wave evolutions. In the next section
we will offer a scaling argument which we argue allows us to equivalently model a ramp experiment with a
much smaller system. Characteristic curve analysis gives us a mechanism to validate this assertion.

For a forward-propagating simple wave in a linear elastic material characteristic curves have a particularly
clear meaning. Figure 55 represents how curves can be extracted from a time series of wave profiles. In this
simple case, three spatial profiles of material velocity from t0 to t2 show the steepening of a wave pulse. For
this class of wave one can simply extract the (x, t) points for given values of material velocity, u. Take, for
example, the maximum value, u2. The location of this maximum as a function of time defines a characteristic
curve for this wave evolution. The bottom plot in Fig. 55 shows three such curves extracted from the profiles
shown. Steepening of the front of the pulse is represented by a convergence of the characteristic curves. The
back of the pulse is spreading, which is represented in the divergence of the characteristic curves. Notice
that for an unchanging wave profile, the characteristic curves would be parallel. It should be stressed that
extraction of characteristics is significantly simplified in this special case of a forward-propagating simple
wave. A more general definition is necessary.

For a full mathematical description of characteristics, see the text by Courant and Friedrichs [116]. For a
wonderful conceptual description in the context of both linear and nonlinear elastic response, see Drumheller
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Figure 55: Wave profiles of velocity, u, vs position, x, for three times t0, t1 and t2 (top three images).
Characteristic curves for this simple case are plotted in x − t space for the wave evolution depicted in the
wave profiles (bottom).
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[117]. We briefly summarize, here, points necessary to motivate our method for extracting characteristic
curves from molecular dynamics simulations.

It can be shown that characteristic curves are determined by the simple relation,

dx

dt
= v + c , (22)

for a nonlinear elastic wave in a spatial frame, where v is the local material velocity and c is the local wave
speed. dx/dt is the inverse slope of the characteristic in x − t space. In cases where both the velocity
and the wavespeed are explicit functions of time and position, this ordinary differential equation can be
analytically intractible. However, numerical integration can always be used to produce characteristic curves
from simulation.

Figure 56: Two figures from the text by Courant and Friedrichs [116] showing depictions of characteristic
curves. Characteristic curves are often approximately straight lines, but curve when nonlinear response is
significant. Characteristics can never cross, as schematically shown in the left image.

In the context of shock and ramp loading, two misrepresentations of characteristic curves are common.
First, characteristics are often represented as straight line curves, and second these straight lines are often
depicted as crossing in x − t space. These crossing points are, of course, impossible since the slope of a
characteristic is single valued for a given position and time. These two misrepresentations are related and
arise from the simplifying assumption that the wave speed in a material is constant. This is, of course, a
good assumption for small amplitude wave motion, but fails when amplitudes are large, as is always the
case in ramp and shock loading. Figure 56 shows two x − t plots from Courant and Friedrichs which
illustrate important features of characteristic curves. On the left, an overly simplified characteristics plot for
an accelerating piston illustrates the crossing straight-line characteristics. On the right in the same figure is
a more accurate depiction of the curving characteristics which are possible in nonlinear elastic theory. Later
in this section, we will extract characteristic curves for an MD simulation of a ramp-shock transition where
the curvature of characteristics was directly observed.

Figure 57 depicts the methodology employed to extract characteristic curves from a time series of molec-
ular dynamics simulation states. The figure depicts a number of system snapshops, stacked vertically, taken
from a dynamic trajectory. Each snapshot is discretized spatially into bins over which state variables, such as
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Figure 57: A diagram describing the methodology for integrating up the characteristic curve points in x− t

space. Each point (xn+1, tn+1) can be calculated from the current point and the slope, which is uniquely
determined by the state variables at the current point.

Figure 58: A plot of the wave speed within an Lennard-Jones system as a function of the pressure. This data
was measured using a series of independent time-of-flight measurements for small amplitude pulses. The
points are measured and then a smooth analytic fit was applied for the characteristic analysis.
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t = 80 ps

t = 140 ps

t = 240 ps

Figure 59: Three snapshots from an MD simulation of a ramp wave in Lennard-Jonesium. For each snapshot
an atomistic view, discretized view and wave profile view. Color represents the local material velocity, where
red is high velocity and blue is low velocity.
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Figure 60: x − t plot showing characteristic curves extracted from a molecular dynamics simulation of
Lennard-Jonesium. Characteristic curves can be seen bending, rather than crossing, as the ramp wave be-
comes a shock wave. Inset shows detail in the merging characteristics.
density, pressure, temperature and material velocity, can be averaged. Beginning at a given xo, to trajectory
point, one can determine the slope of the characteristic through that point from Equation 22. This requires
only that the local material velocity, v and the local wave speed, c, be known. The local material velocity is
easily measured from MD. The wavespeed is not easily calculated on the fly. Instead, a separate set of time-
of-flight calculations were made for a range of material state variables. The wave speed was then tabulated
as a function of P , T , and ρ. For elastic shock waves, we found that we could parameterize the wave speed,
c, as a function of P alone, as seen in Figure 58 for a solid argon system. Once the characteristic slope was
determined, the next (xn+1, tn+1) trajectory point can be mapped recursively by numerical integration.

tn+1 = tn + ∆t (23)

xn+1 = xn +
dx

dt

����
n

∆t , (24)

where ∆t is the gap between system snapshots. This entire process is then repeated for the initial condition
of each characteristic.

Ramp compression simulations were conducted in a solid argon model system using the Lennard-Jones
potential. A linear velocity ramp was imposed to a warm momentum mirror piston. A one-dimensional
wave was produced in a system of 344,000 atoms with overall dimensions 5.38 nm × 5.38 nm × 462.7 nm.
Periodic boundary conditions were implemented in the directions transverse to the wave propagation. In
Figure 59, we see various representations of a 250 m/s ramp wave accelerated from rest over 100 ps. These
snapshots were taken after 80 ps (top), 140 ps (middle) and 240 ps (bottom). We see in the profiles that the
linear ramp quickly steepens into a shock wave.

For the characteristic analysis of this trajectory, the system was spatially discretized with bins of size 4.6
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Figure 61: Plot showing the slope of characteristic curves as a function of position from a molecular dy-
namics simulation of Lennard-Jonesium. Colors correspond to the colored characteristics in Fig. 60
nm and temporally discretized into snapshots separated by ∆t = 10 ps. Figure 60 shows the characteristics
we extracted. We see clearly the converging characteristic curves which are indicative of a steepening front.
The characteristics are, in fact, straight lines for the majority of the simulation trajectory. However, in the
vicinity of the shock front, where the wave speed is rapidly changing due to gradients in the pressure state,
we see that the lines bend, or curve and turn parallel, rather than cross.

Figure 61 shows the slope of the characteristics from Fig. 60 plotted as a function of position. Again, each
characteristic has a constant slope, different for each, because each emanates from an accelerating piston
at a different time. We see that for early times, as the first characteristics converge, i.e. as the ramp first
begins to ”shock up,” the characteristics curve slopes drop. At later times, however, after the shock is well
formed, converging characteristics bend the other way, with slopes increasing. The ability to study such
wave properties is particularly interesting in investigations of the transition from quasi-isentropic processes
to the entropy-producing shock state.

A similar analysis was conducted for aluminum, using the Voter-Chen parameterization of the EAM
potential. Figure 62 show the corresponding plot of sound speed as a function of stress state and a plot of
characteristic curves extracted for a system 4.09 nm × 4.09 nm × 655.0 nm, which was driven by a piston
linearly ramped from rest to v = 750 m/s over 24 ps, then held for 72 ps. Interestingly, one can identify a
small shock steepening well before a true shock forms, which is due to the kink seen in the wave speed plot.
The aluminum work was conducted as a demonstration that the techniques are applicable to more complex
materials than solid fcc argon.

85



Figure 62: (left) A plot of the wave speed within a Voter-Chen aluminum system as a function of the
pressure. (right) x − t plot showing characteristic curves extracted from a molecular dynamics simulation
of Voter-Chen alumninum.
6.3 Method of scaling

As has been described, the simulation of ramp waves becomes extremely costly as the ramp rates get slower,
because longer simulation durations are required, which in turn require correspondingly larger systems
through which to propagate. There is, therefore, significant motivation to devise a method which can capture
the material response without such computational expense. To do this we will turn to scaling arguments
which allow us to model full-scale experiments with much smaller systems and shorter times.

Just as properly scaled-down mockups of airplanes can tell us how their larger cousins will behave, we
propose to model experimental-scale ramp waves with smaller MD simulations. To do this we alter the
ramp piston loading length and time scales, but do not alter the physical properties of the material. The
interatomic potential, lattice dimensions, and initial temperature, for instance, are unchanged.

The one-dimensional piston trajectory is scaled by a symmetric scaling of both position and time, which
together keeps the velocity in the scaled coordinates unchanged. The scaling is given by,

t
� =

1
M

t

x
�(t�) =

1
M

x(t)

v
�(t�) = v(t) (25)

where the primed variables are the scaled values and M is the scaling factor.
This transformation reduces the system volume by a factor of 1/M , since only lengths in the propagation

direction are scaled and not the transverse directions. A quasi-one-dimensional wave is assumed. Further,
the duration of the simulation is reduced by a factor of 1/M . Thus one can readily see that this approach
reduces the total computational effort by 1/M

2.
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6.3.1 Kinematic and dynamic similarity

Dynamic scaling is a technique frequently used in fluid mechanics and nonlinear dynamics. It is closely
related to the approaches of dimensional analysis and nondimensionality, but is most identifiable as the
approach which allows engineers to build less costly scale models of large systems for tabletop studies to
validate designs. Here, we propose to make use of these methods to transform experimental scales down
to those that can be modeled with molecular dynamics. In this work, we test our approach by using the
technique to transform between two MD simulations: one M

2 more costly than the other, where M is the
scale factor in Equations 25.

We imagine a true system and model system of a one-dimensional ramp wave on which we can test that
our proposed scaling satisfies the conditions of kinematic similarity and dynamic similarity. Kinematic
simularity is simply the condition that v(t) = v

�(t�), which is one of our scaling assumptions and thus is
satisfied intrinsicly. The more stringent test would be dynamic similarity which demands that all forces are
proportionally scaled. We further demand that the forces are unchanged, which allows us to leave the inter-
atomic potential unscaled and thereby the material unchanged. We look at the ratio of forces Fmodel/Ftrue

and study how each dimension scales.
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(26)

where M , L, and T represent dimensions of mass, length and time, respectively. Note that in expanding the
mass units we use density × volume. Assuming one-dimensional flow, we have taken M = ρAL, where A

is the unscaled cross-sectional area. In the final step of Equation 26, λ is the ratio between model and true
systems for a given dimensional unit, e.g. λM = Mm/Mt. Our scaling proposal from Equation 25 equates
to,

λL = λT =
1
M

(27)

λρ = 1 (28)

plugging into Equation 26 gives

λF =
Fmodel

Ftrue

= 1 (29)

which shows that the forces are invariant to the proposed scaling. A similar analysis can be used to show
that velocity, strain, stress, temperature and density are invariant to the transformation. Not all observables,
however, are invariant. Acceleration, strain rate, viscosity, time, distance and any extensive variable are not
invariant. Specifically,

λacceleration = λstrain rate = M
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λT = λL =
1
M

(30)

.
We would expect, given our assumptions, that this proposed scaling would break down in several circum-

stances. First, clearly, when the dynamics are significantly three dimensional, rather than quasi 1D. Our
analysis assumes that the volume scales like 1/M , not 1/M

3 as it would if the dynamics were 3D. Such a
change in the volume scaling would destroy the invariance of the force and thus destroy the dynamic sim-
ilarity. In 3D, dynamic similarity might be recovered by scaling the interatomic potential or the material
density, but this has not been investigated. Further, it should be noted that we would expect this scaling to
breakdown in cases where the dynamics and/or forces are strongly dependent on the strain rate, however we
have not seen direct evidence of this in our test systems.

6.3.2 Invariance in the wave equation

An alternate viewpoint from which to evaluate the proposed scaling is to look to the wave equation. For the
nonlinear elastic wave equation we have,

∂v

∂t
+ C

∂v

∂x
=

1
ρoC

�
∂T

∂t
+ C

∂T

∂x

�
(31)

where C is the material wave speed and T is the stress. If we execute the scaling transformation by applying
the chain rule,

∂
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=

1
M

∂

∂t�
(32)

∂

∂x
=

dx
�

dx

∂

∂x�
=

1
M

∂

∂x�
(33)

then we see that the transformation simply adds the same scale factor to each term. Multiplying through by
M returns the wave equation unchanged in the new coordinates.

As before, this analysis depends on our assumption of one-dimensional dynamics. We have also assumed
here that the stress and wave speed depend only implicitly on x and t.

