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Abstract

We investigate Bayesian techniques that can be used to reconstruct field variables from par-
tial observations. In particular, we target fields that exhibit spatial structures with a large
spectrum of lengthscales. Contemporary methods typically describe the field on a grid and
estimate structures which can be resolved by it. In contrast, we address the reconstruction
of grid-resolved structures as well as estimation of statistical summaries of subgrid struc-
tures, which are smaller than the grid resolution. We perform this in two different ways
(a) via a physical (phenomenological), parameterized subgrid model that summarizes the
impact of the unresolved scales at the coarse level and (b) via multiscale finite elements,
where specially designed prolongation and restriction operators establish the interscale link
between the same problem defined on a coarse and fine mesh. The estimation problem is
posed as a Bayesian inverse problem. Dimensionality reduction is performed by projecting
the field to be inferred on a suitable orthogonal basis set, viz. the Karhunen-Loève expan-
sion of a multiGaussian. We first demonstrate our techniques on the reconstruction of a
binary medium consisting of a matrix with embedded inclusions, which are too small to
be grid-resolved. The reconstruction is performed using an adaptive Markov chain Monte
Carlo method. We find that the posterior distributions of the inferred parameters are approx-
imately Gaussian. We exploit this finding to reconstruct a permeability field with long, but
narrow embedded fractures (which are too fine to be grid-resolved) using scalable ensem-
ble Kalman filters; this also allows us to address larger grids. Ensemble Kalman filtering
is then used to estimate the values of hydraulic conductivity and specific yield in a model
of the High Plains Aquifer in Kansas. Strong conditioning of the spatial structure of the
parameters and the non-linear aspects of the water table aquifer create difficulty for the en-
semble Kalman filter. We conclude with a demonstration of the use of multiscale stochastic
finite elements to reconstruct permeability fields. This method, though computationally in-
tensive, is general and can be used for multiscale inference in cases where a subgrid model
cannot be constructed.

4



Acknowledgment

This work was supported Sandia National Laboratories’ LDRD (Laboratory Directed Re-
search and Development) funds, sponsored by the Computational and Information Sciences
Investment Area. Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corpora-
tion, for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

5



Contents

1 Introduction 27

2 An Analytical Subgrid Model for Porous Binary Random Media 31

2.1 Estimation of Effective Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Distance-Based Upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Excursion Sets and Kernel Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Reduced Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Comparison to Analytical and Numerical Results . . . . . . . . . . . . . . . . . . . . . 41

2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Probabilistic Estimation of Binary Fields Using a Subgrid Model 51

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Estimation of Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.2 Adaptive Markov Chain Monte Carlo Techniques . . . . . . . . . . . . . . 55

3.2 Models Used in the Inverse Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 The Link Function L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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3.13 Marginalized PDFs of w1,w15,w30 and ln(δ) as inferred jointly from (k(obs), t(obs)
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Chapter 1

Introduction

The estimation/reconstruction of field variables from sparse observations has long been of
practical interest. The field of geostatistics (e.g., [2]) seeks to reconstruct such fields, often
in 3D, from sparse observations of the same, whereas seismic inversions seek to estimate
rock strata from acoustic reflections.The fields being inferred are described on a grid and
spatial structures which are well resolved on the grid (and for which information is available
in the observations) are estimated. Often, the range of spatial scales that are inferred is not
very large.

Observations hold the key to the type of scales that can be resolved. These observations
may be of the field being reconstructed (but at a sparse set of points); we will refer to these
as “static” data, since for the purposes of this study, we will only infer static fields. How-
ever, one may also observe dynamical processes that are dependent on the field of interest;
we will refer to these as “dynamic” data. In many cases, the dynamic data contain infor-
mation about a separate set of scales, vis-à-vis static data. In such cases, it is advantageous
to combine the two types of observations and expand the range of lengthscales that can be
inferred. This leads to multiscale reconstruction/inversion/estimation of fields. Multiscale
inversions tend to be both mathematically complex and computationally expensive; at the
very least, they require a parametrized, low dimensional random field model for the field
being inferred, a dynamic forward model that connects the field to the observed dynamics
and an “inverse solver” to estimate optimal parameters so that observations are reproduced
with minimal errors.

Zonation methods [3, 4, 5, 6] are a good example of how multiscale permeability (or hy-
draulic conductivity) fields may be inferred. One discretizes a domain with a very coarse
grid (often just a single grid-block) and infers an effective permeability from dynamic data
(generally pressure measurements or tracer breakthrough times from a pump test1). The
grid is then locally refined (by dividing into two) and the field re-estimated. This refine-
ment proceeds locally, creating a grid hierarchy, till further refinement does not lead to a

1A test where a fluid, generally water, is injected into a domain from one end and pro-
duced/extracted/pumped out from the other
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better fit with data. The fitting of the field to data is performed using an optimization al-
gorithm and the net result is a single, best-fit field, with spatial structures, reconstructed
on meshes with variable resolution. Unfortunately, the use of a deterministic optimization
method does not quantify the reconstruction uncertainty. The uncertainty is due to both
the sparsity of observations and the shortcomings of the forward model that connects the
dynamic observations (pressure, breakthrough times) to the permeability field.

A rather different approach, that addresses uncertainty in the reconstructions, involves mul-
tiscale finite elements [7, 8, 9]. The approach starts with a scale separation imposed by a
coarse grid. The field estimation (in this case, a permeability field too) is performed us-
ing production history as the data and a Darcy flow model. A Markov chain Monte Carlo
(MCMC) method is used to investigate coarse permeability fields’ fit to data; promising
configurations are re-tested by projecting onto a fine mesh, recomputing the dynamic pre-
dictions and comparing with observations. The fine-coarse dichotomy allows efficient ex-
ploration of permeability fields with MCMC and the coarse model while the fine-mesh
computations enforce accuracy. The reconstruction is performed as a set of accepted (or
possible) permeability field configurations which are conditioned on the observations; these
are deemed to be samples from a posterior distribution of permeability fields. Such a
probabilistic reconstruction method allows simple computations of the uncertainty in the
estimation.

These contemporary approaches are limited to estimations (a.k.a. inversions) on a grid; no
multiscale method addresses the estimation of subgrid structures which cannot be resolved
on a mesh. Neither do they target large problems (big grids) when an accurate quantification
of the uncertainty in the inversion is required; the inherent sequential nature of MCMC has
largely been responsible for this lack of scalability. Consequently, multiscale inversions
have yet to target real-life problems.

In this study, we will investigate multiscale inversion where subgrid structures are recon-
structed from sparse observations, and the algorithms are scaled to a real-life problem. The
key paradigm underlying all our work is Bayesian inversion (or Bayesian inverse prob-
lems), with a focus on quantifying the uncertainty in our estimations. Modeling innovations
lie in deriving models that link across scales, as well as extensions of scalable algorithms to
be applicable to multiscale inversion problems. Multiscale inversion, including estimation
of summaries of subgrid structures, raises two issues:

1. Cross-scale linking: Since we will reconstruct subgrid structures, an additional model
(called the link function or subgrid model) will be required. The subgrid model will
summarize the impact of unresolved scales at the macroscale i.e., the scale which is
resolved by the grid. We will demonstrate two ways of doing so (1) using a subgrid
model based on the physics of the problem and (2) a competing approach, where up-
scaling is performed by multiscale finite elements (MsFEM). The MsFEM method
does not require an explicit subgrid model and consequently is the only possible
approach when a subgrid model cannot be created. In both cases, the models will
contain parameters which are reflective of subgrid lengthscales; the estimation of
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these parameters establishes a summary for the unresolved structures.

2. Scalability: The use of MCMC has limited the application of multiscale methods to
small problems, when uncertainty quantification (UQ) of the inferred field is desired.
Ensemble Kalman Filters (EnKF) are a scalable means of performing inversions but
suffer from two restrictions: (a) they assume that the field being reconstructed is a
multiGaussian and (b) the data being used for reconstruction are time-variant. In this
study, we will first develop methods to identify if reconstructed fields can be safely
assumed to be multiGaussians and thereafter develop EnKF extensions to allow the
assimilation of both dynamic and static data in the EnKF method. Scalability will
be demonstrated in two ways: (1) by demonstrating an inversion on a large grid and
(2) performing a permeability field inversion for the Ogallala - High Plains aquifer in
Kansas. The later will investigate the ability of our methods to address the complex-
ities of real-life inversion problems.

This investigation is structured as follows. We begin with the estimation of a binary field
i.e., a field where a high permeability material is embedded in a low permeability one. The
inclusions are too small to be resolved by a grid; further, their proportion varies in space.
Observations include permeability measurements at a handful of sites in a 2D domain, as
well as tracer breakthrough times. We reconstruct the proportionality distribution as well
as obtain an estimate of the (subgrid) inclusions’ size. In Chapter 2, we develop the sub-
grid model, from physical arguments; in Chapter 3, we formulate and solve a Bayesian
inverse problem where the subgrid model is used to reconstruct realizations of the binary
field conditioned on the observations. The reconstructions will use MCMC as the “inverse
solver”, and we will investigate how different the posterior distributions are from a multi-
Gaussian. In Chapter 4, we describe a very different way of upscaling, using multiscale
finite elements (MsFEM) to provide the cross-scale link. In Chapter 5 we address scalabil-
ity, developing a modified EnKF to assimilate both static and dynamic data to reconstruct a
fractured medium (a field where the width of high-permeability fractures are much smaller
than a grid-block, but the length may be as large as the domain of interest). Finally, in
Chapter 6, we apply the EnKF to solve a real-life reconstruction problem (the Ogallala -
High Plains aquifer).

The individual sections are self-contained. Each contains its own literature review and the
inverse problem is rederived in each case (the derivations have little in common, except a
Bayesian approach with a focus on the use of priors to assimilate exogenous information).
We proceed up the length, problem size and complexity scales in successive sections, car-
rying over lessons that can be used for simplifications at a larger/coarser scale. All estima-
tions are performed with sparse observations i.e., our estimates have a significant degree of
uncertainty in them. However, the probabilistic (Bayesian) approach is adopted throughout
and each step we provide an uncertainty bound on the quantities that we infer.
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Chapter 2

An Analytical Subgrid Model for Porous
Binary Random Media

Determination of a single effective property value from an assemblage of materials is a
long standing research problem in a number of scientific and engineering fields. Here
we focus on the development of an effective conductivity value from a mixture of two
materials (binary media) with distinct conductances. A simple conceptualization of the
binary medium as inclusions of a high/low conductivity material within a continuous matrix
of material having the opposite conductivity serves for discussion here.

Effective properties of materials composed of mixtures of two component materials have
been the subject of study for heat conduction, electrical conductivity, magnetic permeabil-
ity, and electrical permittivity [10, 11, 12, 13, 14, 15, 16, 17, 18]. Hashin and Shtrik-
man [17] demonstrate the mathematically analogous nature of calculations for effective
values of the conductance terms in these varied fields. An extensive amount of work for
binary media has focused on defining the theoretical bounding values for the effective prop-
erties of the medium [13, 17, 19, 20].

The same approaches to effective medium equations hold for calculation of effective per-
meability, or hydraulic conductivity, in steady-state flow through porous media. Binary
models of conductivity are widely applied in subsurface flow through porous media par-
ticularly for representation of permeability patterns in fluvial deposits (e.g., [15, 21, 22,
23, 24]). Additionally, fractured media are often characterized using a binary permeabil-
ity model where the fractures represent strongly anisotropic, high conductivity inclusions
embedded within a matrix of low conductance. Fractured media can be represented as
linear or planar conductive elements within a less conductive background using discrete
fracture representations [25, 26] or as representation of fractured zones within continuum
models [27, 28, 29].

Previous work on binary fields in the context of flow through porous media has empha-
sized development of expressions for the effective conductance of the field as a function of
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the proportion of the high/low, conductivity phase. Effective medium theories (EMT) for
binary assemblages have focused on using the conductivities and proportion of the two ma-
terials to determine an effective conductivity value [14, 18, 30, 31]. Initial development of
these theories used spherical inclusions and more recent work has incorporated additional
information on the shapes of the inclusions [10, 11, 32, 33, 34, 35].

Thorough reviews of variations of the EMT-based approaches with comparison to other
methods can be found in: [19] and [36]. EMT-based approaches assume non-interaction
between inclusions and therefore do not utilize information on the connectivity or interac-
tion of either phase with other inclusions of the same phase. In testing against numerical
results, EMT-based approaches work best when the inclusion fraction is less than 50 per-
cent (see [15, 19]).

The effective conductivity formula developed by [36] incorporates information on con-
nectivity of high conductivity inclusions through the average path length within the low
conductivity material. This novel approach motivates exploration of various measures of
connectivity and different techniques for estimating the mean path length between inclu-
sions. A model for these mean distances tied to the geometry of binary media resulting
from truncation of multiGaussian (mG) fields is proposed herein and the behavior of this
model is compared to previously developed expressions for effective media and numerical
results. We limit comparisons to other approaches developed for binary media that use in-
formation on the modal conductances, proportions and geometry of the phases to calculate
effective conductivity. Other techniques that require full knowledge of a fine scale field in
order to complete the upscaling such as renormalization [37], anisotropic effective medium
approximation [38] and wavelet coarsening [39] are not considered here.

A number of numerical techniques are available for simulation of binary random fields.
Indicator geostatistical techniques [40] with spatial variation defined through a variogram
provide an efficient means of generating stochastic realizations of binary fields [41, 42, 43].
Alternatively, indicator simulation approaches can be based on transition probabilities be-
tween indicator classes [44, 45]. Typical applications of geostatistical simulation tech-
niques are focused on generation of fields with more than two classes, multiple indicator
simulation, but they can also be used for the generation of binary fields. Less common ap-
proaches for generating spatial binary fields include object-based and Boolean models [46],
generation of periodic media [16, 47] and pluriGaussian and truncated mG fields [46, 48].

Development of excursion set theory applied to truncated mG fields over the past 15 years
has been driven by developments in medical imaging and astrophysics [49, 50, 51]. In
particular, calculation of the expected values of the total excursion area, number of distinct
excursions and the average excursion size over a threshold value can be calculated from
definition of the mG field and knowledge of the threshold value ([52, 53]). Excursion set
theory is applicable to truncation with a single threshold or multiple thresholds that produce
multiphase fields (e.g.,[54]). Phillips and Wilson [55] proposed mean threshold crossing
distances to estimate correlation lengths of permeability. However, in contrast to the wide
application of mG random fields in hydrogeology, use of excursion sets from truncated
fields for characterization and modeling of heterogeneous media in groundwater studies
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has been limited.

We parametrize a form of distance-based upscaling using point-process theory and prop-
erties of truncated Gaussian fields to develop an expression for the effective conductance
of binary media. This new expression, truncated Gaussian distance-based upscaling (TG-
DBU) differs significantly from the existing distance-based upscaling in that calculation of
the effective conductivity does not require instantiation of the binary field. This aspect pro-
vides a distance-based calculation of the effective conductivity that is efficient enough for
iterative parameter estimation. Section 2.1 summarizes distance-based upscaling and the
salient aspects of point-process theory and truncated mG fields. Section 2.2 combines these
three elements into an expression for effective conductance for isotropic inclusions within
a background matrix. In Section 2.3, this new expression is compared to distance-based
upscaling using full knowledge of the binary field as well as an existing analytical solution
and numerical solutions. Section 2.4 compares various distance measures and examines the
behavior of the average distance between inclusions in the neighborhood of the percolation
threshold.

2.1 Estimation of Effective Conductivity

Development of the TG-DBU procedure is motivated by the goal of estimating the effec-
tive conductance of a binary medium created from thresholding a Gaussian random field
without instantiation of that field. The two modal permeabilities, K1 and K2, are considered
known. Given the threshold at which the field is truncated, and size of the Gaussian kernel
used to create the field as defined by the full-width at half-maximum (FWHM) parameter,
the effective permeability is estimated.

2.1.1 Distance-Based Upscaling

The distance-based upscaling (DBU) approach developed by [36] utilizes an estimate of
the mean flowpath length between inclusions within the background (matrix) material as a
measure of phase connectivity. Through application of a phase-change theorem, the DBU
approach applies to high or low conductivity inclusions within a matrix of the opposing
material. The DBU approach [36] serves as the foundation for our estimation approach and
is briefly outlined here.

The basis of DBU is conceptualization of each inclusion as a rectangular object of dimen-
sions (Bx,By) centered within a larger rectangular block, having the same orientation, of
dimensions (Lx,Ly). Fixed pressure boundary conditions on each end of the block and no-
flow boundary conditions on the opposite sides create steady, one-dimensional flow along
the x-direction. Knudby et al [36] identified an approximate linear relationship between
the inverse of the effective conductivity of the block (KB)

−1 and the relative shape of the
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inclusion (Bx/Lx)(By/Ly) and used this relationship along with harmonic and arithmetic
conductivity bounds to develop an expression for (KB)

−1:

1
KB

=

(
1

KA
− 1

KH

)
R− p1
1
p1
− p1

+
1

KH
(2.1)

where KA and KH are the arithmetic and harmonic mean conductivities, respectively, p1 is
the proportion of high permeability material and:
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(
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∈
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]
(2.2)

The expression for (KB)
−1 can also be cast as a weighted mean of KA and KH .

1
KB

= ρ
1

KA
+(1−ρ)

1
KH

(2.3)

where ρ is the relative inclusion shape, R, normalized by p1:

ρ =
R− p1
1
p1
− p1

∈ [0,1] (2.4)

The distance-based component of the DBU method enters as a normalized average distance,
Dnorm, of the flow in the background medium within the block:

Dnorm =
Bx−Lx

Lx
(2.5)

The normalized inclusion shape, ρ, can be restated using Dnorm:

ρ =
2Dnorm−D2

norm

1− p2
1

(2.6)

Expansion of these relationships from a single inclusion within a single block to a field of
inclusions requires calculation of average values across the field for the inclusion dimen-
sions, Bx, By and block dimensions, Lx, Ly. A key element of this development is determi-
nation of the average distances between inclusions along the direction of flow; D = L−B.
The block domain is conceptualized as a virtual permeameter centered on each inclusion
within the field. R then represents the average relative inclusion shape and Dnorm is the
normalized average distance between inclusions along the direction of flow weighted by
the area of each connecting inclusion.

In the DBU approach, the average distance, D, is calculated as a weighted average using
distances, D, and inclusion areas A as measured directly on the binary field:
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D =
∑

n
j=1 ∑

n
i=1 Di, jAiA j

∑
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n
i=1 AiA j

(2.7)

with the average block dimension in the direction of flow, x, calculated as:

B =
∑

n
j=1 Bx,iAi

∑
n
i=1 Ai

(2.8)

The normalized average distance between inclusions is: Dnorm = D/L. Use of these spatial
averages renders the block conductivity estimate, KB, as an effective conductivity, Ke f f for
the domain.

A strong advantage of the DBU is the incorporation of the phase interchange theorem [12].
This theorem provides a relationship between Ke f f of a field with low conductivity inclu-
sions in a high conductivity matrix (low-in-high, LinH) and the generally easier-to-estimate
Ke f f of a complementary field of high conductivity inclusions in a low conductivity matrix
(high-in-low, HinL). The fixed head and no-flow boundaries are rotated 90 degrees and
applied to the complementary field. The fluxes, Q, through the two fields are related by:

QLinHQHinL = K1K2(∆H)2 (2.9)

where ∆H is the pressure drop across both fields from the prescribed boundary conditions.
The product of the effective conductivities for each field is equal to the product of the two
modal conductivities in the binary field:

Ke f f (HinL)Ke f f (LinH) = K1K2 (2.10)

A key advantage of the phase interchange theorem is that it enables the calculation of the
LinH case for any geometry for which the HinL solution is available.

Knudby et al [36] demonstrate accurate estimation of Ke f f for a range of simulated fields
created with Poisson placement of ellipses or rectangles as well as those created with tran-
sition probability-based geostatistical simulation. Within these fields, the ratios of the two
conductivities range from 100 to 10,000. The DBU results are also compared with several
other effective value approaches.

2.1.2 Excursion Sets and Kernel Size

Calculation of Ke f f with the DBU method requires both creation of the binary field and cal-
culation of all inclusion sizes and distances between proximal inclusions. Image processing
algorithms are available for these calculations; however, the computational expense of these
algorithms is non-trivial. Here, we develop an approach for estimation of Ke f f based on
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DBU that estimates the average inter-inclusion distance without explicit creation or pro-
cessing of the binary field. This new approach relies on properties of truncated Gaussian
fields to estimate the inclusion sizes and the mean distance between them and provides an
analytical expression for Ke f f .

The model for spatially correlated multiGaussian (mG) fields is based on a Gaussian kernel:

G(x,y) =
1

2π|Σ|1/2 exp
(
−1

2
dΣ
−1dT

)
(2.11)

where d is the distance vector containing distances dx and dy from any location (x,y) to the
origin of the Gaussian function x0,y0 (here (0,0) for the standard normal distribution). In
this work, the covariance matrix, Σ=σ2I, (where I is the identity matrix) is diagonal for the
specific case of the kernel being aligned with the grid axes. Convolution of an uncorrelated
mG field with a Gaussian kernel creates a realization of a spatially correlated random field.
A discretized uncorrelated mG field (e.g., as described on a mesh) can be created by simply
sampling values at the mesh points i.i.d. from a standard normal.

The spatial correlation of the mG field is defined by the FWHM of the Gaussian kernel
used to create the Gaussian field. The FWHM parameter is commonly used as a spatial
measure in image processing:

FWHM = σ
√

8ln(2) (2.12)

where σ is the standard deviation of the Gaussian kernel. Truncation of a Gaussian field at
a threshold u defines the u− level excursion set:

Xu =
{

x ∈ RD : Y (x)≥ u
}

(2.13)

and the variogram, of the random set Xu can be calculated:

γu(h) =
1
π

∫ arcsin(
√

γ(h)/2)

0
exp
(
−u2

2
(1+ tan2(t))

)
dt (2.14)

at lag spacings h. Variogram models that are linear at the origin (e.g., exponential, hyper-
bolic) cause the perimeter of Xu to be infinite (see [46], Section 16.1) and we restrict our
work here to Gaussian kernel functions.

Three related properties of the truncated Gaussian field (following [52]) are:

N, the number of pixels above the truncation threshold, u,
m, the number of distinct regions (inclusions) above the threshold, and
n, the number of pixels in each region,

with expectation relationship E[N] = E[m]E[n]. For threshold value, u, the number of cells
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above that threshold, N, is provided by the Gaussian cdf and the size of the domain, S:

E[N] = S
∫

∞

u
(2π)−1/2e−z2/2dz (2.15)

The Euler Characteristic, EC, in D = 2 represents the number of connected objects in the
domain minus the total number of holes within those objects. Therefore EC goes to 0.0
at u = 0 and EC becomes negative when u < 0.0 as the truncated field represents a single
domain-spanning object containing a large number of holes. In 2D, the absolute value of
EC is the number of distinct inclusions of either phase within the opposite phase and is
used here to determine E[m].

E[m] = |EC|= |(2π)−(D+1)/2W−DuD−1eu2/2| (2.16)

where W is an alternative measure of the spatial correlation of the mG field defined as a
fraction of the FWHM:

W = FWHM/
√

4ln(2) (2.17)

For a given threshold, u, the average object area is found from the expectation relationship:

E[n] = E[N]/E[m] = E[N]/|EC| (2.18)

Figure 2.1 compares a direct calculation of EC using the Matlab Image Processing tool-
box [56] with estimates made using Equation 2.16 across a range of u values increasing
from left to right. The corresponding binary fields (500 x 500 cells) are also shown for
several representative threshold values.

