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Abstract

Next-generation exascale systems, those capable of performing a quintillion (1018) operations per
second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times
faster than current systems, will be of unprecedented scale. As these systems continue to grow in size,
faults will become increasingly common, even over the course of small calculations. Therefore, issues
such as fault tolerance and reliability will limit application scalability. Current techniques to ensure
progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25
years, are increasingly problematic at the scales of future systems due to their excessive overheads. In
this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep
this method viable for future exascale systems. More specifically, this work evaluates state-machine
replication to dramatically increase the checkpoint interval (the time between successive checkpoint)
and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the
checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis,
modeling, and simulation, we study the costs and benefits of these approaches on a wide range of
parameters. These results, which cover of number of high-performance computing capability workloads,
different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential
benefits of these techniques for meeting the reliability demands of future exascale platforms.
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1 Introduction

1.1 Overview

Today’s extreme-scale parallel computers experience outages from a number of sources, including failed
hardware components, software bugs, and power disruptions. Million-core machines for exascale computing
will have so many parts that faults will be frequent. The system-wide Mean Time to Interrupt (MTTI)
will become so small that more than 50% of an application’s total execution time will be spent writing
checkpoints and recovering from failures [141]. The more failures that occur during the execution of an
application, the longer it will take to finish its work.

In this work, we propose a number of techniques to enhance traditional checkpoint/restart so that it
remains a viable option on future extreme-scale systems. These techniques fall into two broad categories:
those that reduce the frequency at which checkpoints are taken, and those that reduce the overhead of taking
one checkpoint. Note that these methods are not mutually exclusive and can collectively be used to reduce the
overhead of checkpoint/restart. To reduce the frequency of checkpoints, we investigate redundant computing,
which uses a state-machine replication scheme as well as a consistency protocol to ensure consistent state
within replicas. To reduce the overhead of one checkpoint, we investigate incremental checkpointing and
the use of computation accelerators such as graphics processing units (GPU) to speed checkpoint time.
Our thesis is that state-machine replication and GPU-based incremental checkpointing can keep traditional
rollback recovery as a viable option for exascale systems.

The remainder of this section is organized as follows. The following section provides a summary of the
reliability challenges for exascale systems, offering a look at the increasing component counts for current and
future systems and its implications for reliability. In Section 1.3 we briefly summarize the current practice
for mainstream HPC fault-tolerance, rollback recovery, and the scalability challenges in this method for
exascale systems. In Section 1.4 we offer a summary of state-machine replication, a common method used
in distributed and mission critical systems to provide fault tolerance. Section 1.5 offers a solution to reduce
the amount of state saved during a checkpoint: hash-based, incremental checkpointing. In Section 1.5, we
summarize another method to reduce checkpoint data, checkpoint compression. A summary of the main
contributions of this work is provided in Section 2. We conclude the section with a roadmap for the remainder
of this document in Section 2.1.

1.2 Reliability Challenges for Extreme-Scale Systems

Concern is rising in the High-Performance Computing (HPC) community on the reliability requirements
of proposed and future large-scale systems. In the past, increasing numbers of processing elements have
accounted for a significant portion of increased system capabilities. This trend of increased component
count is expected to continue in proposed exascale systems. In this section, we examine the impact of this
on the reliability of these systems.

Increased system size for these future systems leads to systems with a very small mean time between
failure (MTBF). The MTBF of a system is the mean time between two successive failures on the considered
system. The MTBF of a system is equal to the sum of the mean time to interrupt (MTTI) and the mean
time to repair (MTTR). For a system of identical components, the MTBF of the system (Θsystem) is inversely
proportional to the number of sockets (N) and is defined as:

Θsystem =
Θsocket

N
(1)

where Θsocket is the MTBF of a socket in the system. Reliability statistics from a number of top supercom-
puting centers [86,91,100,141,142,173,178] also show that the MTBF of HPC systems shrinks proportionally

7
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Figure 1. Socket counts for the five fastest machines topping the
Top500 [3] list for the past two decades. Also included are two proposed
systems due to become operational in 2010 and 2011, ASC BlueWa-
ters [5], Cielo [6], and Sequoia [9].

with the number CPU sockets in the system.

Examining historical socket count data from the Top500 [3] supercomputer site, we see that socket counts
have been steadily increasing. Figure 1 shows the socket count statistics for the five fastest machines in the
world since 1993. From this figure, we see the progression of increasing socket count with time. Three future
machines included in this figure and announced to be released in 2010 and 2011 continue this progression of
increasing socket counts: Cielo [6] with 18, 000 sockets, ACS BlueWaters [5] with nearly 40, 000 sockets, and
Sequoia [9] with 125, 000 sockets. This steady increase of socket counts for the top capability-class machines,
coupled with the fact that individual CPU reliability has stayed nearly constant in the past 10 years [172],
suggests that we will soon reach a tipping point where the MTBF will be so low that the application will be
unable to make forward progress.

Figure 2 show this same data from 2001, along with the three aforementioned proposed systems and
a proposed “Aggressive”proposed exascale architecture [14], an upper-bound “strawman” architecture for
a 2018 exascale machine. The shaded region in this plot represents the range of possible socket counts
fitting the past data to a line and extrapolating out to 2018. From this we see the possibility of a jump in
socket count for future extreme-scale machines. The reason for this possible jump is related to power and
memory bandwidth constraints on these systems [14]. All this suggests that socket counts will increase to
an unprecedented level.

Finally, Figure 3 illustrates the impact of system MTBF for machines at scale using Equation 1. Recent
studies [86, 91, 100, 141, 173, 178] have placed the socket MTBF for current systems to be between 5 and
25 years. It is important to note that it is not clear these current socket MTBF’s will increase; the CPU
market is typically not driven by the HPC community and current MTBFs are adequate for the consumer
and enterprise markets. In this figure, we see that at the scale of next-generation large scale machines, the
system MTBF will decrease to an hour and in some cases minutes. This is important as the rapidly shrinking
MTBFs typically impact application progress and scalability. In fact, if the MTBF is less than the mean
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Figure 2. Socket counts for the five fastest machines topping the
Top500 [3] list from 2001 to 2010. Also included are upcoming systems
and a proposed “Aggressive” exascale system [14]. The shaded region in
the figure shows the range of socket counts using past data for a line fit.

time to repair (MTTR), no progress can be made at all.

1.3 Rollback Recovery

Overview

A common method to allow an application to continue in the presence of faults, checkpoint/restart saves
application state at regular intervals and restarts the application from the most recent successful checkpoint
after a fault occurs. In this section we summarize the scalability challenges for traditional rollback recovery
for large-scale systems.

In rollback recovery, once a failure has been observed the current execution is stopped and execution
is restarted from the last known good snapshot of the application’s state. These last known good state
snapshots are called checkpoints. To avoid rolling back execution of the application to the beginning,
checkpoints are saved repeatedly throughout the lifetime of the application. Rollback recovery has a number
of costs associated with it, most notably the time to save a checkpoint safely to stable storage. Performance
is also affected by how frequently checkpoints are taken, but finding an optimal checkpoint frequency can
sometimes be difficult.

Checkpointing often ensures that little work is lost at the expense of spending an increasing amount of
time computing checkpoints and thereby halting application forward progress. Checkpointing rarely ensures
high application efficiency and forward progress at the expense of restarting from a point far in the past on
failure, recomputing a large amount of work.
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Figure 3. System MTBF values expected from large-scale exascale
systems. Current studies [86,91,100,141,173,178] place the node MTBF
somewhere between 5 and 25 years, which is expected to continue in the
future. Next-generation systems are expected to see multiple faults per
hour.

Scalability of Rollback Recovery

The use of coordinated checkpoint/restart as the primary HPC fault tolerance technique relies on two key
assumptions that may not be true in future exascale systems:

1. Application state can be saved and restored much more quickly than a system’s mean
time to interrupt (MTTI). Upcoming systems are projected to have several orders of magnitude
more components than current systems and suffer faults much more often (see Figure 2). In addition,
the increasing disparity between available I/O bandwidth and memory density continues to increase
the time it takes to write a checkpoint. Both of these are leading to exascale systems with MTTIs
much less than the time it takes to write a checkpoint.

2. Faults that result in Byzantine-type failures are very rare. Current systems are already
beginning to suffer from faults that lead to incorrect application results instead of crash failures [174],
for example undetected DRAM errors in application memory. Because of the dramatic increase in
component count in exascale systems, such faults will become increasingly common.

Table 1 shows the LINPACK Rmax performance as well as estimated or measured checkpoint times for a
number of machines in the Top500 [3] over the past 10 years. From this table we observe that, historically,
the fastest machines in the Top500 take 20 to 30 minutes to perform a checkpoint. This stability over time of
checkpoint time is due to a number of reasons: the balance between node memory density and I/O bandwidth
to stable storage and the organization of the I/O system remains relatively identical in the systems above.
This I/O subsystem organization is expected to remain in future large-scale systems.

Thus, from Table 1 we see that the time to take a checkpoint, around 20 to 30 minutes, plus the time
to perform a restart, also 20 to 30 minutes, will take a total between 40 to 60 minutes. Referring back
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Year System LINPACK Performance Checkpoint (δ)
(TFLOPS) (min.)

2010 Jaguar 1,759 26
2009 RoadRunner 1,105 ∼20
2008 BlueGene/L 500 20
2007 Red Storm 100 ∼20
2006 Zeus 11 26
1999 ASCI Red 2.3 ∼20

Table 1. Historical data of LINPACK and checkpoint performance for
a number for machines in the top500 [4, 7, 38]. The RoadRunner and
Red Storm checkpoint times are derived from memory size and parallel
file I/O performance assuming 80% of memory must be written in the
checkpoint.

to Figure 3, we see that at the expected scale, the predicted reliability of an exascale machine [14] will be
approximately an hour or less. Therefore, checkpoint/restart will be unable to make progress as most of the
time will be spent writing checkpoints, recovering from faults reading restart files, and performing rework
from the last checkpoint.

1.4 State-Machine Replication

The first technique we study for addressing these resiliency challenges for exascale is replication. Process-
pair fault tolerance [18,130], also referred to as state machine replication [170], is a well-known technique for
tolerating faults in large-scale distributed and mission-critical systems. In this technique, a process’s state
and computation are replicated across redundant hardware nodes. Replication allows systems to tolerate
crash failures resulting from system faults; in particular, a failed process’s replicas handle its responsibilities
until it can be restarted from an existing replica on new or repaired hardware. Though costly in terms
of hardware requirements, at least doubling the number of nodes required, it allows a computing system
to continue to execute unimpeded in demanding environments with frequent failures. In addition, variants
of this technique can also be used to handle faults that do not crash a node but instead cause it to yield
incorrect results [39].

Replication has not traditionally been used in high performance computing systems, and only examined
in a very limited sense, primarily due to its cost [183]. Instead, HPC systems have primarily relied on
a combination of the rollback recovery techniques described in Section 1.3 and a number of fine-grained
hardware error detection and correction techniques to allow large parallel applications to scale to over a
petaflop of sustained performance.

We study the use of replication to supplement checkpoint/restart and extend the validity of its underlying
assumptions to exascale systems. In particular, replication could be used to increase the effective system
MTTI by allowing applications to continue executing as long as one replica of every process remains alive.
This would allow applications to reduce the frequency with which they write checkpoints and increase the
time available to write checkpoints to stable storage. Similarly, replication could be used to detect faults
that silently corrupt application state by comparing replica state periodically (e.g. at checkpoint time). This
would allow applications to detect the effects of such faults and recover to a previous checkpoint instead of
wasting cycles computing a worthless results.
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1.5 Hash-Based Incremental Checkpointing

The second technique we study to reduce the overhead of checkpoint/restart is hash-based incremental
checkpointing. This variant of incremental checkpointing uses secure hashing to reduce checkpoint sizes by
saving only the application state that has changed in the checkpoint interval.

As stated previously, the act of saving checkpoints, referred to as committing checkpoints, adds overheads
to the application’s running time. This overhead is due to the time it takes to copy the process state (which in
some cases could be multi-gigabytes in size) to stable storage and possibly network bandwidth as thousands
to hundreds of thousands or more processors would need to write their state over the network.

One known optimization to reduce the amount that needs to be saved is incremental checkpointing.
Typically, this technique involves using the operating systems page protection mechanism to determine
which pages have been written to, termed dirty, since the last checkpoint has been saved. Upon restart, the
state restored is the original checkpoint with all the incremental differences applied in order.

One drawback to incremental checkpointing is that it operates at the granularity of the operating system
page size. Therefore if just one bit on a page has changed, the entire page must be checkpointed. In
fact, if the page is written with identical values it is still marked as dirty and must again be checkpointed.
This problem is further compounded by the increasing maximum page sizes of modern processors and the
increased performance for HPC applications on these larger page sizes.

To address this drawback this work investigates a hybrid incremental checkpointing solution that uses
both the OS page protection mechanism and a hashing scheme to determine which locations within a page
have changed. To address this we investigate the use of GPUs to offload the hash computation. This approach
has previously been proposed [11,137], but dismissed as being too computationally expensive [42,64].

Checkpoint Compression

The third technique we study to reduce the overhead of checkpoint/restart is checkpoint compression. This
technique focuses on speeds checkpoint commit times by reduces the amount of data written. We have one
fundamental goal: to understand the viability of checkpoint compression for the types of scientific applications
expected to run at large scale on future generation HPC systems. Using several mini-applications or mini
apps from the Mantevo Project [97] and the Berkeley Lab Checkpoint/Restart (BLCR) framework [92], we
explore the feasibility of state-of-the-field compression techniques for efficiently reducing checkpoint sizes.
We use a simple checkpoint compression viability model to determine when checkpoint compression is a
sensible choice, that is, when the benefits of data reduction outweigh the drawbacks of compression latency.

To the best of our knowledge, there has not been much research towards the goal of reducing checkpoint
sizes and commit times that consider data compression. Li and Fuchs implemented a compiler-based check-
pointing approach(CATCH), which exploited compile time information to compress checkpoints [120]. The
results from their CATCH compiler, which used LZW data compressor, showed that a compression ratio of
over 100% was necessary to achieve any significant benefit compared to the time overhead. Plank and Li
proposed in-memory compression and showed that, for their computational platform, compression was bene-
ficial if a compression factor greater than 19.3% could be achieved [150]. Plank et al also proposed differential
compression to reduce checkpoint sizes for incremental checkpoints [155]. Moshovos and Kostopoulos used
hardware-based compressors to improve checkpoint compression ratios [134].

Intuitively, checkpoint compression is a viable technique when benefits of checkpoint data reduction
outweigh the drawbacks of the time it takes to reduce the checkpoint data. To outline the viability of this
technique we will describe a model which specifies when this method is beneficial.
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2 Contributions

This work makes several important contributions in the field of fault-tolerance for exascale HPC systems.
These include:

• A model to determine the expected number of failures absorbed, and corresponding MTTI increase,
for an application using state-machine replication;

• An MPI-based implementation of application transparent state-machine replication outlining the con-
sistency model required to meet MPI semantics;

• A GPU-assisted incremental checkpointing library that can determine the minimal state change in an
application;

• A checkpoint compression library that significantly decreases the checkpoint commit state, along with
a model that outlines when this method is beneficial; and

• An evaluation of these techniques using a number of important HPC workloads, with guidance on the
viability of checkpoint/restart for future extreme-scale systems.

A summary of these contributions is provided below with more details following in subsequent sections.

Modeling Replication

We develop a model for state-machine replication using the the birthday problem. The birthday problem [96,
98, 128, 186], sometimes referred to as the birthday paradox, is a common problem in probability theory.
This model allows us to formulate the expected number of faults a replicated system can sustain before the
application sees an interrupt.

rMPI: A Transparent MPI Replication Library

We develop a portable, transparent replication library called rMPI. This library utilizes the MPI profiling
layer [176] to enable redundant computation for MPI applications. In this work we detail the design of this
library and a number of the protocols used to keep state consistent across the replicas. In addition, we
directly quantify the cost of the rMPI library on a range of micro-benchmarks and real-world, large-scale
applications.

Hash-Based Incremental-Checkpointing using GPU Accelerators

We develop a hybrid incremental checkpointing solution that uses both OS page protection mechanisms
and a hash mechanism to determine which locations within a page have changed. This allows us, with no
knowledge of the application, to determine the minimal amount of changed state in a checkpoint interval.
In addition, we use graphics accelerators to perform the hashing and evaluate the advantages of using these
GPU’s over CPU’s for a number of hashing algorithms.

Checkpoint Compression

We develop a checkpoint compression library that allows a significant decrease is an application checkpoint
size. This library uses a variety of different compression algorithms to decrease checkpoint state. This can
allow the application programmer to tailor the compression method to the type of data stored with the
checkpoint. In addition, we develop a model which outlines scenarios where this technique will pay off.
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Analysis of Checkpoint/Restart Viability for Extreme-Scale Systems

Lastly, in this work we examine the viability of using state-machine replication as the primary exascale fault
tolerance mechanism, with hashed-based incremental checkpoint/restart providing secondary fault tolerance
when necessary. Using the aforementioned model, we show this fault-tolerance mechanisms “break-even”
point (the point in which the nodes hours used for this method is less than a competitive method) is less
then the projected sizes of next-generation exascale systems.

2.1 Document Organization

The remainder of this work is organized as follows: In Section 3, we present background information and
related research in reliability metrics, traditional rollback recovery and other checkpointing methods, forward
error recovery – most notably state machine replication, fault-tolerant algorithms, and proactive migration.
Section 4 describes a model- and simulation-based approach to show the benefits of state-machine replication
for exascale-class systems. In Section 5, we describe a library that implements state-machine replication in
the HPC environment, rMPI. rMPI is a portable, transparent replication library implemented at the MPI
profiling layer. We outline rMPI’s basic architecture, consistency requirements and protocols. In Section 6
we show the runtime overheads of the rMPI library on a set of standard micro-benchmarks and a number
key capability HPC workloads. Combining the results from the previous sections, we show the viability of
our replication approach in Section 7 on a number of exascale system parameters, including CPU failure
rates, aggregate checkpoint I/O bandwidths, and various degrees of redundancy. Section 8 looks at the
viability of a hash-based incremental approach using GPUs to reduce checkpoint saved state and therefore
commit times for extreme scale systems. In Section 9, we describe our work investigating the viability of
checkpoint compression and its applicability for large-scale systems. We conclude with a summary of our
research contributions and future directions in Section 10.
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3 Background and Related Work

This section describes previous research as it relates to fault tolerance for high-performance computing.
First, we carefully define what is meant by faults and failures, as well as the the metrics used to describe
the reliability of an HPC system. The remainder of the section outlines a number of popular methods used
to ensure progress of applications across faults. This includes traditional rollback recovery and its various
optimizations, i.e. incremental checkpointing and asynchronous checkpointing with message logging. The
section concludes with a discussion of state machine replication and application algorithms that are resistant
to faults.