Figure 63 illustrates examples of the relationships between scaled and unscaled variables through plots
of velocity and position versus time. The left plots show two loading paths, linear (top) and stairstepped
(bottom). The plots clearly show that the velocity history is the same for v and v

� in each plot. v
� is simply

compressed in time. The right plots show the corresponding displacement of the piston for each velocity
profile. Note that unlike the velocity, where v

� � 1

M
tf

�
= v(tf ), here, x

� � 1

M
tf

�
= x

�(t�
f
) = 1

M
x(tf ). These

two loading pathways are exactly those which we will use as examples in the two test cases which follow
in the next two subsections. The validity of our scaling argument will be tested in the nonlinear-elastic case
and the plastic case.

6.3.3 Ramp scaling in the nonlinear elastic response regime

We chose a solid argon model system, modeled with the highly-efficient Lennard-Jones potential, on which
to examine the validity of our scaling proposition. We constructed two systems, one 10× larger than the
other. The larger system consisted of 800,000 atoms in an fcc lattice, 53.8 nm× 53.8 nm× 1077.3 nm. The
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Figure 63: Plots of piston loading paths for original (black) and scaled (red) variables. The top two images
are the velocity (left) and position (right) for a linear ramp. The bottom two images are the same plots for a
stairstep ramp.
smaller system consisted of 80,000 atoms in the same fcc lattice, 53.8 nm × 53.8 nm × 107.7 nm. Both
were equilibrated at 6 K. An LJ cubic spline potential was used with cutoff of just under 6 Å . The material
properties of both systems were identical, only the size of the systems differed.

We drove these two systems with accelerating warm pistons moving into the samples. The velocity and
position of the piston has an analytic form,

v = az

�
t

M
+

4
3ω

sin
�

ω
t

M

�
+

1
3ω

sin
�

2ω
t

M

��
(34)

z = zo + az

�
t
2

2M
+

4M

3ω2

�
1− cos ω

t

M

�
+

M

6ω2

�
1− cos 2ω

t

M

��
(35)

where ω = 6π/tf , and for the large system M was 1 and for the small system M was 10. The final ramp
piston velocity was 250 m/s in both systems, which is low enough that the shock response was entirely in
the elastic shock regime.

Figure 64 shows the velocity profiles at three times for the ramp wave response within the larger system.
We see that the ramp wave steepens into four small shocks and these shocks ultimately merge into a single
shock front.

Figure 65 shows the system response of the two systems in characteristic curves. We can see the charac-
teristic lines converge and merge into four shocks which eventually merge into a single shock at late time.
For the large system this process occurs over ∼ 300 nm and ∼ 225 ps. In the small system the shock up
occured over ∼ 30 nm and ∼ 22.5 ps.

Figure 66 shows the same two systems where the lengths and times have been multiplied by the scale
factor M = 10. We see excellent agreement between the two sets of characteristics. Because characteristics
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Figure 64: Particle velocity profiles showing the propagation of a ramp wave as it steepens into a shocks
which ultimately merge into a single shock front. The initial pulse was a smooth stair step function.

90



Figure 65: The characteristic curves extracted from ramp wave simulations. These two sets of curves for a
large original system and a scaled smaller system are plotted together. All values are as measured from the
two simulations.
capture the entire spatio-temporal evolution of the ramp wave, the overlap of characteristic curves means
that the systems have evolved in exactly the same manner and shocked up in identical trajectories, except
that the scaled system did so over 1/10th the time and in 1/10th the space. Thus, the scaled simulation
captured exactly the same physics with 1/100th the computational effort.

6.3.4 Ramp scaling in the plastic response regime

Our second validation makes use of the same two argon systems, but with ramp waves driven with a su-
perlinear piston ramp to velocities well into the plastic response regime for our model material. The higher
order in t suppresses shock formation. The piston motion was given by

v = az

t
2

Mtf
(36)

x = zo +
1
3
az

t
3

Mtf
(37)

where again M is 1 for the larger system and 10 for the small system. The final velocity was 1500 m/s for
both cases.

Figure 67 shows spatial profiles for the wave propagation at timesteps separated by 100 ps for the large
system and 10 ps for the small system. Plots show the stress (top), velocity (middle) and temperature
(bottom), with real coordinates on the left and nondimensional positions on the right.

Our characteristic methods allow us to compare two waves over all spatio-temporal points in its evolution.
However, our characteristic methods have not been generalized to plastic waves. The issue is determining
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Figure 66: The characteristic curves from Fig. 65 are replotted. Here, the times and positions of the smaller
scaled system are multiplied by the scale factor. We see excellent agreement with the original system which
required 100× more computation.
the local wave speed. In the case of plastic waves, the wave speed is not single valued for a given pressure,
but depends on temperature and density as well. A reliable method for extracting instantaneous wave speed
from simulation is not currently available, so our scaling comparisons must depend solely on snapshot
profiles.

In both the stress and velocity profiles, we see extremely good agreement between the original and scaled
systems in the plots to the right. The agreement is near perfect until the onset of plasticity and then afterward
agrees within the local fluctuations in the system. It is likely that the agreement would be better if better
statistics were available, as would be the case with larger systems.

The only significant deviation from the predicted scaling evident in the profiles of Figure 67 is in the
temperature profiles. Unlike the stress and local velocity, temperature can be strongly affected by poor
statistics. We, therefore, believe that the somewhat weaker agreement may be due to poor statistics in the
smaller systems. However these finite system size effects in the plastically deformed systems complicate,
but do not destroy the scaling. We predict that making the smaller systems larger would mitigate this issue.

Finally, it should be noted that systems exhibiting plasticity violate several of the assumptions which were
made in motivating this scaling method. Plasticity couples the 1D propagation with the transverse dimen-
sions which are not explicitly handled within our scaling. This plasticity, being dependent on noninvariant
quantities such as shear stresses, strength and viscosity, do not rigorously obey our scaling conditions. How-
ever, with this caveat, we see very good scaling regardless. This perhaps indicates that the plasticity events,
such as stacking fault generation and local melting only weakly perturb the quasi-1D wave and that these
processes appear to be local, and somewhat independent of scale. This is an exciting result, which indicates
that this scaling may be applicable outside the nonlinear-elastic regime in which it is proposed. However, the
response may depend strongly on the particular material properties of a system and the processes associated
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Figure 67: Profiles of ramp wave propagation through solid argon in original and scaled systems. The plots
on the left show the true coordinates of the simulations. The plots to the right multiply the position by
the scale factor to compare results in original and scaled systems. Very good agreement is seen between
original (black) and scaled down (red) systems in all of the profiles, stress (top), velocity (middle) and good
agreement is seem in temperature profiles (bottom).
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with the plastic response.
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Part III

Methods
7 Continuum Properties

Principal Authors: Jonathan A. Zimmerman, Reese E. Jones, Jeremy A. Templeton
This section contains a paper entitled “A Material Frame Approach for Evaluating Continuum Variables

in Atomistic Simulations” that was published in Journal of Computational Physics in 2010. It was authored
by Jonathan A. Zimmerman, Reese E. Jones, Jeremy A. Templeton. [SAND 2008-5503 J]

Earlier in this report, we presented several examples where molecular simulations are used to illuminate
the behavior of materials experiencing shock and ramp compression. Two pertinent questions to ask when
performing such simulations are: How does one have confidence that such simulations are emulating real
material behavior?, and How can these simulations help to improve the material response models used at
macroscopic scales?

A reasonable answer to the first question is by comparing molecular simulation results with information
obtained from experimental studies of high rate deformation. However, this information is usually in the
form of continuum properties such as temperature and pressure locally measured as a function of time
with respect to the propagation of the shock or ramp wave. These properties are not intrinsic to molecular
simulation; thus, metrics are needed that translate the characteristic information of atomistics (e.g. atomic
velocities, interatomic forces) to continuum variables. This section will review several such formalisms that
contain these metrics.

The estimation of spatially and temporally varying continuum fields also provides a partial answer to the
second question posed. However, in continuum mechanics it is common to separate the elastic and inelastic
response of material deformation, construct coupled equations that govern the evolution of these separate
deformation metrics, and then recombine them to predict the full material behavior. A simple example
of this is modeling metals that exhibit strain hardening; the material has an initial (often assumed linear)
elastic behavior until it reaches a critical stress and strain (the yield point) at which the material hardens, i.e.
the material deforms inelastically or plastically such that the yield stress increases with increasing strain.
Constitutive models are constructed to describe both the elastic (i.e. elastic constants) and hardening (i.e.
flow rule) responses. The ability for molecular simulation to impact the functional forms and parameters
of these models relies on the ability to separate our atom-to-continuum deformation expressions into elastic
and inelastic portions, a non-trivial requirement. In this section, we report on efforts made to perform this
separation and estimate plastic strain and dissipative work.

7.1 Eulerian Atomistic-Continuum Formulation by Hardy

In this section, we briefly describe the Eulerian (spatial) frame formulation developed by R. J. Hardy [88]
whereby expressions for continuum mechanical variables such as stress and heat flux are derived from
atomic scale quantities intrinsic to molecular simulation. This formulation is ideally suited for developing an
atomistic-to-continuum correspondence for fluid mechanics problems, as well as solid mechanics problems
undergoing high rates of deformation. Hardy’s method uses a finite-valued and finite-ranged localization
function to average atomic properties in the vicinity of a fixed spatial point, resulting in expressions for field
variables that satisfy the continuum balance laws. While the range and characteristic size of this function
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can be chosen arbitrarily, the resulting expression for stress contains terms that, theoretically, should remain
constant for different size volumes.

7.1.1 Balance Laws

In the Eulerian or spatial frame, the the balance equations for mass, linear momentum and energy are as
follows:

∂ρ

∂t
+∇x · (ρv) = 0 (38)

∂ (ρv)
∂t

= ∇x · (σ − ρv ⊗ v) + ρb (39)

∂ (ρe)
∂t

= ∇x · (σ · v − ρev − q) + ρb · v + ρh (40)

In equations (38) through (40) ρ is mass density, v is velocity, σ is Cauchy stress, b is body force per unit
mass, e is total energy per unit mass, � is internal energy per unit mass (total energy contains contributions
from both internal energy and continuum kinetic energy: e = � + 1

2
v

2), q is heat flux and h is energy
generation per unit mass.

7.1.2 Densities and Localization

We consider a body to be a system of N atoms, where each atom α is characterized by its mass m
α,

its position in the reference configuration X
α, its position in the current configuration x

α(t), its velocity
v

α(t) = dx
α

dt
, and a displacement u

α(t) ≡ x
α(t) − X

α. Hardy relates these atomic properties to the
continuum mass ρ(x, t), momentum p(x, t), and energy density ρe(x, t) fields through use of a localization
function ψ which spatially averages the properties of the atoms, and allows many atoms to contribute to
a continuum property at a specific position and time. In his original formulation, Hardy expressed ψ as a
function of current position. The continuum densities are thus defined as:

ρ(x, t) =
N�

α=1

m
α
ψ(xα − x) (41)

p(x, t) =
N�

α=1

m
α
v

α
ψ(xα − x) (42)

ρ(x, t)e(x, t) =
N�

α=1

�
1
2
m

α (vα)2 + φ
α

�
ψ(xα − x). (43)

A few important things to note:

• The localization function ψ(r) is non-negative,2 i.e. ψ(r) ≥ 0.

• ψ(r) has dimensions of inverse volume.
2While it is possible to choose localization functions that are not non-negative (as discussed on p. 77 of [118]), in practice this

is rarely done as it contains the potential to admit unbounded values for the extremum. In such instances, additional regularity
requirements are needed.
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• ψ(r) is a normalized function, thus �

Ω

ψ(r)d3
r = 1, (44)

where Ω ⊂ R
3 is the domain of interest containing the collection of atoms.

• In equation (43), the total potential energy density of the system is expressed as the summation of
individual atomic potential energies, φα.

• The velocity field v is defined by the expression

v(x, t) ≡ p(x, t)
ρ(x)

=
�

N

α=1
m

α
v

α
ψ(xα − x)

�
N

α=1
mαψ(xα − x)

. (45)

which is effectively a mass weighted average. With velocity defined in this manner, a definition for
the displacement field u is not straight-forward as multiple time-dependent terms within equation (45)
prevent easy integration to obtain such a field.

We note that in his earlier works [88, 119], Hardy established an important property of the localization
function ψ. Given regularity of ψ, a bond function B

αβ(x) between atoms α and β can be defined by the
expression

B
αβ(x) ≡

�
1

0

ψ(λx
αβ + x

β − x)dλ, (46)

where x
αβ = x

α − x
β .

7.1.3 Energy and Force Assumptions

Hardy makes four key assumptions about the forms of the energies of, and forces on, the atoms in the
system:

1. The total potential energy of the system, Φ, can be considered to be the summation of individual
potential energies of each atom within the system,

Φ =
N�

α=1

φ
α
. (47)

2. The force on any atom can be expressed by the summation

f
α ≡ − ∂Φ

∂xα
=

N�

β �=α

f
αβ

. (48)

While it is not always clear what the physical meaning of f
αβ is, this partition can always be made.

3. The atomic potential energies depend only on the relative inter-atomic distances,
φ

α = φ
α(xαβ

, x
αγ

, . . . , x
βγ), so

f
α = −

N�

β �=α

∂Φ
∂xαβ

x
αβ

xαβ
= −

N�

β �=α

N�

γ=1

∂φ
γ

∂xαβ

x
αβ

xαβ
. (49)
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This expression includes the possibility that α = γ. This assumption can be shown to be true for any
potential form.