2.2 Reduced Model Estimation

The properties of the truncated Gaussian field are used with the DBU method to develop
an approximation for Ke f f of a binary field. These estimations are done as a function of
the proportion [0,1] of the high permeability phase (p1) as defined by the threshold, u. A
critical component of the DBU approach is Dnorm. We employ a combination of spatial
point process theory and use of FWHM as a characteristic distance of the truncated field
to estimate Dnorm and refer to this approach as TG-DBU. The development here is for
isotropic fields.

At u values near−∞ or +∞, the distances between centroids of inclusions are approximated
as the distribution of nearest neighbor distances, d, from a Poisson point process (e.g., [57])
with an intensity λ = |EC|/S:

F(d) = 1.0− exp(−πλd2) : d ≥ 0. (2.19)
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Figure 2.1: Observed (calculated) and estimated Euler characteristic for a truncated mG
field as a function of u. The corresponding binary fields are shown for select thresholds.
Regions of high conductivity are colored black.

The estimated average distance between inclusion centroids, D∗ is:

D∗ =

√
S
|EC|

1
π

(2.20)

This approximation only holds at the extreme values of u (see [52]) as the distances be-
tween inclusion centroids overestimate the distance between inclusion edges as the average
inclusion size, approximated as E[n], increases. The value of D∗ is adjusted to account
for the inclusions having non-zero area by subtracting twice the average object radius
D∗ = D∗−2

√
E[n]/π.

The DBU calculates distances between objects in the downstream direction only. The near-
est neighbor distance calculation is adjusted to account for this preferential search direction
through incorporation of a half angle, θ, that constrains the search for objects in the +/- 90
degree directions at u = 0.0 and with θ decreasing as u moves to the extreme values:

θ =−2π(p1−0.5)2 +π/2 (2.21)

This expression defines an exponential distribution for the variable θx2 (after [57], page
34).

The geometry and connectivity of the binary patterns in truncated Gaussian fields vary
considerably as u increases from −∞ to +∞ (Figure 2.1). Near the extreme values of u,
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the field is composed of independent high/low conductivity inclusions in a matrix of the
opposite material. As u moves towards 0.0, the inclusions begin to coalesce forming larger
inclusions with shapes that are roughly approximated by overlapping circles. At u values
even closer to 0.0, the inclusions begin to span the domain and at u = 0.0, there is no
distinction between what is background and what is inclusion.

Conceptually, for the case of isotropic Gaussian fields the calculated value of D will never
go to zero. As u moves towards 0.0 from either extreme, the D calculation changes from
that of distances between isolated independent inclusions to distances between a few iso-
lated inclusions and a main inclusion composed of several inclusions that were isolated at
lower u values and finally to distances from one portion of a domain spanning inclusion
across holes to another portion of that same inclusion.

At u = 0.0 (p1 = 0.50) the average flow distance within the low permeability background
should be equal to the FWHM distance. This assertion is due to the FWHM being the
expected size of both the inclusions and the background matrix at this threshold.

This conceptualization provides the final piece of the effective conductivity approximation.
For a given value of u, or the corresponding value of p1, D is estimated as the maximum of
the average distance between inclusion edges and the FWHM:

D∗ = max

[√
S
|EC|

1
π
−2
√

E(n)/π,FWHM

]
(2.22)

and used with Equation 2.1 to calculate KB. This formulation is referred to as the basic
model in the remainder of this paper. Figure 2.2 compares the results of the basic model
against effective conductances calculated numerically using MODFLOW-2005, [58]. Har-
monic averaging is used to calculate internodal conductances within MODFLOW. An en-
semble of 30 mG fields are created on a 500× 500 grid (with cells of unit size) with a
convolution kernel of FWHM of 37.7 length-units (σ = 16.0). These mG fields are trans-
formed to binary fields through truncation at thresholds uniformly spaced from p1 = 0.04
to 0.96. Additionally, thresholds of u = -2.5 and 2.5 are used to create the minimum and
maximum p1 values for each field: 0.0062 and 0.9938. This process results in truncation
of each field at 26 unique thresholds. For each of the 26 u threshold values, the average
numerical result across 30 fields (780 evaluations) is shown. We define the ratio: K1/K2
using the log10 conductivity values: κ = log10(K1)− log10(K2) and show results for κ = 2
and 4 in Figure 2.

The basic model utilizes an exceedingly simple parameterization of the mean distance be-
tween inclusions and produces relatively accurate estimates of the effective conductance.
The basic model estimates are less than a factor of 2 (100 percent error) away from the
numerical results for the case of κ = 2 for all values of p1 with the most accurate results for
p1 < 0.50. The basic model tends to overestimate the numerical results at p1 > 0.50. For
the case of κ= 4, the basic model strongly overestimates the numerical results at p1 > 0.50.

Several extensions to the basic model distance calculations are incorporated for the final
TG-DBU model. At low values of p1, the basic model underestimates the numerical results
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Figure 2.2: Comparison of effective conductivity values estimated with the basic model
and the TG-DBU approaches to numerical results. The percent error of the effective con-
ductivity solutions relative to the numerical results are shown in the right hand images.
Results for two and four orders of magnitude difference in the modal conductivities are
shown in the top and bottom rows, respectively. Results are for Gaussian fields created
with an FWHM of 37.7 (σ = 16.0) length-units. The gray dots and dashed lines indicate
the limiting values of arithmetic and harmonic averages and the Hashin-Shtrikman bounds.
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and smaller distance values are needed to minimize this error. Additionally, the degree of
underestimation increases with increasing κ (Figure 2.2). At levels of p1 above 0.50, the
basic model overestimates the numerical results and, due to application of the phase change
theorem at these higher proportions, the distances must also be decreased in this region.
The correction here must also be a function of κ.

The extended distance calculation is:

D∗ =


max

[√
S
|EC|

1
π
−2
√

E(n)/π, FWHM
(κ−1.0)

]
for p1 < 0.50

max
[√

S
|EC|

1
π
−2
√

E(n)/π,FWHM× (1.0− p1)
κ−1
]

otherwise.

(2.23)

The extended distance calculations significantly improve the ability of the TG-DBU model
to estimate the effective conductivity (Figure 2.2). For the case of κ= 2 the maximum error
is reduced to less than 40 percent and for the κ = 4 case, the maximum error is less than
100 percent with the largest improvement occurring at p1 > 0.50.

2.3 Comparison to Analytical and Numerical Results

The TG-DBU estimated effective conductivity values are compared to existing models for
values of p1 in [0,1.0] and for κ values of 2 and 4. Visual comparisons and calculations
of the percent relative error between the estimated values and numerical results are exam-
ined for two inclusion sizes. Comparisons are made to a self-consistent effective medium
approximation [34, 59] that also employs the phase interchange theorem. Additionally,
a series of binary fields are created from truncation of mG fields and used as input to the
DBU approach of [36] as well as numerical calculation of effective conductivity.

The self consistent approximation to solution for an effective medium [34], [59] uses the
phase-interchange theorem to provide effective conductivity estimates across all propor-
tions of high/low conductivity material. Equation 14 of [34] provides an analytic solution
for the effective conductivity in a 2D domain with circular (isotropic) inclusions.

Ke f f = (K1−K2)(p1−1/2)+1/2
√

(1−2p1)2(K1−K2)2 +4K1K2 (2.24)

The DBU approach of [36] as outlined in Section 2 is applied to each binary field. The
same fields are also used as input to numerical calculations done with MODFLOW-2005
([58]). For each inclusion size, DBU and numerical results are calculated on 30 fields at
each of 26 thresholds.

For any geometrical combination of two materials with separate conductances, the arith-
metic and harmonic averages provide the upper and lower bounds on the resulting effec-
tive conductivity. These averages are used frequently for problems involving flow through
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porous media and are also known as the Wiener bounds within statistical physics. Tighter
bounds on the effective conductivity can be defined when information on the geometry
of the inclusions is available. For a binary material composed of circular inclusions of one
material within another, the Hashin-Shtrikman bounds [17] provide tighter limits on the ef-
fective conducitivity estimates (see also [19]) and [36]. Both sets of bounds are calculated
as reference for the different effective conductivity calculations.

Results comparing the model developed here to results of effective media theory (EMT)
through the self-consistent approach [34, 59], the DBU approach [36] and numerical re-
sults are shown in Figure 2.3. These results were created from fields with a FWHM of
37.7 length-units. The TG-DBU and the EMT results are calculated independently of the
actual binary field and require the phase proportions, the two modal conductances and the
inclusion shape as inputs. The TG-DBU also utilizes the FWHM as an input. The DBU
and numerical results are dependent on the actual binary fields, and for these results, each
value in Figure 2.3 represents the average conductance calculated over 30 realizations. The
deviations of the DBU estimates from the numerical estimates at proportions just above
0.50 appear to be an artifact of the distance calculations done here on the truncated mG
fields and are not a function of the DBU technique [36].

The right-hand side of Figure 2.3 shows the percent error of the three estimators relative to
the numerical results. The axes are limited to +/- 100 percent, or a factor of +/- 2, for cal-
culations where the modal conductivities vary by factors of 100 (top) and 10,000 (bottom).
Relative to the self-consistent approach, the two distance-based upscaling techniques better
capture the effective conductivity at proportions of the high conductance phase p1 > 0.50.

For all three approaches, errors are highest at or near p1 = 0.50. This proportion corre-
sponds to the percolation threshold for both a square lattice and square tiles in 2D [18] and
represents the change point where the high conductivity phase becomes fully connected
across the domain. Percolation theory and the percolation threshold have been developed
for systems with no spatial correlation and are applied here where the ratio of FWHM to
domain size is small (i.e., < 0.10). For these calculations, the size of the FWHM relative
to the domain size is 0.075.

The approaches examined in this study define an effective conductivity for the domain.
Effective properties are meaningful in cases where the domain size is much larger than the
correlation length of the random field contained within the domain. This condition is also
the definition of an ergodic field and a rule of thumb is that an effective property can be
assigned to a domain when the correlation length is ≤ 0.10 of the domain size. In cases
where the domain is discretized into smaller cells, or blocks, and the correlation length
exceeds this limit relative to the cell size, a block property is assigned. Additional details
on effective versus block properties are provided in [19].

As the FWHM increases, development of phase connection across the domain will occur at
lower proportions of that phase. Figure 2.4 shows the results of calculations for a FWHM
of 73.4 length-units (σ = 32.0), or 0.15 of the domain size.
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Figure 2.3: Comparison of TG-DBU results, to the EMT solution, the DBU solution and
numerical results. The harmonic and arithmetic average bounds (gray dots) and the nar-
rower Hashin-Shtrikman bounds (dashed gray lines) are also shown. The percent error of
the effective conductivity solutions relative to the numerical results are shown in the right
hand images. Results for two and four orders of magnitude difference in the modal con-
ductivities are shown in the top and bottom rows, respectively. Results are for Gaussian
fields created with an FWHM of 37.7 (σ = 16.0) length-units.
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Figure 2.4: Comparison of TG-DBU results, to the EMT solution, the DBU solution and
numerical results. The harmonic and arithmetic average bounds (gray dots) and the nar-
rower Hashin-Shtrikman bounds (dashed gray lines) are also shown. The percent error of
the effective conductivity solutions relative to the numerical results are shown in the right
hand images. Results for two and four orders of magnitude difference in the modal con-
ductivities are shown in the top and bottom rows, respectively. Results are for Gaussian
fields created with an FWHM of 73.4 (σ = 32.0) length-units.
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The increase in the relative size of the inclusions decreases the proportion of high-conductivity
material necessary to create a connected phase across the domain and the effective medium
techniques tend to underestimate the numerical conductivity beginning at approximately
p1 = 0.30. This underestimation is particularly apparent in the κ = 4 results. All techniques
examined are able to create reasonable estimates of the block conductivity for p1 > 0.6.
These results are motivation for future work to improve block conductivity estimates by
incorporating percolation threshold behavior into the TG-DBU formulation.

2.4 Results and Discussion

The value of D is a key feature of the DBU and TG-DBU approaches and final effective
conductances are sensitive to these values. Distance calculations are explored further in
Fig. 2.5 and compared to average distances across the background material as calculated
along streamlines.

The basic model and the DBU model derive average distances from purely geometrical
considerations and these values do not change as a function of the ratio of the logarithms of
the permeabilities of the two components of the binary medium, κ (Fig. 2.5). The average
distances along streamlines are also quite stable across the change in κ while the TG-DBU
approach explicitly incorporates the κ value into the average distance calculation. With the
exception of the TG-DBU model, the FWHM serves as an excellent approximation of a
lower limit on the distance values calculated by the different approaches.

The average distances from the streamline values are the largest of all calculated values.
Examination of streamlines in truncated binary fields shows that streamlines crossing the
background material occurs when flow is nearly normal to the direction of the average gra-
dient (Fig. 2.6). This observation is contrary to the development of the DBU and TG-DBU
that limit the search across background material to other inclusions located in the downgra-
dient direction. This observation of high local gradients creating flows in directions nearly
normal to the average gradient is consistent with field observations and numerical model
results for hydraulic gradient monitoring networks [60, 61]. For the isotropic fields exam-
ined here, the FWHM is an excellent approximation of D at p1 near 0.50 both along the
direction of the gradient and orthogonal to it.

The average distances calculated by the DBU method are weighted by the sizes of the in-
clusions on either end of the travel distance. In contrast, the TG-DBU employs a single
average inclusion size, E[n] for a given p1, thus weighting all distances equally. Fig. 2.5
indicates that longer distances are generally connected to larger inclusions of high perme-
ability material and are more highly weighted in the DBU approach relative to the TG-
DBU calculations. The distribution of distances calculated along streamlines are similarly
skewed towards larger values.

The basic model and the DBU approach are developed as a function of p1 and the average
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Figure 2.5: Comparison of average distance estimates for different calculation approaches.
The DBU and Streamline results are average values calculated over 30 realizations. Results
are for Gaussian fields created with κ values of 2 (A) and 4 (B) and an FWHM of 37.7 (σ
= 16.0) length-units.

distances between objects. However, effective conductivity is not solely a function of the
geometric arrangement of the inclusions. The κ value influences the average distance taken
by flowpaths across the lower conductance material and simulations show that changes in
κ have the largest impact on flow paths at p1 values near 0.50. As an example, Fig. 2.6
shows significant changes in the flow path locations for the same binary field at κ values of
2.0 and 4.0.

The average streamline distances (Fig. 2.5) are nearly unchanged from κ = 2 to κ = 4, yet
Fig. 2.6 shows significant changes in the locations of the streamlines on the same field for
the two different κ values. The calculations of average distances for Fig. 2.5 do not include
a calculation at exactly p1 = 0.50 (0.48 and 0.52 are the closest). The simulation results in
Fig. 2.6 are at exactly p1 = 0.50 and show differences in the average streamline distances
with values of 25.4 and 34.9 for the κ values of 2 and 4, respectively.

The impact of the κ value and the initiation of a percolating cluster precludes accurate
application of distance-based upscaling techniques for estimation of block-scale properties.
Fig. 2.7 shows both D calculated along streamlines and the effective conductance calculated
numerically for four different truncated Gaussian fields. The streamline-based D values are
normalized by the FWHM and the numerical Ke f f is normalized by the geometric mean
conductivity. The region around p1 = 0.50 is highlighted with flow and streamline solutions
at p1 increments of 0.008.

For each simulation with κ = 4, there is a significant increase in the effective conductance
at the percolation threshold. This increase is not evident in the κ = 2 results. The average
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Figure 2.6: Comparison of flowpath locations for the same binary field with κ values of 2
(A) and 4 (B). Results are for Gaussian fields created with an FWHM of 37.7 (σ = 16.0)
length-units and a threshold of u = 0.00 (p1 = 0.50). In both images, flow is from left to
right.

streamline distances between high permeability inclusions are not a strong function of p1
and show gently decreasing values from p1 = 0.40 to 0.60. These values are well approx-
imated at p1 values near 0.50 by the FWHM (ratio of 1.0) for both κ values. The vertical
lines in Fig. 2.7 indicate the location of the percolation threshold and vary from p1 <=
0.43 to near 0.57 in these four example fields.
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Figure 2.7: Effective conductances and average streamline lengths for p1 values near 0.50.
Results for four different fields are shown. The vertical black line denotes the percolation
threshold. Effective conductances are normalized by the geometric mean conductance.
Average streamline lengths are normalized by the FWHM.
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2.5 Conclusions

This paper presents truncated mG fields as a flexible means of creating simulated binary
media and then extends distance-based upscaling to directly utilize properties of the trun-
cated mG fields for calculation of effective conductivity values. Excursion set theory pro-
vides techniques for estimation of the number of inclusions, and average inclusion size
from knowledge of the threshold and the kernel size (FWHM). These results are coupled
with point process theory and distance-based upscaling (DBU) to develop a robust estima-
tor of the effective conductivity of binary media. This new approach is called Truncated
Gaussian-Distance Based Upscaling (TG-DBU). TG-DBU is based on expectation relation-
ships and does not require instantiation of the binary field for estimation of the effective
conductance.

TG-DBU is unique among upscaling approaches considered in that the kernel/inclusion
size parametrized as the FWHM is a direct input to the upscaling function. We introduce
the FWHM as a characteristic length for this upscaling and demonstrate its applicability
for estimation of distances between inclusions across a broad range of p1. Extensions to
the geometrically-derived basic model that account for deviations in the estimated effective
conductivities near the percolation threshold and account for the impact of κ on flow path
distances between inclusions result in the TG-DBU model. Comparison of TG-DBU with
numerical, DBU and EMT approaches demonstrates the accuracy of TG-DBU and shows
results that are at least as accurate as the other techniques for all values of p1 for the fields
examined.

Understanding the role of the average distance between inclusions and the sensitivity of
this measure to other parameters is critical for further development of any distance-based
upscaling techniques including TG-DBU. The impact of p1, κ and the percolation thresh-
old on numerical calculations of effective conductivity and distances between inclusions
along streamlines were examined. Results show that local gradients normal to the direction
of the average gradient cause streamlines to traverse the background material in a direction
orthogonal to the average flow direction. For isotropic media examined here, the FWHM
value provides a robust approximation of the average streamline distance in the background
material at p1 values near 0.50 and these results are not significantly impacted by percola-
tion behavior or the value of κ. These results indicate that for anisotropic media where a
maximum and minimum FWHM are used to define the Gaussian kernel, the FWHM nor-
mal to the flow direction will provide the best estimate of the average distance between
inclusions. Effective conductances calculated across the percolation threshold indicate that
the effective conductivity is a strong function of the κ value when κ = 4, but at κ = 2
crossing the percolation threshold has little effect on the resulting effective conductance.
For the κ = 2 results, the geometric mean permeability serves as a reasonable estimate of
Ke f f on both sides of the percolation threshold. For the 30 fields examined, the percolation
threshold is reached at p1 values ranging from less than 0.40 to greater than 0.60 indicating
that estimation of effective conductance values is possible, but that detailed knowledge of
the field geometry and percolation threshold are necessary for estimation of block-scale
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properties.
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Chapter 3

Probabilistic Estimation of Binary Fields
Using a Subgrid Model

A binary medium is one that can be adequately described in terms of inclusions of one ma-
terial phase embedded in another. The two materials can have vastly different properties,
and the effective behavior of the binary medium arises as a nonlinear interaction of the two
constituents. Further, the proportions of the two materials need not be distributed evenly,
and for situations with uneven proportions, inclusions of the less common material will
exist within a continuous matrix of the other material. Binary media exhibit complex be-
haviors and rich dynamics. Examples of binary media are fractured rock (with the fractures
acting as high permeability inclusions), sandstone with embedded shale, and engineered
composite materials. In many cases, the domain size of the binary medium (henceforth, the
coarse-scale) may be a few orders of magnitude larger than the size of the inclusions and
it is impractical to measure the inclusions individually. However, the length-scale contrast
between the inclusion and domain size is not large enough that the inclusions can simply
be homogenized i.e., a mean value for the effect of the inclusion cannot be used, but a more
detailed characterization of the fine-scale is required. We call such behavior “multiscale”.

This multiscale behavior raises the possibility that it may be possible to infer the charac-
teristics of the latent fine-scale from a judicious set of measurements which inform on both
the coarse and fine scales. In order to do so, a link function L , that locally captures the
effect of fine-scale processes and structure at the coarse-scale is required. If this function
is parametrized by structural/dynamical properties of the fine-scale, it is possible to con-
struct statistical summaries for the fine-scale. Realizations of the fine-scale that are equally
consistent with observations at both scales can then be created.

We demonstrate inversion with a binary medium where the permeabilities of the two ma-
terials, Kl and Kh, are known. The difference in permeabilities is parametrized as κ =
log10(Kh/Kl). We assume that we have noisy measurements of the coarse-scale effective
log-permeability of the medium, k(obs), at a few locations; they provide localized insights
into the coarse-scale structure and are referred to as static data. We also assume that we
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have noisy measurements of breakthrough times, t(obs)
b , of a tracer at the same locations,

from a tracer test1; they capture the integrated effect of fine-scale variations and are referred
to as dynamic data. The proportion of the high permeability phase F(x) is assumed to vary
in space in an unknown but smooth manner with a known covariance structure. F(x) is
resolved on a relatively coarse grid and describes the spatial variation at the domain-scale.
We use the grid to impose a separation of scales, and internal to a grid-box, the inclusions
are modeled using a correlated Gaussian field truncated at a threshold consistent with F(x).
The characteristic length of the Gaussian field, δ, is defined below (and is termed a sub-
grid or fine-scale variable). We adopt the convention of referring to variations on the grid
as being “large” or “small”; we reserve “fine” or “subgrid” for variations that are smaller
than a grid-box. Together, F(x) and δ constitute a characterization of the fine-scale binary
medium and their estimation from data d = {k(obs), t(obs)

b } constitutes a statistical summary
of the fine-scale. A model for generating fine scale structures given F(x) and δ, provides
realizations of the latent, unresolved fine-scale consistent with the observations.

The estimation of F(x) is posed as a Bayesian inverse problem, predicated on a forward
problem M (K) that predicts the breakthrough times tb at the observation locations. Ke(x),
the effective log-permeability field, is obtained from F(x) and δ via a link function i.e.
Ke(x) = L(F(x),δ,κ). Retention of δ in the inverse problem will allow us to evaluate
the information content in the observations regarding δ, though we do not expect it to
be large. To reduce the dimensionality of the inversion, we develop a reduced-order model
(ROM) of F(x), based on a Karhunen-Loève (KL) decomposition of a 2D field. This allows
us to generate F(x), and consequently Ke(x) = L(F(x),δ,κ), in a parametric manner by
varying δ and w = {wi}, i = 1 . . .M, where M is the number of Karhunen-Loève modes
retained in the ROM and wi are their weights. Associated predictions of tb are obtained
using M (K). The inverse problem is solved by sampling over the (w,δ) space using an
adaptive Markov Chain Monte Carlo (MCMC) technique and constructing a joint posterior
probability density distribution P(w,δ|d) from the samples. The use of MCMC allows us to
construct posterior distributions of arbitrary topologies, unlike other inversion techniques
e.g., Kalman smoothers and filters, which constrain P(w,δ|d) to be Gaussian. P(w,δ|d)
is thereafter used in posterior predictive checks, to construct fine-scale realizations of the
binary medium, gather statistics on Ke(x) and tb at the observation locations and gauge the
quality of the fit of the model to data.

This paper brings a number of innovations to the problem of estimating an upscaled field
variable e.g., permeability fields.