3.1 Failures, Faults, and Associated Models

As this work deals with fault-tolerance for emerging exascale systems, it is important to carefully define what
is meant by faults, errors, and failures. Generally a fault refers to the unexpected behavior or defect in the
system at its lowest level [82,105]. An example of a fault could be a memory cell which is stuck to the value
“0”. Faults are classified as reproducible if they always reoccur or non-reproducible otherwise. Our previous
stuck-to-zero memory cell example would be classified as reproducible assuming the defect which ties the cell
at zero is not transient. In contrast to fault, a failure or error is the externally visible manifestation of the
fault to the end user. This failure or error is a deviation of the system from its specification [82]. Returning
back to the memory cell example, one possible error from this fault could be an incorrect arithmetic operation
which uses a value previously stored at the location. This incorrect value can cause an error or failure of the
system. In scenarios where there is no distinction between a fault and the corresponding failure, these terms
are used interchangeably.

There are a number of different causes of failures in HPC systems. Design errors are those failures in
which the system was not designed to correctly perform the expected behavior. Design errors include both
software (bugs, race conditions, deadlocks, etc.) and hardware design errors. Additionally, failures can be
attributed to system overloading (e.g. denial-of-service attack) and age and stress induced wear down of
components. A distinction is typically made between hard and soft errors. A hard error is typically related
to a component in the system that no longer functions properly and is therefore non-transient, while soft
errors generally refers to those errors which are transient and can be resolved by resetting the system.

Traditionally, when talking about faults we describe the effect of a fault by describing the resulting
behavior of the system when the fault has occurred. These behaviors are typically grouped in a hierarchic
structure called fault models [51, 82, 171]. Correctness and cost of proposed fault-tolerant approaches are
evaluated with respect to a specific fault model. The most popular of these models include:

Fail-Stop Processors stop executing but this failure can easily detected by its neighbors.

Crash Processors simply stop executing but neighbors may be unable to detect when the error has occurred.

Byzantine Processors continue functioning but may behave in an arbitrary and sometimes malevolent
manner [112,118,184].

In this hierarchy, Byzantine is the most general as it includes the behavior of all other models listed
and fail-stop is the most limited as it requires malfunctioning units to no longer function and all other units
atomically be made aware of the failure, which may not be realistic for the majority of failures seen on actual
hardware.
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3.2 Reliability Metrics

A number of metrics are used in addressing the resilience of large-scale HPC machines. The reliability of a
component describes the probability that component will perform its intended function during a specified
period of time. The metrics failure rate, Mean Time Between Failure (MTBF), Mean Time To Interrupt
(MTTI), and Mean Time To Repair (MTTR) are fundamental terms used to describe the reliability aspects
of a component or system.

The failure rate (λ) is the frequency with which a component experiences faults. The mean time between
failures (MTBF) is the mean time between two failures of the considered system. This time is equal to the
sum of the mean time to interrupt (MTTI) and mean time to repair (MTTR). Sometimes MTTI is replaced
by the mean time to failure (MTTF).

Note that these reliability metrics do not include any information about the methods used to recover
from failures or how efficient these methods are. We address recovery methods in the following sections.

3.3 Traditional Rollback Recovery

Overview

The presence of failures in the hardware or software of parallel computers has created a requirement for the
use of fault tolerance mechanisms in order to make sure that the application finishes successfully. In case of
failure, the application stops or terminates with incorrect results because it has not been designed to handle
these error situations. To ensure progress across faults, a number of techniques have been created. The most
common of which, described in this section, is rollback recovery.

Rollback recovery, or backward-error, protocols [34,67,95,143,192] have been the dominant fault tolerance
mechanism in HPC for over 20 years. In rollback recovery, the process and/or communication state [41] is
periodically saved to stable storage. Upon failure, the system rolls back computation to the last known good
state saved to stable storage. In this protocol, the amount of work lost upon failure is the work computed
since the last known good state was saved. The two main variants of rollback recovery are checkpoint and
log-based protocols.

Traditional Checkpoint/Restart

Traditional checkpoint/restart has been the dominant fault tolerance mechanism in high performance com-
puting systems for at least the last 30 years. In current systems this approach generally works by saving
the state of the application periodically throughout the application’s computation. When a failure has been
reached, the last known good state is read from stable storage and computation is continued from that state.

Coordinated Checkpoint/Restart Coordinated checkpoint/restart ensures the consistency of check-
points by synchronizing all nodes before writing a checkpoint. This method generally works as follows:

1. Applications periodically quiesce all activity at a global synchronization point, for example a barrier;

2. After synchronization, all nodes send some fraction of application and system state, generally compris-
ing most of system memory, over the network to dedicated I/O nodes;

3. These I/O nodes store received checkpoint information data to stable storage, currently hard disk-based
storage;
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4. In the event of an application failure, the stored checkpoint is used to restart the application at a prior
known-good state.

This synchronization limits the domino effect [161] and ensures all checkpoints are globally consistent
and only the last successfully saved checkpoint needs to be kept. This synchronization can be done by either
quiesing the communication state before writing the checkpoint [67,93,104,181] using, for example, a barrier
operation or by saving the communication state during the operation using a more complex non-blocking
protocol [41, 50, 67, 114]. In addition to synchronization protocols, using synchronized clocks to coordinate
checkpoints has also been investigated [52, 116, 182]. This technique has rather limited applicability due to
the difficultly of fine-grained synchronization on distributed memory, large-scale machines.

Modeling Coordinated Checkpoint/Restart Performance In [53], Daly presents a validated model
for coordinated checkpoint/restart assuming exponential failures. There are a number of similar first-order
models in literature [28, 53, 126, 136, 191]. We choose Daly’s model due to its accuracy above the others. In
addition to the checkpoint model (presented here in Equation 2), Daly also derives an optimal checkpoint
interval τ̃opt (Equation 3).
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Where:

δ Time to write one checkpoint

R Time to do a restart

Θ Mean time between failures for the system

τ Interval between successive checkpoints

Ts Application solve time with no overhead from checkpoint/restart

Tw Wallclock solve time including checkpoint/restart overheads

This model describes the wall clock time of given workload on a proposed exascale system which includes
the overheads of writing checkpoints as well as performing restarts after faults. In this work, we use this
validated model to evaluate the performance of checkpoint/restart at the scale of proposed exascale machines,
a scale several orders of magnitude larger than what is currently available today.

Optimizing Rollback/Recovery

The overheads associated with traditional rollback recovery have been known and studied extensively in the
past twenty years [11,30,33,48,50,66,67,103,141,165]. Due to this known overhead, a number of techniques
have been proposed to decrease the costs while still delivering the fault tolerance benefits [67]. These
techniques include incremental, copy-on-write (COW) or forked checkpointing; uncoordinated checkpointing;
communication-induced checkpointing; and asynchronous checkpointing with message logging.
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Incremental Checkpointing Incremental checkpointing [11,35,44,65,67,87,122,137,152,167] decreases
the overhead of taking a checkpoint by reducing the amount of application state or data saved to stable
storage at each checkpoint [153]. Incremental checkpointing reduces the amount of state saved by only
saving that state which has changed since that last checkpoint has been written. A variety of methods have
been used to determine which state has changed, from compiler based to techniques [35] based on saving
dirty virtual memory pages [87,167].

Hash-based Incremental Checkpointing Hash-based Incremental Checkpointing, sometimes referred
to as probabilistic checkpointing [137], is a system-based checkpoint method that attempts to minimize the
state saved in a checkpoint and therefore optimize checkpoint commit times. This technique uses computa-
tional hash algorithms to determine the portions of a process’ address space that has changed in a checkpoint
interval, rather than the dirtied pages used in standard incremental checkpointing. Another key feature of
this method is the ability to allow finer-grained detection of dirtied blocks than is currently possible using
mechanisms based solely on page protection mechanisms. This approach has previously been dismissed as
being to computationally expensive [42,64] to reap the meager benefits in state compression.

With a probabilistic hash-based approach aliasing is a concern. Aliasing, also referred to as collisions,
comes about when modifications to a block are just such that the key values are identical. The danger with
aliasing is the library will not save modified application data, thereby corrupting the application in the event
of a restart. Previous studies have shown the likelihood of aliasing to be higher in practice then expected
theoretically for a number of hash functions. Specifically, with the hash signature functions CRC32 and XOR,
the probability of collision has been shown to be too high to be considered safe [64]. Secure hash signatures
like MD5 and SHA256, however, have been shown to behave in practice as expected theoretically, and are
therefore reliable enough to be used in a hash-based approach [42].

Recently, Agarwal et al. [11] investigated the performance characteristics of a hash-based adaptive in-
cremental checkpointing library. The authors use an MD5 hash to determine the portions of an application
address space that have changed in a checkpoint interval. This work failed to evaluate the merit of this
hash-based technique on actual HPC capability workloads, instead using micro-benchmarks. In addition,
the authors failed to evaluate the merit of this technique compared to application-specific checkpoint mech-
anisms that exist in many capability workloads.

Copy-on-write Checkpointing Copy-on-write checkpointing, or forked checkpointing [65, 77, 119, 121,
122,143] decreases the overhead of taking a checkpoint by having a background process save application state
to stable storage while the original process continues computation. This allows both the checkpoint process
and original process operate concurrently. If the underlying system supports virtual memory page copy-on-
write semantics, both the checkpoint process and the original process share the read only and unmodified
writable pages of the process, thereby reducing the memory overheads to be only those memory pages that
have been written to since the checkpoint was initiated.

While this method allows for the simultaneous execution of the checkpoint and application processes,
there are associated costs. As outlined above, the memory footprint of this method is greater than traditional
blocking checkpoint/restart. Even if copy-on-write is supported, this footprint difference can still be quite
large in today’s data-intensive applications. In addition, the page copy operation can be an expensive
operation. Lastly, the concurrent checkpoint process typically uses valuable memory bandwidth, a known
limiter of HPC application performance.

Remote Checkpointing Remote checkpointing [132, 179, 193] saves checkpoints to remote resources,
leveraging network resources on the nodes. This methods allows for performance advantages in environments
where network bandwidth is greater than I/O bandwidth to local storage devices or environments where local
storage is either not available or too small to save application state. As this checkpoint data is saved remotely,
the data exists in the system even if the corresponding node has failed. This method seems to be losing
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favor with the advent of fast, inexpensive stable storage, for example solid-state disk (SSD) devices.

Uncoordinated Checkpoint/Restart In contrast to coordinated CPR, in uncoordinated checkpoint/restart
[22,114,162,188] the processes checkpoint their state independently of each other. As these checkpoints are
saved independently, ensuring a globally consistent checkpoint can be quite difficult. Due to this difficulty, all
local checkpoints must be saved. Upon failure, the runtime system must examine all checkpoints to compute
a globally consistent checkpoint if it exists. If no such globally consistent checkpoint exists, computation
can rollback execution to the beginning of execution, the so-called domino effect [161].

Communication Induced Checkpoint/Restart A hybrid of both coordinated and uncoordinated
checkpoint/restart, communication-induced checkpointing [31,94,115,139,166,189] attempts to avoid useless
checkpoints. In communication-induced CPR, processes take independent checkpoints but must also take
checkpoints based on the communication patterns of the application. This communication-induced check-
point protocol is piggybacked on the application’s messages. There are two main approaches for when these
communication-induced checkpoints must be taken; model-based and index-based protocols. Model-based
protocols [139, 166, 189] attempt to prevent saving useless checkpoints by protecting the patterns of check-
pointing and communication that create them. Index-based protocols [31,94] on the other hand, use ordering
techniques such as logical clocks [115] to ensure no useless checkpoints are created.

Asynchronous Checkpointing with Message Logging Asynchronous checkpointing with message
logging, similar to uncoordinated checkpointing, [12,24,26,29,106,107,157,180] attempts to improve check-
point performance by avoiding the synchronization that ensures a consistent checkpoint. In these systems,
nodes generally checkpoint and restore from local storage without the synchronization used by coordinated
checkpointing. To support a node restoring from a local asynchronous checkpoint, nodes in this approach
keep a log of recent messages that they have sent. When a node restores from a previous checkpoint, it can
then replay reception of messages using a remote nodes log.

While this approach can increase checkpointing performance, it also generally assumes the availability of
local storage. In addition, logging increases the latency of messaging operations and potentially takes signif-
icant amounts of space. Finally, asynchronous checkpointing approaches can result in cascading rollbacks;
recent work attempts to bound the amount of rollback that may be necessary [90], but also places non-trivial
limits on application behavior. We are unaware of any studies examining performance of message logging
approaches at large scales (e.g. thousands of nodes or larger).

High-speed Storage for Checkpoint/Restart

High speed local storage, for example local disk and flash memory systems, has periodically been proposed
to speed up checkpoint/restart systems by placing large amounts of high-speed storage near the data that
must be checkpointed. The Exascale planning report [20] notes that placing spinning storage and a flash
RAM in each system node would allow nodes to checkpoint in between four minutes and one second. This
would in turn increase system utilization to from 59% to 97% ( [20], Table 7.12, revised using Daly’s second
order model.)

However, deploying large amounts of local non-volatile storage in an exascale system is potentially very
challenging. Local disk-based storage has traditionally been avoided because of the increased failures it may
cause. Upcoming non-volatile phase change PCRAM and resistive RRAM devices provide high bandwidth
and reliability, but are potentially very expensive. Unless their cost per bit rivals that of DRAM, using such
technologies for checkpoint/restart purposes would result in checkpointing hardware that makes up a much
larger portion of the system cost.

Modern NAND and NOR flash technologies are potentially the most promising for buffering and storing
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local checkpoints because of their comparatively low cost, high density, and high reliability. NAND flash
write bandwidths are currently in the low GB/s range, allowing them to checkpoint a node in a few minutes.
Assuming that exascale MTTIs can be kept at or above one hour, this would result in system utilization of
80% or higher. However, their write durability would require periodically replacing all flash memory in the
system.

3.4 Other Checkpointing Systems

Memory-based checkpointing [61, 72, 149, 154, 175] uses the the memory of a remote machine to checkpoint
node state. Unless node memory is primarily read-only (in which case RAID 5-like techniques can be used),
this approach doubles the memory demands of an application. Since memory is regarded as a key budget
and power constraint in exascale systems, it is unclear if the benefits of replicating only memory are superior
to the qualitative advantages of state machine replication described in this work.

Multi-level checkpointing [132] is a library-based approach for controlling checkpointing to multiple stor-
age targets, including memory-based checkpoints, local checkpoint storage, and remote checkpoints, into
a single system. Because of this, it shares some of the advantages and disadvantages of memory-based
checkpointing and local storage techniques. Unlike these techniques, however, multi-level checkpointing has
the flexibility to choose between multiple levels of storage based on system design parameters, making it a
promising technique for exascale systems.

Lastly, hardware-based mechanisms utilize specialized hardware primitives to automatically perform
checkpoint and logging of machine state [159, 177]. These memory-based hardware approaches share the
speed advantages of memory-based checkpointing with only very modest hardware modifications. These
modifications typically include redundant storage in memory for the saved checkpoints and a directory-
based cache controller. As these method requires hardware modifications and replication in memory, again
it is unclear if this method is appropriate for large-scale systems.

3.5 State Machine Replication

Overview

Redundant computation, process replication, and state machine replication have long histories and have been
used extensively in distributed [13,24,25,27,43,47,79,81,84,85,158,170,195], mission critical [18,130,144,170],
and storage systems [101,102,147,148] as a technique to improve fault tolerance. In state machine replication,
one or more replicas of each process is maintained and every node computes deterministically in response to
a given external input, for example a message being received. This technique then uses an ordering protocol
to guarantee all replicas see the same inputs in the same order, and additional communication to detect and
recover from failures. Where there are disagreements, output correctness may be performed using reliable
quorum algorithms.

State machine replication offers a different set of trade-offs compared to rollback recovery techniques such
as checkpoint/restart. In particular, it completely masks a large percentage of system faults, preventing them
from causing application failures without the need for rollback. Some forms of state machine replication can
also be used to detect and recover from a wider range of failures than checkpoint/restart, including Byzantine
failures [39]. Unlike checkpoint/restart, however, state machine replication is not sufficient by itself to recover
from all node crash failures; faults that crash all of a node’s replicas will cause a computation to fail.

This approach has previously been dismissed in HPC as being too expensive for the meager benefits that
are seen at present machine scale [69, 70, 125]. For the reasons described in earlier this section regarding its
scalability, however, several authors have recently suggested using this technique in HPC systems [74, 173,
194]. In later sections, we examine the suitability of a specific type of state machine replication in HPC
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systems.

Passive versus Active Replication

As stated previously, in state machine replication the entity being replicated is a process. Two replication
strategies have been used for replicating this process: active and passive replication. In passive replication [25,
81] there is only one process that handles events. This process is called the leader or primary process. After
processing a request, the leader updates the state on the other backup replica processes and sends back
the response to the client. In active replication [24, 25, 47, 81] each request is processed by all replicas.
To ensure all the replicas receive the same sequence of operations, an atomic broadcast protocol or group
communication must be used. This group communication protocol [16, 54, 109, 117] guarantees that either
all the replica receive an event or none, and that they all receive events in the same order.

Group Communication

As described in the previous section, state machine replication involves communication and coordination
among a set of replicated processes. Algorithms that coordinate the groups in the replica set are commonly
referred to as group communication algorithms. These algorithms typically deal with reliable delivery and
consensus issues such as consistency (all members of the group agree on a value) and liveness (all processes
in the group eventually make progress).

The most prominent group communication mechanism in distributed systems is Lamport’s Paxos con-
sensus algorithm [117]. This distributed algorithm ensures consensus in a network of unreliable processes.
Like most distributed consensus algorithms, this algorithm works on the idea that all members propose their
output to the entire group, or a subset, and then coordinate to decide which output is correct. There is a
great deal of previous work that focuses on the semantics, correctness, efficiency, and adaptability of group
communication in financial and mission critical applications [10,16,17,21,54,59,109,133,185].

One distributed consensus algorithm used in state machine replication is referred to as a total order
broadcast. A total order broadcast algorithm [16, 54] provides reliable delivery of messages within a group
in the same order for all processes. This ordering mechanism typically has an associated performance cost.
For example, a message may not be delivered to a process until all other processes in the group have agreed
upon its delivery. This cost is typically an increase in message latency.

Approaches widely used to implement total message ordering include sequencer, privilege-based, and
communication history algorithms. In sequencer-based total ordering, one group member is responsible for
the ordering and reliable delivery of messages within the group. A fail-over mechanism for the sequencer
assures fault-tolerance for this mechanism. Example systems which utilize sequencer algorithms include the
Amoeba distributed operating system [109] and the Isis communication system [23]. Privilege-based total
ordering algorithms rely on the idea that group members can reliably broadcast only when granted to do
so. For example, in the Totem protocol [15], a token is rotated among the replica group and only the holder
can reliably broadcast. A token time-out ensures liveness in the system. Lastly, in communication history
algorithms, messages are reliably broadcast by any member, at any time, without an a priori order. Total
message order in the system is ensured by delaying message delivery until delivery information is gathered
from other members of the group [60].