4. Each atomic potential energy depends only on the distances between the atom under consideration
and all other atoms, φ

α = φ
α(xαβ

, x
αγ

, . . . , x
αN ). Thus, the force between atoms α and β can be

expressed as

f
αβ = −

�
∂φ

α

∂xαβ
+

∂φ
β

∂xαβ

�
x

αβ

xαβ
= −f

βα
. (50)

While pair potentials and EAM qualify for this assumption, it is not generally true.

7.1.4 Continuum Expressions

Substitution of the expressions for mass, momentum and energy densities into the continuum balance laws
enables derivation of expressions for Cauchy stress (σ) and heat flux vector (q). This was done originally
in [88], and rederived and discussed more thoroughly in more recent articles by Zimmerman, Webb and
colleagues [89, 90]. Here, we merely present the resulting expressions.

Cauchy Stress

The expression for Cauchy stress at a fixed spatial point is:

σ(x, t) = −1
2

N�

α=1

N�

β �=α

f
αβ ⊗ x

αβ
B

αβ(x)−
N�

α=1

m
α
v̂

α ⊗ v̂
α
ψ(xα − x). (51)

In this expression, the relative velocity v̂
α is defined

v̂
α(x, t) ≡ v

α − v(x, t) . (52)

and has the property
N�

α=1

m
α
v̂

α
ψ(xα − x) = 0. (53)

Heat Flux

The expression for heat flux at a fixed spatial point is:

q = −
N�

α=1




N�

β �=α

∂φ
β

∂xαβ

x
αβ ⊗ x

αβ

xαβ
B

αβ(x)



 · v̂α +
N�

α=1

�
1
2
m

α (v̂α)2 + φ
α

�
v̂

α
ψ(xα − x). (54)

Temperature

Hardy and colleagues also derived [120] an expression for temperature by considering the equipar-
tition theorem and the kinetic energy associated with atomic velocities relative to the velocity of the
continuum at a spatial point,

T(x, t) =
1

3kB

�
N

α=1
m

α (wα)2 ψ(xα − x)
�

N

α=1
ψ(xα − x)

, (55)

which is a simple weighted average as opposed to the volume average in (41) for example. Here, kB

is Boltzman’s constant.
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7.2 Lagrangian Atomistic-Continuum Formulation

In this section, we present expressions from a material frame formulation analogous to the spatial frame
formulation developed by Hardy. Derivation of these expressions was accomplished in [121]. The resulting
P-K stress tensor, unlike the Cauchy expression, has no explicit kinetic contribution. The referential heat
flux vector likewise lacks the kinetic contribution appearing in its spatial frame counterpart. Using molecular
dynamics simulations, we show that our P-K stress expression nonetheless represents a full measure of stress
that is consistent with both the system virial and the Cauchy stress expression developed by Hardy.

7.2.1 Balance Laws

In the Lagrangian or material frame, the balance equations for mass, linear momentum and energy are as
follows:

dρ0

dt
= 0 (56)

ρ0

dv

dt
= ∇X ·P + ρ0b (57)

ρ0

d�

dt
= P :

dF

dt
−∇X ·Q + ρ0h (58)

In these equations, ρ0 is reference mass density (mass per unit reference volume), P is 1st Piola-Kirchhoff
stress (force per unit reference area), F is the deformation gradient ( ∂x

∂X
), and Q is the reference heat flux

(energy per unit reference area per unit time). These variables in equations (56)-(58) are all functions of
the reference coordinate X and time t, with the material time derivative retaining its earlier definition,
dg(X,t)

dt
= ∂g

∂t

���
X

.

7.2.2 Densities and Localization

For a Lagrangian analysis, we note that both the localization function ψ and bond function B are now
considered as functions of material coordinate X and the reference positions of atoms, e.g. X

α. With this
change, all the properties and relationships discussed earlier remain intact.

7.2.3 Energy and Force Assumptions

For a Lagrangian analysis, we note that the same energy and force assumptions made for the spatial frame
formulation are used as stated above without change.

7.2.4 Continuum Expressions

Displacement

For a Lagrangian formulation, the velocity field v is now defined by the expression

v(X, t) ≡ p0(X, t)
ρ0(X)

=
�

N

α=1
m

α
v

α
ψ(Xα −X)

�
N

α=1
mαψ(Xα −X)

. (59)
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With velocity defined in this manner, the displacement field u can be properly defined as

u(X, t) =
�

N

α=1
m

α
u

α
ψ(Xα −X)

�
N

α=1
mαψ(Xα −X)

, (60)

which is consistent with the velocity field defined as a time derivative of a displacement field, i.e.
v = du

dt
. With a displacement field we can construct the motion of material points X from reference

to current configuration as a function of time in the usual way x(X, t) = X + u(X, t).

1st Piola-Kirchhoff Stress

The expression for 1st P-K stress at a material point is:

P(X, t) = −1
2

N�

α=1

N�

β �=α

f
αβ ⊗X

αβ
B

αβ(X). (61)

We note that this expression is connected to the underlying atomic displacements through the inter-
atomic forces f

αβ , and it is through this connection that P is implicitly dependent on thermal motion
of the atomic system. Our expression defines stress without the need to necessarily define a deforma-
tion gradient field or a hyperelastic stored energy function. Equation (61) contains only force terms
on the right-hand side; no explicit dependence on velocity is present, unlike the Cauchy stress expres-
sion. Finally, the P-K expression also differs from the Cauchy expression in that it gives a zero value
for the somewhat degenerate case of a non-interacting gas regardless of temperature.

Referential Heat Flux

The expression for heat flux at a material point is:

Q(X, t) = −
N�

α=1

N�

β �=α

�
∂φ

β

∂xαβ

x
αβ

xαβ
· v̂α

�
X

αβ
B

αβ(X). (62)

We note that like the expression for stress this expression contains only a potential term and not a
kinetic term, unlike the spatial frame heat flux expression. Nevertheless, thermal motion does enter
this expression through the derivatives of the potential energy, the inter-atomic positions x

αβ , and the
relative velocities v̂

α.

Referential Temperature

Similar to what Hardy and colleagues did for their spatial formulation, we define a temperature field
using our densities expressed in the reference configuration,

T(X, t) =
1

3kB

�
N

α=1
m

α (v̂α)2 ψ(Xα −X)
�

N

α=1
ψ(Xα −X)

. (63)

This definition is consistent with the allocation of 1

2
kBT of kinetic energy per degree of freedom for

an atomic system. For solids, this allocation is somewhat inexact due to constraints, e.g. periodic
boundary conditions, that may be acting on the system, but this difference is minimal for systems
where the number of atoms is much larger than the number of constraints.
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7.3 Evaluation and Comparison of Spatial and Material Frame Expressions

In this section, we examine the behavior of our P-K stress expression for several molecular dynamics sim-
ulations. These simulations will confirm that our expression for P-K stress is consistent with both the
virial stress and the Cauchy stress expression defined by Hardy.3 All of our simulations involve system
of copper modeled using the EAM potential by Foiles et al. [122]. This potential creates an equilibrium,
face-centered-cubic crystal of Cu of lattice parameter equal to 3.615 Å at zero temperature. For molecular
dynamics simulations, a timestep of 0.001 ps is used. Calculations are done using specialized routines writ-
ten for ParaDyn [123] and the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [1],
molecular simulation codes developed at Sandia National Laboratories. For the analyses presented in this
section, the choice of the zero temperature, undeformed system is used as our material configuration.

7.3.1 Stress for a constrained finite temperature system

In this and the following example, we present simulations of a system containing 4,000 atoms, where pe-
riodic boundary conditions are enforced on all sides of the simulation box. Two sets of calculations are
performed: one using a single point in the center of system with a spherical localization volume of radius
15 Å and a quartic polynomial localization function, and another using a step function where both ψ and
B

αβ equal the quantity V
−1

0
(where V0 is the system size at zero temperature and deformation).

We first examine the situation where our system is constrained to remain at the reference volume, but
heated to a finite, non-zero temperature. In this instance F = 1 and J = 1; hence, the values of 1st P-
K and Cauchy stress should coincide. Figure 68 shows the variation of instantaneous pressure with time
for a system that is heated to 100 K. ‘Pressure’ in this case refers to the negative of the hydrostatic stress
for each stress measure, i.e. the P-K pressure equals −1

3
Trace(P) = −1

3
Pkk, the Cauchy pressure equals

−1

3
Trace(σ) and the same relation is used for the system virial. The distributions of P-K and Cauchy nearly

perfectly overlap with one another, and both distributions are centered around the virial distribution. Also,
since the volume of material used for evaluation is a subset of the whole system, the variations from the mean
value are larger in magnitude for both P-K and Cauchy pressures as compared with the variation observed
in the virial.

The agreement between our stress measures and the virial is easier to see by using the data in Figure 68
to calculate cumulative time averaged pressures. Figure 69 shows the variation of these time averaged
pressures with time for the same duration, 106 timesteps. This figure shows that the time averaged pressures
essentially converge within 500,000 timesteps (0.5 ns), and that the converged values of P-K, Cauchy and
virial pressures are very close to one another. This agreement is more clearly shown in Table VI, which
compares the converged values of P-K pressure (after 106 timesteps) with the virial pressure for both the
point-based analysis shown in Figure 69 and the step-based analysis. We note in Table VI that the percent
difference between P-K and virial pressures is much less than 1%, and that this difference is smaller for the
step-based analysis (which uses all atoms in the system) than for the point-based analysis.

Table VI also shows the converged time averaged pressures for systems heated to 300 K and 675 K,
values approximately 22% and 50%, respectively, of the melting temperature of copper. It can be seen that
the agreement between P-K pressure and the virial remains excellent even at these high temperatures and
stress levels. This close agreement is emphasized in Figure 70, which graphically shows the variation of

3In this section, all calculations of Cauchy stress (σ) are determined using equation (51), where the fixed spatial point x
coincides with the material point X used to calculate P via equation (61).

101



!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!(#%

!" !$""""" !%""""" !&""""" !'""""" !()*"&

+
,)
-
-
.
,)
!/
0
1
2
3

456)-4)+

17(
82.9:;
<5,52=

Figure 68: Variation of instantaneous pressure with time for a constrained system at 100 K.

Table VI: Time averaged pressures after 106 timesteps for constrained volume simulations.
Temperature (K) Point / Step virial pressure (GPa) P-K pressure (GPa) % difference

100 Point 0.6613775 0.6618136 0.06653
100 Step 0.6614168 0.6613937 -0.00350
300 Point 1.944335 1.944422 0.00448
300 Step 1.944465 1.944413 -0.00264
675 Point 4.335872 4.334868 -0.02316
675 Step 4.335840 4.336577 0.01699

pressure with increasing temperature for this constrained system. It was also observed that, at the highest
temperature simulated of 675 K, agreement between the P-K pressure and the virial improved if a longer
time average is taken.

7.3.2 Finite temperature deformation

For the situation of a constrained volume, the values of P-K and Cauchy stress were not anticipated to differ
by any significant amount. However, we have yet to consider a case for which deformation occurs and the
two values should be related by the Piola transform σ = 1

J
P ·FT . We now examine the scenario where our

system starts out at zero temperature, is heated over the course of 106 timesteps (1 ns) to a finite temperature
but allowed to expand in order to maintain a condition of zero pressure, is equilibrated for an additional 106

timesteps at that non-zero temperature and zero pressure, and is then triaxially stretched an additional 1%
or 5% from this expanded state.
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Figure 69: Variation of time averaged pressure with time for a constrained system at 100 K.
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Figure 70: (a) Time averaged pressures after 106 timesteps for constrained volume simulations performed at
various temperatures. (b) Differences between P-K and virial measures of pressure at various temperatures.

Figure 71 compares the transformed stress 1

J
P · FT to the Cauchy stress and virial for a stretch of 1%

after equilibration at 100 K, and demonstrates that the transformed P-K stress is in close correspondence
with the Cauchy measure. In this figure, we see that the distributions of transformed Piola-Kirchhoff stress
and Cauchy stress nearly perfectly overlap with one another, and both distributions are centered around the
virial distribution. We note that close agreement also exists for stress evaluations at specific instants in time,
as shown in Figure 71.

Figure 72 shows the cumulative time averages of the four stress values (P, σ, virial and transformed P).
It is observed that the system virial approaches its long time average in a short amount of time, ∼ 20,000
timesteps (0.02 ns), and that both the Cauchy stress and transformed P-K stress approach this same value
within approximately 200,000 timesteps (0.2 ns). The P-K stress also approaches its own long time average
within this same amount of time, and the value is appropriately higher. Values of these long time averages
are listed in Table VII. These results clearly show a negligible difference between the transformed P-K stress
value and the virial of the system. Thus, we again conclude that our derived expression is consistent with
the continuum relation between Cauchy and P-K stress despite the absence of a kinetic term.
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Figure 71: Variation of the instantaneous hydrostatic stresses for 1

J
P · FT , σ and the system virial for a

stretch of 1% after equilibration at 100 K and zero pressure.