1. Incorporation of the effect of unresolved scales: Existing methods for estimating
multiscale fields (e.g., zonation; see review in Sec. 3.1.1) involve grid-refinement
under various guises – no attempt is made to incorporate structures unresolved by
the grid (i.e., subgrid). In contrast, we use a statistical model to capture the effect

1We define a tracer test as follows: Water is transported through a porous medium by pumping under a
steady pressure gradient. Once a velocity field has been established in the porous medium, a non-reactive
tracer is injected; the advective travel time to arrive at various measurement points is called the breakthrough
time. The exact configuration for the test is described in Sec. 3.3
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of subgrid structures in our estimation procedure. The use of a model that has a
physical, but subgrid, lengthscale as one of its parameters makes the formulation
fundamentally multiscale.

2. The use of approximate expansions to reduce dimensionality in upscaling problems:
While Gaussian process models have been used to regularize field variables (as re-
viewed in Sec. 3.1.1), few have used Karhunen-Loève expansions to reduce the di-
mensionality of a multiscale inverse problem. Further we use a Gaussian processes
to model a latent variable from which the object of inference, F(x), and the observed
field, Ke(x), are obtained via mappings. Thus, while the latent field variable is con-
strained to be smooth (so that it can be modeled as a Gaussian), this constraint is not
necessarily extended to F(x) or Ke(x). In our case, Ke(x) contains sharp gradients.
This is in contrast to existing studies where the object of inference (which is also the
observed field) is modeled as a Gaussian and thus required to be a smooth function.

3. The use of adaptive, general-purpose MCMC schemes: Our use of a Karhunen-Loève
expansion reduces the problem of estimating a field F(x) to that of inferring the val-
ues of a few parameters which are independent a priori. This allows us to use adap-
tive, general-purpose (and efficient!) MCMC schemes (and software packages) in a
straightforward manner. In contrast, existing MCMC-based field-estimation meth-
ods (reviewed in Sec. 3.1.1) use specialized blocking schemes and need to retain
spatial correlations in their MCMC block proposals. It is unclear how one would use
general-purpose, adaptive MCMC software packages in such contexts.

The chapter is structured as follows. In Sec. 3.1 we review literature on the key elements
of the research presented here. In Sec. 3.2 we describe the forward model M (K), the link
function L , and models used for reducing the dimensionality of the inverse problem. In
Sec. 3.3, we pose the inverse problem and test the inversion technique on a problem with
various types of data. In Sec. 3.5, we instantiate realizations of the binary fine-scale from
the inferences and test their predictive skill using transport simulations i.e., breakthrough
times. We draw our conclusions in Sec. 3.7.

3.1 Literature Review

The estimation of field variables (permeabilities, hydraulic conductivities, etc), from lim-
ited data, per se, have long been topics of active research in hydrology; see [62, 63] for
recent reviews. In this section we restrict ourselves to reviewing existing literature on
the multiscale (or multilevel) inference of log-permeability modeled as random fields and
adaptive MCMC samplers.
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3.1.1 Estimation of Random Fields

The use of random fields to regularize a spatial variable has been explored within the con-
text of inferring log-permeability fields. Lee et al. [64] considered the estimation of spa-
tially dependent permeability by modeling it as a random field. They estimated the per-
meability in each grid-block of the discretized field from dynamic data obtained from an
“inverted 9 spot test”. Two separate prior models were adopted for the random field to
regularize the problem – a Markov random field (MRF) model with an unknown precision
parameter (i.e., the precision parameter was also inferred when estimating the permeability)
and a model based on Gaussian processes (GP) with a known variogram and mean perme-
ability in the rectangular domain. Neither of the two models reduced the dimensionality
of the problem i.e., the number of parameters being estimated was equal to the size of the
Cartesian mesh, which ranged between 322 and 642. This work required specialized updat-
ing schemes to improve mixing in the Metropolis-Hastings sampler used to construct the
posterior distribution of the permeability field. About 50,000 samples were required. MRF
priors were also used by Wang et al. [65] when estimating the initial (spatial) distribution
of a contaminant within a porous medium. The contaminant was transported by groundwa-
ter flows and time-variant concentration measurements were available at a few locations.
They employed a hierarchical Bayesian formulation to estimate the concentration distribu-
tion as well as the precision of the MRF model and the variance of the measurement error.
As in [64], no attempt was made to reduce the dimensionality of the inference problem. Fu
and Gómez-Hernández [9, 66] present a more recent example of the use of MCMC with
blocked-updating when inferring log-permeability fields. Unlike Lee et al. [64] where
a red-black decomposition of grid-blocks was used to update the log-permeability field
(modeled as a MRF) in the MCMC, they used a multiGaussian representation for the ob-
ject of inference and devised a specialized technique for constructing the proposal within
the MCMC. In particular, they divided the grid-blocks in the Cartesian mesh into concen-
tric “strips”, which were updated together as a block; the proposals for the blocks were
obtained by kriging.

The need for explicit regularization can be eliminated if one can represent the field to be
estimated using a low-dimensional model. If the object of inference can be modeled as a
multivariate Gaussian field, a truncated Karhunen-Loève expansion can be used. In [67], Li
et al. consider estimation of the log-conductivity distribution of a reservoir from measure-
ments of the steady-state hydraulic heads by preserving 400 terms in the Karhunen-Loève
expansion. Application of Karhunen-Loève expansion to provide a reduced-order model
for a random field was also used by Marzouk et al. in [68] to estimate a log-diffusivity
field within the context of a 1D thermal transport problem, with time-dependent tempera-
ture measurements at a few sensor points. They found that the Karhunen-Loève expansion
based on the prior covariance of the log-diffusivity field was remarkably accurate for rep-
resenting its posterior distribution, conditioned on the observations. In [69], Jafarpur and
Mclaughlin compare the use of a Karhunen-Loève transform versus the discrete cosine
transform (DCT) and find the latter to be more advantageous. In [70] they couple the re-
duced order DCT model to an ensemble Kalman filter to infer permeability fields as well as
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reservoir states via history matching. In [71], they use the discrete cosine bases as a sparse
representation for the log-permeability field and infer their value as well as the sparsity
pattern via history matching.

Multiscale/multilevel inversion techniques explicitly recognize the existence of more than
one scale and employ different types of data across scales. These techniques generally
involve solving the inverse problem at different levels of discretizations , (i.e., on a multi-
level mesh), with conditioning relations (i.e., upscaling and downscaling functions) to link
scales together [72, 73]. Multiscale solutions primarily differ in the complexity of the con-
ditioning relations and whether the multiscale inference requires iteration between scales.
Other techniques run separate MCMC chains using coarse and fine-scale models, with pe-
riodic swaps of parameters between them [74, 9], or use a fast coarse-scale (or approximate
model) as a preconditioner/filter for proposals (inside an MCMC chain), prior to comput-
ing the posterior with a finely-resolved forward model [7, 8, 9]. Note that these methods
require explicit definition of coarse, fine and if necessary, intermediate scales. On the other
hand, “zonation” methods [3, 4, 5, 6] adopt a continuous-level-of-detail approach to in-
ference and in the process combine elements of dimensionality reduction and multiscale
inference.

We borrow the approach adopted in [7, 8, 68] and use Karhunen-Loève expansions to re-
duce the dimensionality of the inverse problem. We apply them here to the spatially varying
F(x) which is then input to the link function providing an effective permeability informed
from both scales. Instead of using a multilevel inversion technique, we assume that a suf-
ficient contrast exists between the resolution at which we perform the inference and the
size of individual fine-scale/subgrid structures that a complete description of the fine-scale
is not very useful. However, we adopt the practice, common in multiscale inversion, of
enforcing scale separation using a grid.

3.1.2 Adaptive Markov Chain Monte Carlo Techniques

In recent years, MCMC techniques have been increasingly used to fit models to observa-
tions [75], since they allow estimation of parameters while simultaneously quantifying the
uncertainty in the estimate. Further, they place no restrictions on the probability distribu-
tions of the estimated parameters. Metropolis-Hastings (MH) samplers [75] are commonly
used since they place no restrictions on the kind of models, the type of likelihood expres-
sions or the priors used in posing the inverse problem. Blockwise updates, when a number
of (or all) parameters are updated at once are typically used when estimating field quanti-
ties [9, 64, 75, 76, 77, 78].

Adaptive Metropolis [76, 79] (AM) is a variation of the MH sampler which uses a global
adaptive strategy to perform online tuning of the current proposal to increase mixing and
acceptance rates. AM starts with a pre-specified proposal density but periodically recalcu-
lates an empirical posterior covariance based on the samples collected up to that point. The
covariance asymptotically resembles that of the posterior. The technique is neither Marko-
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vian nor reversible and in [76] the authors identify the conditions under which AM will
recover the desired stationary distribution. Delayed rejection [80, 81, 82] is a local MH
variation that combines different proposals. An MH sampler is started with a rather large
proposal covariance. When a proposal is rejected, the initial covariance is scaled down by
a uniform factor, and tried again rather than simply advancing in the sample path (hence
delayed rejection, DR). DR has been shown to outperform MH [79]. Delayed Rejection
Adaptive Metropolis (DRAM), the MCMC technique used here, is an amalgamation of the
AM and DR [77]. DRAM is non-Markovian and provably ergodic, i.e., it yields asymptot-
ically unbiased estimators [77].

3.2 Models Used in the Inverse Problem

In this section we describe the models used in our inverse problem. We first review the link
function L that summarizes the impact of subgrid structures, followed by Karhunen-Loève
expansions of random fields which are used to reduce the dimensionality of the inverse
problem. Finally, we describe M (K), a porous media transport model which serves as the
forward problem in the inversion.

3.2.1 The Link Function L

The key to our multiscale inference procedure is a recently developed link function (L(F(x),δ,κ)),
a statistical model that estimates the effect of unresolved inclusions on the log-permeability
of a grid-block. Full details of this truncated Gaussian- distance-based upscaling (TG-
DBU) model can be found in [83]. Note that (F(x),δ) is an incomplete specification of
the fine-scale structures that may reside within a grid-block and consequently an infinite
number of realizations (i.e., an ensemble) of the fine-scale may be conditioned to it. The
statistical model constructs a representative value for this distribution, which can then serve
as a deterministic approximation for the ensemble.

Consider a binary medium with component permeabilities Kl and Kh. Consider, too, a rect-
angular inclusion embedded in a “box” of the binary medium containing both the inclusion
and the matrix. Knudby et al. [36] provide a model for the effective permeability of the
“box”, as a function of the inclusion and box parameters, Kl , Kh and Dnorm, an average
normalized distance traveled by the flow in the matrix between inclusions. In the context
of a random medium, a mean Dnorm is more meaningful and can be calculated easily from
a fully-resolved realization of the medium. Instead, we construct a model for Dnorm that
does not require a random binary field to be instantiated.

We consider a spatially correlated multiGaussian (mG) field with a correlation length of
δ created by initializing an uncorrelated mG field, with values sampled i.i.d. (indepen-
dent and identically distributed) from a standard normal, and convolving it with a Gaussian
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kernel. The kernel is aligned with the discretization of the field, i.e. a diagonal covari-
ance matrix σ2I where I is the identity matrix. This symmetric Gaussian kernel is fully
characterized by its full-width-at-half-maximum (FWHM), δ = σ

√
8ln2. The FWHM also

characterizes the spatial correlation of the mG field and is a representative length-scale
for the inclusions. If the correlated mG field is truncated at a threshold w,−∞ ≤ w ≤ ∞,
we define a w− level excursion set as Xw = {x ∈ Rd : Y (x) ≥ w}. The expression for the
corresponding variogram can be found in [83].

Following [52], analytical expressions for the expected values of the following quantities -
N, the number of cells above the truncation threshold w, the number m of distinct regions
(inclusions) above the threshold and the number n of pixels in each region are given by:

E[N]

S
=

1
2π

∫
∞

w
exp(−z2)dz

E[m] = |EC|= exp(w2/2)
(2π)3/2

(
δ√

4ln(2)

)−2

|w|S

E[n] =
E[N]

|EC|
(3.1)

E[x] denotes the expectation of x. Here, EC, the Euler Characteristic in 2D, represents the
number of connected objects in the domain minus the number of holes in those objects.
The EC tends to 0 as w tends to 0, which in turn denotes F(x) = 0.5. For w < 0, EC < 0. S
is the area of the domain. The relationships in Eq. 3.1 are applied at the scale of each grid
block (i.e., S = area of coarse-scale grid block).

The distance between the inclusion centroids is modeled as a Poisson distribution, with a
mean given by

√
(S/(π|EC|)). The mean flow travel distance through the matrix between

inclusions D∗ is obtained by subtracting off a mean inclusion size from the inter-centroidal
distance i.e., D∗ ≈

√
(S/(π|EC|))− 2

√
E[n]/π. This approximation for the edge to edge

distances between adjacent inclusions holds when there are few inclusions of either ma-
terial (i.e., low/high values of w), but breaks down when as w approaches 0.5. At these
intermediate w values, D∗ is estimated as the FWHM in a “basic” model. A more complex
model that includes the impact of κ on D∗ is utilized here:

D∗ ≈ D∗ =


max

(√
S

π|EC| −2
√

E[n]
π
, δ

κ−1

)
if F≤ 0.5

max
(√

S
π|EC| −2

√
E[n]

π
,δ(1−F)κ−1

)
otherwise

(3.2)

where κ = log10(Kh/Kl). The normalized version Dnorm is given by

Dnorm =
D∗√

S/(π|EC|)
. (3.3)
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Additional details on this model can be found in [83]. This expression allows us to model
the effect of subgrid (unresolved) fine-scale structures on the permeability, as a function of
F(x), δ and κ . Given F = E[N]/S, we evaluate w, |EC| and E[n] using Eq. 3.1. Thereafter,
with knowledge of δ and κ, we estimate D∗ from Eq. 3.2.
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Figure 3.1: Plot of Ke(x) calculated using the link function L , (labeled: TG-DBU) com-
pared to Ke(x) calculated numerically from 30 random binary fields as a function of F(x).
These results were calculated for a square domain with length, ∆ = 500 units and δ is 37.7
(δ/∆ = 0.075).

Note that this subgrid model provides a log-permeability Ke(x) = L(F,δ,κ) as a point ap-
proximation of the distribution of log-permeabilities consistent with F, δ and κ. In Fig. 3.1,
we plot the effective log-permeabilities for Kl = 1,Kh = 100 and δ of 37.7 grid-cells (in a
domain of 500×500 grid-cells) as predicted by our model, L . We also plot the numerically
evaluated log-permeabilities corresponding to 30 binary field realizations having the same
{F(x),δ} with points, forming a cloud around Ke(x) = L(F(x),δ,κ). Note that the model
predicts Ke(x) for all F(x). The break in the log-permeability predictions L(F(x),δ,κ) at
F ≈ 0.5 is due to application of the phase interchange theorem [12] as part of L that pro-
vides consistent upscaling of inclusions of either material within the other. Additionally,
this break also accounts for non-linear percolation effects i.e., the high permeability phase
exists in a connected region large enough to span the domain, see [83].

The scaling function, L , used here is unique among binary media scaling functions in
that it incorporates F(x), δ and κ into estimates Ke(x). However, the impact of δ on the
resulting Ke(x) values is limited to areas of F(x) near 0.50 under the expected conditions of
δ/∆� 1, where ∆ is the size of the region where the impact of inclusions will be modeled
using L . Practically, ∆ denotes the grid-box size of the mesh that we will use in this work to
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discretize a domain, and thus L acts as a subgrid model for the structures that the grid will
not resolve. The impact of δ increases for when δ/∆→ 1, but that violates the assumption
that inclusions are too small to be resolved by the mesh – in practice, we take it to mean
δ/∆≈ 0.1. The practical ramification of this varying impact is that δ is difficult to estimate.
If F(x) in a domain shows large variation, it may be close to 0.5 only at a few spots, where
the impact of δ may be felt. Thus the observations may not be very informative regarding
δ.

In the rest of the paper, we will use Ke(x) as a deterministic approximation for the log-
permeabilities and model the discrepancy between observations of log-permeability and
model predictions as simple i.i.d. Gaussians (homoscedastic errors). While the choice of
the error model (Gaussian versus a more involved one) does not detract from the gen-
eral characteristics of an inference procedure, it does impact the accuracy of the esti-
mates/inferences.

3.2.2 Karhunen-Loève Expansions of Random Fields

In order to reduce the dimensionality of our inverse problem, we will model fields with
a truncated Karhunen-Loève series. Let R(x,ω) be a real-valued random field with zero
mean, finite second moments and covariance function that is continuous in D ×D . ω ∈
Ω, where Ω is a sample space and R(x,ω) can be considered to be a collection of real-
valued random variables, indexed by x ∈D , D being a bounded spatial domain. Then, the
Karhunen-Loève expansion of R(x,ω) can be written as R(x,ω) = ∑

∞
i=1 wi(ω)

√
λiφi(x).

This equality holds in the pointwise and mean-square sense; convergence is in L2(Ω) for
all x ∈D . Further, if R(·) is Gaussian and almost surely continuous, then the convergence
is uniform in D with probability 1 [84]. λi and φi(x) are the eigenvalues and eigenfunctions
of the covariance kernel C(x,y)∫

D
C(x1,x2)φi(x2)dx2 = λiφi(x1). (3.4)

Since R(·) is assumed Gaussian, the covariance kernel C(x,y) is symmetric and positive
semi-definite and so, by [85], C(x1,x2) = ∑

∞
i=1 λiφi(x1)φi(x2) where φi(x) are continuous

functions and form an orthonormal system in L2(D). Also, wi ∼ N(0,1) and independent
of each other.

A multiGaussian field R(x,ω) can be approximated using a Karhunen-Loève expansion as
RM(·) and its covariance function can be represented as

RM(x,ω) =
M

∑
i=1

wi(ω)
√

λiφi(x), CM(x1,x2) =
M

∑
i=1

λiφi(x1)φi(x2)

The total variance or “energy” of RM(·) is given by∫
D

E(RM(x,ω)2)dx =
∫

D
CM(x,x)dx =

M

∑
i=1

λ
2
i (3.5)
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3.2.3 The Transport Model M (K)

M (K) is a 2D Darcy-flow model for the transport of an inert tracer through a saturated
porous medium by an incompressible, single-phase fluid. Given a coarse-scale log-permeability
field K, appropriate initial and boundary conditions (including a steady-state pressure gra-
dient, a fluid source and a sink inside D), the model calculates a steady state velocity field
and advects a tracer (treated as a passive scalar) through it to obtain breakthrough times tb
at a set of Ns “sensor” locations inside D .

As shown in Fig. 3.2(a), we consider a 2D domain D with no-flow boundary conditions
imposed on ∂D . We consider a log-permeability field K defined on D . An incompressible
fluid, with viscosity µ is pumped in at the lower left corner and pumped out at an equal
rate at the upper right. In this problem, we will ignore the effect of gravity. Therefore, via
Darcy’s model for porous media flows, the velocity v is given by

v =
K
µ

∇p, ∇ ·v = ∇ · K
µ

∇p =
q
ρ

(3.6)

where p is the pressure field defined on D , q is the strength of the source/sink and ρ is the
density of the fluid. The equation is solved using the second-order finite-volume scheme
described in [86], on a uniform mesh. Two-point flux approximations are used, and the
permeability at the interface of adjacent grid-blocks are estimated by a harmonic average.
A solution of these equations, for a injection-production well pair in a binary medium,
is shown in Fig. 3.2(b). The light areas denote high-permeability material and the dark
regions are low-permeability. A few streamlines, flowing from bottom left to top right, are
plotted in Fig. 3.2(b). The local permeability is considered isotropic, and the permeability
K is modeled as a 2D field rather than a full tensor. The proportion of high-permeability
material F(x) and the true effective (upscaled) log-permeability are shown in Fig. 3.2 (c)
and (d). Note that the Ke(x) field shows a rougher distribution and significantly more
structure than F(x).

Solving Eq. 3.6 for p yields the velocity v at the centers of the grid-block edges i.e., the
velocities are obtained on a staggered mesh. This is used to advect the passive scalar, using
the model in Eq. 3.7,

∂c
∂t

+v ·∇c = qc (3.7)

where c(x) is the concentration field of a tracer and qc, non-zero only at the lower left
and upper right corners of D , is the source and sink for the tracer. The concentration of
the tracer at the source, csource, is set to 1 and qc,source is set equal to the flux of the fluid.
The tracer flux at the sink, qc,sink, is obtained by multiplying the fluid outflow with the local
tracer concentration, csink(t), which increases in time until it reaches the source value of 1.0.
Eq. 3.7 was solved on the same Cartesian mesh as Eq. 3.6, using an upwind second-order,
finite-volume scheme [87]. Tracer concentrations were monitored at two sets of sensor
locations (set A with 20 sensors and B with 34) as shown in Fig. 3.2(e) and (f); the time
tb at which c = 0.5 was achieved at any given sensor and was denoted as its breakthrough
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time. Note that Eq. 3.7 does not model pore-scale dispersion or molecular diffusion of the
tracer.
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Figure 3.2: (a) The 2D rectangular domain D with associated dimensions. No-flow bound-
ary conditions are defined on ∂D . A grid-block showing the collocation for pressure p and
the velocities (u,v) in the x- and y-directions is shown. (b) We show a schematic of a binary
medium higher permeability (white) and lower permeability (gray). Individual inclusions
of either material in the other are visible. (c) The true Ft

c(x) field for the proportion of
inclusions. (d) The true upscaled log-permeability field Kt

c. (e) The 30× 20 coarse-scale
computational mesh with the locations of 20 sensors (sensor-set A, SSA). (f) We show the
locations of the 34 sensors in sensor-set B (SSB).
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3.3 Multiscale Inference

In this section, we pose and solve an inverse problem using the models described in Sec. 3.2.
Specifically, we explore the ability of the observations to constrain the inference of struc-
tures at two spatial scales, the relative contributions of the static and dynamic data and
the effect of increasing the number of observations. We also demonstrate sampling of the
posterior distribution to generate fine-scale realizations which are consistent with the ob-
servations.

3.3.1 Posing the Inverse Problem

Consider that the domain D is 2D, rectangular, of size Lx×Ly, and discretized by a Carte-
sian mesh of resolution Nx×Ny. This is also the grid used for imposing scale separation.
Consider a spatially variable field ζ(x), −∞ ≤ ζ(x) ≤ ∞ defined on D . We model ζ(x)
as a random field using GP, i.e., the discrete form of ζ(x), the vector ζ, is a random vari-
able with multivariate Gaussian distribution and a known covariance matrix Γ. We further
specify that the inclusion proportion F(x) is an analytical function of ζ(x), and it, in turn,
governs the predicted effective log-permeability Ke(x) and breakthrough time tb via models
L(F(x),δ) and M (K). These relationships are summarized in Eq. 3.8

ζ ∼ N(0,Γ),
Γi j = C(xi,x j) = aexp(−|xi−x j|2/b2),

F(x) =
1
2

(
1+ erf

(
ζ(x)√

2

))
,

Ke(x) = L(F(x),δ,κ),
tb = M (Ke(x)) (3.8)

where Γi j, an element of the covariance matrix Γ, denotes the correlation between grid-
blocks i and j on the mesh. The scale a and range b of the covariance kernel are assumed
known. Note that the analytical transformation ζ 7→ F(x) is required to map F ∈ [0,1] to
ζ ∈ [−∞,∞], so that a Gaussian model may be used. The inference does not depend on
the particular transformation in Eq. 3.8; any transformation that allows the use of Gaussian
fields (and consequently, a Karhunen-Loève decomposition) may be used.