These three ordering approaches have significant advantages and disadvantages. Sequencer and privilege
approaches provide good performance when the system is relatively idle. When multiple group members
are active and constantly broadcasting, however, the latency is limited by the time for the sequencer to
produce the ordering or circulate the token. Communication history algorithms increase latency to detect
the “happened before” [115] relationship between messages. This delay typically depends on the slowest
group member.
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Several studies have attempted to reduce the cost of these approaches. Early delivery algorithms [17,59]
reduce latency by reaching agreement with a subset of the process group; optimal delivery algorithms [21,185]
deliver messages before the total message ordering has been determined but notify applications if the final
total order is different than that of the delivered order.

3.6 Other Forward Recovery Methods

In contrast to rollback recovery, forward recovery avoids restarting the application from a previously saved,
known-good state by recovering on its own to a state corresponding to a normal, fault-free execution.
Applications must typically be designed specifically with this forward recovery property. These algorithms
eventually converge towards a correct state in the presence of perturbations or failures of any kind.

One well known class of forward-recovery algorithms is refered to as self-stabilizing codes [58]. An
algorithm is self-stabilizing if, independent of each component’s initial state, it arrives to a correct working
state in a finite amount of time. To do so, this class of algorithms must assume that errors are transient and
can occur in any part of the system. In these algorithms, there is typically a phase between the receiving of
an error and its stabilization where the algorithm may provide incorrect results. It is the responsibility of
the user to handle this non-stabilized window.

While it is not clear if this forward recovery method is viable for HPC applications, it has been shown
to have applications in collective communication libraries and runtime environments. As an example, Geist
and Engelmann [83] proposed a forward recovery method for computing a global maximum in the presence
of faults. While this algorithm correctly computes the maximum from the live nodes in a distributed system,
its computation time is unbounded.

This same time-bound limitation applies to self-stabilizing algorithms: they can be used for collective
operations but the time in the stabilization phase is unknown. In fact, most current self-stabilizing algorithms
cannot tolerate failures during the stabilization phase. Due to the fact that these algorithms do not produce
exploitable results during the stabilization phase, they cannot be used as they are in situations where the
system suffers from very frequent failures (if the inter-failure period is shorter than the stabilization time).
This is a very important limitation for numerical algorithms and HPC applications for exascale systems.

3.7 Fault-Tolerant Algorithms

The notion of application-based fault tolerance is to design computation algorithms that either ignore fail-
ures and still deliver a correct answer, or are able to recover using techniques such as redundant data or
computation. An underlying requirement of these algorithm-based approaches is that the underlying system
software is also capable of continuing in the presence of faults [19,62,71,75,76].

Application-based Data Redundancy

One recent mechanism for application fault tolerance is data redundancy. This method works by encoding
redundant data into the problem such that data from failed nodes can be recomputed. In addition, the
algorithm is modified to update the encoding as computation progresses. In general this method is adjustable
by the encoding algorithm used such that a specified number of failures can be tolerated at a time. Recent
results using this technique show this method can be used with a very low performance overhead [45,46,113].
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Application-based Computational Redundancy

In contrast to the data redundancy method described in the last section, computation redundancy relies on
the algorithm-specific relationship between the parallel application and its individual data chunks. If data
is lost due to a failure, this impacts the result by possibly increasing the margin of error or by running the
surviving nodes for longer until the problem has converged. Therefore, the number of nodes lost determines
the application time-to-solution or margin of error.

Recently, Engelmann and Geist [73] used chaotic relaxation and meshless methods to ensure progress in
the presence of faults. The authors showed that the convergence of a finite difference code is not significantly
affected if the number of failed nodes is less than 1% of the total number of nodes. Though these algorithmic
methods show promise, they have not been tested extensively and there is concern that they may not be
applicable to all applications.

3.8 Proactive Migration

A recently proposed fault-tolerance method, proactive migration (or fault avoidance) [40, 123, 124, 135, 135,
187] allows applications to survive faults by migrating when a fault is imminent. In contrast to the traditional
reactive fault handling techniques, proactive migration utilizes reliability models based on historical events
and current system health status information in order to avoid application faults. For example, a process
may be temporarily migrated when it displays behavior that is similar to a component that is about to fail,
such as increases in temperature or unusual communication errors.

This method is dependent on accurate fault predictor models. Therefore, much of the research in this
area is in the development of these predictive models and algorithms and validating these models using
limited reliability log data [40,123,124]. There is great concern on the accuracy of these predictors for next-
generation systems. This is due to the fact that all available fault trace data is either not representative of
a production system or extracted from system that are orders of magnitude smaller than proposed exascale
systems.

Independent of the predictors’ accuracy, this method must handle the scenario where a fault arrives
before the application can be migrated. Therefore, this method must be combined with a method such as
checkpoint/restart to handle uncaught error state. If failures can be predicted with great accuracy, these
methods can increase the checkpoint interval and therefore lower its overhead.

3.9 Summary

In this section we evaluated previous research on tolerance to faults for long running distributed-memory
applications, first providing definitions of what we mean by a fault or failure as well as defining the metrics
used to describe the reliability of large-scale machines. We then discussed a number of methods used by
HPC applications to ensure progress in the presence of faults. This included the dominant checkpoint/restart
and its variants, outlining the limitations of this methods for future extreme-scale systems. In addition, we
described a number of emergent fault-tolerance methods for HPC including forward recovery, proactive
process migration, and fault-tolerant algorithms. Lastly, we discussed a common method used in distributed
and mission critical systems to mask faults, state machine replication. For each of these methods, the costs
and benefits are still unclear for an exascale class systems. In this work we evaluate and analyze two of these
methods, state machine replication and hash-based incremental checkpointing.

23



4 Replication in High-Performance Computing

4.1 Overview

The first technique we study to keep checkpoint/restart viable for exascale systems is replication. In this
work, we propose to use state machine replication to dramatically reduce the checkpoint frequency of the
application. State machine replication is conceptually straightforward for message passing HPC applica-
tions. In this approach, each replica is created on independent hardware for every processor rank in the
original application of which failure cannot easily be tolerated. Note that we do not require all ranks to be
replicated—in master/slave-style computations where the master can recover from the loss of slaves, only
the master might be replicated.

The replication system then guarantees that every replica receives the same messages in the same order
and that a copy of each message from one rank is sent to each replica in the destination rank. In addition,
the replication system must detect replica failures, repair failed nodes when possible, and restart failed nodes
from active replicas. The replication system may also periodically check that replicated ranks have the same
state.

Checkpoint/restart recovery is still required when using replication, specifically when all replicas of a
particular process rank have failed. Checkpointing is also needed to recover from situations where replica
state becomes inconsistent, for example due to silent (undetected) failures.

Replication requires significantly increased computational resources – at least double the hardware for
replicated ranks. In cases where only portions of an application must be replicated, these requirements
are potentially modest. For many HPC applications (e.g. traditional stencil calculations), however, this
approach doubles the required hardware—2N nodes are required to fully replicate a job that would otherwise
run (perhaps much more slowly due to failures) on N nodes. In addition, there are runtime overheads for
maintaining replica consistency.

This cost in resources, however, comes with significant and important advantages:

• Dramatically increased system MTTI. This approach dramatically reduces the number of faults
visible to applications. Specifically, the application only sees faults that crash (or otherwise fail) all
replicas of a particular rank.

• Significantly reduced I/O requirements. Increased system MTTI reduces the speed at which
checkpoints must be written to storage to allow applications to effectively utilize the system. A smaller
fraction of the system cost and power budget must as a result be spent on the I/O system.

• Detection of “silent errors.” By comparing the state of multiple replicas (e.g. using memory
checksums) prior to writing a checkpoint, replication can detect if application state has been corrupted
and trigger restart from a previous checkpoint.

• Increased system flexibility. The extra nodes used for redundant computation when running the
largest jobs can be used for providing extra system capacity when running multiple smaller jobs for
which fault tolerance is less of a concern. A system that uses N nodes and an expensive I/O system to
reach exascale can only run 100 10PF jobs at a time, for example. A system that uses 2N nodes and
a less expensive I/O system to reach exascale, however, can potentially run 200 10PF jobs at a time.

This section outlines our approach for evaluating replication for high-performance computing. First,
in Section 4.2 we describe our method of modeling the quantitative cost and its benefits for extreme-scale
systems, presenting an initial comparison of traditional checkpoint/restart to replication with checkpointing
in Section 4.3. Then, in Section 4.4 we describe a simulation-based analysis of replication, along with a
comparison to the model-based approach described previously. In later sections, we examine the runtime
overheads of replication on a number of capability HPC workloads and micro-benchmarks.
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4.2 Modeling Replication for HPC

The potential benefits of redundant computing can be illustrated using a generalization of a common problem
in probability theory called the birthday problem [129]. The birthday problem is concerned with the expected
(or average) number of people needed to find two persons with the same month and day of birth. The birthday
problem result is used in the analysis of many problems in computer science, including collisions and chaining
in hashes [111].

For the purpose of this work, the results of the birthday problem are generalized to describe the impact
of redundant computing on application fault tolerance and the increase in MTTI of our redundant system.
If we consider each of the processes of an application to be a bin with a capacity equal to the number
of replicas, then asking how many faults this new system can handle without interruption is equivalent to
asking what is the expected number of throws of random balls until one bin has been filled to capacity. In
terms of the birthday problem, this is equivalent to asking, assuming birthdays are uniformly distributed
throughout an N (the number of unique processes) day year, how many people on average are needed to
ensure at least two share the same birthday. In the case of two replicas per process, the birthday problem
tells us that the expected number of throws (or people) is O(

√
N) (again where N is the number of bins or

unique processes). More generally, the average number of faults F our redundant system of N sockets can
absorb, assuming double redundancy, is [78,111]:

Q(N) = 1 +
N∑

k=1

N !
(N − k)! ·Nk

(4)

Figure 4 shows a plot of Equation 4 as a function of the number of sockets. From this figure we see the
well known result for the birthday problem for N = 365 (around 24.16 people). We also see that adding
replicated processes to our system dramatically increase its ability to absorb faults, thereby increasing the
effective MTTI of the application. For example, for N = 200, 000 nodes, on average, we can sustain 561
faults before our application will be interrupted. Therefore, with dual-redundancy, the MTTI will increase
by a factor of 561 in the redundant case over the non-redundant case.

Approximations for the Birthday Problem

In the remainder of the section we investigate two approximations for solving the birthday problem. We use
these approximations in following sections to evaluate the benefits of replication by approximating the number
of interrupts an application can absorb before needing to restart. The two approximations evaluated in this
section include one attributed to Ramanujan [78] and one based on probabilistic indicator variables [49]. In
describing each of these methods, we also outline its advantages and shortcomings.

Ramanujan’s Approximation One version of the birthday problem asks how many people on average
need to be brought together until there are enough to have a 50% or better chance that two of them share
the same birth month and day. Equation 5, from [98,128], shows how to calculate this version of the birthday
problem. It is the so called Q-function described in [78] and examined by Knuth in [111] in the context of
hashing. The answer for a N = 365 day year, and all days equally likely, is 24.6 people. Note that this is
different from the 23 people needed in the classical birthday problem where it takes that many people to
have a better than 50% chance that any person in the group has a matching birthday with any other person
in the group.

Q(N) = 1 +
N∑

k=1

N !
(N − k)! ·Nk

≈
√

πN

2
− 1

3
+

1
12

√
π

2N
− 4

135N
+ · · · (5)
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Figure 4. Expected number of node failures before an application
interrupt in a system with redundant nodes. Numbers are calculated
using the birthday problem Equation 4.

This Q function can be approximated for the case with two replicas as described in Equation 6 [78].

R2(N) =

√
πN

2
− 1

3
(6)

Indicator Variables Another method for solving the birthday problem is done using indicator variables
and the linearity of expectation from probability theory [49]. While this method is a more coarse approxi-
mation then the ones described thus far, it has the advantage that it can be easily extended to scenarios of
greater than two replicas.

In this section we outline this approximation for the birthday problem for two replicas to motivate how
it can be modified for greater number of replicas. First, assume we have k individuals each with a birth date
uniformly distributed from a year continuing N possible days. For each pair of individuals (i, j), we define
a random variable Xij as follows:

Xij =
{

1 if i and j have some birth date
0 otherwise (7)

The probability that two individuals have the same birth date 1
n . Therefore, from linearity of expectation,

the expected value E of Xij is:

E[Xij ] = 1 · 1
n

+ 0 · (1− 1
n

) =
1
n

(8)

Now to get the expected number of pairs of all individuals having the same birthday, we sum over all pairs.

k∑
i=2

i−1∑
j=1

E[Xij ] =
(

k

2

)
· 1
N

=
k(k − 1)

2N
(9)
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It is straight-forward to show that if we extend Equation 9 for the expected number of groups of R people
with the same birthday we get:

ER(N) =
(

k

R

)
1

NR−1
(10)

For this work, to get the expected number of faults that can be absorbed by our replicated system we
input the number of replicas R, the number of application visible processes N , set the expected number of
pairs equal to 1 and solve for k.

Comparison of Approximations

In this section we show two approximations that exist for solving the birthday problem, each with its own
limitations. We look at a comparison of these functions to the value from Equation 4. Figure 5 shows a
comparison of Equation 4, Equation 6, and Equation 10. In the figure, the left-hand axis corresponds to the
expected number of people that must be chosen at random in order to have at least one pair with the number
of days in that year on the X-axis. The right-hand axis is the relative error of Equation 6 and Equation 10
in comparison to Equation 4.

From the figure we see that Equation 6 is an asymptotically accurate approximation for the Q-function.
Equation 10, on the other hand, shows a nearly 14% overestimation for the birthday problem. The reason
for this overestimation has to do with the replacement assumption inherent in the original birthday problem
formulation. Our derivation of Equation 10 makes no such assumption and making such as assumption
would greatly complicate the derivation. Again, while this indicator method formulation overestimates the
birthday problem result, we can correct for outside of its derivation. Therefore, the Q function in Equation 4
is the most accurate, but only accounts for two replicas and is too expensive to compute. Equation 5 and
Equation 6 asymptotically approximate Equation 4 and have the advantage of being much easier to compute,
but still only model two replicas. Equation 10 is the least accurate approximation of Equation 4 but has the
advantage of modeling any number of replicas.

4.3 Model-based Analysis

Using the model from Section 4.2, we examine the performance benefits of state machine replication compared
to its fundamental redundant hardware costs. For this initial comparison, we assume every process is
replicated, and make very simple assumptions about system characteristics. More specifically we assume
that (1) There is no software overhead for maintaining replica consistency; (2) That the system can checkpoint
in a fixed amount of time regardless of scale; and (3) That all failures follow a simple exponential distribution.
We will relax these three assumptions in the following sections of this section, as well as in later sections.

When two nodes are used to represent the same MPI rank, the failure of one node in a pair does not
interrupt the application. Only when both nodes fail does the application need to restart. The frequency
of that occurring is much lower than the occurrence of a single node fault and can be characterized using
the birthday problem described in Section 4.2. In particular, we use Equation 6 to estimate the expected
number of faults absorbed by the replication technique.

Figure 6 estimates the resulting application efficiency with optimal checkpoint intervals for both state
machine replication and using only traditional checkpoint/restart. MTTI is computed directly from the
birthday problem approximation in Equation 6, while the resulting efficiency is computed using Daly’s
higher-order checkpoint/restart model and optimal checkpoint interval [53]. These calculations assume a
43800 hour (5 year) per-socket MTBF based on past studies [91,172], a constant 15 minute checkpoint time
as shown in Table 1, and a 168 hour application solve time.
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Figure 5. Comparison of a number of methods for approximating the
birthday problem. Q(m) refers to Equation 4, R2(X) refers to Equa-
tion 5, and E2(X) refers to the indicator variables method of Equation 10
with two replicas.

These results show the dramatic increase in system MTTI that state machine replication provides, allow-
ing it to maintain efficiency close to 50% as system socket count increases dramatically towards the 200,000
heavyweight sockets suggested for exascale systems [20]. In contrast, the efficiency of a checkpointing-only
approach drops precipitously as system scales approach those of upcoming exascale systems.

4.4 Simulation-Based Analysis

In addition to the model-based analysis present in the previous section, we also present a simulation-based
approach. We use this simulator to verify, integrate, and expand the results from the previous sections into
a more complete analysis of the costs and benefits of state machine replication for HPC systems. Using a
simulator allows us to examine real failure distributions derived from studies of failures of real HPC systems
in addition to the exponential distributions assumed by analytical models such as those of the Daly model
or the birthday problem.

Simulator Details

This simulation tool written by Rolf Riesen and presented in [163] mimics application progress by assuming
the application is always in one of four states:

Work Making progress towards a solution

Checkpoint Writing state information to stable storage

Recover Recovering from an interrupt
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Rework Recomputing lost work

The simulator randomly generates node failures by determining which sockets fail and when they fail. The
distribution and parameters of the generator are specified by the user. This simulator assumes a perfectly
weak-scaling application; i.e., all nodes perform the same amount of work, specified as an input parameter
to our tool.

Application interrupts can occur during any of the four phases, and the simulation continues until a
specified amount of work has been completed. When an interrupt occurs, a restart from the last successful
checkpoint is initiated. The work that was lost since the last checkpoint has to be redone in the rework
phase. Following this rework stage, the regular cycle of work and checkpointing continues.

The transitions to the checkpoint state occur whenever the checkpoint interval timer expires, which
is reset in the checkpoint state. The simulator uses Equation 3 from Daly [53] to calculate the optimal
checkpoint interval.

Comparison of Simulation and Modeling

As stated previously, the simulator described in this section reproduces scenarios that cannot be done with
the model, for example, non-exponential fault distributions. In this section we briefly compare the results of
the simulator in situations that the model can accommodate.

Figure 7 shows a comparison of the model and simulator in one such proposed application run. This
figure shows the time-to-solution for a 336 hour, dual redundant application. In this figure we assume a node
MTBF of five years and a checkpoint time of 15 minutes independent of socket count. From this figure we
see that the maximum percent difference between the model and simulator is 5% or less in this node count
range. This difference is due to sampling errors at higher node counts as the simulator uses a probabilistic
model to determine faulty nodes.

Non-Exponential Failure Distributions

Due to their more accurate modeling of system failures, it is important we examine the viability of replication
with more realistic failure distributions. For failure information, we use numbers from a recent study of
failures on two BlueGene supercomputer systems, a 16,384 node system at Rennesseler Polytechnic Institute
(RPI) and a 4,096 node system at École Polytechnique Fédérale de Lausanne (EPFL) [91].