Table VII: Time averaged stresses after 106 timesteps for simulations of a heated and triaxially strained
system. Here,‘% difference’ refers to the difference between transformed P-K stress (the 6th column) and
the virial.

T (K) Point / Step total strain virial (GPa) P-K (GPa) 1

J
(P-K)FT % difference

0 Point 0.01 3.876275 3.954033 3.876123 -0.00394
0 Step 0.01 3.876273 3.954190 3.876277 -0.00009
0 Point 0.05 14.70036 16.20713 14.70035 -0.00009
0 Step 0.05 14.70036 16.20710 14.70032 -0.00026

100 Point 0.01168 3.779846 3.868452 3.779658 -0.00499
100 Step 0.01163 3.782552 3.871040 3.782538 -0.00038
100 Point 0.05169 14.26000 15.77334 14.26085 0.00597
300 Point 0.01495 3.581698 3.690054 3.582124 0.01190
300 Step 0.01495 3.579387 3.687273 3.579472 0.002386
300 Point 0.05515 13.30167 14.80901 13.30142 -0.00186
675 Point 0.02174 3.194773 3.334715 3.194304 -0.01469
675 Step 0.02174 3.194821 3.303813 3.164701 -0.94278
675 Point 0.06221 11.33258 12.78735 11.33345 0.00768
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Figure 72: (a) Variation of time averaged hydrostatic stress measures with time for a stretch of 1% after
equilibration at 100 K and zero pressure. (b) Close-up of (a) for the first 250,000 timesteps.
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In addition to our simulation results for the case of 1% stretch at 100 K, Table VII also shows results for
systems heated to 300 K and 675 K for stretches of both 1% and 5% following thermal equilibration at zero
pressure. We observe that in all cases, the difference between the hydrostatic virial stress and the hydrostatic
transformed P-K stress is very small with a difference of, at most, 1%. The results in Figures 73(a) and (b)
show near perfect agreement of the virial and the transformed P-K stress across a range of temperatures.4
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Figure 73: Variation of time-averaged hydrostatic stress measures after 106 timesteps with temperature for
a stretch of (a) 1%, and (b) 5 % after equilibration at that temperature.

7.3.3 Tensile stretching of a center-cracked body

The previous two examples show that our formulation enables the calculation of 1st Piola-Kirchhoff stress
that is consistent with estimates of the Cauchy stress, either using the system virial or the original Hardy
formulation. However, these examples only produce a single value of stress representative of the entire
system, i.e. systems subjected to a homogeneous deformation state. The strength of our formulation lies
in its ability to produce a field of spatially varying values of stress for cases where an inhomogeneous
deformation is produced.

In this example, we examine a system containing a center crack and compare the inhomogeneous stress
fields that arise due to tensile stretching. Our system consists 9,840 atoms, approximately 20 x 20 x 6 unit
cells, that contains a center crack 4 unit cells wide in the center. We acknowledge that this is a small and
highly constrained system, and use it only as a means to show our ability to estimate spatially varying stress
fields. The crack is created by excluding interactions between atoms above the center-plane of the system
(and within the 4 unit cell width) and atoms below the center-plane. Periodic boundary conditions are used
in the horizontal and thickness directions, while atoms within 2 unit cells of the system’s upper and lower
boundaries are controlled by prescribing a fixed velocity of ±0.1 Å/ps, respectively. Given the dimensions
of our system, this produces an approximate strain rate of initial value 3.46 x 10−3 ps−1 = 3.46 x 109 sec−1.
Before inducing the stretching, our system is relaxed using a conjugate gradient minimization algorithm in
order to relax the upper, lower and crack boundaries and set the reference configuration.

To calculate stress at material points, we use localization volumes consisting of rectangular parallelepipeds,
4These figures reveal that at higher temperatures a lower amount of stress is produced within the system. This result can be

attributed to the temperature dependence of the elastic constants that softens (decreases) their value with increasing temperature.
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and localization functions that are multiples of three linear shape functions, one for each orthogonal direc-
tion, as in the finite element method. For this system, our mesh consists of 10 x 15 x 1 = 150 elements where
our mesh extends beyond the atomic system in the vertical direction by 2.5 unit cells at both the upper and
lower boundaries.

Figure 74 shows the displaced atoms, colored by the values of the component uy of their displacement
vector, as well as uy displacement field evaluated at nodes and interpolated through elements, for the center-
cracked body vertically stretched by approximately 6.9%. The left portion of Figure 74 clearly shows that

!
"#
$%&

Figure 74: Displacement field uy for a center-cracked body vertically stretched 6.9%. Left: Atoms pictured
with overlaying mesh and nodes. Right: Mesh elements showing contours of continuum displacement field;
mesh is shown with gray lines to identify elements.

the nodal values of displacement agree with the values of nearby atoms, while the right portion displays a
displacement field consistent with expectations from fracture mechanics. It is interesting to note that the
normalization present in equation (60) enables approximately correct values of uy to be calculated at nodes
bordering the boundaries of the atomic system, even though 1/2 of each node’s localization volume is empty.
This is because the normalization produces a displacement value corresponding to the center of mass of the
localization volume and assigns that value to the node. And, since each element only contains a small
number of atoms, the difference between the nodal position and the center of mass position is relatively
small. Obviously, special care should be taken to use small elements near the boundary of an enclosed
atomistic system, or near any region for which mass is unevenly distributed within the localization volume
in the reference configuration. Nodes with localization volumes that are completely empty of atoms are
assigned a zero value.

Figure 75 shows the fields of Pyy and σyy for the same stretch state of 6.9%. These fields are consis-
tent with expectations from fracture mechanics, possessing features such as zero stress in the crack opening
region and concentrations of tensile stress near the crack tips. Consistency between our formulation and
Hardy’s is shown by the qualitative similarity of the fields, with values of σyy having, in general, a slightly
higher magnitude than the corresponding value of Pyy. Quantitative consistency can be evaluated by com-
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Figure 75: Stress fields for a center-cracked body vertically stretched 6.9%. Left: Mesh elements showing
contours of continuum field Pyy. Right: Mesh elements showing contours of continuum field σyy as deter-
mined from the original Hardy formulation. In both pictures, the mesh is shown with gray lines to identify
elements.

paring the values at a specific material point. We choose a node near the crack tip, at a position of {21.69 Å,
10.845 Å, 10.845 Å} (6 elements down from the top of the system, and 2 elements from the right edge). At
this node, the value of Pyy equals 9.40327 GPa, and the value of σyy is 10.0719 GPa. Using our method to
estimate displacement gradient ∇Xu, and by using the relation F = 1 + ∇Xu, the value of transformed
P-K stress is calculated to be 9.48638 GPa. This value is somewhat lower than the expected value from the
Hardy expression (a difference of about -5.81%). However, our earlier simulation examples indicate that
this agreement may improve if the system is fixed at a given (inhomogeneous) deformation state and stress
values are time averaged for periods ∼ 1 ns. It may also be the case that displacement gradient values are
actually higher in magnitude than estimated here due to the small size of the system and the use of (rela-
tively) large localization volumes near the crack tip, i.e. the estimated displacement gradient also has errors
associated with it.

The analyses presented above clearly show that our derived expression for P-K stress is a full thermo-
mechanical measure of stress despite the fact that it contains only a potential and not a kinetic term, unlike
the Cauchy stress expression derived by Hardy. Our analysis also shows that our expression for P is consis-
tent with Cauchy stress via the Piola transformation σ = 1

J
P · FT .

7.4 Cauchy-Born Stress and Free Energy Calculation

An alternative method for estimating continuum variables such as energy density and stress is by use of the
Cauchy-Born rule. Unlike the Hardy formulation, or simpler variants such as use of an atomic-level virial
stress [89, 90], this approach involves using local metrics of deformation gradient and temperature with a
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virtual atomic crystal at each point of interest and the governing interatomic potentials to define thermo-
dynamic variables. While this method contains an underlying assumption of homogeneous deformation of
the virtual crystal, its construction is useful as it provides a means for isolating the elastic portion of the
deformation gradient. Here, we use the Cauchy-Born rule with the Quasi-harmonic approximation to define
continuum variables for atomic systems at finite temperature governed by either pair or EAM potentials.

7.4.1 Quasi-harmonic Cauchy-Born model

The basic thermodynamic quantities can be related to the partition function Z [124, Chapter 7] of the lattice
of atoms comprising the body occupying the region Ω. The free energy density

Ψ = U − TS = −kBT

V
log Z (64)

is a Legendre transform of the internal energy density

U = − 1
V

∂

∂β̄
log Z (65)

via the entropy density

S =
kB

V

�
log Z − β̄

∂

∂β̄
log Z

�
(66)

where β̄ = (kBT )−1, kB is Boltzmann’s constant and V is a reference volume for the system. Note that
we are using densities as opposed to the extensive versions that are more traditional in the literature, see,
e.g. [125]. We define a tributary volume for an atom as Vα = V/N where N is the number of atoms in the
system volume V .

The classical harmonic partition function [126, Section 4.5] for a quasi-harmonic (QH) system is based
on the harmonic approximation of the Hamiltonian H

H ≈ HQH = Φ0(F) +
1
2

n�

i=1

�
ω

2
i miq

2
i +

1
mi

p
2
i

�
(67)

with the atomic positions xα in the current configuration following the decomposition xα = FXα +qα, and
the momenta pα begin given their usual definition. Here, and throughout this section, we will use a Greek
subscript to refer to an enumeration of atomic quantities, e.g. xα, and a Latin one for enumeration based on
degrees of freedom, e.q. qi, where i runs 1 to n ≈ 3N . The resulting partition function Z is

ZQH = ZQH(F, T ) = h
−n

�

Γ

exp
�
−β̄H(q,p;F)

�
dq dp = h

−n
ZqZp

= exp(−β̄Φ0)h−n

n�

i=1

� ∞

−∞
exp

�
−1

2
β̄

1
mi

p
2
i

�
dpi

� ∞

−∞
exp

�
−1

2
ω

2
i β̄miq

2
i

�
dqi

= exp(−β̄Φ0)h−n

n�

i=1

2π

β̄ωi

= exp(−β̄Φ0)
n�

i=1

kBT

�ωi

(68)

We have non-dimensionalized Z by a factor of Planck’s constant h ( raised to the power −n ) to connect
with the quantum partition function, see e.g. [124, Chapter 7], in the the classical high temperature limit
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(�ωi � kBT )5 . Hence, the Helmholtz free energy density, Ψ, of a crystalline solid is determined from the
potential energy density, Φ0, of the atoms in their average positions FXα and the vibrational spectrum of
frequencies, ωi, [127, Section 16] as

ΨQH = Φ0 +
kBT

V
log

n�

i=1

�ωi

kBT
(69)

The term in Eq. (69) depending on the vibrational modes of the lattice can be connected to eigenvalues
of the dynamical matrix. The dynamical matrix, Dαβ = Dαβ(F), is simply

Dαβ ≡
V

√
mαmβ

∂
2Φ

∂qα∂qβ

, (70)

where V Φ is the total potential energy of the crystal, and qα = xα − FXα is the displacement of atom
α from the (homogeneously) deformed state FXα. It is important to realize that Φ is distinct from Φ0 as
the former represents the true potential energy density while the latter is an approximation based on the
assumption of homogeneous deformation.

Clearly, the vibrational frequencies ωi are the eigenvalues of the dynamical matrix, and their product is
related to the determinant of the dynamical matrix by

n�

i=1

ωi =
√

det D (71)

where D is the system dynamical matrix assembled from the constituent Dαβ matrices. If the deformation
gradient is uniform and the crystal is free of defects, infinite, and composed of a single element ( so that
mα = m), then each Dαβ is identical and, by translational invariance, the row of the dynamical matrix
associated with any atom is identical (given an appropriate rotation of the indices). In this case, we can
restrict our attention to interactions between a representative atom, denoted as β = 0, and all other atoms in
the lattice

Dα ≡
V

m

∂
2Φ

∂q0∂qα

(72)

The local harmonic (LH) approximation [128] neglects the coupling between interacting atoms. For a homo-
geneous system, the LH simplification reduces the QH dynamical matrix to a single 3×3 matrix by dropping
all the elements of the dynamical matrix except for α = β = 0.