Given a set of noisy data d = {k(obs), t(obs)
b } at a set of Ns “sensor” points, we wish to infer

the posterior distribution P(Ke(x),F(x),δ|d). Using Bayes’ formula, this can be written as

P(Ke(x),F(x),δ|d)︸ ︷︷ ︸
Posterior

∝ P(d|Ke(x),F(x),δ)︸ ︷︷ ︸
Likelihood

π(Ke(x),F(x),δ)︸ ︷︷ ︸
Prior

(3.9)

where π(·) denotes our prior belief regarding the distribution of a variable. We model the
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discrepancy between the data d and model predictions as Gaussian residuals, i.e.,

k(obs)−Ke(x) = k(obs)−L(F(x),δ,κ) = ek ∼ N(µk,Γk),

t(obs)
b − tb = t(obs)

b −M (Ke(x)) = et ∼ N(µt ,Γt), (3.10)

where µk,µt are the means of the discrepancy between observed and model (i.e., predicted)
log-permeabilities and breakthrough times and Γk,Γt the corresponding error covariances
respectively. Under these error-modeling assumptions, Eq. 3.9 reduces to

P(Ke(x),F(x),δ|d) ∝ P(d|Ke(x),F(x),δ)π(Ke(x),F(x),δ)

∝ exp
(
−[ek−µk]

T
Γ
−1
k [ek−µk]

)
exp
(
−[et−µt ]

T
Γ
−1
t [et−µt ]

)
π(Ke(x),F(x),δ), (3.11)

We assume that the discrepancies ek and et are independent and model them as i.i.d. Gaus-
sians with constant standard deviations i.e.,

Γk = σ
2
kI; Γt = σ

2
t I.

where I is the identity matrix. This is equivalent to stating that there are no systematic
discrepancies between observations and model predictions as a function of F(x),δ and κ.
Given the relationship between Ke(x),F(x) and ζ (Eq. 3.8), and the modeling assumptions
regarding errors, Eq. 3.11 can be compactly written in terms of ζ as

P(ζ,δ|d) ∝ P(d|ζ,δ)π(ζ)π(δ)

∝ exp
(
− [ek(ζ,δ)−µk]

T [ek(ζ,δ)−µk]

σ2
k

)
exp
(
− [et(ζ,δ)−µt ]

T [et(ζ,δ)−µt ]

σ2
t

)
π(ζ)π(δ). (3.12)

Here, we have also assumed that the prior distributions of δ and ζ are independent.

Solving the inverse problem in Eq. 3.12 would require us to infer each of the elements of
ζ (though constrained by Γ); the dimensionality of the inverse problem is Nx×Ny, which
can be extremely large depending on the mesh. In order to reduce the dimensionality of the
inverse problem, we appeal to the discussion in Sec. 3.2.2 and construct a low-dimensional
model of ζ(x) using a Karhunen-Loève expansion.

ζM =
M

∑
i

wi
√

λiφi, with wi ∼ N(0,1), (3.13)
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where λi are the eigenvalues of the covariance matrix Γ, φi the corresponding eigenvectors,
and wi the weights which are modeled as i.i.d standard normals due to the GP model for
ζ. In this expansion, we retain the M-largest eigenmodes. Note that by Eq. 3.5, the vari-
ance of the approximate field is less than the original one, and inferences will tend to be
smoother than the true field. The link between the Karhunen-Loève weights w and tb can
be succinctly written as

w KL modes−→ ζ
Eq. 3.8
−→ F(x)

L ,δ,κ−→ Ke(x)
M (K)
−→ tb (3.14)

Replacing ζ in Eq. 3.12 with its Karhunen-Loève expansion (Eq. 3.13), we get

P(w,δ|d) ∝ exp
(
− [ek(w,δ)−µk]

T [ek(w,δ)−µk]

σ2
k

− [et(w,δ)−µt ]
T [et(w,δ)−µt ]

σ2
t

)
π(δ)

M

∏
l=1

exp(−w2
l ). (3.15)

Here, the prior on w, π(w), has been expressed in terms of its independent elements, wi,
whose priors are standard normals. The objects of inference are the M elements of w and
δ. Note that the dimensionality of the inverse problem is no longer directly dependent on
the mesh used for the inversion.

We will assume that the porosity of the binary medium is a constant in space and time, and
is known. The basis for this assumption is the observation that variations in K for most
porous media are much larger than variations in porosity.

3.3.2 Solving the Inverse Problem

In this section, we solve Eq. 3.15 to develop a multi-dimensional posterior distribution
from which we develop realizations of both the fine- and coarse-scale fields that are con-
sistent with the data. We first describe how we develop the “ground-truth” binary field
(fine-scale), followed by the generation of the synthetic data that serve as observations,
the development of the posterior distribution P(w,δ|d) and finally, by an analysis of the
inversion methodology.

3.3.2.1 Development of the “Ground-Truth” Fine-Scale Binary Field

The domain D is dimensioned as Lx = 1.5,Ly = 1.0. The covariance of the ζ field is
initialized with a = 1.0,b = 0.1(L2

x +L2
y)

1/2 (see Eq. 3.8). ζ is modeled as a multiGaussian
field and a realization is obtained on a coarse 30× 20 mesh of grid-blocks on D . The
“true” high-permeability proportions on the coarse mesh, Ft

c(x), are calculated using the
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transformation in Eq. 3.8. Each grid-block is thereafter further refined into 100×100 grid-
cells, leading to a 3000×2000 grid-cell discretization of D .

We generate a random binary field on the 3000×2000 mesh per the procedure in Sec. 3.2.1
and [83]. We initialize the mesh with white noise and convolve it with a Gaussian kernel
with σ = 5.0 (δ = 11.774) grid-cells. F(x), the proportion of high-permeability material
in each grid-block (equivalent to E[N(x)]/S in Eq. 3.1), is used to calculate the threshold
w (Eq. 8). The w− level excursion set creates the random inclusions in each grid-block.
Repeated over all coarse-scale grid-blocks, we obtain the fine-scale binary medium on a
3000×2000 grid. The high and low permeability materials are assigned permeabilities of
Kh = 100 and Kl = 1 (κ= 2).

3.3.2.2 Generation of Synthetic Data

The synthetic data consist of measurements k(obs) of effective log-permeability of the
coarse grid-blocks containing the sensors. Data for two sets of sensors, SSA and SSB
(see sensor locations in Figure. 3.2, e and f), are available. The permeabilities are cal-
culated empirically by solving a permeameter boundary condition problem using the true
fine-scale permeabilities for each of the coarse grid-blocks. For each grid-block, a time-
independent pressure difference is imposed in one direction, and zero-outflow in the per-
pendicular one to calculate a flow-rate. The resulting flux is used to calculate the effective
grid-block permeability in that direction. The directions of pressure difference and zero-
outflow are then exchanged to obtain the permeability in the perpendicular direction. The
two permeabilities calculated by this procedure are similar and the geometric mean of the
permeabilities is taken as the “upscaled” permeability of the binary medium in that grid-
block. Flow simulations for each of the grid-blocks in the 30× 20 mesh are performed
with MODFLOW-2005 [58]. We refer to the resulting log-permeability field as the true,
upscaled log-permeability field, Kt

c. Those values that correspond to the sensor grid-blocks
in the SSA and SSB sets form the static data, k(obs). I.i.d. Gaussian observation errors
(∼ N(0,0.1)) are added to them.

The original random binary field, on the 3000× 2000 mesh, is then subjected to a tracer
transport simulation, as described in Sec. 3.2.3. MODPATH [88] is a Lagrangian particle
tracking method operating on flux fields calculated in MODFLOW and is used here to sim-
ulate transport through the binary porous medium. A fluid is injected via a cross pattern of
five wells within the single coarse-scale grid-block in the lower-left corner and extracted
via a similar configuration of pumping wells on the top-right coarse grid-block to create
a steady-state flow field. To calculate the breakthrough times, we reverse the steady-state
velocity field. Then, for each coarse-scale sensor grid-block, we release 121 particles from
a uniformly spaced 11×11 configuration of locations and advect those particles back to the
injection wells using the reversed velocity field. The time it takes for half the particles (me-
dian of the distribution) released in a particular grid-block to reach the lower-left (injection)
grid-block is taken as the breakthrough time. Repeated for each of the sensor grid-blocks,
we obtain the dynamic data t(obs)

b . I.i.d. Gaussian observation errors (∼ N(0,10−3)) are
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added to them after non-dimensionalization (non dimensional time = (raw time)*(injection
rate)/(domain pore volume)). Thus the breakthrough times contain the effect of the fully
resolved binary medium on the advective transport dynamics.

3.3.2.3 The Error Model

We assume that along with k(obs), both F∗ and δ∗ too can be measured at the grid-blocks
with sensors, allowing us to estimate Ke(x)∗ = L(F∗,δ∗,κ) there. µk and σk are calculated
empirically as the mean and standard deviation of k(obs)−Ke(x)∗ evaluated at the obser-
vation points. µt is set to zero. The standard deviation for the breakthrough time, σt , is
set to 5% of the maximum non-dimensional breakthrough time observed in the SSA set of
sensors. These values are used in Eq. 3.12 and 3.15.

3.3.2.4 Generation of the Posterior Distribution P(w,δ|d)

We solve Eq. 3.15 using the log form of δ, i.e. ln(δ) which allows us to model its prior
using a truncated Gaussian

ln(δ)∼ N(ln(10),2) if 1 < δ < 100.

Outside these limits, the prior is set to zero, thus loosely modeling the inclusions to be
larger than a fine-scale grid-cell, but smaller than a (coarse) grid-block. 30 terms were
retained in the Karhunen-Loève expansion of the spatial field i.e., M = 30 in Eq. 3.13. 106

samples were taken using the adaptive MCMC sampler (DRAM, [77]) and the chain was
checked for mixing and burn-in using the metric in [89] (as implemented in the mcgibbsit
package [90] in R [91]) by monitoring the 5th and 95th percentiles as well as the median.
10,000 samples were retained by thinning the chain and this sample set is used for develop-
ing posterior distributions of the objects of inference. We checked the impact of thinning
by computing the percentiles with a chain thinned to 100,000 samples (instead of 10,000);
no significant change was observed.

In Fig. 3.3 we plot the probability density functions (PDF) for w1,w15,w30 and ln(δ), by
marginalizing over the thinned samples. The three weights, w1,w15,w30, correspond to
Karhunen-Loève modes which are representative of large, medium and small-scale (but re-
solved) structures. Their joint PDFs are also plotted. We see that the posterior distribution
for w1,w15, and w30 are roughly Gaussian, though that does not hold true for ln(δ) (which
is a truncated Gaussian). The median value of δ is found to be 9.837 grid-cells (com-
pared to the true value of 11.774) with a 90% credibility interval of (1.4–70.11) grid-cells.
The inter-quartile range is (3.76–25.6) grid-cells. The approximately Gaussian (posterior)
distributions for w15 and w30 are centered around 1, unlike the priors which are standard
normals (centered at 0.0). The scatter plots show that the samples of these four parameters
are not correlated with each other; the correlations between the (posterior of the) weights
of adjacent Karhunen-Loève modes weaken very quickly and are insignificant for modes
which are at least 5 modes apart.
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Figure 3.3: Plot of the joint and marginal probability densities of w1,w15,w30 and ln(δ)
from the posterior distribution. The joint distributions show very little correlations be-
tween the Karhunen-Loève modes at the large, medium and small scales, as well as their
correlations with δ. Also, PDFs of the individual parameters are roughly Gaussian, with
the exception of δ.

3.3.3 Results and Discussion

In this section, we analyze the solution of the inverse problem. We first perform the inver-
sion using both the static and dynamic data, and then repeat using the static and dynamic
data individually. These steps are done to explore the contribution of each type of data to
the inference.

3.3.3.1 Assessment of F(x) and Ke(x) Inferences

We use the samples from P(w,δ|d) (Eq. 3.15) to generate realizations of Fi(x) and Ke,i, i =
1 . . .10,000. The first 500 samples are discarded as “burn-in”. In Fig. 3.4, in the top
row, we plot their expected values F = E[F(x)] and Ke(x) = E[Ke(x)] in color while the
“true” values (as plotted in Fig. 3.2, middle row) are plotted as dotted contours. For F, we
see that the shade plot and the contours are similar with respect to large scale structures,
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though there are differences at smaller scales. On the other hand, the Ke(x) plot at the top
right shows significant differences between the shade and contour plots. This arises mostly
because of the sharp gradients in Ke(x) and the approximations inherent in the L(F(x),δ)
model for the log-permeability. In the middle row of Fig. 3.4, we plot the grid-block-wise
standard deviation of the 9,500 samples of Fi(x) and Ke,i, along with the locations of the
sensors in SSA. Standard deviations (the uncertainty in the inferences) reach minimum
values at the measurement points and increase in the poorly instrumented regions. The
regions with the largest uncertainties are concentrated in regions of high gradients. The
bottom row shows the difference between the true and average values i.e. εF = Ft

c(x)−F
and εK = Kt

c−Ke(x). Regions of low errors are generally at the sensor locations. In the
plot for εK , the largest errors correspond strongly with the “wall” of high gradients in Ke(x)
near x = 25. The error approaches 50% in this region.

We repeat the experiment above using only the static data k(obs) and plot the F = E[F(x))]
and Ke(x) = E[Ke(x)] in Fig. 3.5, top row. Again, 9,500 samples are used. Comparing
the shade plot with the true field (plotted as contours), we see that the inversion captures
the large structures but not the smaller details. Their equivalents, obtained from inversions
that used only the dynamic data t(obs)

b are plotted in Fig. 3.5, bottom row; they bear little
resemblance to the true field. We omit the standard deviations, εF and εK for both the cases,
but they may be found in [92]. The standard deviation for the static-data-only inversion
shows much the same behavior as in Fig. 3.4, i.e., they are minimum at sensor points.

3.3.3.2 Assessment of {w,δ} Inferences

The marginalized PDFs for w1,w15,w30 and ln(δ) for all three combinations of condition-
ing data are shown in Fig. 3.6. We also plot the prior distributions (using symbols) for
comparison. The top left figure shows that the observations are most informative about
w1 (i.e., the difference between the prior and posterior is the largest), the Karhunen-Loève
mode corresponding to the largest structures. The grid spacing of the sensors in SSA is
smaller than the length-scale of the first Karhunen-Loève mode and provides dense sam-
pling of it. Consequently, the distribution of w1 obtained using just the static data is almost
identical to that obtained from using both static and dynamic data. Relative to the static
data, the dynamic data contributes very little to the inference of the lower (larger scale)
Karhunen-Loève modes - the posterior for w1 in Fig 3.6 (top left) is barely different from
the prior. For intermediate Karhunen-Loève modes e.g., w15, (top right in Fig. 3.6) both
the static and dynamic data contribute to the inference, though the contribution of the static
data is larger; the posterior developed from static data alone is quite close that developed
using {k(obs), t(obs)

b }. At the small scales i.e., w30 (Fig. 3.6, bottom left), the dynamic data

contributes little - the posterior distributions obtained from the k(obs)-only and t(obs)
b -only

inversions are almost the same as the prior, whereas the inversion conditioned jointly on
(k(obs), t(obs)

b ) is somewhat informative. Thus, dynamic data is informative, only after the

larger/coarser scales have been accounted for by the static data; by itself, t(obs)
b does not

have the information content to resolve both scales. Transport occurs preferentially through
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high permeability regions, which can be affected by the smallest scales; since breakthrough
times are the integrated effect of the travel times of the tracer, one may naively expect that
the effect of small scale variations are easily captured there. However, breakthrough times
are also affected by the larger Karhunen-Loève modes and deconvolving the impact of the
smaller and larger lengthscales cannot be done without k(obs), which uniquely capture the
coarse-scale structures. The inference with the SSA sensors provides very little information
about δ, regardless of the kind of data ((k(obs), t(obs)

b ) versus t(obs)
b ) used. This is because

the impact of δ is felt only near the percolation threshold (F(x)≈ 0.5), which occurs only
at a few spots in the entire domain. Consequently, the posterior distribution for ln(δ) is
almost the same as the prior.

3.3.3.3 Impact of the Number of Sensors

In Fig. 3.7 we compare the marginalized posteriors for w1,w15,w30 and ln(δ) as obtained
with sensor-sets SSA and SSB, both using the combined static and dynamic data. The
second set, which has more than half as many sensors, results in a PDF for w1 which is
sharper than that obtained with SSA, while the PDF for ln(δ) is almost unchanged and not
very different from the prior. Also, the PDFs for w15 and w30 change significantly when
recomputed using SSB, indicating that the information content of t(obs)

b with respect to finer
scale structures collected by SSA and SSB could be different; the marginals developed
using the SSB sensor set are steeper.

In order to analyze the model fits arising from SSA and SSB measurements, we conduct
a posterior predictive check (PPC) using t(obs)

b . Note that since inferences were drawn

using both k(obs) and t(obs)
b , good fits with k(obs) may compensate for bad fits with t(obs)

b .
In Fig. 3.8, we plot the results of PPC performed using inferences drawn from both SSA
and SSB. We use the realizations Fi(x), i = 500 . . .10,000, to generate the corresponding
coarse-scale Ke,i = L(Fi(x),δi,κ); thereafter tb,i = M (Ke,i) at the SSA- and SSB-sets of
sensors. We plot the median, the 1st and the 99th percentile of the breakthrough times.
The spread of the replicates of tb obtained with SSB (right figure) is generally smaller than
those obtained with SSA, indicating a reduction in predictive uncertainty.

We next evaluate the predictive ensemble of breakthrough times (plotted for SSA and SSB
in Fig. 3.8) quantitatively using the continuous rank probability score (CRPS), the mean
absolute error (MAE) and the interval score (IS) [93, 94]. These metrics are defined for
each sensor / observation; we report metrics averaged over all sensors (in SSA or SSB).
950 samples from the predictive ensemble (rather than the full 9500 ensemble members)
were used for the purpose; the sensitivity of the metrics to the number of samples was
checked by repeating the calculations with double and half the number of samples. The
interquartile range was used for calculating the IS. We also perform the same experiment
at four sensors in a “testing set”. The sensors in this set are randomly placed and are
distinct from the sensors in SSA and SSB. Further, the observations in the “testing set”
sensors are not used in the inversion. In Table 3.1, we tabulate the CRPS, MAE and IS for
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the two predictive ensembles in Fig. 3.8 as well as the predictions at the “testing set” of
sensors. Results indicate that predictions at the SSB sensors are more accurate (i.e., similar
to observations). Further, the inversion performed using SSB data results in a model that
has a higher predictive skill at the “testing set” of sensors. Thus the extra observations in
the SSB set lead to a more accurate estimate of {w,δ}, which, in turn, results in a more
predictive ensemble, as plotted in Fig. 3.8 (right).

Ensemble Predictions at own sensors Predictions at “testing set” sensors
CRPS MAE IS CRPS MAE IS

SSA 0.047 0.0618 0.240 0.054 0.077 0.077
SSB 0.046 0.0588 0.193 0.042 0.056 0.048

Table 3.1: CRPS, MAE, and IS for the predictive ensembles of breakthrough times devel-
oped from the SSA and SSB sensor sets (see Fig. 3.8). CRPS, MAE and IS have units
of breakthrough times i.e., they are non-dimensional. The left half of the table contains
metrics evaluated at the locations of the sensors themselves; the right half contains metrics
that evaluate the predictive skill of the model, calibrated using SSA or SSB observations,
at the “testing set” of sensors. Both sets of metrics show that inversion using the SSB set
of observations leads to a more accurate predictive model.

Finally, we address the question of whether the change in the posterior density of w15 and
w30 in Fig. 3.6, when the inference is conducted using {k(obs), t(obs)

b } (vis-à-vis the estima-
tion using just {k(obs)}), is due to the larger number of observations that are used in the
former or due to the different types of information in k(obs) and t(obs)

b . In Fig. 3.9, we plot
the posterior densities of w15 and w30 as obtained using the SSA and SSB sets of sensors,
computed using just {k(obs)} observations (i.e., static-data only) as well as conditioned
jointly on {k(obs), t(obs)

b } (i.e., static and dynamic data). If the difference in the estimation

of w15 using {k(obs), t(obs)
b } versus {k(obs)} (both obtained from SSA sensors) had been due

to the number of observations ({k(obs), t(obs)
b } has 20 observations of each type), then the

posterior distribution computed using just the static data obtained from the SSB sensor set
(34 observations) should be similar to that computed from the 40 {k(obs), t(obs)

b } observa-

tions from the SSA set (20 observations each of{k(obs)} and {t(obs)
b }). However, Fig. 3.9

(left) shows quite the opposite trend, as the posterior computed from just the static data
from the SSB sensors set moves away from that computed using {k(obs), t(obs)

b } from the
SSA sensor set. Further, since the larger number of observations in SSB resolve w15 better
(vis-à-vis SSA), the static-data only estimate of w15 is quite close to the posterior obtained
from using both {k(obs), t(obs)

b } from the SSB sensors. Thus, the difference in the posterior

distributions is not due to the extra observations in {k(obs), t(obs)
b }; rather it is due to the

different types of information in {k(obs)} and {t(obs)
b }. In Fig. 3.9 (right), we see that the

posterior densities of w30 obtained using just the static data are rather similar, regardless of
whether the SSA or the SSB sensors were used; further, they are both very similar to the
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prior. This is because neither of the two sensor sets are dense enough to resolve w30. How-
ever, when t(obs)

b are used in the inference, the posterior densities differ from those obtained
using just the static data, particularly for the SSB sensors. Furthermore, we do not see a
trend; had the posterior distribution of w30 been solely dependent on the number of ob-
servations, the static-only estimate from SSB should have occupied a position between the
static-only estimate of w30 drawn from SSA sensor set and the SSA estimate conditioned
on {k(obs), t(obs)

b }. Clearly, this is not the case in Fig. 3.9 (right).

3.3.4 Summary

To summarize, we have developed an inference scheme, predicated on a multiscale link
function, to infer coarse-scale features and summaries of fine-scale structures of a random
binary field from a combination of static and dynamic observations. We can estimate a
spatially variable proportion F(x) of the high-permeability material from observations that
are obtained on the coarse-scale but are nevertheless informative about the fine-scale. We
see that these observations are not very informative regarding δ; its posterior distribution
is not very different from the prior. This is because the impact of δ is small (if it is much
smaller than a grid block) and is limited to regions were F(x)≈ 0.5. We see that the static
data can inform on the large-scale features mainly because the distribution of sensors is
sufficient to resolve such structures. The dynamic data, which is an integrated measure
of the effect of small variations in the permeability field is key to estimating smaller (but
nevertheless resolved) structures. Increasing the number of sensors leads to estimates with
lower uncertainties.

We have also explored how the static (k(obs)) and dynamic (t(obs)
b ) data contribute to the

estimation of {w, ln(δ)}. By itself, t(obs)
b is not sufficiently informative to estimate both the

large-scale structures and the smaller details. However, if the large-scale structures are con-
strained/estimated using k(obs), the smaller details can be inferred from t(obs)

b . Thus joint

inversions on {k(obs), t(obs)
b } result in more accurate estimations of {w, ln(δ)} not only be-

cause of the larger number of observations involved, but rather because of the type of infor-
mation. Since k(obs) is informative about the larger lengthscales in the domain while t(obs)

b
is impacted most by the smaller scales that contort the flowpaths in the porous medium,
joint inversion conditions the estimates to multiscale data.