Results in [91] show that failures in these systems are best described by a Weibull distribution with
MTBFs of 6.6 hours (11.7 years/socket) and 8.4 hours (3.9 years/socket), and shape (β) values of 0.156 and
0.469, respectively. These β values (β < 1.0) describe distributions that decrease in probability over time;
in HPC systems, this indicates that failures are more likely to happen at the start of a system’s lifetime or
an application run and reduce in frequency as the system runs.

To examine the impact of these failure distributions, we build on the results of Section 4.3 and examine
how the efficiency of replication and checkpoint/restart change under Weibull failures assuming again a fixed
15 minute checkpoint commit time. Note that the systems from which these distributions were measured
experienced a significant number of I/O system failures, and it is unclear how these failures should be
properly scaled up to larger systems. As a result, we focus on how Weibull distributions change the efficiency
of replication and checkpoint/restart approach as opposed to the specific efficiency crossover point.

Figure 8 and Figure 9 present the impact of these failure distributions on both a replication-based
approach and a purely checkpoint-based approach. In both these figures we note that for node counts
greater than 100,000 sockets, the MTTI for the application is around the checkpoint time (δ); therefore little
application progress is made in a checkpoint interval.
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Figure 7. Comparison of simulator and model for a dual-redundant,
336 hour work weak scaling problem with a 5 year MTBF and a 15
minute checkpoint write time.

These results show that Weibull failures experienced by real-world systems result in a much more challeng-
ing fault tolerance environment, reducing the effectiveness of both replication and traditional checkpointing
approaches. However, replication is less severely impacted than traditional checkpointing, again pointing to
the potential more viability of a replication-based fault tolerance approach for exascale systems.

4.5 Summary

This section presented our initial evaluation of the costs and benefits of state machine replication for high-
performance computing. We started by outlining the qualitative advantages of this approach over other
fault-tolerance methods. We then described a number of methods for modeling and simulating the impact
of replication on HPC. This included a discussion of the birthday problem and a number of approximations
to this common problem from probability theory. Using this model, this work showed the significant impact
replication has on application MTTI and efficiency. Lastly, we described a coordinated checkpoint simulator
and compared the results of this simulator with the replication model. These results all showed that this
replication technique has a higher efficiency in comparison to traditional checkpoint/restart at the socket
counts expected in exascale systems, assuming no run time overheads. In addition, using the described
simulator we show that for more realistic distributions the overheads of checkpoint/restart are more dramatic
than seen with the currently accepted exponential model.
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Figure 8. Simulated application efficiency with and without state
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Figure 9. Simulated application efficiency with and without state
machine replication for a 168-hour application, 12-year per-socket MTBF
(Θ), and 15 minute checkpoint commit times with failure rate drawn
from exponential and Weibull distributions [91]. In the replication case
we have two replicas per process rank. The shaded region corresponds
to possible socket counts for an exascale class machine [20].
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5 rMPI: Transparent State-machine Replication in a Message
Passing Environment

5.1 Overview

While the previous section demonstrates that state machine replication is viable at exascale in terms of the
basic hardware costs, it does not evaluate the runtime overhead of the necessary consistency management
protocols. Transparently supporting state machine replication for MPI applications on HPC systems requires
maintaining sequential consistency between replicas. It also requires protocols for detecting and repairing
failures. As mentioned in Section 3, these consistency protocols are potentially expensive in communication-
intensive HPC systems as every replica must see messages arrive in the same order.

To study the associated overhead, we designed and implemented rMPI, a portable user-level MPI library
that provides redundant computation transparently to deterministic MPI applications. rMPI is implemented
on top of an existing MPI implementation using the MPI profiling hooks. In the remainder of this section, we
outline the basic design and implementation of rMPI. In Section 6 we measure the runtime overhead of this
implementation for several micro-benchmarks and HPC applications on a large scale Cray XT-3/4 system.

This section is organized as follows. Section 5.2 outlines the design of rMPI, describing the consistency
protocols and the MPI consistency requirements. In Section 5.3 we outline the design of the rMPI prototype
architecture and its usage, and conclude the section in Section 5.4 with a summary.

5.2 rMPI Design

The basic idea for the rMPI library is simple: replicate each MPI rank in an application and let the repli-
cas continue when an original rank fails. To ensure consistent replica state, rMPI implements consistency
protocols that assure identical message ordering between replicas. Unlike more general state machine repli-
cation protocols [39, 170], these protocols are specific to the needs of MPI in an attempt to reduce runtime
overheads. In addition, rMPI uses the underlying Reliability, Availability, and Serviceability (RAS) system
to detect node failures, and implements simple recovery protocols based on the consistency protocol used.

Basic Consistency Protocols

The rMPI design contains a number of different consistency protocols. These protocols vary in whether active
or passive replication is used. The active replication protocols, named mirror and parallel, ensure that every
replica receives a copy of every message and it orders message reception at the replica. Both active protocols
take special care when dealing with MPI operations that could potentially result in different message orders
or MPI results being seen at different replicas. Note that collective operations in rMPI call the point-to-point
operations internal to rMPI.

Figure 10(a) shows the basic organization of the mirror protocol. The protocol assures that all replicas
see the same messages. In this figure, A and B represent distinct MPI ranks and A’ and B’ are A’s and B’s
replicas respectively. In this protocol, each sender transmits duplicate messages to each of the destinations.
Similarly, receivers must post multiple receives for the duplicate messages, but only require one of those
messages to arrive in order for the application to progress. While this approach eases recovery after a failure,
it effectively doubles network bandwidth requirements.

The parallel protocol is shown in Figure 10(b). For this protocol, each replica has a single corresponding
replica for each other rank with which it communicates in non-failure scenarios. In the case of failure, one of
the remaining replicas of a rank takes over sending and receiving for the failed node. This failure detection
requires frequent message-based interaction with the reliability system on current systems. As a result, the
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(a) Mirror Protocol

(b) Parallel Protocol

Figure 10. Basic active replicated communication strategies for two
different rMPI message consistency protocols. Additional protocol ex-
changes are needed in special cases such as MPI ANY SOURCE.

parallel protocol initiates approximately double the number of messages for each send operation. These extra
messages contain MPI envelope information and are small. Therefore, the parallel protocol reduces network
bandwidth requirements while increasing the number of short messages, thereby decreasing an application’s
message rate.

The passive protocols in Figure 11 vary from the active protocols described previously in that only the
leader or primary ranks are involved in message sending and reception. The difference between these two
protocols is, (1) whether the leaders push the messages to each of its replicas; or, (2) waits for the replicas
to pull. As only one replica is involved with the reception of the message, an explicit ordering protocol is
not needed. Ordering is done at the leader.

MPI Consistency Requirements for Active Protocols

rMPI assumes that only MPI operations can result in non-deterministic behavior, and there are a few specific
MPI operations that can result in application-visible non-deterministic results. For example, rMPI must
address non-blocking operations, wildcard (e.g. MPI ANY SOURCE and MPI ANY TAG) receives, and operations
such as MPI Wtime(). As a first step, both rMPI active protocols use the notion of a leader node for each
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(a) Leader’s Push

(b) Replica’s Pull

Figure 11. Basic passive replicated communication strategies for two
different rMPI message consistency protocols. Additional protocol ex-
changes are needed in special cases such as MPI ANY SOURCE.

replicated MPI rank, while non-leader nodes are referred to as replicas or redundant nodes. When a leader
drops out of a computation, the protocol chooses a new replica from among those remaining for a rank to
take over as leader.

For blocking non-wildcard receives, one of the the most common forms of MPI communication, the mirror
protocol in rMPI posts a receive for both senders A and A’ into the buffer provided by the user. Since the
data in the two arriving messages is identical, there is no danger of corrupting the user buffer. If multiple
messages from the replica set A arrive with the same tag, rMPI must make sure that the first active and
first redundant message arrive in the first buffer, and the second active and second redundant in the second
buffer. rMPI achieves this by using one high-order tag bit, setting it on all outgoing redundant messages and
setting the same bit for all receives of redundant messages.

This situation is illustrated in Figure 12. Node A sends messages msg1 and msg2 with the same tag to
node B. MPI message ordering semantics demand that msg1 arrives in buf1 and msg2 arrives in buf2. If the
redundant messages msg1’ and msg2’ had the same tags as the original messages, then it would be possible
for msg1 and msg2 to both arrive in buf1 or buf2, since rMPI posts two receives for each buffer. Using an
unused tag bit to mark redundant messages avoids the possible mix-up.

rMPI uses its own request handles to return to the user because many receives will not have been sub-
mitted to the MPI library at the time rMPI needs to return a request handle to the user. This means
rMPI must maintain data structures that map its request handles to the ones used by the underlying MPI
implementation.
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Figure 12. Original and redundant messages with the same tag must
maintain the same order.

Wildcard receives. Due to MPI message-passing semantics and the possibility of wildcard source
receives, this basic consistency protocol is not completely sufficient. To handle MPI ANY SOURCE and MPI ANY -

TAG, rMPI relies on explicit communication between the leader of each rank and other replicas. Essentially,
rMPI allows only one actual wildcard receive to be posted at any time on a node, and then only on the
leader. When a wildcard receive is matched, the leader then sends the MPI envelope information to replica
nodes which then post for the actual message needed. The situation is more complicated for non-blocking
wildcard receives, test, and wait operations requiring a queue of outstanding wildcard receives, but the basic
approach is similar. When the receive of a message is complete, the status information about the receive on
node B and B’ must be updated such that both nodes report the same message source and tag, without the
extra bit set, to the user.

Groups and communicators. rMPI also needs to implement its own groups. Because rMPI re-maps
ranks between the user level and the underlying MPI implementation, rMPI needs to carefully track which
nodes and redundant nodes belong to which groups. This is necessary so that message transfer functions and
function calls like MPI Group rank() work properly. The same is true for communicators and functions like
MPI Comm dup(). Implementing collectives, request handles, groups, and communicators inside rMPI reduces
the underlying MPI implementation to a simple transport mechanism and increases the complexity of rMPI
greatly.

rMPI must carefully keep track of node rank information and always let replica nodes return to the user
the rank of the leader node in a bundle. For example, MPI Comm rank() must return the same value on an
leader node and its replica; similarly MPI Comm size() must return the number of the unique ranks in the
application. Message destinations and sources must be treated similarly.

Finally, rMPI must guarantee that operations such as MPI Wtime() return the same value on active and
redundant nodes, as some applications make decisions based on the amount of time elapsed. For these
situations, the leader node sends its computed value to the redundant node. As an option, rMPI can
synchronize the MPI Wtime() clocks across the nodes [115].
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Failure Detection

rMPI’s failure detection requirements are relatively modest, and use the underlying supercomputer RAS
system to provide much of this failure detection functionality. Both active and passive protocols require
that messages from failed nodes will be consumed and do not deadlock the network or cause other resources,
such as status in the underlying MPI implementation to be consumed. Furthermore, failing nodes must not
corrupt the state of other nodes, i.e., corrupted or truncated messages in flight must be discarded. Most
networking technologies already do this using CRC or other mechanisms to detect corrupt messages. The
RAS system is also responsible for the machine stopping the retransmission of messages from and to failed
nodes.

For the parallel and both passive protocols we also require a method to learn whether a given node is
available or has failed. On the test systems, we typically emulate a RAS system at the user-level. This is a
table which rMPI consults, and the RAS system updates, when a node’s status changes. It could also be an
event mechanism that informs rMPI whenever the RAS system detects a failed node.

5.3 rMPI Implementation

In this section we describe a prototype implementation of the rMPI design described in the previous section.
In an effort to illustrate a worst-case overhead of replication in HPC, only the active protocols described in
Section 5.2 are examined. These active protocols are expected to have higher overheads as they require an
ordering protocol, for example a total order broadcast.

Basic Architecture

The rMPI library is implemented as a library at the MPI profiling layer between an application and an MPI
implementation. In this section we list some things that are specific to our current implementation.

The rMPI library is activated during MPI Init(), at which time it partitions MPI COMM WORLD into a set
of active and redundant nodes. We performed this work on a Cray XT4 Red Storm system which uses
MPICH [88, 89] for message transport. Although the design described in the previous section is agnostic of
the underlying MPI implementation, our current implementation of rMPI is tailored for a specific MPI im-
plementation. To accelerate prototyping, we used several functions from MPICH, such as the MPI collective
functions, which call our protocol aware point-to-point functions. While doing this, we left several low-level
MPICH internal function calls in place. Examples include MPICH error handling and reporting functions,
checking for thread-safety, and dealing with heterogeneous systems. This means rMPI will currently only
work running on top of our specific MPICH version. Future work for this library includes removing this
MPICH-specific dependency.

RAS Functionality

Since few machines actually provide a RAS system that gives us the minimal set of functions we need, we
designed our own. rMPI maintains a table of all nodes in the application and their status. We use signals
and messaging to update this table and can thus simulate the failure of nodes for testing purposes. However,
since all nodes still are part of a complete MPI application and due to the way MPICH interacts with the
Red Storm RAS system, simulated failed nodes cannot simply exit. They enter MPI Finalize() and wait for
all other nodes to finish. This also means that if we failed a node during an rMPI operation that involves
several MPI messages, MPICH may enter into an inconsistent state. Proper integration of rMPI, a RAS
system, and MPI would solve this problem.
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Usage

When users start an application linked with rMPI they specify how many redundant nodes to allocate and how
to map them to the active nodes. An environment variable specifies this mapping. The rMPI implementation
imposes some restrictions on these mappings. The redundant nodes must always be at the end of the MPI -

COMM WORLD rank list. Not every active node needs to be assigned a redundant partner. If nodes A, B, C, and
D are active nodes, then ABCD|A’B’C’D’, ABCD|A’B’, ABCD|D’C’B’A’, and ABCD|D’C’ are some of the
many valid mappings.

Lastly, to avoid using additional buffer space and to limit memory copies, rMPI receives both the original
and the redundant message into the same buffer. We assume that two identical messages arriving in the
same buffer will not “collide” and that, once both messages have been received, the buffer memory will be
in the same state if only one message had been received. We are not aware of any system today which does
not fulfill this requirement.

5.4 Summary

In this section we introduced the design and implementation of the rMPI library which inserts itself between
an application and the MPI library. rMPI allows users to allocate additional compute nodes for redundant
computation. In the description of the design and implementation of rMPI, we detailed the techniques
that are necessary to maintain MPI semantics, especially managing message ordering on the active replica
protocols. In the next section we will use this replication library to quantify the runtime time overheads of
the consistency protocols on a number of HPC workloads.
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6 Evaluating State-machine Replication’s Runtime Overheads

The advantages described in Section 4 (i.e. significantly decreased checkpoint frequency and possible soft-
error detection and correction) provide a compelling reason to examine the viability of state machine repli-
cation for extreme-scale HPC systems. Without quantifiable performance benefits compared to other ap-
proaches, however, state machine replication will not be viable for use in exascale systems. This section
therefore examines the runtime performance costs of state machine replication. The remainder of this sec-
tion is organized as follows. In Section 6.1, we describe the methodology used to evaluate the runtime
overheads of replication, describing our test platform and replica placement options. Section 6.2 presents an
evaluation of the runtime overheads of state-machine replication on a number of micro-benchmarks and HPC
workloads. Section 6.3 characterizes these runtime overheads for incorporating into our previously described
replication model. Finally, Section 6.4 summarizes the results of this section.

6.1 Methodology

From the discussion in the previous sections it should be clear that rMPI may add additional overhead and
lengthen the execution time of an application. To empirically quantify this overhead we ran multiple tests
with applications on the Cray Red Storm system at Sandia National Laboratories compiled with both rMPI
and the original unmodified Cray MPI library. Red Storm is a XT-3/4 series machine consisting of over
13,000 nodes, with each compute node containing a 2.2 GHz quad-core AMD Opteron processor and 8 GB
of main memory.

Additionally, each node contains a Cray SeaStar [32] network interface and high-speed router. The
SeaStar is connected to the Opteron via a HyperTransport link. The current generation SeaStar is capable
of sustaining a peak unidirectional injection bandwidth of more than 2 GB/s and a peak unidirectional link
bandwidth of more than 3 GB/s.

To ensure leader and replica are on separate physical nodes, and to avoid memory and bandwidth
bottlenecks on the nodes themselves, we only used one CPU on each node.

We expect that the rMPI library adds some overhead, even if no redundant nodes are used, due to the
checks whether there are redundant nodes available and the way we implement the collective operations. We
compare this baseline overhead to the native performance when the rMPI library is not linked in at all. To
get a worst case bound on the cost of rank level replication, a fully redundant configuration is used for the
forward, reverse, and shuffle mappings.

Replica Placement

To ensure leader and replica are on separate physical nodes, and to avoid memory and bandwidth bottlenecks
on the nodes themselves, we only used one CPU on each node.

Redundant nodes should be physically as far away from their active node as possible. The goal is to share
as few hardware resources between these nodes as possible. Co-locating an active and its redundant node on
two cores of the same CPU makes sense from a performance perspective, but not for reliability. Ideally, no
power-supplies, fans, communication channels to other nodes, boards, or chips are shared. However, that is
difficult to achieve in today’s machines. Furthermore, it is often impossible to assign MPI ranks to specific
nodes in the system.

Because of this and because of the impact a given allocation may have on the performance of an applica-
tion, we ran our tests in three different modes: forward, reverse, and shuffle. The first mode, forward, assigns
rank N

2 as a redundant node to rank 0, rank n
2 + 1 to rank 1, and so on resulting in a mapping like this:

ABCD|A’B’C’D’. Reverse mode is ABCD|D’C’B’A’, and shuffle mode is a random shuffle (Fisher/Yates)
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such as ABCD|C’B’D’A’.

6.2 rMPI Runtime Results

Benchmark Details

To evaluate the performance of the two active rMPI protocols we will present results of a number of micro-
benchmarks and a number of applications. The MPI micro-benchmarks present in this section include:
latency, bandwidth, message rate, and host CPU utilization. See Appendix A for MPI Allreduce(), MPI -

Reduce(), MPI Bcast(), MPI Barrier(), and MPI Alltoall() micro-benchmark performance results.

Our four representative HPC application workloads are: CTH [63], SAGE [110], LAMMPS [156, 168],
and HPCCG [169]. These application represent a range of computational techniques, are frequently run
at very large scales, and are key simulation workloads to both the US Department of Defense and Depart-
ment of Energy. These four applications represent different communication characteristics and compute to
communication ratios. Therefore, the overhead of rMPI affects them in different ways.

1. CTH [63] is a multi-material, large deformation, strong shock-wave, solid mechanics code developed
by Sandia National Laboratories with models for multi-phase, elastic viscoplastic, porous, and ex-
plosive materials. CTH supports three-dimensional rectangular meshes; two-dimensional rectangular,
and cylindrical meshes; and one-dimensional rectilinear, cylindrical, and spherical meshes, and uses
second-order accurate numerical methods to reduce dispersion and dissipation and to produce accu-
rate, efficient results. It is used for studying armor/anti-armor interactions, warhead design, high
explosive initiation physics, and weapons safety issues.