DLH ≡ D0 = m
−1 ∂

2Φ
∂q0∂q0

(73)

The free energy density is:
ΨLH = Φ0 + ΘLH (74)

where

ΘLH =
kBT

Vα

log

��
�

kBT

�3 �
det DLH

�
. (75)

5Note
R∞
−∞ exp(− 1

2 β̄x2) dx =
q

2π

β̄
. Also, it is necessary for the potential energy Φ0 = Φ(F) to be independent of qi, and

for the system to be in equilibrium ∂Φ
∂xα

= 0 to obtain this form.
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The internal energy density in this approximation is

U = Φ0 +
n

V
kBT = Φ0 + cvT (76)

via (65), where nkBT is the equilibrium total energy above the ground state Φ0(F) and cv is the heat
capacity per volume at constant volume. For a classical system, the law of Dulong and Petit [129, Chapter
21] identifies the heat capacity cv with

cv =
nkB

V
=

3kB

Vα

(77)

Using the expression for free energy density in equation (74), we can derive the expression for the 1st

Piola-Kirchhoff stress,

P =
∂ΨLH

∂F
=

∂Φ0

∂F
+

∂ΘLH

∂F
. (78)

Substitution of equation (75) into this expression yields:

P =
∂Φ0

∂F
+

kBT

Vα

�
3 log

�
�

kBT

�
+

1
2

(detDLH)−1 ∂detDLH

∂F

�
(79)

Kimmer and Jones [130] showed that the term ∂detDLH

∂F
can be expressed in terms of the derivative ∂DLH

∂F
and

cofactors of the full matrix DLH . Details can be found in [130]. Taking the derivative of this expression with
respect to F, these authors were also able to define an expression for the tangent modulus in the material
frame, B ≡ ∂P

∂F
.

7.4.2 Quasi-harmonic model for pairwise potentials

In the case of pairwise potentials the potential energy density for the system is given by

Φ =
1

2V

N�

α

N�

β �=α

φ(rαβ), (80)

where φ is the pairwise interaction which depends solely on the distance rαβ between two atoms and V is
the volume of the undeformed crystal. The LH dynamical matrix for a monoatomic lattice is

DLH =
V

m

∂
2Φ

∂u
2
0

=
1
m

�

β �=0

�
φ
��(rβ0)

rβ0
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+ φ
�(rβ0)

1
rβ0

�
I−

rβ0

rβ0
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rβ0

rβ0

��
. (81)

7.4.3 Quasi-harmonic model for EAM potentials

For embedded-atom method (EAM) potentials, the potential energy density for the system of a uniform
material is given by

Φ =
1
V

N�

α=1




F (ρα) +
1
2

N�

β=1,β �=α

φ(rαβ)




 , (82)
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where V is the volume of the system, φ is the pairwise interaction between atoms of α and β that depends on
their separation distance rαβ , F is the embedding that depends on the electron density, ρα, at an atom’s loca-
tion that is calculated from a pairwise contribution of atomic charge densities from nearby atomic neighbors,
i.e.

ρα =
N�

β=1,β �=α

f(rαβ). (83)

The expression for the dynamical matrix D for the local harmonic (LH) approximation of free energy for
our atomic system is

D =
1
m



F
��(ρ0)l0 ⊗ l0 +

�

β=1,β �=0

��
F
�(ρ0)f ��(r0β) + F

��(ρβ)
�
f
�(r0β)

�2

+F
�(ρβ)f ��(r0β) + φ

��(r0β)
� r0β ⊗ r0β

r
2

0β

+
�
F
�(ρ0)f �(r0β) + F

�(ρβ)f �(r0β) + φ
�(r0β)

� r
2

0β
I− r0β ⊗ r0β

r
3

0β

��
,

(84)

where l0 =
�

β=1,β �=0
f
�(r0β)r0β

r0β

. This can be further simplified by noting that for a homogeneous defor-
mation, F

�(ρ0) = F
�(ρβ) = F

�
0

and F
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. Hence,
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(85)

To calculate the temperature-dependent (entropic) terms of the stress tensor, it is necessary to calculate the
derivative of the dynamical matrix with respect to the deformation gradient that exists in the neighborhood
of atom “0”, F. Starting with equation (84), calculating the necessarily derivatives with respect to F, and
again simplifying for the case of homogeneous deformation, we obtain:

∂D
∂F

=
1
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�
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���
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(86)

where
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(89)
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The notation (l0 ⊗M0)t denotes a transpose only on the first two (spatial) indices of the fourth-order mixed
tensor (i.e. if A = l0 ⊗M0, then in index notation AijkL = liMjkL and A

t

ijkL
= AjikL = ljMikL) and

the notation I ⊙ r denotes a dyad product between a second order tensor and a vector such that in index
notation: (I⊙ r)

ijk
= δikrj . In index notation,
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(92)

where the subscripts “0β” and “0” have been omitted on some terms for clarity.

7.4.4 Examples of free energy and Cauchy-Born stress calculation

• Pair potential system — For this study we use a Lennard-Jones (LJ) model of Au with lattice con-
stant a = 4.08 Å and parameter values � = 0.72427860 eV, σ = 2.59814680 Å, as represen-
tative of a well-behaved atomic solid. This inter-atomic potential is truncated at a separation of
rc = 2.1σ = 5.45610827 Å, and smoothed such that pair energy and forces are zero at this distance,
see [131, equation (121)]. This parametrization leads to elastic constants , C11 = 497.478 GPa,
C12 = C44 = 281.58 GPa 6 , and a surface energy of 0.1599 eV/Å2. For reference, the experimen-
tally measured Debye temperature for Au is 170 K and its melt temperature is 1337 K. Since the LJ
model over-estimates the elastic constants of Au (C11 = 186 GPa, C12 = 157 GPa, C44 = 42 GPa),
the approximate effective Debye and melt temperatures are 280 K and 5200 K, respectively 7 .

To validate the use of a LH model of free energy, we compare ΨLH to estimates of Ψ from thermo-
dynamic integration (TI – see the Appendix for this section) for four (one-parameter) deformations:
(a) uniaxial stretch F = λe1 ⊗ E1, (b) simple shear F = λe1 ⊗ E2, (c) biaxial stretch / pure shear
F = λe1 ⊗ E1 + 1/λe2 ⊗ E2, and (d) volumetric dilation F = λI, through {F, T} space, where
F = I + H. The Cartesian bases ei and Ei, in the current and reference configurations respectively,
are aligned with the lattice basis in the reference configuration. To perform TI we fitted the P vs F and

6These elastic constants were determined analytically and verified empirically.
7The Debye temperature TDebye is estimated using the fact that it is proportional to the speed of sound in the material so that

TDebye ∼
√

C11. The melt temperature Tmelt is proportional to the depth of the potential well and can be approximated by
kBTmelt ≈ 0.62� where kB is the Boltzmann constant.
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U vs T trends (for small values of λ and T ) from NVT MD data using the Nosé-Hoover thermostat
(NH) and integrated these fits to obtain ΨTI . It was also necessary to take a single temperature close
to zero where we assumed ΨTI ≡ ΨLH for all deformations. The correspondence of ΨLH and ΨTI

at higher temperatures justifies the somewhat arbitrary choice of 1 K for this reference temperature.

First, we take a temperature excursion from 1K to 600K for: a uniaxial stretch (a) F11 = 1.015 and a
volumetric dilation (d) F11 = F22 = F33 = 1.045 . Figure 76 shows the excellent comparison of ΨLH

and ΨTI for the uniaxial case and, likewise, Figure 77 shows similar results for the volumetric case.
Both Figure 76a and Figure 77a exhibit similar slopes, 1.52163 × 10−5 and 1.52176 × 10−5 eV/(K-
Å)3, respectively corresponding to the heat capacity cv = 1.52256 × 10−5 eV/(K-Å)3 based on
the reference Vα in (77). The intercepts, −0.23112 and −0.22945 eV/Å3 respectively, depend on
deformation as Eq. (76) indicates. The temperatures at which U crosses Ψ and is henceforth strictly
greater than Ψ are 12.2 K and 14.1 K respectively as can be seen in the insets of Figures 76(b) and
77(b).
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Figure 76: (a) Internal, and (b) Free energy density variation with temperature for the LJ-gold system at a
uniaxial stretch of 1.015 and Tref = 1 K.

Second, we deform for simple shear (b) and biaxial stretch (c) at a sequence of constant tempera-
tures T = 30, 100, 300 K. The reader should note that biaxial stretch effects a “pure” shear state with
respect to a coordinate system rotated by π/4 about the E3 axis and that F12 ≡ H12. These shear
deformation modes are particularly rigorous tests of the LH model. Figure 78 shows reasonable cor-
relation between the LH and TI estimates of free energy for simple shear (b) and Figure 79 shows
similar results for biaxial stretch. It is apparent that the behavior of the LH estimate is less noisy for
a temperature process than for a deformation process, perhaps due to the differencing of atomic posi-
tions required in the Hardy based estimate of F. The discrepancies are clearly temperature dependent
and are not noticeable at the lowest temperature. These tests demonstrate that there is thermodynamic
consistency between the derivative of the free energy and the stress measure. As expected, the respec-
tive moduli are relatively insensitive to temperature. For our material, the modulus for simple shear
is C12 = 281.58 GPa which is slightly higher than the modulus for pure shear (C11 −C12) = 215.898
GPa.

The results displayed in this section are typical for temperatures below half melt and strains below
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Figure 77: (a) Internal, and (b) Free energy density variation with temperature for the LJ-gold system at a
volumetric stretch of 1.045 and Tref = 1 K.
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Figure 78: Simple shear at T = 30, 100, 300 K. (a) P12 vs. F12 and (b) U , ΨLH and ΨTI vs. F12.
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Figure 79: Biaxial stretch at T = 30, 100, 300 K. (a) P12 vs. F12 and (b) U , ΨLH and ΨTI vs. F12.

10%. Although not completely verified, it appears that our test system is behaving in manner consis-
tent with a linear thermo-elastic material with a free energy of the form [132]:

Ψ =
1
2
H · CH− Tα ·H− 1

2
cvT

2 (93)

where C = ∂
2Ψ

∂H∂H
is a (fourth-order) elastic modulus tensor and α = ∂

2Ψ

∂H∂T
is a thermal expansion

tensor. It should also be noted that α can be related to a Grüneisen-like tensor γ = − 1

cv
α, which

is a well-known measure of the sensitivity of entropy to deformation as well as stress to changes in
temperature and therefore related to how the vibrational modes ωi are affected by these changes.

• EAM system — We performed a similar simulation on a copper system modeled with an EAM poten-
tial. The potential used is the one by Foiles et al. [122]. This system is 864 atoms (6 x 6 x 6 unit cells)
initially set at the zero temperature lattice constant of 3.615 Å. The system is held at constant volume
while being heated up to a temperature of 600 K. Figure 80(a) shows the evolution of internal energy
density as measured by the Hardy expression in the Lagrangian frame. As was the case for the pair
potential examples, we observe that the variation of internal energy density with temperature is closely
approximated by the relation U = cvT + U0, where cv is estimated to be 2.1806 x 10−5 eV/K (com-
pared with the theoretical value of 2.18892 x 10−5 eV/K) and U0 is estimated to be -0.2997221 eV.
Using this approximate relation, we can compare our Cauchy-Born estimate for free energy with one
obtained via thermodynamic integration of the internal energy density. This comparison is shown
in Figure 80(b). We observe excellent agreement between the two curves shown up to the highest
temperature tested of 600 K.

Finally, we can compare our Cauchy-Born estimate of 1st Piola-Kirchhoff stress with the one ob-
tained via the Hardy formulation. The variation of these estimates with temperature is shown in
Figure 81. This figure shows that our three estimates of stress (Hardy’s formulation, the Cauchy-Born
expression, and the system virial as measured by LAMMPS directly) are in very good agreement, in
general. Some discrepancy does occur for temperatures higher than 300 K. This discrepancy is most
probably due to approximations used in the Cauchy-Born method, such as use of a local harmonic
approximation of the dynamical matrix.
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Figure 80: (a) Internal energy density and (b) free energy density variation with temperature for an EAM-Cu
system at constant volume and Tref = 1 K.

-45000

-40000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

 0

 5000

 0  100  200  300  400  500  600  700

ST
R

ES
S

TEMPERATURE

<HARDY PK1 11>
<LAMMPS S11>

<CB PK1 11>

Figure 81: Variation of P11 with temperature for an EAM-Cu system at constant volume and Tref = 1 K.

117



In needs to be emphasized that both MD and QH require high enough temperatures hω � kBT for their
classical behavior to correspond to real materials, but QH has the additional restriction that the temperature
needs to be sufficiently low so that harmonic approximation is still valid. Our results show that that behavior
at temperatures at least as high as one-eighth of the effective melt temperature can be simulated sufficiently
accurately with LH model. More accurate models like the Modified Local Harmonic (MLH) approximation
[130] may extend this result to higher temperatures.

7.5 Plastic Deformation Gradients

Combined use of the Hardy formulation and finite temperature Cauchy-Born method has the potential for
separating the elastic and plastic (inelastic) portions of locally-quantified deformation within an atomistic
simulation. Performing such a separation enables researchers to use atomistic simulation to gain better
insight into the formulation of constitutive models used in continuum mechanical-based finite element anal-
ysis. In a continuum framework, the elastic and plastic contributions to strain and deformation gradient is
commonly separated in either an additive or multiplicative decomposition. For the incremental case, the full
strain increment is taken to be an additive decomposition of elastic and plastic strain, i.e.

∆� = ∆�e + ∆�p
, (94)

whereas for the total deformation is a multiplicative decomposition of elastic and plastic deformations, i.e.

F = F
e
F

p
, (95)

where the side-by-side placement of these two, second-order tensors implies a dot product in the above
expression.