In Sec. 3.5, we explore the robustness of the inference. Since the aim of reconstructing a
permeability field is generally to use it to predict transport phenomena, we will subject the
reconstructions conditioned on multiscale data (as well as those obtained individually from
static and dynamic data) to posterior predictive tests.
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Figure 3.4: Results from the inference, computed using 9500 samples from the posterior
distribution. In the top row, we plot the means F = E[F(x)] and Ke(x) = E[Ke(x)]; they
bear a strong resemblance to the true values in Fig. 3.2 (middle row) and also plotted as
overlaid contours. In the middle row, we plot the pointwise standard deviation of Fi(x)
and Ke,i; they are smallest at the sensor locations. In the bottom row, we plot the errors
εF = Ft

c(x)−F and εK = Kt
c−Ke(x), which show large values in regions of high gradients.
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Figure 3.5: Top: Results (the means F and Ke(x)) from an inversion using only static data.
The true values are plotted as contours. Bottom: Their counterparts, calculated using only
dynamic data. Computations were done using 9,500 samples as in Fig. 3.4. We see that the
static-data-only inversion in the top row are slightly worse than the results in Fig. 3.4; they
miss the finer details and are overly smooth. The inversions in the bottom row bear little
resemblance to the true Ft

c(x) and Kt
c plotted as contours.
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Figure 3.6: Marginalized PDFs of w1,w15,w30 and ln(δ) as inferred from k(obs)-only (dot-
ted lines), t(obs)

b -only (dashed lines) and jointly from (k(obs), t(obs)
b ) (solid lines). The priors

are plotted with ∇ for comparison. Note that the prior and posterior densities for ln(δ),
plotted in the bottom right figure are truncated at ln(δ) = 0,4.6 but the kernel density es-
timates used to create plots smooth them near the truncation limits. The true values of
w1,w15 and w30 are 0.127, 0.814 and 1.607 respectively.
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Figure 3.7: Prior and marginalized posterior values of the Karhunen-Loève mode weights
w1,w15,w30 and ln(δ) as computed using the sensor-sets SSA (solid line) and SSB (dashed
line). We see that the posteriors for w1 are similar, indicating that the higher sensor density
of SSB collects little extra information on them. However, the PDFs for w15 and w30 are
quite different, indicating that the uncertainty in their values may have been underestimated
in both cases. The posterior density for ln(δ) (bottom right) obtained from either set of
sensors is not very different from the priors. The true values of w1,w15 and w30 are 0.127,
0.814 and 1.607 respectively.
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Figure 3.8: Results from the posterior predictive check for breakthrough times conducted
by generating coarse-scale Ke,i and using M (K) to generate the breakthrough times. The
filled, inverted triangles are the observations at the sensors. The median breakthrough
times from the posterior predictive checks are plotted with open symbols and the error bars
denote the 1st and 99th percentiles of the breakthrough time distribution. Results for SSA
observations (Left) and SSB observations (Right).
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Figure 3.9: Posterior densities of w15 and w30 obtained using just the static observations
k(obs) (dashed lines) as well as static and dynamic data {k(obs), t(obs)

b } (solid lines). The pri-
ors are plotted with dots. Estimates drawn from SSA sensors are in black; their SSB coun-
terparts are in red. Left: The w15 density drawn solely from SSB k(obs) (34 observations) is
quite different from the density obtained from SSA observations (of any type). Instead, it
shows a marked similarity to the posterior distribution obtained from SSB {k(obs), t(obs)

b }.
Right: The w30 distributions obtained from static data only are very similar to the prior,
regardless of the sensor set; the distribution becomes informative (different from the prior)
only when t(obs)

b are included. Thus, it is the type of data, rather than the quantity, that
renders the posterior densities informative. The true values of w15 and w30 are 0.814 and
1.607 respectively.
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3.4 Estimation of δ

In Sec. 3.3, we addressed the estimation of the Karhunen-Loève modes describing the
spatial distribution and δ, the size of the inclusions. While the weights of the KL modes
could be estimated (the prior and posterior distributions of the weights were different), the
prior and posterior distributions for δ were almost identical.

The reason why the observations carried little information regarding δ can be seen in
Fig. 3.10 (a). We see that for small δ (δ/∆ ≤ 0.3, where the model described in Chp. 2
is valid), the two components of the binary medium have to be present in roughly equal
quantities (0.4 < F < 0.6) for the medium to be sensitive to the size of the inclusions. In
a mesh where F varied from 0 to 1, only a small fraction of the grid-blocks would display
effective permeabilities that were informative on δ; in the limit of sparse observations, the
effect of these grid-blocks on the estimate of δ could be missed. In Fig. 3.10 (b), we show
a histogram of the F(x) in the grid; less than a sixth of the grid-blocks have F that lie in the
limits mentioned above.

We investigate further whether δ can be estimated under conditions where the domain’s
permeability is more sensitive to δ. We do so by creating a new proportionality field (F∗)
parametrically from the old one (F)

F∗ = 0.5+ γ(F−0.5).

Note that γ describes the range, centered at 0.5, of F∗, the proportion of high permeabil-
ity material. We generate two such domains, with γ = 0.2,0.5, whose distributions (his-
tograms) are plotted in Fig. 3.10 (c) and (d). We see that in the first case, the entire domain
has its high-permeability proportion in the range [0.4, 0.6], with the effective permeability
in all grid-blocks sensitive to δ. In the second case, only a fraction of the grid-blocks lie
within the [0.4, 0.6] range. Note that as the range of F∗ shrinks, the domain becomes more
homogeneous and shows only slow, large scale variations in K.

We then subject the binary medium, generated using γ = 0.2, to the same inversion as
described in Sec. 3.3 with SSA set of sensors. Inversions were done with {k(obs)} and
then with {k(obs), t(obs)

b }. The results are in Fig. 3.11. We see that the lack of small-scale
spatial structure in F∗ (and consequently Ke(x)) allows the static observations to be very
informative. Since the medium is so spatially homogeneous (and has little in the nature of
higher Karhunen-Loève modes), the ability of {t(obs)

b } to capture the fine-scale structure of

a domain is not put to much use; thus inferences with {k(obs)} and {k(obs), t(obs)
b } are very

similar. Further, in Fig. 3.11, we plot the PDF of ln(δ); we see it is close to the true figure of
2.45. However, there is a distinct bias in the estimate. This is due to the error in the subgrid
model for Ke(x). As seen in Fig. 3.1, for a given δ, the subgrid model underestimates
permeability; within the context of inversion, the subgrid model L compensates for its
under-prediction error by estimating a larger δ.

We now consider the case of γ = 0.5 i.e., 0.25≤ F∗ ≤ 0.75, which show a spatial variation
with a richer range of lengthscales. The same inversion as above is performed for 3 sensor
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sets – SSA (20 sensors), SSB (34 sensors) and SSE (54 sensors, Fig. 3.12). The estimates
of w and δ obtained with {k(obs), t(obs)

b } are in Fig. 3.13. We see that the SSA set of sensors
provide a good estimate of the MAP (maximum a posteriori) value of w1; adding more
sensors narrows the PDF. w15 is not well estimated with the SSA sensors, and adding more
sensors leads to a shift in the PDF. For w30, we see the PDF narrow, but it is unclear
whether this is due to static or dynamic data (a question that we address in detail below).
The estimates of δ show no trend (with increasing sensors) and are far from the true figure.

We next investigate how informative the {k(obs)} are, versus {k(obs), t(obs)
b }, in the inference

of the γ = 0.5 cases. In Fig. 3.14, we plot the PDFs for w30 and ln(δ) as obtained using
{k(obs)} and {k(obs), t(obs)

b }. We see that the contribution of the dynamic data collected
with the SSA sensor set is small (the posterior distributions constructed with {k(obs)} and
{k(obs), t(obs)

b } are similar, and almost the same as the prior). However, with more sensors,
the posterior distributions become markedly different from the prior (which is expected),
but the contribution of the dynamic data is much more than the static data, reinforcing
the finding in Sec. 3.3.3 that the dynamic data contains information about the small scale
structures that the static observations do not have. In the case of δ, we see much the same
behavior i.e., the contribution of the dynamic data increases with the number of sensors,
but the sequence of PDFs obtained with SSA, SSB and SSE sensors do not display a trend,
nor do they get closer to the truth. We conjecture that the impact of δ on the permeability in
the γ = 0.5 case is small enough that it is masked by the model errors/shortcomings of the
link function L (this conjecture is further investigated below). We check the accuracy of
the inference done with SSA, SSB and SSE sensors by conducting posterior predictive tests
and calculating the CRPS and MAE at the sensors and the “testing set” of sensors. These
are tabulated in Table 3.2. We see that there is little difference in the scores calculated
from the posterior predictive tests of the breakthrough times at the sensors for the SSA
and SSB sensor sets, but a clear improvement when the SSE sensor set is used. With
regard to the “testing set” sensors, there is no clear trend. This is because the accuracy
of breakthrough time predictions at the testing set sensors affected by (1) the accuracy
of the inferred permeability field and (2) the proximity of the testing set locations to a
sensor where an observation may be available. As the sensor density increases, both the
contributors to predictive accuracy change, but it is unclear which of the two causes play
a greater part in the change in CRPS and MAE. Thus, the CRPS and MAE scores at the
testing set do not show a trend and are not a good indicator of the accuracy of the estimated
permeability field.

We finally check the impact of dynamic data on the estimation of δ. We argue that δ can-
not be inferred from the dynamic observations because its impact on breakthrough times
is small; consequently, if the samples from the posterior distribution had their δ compo-
nent replaced by draws from the prior, and used in a predictive test for the breakthrough
time, their accuracy would not degrade significantly. We henceforth refer to this predic-
tive test for breakthrough times as the “perturbed” predictive test. In Fig. 3.15, we plot
the median, 1st and 99th percentiles for the breakthrough times calculated from a posterior
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Table 3.2: CRPS and MAE for the predictive ensembles of breakthrough times developed
from the SSA,SSB and SSE sensor sets (see Fig. 3.8 and 3.12) for the γ = 0.5 case. CRPS
and MAE have units of breakthrough times i.e., they are non-dimensional. The left half
of the table contains metrics evaluated at the locations of the sensors themselves; the right
half contains metrics that evaluate the predictive skill of the model, calibrated using SSA,
SSB or SSE observations, at the “testing set” of sensors. We see that the accuracy of the
predictions at the SSA and SSB sets of sensors are about the same, but improved (smaller)
for SSE. Predictions for the “testing set” sensors do not show any systematic behavior for
reasons explained in the text.

Ensemble Predictions at own sensors Predictions at “testing set” sensors
CRPS MAE CRPS MAE

SSA 0.040 0.048 0.125 0.124
SSB 0.042 0.051 0.066 0.081
SSE 0.036 0.044 0.110 0.121

predictive test (filled symbols) and its “perturbed” counterpart (open symbols) where ln(δ)
in the posterior distribution is replaced by draws from the prior. Calculations are for SSA
sensors and γ = 0.5. Observations are plotted in red for comparison. We see that both the
tests have similar medians but the “perturbed” predictive tests are more dispersed. This is
particularly true for sensors which are far from the injection point (generally sensors with
higher indices). This is because long flowpaths allow the accumulation of inaccuracies in-
troduced by replacing ln(δ) in the posterior distribution by draws from the prior, causing
larger errors which are easily visible in the figure. However, the figure tells us little about
the actual distribution of breakthrough times from the two predictive tests. Consequently,
we tabulate the CRPS and MAE scores for the “perturbed” predictive test (for SSA, as well
as SSB and SSE) set of sensors in Table 3.3. Comparing with Table 3.2, we see that replac-
ing ln(δ) in the posterior distribution by draws from the prior hardly made any difference
in the predicted breakthrough times at the sensors (for any of the sensor sets), underscoring
the weak effect of δ on breakthrough times. Thus, while “perturbing” ln(δ) in the posterior
does lead to more a dispersed breakthrough-time distribution (Fig. 3.15), the distributions
are, in fact, quite similar.

The lack of sensitivity of the breakthrough times to ln(δ) also provides an explanation of the
lack of any trend in the PDFs of ln(δ) in Fig. 3.14. While the PDFs obtained with {k(obs)}
and {k(obs), t(obs)

b } are different, the discrepancy between them is due to the model er-
rors/structural errors between the flow model employed for the inference and MODFLOW,
which was used to generate the synthetic observations. The dependence of the PDF on the
model errors, rather than on the essential physics of the problem, results in a lack of any
trend in the inferences as more observations are added. However, the “perturbed” posterior
predictive test can be used as an easy check to ascertain (1) whether observations are sen-
sitive to an inferred quantity and (2) the relative contribution of model errors (vis-à-vis the
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Table 3.3: CRPS and MAE of breakthrough times at the sensors, calculated by replacing
ln(δ) in the posterior with draws from the prior. These number are averages calculated over
all the sensors in the sensor sets. Compared to Table. 3.2, we see that “perturbing” ln(δ) in
the posterior has hardly any effect on the breakthrough times at the sensors.

Sensor set CRPS MAE
SSA 0.039 0.047
SSB 0.041 0.052
SSE 0.035 0.044

information content in sparse observations) in calculating the posterior distribution.

To conclude, we can infer δ in some cases where the proportion of inclusions is such that
the permeability is sensitive to δ over large portions of the domain. However, for the case
of δ/∆� 1, such a situation is rare (e.g., the γ= 0.2 case); in most cases, the impact of δ on
the permeability is very small. When δ is inferred in such a case, the PDFs obtained do not
show any systematic trend as the number of sensors is increased; this is because the PDFs
are affected more by the model errors rather than the data. The sensitivity of the dynamic
data to δ can be gauged by performing a posterior predictive test, where δ in the posterior
is replaced by draws from the prior and comparing the distribution of breakthrough times
at the sensors with that obtained from a conventional posterior predictive test. Using CRPS
and MAE, we identified that the two distributions were very similar, indicating their in-
sensitivity to δ. Thus δ cannot be inferred with any degree of accuracy; furthermore, the
ramifications of a wrong estimation on the predictive capability of the inferred permeability
field (with respect to the breakthrough time) is also small. Increasing the number of sensors
does not help significantly in this regard.
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Figure 3.10: Top left: Ke(x) versus F for a set of δ/∆. We see that for small inclusion
sizes i.e. δ/∆ < 0.3, the permeability Ke(x) is affected by δ only if 0.4 ≤ F ≤ 0.6. Top
right: The distribution of F in the entire domain (all the 600 grid-boxes) for the problem
addressed in Sec. 3.3. Only about a sixth of the grid-boxes are affected by δ. Below, we
plot the modified proportionality F∗ for cases corresponding to γ = 0.2 (c) and γ = 0.5 (d).
γ indicates the range of F∗, centered at 0.5. Note that both these cases a more spatially
homogeneous compared to the problem in Sec. 3.3.
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Figure 3.11: Marginalized PDFs of w1,w15,w30 and ln(δ) as inferred from k(obs)-only
(dotted lines), and jointly from (k(obs), t(obs)

b ) (solid lines). The priors are plotted with
∇ for comparison. γ = 0.2. Note that the prior and posterior densities for ln(δ), plotted
in the bottom right figure are truncated at ln(δ) = 0,4.6 but the kernel density estimates
used to create plots smooth them near the truncation limits. We see that the dynamic data
contributes little; the rather homogeneous medium and the lack of small-scale structure
allows an accurate estimation from the static data. However, δ is estimated with little
uncertainty, but a distinct (overestimate) bias. The true value of ln(δ) is shown by the
vertical line.
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Figure 3.12: The SSE set of sensors, with a total of 54 sensors.
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Figure 3.13: Marginalized PDFs of w1,w15,w30 and ln(δ) as inferred jointly from
(k(obs), t(obs)

b ) for SSA (black line), SSB (blue) and SSE (red) . The priors are plotted
with ∇ for comparison. γ = 0.5. Note that the prior and posterior densities for ln(δ), plot-
ted in the bottom right figure are truncated at ln(δ) = 0,4.6 but the kernel density estimates
used to create plots smooth them near the truncation limits. We see that the SSA sensors
are sufficient to estimate w1; i.e., adding more sensors makes a small improvement in the
PDF. The PDF for w15 changes significantly with the number of sensors, while that for w30
does not. The PDFs for ln(δ) show no trend. The true values of w1,w15 and w30 are 0.127,
0.814 and 1.607 respectively.
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Figure 3.14: Estimates of w30 (above) and ln(δ) (below) inferred jointly from (k(obs), t(obs)
b )

(solid lines) and from k(obs)-only (dotted), for SSA (black), SSB (blue) and SSE (red)
sensor sets. We see that the dynamic data t(obs)

b results in a sharpening of the PDF; further,
as more sensors are brought to bear, the sharper the PDF gets. In addition, the contribution
of the dynamic data to sharpening the PDF increases with the number of sensors. In case
of ln(δ), the contribution of the dynamic data increases with the number of sensors, but the
results do not get closer to the truth, or even follow a trend, as more sensors are added. The
true value of ln(δ) is plotted with the vertical line. γ = 0.5. The true values of w30 is 1.607.
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Figure 3.15: Comparison of the median, 1st and 99th percentiles for the breakthrough
times calculated the posterior predictive test (filled symbols) and its “perturbed” counter-
part (open symbols) where ln(δ) in the posterior distribution is replaced by draws from the
prior. Calculations are for SSA sensors and γ = 0.5. Observations are in red. The y-axis
denotes the normalized (non-dimensional) breakthrough times. We see that both the tests
have similar medians but the “perturbed” posterior predictive tests are more dispersed. This
is particularly true for sensors which are far from the injection point, where the inaccura-
cies introduced by simply sampling ln(δ) from the prior provide a large integrated impact.
The sensor indices for the “perturbed” test have been shifted on the horizontal axis so that
they may be easily compared.
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3.5 Posterior Predictive Modeling

The discussion in Sec. 3.3 focused on the probabilistic reconstruction of the proportion of
high permeability F(x) and a length scale δ on a coarse 30× 20 mesh. However, the link
function L allows us to also construct realizations of the fine-scale binary medium, given
{w,δ}. In this section, we explore the difference between fine-scale binary permeability
fields developed by conditioning P(w,δ|d) jointly on static and dynamic data (multiscale
data) and those reconstructed from only one type of data. We assess them based on their
ability to reproduce the observed breakthrough times at the SSA sensors. P(w,δ|d) is
used to develop realizations of the fine-scale binary medium (on a 3000× 2000 mesh)
as outlined in Sec. 3.3.2, which is then used in flow simulations using MODFLOW and
advective transport using MODPATH. In this section, we will use the posterior distribution
for {w,δ} as developed in Sec. 3.4 with γ = 0.5 (i.e., 0.25 ≤ F(x) ≤ 0.75) and plotted in
Figs. 3.13- 3.15.

Fig. 3.16 shows example realizations of the binary medium which are consistent with the
multiscale observations i.e., they were developed from {w,δ} conditioned on {k(obs), t(obs)

b }.
The white and gray regions are the high and low permeability phases, respectively. A single
particle track from the injection wells to each of the SSA sensors is also shown. We choose
8 {w,δ}i samples from the posterior and use them to develop the corresponding Fi(x) us-
ing Eq. 3.14. Then, using the procedure (based on excursion sets of multiGaussian [mG]
fields) described in Sec. 3.2.1, we develop the corresponding fine-scale binary field on a
3000×2000 mesh. The true binary field is plotted in the middle of the figure (image (e)).
The variation between realizations is due to both the stochastic nature of the construction
process, where white noise is convolved with a Gaussian kernel, and the sampled value of
δ, which is different for each realization. Of these eight examples, realization (g) has the
largest δ value and realization (f) has the smallest.

Two sets of k(obs) and t(obs)
b conditioning data ({k(obs), t(obs)

b },{k(obs)}) were used, and for
each set, 1000 fine-scale binary realizations were created. For each of the SSA sensors
and for each realization, the median travel time between the injector and the sensor is
determined. Recall that sensor locations are defined at the grid-block scale and that for
each location a total of 121 particles are tracked between the injector and the sensor. The
median time from these 121 particles is extracted at each sensor location and designated
as the breakthrough time for that location. A distribution of breakthrough times across the
1000 realizations is then created for each sensor location.

As a measure of the robustness of the parameter inference, the estimated fine-scale fields
are used in a separate set of flow simulations. The parameter inference was done using data
obtained on the true fine-scale field with an injection well in the lower left corner and an
extraction well in the upper right corner of the domain. The 1000 fine-scale fields created
from these inferred values are also used as input to a flow field with the injector in the
upper left corner and extraction in the lower right corner. This second flow configuration is
referred to as the “flipped” configuration.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.16: Fine-scale realizations of the random binary field conditioned on the obser-
vations and showing a single flowpath from the injection wells to each SSA sensor. These
were developed from the posterior distribution of {w,δ} using the mG-based technique de-
scribed in Sec. 3.2.1. The center image (e) is the ground truth fine-scale realization. White
indicates high permeability and gray is low permeability. Variation in the binary patterns
are due to the stochastic nature of the process and the variation in the estimated δ parameter
between realizations.
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Fig. 3.17 shows a comparison of the breakthrough time CDFs (cumulative distribution
function) for the two different condition data sets and the two flow configurations against
the true breakthrough times for example sensor location 14 (coordinates: 21,13). For both
flow configurations, both distributions capture the true breakthrough time (accurate) with
the “Fine and Coarse” (alternatively, inferred jointly from {k(obs), t(obs)

b }) set being the
narrowest (most precise) for both flow configurations. Under both flow configurations, The
“Coarse Only” (alternatively, inferred solely from {k(obs)}) data produces a breakthrough
time distribution that is less precise but also less biased relative to the true breakthrough
times.

Results show in Fig. 3.17 are abstracted to show the results for all 20 sensor locations.
Fig. 3.18 (left) shows the precision and bias for all 20 SSA sensors and provides perspec-
tive on how these quantities change across the model domain. For each sensor location, the
red “+” indicates both the location of the sensor and the relative location of the true break-
through time. The distribution of breakthrough times from each combination of k(obs) and
t(obs)
b is shown as a circle with black being {k(obs), t(obs)

b } and green being {k(obs)}). The
center of the circle is offset from the true breakthrough time by the amount of bias, cal-
culated here as the difference between the median of the distribution and the true value.
Underestimation shifts the center of the circle to the left and over estimation to the right.
The center 95% of the breakthrough time distribution defines the radius of the circle. Both
the radius and the bias offset are calculated in units of dimensionless travel time. The axes
scales in Fig. 3.18 serve as both geographic and travel time measures to simultaneously
define both the sensor locations and the relationship of the median breakthrough time dis-
tributions to the true breakthrough time. At each location, the order of the circles is set such
that the smallest (tightest distribution) is at the front and the largest is at the back. Fig. 3.18
(right) shows results for the flipped configuration.

Examination of Fig. 3.18 (right) shows that both combinations of k(obs) and t(obs)
b create

accurate distributions of breakthrough times for both the original and flipped flow configu-
rations (all circles contain the true value denoted by the “+”). Additionally, estimated fields
that are conditioned jointly on {k(obs), t(obs)

b } create the most precise distribution (black cir-
cle is smallest and therefore on the top) for the majority of the SSA locations in both flow
configurations. Bias is relatively small at all locations as shown by all three circles being
approximately centered on the true value. The spatial patterns shown Fig. 3.18 are con-
sistent with the flow patterns. The breakthrough time distributions are most precise along
the diagonal between the injector and producer where the majority of the flow takes place
and least precise along the upper and lower boundaries where the flow fraction is quite low
(see Fig. 3.2, b). The amount of bias is also smallest along the diagonal and greatest along
the top and bottom boundaries. Results of the flipped configuration (Fig. 3.18, right) show
decreasing precision towards the right end of the domain.