2. SAGE, SAIC’s Adaptive Grid Eulerian hydro-code, is a multi-dimensional, multi-material, Eulerian
hydrodynamics code with adaptive mesh refinement that uses second-order accurate numerical tech-
niques [110]. It represents a large class of production applications at Los Alamos National Laboratory.
It is a large-scale parallel code written in Fortran 90 and uses MPI for inter-processor communications.
It routinely runs on thousands of processors for months at a time.

3. LAMMPS [156] is a classical molecular dynamics code developed at Sandia National Laboratories. For
our experiments we use the embedded atom method (EAM) metallic solid input script which is used
by the Sequoia benchmark suite. The LAMMPS code and input scripts are provided on the LAMMPS
web site [168]. For this experiment we ran LAMMPS in weak-scaling mode.

4. The HPCCG mini-application, part of the Mantevo project [169], is a simple sparse conjugate gradient
solver designed to capture an important component of Sandia’s production workload. The majority of
its runtime is spent performing sparse matrix-vector multiplies, where the sparse matrix is encoded in
compressed row storage format. The interprocessor communication is minimal, requiring exchange of
nearest neighbor boundary information, in addition to global MPI Allreduce() operations required for
the scalar computations in the conjugate gradient algorithm.

Micro-benchmark Performance

Because these benchmarks do nothing but transmit messages, we expect them to show greater overhead than
full applications. For the MPI latency tests, we show the performance overhead for both specific as well as
MPI ANY SOURCE receives as each scenario has different performance characteristics. Again, see Appendix A
for more micro-benchmark performance numbers.

Our bandwidth experiment in Figure 13 shows that baseline (rMPI linked in, but no redundant nodes used)
for both protocols does not lower bandwidth appreciably compared to native; especially at larger message
sizes. The parallel protocol redundant runs, on the other hand, shows considerable overhead, especially at
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smaller message sizes, showing 60% to 70% slowdown in comparison to native. This slowdown is identical
for each of the three tested mappings (forward, reverse, and shuffle). The overhead for the parallel runs is
due to the overhead of the increased number of messages required for bundle synchronization. As message
size increases the performance of parallel approaches that of native. The mirror protocol redundant run
performance is also identical among the three mappings, but its 60% slowdown over native remains nearly
constant through the range tested. This halving of bandwidth is expected and consistent with the fact that
we are sending twice as much data through a given network interface card (NIC).
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Figure 13. Bandwidth comparison. Native is benchmark without the
rMPI library. Base is with rMPI for each protocol, but no redundant
nodes. For this test the performance of forward, reverse, and shuffle
fully redundant runs are equivalent.

Figure 14 illustrates the overhead of our MPI latency tests without MPI ANY SOURCE. The baseline mapping
for the two protocols shows some overhead over native which is due to the accounting done in rMPI and
becomes negligible as message size increases. The latency overhead for the redundant runs is a factor of 1.5
over native for smaller messages. For parallel this latency increase is one third that of native and is due
to the extra messages used for synchronization on sends and decreases with message size. The reason the
latency is less than N extra message latencies is that, assuming no nodes have failed, a sender node first
performs the send operation and then performs the synchronization with replicas in its rank bundle to ensure
it does not need to fulfill another send. If a node has failed, the performance of parallel closely matches that
of mirror. For mirror, the slowdown with full redundancy is 3

4 that of native. The reason for this increased
slowdown is as follows. A receive in mirror can return once at least one of the two possible receives has
completed. Before the receive can return we must wait for the other receive or cancel it. MPI Cancel() in our
MPICH implementation is an expensive and non-local operation. The current implementation waits twice a
measured round trip time for the other send to arrive. If it has not been received in that time, the library
cancels the other receive and then returns. Similar to our bandwidth tests, the overhead of the redundant
runs is identical for each of the three replica node mappings tested.

The coordination overhead between leader and replica nodes becomes more severe when MPI ANY SOURCE

is used. Recall from the discussion in Section 5.2, MPI ANY SOURCE causes replica nodes to delay the posting
of receives until the leader node has received its message and informed the redundant node. In Figure 15 we
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Figure 14. Latency comparison. For this test the performance of
forward, reverse, and shuffle is equivalent.

see the result of this. Latency increases by a factor of 1.5 across the board over native.
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Figure 15. Latency comparison using MPI ANY SOURCE. For this test
the performance of forward, reverse, and shuffle is equivalent.

Figure 16 illustrate the performance impact of the protocols on MPI message rate. From the figure we

43



see that for smaller messages mirror is able to achieve a higher message rate than parallel (with mirror’s
rate around half of that of native), but as message size increases, parallel’s rate approaches to within 10%
of native.
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Figure 16. rMPI message rate measurements.

Figure 17 illustrates the impact on CPU availability for MPI Send() and MPI Recv() operations. From the
figure we see that the consistency protocols included in rMPI have little impact on CPU availability. The
exception to this is the large message MPI Send() operations in Figure 17(b). This impact is due to the
packetization engine needed for larger messages.

Overall, we observe that the overheads due to replication is quite high for the tested micro-benchmarks.
For example, MPI bandwidth tests show the mirror protocol decreases the available bandwidth by half while
the parallel protocol decreases the observed message rate also by half.

Application Performance

In this section we outline the performance impact of replication on real HPC workloads. In contrast to the
micro-benchmark numbers of the last section, the runtime overhead of replication is much lower.

LAMMPS Figure 18 shows the performance impact of rMPI with both the mirror and parallel protocol.
The impact of each redundancy protocol is less than 5%, independent of the nodes used, while the baseline
overhead for each is negligible.

SAGE Figure 19 shows the rMPI performance for SAGE. Similar to LAMMPS, the baseline performance
degradation is negligible. Also similar to LAMMPS, the parallel protocol performance remains nearly con-
stant and performance decrease is negligible in the tested node range; with performance overhead generally
less than 5%. In contrast, full redundancy for the mirror protocol loses about 10% performance over native,

44



A
va

ila
bi

lit
y 

%

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Native
mirror and parallel base

mirror and parallel base %
mirror redundant

mirror redundant %
parallel redundant

parallel redundant %

0.0 %

20.0 %

40.0 %

60.0 %

80.0 %

100.0 %

1  B
10  B

100  B

1 kB
10 kB

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %

(a) Receive

A
va

ila
bi

lit
y 

%

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Native
mirror and parallel base

mirror and parallel base %
mirror redundant

mirror redundant %
parallel redundant

parallel redundant %

0.0 %

20.0 %

40.0 %

60.0 %

80.0 %

100.0 %

1  B
10  B

100  B

1 kB
10 kB

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %

(b) Send

Figure 17. Host CPU utilization for send and receive for the two
protocols compared to native and baseline. Native is the benchmark
without rMPI; baseline has rMPI linked in but does not use redundant
nodes.

with performance increasing with scale. We attribute the performance degradation for SAGE to the factor
of two increase of large network messages sent by SAGE and the limited available network bandwidth.
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Figure 18. LAMMPS rMPI performance comparison. For both mir-
ror and parallel, baseline performance overhead is equivalent. For this
application the performance of the forward, reverse, and shuffle fully
redundant modes are equivalent.
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Figure 19. SAGE rMPI performance comparison. For both mirror and
parallel baseline performance overhead is equivalent. For this application
the performance of forward, reverse, and shuffle fully redundant modes
are equivalent.
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CTH In Figure 20, we see the impact of our consistency protocols for CTH at scale. Again, baseline
for both mirror and parallel shows little performance difference. For CTH, mirror has the greatest impact
on performance with full redundancy. This impact, which is nearly 20% at the largest scale, is due to
CTH’s known sensitivity to network bandwidth [146] (the greatest of each of the applications tested) and
the increased bandwidth requirements of the mirror protocol. Interestingly, the parallel protocol version of
CTH runs slightly faster then the native versions (around 5-8%) for forward, reverse, and shuffle replica
node mappings. Though further testing is needed, current performance analysis results suggest this decrease
in application runtime is due to parallel reducing the number of unexpected messages received.
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Figure 20. CTH rMPI performance comparison. For both mirror and
parallel baseline performance overhead is equivalent. For this application
the performance of forward, reverse, and shuffle fully redundant modes
are equivalent.

HPCCG Figure 21 shows the performance impact of rMPI on the HPCCG mini-application. In contrast
to the other results presented in this section, we present the mirror and parallel results separately. Though
the results presented in Figure 21(a) and Figure 21(b) represent the same computational problem, the native
results of each vary due to different node allocations between the two plots. Allocation issues aside, we see
that mirror has very little impact. Parallel on the other hand shows a significant impact at higher node
counts, with slowdowns of around 10% at 1,024 nodes. Also, in contrast to all the other applications tested,
impact from the parallel protocol is greater than that of mirror. This is because unlike other applications,
HPCCG stresses the system’s message rate and parallel’s synchronization messages are causing it to reach
the maximum messaging rate of a node.

6.3 Analysis of Run Time Overheads

Our results evaluating the runtime overhead of state machine replication show that the runtime costs of
implementing state machine replication for a wide range of production HPC applications at significant scale
is minimal. In particular, for each application either the parallel or mirror protocol provides almost negligible
performance impact. Examining the best protocol for each application, SAGE has the highest net overhead,
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Figure 21. HPCCG rMPI performance comparison. Varying perfor-
mance for native and baseline between mirror and parallel protocols is
due to different node allocations.

48



2.2% at 2048 application-visible nodes. A logarithmic curve can be fit to the overhead for this worst-case,
with the fit curve shown in Equation 11.

g(S) =
1
10

log S + 3.67 (11)

This curve would result in a 4.9% additional overhead on a projected exascale system with 200,000 sockets.

For comparison, the worst-case overhead over all protocols can be fit with a curve shown in Equation 12.

g(S) = 3.36 log S − 5.31 (12)

This worst-case curve would result in 35.7% additional overhead on a projected exascale system with 200,000
sockets.

Figure 22 shows these overheads along with the corresponding application slowdown measurements. In
Section 7 we incorporate these measured run-time overheads into our state machine replication model to
examine the merit of replication for exascale systems.

6.4 Summary

In this section we presented the run time protocol overheads for rMPI, a MPI library that enables transparent,
user-level rank level replication. Using this library we showed that while the protocol overheads are quite
high for a number of communication micro-benchmarks, there is a relatively low overhead protocol choice
for each of the tested applications. In the following section we incorporate this overhead in our replication
model to more accurately examine the costs associated with state machine replication.
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Figure 22. Best-case (Equation 11) and worst-case (Equation 12)
rMPI run time protocol overhead fit functions and corresponding data
from CTH, SAGE, and LAMMPS.
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7 Replication Analysis

7.1 Overview

In this section, we combine the results from the previous sections into a more complete analysis of the costs
and benefits of state machine replication for HPC systems. By doing so, we examine additional machine
parameters and their impact on the viability of state machine replication, particularly variations in available
I/O system bandwidth and failure rates.

In the remainder of this section, all results assume software runtime overheads as shown in Equation 11
and Equation 12; efficiency results incorporate the factor of two reduction for state machine replication due
to the required redundant hardware. Unless otherwise stated, we also continue to assume checkpoint and
restart times of 15 minutes as in previous sections.

We describe our comparison approach in Section 7.2. We then extend our model-based analysis, incorpo-
rating the measured runtime overheads, node failure rates, and I/O commit bandwidth rates in Section 7.3,
Section 7.4, and Section 7.5. Section 7.6 further extends our model to account for triple-modular redun-
dancy and and higher replica count. In Section 7.7 we introduce a simulation-based analysis of state-machine
replication which allows for more realistic failure distributions. We conclude the section in Section 7.8.

7.2 Comparison Approach

Our primary performance evaluation criteria is as follows: at what node counts, if any, does state machine
replication provide quantitative performance advantages over past approaches particularly in terms of system
utilization, after accounting for the overheads of state machine replication. If, for example, state machine
replication achieves 46% utilization at a given system socket count and another technique only achieves 40%
system utilization, we regard state machine replication as superior at that point.

We use traditional checkpoint/restart fault tolerance as the baseline technique against which to com-
pare because its performance characteristics are well-understood. We believe that comparing against a
well-understood baseline will facilitate future comparisons against other proposed exascale fault tolerance
techniques, as their costs and benefits at scale are more fully quantified. A brief qualitative comparison with
several such techniques is provided in Section 3.

Assumptions

Because we are comparing a new technique on projected hardware systems, our comparisons make a number
of assumptions that are important to make explicit.

We assume:

1. Fully replicated hardware redundancy for all applications, resulting in a maximum possible efficiency
for state machine replication at 50%.

2. The MPI library is the only potential source of non-determinism in the application.

3. Machines suffer from only crash failures, and not from more general failures, from which check-
point/restart may not be able to recover.

4. System MTTI decreases linearly with increased system socket count as observed in past study results
[172].
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7.3 Combined Hardware and Software Overheads

As a first study, we reexamine state machine replication under exponential failure distributions with a 5
year per-socket MTTI as shown in Section 4, but this time including projected software runtime overheads
from Section 6.2. As we can see in Figure 23, these results are similar to those in Figure 23, with the break-
even point for state machine replication shifted to a somewhat higher socket count due to the additional
software runtime overheads. Despite this slight shift, state machine replication still outperforms traditional
checkpoint/restart at socket counts currently projected for use in exascale systems.

7.4 Scaling at Different Failure Rates

While the 5 year per-socket MTBFs used above are based on well-known studies of large-scale systems, the
challenges of exascale systems make changes to these reliability statistics likely. For example, more reliable
nodes could be deployed to address fault tolerance concerns, or power conservation, miniaturization, or cost
concerns could lead to a reduced per-socket MTBF. Thus, we also examine the viability of state machine
replication over a range of per-socket MTBFs.

This evaluation focuses on determining the break-even point in number of system sockets for state machine
replication compared to traditional checkpoint/restart. This is the number of sockets above which state
machine replication is more efficient than traditional checkpoint/restart, even accounting for replication’s
software and hardware overheads. At socket counts greater than or MTBFs less than this break-even point,
replication is preferable; at socket counts less than this or MTBFs above it, traditional checkpoint/restart
is preferable.

Figure 24 shows these results for per-socket MTBFs up to 100 years; socket counts and per-socket MTBF
commonly discussed for exascale systems (socket counts above 25,000 and MTBFs between 4 and 50 [20]) are
shaded; the shaded area above and to the left of the break-even curve represents the portion of the exascale
design space in which state machine replication is beneficial.

These results show that state machine replication is viable for a large range of socket MTBFs and
node counts in the exascale design space, but not the entire space. In particular, state machine replication
performs worse than traditional checkpoint/restart for low socket-count systems with MTBFs greater than
about 10 years. For socket MTBF above 50 years, state machine replication is outperformed by traditional
checkpoint/restart at all expected socket counts.

7.5 Scaling at Different Checkpoint I/O Rates

We also examine the viability of replication at a wide range of checkpoint I/O rates. Because checkpoint I/O
is an area of active study, including work on a wide range of hardware and software techniques to improve its
performance for exascale systems (as described previously in Section 3), understanding the potential impact
of this research on exascale fault tolerance approaches is critical.

For this analysis, we use recent modeling work which extends Daly’s checkpoint modeling work to account
for how variations in checkpoint system throughput impact checkpoint times and system utilization [141].
We assume each socket in the system has 16 GB of memory associated with it, and again examine the
break-even point for replication over checkpoint/restart at a range of checkpoint I/O bandwidths and socket
MTBFs. We choose an aggressive range of bandwidths varying from 500 GB/sec to 30 TB/sec to fully
understand the impact of dramatic increases in I/O rates on the viability of replication.

Figure 25 shows the results of this analysis. Replication outperforms checkpointing for the vast majority
of the exascale design space at checkpoint I/O bandwidths of 1 TB/sec or less. However, beginning at I/O
bandwidths of approximately 5 TB/sec, checkpoint/restart becomes competitive for a substantial fraction
of the design space, particularly systems with high per-socket MTBFs and low numbers of sockets. At
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Figure 23. Modeled application efficiency with and without repli-
cation including worst-case rMPI run time overheads. Shaded region
corresponds to possible socket counts for an exascale class machine [20].
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Figure 24. Modeled replication break-even point assuming a constant
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Figure 25. “Break-even” points for replication for various check-
point bandwidth rates. The shaded region corresponds to possible socket
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heads compared to traditional checkpoint/restart. State machine repli-
cation is a viable approach for most checkpoint bandwidths, but with
a checkpoint bandwidth greater than 30 TB/sec, replication is inappro-
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checkpoint bandwidths of 30 TB/sec or higher, several orders of magnitude faster than current I/O systems,
checkpoint/restart is preferable across a large majority of the design space.

7.6 Triple Module Redundancy and Beyond

In this section, we further expand our model for replica counts greater than two. To approximate the average
number of faults, we use the indicator method described previously in Equation 10. As we showed earlier,
this method slightly overestimates the average number of absorbed failures by approximately 15%1. The
data in this section accounts for this overestimation. As in the previous tests, we include the software
overheads described in Equation 11. For replica counts greater than two, we linearly scale the overheads
with the number of replicas. We have verified this overhead on small-scale application runs.
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Figure 26. “Break even” points for replication for various numbers
of replicas and a checkpoint time (δ) equal to 15 minutes. The shaded
region corresponds to possible socket counts and socket MTBFs for ex-
ascale class machines [20]. Note that above the line within this region
is where replication has significantly lower overheads compared to tra-
ditional checkpoint/restart.

Figure 26, shows the “break-even” point for replica counts between two and ten. Similar to previous
models, we assume a 168 hour application with a checkpoint time of 15 minutes. Also in this figure,
the shaded region corresponds to the possible node counts and socket MTBFs for proposed exascale class
machines. From the figure we see that at replica counts greater than two, state-machine replication still has
better efficiency than non-redundant scenarios. This is especially true for system designs with lower socket
MTBFs and higher socket counts.

1As described in Section 4, this difference is due to the replacement assumption in the birthday problem
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7.7 Simulation-Based Analysis

Overview

In this section, we use a simulation-based approach to expand the results from the previous sections into
a more complete analysis of the costs and benefits of state machine replication for HPC systems. This
approach allows us to examine real failure distributions derived from studies of failures of real HPC systems,
in addition to the exponential distributions assumed analytical models such as those of the Daly model or
the birthday problem.

In the remainder of this section, all results assume software runtime overheads as shown in Equation 11;
efficiency results also include a factor of two reduction for replication because of the required redundant
hardware. Unless otherwise stated, we continue to assume checkpoint and restart times of 15 minutes.

Non-Exponential Failure Distributions

In this section, we examine the viability of replication with more realistic failure distributions. For fail-
ure information, we use numbers from a recent study of failures on two BlueGene supercomputer systems
described in 4.4 [91].