Once this separation has been accomplished, it is straightforward to use these individual portions to
estimate quantities such as total plastic strain (�p) and dissipated work due to plastic deformation (Wp). In
this section, we propose two such paths for performing this separation, and discuss some of the finer points
that need to be considered. Implementation of the formulas defined by these paths is in progress.

7.5.1 Incremental Approach

Here, we consider strain increments between deformation steps. The elastic strain increment is determined
using the approximation of linearity in the relationship with stress increment, i.e.

∆�e = C−1(σ, T )∆σ. (96)

Here, C is the 4th order tangent modulus tensor. The plastic strain increment can be calculated by subtracting
the elastic strain increment from the total strain increment,

∆�p = ∆�−∆�e
, (97)

where the total strain increment is estimated by a difference in the symmetric portion of the displacement
gradient between loading steps, i.e.

∆� ≈
�

1
2

�
∂u

∂x
+

�
∂u

∂x

�T
��

n

−
�

1
2

�
∂u

∂x
+

�
∂u

∂x

�T
��

n−1

. (98)

In this approach, there are several issues that need to be addressed before implementation can occur.
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• Issue #1: How should C be defined? — As we have already learned, the Cauchy-Born rule relates
the potential energy of a region of atoms governed by an inter-atomic potential, along with the local
temperature, to the free energy density Ψ of a corresponding continuum. The second order derivative
of this free energy density with respect to various deformation measures results in different tangent
moduli. For example, when Ψ is a function of the Lagrangian strain tensor, E = 1

2

�
F

T
F− 1

�
, the

derivative C = ∂
2Ψ

∂E∂E
is referred to as the material tangent modulus and satisfies the relation

∆S = C∆E, (99)

where S is the 2nd Piola-Kirchoff stress tensor, S = ∂Ψ

∂E
. Alternatively, when Ψ is a function of F,

the derivative B = ∂
2Ψ

∂F∂F
is referred to as the effective tangent modulus (Gao, J. Mech. Phys. Solids,

1996) and satisfies the relation
∆P = B∆F, (100)

where P = ∂Ψ

∂F
. The relation between B and C is

B = 1⊗ S + FCF
T
, (101)

or, in index notation,
BiJkL = δikSJL + FiMCMJNLFkN . (102)

Use of the Hardy spatial or material formulations produces the Cauchy stress (σ) or the 1st P-K stress
(P) and both require transformation to arrive at the 2nd P-K stress:

S = F
−1

P = JF
−1σF

−T
, (103)

where J = det(F). If B is known and S is determined, C can be found via the relation

C = F
−1 (B− 1⊗ S)F−T

. (104)

• Issue #2: How do we accumulate plastic strain increments for a total plastic strain? Is knowing the to-
tal plastic strain desirable? — It is probable that straight-forward addition of plastic strain increments
(in tensor form) is not the correct method to arrive at a total plastic strain for the body. Likewise,
addition of elastic strain increments is also incorrect. Many analysts talk in terms of equivalent plastic
strain, a scalar summation of the Von Mises equivalent of the strain tensor increments, i.e.

�
p =

� 1
2

(∆�p : ∆�p − tr(∆�p)) (105)

7.5.2 Total Strain Approach

This approach also uses the Cauchy-Born rule in combination with a thermodynamic relation between stress
and strain, this time expression the free energy density as a function of deformation gradient, Ψ = Ψ(F).
Hence,

P =
∂Ψ
∂F

(106)

It is assumed in the C-B rule that this deformation is entirely elastic in nature (F = F
e), and that the

hyperelastic function Ψ can be inverted:
F

e = Ψ−1(P) (107)
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P is quantified using the Hardy material frame formulation and fed into the function Ψ−1.
As an analytic form of the free energy density function is not usually known, an alternative methodology

is to use an iterative approach with the tangent modulus B. At a given state of deformation, we can estimate
P with both the Hardy expression (PH ) and the Cauchy-Born expression (PCB). For cases of homogeneous
deformation (i.e. cases without defect generation), these two estimates will be approximately equal, as we
have seen. For cases in which defects are generated and inhomogeneous deformation is induced, they will
not be equal as PCB theoretically depends only on the elastic portion of the deformation gradient, F

e.
However, assuming that F and F

e are relatively “close” to one another, we can approximate F
e using the

relation
PH = PCB + B∆F, (108)

where ∆F = F
e−F. As already mentioned, this process is iterative; starting with a given atomic configura-

tion, we calculate PH , F, and T using the Lagrangian Hardy formulation. We then use F and T to compute
initial estimates for PCB and B. Assuming B is invertible, we then calculate the change ∆F needed to
satisfy the above equation, i.e. ∆F = B−1 (PH −PCB). This ∆F is used to create a new estimate of
deformation gradient (F̂ = F + ∆F) which is then used for new estimates of the C-B stress and tangent
modulus (P̂CB and B̂, respectively). Upon convergence (i.e. P̂CB = PH to some tolerance), F̂ should
equal F

e. From this, plastic deformation can be extracted via a manipulation of the normal multiplicative
decomposition,

F
p = (Fe)−1

F. (109)

As mentioned, implementation of this algorithm is in progress along with testing for simple configurations.
Once F

p is determined, its values between consecutive loading steps should be able to be used to identify a
plastic strain increment. Certainly, we can quantify ∆F

p ≈ F
p
n − F

p

n−1
. Alternatively, we can separately

define the quantity E
p ≡ 1

2

�
(Fp)T

F
p − 1

�
as a measure of plastic strain relative to some intermediate

configuration (i.e. neither the reference nor deformed configurations) and then take increments of this
quantity, ∆E

p, between load steps.
Once plastic strain increments are defined in some fashion, we can add them to get an indication of

dissipative or plastic work,
Wp ≡

�

n

σn : ∆�p
, (110)

for the incremental approach or,
Wp ≡

�

n

Pn : ∆F
p (111)

for the total strain approach.

7.5.3 Example calculation: uniaxial stretching

We implemented the total strain approach outlined in the last section and used it to examine dislocations and
stacking faults created during uniaxial stretching beyond the elastic limit. We simulated an atomic system of
gold of dimensions 20 x 20 x 3 unit cells (81.6 Å x 81.6 Å x 12.24 Å) modeled using the EAM potential by
Foiles [133]. The system was stretched at increments of 0.5% engineering strain and energy minimization
was performed after each increment. Figure 82 shows the system at a total strain of 10.5%, the first point
at which inelastic material defects form. This figure, with atoms colored according to their local crystal
structure (i.e. fcc, hcp, amorphous) shows the formation of partial edge dislocations and stacking faults. It is
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Figure 82: A gold crystal uniaxially stretched to a total engineering strain of 10.5% Atoms are colored
according to their local structure (dark blue = fcc, light blue/cyan = hcp, red = no specific structure).

presumed that dislocations form due to local instabilities, then propagate through the crystal leaving stacking
faults in their wakes. The dislocations stop propagating when they reach the top or bottom boundary (due to
the roller boundary conditions used there), or when they intersect an already-formed stacking fault.

Figure 83(a) shows the same system with atoms colored according to their value of horizontal displace-
ment. We observe a fairly uniform gradient of displacement with minor perturbations due to the cre-
ated stacking faults and dislocations. This is confirmed in Figure 83(b), which shows the 11-component
continuum-estimated displacement gradient field, ∇Xu. This field is fairly uniform through most of the
overlying FE mesh, with some variations.

Figure 84(a) shows the same system with atoms colored according to their value of vertical displace-
ment. We clearly observe strong variations due to the formation of stacking faults. These variations result
in non-zero inelastic strains, i.e. F

p �= 1 and F
e �= F. Figure 84(b) shows the 11-component elastic de-

formation gradient field, (Fe). This field shows strong variations that loosely correspond with the faults
and dislocations depicted in Figure 82. The field does not show anticipated behavior for F

e as it does not
clearly show the stacking fault line segments present in Figure 82. Further work is in progress to improve
our implementation.

7.5.4 Appendix: Thermodynamic integration

To verify our Cauchy-Born based expressions for free energy, we can use direct thermodynamic integration
(TI) [134] to calculate the free energy difference between two states connected by a reversible path. TI is
based on the differentials of the Helmholtz free energy state function Ψ(F, T )

dΨ = dΨ(V, T ) = d(U − TS) = (TdS −P · dF)− TdS − SdT = P · dF− SdT (112)
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(a) (b)

Figure 83: A gold crystal uniaxially stretched to a total engineering strain of 10.5%: (a) Atomic crystal with
atoms colored according to their value of horizontal displacement (range of -10 to 10 Å). (b) Continuum
overlay with elements colored according to interpolated nodal values of horizontal displacement gradient.

(a) (b)

Figure 84: A gold crystal uniaxially stretched to a total engineering strain of 10.5%: (a) Atomic crystal
with atoms colored according to their value of vertical displacement (range of -1.5 to 1.5 Å). (b) Contin-
uum overlay with elements colored according to interpolated nodal values of horizontal elastic deformation
gradient.
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where ∂Ψ

∂T

��
F

= −S, ∂Ψ

∂F

��
T

= P. Now, a path at constant temperature leads to

∆Ψ =
�
�P�NV T · dF → Ψ1 = Ψ0 +

�
�P�NV T · dF (113)

and likewise

∆
�

Ψ
T

�
=

�
�U�NV T dT → Ψ1 = Ψ0

T1

T0

+ T1

�
1

0

�U�NV T d(1/T ) (114)

for a path at constant deformation. An example of the first formula for a uniaxial deformation F = λe1 ⊗
E1 + e2 ⊗E2 + e3 ⊗E3 is

Ψ1 = Ψ0 +
�

λ1

λ0

�P11�NV T dλ (115)

The second statement (114) is a result of

Ψ
T

=
U

T
− S → d

�
Ψ
T

�
= Ud

�
1
T

�
+

1
T

dU − dS → d

�
Ψ
T

�
= Ud

�
1
T

�
(116)

which comes from the definition dS = dS(V, T ) = 1

T
dU , the assumption that dU is equal to the differential

of net heat absorbed, and the differential of the internal energy state function

dU = dU(F, S) =
∂U

∂S

����
F

dS +
∂U

∂F

����
S

dF = TdS + P · dF (117)

restricted to constant deformation.
It is well-known that (114) is problematic starting from T0 = 0. Even at small temperatures where the

approximation
U |

F
= aT + b (118)

(see Eq. (76) ) is valid for a classical system and

Ψ̃ = (Ψ0 − b)
T

T0

− aT0

T

T0

log
�

T

T0

�
+ b (119)

we see that the limit limT0→0 Ψ̃ does not exist. Instead we define

ΨTI ≈ (Ψref − b)
T

Tref
− aTref

T

Tref
log

�
T

Tref

�
+ b (120)

with Ψref = ΨLH(F, Tref) for Tref � TDebye. We use this approximation in TI for small temperatures above
Tref to avoid the cost of a logarithmic density of quadrature points (i.e. MD samples) needed to accurately
evaluate (114) for temperatures near zero.

We observe that Ψ = U at two temperatures. The first point is, of course, at T = 0 K. The second point
is the the maximum of the Ψ(T ) curve at

Tmax = Tref exp
�

Ψref − b

aTref
− 1

�
(121)
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which results from solving dΨ

dT
= 0. Substituting equation (121) into (120), we verify

ΨLH(Tmax) = (Ψref − b)
Tmax

Tref
− aTref

Tmax

Tref
log

�
Tmax

Tref

�
+ b

= aTref exp
�

Ψref − b

aTref
− 1

�
+ b = aTmax + b = U(Tmax).

(122)

assuming a = cv and b = Φ0 . This observation provides an independent check on the accuracy of our two
methods of estimating the free energy (namely QH and TI).
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8 New Methods in LAMMPS

8.1 The LAMMPS SHOCK Package

Principal Authors: J. Matthew D. Lane, Aidan P. Thompson
The LAMMPS SHOCK package supports a set of commands that can be used to perform MD simulations

of materials undergoing shock and ramp compression. The list of SHOCK commands are:

fix nphug
fix msst
fix wall/piston
fix append_atoms

fix nphug applies the NPzzHug Hugoniostat method [115]. fix msst applies the Multiscale
Shock Technique (MSST) [135]. fix wall/piston drives a thermostatted slab of material at a con-
stant or time-dependent velocity, producing a non-equilibrium molecular dynamics simulaiton (NEMD) of
shock or ramp compression. fix append atoms enables the addition of new material at one end of the
sample during an NEMD shock simulation. These commands are described in more detail below.