The results summarized in Fig. 3.18, show that the bias tends to be smallest in the {k(obs), t(obs)
b }

case where the fine-scale realizations were inferred jointly from static and dynamic obser-
vations. This difference in bias between the results of the two data sets increases for sensors
which are further way from the diagonal connecting the injector and the producer, which
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Figure 3.17: Breakthrough time CDFs, each created from 1000 samples, are shown for
an example location (sensor 14). Distributions for both data sets: “Coarse & Fine” refer
to realizations conditioned jointly on {k(obs), t(obs)

b }, and “Coarse only” refer to inferences
using {k(obs)} and the original and flipped flow configurations are shown.

forms the main travel path for the fluid. Ray et al. [92] provide additional results for fields
where F(x) was allowed to vary from 0.0 to 1.0 including tabulated values of the bias and
the variability of the breakthrough times as a function of sensor location and the condition-
ing data combination.

Fig. 3.18 is focused on the breakthrough time at the SSA sensor locations. However, since
the ground truth in this study is known, it is possible to examine the quality of the travel
time estimates for every location in the model domain. Fig. 3.19 (left) shows distributions
of the average absolute error (AAE) between the estimated and true breakthrough time.
Each average is calculated over all 600 coarse-scale grid blocks for a single realization
and the distribution of the averages is then determined across all 1000 realizations. Lower
values in the distribution come from realizations that better fit the true breakthrough time at
all locations. The two distributions created from the joint {k(obs), t(obs)

b } conditioning data
produce the lowest average AAE values, although for the original flow configuration, the
difference between the two conditioning data sets is minimal. The addition of the fine-scale
{t(obs)

b } data produces a significant reduction in the average breakthrough time AAE values
for the flipped flow configuration. The median dimensionless travel time AAE values range
from approximately 0.20 to 0.30. (Fig. 3.19).

All comparisons shown above consider the breakthrough time values from the injector to
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Figure 3.18: Comparison of the median travel times to the SSA sensors for two condition-
ing data sets and two flow configurations. The circle plots summarize the breakthrough
time distributions and compare them to the true breakthrough times for all sensor locations
for the original (left) and flipped (right) flow configurations: Details are in the text. “Coarse
& Fine” refer to realizations conditioned jointly on {k(obs), t(obs)

b }, “Coarse only” refer to
inferences using on {k(obs)}. The red “+” is the location of sensors and the relative location
of the true breakthrough time.

one or more coarse grid cells. These comparisons are consistent with the conditioning data,
t(obs)
b , used in the inverse estimates. However, additional information can be gained from

the full distribution of travel times to each coarse grid block. The two-sample Kolmogorov-
Smirnov (KS) test is used to compare the true travel time distribution to the distribution
calculated on each estimated field for each coarse-scale grid block. The KS test is a non-
parametric test of the difference between two distributions. The KS test statistic is the
maximum vertical distance, D between two CDFs:

Di, j =
sup
x |Fi,n(x)−Fj,n′(x)| (3.16)

Here the ith and jth distributions have the same number of travel times, 121, for all compar-
isons (n = n′). Values of the D statistic range from 0, when there is no difference between
the distributions, to 1.0 when the values of distributions do not overlap at all. The D statistic
can be used in KS test where the null hypothesis of the KS test is that both samples come
from the same underlying population. Here, for each fine-scale realization, we compare the
modeled and observed travel time distribution at every location within the model domain
and calculate the test statistic, D. The average value of D across all 600 locations is retained
for each of the 1000 realizations.

Fig. 3.19 (right) shows the resulting distributions of the average D value for these sets of
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Figure 3.19: Average absolute errors (AAE) between median travel times from the esti-
mated and true travel time distributions for all locations in each field (left) and distribution
of average KS statistic values calculated by comparing the full distribution of estimated
and true travel time distributions at all locations (right).

1000 realizations. The smallest values of D occur when both k(obs) and t(obs)
b are used as

conditioning data and this result holds for both flow configurations. The distributions of
D when only k(obs) data are used have average D values that are consistently 0.06 to 0.07
higher than the corresponding values created using both k(obs) and t(obs)

b for the original
flow configuration (compare black and bright green lines in Fig. 3.19, right). There is also
a nearly consistent offset to higher D values for the flipped configuration of approximately
0.10.

A third flow configuration is used as an additional test of the robustness of the multiscale
inferences. The fine-scale fields constructed from the inferred parameters are used as input
to flow and transport calculations with “permeameter” boundary conditions (i.e., zero-flux
boundaries on the two long edges of the domain and fixed pressure boundaries on the short
ends of the domain). The fixed pressures are set such that the same average gradient as
produced with the injection and extraction wells in the other two flow configurations is also
maintained in the permeameter flow conditions. This flow configuration is representative
of ambient conditions in a ground water aquifer when all pumping has been stopped. The
same example realizations and the ground truth field as shown in Fig. 3.16 are shown in
Fig. 3.20 with particle tracks calculated under the permeameter flow configuration.

The same analysis as done above for inferences conditional on both the {k(obs), t(obs)
b } and

{k(obs)} data sets are repeated for the permeameter flow configuration. Additionally, the
y-coordinate at which each particle exits the model domain along the downstream (right-
hand) boundary is recorded and these results are also analyzed. Similar to Fig. 3.17,
Fig. 3.21 (left) shows the CDF’s of the median travel times at sensor location 14, but in
Fig. 3.21 these are the travel times from sensor location 14 to the downstream boundary.
Also note that the X-axis has values of log10 dimensionless travel time. The CDFs of the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.20: Fine-scale realizations of the random binary field conditioned on the observa-
tions under the permeameter flow configuration and showing a single flowpath from each
SSA sensor to the downstream boundary. These are the same fine-scale realizations shown
in Fig. 3.16. The center image (e) is the ground truth fine-scale realization. White indicates
high permeability and gray is low permeability.

95



−1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lof10 Breakthrough Time (Dimensionless)

C
um

ul
at

iv
e 

F
re

qu
en

cy

Location 14,  (21,13) 

 

 

Coarse & Fine
Coarse
True Value

1200 1300 1400 1500 1600 1700 1800 1900 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Median Breakthrough Lcoations

C
um

ul
at

iv
e 

F
re

qu
en

cy

Location 14,  (21,13) 

 

 

Coarse & Fine
Coarse
True Value

Figure 3.21: Permeameter flow configuration results. Breakthrough time CDFs (left) for
example location (sensor 14) for both sets of conditioning data. The right image shows the
CDF’s of the median y-coordinate where the particle exits the downstream boundary. Each
CDF is constructed from flow and transport simulations on 1000 fine-scale fields. The true
breakthrough time and median exit coordinate values are shown for comparison.

particle exit location (Y-coordinate on the downstream boundary) for particles released at
sensor location 14 are shown in the right image. It is noted that the particle exit coordinates
can range from 0 to 2000 for these fine-scale simulations. All distributions are accurate,
and there is little difference in the results created by using the two different sets of con-
ditioning data. Given the large variability, the predicted breakthrough times, arising from
permeability fields conditioned on {k(obs)} as well as {k(obs), t(obs)

b }, for sensor 14, are
roughly of the same accuracy and quality.

The results in Fig. 3.22 show that, for the permeameter boundary condition (BC), contrary
to the results summarized in Fig. 3.18, the variability of the posterior predictions is not a
strong function of the sensor location within the domain, not all posterior predictions are
accurate and the variability as shown by the size of the circles is larger. In order to create
Fig. 3.22 it was necessary to use the middle 95 percent of the log10 travel time distributions
to fit all of the circles into the domain. Therefore, the circle sizes are not directly compara-
ble with those in Fig. 3.18. Despite the increased width of the distributions, two of them do
not capture the true value: the Coarse Only ({k(obs)}, green) distribution at sensor location
(14,7) and the Fine and Coarse ({k(obs), t(obs)

b }, black) distribution at sensor location (21,3).
In the majority of the cases, the Coarse Only ({k(obs)}) data produce the most precise dis-
tributions, green circles lie on top of black circles, indicating that the addition of fine-scale
breakthrough times from a pumping configuration does not improve predictions of travel
time under an ambient flow configuration. This is because the small-scale structures at
the inflow and outflow of the permeameter configuration are not measured very well by
{t(obs)

b }, which are obtained by a flow configuration that is largely diagonal (bottom-left to
top-right). The lack of accuracy at the inflow and outflow (left and right boundaries of the
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Figure 3.22: Comparison of the median travel times from the SSA sensors for two con-
ditioning data sets ({k(obs)} versus {k(obs), t(obs)

b }) under the permeameter flow config-
uration (left). The median particle exit coordinates are shown in the right image. The
circle plots summarize posterior predictive distributions and compare them to the true val-
ues for all sensor locations. “Coarse & Fine” refer to realizations conditioned jointly on
{k(obs), t(obs)

b }, “Coarse only” refer to inferences using on {k(obs)}.

domain) can be seen in Fig. 3.18, where the predicted tb at the top left and bottom right
show large uncertainties.

The circles in the right image of Fig. 3.22 show the distribution of the exit coordinates. The
values here can range from 0 to 2000 and the circles radii were scaled by dividing the width
of the middle 95 percent of each distribution by 1000. The lowest row of sensors has the
largest variability in exit coordinates while this variability is otherwise relatively constant
across the domain. Contrary to the travel time results, using both Fine and Coarse scale
data, {k(obs), t(obs)

b }, increases the precision of the posterior predictions (black circles on
top of green circles). All posterior exit coordinate distributions are accurate. Interestingly,
the least precise exit coordinate distributions are the most precise travel time distributions
(compare the lower row of circles in the left and right plots of Fig. 3.22).

Fig. 3.23 shows distributions of AAE as averaged across each realization for both set of
conditioning data and for travel time (left image) and exit coordinate (right image). The left
side of Fig. 3.23 is similar to the left side of Fig. 3.19 but the longer travel times necessitate
using the log10 transform for the X-axis in Fig. 3.23 . In both images of Fig. 3.19, there is
little difference in the error distributions between the two different conditioning data sets,
although the Coarse and Fine ({k(obs), t(obs)

b }, black) data set produces the largest AAE
values for the breakthrough times (left image). Again, the difference between the fields
conditional on {k(obs)}, versus {k(obs), t(obs)

b }, is very small.
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Figure 3.23: Average absolute errors (AAE) between log10 median travel times from the
estimated and true travel time distributions (left) and distribution of average absolute errors
(AAE) between median exit coordinates from the estimated and true exit coordinate distri-
butions (right). These results are for the permeameter flow configuration and both graphs
are created from all locations in each field.

Fig. 3.24 compares the KS statistics for the travel time distributions (left) and exit coor-
dinate distributions (right). Each distribution represents 1000 average value, each average
calculated across the 600 locations on the coarse-scale field. From Fig. 3.24, it is obvious
that adding fine-scale conditioning data to the parameter inference does not make a signif-
icant difference in the travel time or exit location distributions under the permeameter flow
configuration. The KS statistics for the exit coordinates are both larger and more precise
than for the travel times. Comparison of the left and right images of Fig. 3.24 shows a
median KS statistic of approximately 0.6 for the travel times and about 0.85 to 0.87 for the
exit coordinates.

To summarize, we sampled the distribution P(w,δ|d), developed in Sec. 3.4, to construct
1000 realizations of the fine-scale binary medium on a 3000×2000 mesh and predict break-
through times at the SSA sensors via simulation. These calculations were performed for the
two different P(w,δ|d) conditioned on {k(obs), t(obs)

b }, and {k(obs)}) to gauge the impact of
multiscale data in the estimation of Ke(x). Additionally, the degree to which the estima-
tions are robust to changes in flow conditions was addressed by using the estimated fields
in two additional flow configurations, flipped and permeameter, that are different from the
flow configuration used to create the observations used in the parameter inference.

Posterior predictive model evaluations using 1000 realizations created from each combina-
tion of conditioning data clearly showed that while both data combinations produce accu-
rate results, using data collected on both scales i.e., {k(obs), t(obs)

b }, as opposed to a single
scale ({k(obs)}, creates predictions that are most precise and closest to actual values from
the ground truth. This result holds for predictions made using the original flow configu-
ration as well as when using the flipped flow configuration. However, when permeameter
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Figure 3.24: Distributions of average KS statistics between median travel times from the
estimated and true travel time distributions (left) and distribution of average KS statistics
between median exit coordinates from the estimated and true exit coordinate distributions
(right). These results are for the permeameter flow configuration and both graphs are cre-
ated from all locations in each field.

boundary conditions are applied to the fine-scale fields, the predictions are essentially inde-
pendent of the data conditioning set. This is because t(obs)

b contains little information on the
small-scale structure along the left and right boundaries of the domain – Fig. 3.16 show that
few path lines emanating from the injector travel along the top left and bottom right corners
of the domain. This lack of information results in less accurate inferences in those regions
(alternatively, the posterior predictive tests for tb show large spreads, Fig. 3.18). However,
these are the very regions which form the inflow and outflow of the permeameter flow con-
figurations, leading to large spreads in breakthrough times and locations (Fig. 3.22). Thus
using {t(obs)

b } to infer the permeability fields conferred no advantage, in terms of accuracy
and predictive skill, in the permeameter flow configuration.

99



3.6 Multiscale Inference with Structural Errors

In Sec. 3.3 we demonstrated the solution of the inverse problem for inclusion distribution
and size under the assumption that the discrepancy between the predictions of our models
(tb =M (K) and Ke(x)=L(F(x),δ)) and the observations d as Gaussians (Eq. 3.10). How-
ever, in most real-life cases, the discrepancy is dominated by model errors i.e., the inability
of M (K) and L(F(x),δ) to capture reality. Fig. 3.1 compares the predictions of effec-
tive log-permeability made by L versus those computed numerically using MODFLOW-
2005, for the same set of random binary media realizations. As is clear, the scatter of
MODFLOW-2005 estimates around the L predictions is neither symmetric nor Gaussians;
imposing a normal distribution on the discrepancy, while sufficient for demonstrating an
algorithm, cannot be justified when accuracy of inference is a concern. Thus, a new er-
ror model needs to be devised and used to derive a counterpart to Eq. 3.11. It is clear
from Fig. 3.1 that the discrepancy in Ke(x) will be dependent on F i.e., an expression for
P(∆K|F) will have to be developed, where ∆K = Kt

c−L(F,δ). Also, for ease of use with
MCMC, a unimodal distribution for P(∆K|F) would be desirable.

3.6.1 Construction of the Error Model for the Link Function

We develop a model to evaluate P(∆K|F) based on kernel density estimation [95]. In
Fig. 3.25, top left, we plot Kt

c and Ke(x) as a function of F, for δ = 38 grid-cells. Since
(F,δ) is an incomplete description of the fine-scale, many fine-scale realizations, each with
its own Kt

c are consistent with such a specification, leading to a cloud of points (in black);
the crosses indicate Ke(x) = L(F,δ). A joint distribution of (∆K,F), plotted as a scatter
plot, is shown in Fig. 3.25, top right; this serves as our starting point for developing a
kernel-smoothed model for the joint probability density function P(∆K,F).

We assume that the samples plotted in Fig. 3.25 (top right) are drawn from an unknown
joint distribution which we approximate with P(∆K,F) as

P(∆K,F) =
1
S

S

∑
k=1

K
(

∆K−∆Kk

hK

)
K
(

F−Fk

hF

)
=

1
S

1
hKhF

S

∑
k=1

K (∆K−∆Kk)K (F−Fk) (3.17)

where S is the number of (∆K,F) samples, K is an Epanetchnikov kernel and {hK,hF}
are the bandwidths in the two directions. The bandwidths are calculated using a plug-in
technique [96]. The evaluation of P(∆K,F), per Eq. 3.17, involves a sum over all samples,
which can be expensive; instead we employ an approximate summation method using KD-
trees [97]. The samples are collated in to boxes numbering O(log(S)) and stored in a
KD-tree. An approximate expression for the contribution of kernels in a given box to
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P(∆K,F) is computed and the summation is done over O(log(S)) boxes. The novelty of
the scheme lies in the hierarchical manner in which kernels are collated in boxes, which
are further refined/sub-divided to meet an accuracy criterion. Some boxes are shown in
Fig. 3.25, top right. The joint probability density distribution P(∆K,F) resulting from the
kernel-smoothed approximation is shown in Fig. 3.25, lower left.

The evaluation of P(∆K|F) is performed simply by

P(∆K|F) =
P(∆K,F)

P(F)
(3.18)

where P(F) is calculated by numerically integrating out ∆K in P(∆K,F). Computations
involving KDE were performed using the MATLABTM code in [98]. Fig. 3.25, lower right
shows P(∆K|F) for different values of F.

Note that the bandwidths {hK,hF} obtained using plug-in bandwidth estimation had to be
over-smoothed by a factor of 2 to ensure that P(∆K|F) did not have largely disconnected
modes (since they prevent MCMC chains from mixing).

In order to construct a model for P(∆K|F), valid for arbitrary F and δ, the exercise was
repeated for δ = 9,15,21,28,38,56 and 75 grid-cells. Models for P(∆K|F,δ) were devel-
oped for each. Thereafter, P(∆K|F,δ) for arbitrary values of δ were obtained by adopting
that of the nearest known δ.

Kernel density estimates of probability density distributions are generally applicable only
in the region where samples exist and can be misleading away from it. Our use of Epanetch-
nikov kernels (which have compact support) ensures that at large ∆K, P(∆K|F,δ) will eval-
uate to zero, in keeping with the absence of samples. This will be reflected when devising
an expression for P(d|Ke(x),F,δ) in Eq. 3.11 i.e., the expression will evaluate to zero in
large parts of the multi-dimensional (w,δ) space, as will the posterior distribution. This can
pose a problem when exploring the space of the posterior density using a MCMC sampler
- large regions of zero gradient in the posterior will not allow the chain to move to more
promising regions. We ameliorate this situation by adding an extra Gaussian kernel KG to
Eq. 3.17, i.e.

P(∆K,F) =
1−α

S

S

∑
k=1

K
(

∆K−∆Kk

hK

)
K
(

F−Fk

hF

)
+αKG (∆K−µk,Γk) (3.19)

where α is chosen so that only 10% of the probability mass is contributed by the Gaussian
kernel. The infinite support of the Gaussian allows the posterior to be calculated anywhere
in the (w,δ) space and provides the gradient required by the MCMC chain to move into
the high probability regions of the posterior. In the regions in (w,δ) space where ∆K
is small, the kernel density estimate for the model errors’ probability density dominate,
allowing the inference to reflect their effect (uncertainty due to model errors), rather than
the measurement noise.
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Figure 3.25: Stages in the construction of the conditional PDF P(∆K|F,δ). Top left: We
create multiple realizations of the fine-scale random binary media field and plot their true
upscaled log-permeability (as a cloud) and the model prediction Ke(x) = L(F,δ), for δ =
38 grid-cells. Top right: we show the samples and the boxes from Level 4 of the KD-tree
holding the boxed samples. Bottom left: We plot the kernel density estimate of P(∆K,F)
for δ = 38 grid-cells, constructed using Epanetchnikov kernels (after over-smoothing the
bandwidths to remove isolated modes). Bottom right: We plot the conditional distribution
P(∆K|F), for δ = 38 grid-cells, for various values of F.
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3.6.2 Adapting and Solving the Inverse Problem for Model Errors

In this section, we incorporate the expression for P(∆K|F) (Eq. 3.18), but calculated from
the “ameliorated” joint density distribution in Eq. 3.19, into a formulation of an inverse
problem (similar to Eq. 3.11) and solve it to infer fine-scale properties.

We start with the assumption that the measurement errors are far smaller than the model
error / discrepancy ∆K as defined above. In such a case

k(obs) ≈Kt
c = L(F(x),δ)+∆K.

Let k(obs)
j be the measured log-permeability in the grid-box containing sensor j and F(x j)

be the corresponding inclusion proportion. Assuming that the model errors, conditioned on
the local F(x j) are i.i.d,

P(k(obs)|F(x),δ) =
Ns

∏
j=1

P(k(obs)
j |F(x j),δ) =

Ns

∏
j=1

P(∆K j|w,δ) (3.20)

where ∆K j is the observation-prediction mismatch of log-permeabilities at sensor j (but
now attributed to model errors rather than measurement errors, as was done in Eq. 3.11).
We model the mismatch between observed and predicted breakthrough times as before, i.e.,
as measurement errors modeled using i.i.d. Gaussians, implying that the model M (K) is an
accurate representation of tracer transport. Thus the counterpart to Eq. 3.12, incorporating
model errors, is

P(w,δ|d) ∝ exp
(
− [et(w)−µt ]

T [et(w)−µt ]

σ2
t

) Ns

∏
j=1

P(∆K j|w,δ)

π(δ)
M

∏
l=1

exp(−w2
l ) (3.21)

Eq. 3.21 is solved using the same techniques and for the same problem as Sec. 3.3. How-
ever, we restrict ourselves to the SSA set of sensors.

The new model for observation-prediction discrepancy in ∆K will allow the MCMC chain
to visit regions of the log-permeability (K) space that may not have been allowed by the
Gaussian model used in Sec. 3.3. However, this exploration will also be modified by the
Gaussian error model used for tb. We examine the effect of these error models on {w,δ}
individually.

In Fig. 3.26, we plot the posterior PDFs for w1 and w30, as inferred solely from static data,
as Q-Q plots. Posterior distributions, as obtained in Sec. 3.3, are also plotted. We see that
the KDE error model constructed in Sec. 3.6.1 makes a difference only for the low mode
(w1) whereas the high mode (w30) is unaffected. This is in keeping with the conclusions
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drawn in Sec. 3.3. Note, however, that the posterior PDF for w1, obtained with the KDE
model is different from the one obtained with the Gaussian model of Sec. 3.3; for instance,
the Q-Q plot is not a straight line and so the posterior is no longer a Gaussian.

We now investigate the effect of tb by incorporating dynamic data into our inference. In
Fig. 3.27 we plot the posterior PDFs for the Karhunen-Loève weights w1,w15,w30 and ln(δ)
as computed using model errors. The plots with solid lines were inferred using both static
and dynamic data, whereas the ones with dotted lines were inferred using static data only.
We see that like our results in Sec. 3.3 the static data determines the large-scale structures
- the posteriors for w1 obtained from the static observations only is very similar to the one
obtained from static and dynamic observations i.e. the inclusion of tb contributes very little
information. On the other hand, as described in the previous paragraph the posterior and
prior densities for w30 in the static-observations-only case are indistinguishable (Fig. 3.26)
and the posterior in the lower left sub-figure of Fig. 3.27 is due almost entirely to tb ob-
servations. ln(δ) seems very little affected by the inclusion of dynamic data as well as the
model errors. We also plot the posterior PDFs for the same variables as obtained in Sec. 3.3
(i.e., from Fig. 3.7, but only for the SSA set of sensors). We see a substantial difference in
the posterior PDF for the larger modes, but the higher/finer modes are very similar. Thus
the effect of KDE model for errors is most felt by inference variables that have global effect
e.g. w1, (and are impacted by static data) whereas those with local effect are dominated by
the information content of the breakthrough times (where the error model is the same as in
Sec. 3.3). By the same argument, if the inference were to be done with static data only, the
posterior density for w30 would be the same as the prior (and completely unaffected by the
change in the error model between Sec. 3.3 and this section), whereas the largest change
would be seen in w1. This is corroborated in Fig. 3.26. Also, comparing the width of the
PDFs for the objects of inference, we do not see much of decrease in width, i.e., while
the posterior distributions are different for all the objects of inference, there has not been a
reduction of uncertainty. However, whether or not there is an improvement in the goodness
of fit (i.e., in the accuracy of the inference) will be evaluated next.