To examine the impact of these failure distributions, we build on the results of the previous subsection
and examine how the efficiency of replication and checkpoint/restart change under Weibull failures assuming
a fixed 1 TB/sec checkpoint bandwidth and 16 GB of memory per socket. Also included in these plots
is the runtime overheads associated with replication. Once again we note that the systems from which
these distributions were measured experienced a significant number of I/O system failures, and it is unclear
how these failures should be properly scaled up to larger systems. As a result, we focus on how Weibull
distributions change the efficiency of replication and checkpoint/restart approach as opposed to the specific
efficiency crossover point.

Figure 27 and Figure 28 present the impact of these failure distributions on both a replication-based
approach and a purely checkpoint-based approach. In Figure 27 we note that node counts greater than
100,000 sockets is not shown as the MTTI for the application is less than the checkpoint time (δ), so little
application progress is made in a checkpoint interval.

These results show that Weibull failures experienced by real-world systems result in a much more challeng-
ing fault tolerance environment, reducing the effectiveness of both replication and traditional checkpointing
approaches. However, replication is less severely impacted than traditional checkpointing, again pointing to
the potential more viability of a replication-based fault tolerance approach for exascale systems.

7.8 Summary

In this section, we evaluated the suitability of replication, an approach well-studied in other fields, as the
primary fault tolerance methods for upcoming exascale high performance computing systems. We used a
combination of modeling, empirical evaluation, and simulation to study the various costs and benefits of state
machine replication over a wide range of potential system parameters. This included both the hardware and
software costs of state machine replication for MPI applications, and covered different failure distributions,
system mean time to interrupt ranges, and I/O speeds.

Our results show that a state machine replication approach to exascale resilience outperforms traditional
checkpoint/restart approaches over a wide range of the exascale system design space, though not the entire
design space. In particular, state machine replication is a particularly viable technique for the large socket
counts and limited I/O bandwidths frequently anticipated at exascale. However, replication-based approaches
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Figure 27. Simulated application efficiency with and without state
machine replication for a 168-hour application, 4-year per-socket MTBF
(Θ), and 1TB/sec. checkpoint bandwidth with failure rate drawn from
exponential and Weibull distributions [91]. In the replication case we
have two replicas per process rank. The shaded region corresponds to
possible socket counts for an exascale class machine [20].

are less relevant for designs that have per-socket MTBFs of 50 years or more, less than 50,000 sockets, and
checkpoint bandwidths of 30 terabytes per second.
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Figure 28. Simulated application efficiency with and without state
machine replication for a 168-hour application, 12-year per-socket MTBF
(Θ), and 1TB/sec. checkpoint bandwidth with failure rate drawn from
exponential and Weibull distributions [91]. In the replication case we
have two replicas per process rank. The shaded region corresponds to
possible socket counts for an exascale class machine [20].

Outside of its performance benefits, using replication as the primary exascale fault tolerance methods
provides a number of other advantages. First among these is that it can be used to detect and aid in the
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recovery from faults that corrupt system state instead of crashing the system, sometimes referred to under
the banner of silent errors. Checkpoint-based approaches, on the other hand, potentially preserve such errors.
In addition, while the extra hardware nodes needed to support replication-based approaches can also be used
to increase the capacity of exascale systems when it runs more but smaller (e.g. 1-10 petaflop-scale) jobs.
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8 Incremental Checkpointing

8.1 Introduction

As stated in previous sections, disk-based coordinated checkpoint/restart has been the dominant fault tol-
erance mechanism in high performance computing systems for the last 30 years. Checkpoint performance
impacts scalability of large-scale applications to such a degree that many capability applications have their
own custom application-specific checkpoint mechanism to minimize the saved checkpoint state and therefore
the time to checkpoint. While this approach minimizes the application state that must be written to disk, it
requires intimate knowledge of the application’s computation and data structures, and is typically difficult
to generalize to other applications.

Incremental checkpointing [44, 67, 152], described in detail in Section 3, is an application independent
method that attempts to reduce the size of a checkpoint, and therefore the time to write a checkpoint, by
saving only differences in state from the last checkpoint, thereby attempting to save the true incremental
working set [167] of the application. The underlying assumption of this technique is that the mechanism used
to determine the differences in state has significantly lower overhead than the time to save the additional
data to stable storage.

Current incremental methods have failed to achieve dramatic decreases in checkpoint size because of a
reliance on page protection mechanisms to determine which address ranges have been written, or dirtied,
during the checkpoint interval [67]. Relying solely on page-based mechanisms forces such an approach to
work at a granularity of the operating systems page size. Even if only one byte in a page is written, the
entire page is marked as dirty and must be saved. Furthermore, if identical values are written to a location,
that page is still marked as dirty. These problems are also compounded by the increasing maximum page
sizes of modern processors and the increased performance for HPC applications on these larger page sizes.

To address these limitations, we introduce a hybrid incremental checkpointing approach that uses page
protection mechanisms, a hashing mechanism offloaded to GPUs, and MPI hooks to determine the locations
within a page that have changed. GPUs reduce the overhead of the hash calculation. Using real HPC
workloads, this section compares the performance of this technique against page protection-based incremental
systems and highly optimized, application-specific checkpoint techniques. Our results show that our approach
is able to dramatically reduce system checkpoint sizes compared to previous incremental checkpointing
systems; in some cases approaching the checkpoint sizes of hand-tuned application-specific checkpointing
systems.

This section is organized as follow. First in Section 8.2, we define a model to illustrate when this hash-
based approach will pay off. In Section 8.3, we describe the design and implementation of the libhashckpt
incremental checkpointing library. We show the resulting checkpoint state compression from this technique
using a number of HPC capability workloads in Section 8.4. In addition, we compare the compression results
against an optimal application-based checkpointing mechanism. In Section 8.5, using a number of hash
algorithms, we show the costs of performing this hashing on a CPU versus the speedup seen using a GPU.
Section 8.6 uses the aforementioned model and measured results to present the viability of this technique
using a GPU and CPU for possible systems in the exascale design space. Finally, Section 8.7 concludes this
section.

8.2 A Model for the Viability of Hash-Based Incremental Checkpointing

To evaluate the viability of this method we compare the performance of this hash-based mechanism with
that of a strictly page-based approach. This hash-based approach outperforms a page-based approach when
the reduction in the checkpoint size for the hash method outweighs the cost of computing the hashes of the
modified pages. More specifically, this approach is viable when the sum of the time to hash modified memory
(Thash), plus the time to write the application blocks that have been determined changed (Twrite hash), is less
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than the time to write the memory that hash been determined changed using a strictly page-based approach
(Twrite whole)2. In more detail we have:

Thash + Twrite hash < Twrite whole (13)(
|checkpoint|

βhash

)
+

(
(1− compression)× |checkpoint|

βckpt

)
<
|checkpoint|

βckpt
(14)

Where:

|checkpoint| is the size of page-based checkpoint

compression is the percent reduction of hash-based approach in comparison to the page-based method

βhash is the per-process hash rate

βckpt is the per-process checkpoint commit rate

This equation can be reduced to:

βckpt

βhash
< compression (15)

The maximum per-process checkpoint commit rate (βckpt) is generally known for many HPC platforms.
Therefore, we must measure the hashing rate (βhash), which is specific to both a specific platform and
hashing algorithm; and the compression percentage, which will be specific to a particular application. In
the next section, we use the libhashckpt library to measure these quantities.

8.3 Libhashckpt: Hash-based Incremental Checkpointing

Overview

The hash-based incremental checkpointing mechanism described in this section works are follows. While the
application is running, the library uses the page-protection mechanism to mark those virtual memory pages
that have been written in the checkpoint interval as potentially dirty. To support MPI applications, the
library also intercepts receive calls and marks message buffers as dirty, identifying them as candidates to
be checked by the hashing mechanism. These message buffers require marking because changes in memory
from user-level network hardware is not subject to the processor’s page protection mechanisms.

When a checkpoint is requested, the library hashes all blocks corresponding to potentially dirty pages,
comparing the key with previously stored values, if they exist. If no key exists, or if the key has changed,
the block is marked to be included in the checkpoint and excluded otherwise. If the node contains a GPU,
potentially dirty blocks are copied down to the GPU and the computed keys are copied up to host memory.
Finally, once the hash calculation has completed, all blocks that have been marked as changed by the library
are then saved to stable storage for later retrieval, if needed.

Implementation Details

To evaluate the merit of this hash-based approach, we created the libhashckpt hash-based, hybrid in-
cremental checkpointing library. libhashckpt is based on the libckpt library [152], now referred to as

2Plank et al pose a similar concept [151]
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clubs [8]. Clubs is a transparent, user-level, checkpoint library for Unix based systems. It contains a
number of checkpointing optimizations including:

• Virtual memory page-protection based incremental checkpointing;

• Forked checkpointing; and,

• User-directed checkpointing which allows the user to include or exclude portions of the processes address
space in the checkpoint.

We added the following functionality to this library. Firstly, we added a framework for calculating and
storing hash keys of arbitrary block size. The block size can be adjusted to be larger or smaller than the
native page size. We also modified the library to intercept MPI receive calls using the MPI profiling layer
found in most modern MPI libraries. Also, we added an engine for offloading this hash calculation to graphics
processing units, if any are present. Finally, as described in more detail in Section 3, with any hash-based
approach, aliasing is a concern. Aliasing, also referred to as collisions, comes about when modifications to a
block are just such that the key values are identical. The danger being that the library will not save modified
application data, thereby corrupting the application in the event of a restart. Previous work which looked
at aliasing [64] showed that the application most similar to many HPC workloads, a matrix multiplication
workload, showed no aliasing issues for the non-collision resistant algorithms XOR and CRC16.

Hash/Checksum Algorithms

In this section we briefly describe each of the checksum and hash algorithms used in this work. These
algorithms vary greatly in both their collision resistance and their computational complexity, from the
relatively simple XOR and CRC32 checksums to the complex, collision resistant, and cryptographically secure
MD5 and SHA256. In later sections we compare the performance of these algorithms using CPUs and GPUs.

Rotating XOR The rotating XOR function, shown in Listing 1, is a simple hash algorithm that repeatably
XOR input data and folds this input data with individual bytes of the running 32 bit output value. This
folding and mixing of the input data gives the rotating hash a much better distribution than a standard XOR.
The advantage of this method is its simple computation. Though this folding step sufficiently mixes the input
data, this algorithm generally is not considered secure enough to be used for cryptographic applications.

Listing 1. Rotating XOR Algorithm

1 #include <stdint.h>
2
3 uint32 t
4 rotating xor( void ∗addr, int len )
5 {
6 unsigned char ∗p = addr;
7 uint32 t h = 0;
8 int i ;
9

10 for( i = 0 ; i < len ; i++ )
11 h = ( h << 4 ) ˆ ( h >> 28 ) ˆ addr[ i ];
12
13 return h;
14 }

ADLER32 Invented by Mark Adler, ADLER32 is a cyclic redundancy checksum algorithm defined in RFC1950 [56].
This checksum algorithm is part of the widely-used zlib compression library as well as the rsync data trans-
fer and synchronization utility.

The ADLER32 checksum, shown in Listing 2, is obtained by concatenating two 16-bit checksums A and B
into one 32 bit output. In this scheme, A is the sum of all bytes in the block and B is the sum of the individual
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values of A from each step. The ADLER32 checksum is considerably faster to compute on most platforms
and slightly less collision resistant than a CRC32. ADLER32’s collision issues occur for very small block sizes,
as the sum of A does not have the opportunity to wrap around. Similar to XOR, an ADLER32 checksum can
be easily forged and therefore generally not considered appropriate for application which require collision
resistance.

Listing 2. ADLER32 Algorithm

1 #include <stdint.h>
2 #define BASE 65521UL /∗ largest prime smaller than 65536 ∗/
3 #define NMAX 5552 /∗
4 ∗ NMAX is the largest n such that
5 ∗ 255n(n+1)/2 + (n+1)(BASE−1) <= 2ˆ32−1
6 ∗/
7
8 #define DO1(buf,i) {s1 += buf[i]; s2 += s1;}
9 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);

10 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
11 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
12 #define DO16(buf) DO8(buf,0); DO8(buf,8);
13
14 #define MOD(a) a %= BASE
15
16 uint32 t
17 adler32( void ∗addr, int len )
18 {
19 uint32 t s1;
20 uint32 t s2;
21 int k;
22
23 s1 = ( ∗adler ) & 0xffff ;
24 s2 = ( ( ∗adler ) >> 16 ) & 0xffff;
25
26 if ( buf == NULL )
27 return ∗adler = 1L;
28
29 while( len > 0 ){
30 k = ( len < NMAX ) ? ( int )len : NMAX;
31 len −= k;
32
33 while( k >= 16 ){
34 DO16( buf );
35 buf += 16;
36 k −= 16;
37 }
38
39 if ( k != 0 ){
40 do{
41 s1 += ∗buf++;
42 s2 += s1;
43 } while( −−k );
44 }
45
46 MOD( s1 );
47 MOD( s2 );
48 }
49
50 return ( ∗adler = ( ( s2 << 16 ) | s1 ) );
51 }

CRC32 A cyclic redundancy check (CRC32), shown in Listing 3 is 32 bit hashing algorithm commonly used
for error detection and correction on many storage and network devices such as Ethernet. CRC32’s have the
advantage of being simple to implement and are well suited in detecting contiguous error symbols. Typically,
a CRC32 can detect a fraction (1− 2−n) of all burst errors larger than n bits in length.

A cyclic redundancy check algorithm requires a generator polynomial. This polynomial is the divisor of
an operation with the value to be hashed treated as the dividend. The remainder of this polynomial division
is the return value, or referred to as the CRC.

Similar to the other methods described thus far in this section, CRC32’s are not suitable for cryptographic
applications. Most notably, due to the linear nature of a CRC, a message can easily be modified in such a
way to leave the CRC output unchanged and therefore is considered not very resistant to collisions.

Listing 3. CRC32 Algorithm

1 #include <stdint.h>
2
3 #define POLYNOMIAL 0xD8
4 #define WIDTH (8 ∗ sizeof( uint32 t ))
5 #define TOPBIT (1 << (WIDTH − 1))
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6
7 uint32 t crcTab[ 256 ];
8
9 void

10 crc32 init ( void )
11 {
12 uint32 t remainder;
13
14 for( int div = 0 ; div < 256 ; div++ ){
15 remainder = div << ( WIDTH − 8 );
16 for( uint8 t bit = 0 ; bit > 0 ; bit−− ){
17 if ( remainder & TOPBIT )
18 remainder = ( remainder << 1 ) ˆ POLYNOMIAL;
19 else
20 remainder = ( remainder << 1 );
21 }
22 crcTab[ div ] = remainder;
23 }
24 return
25 }
26
27 uint32 t
28 crc32( uint8 t const ∗addr, int nbytes )
29 {
30 uint8 t data;
31 uint32 t remainder = 0;
32
33 for( int byte = 0 ; byte < nbytes; byte++ ){
34 data = addr[ byte ] ˆ ( remainder >> ( WIDTH − 8 ) );
35 remainder = crcTab[ data ] ˆ ( remainder << 8 );
36 }
37
38 return remainder;
39 }

MD5 The fifth Message-Digest Algorithm (MD5) [131] is a widely used cryptographic hash function designed
by Ron Rivest. Specified in RFC1321 [164], MD5 produces a 128-bit hash value and is commonly used to check
data integrity. Though designed to be collision resistant, a collision attack currently exists for MD5. The fact
this attack exists has no influence on its choice for an appropriate hashing method, as while collisions can
be computed, they rarely occur and are difficult to generate.

SHA256 The second Secure Hash Algorithm (SHA256) [99] is one of a family of cryptographic hash function
which includes SHA224, SHA256, SHA384, SHA512, each of which varies by the hash digest size (224, 256,
384, and 512 bits). This set of function was designed by the National Security Agency in response to a flaw
found in the SHA-1 secure hash.

The SHA-2 family of functions are included in a number of widely-used security applications and protocols,
including TLS [57] and the Secure Sockets Layer, PGP [36], SSH [190], S/MIME [160], and IPsec [127]. Like
all well designed cryptographic hashes, they are highly collision resistant.

8.4 State Compression Measurement

In this section, we present the compression performance of this hash-based approach using the libhashckpt
library described in the previous section. First, we examine the results of hashing versus page-based protec-
tion mechanisms for determining the percentage of application memory that has actually changed. Then, we
examine the performance of this library with the a number of simulation workloads, comparing this hash-
based approach with both standard page protection-based incremental checkpointing and an application’s
specific checkpoint mechanism.

Applications and Platform

To evaluate the compression achieved by hash-based checkpointing, we present results from a number of key
HPC applications; CTH [63], LAMMPS [156, 168], SAGE [110], and HPCCG [169]. See Section 6.2 for a
complete description for these four important high-performance computing workloads.

Each of these applications contain highly-optimized application-specific checkpoint mechanisms that will
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be used for comparison with the methods outlined in this paper. These application tests were conducted on
the Cray Red Storm system [37] at Sandia National Laboratories. For these application runs, the hashing
was performed by a spare on-node CPU core.

Hash-based Dirty Data Detection

The key feature that libhashckpt exploits is finer-grained detection of dirtied blocks than is currently
possible using mechanisms based solely on page protection mechanisms. To examine the overall potential
of such a hash-based approach, we first used libhashckpt to examine what portion of an application’s
memory actually changed (using fine-grained hashing) versus the percentage that a pure page protection-
based mechanism would indicate was changed. In this section we show the average percent of memory
written using a page protection-based mechanism. In addition we show the average, minimum, and maximum
percentage of that changed memory that is determined changed using a hash-based approach.

Figures 29 – Figure 32 show the percentage of memory that our hash-based mechanism determined
changed at each 15 minute checkpoint interval versus the percentage that a page protection mechanism
determined were dirtied. For each of these tests, we use a 512 byte block size on an operating system with
4KB pages. Each machine page therefore, contains 8 hash blocks.

In Figure 29, we see that while nearly all of CTH’s allocated memory is written in a checkpoint interval,
a very small percentage of that memory actually changes. This small percentage of change is an artifact of
the simulation problem. The application uses thresholding such that, in a small simulation-time interval,
sections of the simulation do not change.
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Figure 29. Percent of application memory change detected using a
hash-based incremental checkpointing mechanism for the CTH explod-
ing pipe problem. The shaded region represents the average percent of
memory written to using a page-protection based mechanism.

In contrast to the CTH results, the amount of data changed for LAMMPS, shown in Figure 30, is nearly
identical to the data written. This large data change is due to the fact that the largest data structure in
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LAMMPS is the neighbor structure. This structure holds the distance between all atoms and is used for
calculating forces. As the simulation progresses, this structure continuously changes as atoms move around.
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Figure 30. Percent of application memory change detected using
a hash-based incremental checkpointing mechanism for the LAMMPS
EAM problem. The shaded region represents the average percent of
memory written to using a page-protection based mechanism.