8.1.1 Hugoniostat (fix nphug)

This command is a variant of the Nose-Hoover “fix npt” fix style. It performs time integration of the
Hugoniostat equations of motion developed by Ravelo et al. [115]. These equations take a 3D periodic cell
and compress it to a state with average axial stress or pressure equal to the specified target value and that
satisfies the Rankine-Hugoniot (RH) jump conditions for steady shocks. The syntax for this command is:

fix ID group-ID nphug keyword value ...
where ID, group-ID are documented in fix command. The following keywords may be appended: temp,

iso, aniso, tri, x, y, z, couple, tchain, pchain, mtk, tloop, ploop, nreset, drag, dilate, scaleyz, scalexz,
scalexy. These retain the same meaning as for the “fix npt” command, and are described briefly below:

• temp values = Value1 Value2 Tdamp

– Value1, Value2 = Nose-Hoover target temperatures, ignored by Hugoniostat

– Tdamp = temperature damping parameter (time units)

• iso or aniso or tri values = Pstart Pstop Pdamp

– Pstart,Pstop = scalar external pressures, must be equal (pressure units)

– Pdamp = pressure damping parameter (time units)

• x or y or z or xy or yz or xz values = Pstart Pstop Pdamp

– Pstart,Pstop = external stress tensor components, must be equal (pressure units)

– Pdamp = stress damping parameter (time units)

• couple = none or xyz or xy or yz or xz
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• tchain value = length of thermostat chain (1 = single thermostat)

• pchain values = length of thermostat chain on barostat (0 = no thermostat)

• mtk value = yes or no = add in MTK adjustment term or not

• tloop value = number of sub-cycles to perform on thermostat

• ploop value = number of sub-cycles to perform on barostat thermostat

• nreset value = reset reference cell every this many timesteps

• drag value = drag factor added to barostat/thermostat (0.0 = no drag)

• dilate value = all or partial

• scaleyz value = yes or no = scale yz with lz

• scalexz value = yes or no = scale xz with lz

• scalexy value = yes or no = scale xy with ly

Examples:

fix myhug all nphug temp 1.0 1.0 10.0 z 40.0 40.0 70.0
fix myhug all nphug temp 1.0 1.0 10.0 iso 40.0 40.0 70.0 &
drag 200.0 tchain 1 pchain 0

The compression can be performed either hydrostatically (using keywords iso, aniso, or tri) or uniaxially
(using keywords x, y, or z). In the hydrostatic case, the cell dimensions change dynamically so that the
average axial stress in all three directions converges towards the specified target value. In the uniaxial case,
the chosen cell dimension changes dynamically so that the average axial stress in that direction converges
towards the target value. The other two cell dimensions are kept fixed (zero lateral strain).

This leads to the following additional restrictions on the keywords:

• One and only one of the following keywords should be used: iso, aniso, tri, x, y, z

• The specified initial and final target pressures must be the same.

• The keywords xy, xz, yz may not be used.

• The only admissible value for the couple keyword is xyz, which has the same effect as keyword iso

• The temp keyword must be used to specify the time constant for kinetic energy relaxation, but initial
and final target temperature values are ignored.

Essentially, a Hugoniostat simulation is an NPT simulation in which the user-specified target temperature
is replaced with a time-dependent target temperature Tt obtained from the following equation:

Tt − T =
�

1

2
(P + P0) (V0 − V ) + E0 − E

�

NdofkB

= ∆E (123)
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where T and Tt are the instantaneous and target temperatures, P and P0 are the instantaneous and ref-
erence pressures or axial stresses, depending on whether hydrostatic or uniaxial compression is being per-
formed, V and V0 are the instantaneous and reference volumes, E and E0 are the instantaneous and reference
internal energy (potential plus kinetic), Ndof is the number of degrees of freedom used in the definition of
temperature, and kB is the Boltzmann constant. ∆E is the negative deviation of the instantaneous temper-
ature from the target temperature. When the system reaches a stable equilibrium, the value of ∆E should
fluctuate about zero.

The values of E0, V0, and P0 are the instantaneous values at the start of the simulation. These can be
overridden using the “fix modify” keywords e0, v0, and p0 described below.

IMPORTANT NOTE: Unlike the fix temp/berendsen command which performs thermostatting but NO
time integration, this fix performs thermostatting/barostatting AND time integration. Thus you should not
use any other time integration fix, such as “fix nve” on atoms to which this fix is applied. Likewise, this fix
should not be used on atoms that have their temperature controlled by another fix - e.g. by “fix langevin” or
“fix temp/rescale” commands.

This fix computes a temperature and pressure at each timestep. To do this, the fix creates its own computes
of style “temp” and “pressure”, as if one of these two sets of commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp

compute fix-ID_temp all temp
compute fix-ID_press all pressure fix-ID_temp

See the “compute temp” and “compute pressure” commands for details. Note that the IDs of the new com-
putes are the “fix-ID + underscore + ‘temp’” or “fix–ID + underscore + ‘press’”. The group for the new com-
putes is “all” since pressure is computed for the entire system. Note that these are NOT the computes used
by thermodynamic output (see the “thermo style” command) with ID = “thermo temp” and “thermo press.”
This means you can change the attributes of this fix’s temperature or pressure via the “compute modify”
command or print this temperature or pressure during thermodynamic output via the “thermo style custom”
command using the appropriate compute-ID. It also means that changing attributes of “thermo temp” or
“thermo press” will have no effect on this fix.

This fix writes the values of E0, V0, and P0, as well as the state of all the thermostat and barostat variables
to binary restart files. See the read restart command for info on how to re-specify a fix in an input script that
reads a restart file, so that the operation of the fix continues in an uninterrupted fashion. The fix modify e0,
v0 and p0 keywords can be used to define the values of E0, V0, and P0. Note the the values for e0 and v0
are extensive, and so must correspond to the total energy and volume of the entire system, not energy and
volume per atom. If any of these quantities are not specified, then the instantaneous value in the system at
the start of the simulation is used.

The “fix modify temp” and “fix modify press” options are supported by these fixes. You can use them
to assign a compute you have defined to this fix which will be used in its thermostatting or barostatting
procedure, as described above. If you do this, note that the kinetic energy derived from the compute tem-
perature should be consistent with the virial term computed using all atoms for the pressure. LAMMPS
will warn you if you choose to compute temperature on a subset of atoms. The fix modify energy option is
supported by these fixes to add the energy change induced by Nose/Hoover thermostatting and barostatting
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to the system’s potential energy as part of thermodynamic output. Either way, this energy is *not* included
in the definition of internal energy E when calculating the value of ∆E in the above equation.

These fixes compute a global scalar and a global vector of quantities, which can be accessed by various
output commands. The scalar value calculated by these fixes is “extensive”; the vector values are“intensive”.
The scalar is the cumulative energy change due to the fix. The vector stores three quantities unique to this
fix (∆E, Us, and up), followed by all the internal Nose/Hoover thermostat and barostat variables defined
for “fix style npt”. ∆E is the deviation of the temperature from the target temperature, given by the above
equation. Us and up are the shock and particle velocity corresponding to a steady shock calculated from the
RH conditions. They have units of distance/time.

The optional keyword defaults are the same as those for “fix npt.” p0, v0, and e0 are calculated on the
first step.

8.1.2 Multiscale Simulation Technique (fix msst)

This command performs the Multi-Scale Shock Technique (MSST) integration to update positions and ve-
locities each timestep to mimic a compressive shock wave passing over the system. See [135] for a detailed
description of this method. The MSST varies the cell volume and temperature in such a way as to restrain
the system to the shock Hugoniot and the Rayleigh line. These restraints correspond to the macroscopic
conservation laws dictated by a shock front. The LAMMPS implementation of this method was created
primarily by Evan Reed, now at Standford University, with assistance from Aidan Thompson. The syntax
of the command is as follows:

fix ID group-ID msst dir shockvel keyword value ...

• ID, group-ID are documented in fix command

• msst = style name of this fix

• dir = x or y or z

• shockvel = shock velocity (strictly positive, distance/time units)

The following optional keywords may be appended:

• keyword = q or mu or p0 or v0 or e0 or tscale

• q value = cell mass-like parameter (mass
2
/distance

4 units)

• mu value = artificial viscosity (mass/length/time units)

• p0 value = initial pressure in the shock equations (pressure units)

• v0 value = initial simulation cell volume in the shock equations (distance
3 units)

• e0 value = initial total energy (energy units)

• tscale value = reduction in initial temperature (unitless fraction between 0.0 and 1.0)

Examples:
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fix 1 all msst y 100.0 q 1.0e5 mu 1.0e5
fix 2 all msst z 50.0 q 1.0e4 mu 1.0e4 v0 4.3419e+03 &
p0 3.7797e+03 e0 -9.72360e+02 tscale 0.01

shockvel determines the steady shock velocity that will be simulated. To perform a simulation, choose
a value of q that provides volume compression on the timescale of 100 fs to 1 ps. If the volume is not
compressing, either the shock speed is chosen to be below the material sound speed or p0 has been chosen
inaccurately. Volume compression at the start can be sped up by using a non-zero value of tscale. Use
the smallest value of tscale that results in compression. Under some special high-symmetry conditions, the
pressure (volume) and/or temperature of the system may oscillate for many cycles even with an appropriate
choice of mass-like parameter q. Such oscillations have physical significance in some cases. The optional
mu keyword adds an artificial viscosity that helps break the system symmetry to equilibrate to the shock
Hugoniot and Rayleigh line more rapidly in such cases. tscale is a factor between 0 and 1 that determines
what fraction of thermal kinetic energy is converted to compressive strain kinetic energy at the start of the
simulation. Setting this parameter to a non-zero value may assist in compression at the start of simulations
where it is slow to occur. If keywords e0, p0,or v0 are not supplied, these quantities will be calculated on
the first step, after the energy specified by tscale is removed. The value of e0 is not used in the dynamical
equations, but is used in calculating the deviation from the Hugoniot. Values of shockvel less than a critical
value determined by the material response will not have compressive solutions. This will be reflected in
lack of significant change of the volume in the MSST. For all pressure styles, the simulation box stays
orthogonal in shape. Parrinello-Rahman boundary conditions (tilted box) are supported by LAMMPS, but
are not implemented for MSST.

This fix computes a temperature and pressure each timestep. To do this, the fix creates its own computes
of style “temp” and “pressure”, as if these commands had been issued:

compute fix-ID_temp group-ID temp
compute fix-ID_press group-ID pressure fix-ID_temp

See the “compute temp” and “compute pressure” commands for details. Note that the IDs of the new
computes are the “fix-ID + underscore + ‘temp’” or “fix ID + underscore + ‘press’”. The group for the new
computes is “all”. This fix writes the state of all internal variables to binary restart files. See the read restart
command for info on how to re-specify a fix in an input script that reads a restart file, so that the operation
of the fix continues in an uninterrupted fashion. The progress of the MSST can be monitored by printing the
global scalar and global vector quantities computed by the fix. The scalar is the cumulative energy change
due to the fix. This is also the energy added to the potential energy by the fix modify energy command. With
this command, the thermo keyword etotal prints the conserved quantity of the MSST dynamic equations.
This can be used to test if the MD timestep is sufficiently small for accurate integration of the dynamic
equations. See also thermo style command. The global vector contains four values in this order:

[dhugoniot, drayleigh, lagrangian speed, lagrangian position]

• dhugoniot is the departure from the Hugoniot (temperature units).

• drayleigh is the departure from the Rayleigh line (pressure units).

• lagrangian speed is the laboratory-frame Lagrangian speed (particle velocity) of the computational
cell (velocity units).
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• lagrangian position is the computational cell position in the reference frame moving at the shock
speed. This is usually a good estimate of distance of the computational cell behind the shock front.

To print these quantities to the log file with descriptive column headers, the following LAMMPS com-
mands are suggested:

fix msst all msst z
fix_modify msst energy yes
variable dhug equal f_msst[1]
variable dray equal f_msst[2]
variable lgr_vel equal f_msst[3]
variable lgr_pos equal f_msst[4]
thermo_style custom step temp ke pe lz pzz etotal &
v_dhug v_dray v_lgr_vel v_lgr_pos f_msst

The optional keyword defaults are q = 10, mu = 0, tscale = 0.01. p0, v0, and e0 are calculated on the
first step.

8.1.3 Direct Ramp-loading(fix wall/piston)

This command bounds the simulation with a moving wall which reflect particles in the specified group and
drives the system with an effective infinite-mass piston capable of driving shock waved. The syntax for this
command is as follows:

fix ID group-ID wall/piston face arg ... keyword value ...

• ID, group-ID are documented in fix command

• wall/piston = style name of this fix command

• face = zlo

The following optional keywords may be appended pos, vel, ramp, units

• pos args = z coordinate at which the piston begins (distance units)

• vel args = vz, final velocity of the piston (velocity units)

• ramp = use a linear velocity ramp from 0 to vz

• temp args = target damp seed extent

– target = target velocity for region immediately ahead of the piston
– damp = damping paramter (time units)
– seed = random number seed for langevin kicks
– extent = distance ahead of the piston within which the thermostat is active (distance units)

• units value = lattice or box
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– lattice = the wall position is defined in lattice units
– box = the wall position is defined in simulation box units

Examples:

fix xwalls all wall/piston zlo
fix walls all wall/piston zlo pos 1.0 0.0 0.0 vel 0.0 0.0 10.0 units box
fix top all wall/piston zlo vel 0.0 0.0 10.0 ramp

A momentum mirror technique is used, which means that if an atom (or the wall) moves such that an
atom is outside the wall on a timestep by a distance delta (e.g. due to “fix nve”), then it is put back inside the
face by the same delta, and the velocity relative to the moving wall is flipped in z. For instance, a stationary
particle hit with a piston wall moving at vz, will end the timestep with a velocity of 2vz.