We perform posterior predictive checks (PPC) using the posterior distribution of {w,δ}.
The distribution of breakthrough times obtained at the 20 sensors of the SSA set are plot-
ted in Fig. 3.28 (the “error bars” correspond to the 1st and 99th percentiles of the 9,500
breakthrough times obtained using {w,δ} samples from the posterior distribution). The
observed breakthrough times are plotted as triangles whereas the circles are the median of
the PPC. The corresponding values from Sec. 3.3 are plotted in red. We see that the KDE
error model did not contribute to the reduction of uncertainty (as mentioned in the last para-
graph) since the widths of the error bars obtained with the KDE error model and Sec. 3.3’s
Gaussian model are about the same; however, the error bars are slightly shifted and only
2 sensor readings (as opposed to 3 in Sec. 3.3.2) are outside the bounds. This indicates a
slight improvement in the goodness-of-fit.

To summarize, we developed a KDE-based representation for the model error and per-
formed the inference of {w,δ} based on the assumption that model errors dominated
measurement errors. We obtained inferences which were different from those obtained
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Figure 3.26: Q-Q plot for the posterior distribution of w1 (left) and w30 (right). The solid
line denote the Q-Q plot for inference developed with the KDE error model described in
this section; the dashed line denote those that used the Gaussian model of Sec. 3.3. Only
static data was used. The prior is plotted with dots. We note that the KDE model results
in a plot that is not a straight line (for w1); also the plots are different when the KDE and
Gaussian models are used. Right, we see that the static data made no difference to the
inference of w30; the posterior is indistinguishable from the prior.
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Figure 3.27: Posterior PDFs for {w1,w15,w30, ln(δ)} using the KDE error model, obtained
with static data only (dotted lines), as well as static and dynamic data (solid line). We
see that dynamic data affects the posterior for the higher Karhunen-Loève modes, as in
Sec. 3.3. Also the impact of the static data is limited to the lower Karhunen-Loève modes.
We see that the impact of dynamic data on ln(δ) is low. We also plot the posterior PDF
obtained using the Gaussian error model in Sec. 3.3. We see that at the finer (higher)
Karhunen-Loève modes, which are impacted mostly by dynamic data, have posteriors that
are relatively insensitive to the choice of KDE versus Gaussian data model.
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Figure 3.28: Distributions of the tracer breakthrough times at the 20 SSA sensors, obtained
via posterior predictive checks using the posterior density for {w,δ}. Those plotted in
black were developed using the KDE error model; the ones in red use the Gaussian model
described in Sec. 3.3. The observations are in black triangles; the circles are medians. The
error bars indicate the 1st and 99th percentiles. We see that the width of the error bars are
about the same irrespective of the error model (KDE/Gaussian) used; i.e. our choice of
models did not reduce the uncertainty in the inference. However, only 2 observations fall
outside the black error bars, whereas 3 do for the red ones, indicating a slight improvement
in the goodness-of-fit when using the KDE error model.
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in Sec. 3.3, but these were restricted to variables which had global effect; the posterior
for higher Karhunen-Loève modes, which are controlled by the breakthrough times, were
hardly affected. A local variable like ln(δ) also was unaffected. The reason for the change
was the ability of the MCMC chain to explore parts of the K space which was not possible
under the Gaussian error model in Sec. 3.3. While we did obtain a better fit of the model
to data, as indicated by the PPC, it was marginal. The reason for this lies in our restrictive
model for Ke(x) = L(F(x),δ); the KDE model for ∆K shows that the K-space is quite
involved and may not be easily captured by the Karhunen-Loève -mode based reduced
model. This inability to capture the spatial complexity of K also results in poor predictions
for tb.

A solution to this problem of the rigidity/limited range of L lies in actually using the KDE
model for ∆K, along with L , to construct proposals for Kt

c. These Kt
c could be compared

with observations k(obs) (under a measurement error assumption) and also used to generate
tb and compared to t(obs)

b , again under a tight measurement error model. This would un-
doubtedly improve the fit of the model to data, but will also result in a far more difficult
inference problem - apart from inferring {w,δ}, we would also have to infer a Kt

c field un-
der a suitable smoothness model. This, much harder, inference problem will be addressed
in a subsequent publication.
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3.7 Conclusions

We have developed a multiscale, statistical technique to reconstruct characteristics of a
random, porous binary medium from partial observations. The binary medium consists
of high and low permeability material in spatially varying proportions. The geometry of
the medium consists of inclusions of the less abundant material embedded in a matrix
of the other. The uneven spatial distribution of the two materials, F(x), and a character-
istic inclusion lengthscale, δ, are the objects of inference; effective permeability Ke(x) =
L(F(x),δ,κ) is calculated from a known dependence on them. The inclusions are too small
to be resolved on the mesh. The observations consist of measurements of log-permeability
(k(obs)) and breakthrough times (t(obs)

b ) of a tracer from a tracer test at a set of sensor
points. The log-permeability measurements inform on the large-scale variations in the do-
main of interest; the breakthrough times are governed strongly by the flow paths through
the medium and are informative on the small-scale structures.

The reconstruction is posed as a Bayesian inverse problem, predicated on fitting a transport
model to the data. The transport model is formulated at the coarse-scale, but with a statis-
tical subgrid model that incorporates the impact of the fine, unresolved scales. The subgrid
model (alternatively, the link function between the scales) is parametrized with the high-
permeability material proportion, F(x), and characteristic length, δ. The inverse problem
is regularized by expressing F(x) using Gaussian processes; its dimensionality is reduced
by expanding F(x) in terms of a truncated Karhunen-Loève series. Fitting the model to
data yields a joint distribution of the Karhunen-Loève weights, inferring characteristics of
the variation of F(x) and Ke(x) in the domain. This distribution is realized without any
approximations, using an adaptive MCMC sampler.

We find that F(x) obtained by jointly conditioning on {k(obs), t(obs)
b } is far more accurate

than if it is obtained solely from k(obs) or t(obs)
b . Inversion based on k(obs) captures the

large-scale variation correctly; however, the permeability field distribution so reconstructed
predicts breakthrough times poorly since it lacks smaller details/structures responsible for
contorted flow paths. The inversions based solely on t(obs)

b are extremely poor, due to
inability of these data to constrain large structures. However, when the two are put together,
k(obs) constrains the larger structures while t(obs)

b is used to constrain the smaller ones. Thus

the improved inferences (when conditioned jointly on k(obs) and t(obs)
b ) are not just due to

more plentiful observations, but rather due to the different types of information in k(obs)

and t(obs)
b . Since the information is derived from different scales (large for k(obs) and small

for t(obs)
b ), the inversion is fundamentally multiscale.

We found that the observations were not informative about δ, due to the limited nature of
its impact on the permeability. For inclusions smaller than about a third of a grid block, the
impact on permeability occurs close to the percolation threshold (F(x) ≈ 0.5); this condi-
tion holds in only a few spots in the domain D . This insensitive nature makes estimation of
δ from sparse observations almost infeasible, unless the entire domain is close to the perco-
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lation threshold. However, when F(x) in the domain was constrained to vary between tight
bounds around F(x) = 0.5, δ could be inferred. However, the ability to infer δ was quickly
lost as the bounds were loosened, and the posterior distribution of δ became entirely dom-
inated by the model/structural errors in the inference. We devised a test (a “perturbed”
posterior predictive test”) to identify if, in a given problem, the posterior distribution of δ

was being determined by structural errors or the essential physics of the problem. We also
conducted a preliminary test to check the feasibility of performing inversions that explicitly
include structural errors. We found that for our problem, heteroscedastic structural errors
can be represented using a mixture of kernels (Epanetchnikov, in our case), leading to a
slight improvement in the predictive skill of the inferred permeability fields.

Plots of marginalized posteriors of the objects of inference show that they are approxi-
mately Gaussian. While the priors used for them are Gaussian, the posterior shapes are
surprising, given that both the fluid transport and the link function are strongly nonlinear.

We use the inferences of F(x) and δ to reconstruct realizations of the resolved binary
medium on a fine mesh. We check the predictive skill of the ensemble of realizations by
performing transport simulations with them, in an effort to recreate the observations from
which they were inferred. We find that fine-scale realization developed by conditioning
jointly on {k(obs), t(obs)

b } (i.e., “multiscale” realizations) generally have a greater predictive
skill that those inferred with one type of information; further, they are more robust in situa-
tions where the flow patterns are very different from those used in the estimation. Further,
we also identified a flow configuration where including {t(obs)

b } in the inference conferred
no advantage since they were not very informative on the small-scale features in important
parts of the domain. Thus, in some cases, observations / sensor configurations may have to
be crafted to the inference problem at hand to be properly informative.
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Chapter 4

Multiscale Inference in Elliptic Problems
using Multiscale Finite Elements

4.1 Multiscale Background

Imagine you are on a beach staring out at the ocean. You see the big waves rolling in
and carrying surfers towards the shore, but you will also see smaller cross waves and little
riffles that seem to move independently of the big waves. Also, if you were to sit in that
spot long enough, the tide may come in and soak your blanket. Each of these observations
represents a different length scale. Over short lengths, the riffles and small cross waves are
observed. On a slightly larger time scale are the surfing waves, and on an even longer scale
is the tide. This is a prime example of a multiscale system. Scale here effectively refers to
the correlation length of the system.

It turns out that like the ocean, many natural systems exhibit multiscale behavior. Examples
include permeability fields in subsurface flow as well as reactions in chemical kinetics.
Fig. 4.1 gives an example of multiscale behavior in groundwater flow. Plotted is water depth
below the surface elevation at a USGS monitoring station in Idaho. The first plot clearly
shows yearly correlation lengths while the second plot1 shows distinct daily patterns. As
an aside, the daily patterns may in fact be due to an interesting effect called an earth tide.
This occurs as the moon passes over a point on the earth and causes a dilation force on the
bedrock. The force slightly stretches the media, opening up more space and reducing the
pressure. Details of this phenomena can be found in [99] and the references therein.

Taking advantage of multiscale features when developing solution methods and sampling
methods can dramatically improve efficiency. By concentrating on the scales of interest, it
is sometimes possible to reduce much of the computational effort required for simulation.
For example, in the ocean example mentioned above, certain applications may only be

1Note that the second plot is based on provisional data.
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Figure 4.1: Example of groundwater observations with multiscale behavior. Not only are
yearly patterns present, but daily length scales exist as well. Data comes from USGS well
measurements in Bingham County, Idaho.

concerned with tidal effects while other may be heavily dependent on mid-sized waves and
their erosion effects. This chapter will begin with a discussion of multiscale simulations
in groundwater flow and will later turn to current multiscale sampling strategies. Before
proceeding, we would like to emphasize that the multiscale tools developed here are in no
way restricted to porous media flow. Many models with multiscale behavior can fit into this
framework, especially in situations where the model output is much smoother than model
input.
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4.1.1 Multiscale Simulation Methods

4.1.1.1 Model Elliptic Equation

The focus of this work is on applications in porous media flow. A basic model used as a
building block for many more sophisticated simulations is the pressure equation. To see
where this model comes from, consider the conservation of mass for fluid flow through a
small volume of porous media as shown in Fig. 4.2.

ρuy

ρux

ρux +
∂(ρux)

∂x dx

ρuy +
∂(ρuy)

∂y dy

dy

dx

Figure 4.2: Conservation of mass in a porous media. When coupled with Darcy’s equation
as a constitutive law, this gives the familiar pressure equation.

Using the simple relationship

∂M
∂t

= Mass In−Mass Out

with the mass flows in Fig. 4.2, leads to

∂(ρφ)

∂t
dxdy =−∂(ρux)

∂x
dxdy−

∂(ρuy)

∂y
dxdy

where ρ is the density of the fluid, ux is the inflow velocity in the x direction, uy is the inflow
velocity in the y direction. The term ∂(ρux)

d x is the rate of change in the x direction times
the x distance traveled. Since we are working in the limit as dx→ 0, no higher order terms
are needed. Also, φ is the porosity of the media. This term is needed because the fluid only
occupies the pore space, so ρφdxdy is the mass in this representative volume and ∂(ρφ)

∂t dxdy
is the mass rate of change. Assume the density is constant in time. Thus, we have

ρ
∂φ

∂t
+ρ∇ · (u) = 0

⇒ ∂φ

∂t
+∇ · (u) = 0
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where the area terms dxdy have been cancelled out. Note that these equations are on the
continuum scale, no longer are the definitions only for the representative volume element.
Assuming that φ is a linear function of pressure p, i.e φ = pCt where Ct is the compress-
ibility of the media, we have

Ct
∂p
∂t

+∇ ·u = 0 (4.1)

Obviously this equation is underdetermined; a constitutive law is needed. Here, Darcy’s
law is used to complete the system:

u =− k̃
µ
(∇p) (4.2)

where k̃ is the permeability of the media and µ is the dynamic viscosity of the fluid. The
previous two equations constitute the conservative form of the pressure equation. In this
work, conservation is not critical.2 The system considered here is the steady state system
after non-dimensionalization, given by:

−∇ · (k∇p) = 0 (4.3)

where k is now a spatially varying field representing the scaling of an intrinsic permeability
field. From here on, k will be referred to simply as the permeability. Clearly, the pressure is
a nonlinear function of the permeability. Thus, to use the predicted pressure from Eq. 4.3 as
a tool for engineering design or water resource planning, not only do boundary conditions
need to be tailored to the region of interest, but the permeability, k(x), needs to be charac-
terized as well. Typically, very few direct measurements of permeability exist and indirect
observations of pressure must be used in conjunction with Eq. 4.3 to infer the permeability
field. In this work, it will be assumed that no direct observations exist and m observations
of the pressure p(x) have been taken at a limited number of locations, {x1,x2, ...,xm} ∈ D,
where D is the spatial domain of interest. This vector of observations will be denoted d.
Ill-posedness of the inverse problem arises when estimating k(x) from d because the map-
ping p(x) = G(k(x)) defined by Eq. 4.3 acts as a nonlinear lowpass filter, removing high
frequency effects of k(x) from p(x). This high frequency information cannot be recovered
during inference.3 This means that potentially large, high frequency changes in permeabil-
ity will result in only minor pressure changes. Fig. 4.3 demonstrates this property for a one
dimensional system and a two dimensional layer of the SPE10 dataset [100]. The pressure
is found using the two log(k) fields on the left. In one dimension, the high frequency blue
field is just the green field plus some correlated noise. Clearly the high frequency addition
does not have a large impact on the pressure in the right plot. Intuitively it seems that be-
cause the pressure field is smoother, and can thus be more easily represented, only some of
the information in the permeability field should be needed to construct the pressure field.
That is, only certain scales of k have a significant impact on p.

2Conservation is not critical in this study because we are using the pressure equation as a proof of con-
cept for our multiscale inference methodology. However, in many situations, especially when transport or
saturation equations are also used, a conservative solution to the pressure equation is vital. It should be noted
the methodology proposed herein can also be applied when using Mixed Finite Element Methods, ensuring a
conservative solution.

3For continuous fields, if k(x) has continuous derivatives of order m, p(x) will have m+ 1 continuous
derivatives.
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Figure 4.3: Example of multiscale field and corresponding pressures. The one dimen-
sional case has a Dirichlet condition on the left and a homogeneous Neumann condition
on the right. In the two dimensional case, all boundaries are fixed with Dirichlet condi-
tions. Clearly, the pressure fields are much smoother than the permeability fields. The one
dimensional case shows the smoothing effect of the elliptic operator and the two dimen-
sional setting again shows the relative smoothness of the pressure field compared to the
permeability field.

In large-scale (regional) simulations, the meshes needed to resolve fine scale features can be
prohibitively large for performing global pressure solves. However, being much smoother
than permeability, it seems reasonable to solve for pressure on a more computationally
tractable coarse mesh. There are several methods of doing this. Often the most straightfor-
ward approach, known as upscaling, is to solve the pressure equation on a coarse mesh with
a representative coarse permeability field. Once the coarse permeability has been found, the
pressure equation is then solved on the coarse mesh. Note that upscaling the permeability
field is an artificial coarsening of the system. Only pressure can be accurately represented
on the coarse scale. Furthermore, with upscaling, the pressure is only represented on the
coarse mesh, even though some fine scale features may exist and there is no way to find an
approximate fine scale pressure field based on the coarse solution.

The desire to solve the pressure equation on a coarse mesh but maintain some fine scale
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features is met in variational methods such as Multiscale Finite Element Methods, Vari-
ational Multiscale methods, and heterogeneous multiscale methods. The idea behind all
of these solution strategies is to implicitly coarsen the pressure equation through a varia-
tional minimization. These methods allow the pressure to be approximated on a fine mesh,
while only solving a small linear system for a coarse representation of the pressure. The
following sections describe and contrast upscaling and these variational methods.

4.1.1.2 Upscaling

In the ocean example, upscaling could be defined as smoothing or averaging the waves
into a quantity on the tidal scale. In the porous media setting, upscaling is just taking the
average fine scale permeability over a coarse element. Choosing an appropriate average
is not trivial. Analytic averages such as the arithmetic or harmonic mean would provide a
simple form for the coarse permeability, but do not introduce any physics into the operation.
To see that choosing the arithmetic mean is not a good choice, let p = G(k) represent the
nonlinear mapping from the permeability to pressure. We would like the coarse pressure
solution to be the average of the fine scale pressure, but

IE[p] = IE[G(k)] 6= G(IE[k])

Clearly, taking the arithmetic average of k will not give the average pressure as desired and
more sophisticated techniques need to be employed for upscaling to be effective. Neverthe-
less, the harmonic mean and arithmetic mean provide bounds on the effective permeability.
As mentioned in the review paper, [101], and the references within, these means provide
the so-called Wiener bounds:

µh ≤ ke f f ≤ µa (4.4)

where ke f f is the effective permeability on a coarse element, µh is the harmonic mean over
the coarse element, and µa is the arithmetic mean. Fig. 4.4 shows an example of various
means for a layer of the SPE10 dataset. The averages were taken over 10 fine cells in the
x-direction and 5 fine cells in the y-direction. After some inspection, it is apparent that on
each coarse cell, the geometric mean lies between the harmonic and arithmetic means. In
fact, many tighter bounds on the effective mean can be proved under various circumstances.
See [101] for more information.

The Wiener bound is not tight, so to overcome the nonlinear relationship between k and p,
a nonlinear upscaling based on model physics needs to be used. On each coarse element,
a few local fine scale solves can be used to characterize the effective permeability. Farmer
gives a good review of these methods in [102]. To give a general idea of the method,
consider a two dimensional problem with quadrilateral coarse elements of size hx×hy. In
order to build a coarse permeability tensor, on each coarse element, two local solutions of
the steady state pressure equation could be found. The first would enforce homogeneous
Neumann (no-flow) boundary conditions on the top and bottom boundaries, with specified
pressures at the other boundaries, and the second would switch the flow direction, with
the Neumann conditions on the left and right. Once the pressure has been found, the total

116



flux, Q, through one of the Dirichlet boundaries can be found and Darcy’s law will give the
effective permeability:

ke f f =
Qhx

A∆P
(4.5)

where ke f f is the effective permeability in the x-direction, Q is the computed flow rate, hx
is the horizontal size of the element, A = hxhy is the element area, and ∆P is the pressure
drop induced by the Dirichlet boundary conditions. In 1961, Warren and Price in [103]
first introduced this idea and various extensions have become prevalent in petroleum en-
gineering. In one dimension, choosing appropriate boundary conditions is trivial and the
upscaled permeability can perform quite well. However, in higher dimension, not only
does the computational cost increase because local flow simulations need to be computed
to fill in the effective permeability tensor, but the choice of boundary conditions for the
local solves is also not obvious.

In a fairy-tale world, computed effective permeabilities would not depend on the choice of
local boundary conditions. However, we have not fallen into a rabbit hole and the boundary
conditions can significantly impact the computed effective permeabilities. The methods for
alleviating this dependence discussed in [102] include slightly increasing the computational
domain size to reduce boundary effects, or using an approximate global solution to choose
the boundary conditions. Additionally, some more recent publications, see [104] and [105],
couple the mesh-generation process with the upscaling procedure to choose a mesh that
reduces the boundary effects. The issue of appropriate boundary conditions for local solves
is not unique to upscaling and will be discussed further in section 4.1.1.5 in the context of
the Multiscale Finite Element Method (MsFEM).

The upscaling methods discussed above are useful when the fine scale permeability field is
known. However, stochastic upscaling methods also exist when the fine scale permeability
is represented as a stochastic field. Kitanidis provides an introduction to stochastic upscal-
ing methods in [106]. The goal of stochastic upscaling is to use information about the fine
scale distribution of k to develop effective permeabilities. The main approach discussed
in [106] is based on small perturbation theory, where an assumption of small variance leads
to the analytic form:

ke f f = kg exp
(
−σ2

n
+

σ2

2

)
(4.6)

Here, kg is the geometric mean of of the stochastic field k, σ2 is the variance of log(k), and
n is the domain dimension. Notice that in this case, the effective permeability is no longer
stochastic. The randomness only exists on the fine scale. This upscaling operation is a
method for taking a log-normal stochastic k field and computing an effective permeability
that represents the general structure of the stochastic field. In section 4.2.3, we will take a
different approach in which the coarse quantities are also represented through probability
distributions. It will also become clear that a stochastic coarse representation can be useful
in a multiscale inference setting.
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(d) Harmonic Mean

Figure 4.4: Example of geometric, arithmetic, and harmonic averaging. After inspection,
note that the geometric means visually seems to be between the arithmetic and harmonic
means, as required by the Wiener bounds. This field is log10(K) for the 10th layer of the
popular SPE10 dataset.

4.1.1.3 Homogenization

A good upscaling method introduces a physical model (the pressure equation here) to gen-
erate a coarse representation of the permeability. The process of upscaling to the coarse
scale can be represented graphically as Fig. 4.5. An alternative analytic approach is homog-
enization. The object of homogenization is to find a multiscale expansion of the solution
field whose coefficients can be found by solving a homogenized (coarsened) system. The
expansion considers the action of the elliptic operator on a rapidly oscillation permeability
field. The homogenization process is also outlined in Fig. 4.5. In this setting, the perme-
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Fine scale permeability, k

Local pressure solution, pl

Coarse permeability, kc

−∇ · (k∇pl) = 0

(a) Upscaling Process

Represent multiscale field
k = k(x,y = x

ε
)

Multiscale expansion:
pε(x,y,ε) = p0(x,y)+ εp1(x,y)+ ....