In Figure 31, we see that the performance of SAGE sits somewhere between that of CTH and LAMMPS.
For some nodes in this SAGE problem, much of the node’s data changes in the checkpoint interval. For
other nodes, however, the amount of data on a node that changes is much lower than the total amount a
page-based mechanism determines changed. The average amount of data changed across all nodes and for
all checkpoints is around 55%.

Lastly, Figure 32 shows that the results of HPCCG are similar to that of LAMMPS, where most of the
data written is different than what was there previously. In contrast to LAMMPS, as HPCCG converges an
increasingly smaller percentage of the written memory changes.

These results demonstrate the potential accuracy advantage a hash-based incremental checkpointing
approach can provide over a purely page protection-based mechanism. On the other hand, these results also
show that the potential benefits are also highly application-dependent.

Checkpoint File Size Comparison

Based on the results in the previous section, we can now examine the resulting difference in checkpoint sizes
between the two incremental checkpointing approaches (pure page protection vs. libhashckpt’s hybrid page
protection/hashing scheme) for both LAMMPS and CTH. These two application are chosen due to there
highly optimized application-based mechanisms. We also compare the size of these checkpoints with those
generated by the application-specific mechanisms. These application specific methods are highly optimized,
and, for the purpose of this work, we view these checkpoint sizes as a file size optimum.

Table 2 shows a comparison in per-process checkpoint sizes for our two applications. We see that for CTH,
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Figure 31. Percent of application memory change detected using a
hash-based incremental checkpointing mechanism for the SAGE appli-
cation. The shaded region represents the average percent of memory
written to using a page-protection based mechanism.

libhashckpt’s hash-based method dramatically reduces the size of system-based incremental checkpoints
based solely on a page protection mechanism. Custom application-specific checkpointing mechanism does
better still, but our hybrid scheme results in checkpoints that are only 35% larger than this highly-optimized
approach. One reason our hash-based library is larger than the application-specific method has to do with
the fact that the application checkpoint contains only application data, while the other methods shown save
state from the application as well as the libraries linked with the application, most notably the MPI library
and its associated data and buffers.

In contrast to CTH, the hash- and page-based schemes are nearly identical in size for LAMMPS, with
application-specific checkpointing routines offering a 75% reduction in checkpoint sizes. This is because the
application-specific checkpointing mechanism in LAMMPS can completely avoid writing neighbor structures
to checkpoints because they can be reconstructed at application restart. System-based methods do not have
the application-specific knowledge needed to do this.

8.5 Hashing Costs

In the previous section we used a spare on-node CPU to perform the hashing of modified pages. This hashing
can be very expensive on a host CPU. This high cost determines the possible merits of this technique. As
we specified in Equation 14, this technique is viable if the hashing costs outweigh the decrease in state
compression. Therefore, we are interested in methods to speed up the hashing. The method used to lower
the overheads in this work is to offload the hash calculation to GPUs.

In this section we measure and compare the GPU vs CPU performance for a number of hash signature
algorithms. For the hashing results in this section, we compare the performance of the Opteron processor
on Red Storm [37] against that of a NVIDIA Tesla C1060 and a NVIDIA Tesla D2090 based on the “Fermi”
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Figure 32. Percent of application memory change detected using
a hash-based incremental checkpointing mechanism for HPCCG. The
shaded region represents the average percent of memory written to using
a page-protection based mechanism.

architecture. For each of the tests we did the following. We take one of the checkpoints for the CTH
application run described earlier in the section. In this checkpoint we send all the written pages to be
hashed either by the CPU for the GPU. For the CPU numbers we use the Libgcrypt [2] implementations
of XOR, ADLER32, CRC32, MD5, and SHA256 algorithms. The GPU numbers presented in the following section
represent the best measured for a block size varying the number of threads and the size of the overlap of
the concurrent copy down to the card and computation for asynchronous CUDA [140] kernels. In addition,
these GPU numbers include the time to copy data down to the GPU as well as the time to copy computed
keys to host memory.

Rotating XOR

Figure 33 compares GPU vs. CPU performance of an XOR calculation for varying block sizes. The GPU
numbers presented in this plot represent the best measured for a block size varying the number of threads
and the size of the overlap of the concurrent copy down to the card and computation. Also, these GPU
numbers include the time to copy data down to the GPU as well as the time to copy computed keys to
host memory. With a per-process hashing rate between 2800 and 1700 MB/sec for the Fermi GPU card,
the GPU-based data rates greatly exceed the per-process commit rate to stable storage for many large-scale
systems. Also, for larger block sizes, including sizes beyond what is shown here, the CPU results exceed that
of the GPU cards.

CRC32

Figure 34 compares GPU vs. CPU performance of an CRC32 calculation for varying block sizes. The GPU
numbers presented in this plot represent the best measured for a block size varying the number of threads and
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Application VM CKPT Hash CKPT App CKPT
(MB) (MB) (MB)

CTH 513 35 (93%) 26 (95%)
LAMMPS 2735 2670 (2.3%) 608 (78%)

Table 2. Per-process checkpoint size for CTH and LAMMPS.
This table contains the size of the checkpoint using standard page
protection-based system-level incremental checkpointing (VM CKPT),
libhashckpt’s hybrid approach, and an application-specific checkpoint-
ing approach (App CKPT). For the latter two columns the number in
parenthesis is the percent reduction in size when compared to a system-
based incremental checkpoint. The VM CKPT and Hash CKPT check-
points contains data from both the application as well as other libraries
linked with the application, for example MPI library data and its asso-
ciated buffers.
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Figure 33. A comparison of rotating XOR hashing rates for CPU and
GPU. GPU rate includes both the copying of data to be checksummed
down to the cards local memory as well as the copying of the computed
keys from the card to host memory. The GPU data is the best recorded
for a block size varying the number of threads and the amount of overlap
in copy and computation. The CPU test use the XOR algorithm described
previously
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Figure 34. A comparison of CRC32 hashing rates for CPU and GPU.
GPU rate includes both the copying of data to be checksummed down
to the cards local memory as well as the copying of the computed keys
from the card to host memory. The GPU data is the best recorded for a
block size varying the number of threads and the amount of overlap in
copy and computation. The CPU numbers are using the Libgcrypt [2]
CRC32 hashing algorithm.
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Figure 35. A comparison of ADLER32 hashing rates for CPU and GPU.
GPU rate includes both the copying of data to be checksummed down
to the cards local memory as well as the copying of the computed keys
from the card to host memory. The GPU data is the best recorded for a
block size varying the number of threads and the amount of overlap in
copy and computation. The CPU numbers are using the Libgcrypt [2]
ADLER32 hashing algorithm.

the size of the overlap of the concurrent copy down to the card and computation. Also, these GPU numbers
include the time to copy data down to the GPU as well as the time to copy computed keys to host memory.
With a per-process hashing rate between 2200 and 700 MB/sec for the GPU cards, the GPU-based data
rates greatly exceed the per-process commit rate to stable storage for many large scale systems. Also, even
though the Fermi cards have twice as many resources, for block sizes larger than 64 bytes the performance
of the two are nearly the same.

ADLER32

Figure 35 compares GPU vs. CPU performance of an ADLER32 calculation for varying block sizes. The GPU
numbers presented in this plot represent the best measured for a block size varying the number of threads
and the size of the overlap of the concurrent copy down to the card and computation. Also, these GPU
numbers include the time to copy data down to the GPU as well as the time to copy computed keys to
host memory. With a per-process hashing rate between 3200 and 2000 MB/sec for the Fermi GPU card,
the GPU-based data rates greatly exceed the per-process commit rate to stable storage for many large-scale
systems. Also, for larger block sizes the CPU results exceed that of the Tesla GPU card. For block sizes
larger than those show in this figure, the CPU performance exceeds even that of the Fermi card.
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Figure 36. A comparison of MD5 hashing rates for CPU and GPU.
Note, the GPU rate includes both the copying of data to be check-
summed down to the cards local memory as well as the copying of the
computed keys from the card to host memory. The GPU data is the best
recorded for a block size varying the number of threads and the amount
of overlap in copy and computation. The CPU numbers are using the
Libgcrypt [2] MD5 hashing algorithm.
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Figure 37. A comparison of SHA256 hashing rates for CPU and GPU.
Note, the GPU rate includes both the copying of data to be check-
summed down to the cards local memory as well as the copying of the
computed keys from the card to host memory. The GPU data is the best
recorded for a block size varying the number of threads and the amount
of overlap in copy and computation. The CPU numbers are using the
Libgcrypt [2] SHA256 hashing algorithm.

MD5

Figure 36 compares GPU vs. CPU performance of an MD5 calculation for varying block sizes. The GPU
numbers presented in this plot represent the best measured for a block size varying the number of threads
and the size of the overlap of the concurrent copy down to the card and computation. Also, these GPU
numbers include the time to copy data down to the GPU as well as the time to copy computed keys to
host memory. With a per-process hashing rate between 600 and 4000 MB/sec for the Fermi GPU card,
the GPU-based data rates greatly exceed the per-process commit rate to stable storage for many large-scale
systems.

SHA256

Figure 37 compares GPU vs CPU performance of an SHA256 calculation for varying block sizes. The GPU
numbers presented in this plot represent the best measured for a block size varying the number of threads
and the size of the overlap of the concurrent copy down to the card and computation. As before, these GPU
numbers include the time to copy data down to the GPU as well as the time to copy computed keys to
host memory. With a per-process hashing rate between 1400 and 2200 MB/sec for the Fermi GPU card, the
GPU-based data rates exceed the per-process commit rate to stable storage for many large-scale systems.
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Application compression GPU Break-even βckpt CPU Break-even βckpt

(%) (MB/sec) (MB/sec)

CTH 83 3320 415
SAGE 35 1400 175

LAMMPS 2.4 92 12

Table 3. Per-process checkpoint commit break-even bandwidth
CPU/GPU comparison calculated using Equation 15 for CTH, SAGE,
and LAMMPS. Compression values for each of the applications are from
Section 8.4 and a βhash value equal to 4.0GB/sec from the GPU MD5 hash
as illustrated in Section 8.5, and a βhash value equal to 500MB/sec from
the CPU ADLER32 hash.

8.6 Viability of Hash-Based Incremental Checkpointing

In this section we outline the viability of this hash-based technique for next generation exascale systems. Ta-
ble 3 summarizes the compression results shown previously in this section. For CTH, SAGE, and LAMMPS
we use Equation 15, the compression values measured in Section 8.4. In addition we use the maximum hash
computation rate (βhash) measure in Section 8.5. These values are 4.0 GB/sec from an MD5 hash on a Fermi
GPU and a value of 500 MB/sec for the CPU hashing algorithm.

Table 3 shows the per-process break-even checkpoint commit bandwidths for the measured applications
using the maximum hashing rate and compression percentages. If a proposed exascale-class machine has a
per-process checkpoint commit speed is less then this break-even value, then the hash-based approach has a
lower overhead than a strictly page-based approach.

The per-process break-even CPU results in this table vary from 415 to 12 MB/sec, with the greatest
per-process bandwidth being for CTH which has the greatest compression and lowest for LAMMPS. For the
GPU, if a machine has a per-process checkpoint commit speed is less then 3.32 GB/sec then the hash-based
approach will have a lower overhead than the strictly page-based approach. Even with many optimizations
and high performance parallel file systems that stripe large writes simultaneously across many disks and
file servers, it is difficult to achieve per-process disk commit bandwidth of this magnitude for many future
large-scale systems as these values for the GPU are larger than what we even see today.

For illustration, in Figure 38 we show the per-socket checkpoint bandwidth for a range of aggregate
checkpoint commit bandwidths likely to be seen in future systems. The shaded region in this figure cor-
responds to possible socket count for an exascale class machine [20]. A per-process commit rate greater
than this 3.32 GB/sec value and the page based approach will have lower overheads for the GPU. For the
CPU hashing, the break-even point is much lower with a value of 415 MB/sec. These figures also have the
break-even bandwidths for the compression values measured for SAGE and LAMMPS.

For SAGE with the GPU numbers, from Table 3 we see that the break-even checkpoint commit bandwidth
is 1.4 GB/sec, much greater than the 175 MB/sec for CPU hashing. This per-process break-even commit
bandwidth is greater than what is expected in future exascale systems, again can be seen in Figure 38. Lastly,
for LAMMPS, the compression value is much smaller than the other two applications at 2.4%, therefore the
per-process checkpoint commit breakpoint speed is much lower at 92 MB/sec; a value more easily reached
by future parallel I/O systems. At the CPU hashing speeds the break-even bandwidth is 12MB/sec. See
Figure 38 for a comparison of the CPU/GPU data.
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Figure 38. Per-socket commit bandwidth assuming coordinated
checkpointing for a number of possible aggregate I/O bandwidths. The
shaded regions correspond to the break-even checkpoint commit band-
widths from Table 3 for possible socket counts and compression values
from Equation 15 for an exascale class machine [20] using GPU and CPU
hashing.

8.7 Summary

In this section, we introduce a simple model to illustrate the viability of hash-based incremental checkpoint-
ing. In addition, we introduce libhashckpt, an incremental checkpointing library that uses hashing to save
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only the changed state of an application in a checkpoint interval. To significantly decrease the overhead
of the hash calculation, libhashckpt can utilize GPUs. Using this library, we compare the checkpoint file
sizes of this hash-based method with that of a standard page-protection mechanism and a highly optimized
application-specific mechanism. Using real capability HPC workloads we show that, for a certain class of
applications, this hash-based method can reduce the checkpoint file size to be around 15% of that of a page-
based approach. In addition, this method can create checkpoint files which are only 35% larger than that of
a manually-coded, application-specific method. Finally, we use the model and results from real applications
to outline the viability of this technique for next-generation exascale systems. With this simple model we
show the viability of this hash-based incremental checkpointing using both the GPU and CPU to compute
the hashes. More specifically, we show that at GPU hashing speeds this technique has significantly lower
overheads in much of the exascale design space than a page-based checkpointing approach.
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9 Compressing Application Checkpoints

9.1 Introduction

As previously described, if checkpoint/restart protocols are to be employed for future extreme scale systems,
checkpoint/restart overhead must be reduced. For the problem of checkpoint commit or saving an application
checkpoint, three general strategies can be considered: (1) reducing checkpoint information, for example,
using application-directed checkpoints; (2) reducing checkpoint data, for example, using incremental check-
pointing; or (3) reducing the time to commit checkpoint data to stable storage, for example focusing on
checkpoint I/O.

This section focuses once again on the second strategy of reducing the amount of checkpoint data,
particularly via checkpoint compression. We have one fundamental goal: to understand the viability of
checkpoint compression for the types of scientific applications expected to run at large scale on future
generation HPC systems. Using several mini-applications or mini apps from the Mantevo Project [97] and
the Berkeley Lab Checkpoint/Restart (BLCR) framework [92], we explore the feasibility of state-of-the-field
compression techniques for efficiently reducing checkpoint sizes. We use a simple checkpoint compression
viability model to determine when checkpoint compression is a sensible choice, that is, when the benefits of
data reduction outweigh the drawbacks of compression latency.

9.2 Checkpoint Compression

Previous Work

To the best of our knowledge, there has not been much research towards the goal of reducing checkpoint sizes
and commit times that consider data compression. Li and Fuchs implemented a compiler-based checkpointing
approach(CATCH), which exploited compile time information to compress checkpoints [120]. The results
from their CATCH compiler, which used LZW data compressor, showed that a compression ratio of over
100% was necessary to achieve any significant benefit compared to the time overhead. Plank and Li proposed
in-memory compression and showed that, for their computational platform, compression was beneficial if
a compression factor greater than 19.3% could be achieved [150]. Plank et al also proposed differential
compression to reduce checkpoint sizes for incremental checkpoints [155]. Moshovos and Kostopoulos used
hardware-based compressors to improve checkpoint compression ratios [134].

A Checkpoint Compression Viability Model

Intuitively, checkpoint compression is a viable technique when benefits of checkpoint data reduction outweigh
the drawbacks of the time it takes to reduce the checkpoint data. To outline the viability of this technique
we use a similar method as described in Section 8.2. Similar to this previously described model, if the ratio of
the checkpoint commit speed to checkpoint compression speed is less than the compression factor, checkpoint
data compression provides an overall time (and space) performance reduction as shown in Equation 16.

βckpt

βcompress
< compression (16)

9.3 Evaluating Checkpoint Compression

The goal of this work is to evaluate the use of state-of-the-field algorithms for compressing checkpoint data
from applications that are representative of those expected to run at large scale on current and future

78



generation HPC systems.

9.4 The Applications

We chose four mini-applications or mini apps 3 from the Mantevo Project [97], namely HPCCG version 0.5,
miniFE version 1.0, pHPCCG version 0.4 and phdMesh version 0.1.

The first three are implicit finite element mini apps and phdMesh is an explicit finite element mini
app. HPCCG is a conjugate gradient benchmark code for a 3D chimney domain that can run on an
arbitrary number of processors. This code generates a 27-point finite difference matrix with a user-prescribed
sub-block size on each processor. miniFE mimics the finite element generation assembly and solution for
an unstructured grid problem. pHPCCG is related to HPCCG, but has features for arbitrary scalar and
integer data types, as well as different sparse matrix data structures. PhdMesh is a full-featured, parallel,
heterogeneous, dynamic, unstructured mesh library for evaluating the performance of operations like dynamic
load balancing, geometric proximity search or parallel synchronization for element-by-element operations.

For the three implicit finite element mini apps, we chose a problem size of 100x100x100. Both HPCCG
and pHPCCG were run with openMPI with 3 processes while miniFE was run with 2 processes. phdMesh
was run without MPI support on a problem size of 5x6x5.

The Checkpoint Library

The Berkeley Lab Checkpoint/Restart library (BLCR) [92], a system-level infrastructure for checkpoint/restart,
is perhaps the most widely available checkpoint/restart library available and is deployed on several HPC
systems. For our experiments, we obtain checkpoints using BLCR. Furthermore, we use the OpenMPI [80]
framework which has the capability to leverage BLCR for fault tolerance.

The Compression Algorithms

For this study, we focused on the popular compression algorithms investigated in Morse’s comparison of
compression tools [108]. We settled on the following subset, which appeared to performed well in preliminary
tests:

• 7zip [1]: 7zip is based on LZMA 7zip uses LZMA(Lempel-Ziv-Markov chain Algorithm) [145] to
compress data. The algorithm uses a dictionary compression scheme similar to LZ77 and has a very
high compression ratio. Each of these tools have different parameters to achieve faster compression
time or better compression ratio.

• zip: ZIP is an implementation of Deflate [55], a lossless data compression algorithm that uses LZ77 [196]
compression algorithm and Huffman coding. It is highly optimized in terms of both speed and com-
pression efficiency. The ZIP algorithm treats all types of data as a continuous stream of bytes. Within
this stream, duplicate strings are matched and replaced with pointers followed by replacing symbols
with new, weighted symbols based on frequency of use.