Currently only one wall, zlo, may be specified in a single command. This refers to a piston that reflects
particles that move to a z coordinate less than the wall position, back in the positive direction. The initial
position of each wall can be specified by the pos keyword. The final velocity in z of the wall/piston can be
specified by the vel keyword. The ramp keyword will cause the wall/piston to adjust the velocity linearly
from zero velocity to vz over the course of the run. If the ramp keyword is omitted then the wall/piston
moves at a constant velocity defined by vz.

The temp keyword will cause the region immediately in front of the wall/piston to be thermostated with
a Langevin thermostat. This region moves with the piston. The damping and kicking are measured in the
reference frame of the piston. So, a temperature of zero would mean all particles were moving at exactly the
speed of the wall/piston. The units keyword determines the meaning of the distance units used to define
a wall position, but only when a numeric constant is used. The value box selects standard distance units
as defined by the units command, e.g. Angstroms for units = real or metal. The value lattice means the
distance units are in lattice spacings. The “lattice” command must have been previously used to define the
lattice spacings. The zlo boundary must be of type s (shrink-wrapped). The zhi boundary may be any
boundary type other than periodic.

The default values for the optional keywords are pos = 0, vel = 0, units = lattice.

8.1.4 Material addition and removal (fix append atoms)

This fix creates atoms on a lattice, appended on the zhi edge of the system box. This can be useful when
a shock or wave is propagating from zlo. This allows the system to grow with time to accommodate an
expanding wave. The command syntax is as follows:

fix ID group-ID append atoms face arg ... keyword value ...

• ID, group-ID are documented in fix command

• append atoms = style name of this fix command

• face = zhi

The following optional keywords may be appended: size, freq, temp, random, units.

• size = z coordinate at which the piston begins (distance units)
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• freq = the number of timesteps between append events

• temp args = target damp seed extent

– target = target velocity for region immediately ahead of the piston
– damp = damping paramter (time units)
– seed = random number seed for langevin kicks
– extent = distance from the zhi boundary within which the thermostat is active (distance units)

• random args = xmax ymax zmax seed

– xmax, ymax, zmax = maximum displacement in particular direction (distance units)
– seed = random number seed for random displacement

• units value = lattice or box

– lattice = the wall position is defined in lattice units
– box = the wall position is defined in simulation box units

Examples:

fix 1 all append_atoms zhi size 5.0 freq 295 units lattice
fix 4 all append_atoms zhi size 15.0 freq 5 units box
fix A all append_atoms zhi size 1.0 freq 1000 units lattice

Description:
Before using this command, a simulation box must already exist, which is typically created via the “cre-

ate box” command. A lattice must also be defined using the “lattice” command. This fix will automatically
freeze atoms on the zhi edge of the system, so that overlaps are avoided when new atoms are appended. The
size keyword defines the size in z of the chuck of material to be added. The random keyword will give
the atoms random displacements around their lattice points to simulate some initial temperature. The temp

keyword will cause a region to be thermostated with a Langevin thermostat on the zhi boundary. The size
of the region is measured from zhi and is set with the extent argument. The units keyword determines the
meaning of the distance units used to define a wall position, but only when a numeric constant is used. The
value box selects standard distance units as defined by the units command, e.g. Angstroms for units = real
or metal. The value lattice means the distance units are in lattice spacings. The “lattice” command must
have been previously used to define the lattice spacings. The zhi boundary on which atoms are added with
append atoms must be of type s (shrink-wrapped). The zlo boundary may be any boundary type other than
periodic. The default values for the optional keywords are size = 0.0, freq = 0, and units = lattice.

8.2 Extensions to ATC package

Principal Authors: Jonathan A. Zimmerman, Reese E. Jones, Jeremy A. Templeton
The USER-ATC (Atoms-To-Continuum) package was created to instantiate Eulerian and Lagrangian ver-

sions of the Hardy atomistic-continuum formulation discussed earlier in this report. This code operates
through a LAMMPS-style fix (atc) that contains routines for constructing a mesh with nodes that act as
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fixed spatial or material points, designating the type and characteristics of the localization function used,
and calculating the Hardy and Cauchy-Born expressions of various continuum fields, their gradients and
time derivatives. Below is a listing of the essential commands used:

fix atc
description: This fix is the beginning to creating an on-the-fly estimation of continuum fields. After
instantiating this fix, several other fix modify commands will be needed to set up the problem, e.g.
define the finite element mesh.

syntax: fix [fixID] [group] atc [type] [parameter file]

- fixID = name of fix
- group = name of group fix is to be applied
- type

= hardy : on-the-fly post-processing using kernel localization functions
= field : on-the-fly post-processing using mesh-based localization functions

- parameter file = name of the file with material parameters. For use with estimation of Cauchy-
Born fields.

examples

fix AtC internal atc hardy
fix AtC internal atc field
fix AtC internal atc Cu_eam.mat

fix modify create mesh
description: Creates a uniform mesh in a rectangular region.

syntax: fix modify [fixID] create mesh [nx] [ny] [nz] [region-id] [f | p] [f | p] [f | p]

- nx ny nz = number of elements in x, y, z
- region-id = id of region that is to be meshed
- f p p = periodicity flags for x, y, z (f = fixed, p = periodic)

examples

fix_modify AtC create mesh 10 1 1 feRegion p p p

fix modify atom element map
description: Sets or changes frame of reference to eulerian or lagrangian and sets the frequency for
which the map from atoms to elements is reformed and all the attendant data is recalculated.

syntax: fix modify [fixID] atom element map [eulerian | lagrangian] [frequency]
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- frequency (int) : frequency of updating atom-to-continuum maps based on the current configu-
ration - only for eulerian

examples

fix_modify atc atom_element_map eulerian 100

fix modify kernel
description: Sets type and characteristics of kernel used as localization/averaging function in hardy-
based estimation of continuum fields.

syntax: fix modify [fixID] kernel [type] [parameters]

- type (keyword) = mesh, step, cell, cubic bar, cubic cylinder, cubic sphere, quartic bar, quar-
tic cylinder, quartic sphere

- parameters:

mesh = none
step = radius (double)
cell = hx, hy, hz (double) or h (double)
cubic bar = half-width (double)
cubic cylinder = radius (double)
cubic sphere = radius (double)
quartic bar = half-width (double)
quartic cylinder = radius (double)
quartic sphere = radius (double)

examples

fix_modify AtC kernel cell 1.0 1.0 1.0
fix_modify AtC kernel quartic_sphere 10.0

fix modify reset atomic reference positions
description: Resets the atomic positions ATC uses to perform point to field operations. In can be
used to use perfect lattice sites in ATC but a thermalized or deformed lattice in LAMMPS.

examples

fix_modify atc reset_atomic_reference_positions
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fix modify fields
description: Allows modification of the fields calculated and output by the post-processing transfer
class. The commands are cumulative, e.g.

fix_modify AtC fields none

followed by

fix_modify AtC fields add velocity temperature

will only output velocity and temperature fields.

syntax:
fix modify [fixID] fields [all | none]
fix modify [fixID] fields [add | delete] [list of fields]

- all | none (keyword) = output all or no fields
- add | delete (keyword) = add or delete the listed output fields
- fields (keyword) =

density : mass per unit volume
displacement : displacement vector
momentum : momentum per unit volume
velocity : defined by momentum divided by density
projected velocity : simple kernel estimation of atomic velocities
temperature : temperature derived from the relative atomic kinetic energy (as done by )
kinetic temperature : temperature derived from the full kinetic energy
number density : simple kernel estimation of number of atoms per unit volume
stress : Cauchy stress tensor for eulerian analysis (atom element map), or 1st Piola-Kirchhoff
stress tensor for lagrangian analysis
transformed stress : 1st Piola-Kirchhoff stress tensor for eulerian analysis (atom element map),
or Cauchy stress tensor for lagrangian analysis
heat flux : spatial heat flux vector for eulerian, or referential heat flux vector for lagrangian
energy : total energy (potential + kinetic) per unit volume
potential energy : potential energy per unit volume
number density : number of atoms per unit volume
eshelby stress: configurational stress (energy-momentum) tensor defined by Eshelby
vacancy concentration: volume fraction of vacancy content
type concentration: volume fraction of a specific atom type
cauchy born energy: free energy per unit volume calculated via the finite temperature
Cauchy-Born method
cauchy born stress: Cauchy stress tensor for eulerian analysis (atom element map), or 1st
Piola-Kirchhoff stress tensor for lagrangian analysis calculated via the finite temperature
Cauchy-Born method
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examples

fix_modify AtC fields add velocity temperature

fix modify gradients
description: Requests calculation and ouput of gradients of the fields from the post-processing trans-
fer class. These gradients will be with regard to spatial or material coordinates for eulerian or la-
grangian analysis, respectively, as specified by atom element map.

syntax: fix modify [fixID] gradients [add | delete] [list of fields]

- add | delete (keyword) = add or delete the calculation of gradients for the listed output fields

- fields (keyword) = gradients can be calculated for all fields listed in ‘fix modify fields’

examples

fix_modify AtC gradients add temperature velocity stress
fix_modify AtC gradients delete velocity

fix modify rates
description: Requests calculation and ouput of rates (time derivatives) of the fields from the post-
processing transfer class. For eulerian analysis, these rates are the partial time derivatives of the nodal
fields, not the full (material) time derivatives.

syntax: fix modify [fixID] rates [add | delete] [list of fields]

- add | delete (keyword) = add or delete the calculation of rates for the listed output fields

- fields (keyword) = rates can be calculated for all fields listed in ‘fix modify fields’

examples

fix_modify AtC rates add temperature velocity stress
fix_modify AtC rates delete velocity

fix modify computes
description: Calculates continuum fields corresponding to specified per-atom computes created by
LAMMPS.

syntax: fix modify [fixID] computes [add | delete] [per-atom compute id] [volume | number]

- add | delete (keyword) = add or delete the calculation of an equivalent continuum field for the
specified per-atom compute as volume or number density quantity
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- per-atom compute id = name/id for per-atom compute, fields can be calculated for all per-atom
computes available from LAMMPS

- volume — number (keyword) = field created is a per-unit-volume quantity or a per-atom quantity
as weighted by kernel functions

examples

compute virial all stress/atom
fix_modify AtC computes add virial volume
fix_modify AtC computes delete virial

compute centrosymmetry all centro/atom
fix_modify AtC computes add centrosymmetry number

fix modify on the fly
description: Overrides normal mode of pre-calculating and storing bond pair-to-node and kernel
atom-to-node matrices. If activated, will calculate elements of these matrices during repeated calls of
field computations (i.e. ”on-the-fly”) and not store them for future use. Note: “on” flag is optional - if
omitted, on the fly will be activated for the specified matrix. Can be deactivated using “off” flag.

syntax: fix modify [fixID] on the fly [bond | kernel] [optional on | off]

- bond | kernel (keyword) = specifies on-the-fly calculation of bond or kernel
- on | off (keyword) = activate or discontinue on-the-fly mode

examples

fix_modify AtC on_the_fly bond on
fix_modify AtC on_the_fly kernel
fix_modify AtC on_the_fly kernel off

fix modify set
description: Used to set various quantities for the post-processing algorithms. Currently it only sets
the zero point for the potential energy density using the value provided for all nodes, or from the
current configuration of the lattice if no value is provided. Defaults to lammps zero point i.e. isolated
atoms.

syntax: fix modify [fixID] set reference potential energy [value]

- value (double) : optional user specified zero point for PE

examples

fix_modify AtC set reference_potential_energy
fix_modify AtC set reference_potential_energy -0.05
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fix modify read restart
description: Reads the current state of the fields from a named text-based restart file.

syntax: fix modify [fixID] read restart [file name]

examples

fix_modify AtC read_restart ATC_state

fix modify write restart
description: Dumps the current state of the fields to a named text-based restart file. This done when
the command is invoked and not repeated, unlike the similar lammps command.

syntax: fix modify [fixID] write restart [file name]

examples

fix_modify AtC write_restart restart.mydata

fix modify output
description: Creates text and/or binary (Ensight, ”gold” format) output of nodal/mesh data which is
transfer/physics specific. Output indexed by step or time is possible, by default output indexed by
time.

syntax:
fix modify [fixID] output [filename prefix] [frequency] [text | full text | binary | vector components |
tensor components ]
fix modify [fixID] output index [step | time ]

- filename prefix (string) = prefix for data files

- frequency (integer) = frequency of output in time-steps

- options (keyword/s):

text = creates text output of index, step and nodal variable values for unique nodes
full text = creates text output index, nodal id, step, nodal coordinates and nodal variable
values for unique and image nodes
binary = creates binary Ensight output
vector components = outputs vectors as scalar components
tensor components = outputs tensor as scalar components (use this for Paraview)

examples
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fix_modify AtC output heatFE 100
fix_modify AtC output hardyFE 1 text tensor_components
fix_modify AtC output hardyFE 10 text binary tensor_components
fix_modify AtC output index step
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