• bzip2: BZIP2 is an implementation of the Burrows-Wheeler Transform [68] which utilizes a technique
called block-sorting to permute the sequence of bytes to an order that is easier to compress. The
algorithm converts frequently-recurring character sequences into strings of identical letters and then
applies move to front transform and Huffman coding.

3Mini apps are small, self-contained programs that embody essential performance characteristics of key applications.
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• pbzip2 [68]: A multi-threaded implementation of bzip2 is called parallel bzip2(PBZIP2) uses the same
technique as bzip2 but can leverage multi-CPU and multi-core computers giving speed improvement.
We have used two parameters to control the compression. The first parameter defines the BWT block
size in kB and the second parameter defines the file block size in kB

• rzip: Rzip can take advantage of very long distance redundancy as it has a very large buffer. It finds
and encodes large chunk of duplicate data and then use bzip2 as backend to compress the encoding.

For this study, we tested other tools that did not exhibit good performance in our case studies, including
gzip.

The Tests

Each test consists of a mini app, a parameterized compression algorithm4, and five successive checkpoints.
For HPCCG the checkpoint interval was 5 seconds, for miniFE and pHPCCG it was 3 seconds and for
phdMesh the 5 checkpoints were taken randomly. There was no particular logic in varying the checkpoint
interval except for making sure to have the checkpoints spread uniformly across the execution time of the
application. The BLCR library is used to collect the mini app checkpoints, and then we use the selected
algorithms to perform checkpoint compressions.

9.5 Compression Results

For each application, the average uncompressed checkpoint size ranged from 311 MB to 393 MB. Our first
set of results, presented in Figure 39, demonstrate how effective the various algorithms are at compressing
checkpoint data. With the exception of the Rzip(-0), all the algorithms achieve a very high compression fac-
tor of about 70% or higher, where compression factor is computed as: 1− compressed size

uncompressed size . This means, then
that the primary distinguishing factor becomes the compression speed, that is, how quickly the algorithms
can compress the checkpoint data.

Figure 40 shows how long the algorithms take to compress the checkpoints. In general, and not surpris-
ingly, the parallel implementation of bzip2, pbzip2, generally outperforms all the other algorithms.

9.6 Discussion

In the previous section, we presented the empirical results of our checkpoint compression. We conclude this
paper with a discussion of the implications of these results. We also known limitations and shortcomings of
this work that we plan to address as we continue this project.

This work seeks to answer the question, “Should checkpoint compression be considered as a potentially
feasible optimization for large scale scientific applications?” Based on our preliminary experiments, we
believe the answer to this question is “Yes.” Based on Equation 15, if the product of checkpoint commit
speed (or throughput) is less than the product of compression factor and compression speed, checkpoint
compression will provide a time (and space) performance benefit. Figure 41 shows this product as derived
from the data in Section 6.1. Even with many optimizations and high performance parallel file systems that
stripe large writes simultaneously across many disks and file servers, it is difficult to achieve disk commit
bandwidths on the order of ones of Gigabits/second. Figure 41 shows that in many cases, a file system
must achieve at least about 14 Gigabits/second and as much as 56 Gigabits/second to compete with our
checkpoint compression strategy. Furthermore, we can explore additional strategies, like using multicore
CPUs or even GPUs, to accelerate compression performance.

4For each algorithm, a different set of parameter values constitute a different test.
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Figure 39. Checkpoint compression ratios for the various algorithms
and applications.

Current Limitations

While the results of this preliminary study are promising, we observe several shortcomings that we plan to
address. These shortcomings include:

• Testing on larger applications: while the Mantevo mini applications are meant to demonstrate
the performance characteristics of their larger counterparts, we plan to evaluate the effectiveness of
checkpoint compression for these larger applications.

• Testing at larger scales: Our current tests are limited to very small scale applications. We plan to
extend this study to applications running at much larger scales, on the order of tens or even hundreds of
thousands of tasks. Qualitatively, we expect similar results since compression effectiveness is primarily
a function of the compression performance for individual process checkpoints.

• Checkpoint intervals: For these tests, in order to keep run times managable, we used a relatively
small checkpoint intervals. We plan to evaluate whether compression effectiveness changes as applica-
tions execute for longer times. We have no reason to expect significant qualitative differences.
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Figure 40. Checkpoint compression times for the various algorithms
and applications.
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Figure 41. Checkpoint Compression Viability: Unless, checkpoint
commit rate exceeds the compression speed × compression factor prod-
uct (y-axis), checkpoint compression is a good solution.
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10 Conclusion

Our goal in this work was to research methods to keep traditional checkpoint/restart viable on exascale
class systems; those systems capable of performing 1018 (or one quintillion) operations per second which
are expected to be delivered in 2018− 2020. Our fundamental approach for achieving this goal was to keep
checkpoint/restart viable while not requiring tremendous increases in hardware reliability rates and/or stable
storage commit rates. Using this approach, we examined two methods to decrease checkpoint overheads,
state-machine replication and hash-based incremental checkpointing using GPUs. These two mechanisms
dramatically increase the checkpoint interval and greatly decrease checkpoint commit times, respectively.
In this final section, we summarize the contributions of this work and discuss possible directions for future
work.

10.1 Contributions

In this work, we show that replication and incremental checkpointing can extend the viability of traditional
checkpoint/restart to exascale-class systems. The major contributions of this work are:

1. A Model for the Benefits of Replication.

We developed a model for state-machine replication combining both Daly’s model for optimal check-
pointing and the birthday problem. We also outlined a number of approximations and extensions to
this common problem from probability theory. With this combined model, we formulated the expected
number of faults a replicated system can sustain, illustrating the significant impact replication has on
application mean time to interrupt and efficiency. Also we outlined a coordinated checkpoint simulator
and validated this model using this simulator. These results all showed that this replication technique
has a higher efficiency in comparison to traditional checkpoint/restart at the socket counts expected
in exascale systems assuming no run time overheads. In addition, using this simulator we show that
for more realistic distributions, the overheads of checkpoint/restart are more dramatic than seen with
the commonly used exponential model.

2. rMPI: a Portable and Transparent Replication Library for MPI.

We developed a portable, transparent replication library called rMPI. This library utilizes the MPI
profiling layer to enable transparent redundant computation for MPI applications. In this work we
described the design of this library, detailing the techniques that are necessary to maintain MPI
semantics, especially managing message ordering and active replica consistency protocols. Additionally,
we presented the run time protocol overheads for rMPI, showing that while the protocol overheads are
quite high for a number of communication micro-benchmarks, there is a low overhead protocol choice
for each of the tested, real-world HPC capability workloads, with that choice being dependent on the
computational pattern of the application. We incorporate this overhead in our replication model to
more accurately examine the cost associated with state machine replication.

3. Analysis of Checkpoint/Restart Viability for Exascale Scale Systems.

We showed the viability of state-machine replication as the primary exascale fault tolerance mechanism,
with checkpoint/restart providing secondary fault tolerance when necessary. Using the aforementioned
model we show that this fault-tolerance mechanism’s “break-even” point, the point at which the nodes
hours (for efficiency) used for this method is less than the projected sizes of next-generation exascale
systems. A combination of modeling, empirical evaluation, and simulation were used to study the
various costs and benefits of state machine replication over a wide range of potential system parameters.
This included both the hardware and software costs of state machine replication for MPI applications,
and covered different failure distributions, system mean time to interrupt ranges, and I/O speeds.

Our results show that a state machine replication approach to exascale resilience outperforms tradi-
tional checkpoint/restart approaches over a wide range of the exascale system design space, though
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not the entire design space. In particular, state machine replication is a particularly viable technique
for the large socket counts and limited I/O bandwidths frequently anticipated at exascale. However,
replication-based approaches are less relevant for designs that have per-socket MTBFs of 50 years or
more, less than 50,000 sockets, and checkpoint bandwidths of 30 terabytes per second.

Outside of its performance benefits, using replication as the primary exascale fault tolerance methods
provides a number of other advantages. First among these is that it can be used to detect and aid in
the recovery from faults that corrupt system state instead of crashing the system, sometimes referred
to under the banner of silent errors. Checkpoint-based approaches, on the other hand, potentially
preserve such errors. In addition, while the extra hardware nodes needed to support replication-based
approaches can also be used to increase the capacity of exascale systems when it runs more but smaller
(e.g. 1-10 petaflop-scale) jobs.

4. Libhashckpt: a Hash-based Incremental-Checkpointing Library using GPU Accelerators

We developed a hybrid incremental checkpointing library that uses both OS page protection mecha-
nisms and a hash mechanism to determine the location within a page that has changed, and therefore
ensure only changed application state is saved in a checkpoint interval. To significantly decrease the
overhead of the hash calculation, libhashckpt can utilize GPUs. To illustrate the possible bene-
fits of this technique we created a simple model. Using this model, we show that the viability of
this technique is dependent on a platforms per-process checkpoint commit rate (βckpt) and hash rate
(βhash) to the percent reduction in state size of the hash based approach (compression). Using this
library, we compare the checkpoint file sizes of this hash-based method with that of a standard page-
protection mechanism and a highly optimized application-specific mechanism. Using real capability
HPC workloads we show that, for a certain class of applications, this hash-based method can reduce the
checkpoint file size to be around 15% of that of a page-based approach. In addition, this method can
create checkpoint files which are only 35% larger than that of a manually-coded, application-specific
method. Finally, we use the model and results from real applications to outline the viability of this
technique for next-generation exascale systems. With this model, we showed that this approach has sig-
nificant performance advantages for proposed exascale architectures at GPU hash rates. At measured
CPU hashing rates, this approach has a more limited viability within the exascale design space.

5. Checkpoint Compression

We developed a checkpoint compression library that uses a number of compression algorithms to
significantly decrease the checkpoint commit state. To illustrate the possible benefits of this technique
we again use the viability model used for hash-based incremental checkpoint library. Using this model,
we show that the viability of this technique is dependent on a platforms per-process checkpoint commit
rate (βckpt) and compression rate (βcompress) to the percent reduction in state size of the compression
algorithm (compression). Using this library, we compare the compressed and uncompressed files sizes
using a number of industry standard compression algorithms. Using a number of mini-applications,
we show that for a certain class of applications, this compression approach can dramatically reduce
the checkpoint file size to be less than 30% of the uncompressed size. Lastly, we use the viability
model and results from a number of mini-applications to illustrate the viability of this technique for
next-generation, large-scale systems. With this model, we showed that this approach has significant
performance advantages for proposed exascale architectures.

10.2 Future Directions

While the research described outlines most of the potential costs and benefits of these techniques, there are
several avenues for future work. In terms of state machine replication, more work is needed quantifying the
software costs of using replication to detect silent errors. While such techniques are well known in other
communities, it is unclear what their cost would be for HPC applications; the quantitative results in this
paper do not attempt to measure these costs and focus only on using replication to mask the pressing issue
of frequent crash failures on exascale systems. In addition, more detailed studies of the scaling, benefits, and
hardware costs of the various alternative methods to scaling exascale fault tolerance described in Section 3 are
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needed. While state machine replication appears viable at exascale, other approaches may still be superior;
careful investigation of such approaches is needed to understand their comparative costs and benefits. Lastly,
we are investigating an alternative method to enable redundant computing that has a lower resource overhead
then what is presented here. Rather than having a replica specific to a particular rank, we are looking into
methods that would aggregate a number of replicated ranks onto one node and spread state throughout all
of these aggregate replicas in a job. This will allow an aggregate replica, on demand, to replace a certain
rank and could possibly allow the application to avoid checkpointing altogether.

In terms of the hash-based incremental checkpointing, more work is needed in order to evaluate the merit
of this technique to a broader set of large-scale applications. In addition, we propose further research investi-
gating other hash and checksum algorithms. For this study we used a range of hashes; from cryptographically
secure hash algorithms to such simpler checksum algorithms. Neither of these algorithms may be ideal for
determining block changes. Ideally, we want the collision resistance of the cryptographic hashes, yet not have
the other cryptographic guarantees. These ideal hashes should may have significantly lower overheads. In
addition, much work could be done in improving the performance of the GPU hash algorithms. While these
CUDA implementation perform well in comparison to the CPU methods, they may not be fully utilizing
the full potential of the GPU. Lastly, we need to compare this hash-based method with other checkpoint
optimization techniques, such as compiler-assisted incremental checkpoint methods.
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A rMPI Micro-benchmark Performance

In this section, we present the performance impact of our state machine replication protocols for MPI -

Allreduce(), MPI Reduce(), MPI Bcast(), MPI Barrier(), and MPI Alltoall(). Each of these micro-benchmarks
are from the OSU MPI benchmark suite(OMB) [138]. For each of the micro-benchmarks we use the rMPI
library described in Section 5. For each of the tests we present mirror and parallel results described in Sec-
tion 5.2. In addition, we use the replica placement options described in Section 6.1, showing results for
forward, reverse, and shuffle options. Similar to the results presented in Section 5, we ran multiple tests with
applications on the Cray Red Storm system at Sandia National Laboratories compiled with both rMPI and
the original unmodified Cray MPI library. Red Storm is a XT-3/4 series machine consisting of over 13,000
nodes, with each compute node containing a 2.2 GHz quad-core AMD Opteron processor and 8 GB of main
memory. Additionally, each node contains a Cray SeaStar [32] network interface and high-speed router. The
SeaStar is connected to the Opteron via a HyperTransport link. The current generation SeaStar is capable
of sustaining a peak unidirectional injection bandwidth of more than 2 GB/s and a peak unidirectional link
bandwidth of more than 3 GB/s. Lastly, to ensure leader and replica are on separate physical nodes, and to
avoid memory and bandwidth bottlenecks on the nodes themselves, we only used one CPU on each node.

A.1 MPI Allreduce()

Figure 42 and Figure 43 show the slowdown of the MPI Allreduce() micro-benchmark due to rMPI’s mirror
and parallel consistency protocols, respectively. In both of these figures we also show the impact of the
replica placement protocols. Since these tests were run on the Red Storm platform which has a 3-D torus
network topology, there is typically little difference between placement options. In general we see that for
this micro-benchmark, the parallel protocol has lower overheads than mirror.

A.2 MPI Reduce()

Figure 44 and Figure 45 show the slowdown of the MPI Reduce() micro-benchmark due to rMPI’s mirror
and parallel consistency protocols, respectively. In both of these figures we also show the impact of the
replica placement protocols. Since these tests were run on the Red Storm platform which has a 3-D torus
network topology, there is typically little difference between placement options. In general we see that for
this micro-benchmark, the parallel protocol has lower overheads than mirror.

A.3 MPI Bcast()

Figure 46 and Figure 47 show the slowdown of the MPI Bcast() micro-benchmark due to rMPI’s mirror and
parallel consistency protocols, respectively. In both of these figures we also show the impact of the replica
placement protocols. Since these tests were run on the Red Storm platform which has a 3-D torus network
topology, there is typically little difference between placement options. In general we see that for this
micro-benchmark, the parallel protocol has lower overheads than mirror.

A.4 MPI Alltoall()

Figure 48 shows the slowdown of the MPI Alltoall() micro-benchmark due to rMPI’s parallel consistency
protocols. rMPI mirror results are not show due to limited system time on Red Storm. In this figure we
show the impact of the replica placement protocols. Since these tests were run on the Red Storm platform
which has a 3-D torus network topology, there is typically little difference between placement options.

88



 4  8  16  32  64  128  256  512  1024  2048
Application Visable Nodes 1  

10  
100  

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

P
er

ce
nt

 S
lo

w
do

w
n

0  
100  
200  
300  
400  
500  
600  
700  
800  
900  

P
er

ce
nt

 S
lo

w
do

w
n

(a) Forward

 4  8  16  32  64  128  256  512  1024  2048
Application Visable Nodes 1  

10  
100  

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

1 k

P
er

ce
nt

 S
lo

w
do

w
n

0  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1 k

P
er

ce
nt

 S
lo

w
do

w
n

(b) Reverse

 4  8  16  32  64  128  256  512  1024  2048
Application Visable Nodes 1  

10  
100  

1 k
10 k

100 k
1 M

10 M

Message Size
 (bytes)

0  

100  

200  

300  

400  

500  

600  

700  

800  

900  

1 k

P
er

ce
nt

 S
lo

w
do

w
n

0  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1 k

P
er

ce
nt

 S
lo

w
do

w
n

(c) Shuffle

Figure 42. MPI Allreduce() micro-benchmark percent slowdown in
comparison to the native MPI performance for the mirror protocol.
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(c) Shuffle

Figure 43. MPI Allreduce() micro-benchmark percent slowdown in
comparison to the native MPI performance for the parallel protocol.
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(c) Shuffle

Figure 44. MPI Reduce() micro-benchmark percent slowdown in com-
parison to the native MPI performance for the mirror protocol.
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Figure 45. MPI Reduce() micro-benchmark percent slowdown in com-
parison to the native MPI performance for the parallel protocol.
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Figure 46. MPI Bcast() micro-benchmark percent slowdown in com-
parison to the native MPI performance for the mirror protocol.
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Figure 47. MPI Bcast() micro-benchmark percent slowdown in com-
parison to the native MPI performance for the parallel protocol.

94



 8
 16

 32
 64

 128
 256

 512
 1024

Application Visable Nodes 1  

10  

100  

1 k

10 k

Message Size
 (bytes)

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

100  

P
er

ce
nt

 S
lo

w
do

w
n

0  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  

P
er

ce
nt

 S
lo

w
do

w
n

(a) Forward

 8
 16

 32
 64

 128
 256

 512
 1024

Application Visable Nodes 1  

10  

100  

1 k

10 k

Message Size
 (bytes)

0  

20  

40  

60  

80  

100  

120  

140  

P
er

ce
nt

 S
lo

w
do

w
n

0  

20  

40  

60  

80  

100  

120  

140  

P
er

ce
nt

 S
lo

w
do

w
n

(b) Reverse

 8
 16

 32
 64

 128
 256

 512
Application Visable Nodes 1  

10  

100  

1 k

Message Size
 (bytes)

0  

20  

40  

60  

80  

100  

120  

140  

P
er

ce
nt

 S
lo

w
do

w
n

0  

20  

40  

60  

80  

100  

120  

140  

P
er

ce
nt

 S
lo

w
do

w
n

(c) Shuffle

Figure 48. MPI Alltoall() micro-benchmark percent slowdown in
comparison to the native MPI performance for the parallel protocol.
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A.5 MPI Barrier()

Figure 49 shows the slowdown of the MPI Barrier() micro-benchmark due to rMPI’s mirror and parallel
consistency protocols. In this figure we also show the impact of the replica placement protocols. Since these
tests were run on the Red Storm platform which has a 3-D torus network topology, there is typically little
difference between placement options. In general we see that for this micro-benchmark, the parallel protocol
has lower overheads than mirror.
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Figure 49. MPI Barrier() micro-benchmark percent slowdown in
comparison to the native MPI performance for the parallel and mirror
protocols.
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