Build coarse system:(
1
ε2 A0 +

1
ε
A1 +A0

)
pε = f

Homogenized permeability, k∗

periodicity

ε→ 0

(b) Homogenization Process

Figure 4.5: Comparison of Homogenization process and upscaling process. While upscal-
ing builds a coarse permeability and uses the same governing equation, homogenization
finds a homogenized permeability by putting constraints on the coarse operator.

ability is represented as a periodic field with period ε and the pressure equation becomes

Aε p =−∇ · [k(x/ε)∇p] = f (4.7)

The operator Aε represents the pressure equation (an elliptic operator) built from a perme-
ability field with period ε. Let y = x/ε represent a “fast” coordinate. The goal is then to
find a solution expansion of the form

pε(x) = p0(x,y)+ εp1(x,y)+ ε
2 p2(x,y)+ ... (4.8)

The introduction of the dependence of p on y requires the use of a new total derivative,
given by:

∇ = ∇x +
1
ε

∇y (4.9)

Using this in the pressure equation gives:

−(∇x +
1
ε

∇y) ·
[

k(y)(∇x p+
1
ε

∇y p)
]
= f (4.10)

which after some algebra gives the compact form:

Aε p =
1
ε2 A0 +

1
ε

A1 +A2 (4.11)
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where

A0 = −∇y · (k(y)∇y)

A1 = −∇y · (k(y)∇x)−∇x · (k(y)∇y)

A2 = −∇x · (k(y)∇x)

The pressure equation is now(
1
ε2 A0 +

1
ε

A1 +A0

)
(p0(x,y)+ εp1(x,y)+ ε

2 p2(x,y)+ ...) = f (4.12)

Collecting terms, we find a system of equations:

A0 p0 = 0 (4.13)
A0u1 +A1u0 = 0 (4.14)

A0u2 +A1u1 +A2u0 = f (4.15)

Following [107], it is possible to show that p0 is independent of y, and Eq. 4.14 can then
be written as

− ∂

∂yi

(
ai j(y)

∂

∂y j

)
p1 =

(
∂

∂yi
ai j(y)

)
∂p
∂x j

(x) (4.16)

Now define χ j as the solution to

∂

∂yi

(
ai j(y)

∂

∂y j

)
χ j =−

∂

∂yi
ai j(y) (4.17)

After some technical arguments and looking at the limit ε→ 0, [107], shows that the ho-
mogenized equation becomes

− ∂

∂xi

(
k∗i j

∂

∂x j

)
p = f (4.18)

Note, this is just the usual pressure equation with a rigorous choice of effective permeabil-
ity! In fact, the homogenized permeability, k∗, is given by

a∗i j =
1
|Y |

(∫
Y
(ai j−aik

∂χ j

∂yk
)dy
)

(4.19)

The literature on homogenization theory is vast and only the tip of the iceberg of homoge-
nization for elliptic problems was introduced here. An interested reader can find a thorough
discussion of homogenization and its relationship with averaging in [108].
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4.1.1.4 Variational Methods

Homogenization and upscaling reduce the degrees of freedom in an elliptic solve and thus
reduce the computational cost of the global solve. The idea is that being smoother than the
permeability, computing pressure only requires lumped information about the permeability
field. The lumped effective permeability however, is a fictitious field developed simply for
numerical reasons. The vast literature on upscaling shows that it can be effective, but a more
satisfying methodology would maintain the fine scale representation of k and only develop
a coarse approximation to p, the field that truly exists on a smoother scale. Multiscale vari-
ational methods provide just such an alternative. Additionally, the variational approaches
can often provide a systematic way of projecting the coarse pressure to a fine scale pressure
that exhibits important features seen in a full fine scale solution. Several variational multi-
scale methods exist, including the Variational Multiscale Method (VMM) [109, 110], Het-
erogeneous Multiscale Methods (HMM) [111, 112], Subgrid upscaling [113], Multiscale
finite element methods [107, 114], and the Multiscale finite volume method [115, 116]. All
of these methods are very similar and on some specific problems can be equivalent. In fact,
some papers, such as [117] do not even provide a clear distinction between these methods.
Subtleties aside, the basic idea is to perform a limited number of local pressure solves to
build a set of basis functions for use in a coarse scale (often called global) coupling. Here,
we will focus on the multiscale finite element method which uses the local basis functions
in a coarse scale Galerkin finite element formulation.

4.1.1.5 Multiscale Finite Element Methods

The formulation here follows closely the introduction in [107]. For more general in-
formation and useful background information on the standard finite element approaches,
see [118].

Let Ω be the domain of interest, where the pressure equation is to be solved. Consider a
coarse triangulation Th of Ω into finite elements. For each element of Th, a fine mesh can
also be created. A simple choice is to use quadrilateral elements for the coarse grid and
then either quadrilaterals or simplex elements on the fine grid. Let p lie in a function space
X , usually chosen as H1

0 (Ω). Then the usual weak form reads: find u ∈ X such that:

a(u,v) = b(v) ∀v ∈ X

The weak form of the pressure equation is given by

a(u,v) =
∫

Ω

k(x)∇u ·∇vdx =
∫

Ω

f vdx = b(v) ∀v ∈ X (4.20)

From here, most finite element methods will discretize the system by defining nodal basis
functions, φ0

i , (often linear) and only consider v ∈Wh = span{φ0
i }. However, it is possible

to choose these basis functions such that fine scale information is embedded into the coarse
scale weak formulation. Consider the basis function φi defined on the support of φ0

i . Since
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φ0
i is a nodal basis function, the support is over the elements containing node i as a vertex.

Let K be one of these coarse elements and define φi to satisfy:

−∇ · (k(x)∇φi) = 0 x ∈ K (4.21)
φi = φ

0
i x ∈ ∂K (4.22)

where ∂K is the coarse element boundary. Clearly, the MsFEM basis function, φi matches
φ0

i on the element boundaries, but solves the homogeneous pressure equation on the element
interior. Thus, effects of the fine scale k on the pressure are embedded into the coarse scale
formulation through φi. Fig. 4.6 shows an example of an MsFEM basis function over one
coarse element. In the case of Fig. 4.6, the coarse elements are quadrilaterals, so the figure
only shows one quarter of a complete nodal basis function.

Figure 4.6: Illustration of MsFEM Basis function. This illustrates the basis function evalu-
ated over one coarse element.

Let Ph = span{φi} be the space spanned by the MsFEM basis functions. To discretize
the system using MsFEM, we first represent the pressure in terms of the MsFEM basis
functions:

ph = ∑
i

piφi (4.23)

and use the following weak formulation:

∑
K

∫
K

k∇ph∇vhdx =
∫

Ω

vhdx ∀vh ∈ Ph (4.24)

This is a Galerkin projection; however, a Petrov-Galerkin projection could also be used.
Either form will yield a linear system:

Ac pnodal = b (4.25)
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where pnodal is a vector of basis function weights, Ac is the coarse stiffness matrix, and b
represents source terms. Elements of Ac are given by

ai j = ∑
K

∫
K

k∇φ j∇φidx (4.26)

The integrals inside the summation will be referred to as elemental integrals. As pointed
out by [107], in implementation it is more straightforward to use the relationship:

Ac = DT A f D

than the integral form. Here, column i of D is a vector holding the discrete basis function φi,
and A f is the global fine scale stiffness matrix. A f would be the result of using a standard
finite element approach on the global fine scale mesh. Boundary conditions for Eq. 4.25
can be implemented identically to standard finite element approaches. Once the coarse
pressure pnodal has been found, projecting this solution back to the fine scale is trivial:

p∗f = Dpnodal (4.27)

Since Ph is spanned by a relatively small number of basis functions compared to a full
fine scale formulation, solving the resulting linear system is much more computationally
tractable. However, local solves are still required to find φi. The local solves are easily par-
allelized. Local solves on each element are independent of all other elements. Furthermore,
the basis functions do not need to be recomputed when the source terms in f are changed, a
useful feature when considering MsFEM as the solver in a well-design framework, or other
application where many solves are needed but only f changes between solves.

In the definition of the MsFEM basis functions the constraint φi = φ0
i on ∂K was used

as the boundary conditions of the local homogeneous pressure equation. However, it is
well known that these boundary conditions do not represent any fine scale heterogeneities
and significant errors can be produced on problems without a large scale separation in the
permeability field. Possible solutions include oversampling, [107, 119], where the local
solve is performed on a computational domain larger than a single coarse element and then
truncated, or solving one dimensional problems along the boundary, as in [115, 116]. Here
we use the latter method and first solve a one dimensional problem along each edge of K.
For φi in K, the pressure is set to 1 at node i and zero elsewhere for the one dimensional
solves. The one dimensional solutions are then used as Dirichlet conditions in the two
dimensional solve for φi on the interior of K.

In practice, even these boundary conditions can introduce error because of a lack of scale
separation in the permeability field. Errors may still exist, coming into play when the coarse
element size resonates with lengthscales of the permeability. Overcoming this requires the
use of limited global information which can require a global fine scale solve. See [107] for
a detailed discussion of global information in MsFEM as well as a thorough error analysis
based on homogenization theory.
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4.1.2 Multiscale Sampling Methods

So far, this chapter has focused solely on multiscale solution strategies for the pressure
equation. However, using multiscale strategies within a sampling method such as MCMC
can also be advantageous. This section will give a brief overview of current multiscale
MCMC methods and point out where there is room for improvement.

4.1.2.1 Coupled Metropolis Sampling

Following the derivations in [74] and [120], consider a case where we have two represen-
tations of the permeability field, k1 is a fine field, and k2 is a coarsened field. The fine scale
field is donned with a Gaussian prior:

k1 ∼ N(µ,Σ1)

Furthermore, a linear equation is used to transfer information from the fine scale k1 to the
coarse field k2:

k2 = A1k1 (4.28)

The linear link A1, usually represents some type of linear average, [120]. As already men-
tioned in the upscaling section, a linear relationship between fine and coarse permeability
fields does not satisfy the problem physics. This is not a killer in the coupled Metropolis
setting discussed in [120]. In that case, a linear map is necessary and any errors in the
mapping are alleviated by introducing an additive error term to the upscaling. The new
multiscale inference procedure outlined in the next chapter avoids this issue by allowing
for a nonlinear relationship between scales.

In a two scale problem, the multiscale Metropolis method proposed by Higdon in [121]
has two MCMC chains simultaneously exploring the posterior distributions of k1 and k2.
In porous media, each scale will have a likelihood distribution, π(d|k1) and π(d|k2), where
d are pressure observations. The coarse likelihood will require a simulation using a coarse
discretization of the pressure equation with permeability k2. Similarly, the fine scale likeli-
hood will require a more expensive pressure equation solve using a fine grid with k1. Occa-
sionally, the chains will swap information through an interscale swap proposal, q(k′1,k

′
2|kn

1,k
n
2).

The proposal for k2 is simply taken as the linear upscaling, Ak1. Furthermore, k1 and k2 are
assumed to both have normal densities, so the fine proposal will simply be the prior for k1
conditioned on Ak1 = k2. So, we have:

q(k′1,k
′
2|kn

1,k
n
2) = q(k′1|Ak1 = kn

2)q(k
′
2|k2 = Ak1) (4.29)

The density q(k′2|k2 =Akn
1) is a Dirac measure at Akn

1. Using this proposal in the Metropolis-
Hastings rule gives

α = min
{

1,
π(d|k′2)π(k′2)π(d|k′1)π(k′1)q(kn

1,k
n
2|k′1,k′2)

π(d|k2)π(k2)π(d|k1)π(k1)q(k′1,k
′
2|kn

1,k
n
2)

}
(4.30)
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Figure 4.7: Illustration of the Multiscale Metropolis MCMC method. Here, steps labeled
with MCMC correspond to steps with standard single scale proposals. It is also possible to
have more than one MCMC step before a swap is performed.

Fig. 4.7 shows a graphical representation of the Coupled Metropolis MCMC.

Multiscale Metropolis increases MCMC effectiveness through better mixing of the fine
scale MCMC chain and can help the chain explore more of the fine scale parameter space.
However, each step of the chain still requires a fine scale simulation to evaluate the fine
scale likelihood. Like computing MsFEM basis functions offline for a well-field design
problem, we would like to avoid any fine scale simulations beyond offline preprocessing.
The basic idea behind Metropolis-Coupled MCMC is that a coarse representation of k is
easier to sample because it reduces the problem dimension. This is useful concept that will
be expanded later to the point where knowing the coarse quantities alone is sufficient to
predict the pressure and no fine scale solves are needed during the MCMC routines.

4.1.2.2 Proposal Filtering with MsFEM

Taking one step closer to avoiding fine scale simulation altogether is the work on two
stage proposals in [122] and expanded to Langevin type proposals in [123]. Conceptually,
these methods use a coarse multiscale finite volume (MsFV) simulation to filter out bad
proposals before any fine scale simulations need to be performed. The papers are focused
on saturation simulations, so the major computational cost is in solving fine scale saturation
equations. Thus, a coarse MsFV pressure is used with a crudely averaged coarse saturation
solve. While some errors in the coarse solve exist, the information is still valuable for
filtering out bad proposal points. Consider a coarse forward model G∗(k) and a likelihood
function π∗(k′) that depends only on outputs from the coarse forward model. Now, let k′ be
a proposal from a standard Gaussian proposal mechanism. During a preconditioning step,
this proposal is accepted as the true proposal with probability

α
∗(kn,k′) = min

{
1,

q(kn|k′)π∗(k′)
q(k′|kn)π∗(kn)

}
(4.31)

where q(k|kn) is the usual proposal density. This means that the final, fine scale, proposal
comes from the density:

Q(k|kn) = α
∗(kn,k)q(k|kn)+

(
1−

∫
α(kn,k)q(k|kn)dk

)
δkn(k) (4.32)
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Using this proposal in the Metropolis-Hastings rule gives a final acceptance probability of

α = min
{

1,
Q(kn|k)π(k)
Q(k|kn)π(kn)

}
(4.33)

The advantage of this approach is that when k′ is rejected in the initial stage, no fine
scale saturation solve is necessary and a significant computational savings is experienced.
In [123], this procedure is generalized to a Langevin MCMC case where the posterior gra-
dient is approximated using only coarse scale solves. Unfortunately, the advantages in
these methods are not as useful in the steady state single flow scenario considered here be-
cause some fine scale simulations are still required after a proposed point passes the initial
rejection stage. As will be shown in the next chapter, when only considering the pressure
equation, reasonable assumptions and some offline preprocessing allow for a complete de-
coupling of the fine and coarse scales. This simultaneously reduces the MCMC parameter
dimension and the computational expense of a forward evaluation.

4.2 Multiscale Inference Framework

4.2.1 Conditional Independence

For steady state single phase flow based on the pressure equation, solving for pressure with
MsFEM can be broken into two stages. In the first stage, local solves are used to build a
coarse scale stiffness matrix and in the second stage, this stiffness matrix is used to compute
the pressure. If desired, the coarse pressure can also be projected onto the fine scale using
the same basis functions. In the forward problem, information moves from permeability
to coarse stiffness matrix, to pressure. Thus, when solving the inference problem, infor-
mation should travel from pressure observations, through the coarse scale stiffness matrix,
to the permeability field. The previous work in [122, 123] discussed above, takes partial
advantage of this to pre-reject bad proposals based only on a coarse approximation. Here
we take further advantage of the MsFEM structure to eliminate the need for any global fine
scale solves. We focus on a static inference problem where steady state pressure observa-
tions, d, are given. The goal is then to characterize a permeability field on the fine scale, k,
conditioned on the data. That is, we wish to find the density π(k|d). As usual Bayes’ rule
will be used to obtain the posterior in terms of a likelihood and prior:

π(k|d) ∝ π(d|k)π(k) (4.34)

In the MsFEM setting, the intermediate coarse scale stiffness matrix can also be included
in the inference. Thus, the joint posterior of the stiffness matrix A and the permeability k
can be represented as:

π(k,A|d) ∝ π(d|k,A)π(k,A)
Here, the notation π(k,A|d) refers to the joint distribution of the permeability values and
the entries in the stiffness matrix. Note that in some instances, the number of variables
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representing A can be reduced by considering the distribution of elemental integrals. This
topic will be discussed later. Expanding the joint prior with the law of total probability
gives

π(k,A|d) ∝ π(d|k,A)π(k|A)π(A) (4.35)

At this point it may seem awkward to place a prior, π(A), on the stiffness matrix entries
but we will see that this is a critical step in decoupling the fine and coarse scales. Now,
concentrate on the likelihood term π(d|k,A). This is the probability of the data given both
the permeability and the coarse scale stiffness matrix. However, as we know from MsFEM,
only the stiffness matrix is needed to construct the pressure, p. This is an important obser-
vation: when using MsFEM, the stiffness matrix A is “sufficient” for p. Sufficiency is an
important notion in statistics; see [124] for more information or [125] for a discussion in
the context of Jeffreys’ conditioning. Since d is an observation of p, we have that A is suffi-
cient to describe d. Probabilistically, this idea corresponds to the conditional independence
of d and k given A:

π(d,k|A) = π(d|A)π(k|A) (4.36)

which implies
π(d|k,A) = π(d|A) (4.37)

Using this in Eq. 4.35 gives

π(k,A|d) ∝ π(d|A)π(k|A)π(A) (4.38)

Fig. 4.8 validates the conditional independence assumption. 500000 samples were gener-
ated from a prior on k and the corresponding entries of the stiffness matrix and pressure
were found. In the joint covariance, three regions are marked. The first columns and
last rows are the entries in the stiffness matrix, the next group inward is the pressure, and
the large section filling the upper right is the permeability. In the joint covariance, faint
correlations can be seen between all the fields. However, looking at the joint conditional
distribution π(k, p|A∗), no significant correlations are seen between the pressure and per-
meability. In order to perform the conditioning, a particular stiffness matrix, A∗, needed to
be used. Several choices were tested and all produced similar results. Note the pressure in
Fig. 4.8 was computed with a fine scale solve. Similar results for MsFEM show that this is
not a feature of the solver being used, but a consequence of A being sufficient to describe
p.

4.2.2 Multiscale MCMC Formulation

In order to characterize the new target distribution π(k,A|d), MCMC will be used. In order
to sample the joint density, a joint proposal, q(k′,A′|k,A) will be used. In this setting the
Metropolis-Hastings acceptance probability becomes:

α = min{1,γ}
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Figure 4.8: Validation of conditional independence assumption.

where

γ =
π(d|k′,A′)π(k′,A′)q(k,A|k′,A′)
π(d|k,A)π(k,A)q(k′,A′|k,A)

=
π(d|A′)π(k′|A′)π(A′)q(k|A)q(A|A′)
π(d|A)π(k|A)π(A)q(k′|A′)q(A′|A)

(4.39)

The second equality comes from simply expanding the joint distributions into conditionals
and using the conditional independence assumption. This equation looks much more diffi-
cult to use than the usual expression when we want π(k|d). This equation has both coarse
stiffness matrix terms and permeability terms. However, if we could sample exactly from
π(k|A), the corresponding portion of the proposal could be exact and major simplifications
would ensue. Assume therefore

q(k|A) = π(k|A)

then, after some simplification, we have

γ =
π(d|A′)π(A′)q(A|A′)
π(d|A)π(A)q(A′|A)

(4.40)

which is nothing more than a standard Metropolis-Hastings rule in just the low dimensional
A! Using this acceptance probability, the relatively low dimensional coarse scale stiffness
matrix could be inferred without ever needing the high dimensional fine scale field, k. Alas,
there is no free lunch. The two major assumptions made during this derivation need to be
addressed. Specifically,

• a means of evaluating the prior density for the entries in A needs to be found.
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• a method to sample from the conditional distribution π(k|A) needs to be developed

A prior on A is needed to perform the coarse sampling. Additionally, sampling from π(k|A)
will allow posterior realizations of k to be generated from each sample of the stiffness
matrix. The proposed multiscale sampling strategy is summarized in Fig. 4.9. In this
figure, data is used with a prior on A to generate posterior samples with standard MCMC
tools such as DRAM. Then, a nonlinear iterative conditioning procedure is used to generate
posterior samples of k for each sample of A. The next section will discuss how a prior for
A can be developed offline from a prior on k. The following section will then introduce
a new nonlinear conditioning approach that will allow samples of π(k|A) to be generated.
Numerical results and analysis will be left to the next chapter.

D =
p

p(d|A)

A(i) =

k(i) =

MCMC Nonlinear conditioning

Figure 4.9: Illustration of full multiscale inference using procedure using MsFEM.

4.2.3 Upscaling the Prior

The prior distribution on the permeability field is derived from expert opinions, a priori
site characterizations, and an overall geologic understanding of the medium. However,
this knowledge does not directly transfer to a prior on A. It is not clear how a knowledge
of sediment formations will affect A. Consider the case when k is a log-normal random
process. That is k = exp[Y ] where Y ∼ GP(µy,ΣY ). The covariance of Y at two locations
from a two point covariance kernel. The kernel maps the spatial distance between two
permeability regions to a correlation. Multiplying by a stationary variance then gives the
covariance. A general covariance kernel may follow an exponential form:

Cov[Y (xi),Y (x j)] = σexp
[
−1

p

(
‖xi− x j‖2

L

)p]
(4.41)

where p is a power parameter, L is a length scale, and σ is the variance. When p = 1
we have an exponential kernel, and p = 2 is a Gaussian kernel. Exponential kernels tend
to be much rougher than Gaussian kernels and usually need to be represented on a finer
mesh. Representing the prior with a covariance kernel such as this is convenient; only 3
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parameters and the mean are needed to completely describe a high dimensional distribution.
This section attempts to demonstrate that with some offline Monte Carlo preprocessing, a
reference mapping can be built that takes the kernel parameters for Y to parameters de-
scribing a log-normal distribution for the elemental integrals. In this setting, Y will be a
discrete dimensional field described by a Multivariate Gaussian distribution. This is a sim-
ply a discretization of Gaussian process definition. Begin by considering a one dimensional
Petrov-Galerkin formulation of MsFEM on a one dimensional mesh with nodes at x0,x1, ....
Construction of the coarse scale stiffness matrix in this case is given by:

ai j =
∫ xi

xi−1

k(x)
∂φi

∂x

∂φ0
j

∂x
dx+

∫ xi+1

xi

k(x)
∂φi

∂x

∂φ0
j

∂x
dx (4.42)

where φi is the MsFEM basis function defined as 1 at node i and 0 at xi−1 and xi+1. Within
these two elements, φi satisfies:

∂

∂x

(
k(x)

∂φi

∂x

)
= 0

so

k(x)
∂φi

∂x
= c

for some constant c. Dividing both sides by k(x) and integrating over [xi−1,xi] we see that

∫ xi

xi−1

∂φi

∂x
dx =

∫ xi

xi−1

c
k(x)

dx

⇒ φi|xi
xi−1

=
∫ xi

xi−1

c
k(x)

dx

⇒ c =
1∫ xi

xi−1
1

k(x)dx
(4.43)

An equivalent process can be repeated over [xi,xi+1] to obtain

ai j =
∫ xi

xi−1

1∫ xi
xi−1

1
k(x)dx

∂φ0
j

∂x
dx+

∫ xi+1

xi

1∫ xi+1
xi

1
k(x)dx

∂φ0
j

∂x
dx

=
1∫ xi

xi−1
1

k(x)dx

∫ xi

xi−1

∂φ0
j

∂x
dx+

1∫ xi+1
xi

1
k(x)dx

∫ xi+1

xi

∂φ0
j

∂x
dx (4.44)
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Using nodal linear functions for the test basis functions φ0
i simplifies this expression to:

ai,i−1 = − 1∫ xi
xi−1

1
k(x)dx

(4.45)

ai,i+1 = − 1∫ xi+1
xi

1
k(x)dx

(4.46)

ai,i =
1∫ xi

xi−1
1

k(x)dx
+

1∫ xi+1
xi

1
k(x)dx

(4.47)

Denote the coarse element from xi−1 to xi as element i, then the elemental integral for
element i is given by:

ei =
1∫ xi

xi−1
1

k(x)dx
(4.48)

Note that the stiffness matrix entries are composed of the elemental integrals. Clearly,
ai,i = ei + ei+1, ai,i−1 = −ei, and ai,i+1 = −ei+1. Thus, a prior on the stiffness matrix,
π(A) is equivalent to having a prior on the elemental integrals: π(e). This holds in one
dimension, in higher dimensions more care is required.
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Figure 4.10: Quantile-Quantile plot comparing sample quantiles to true log-normal quan-
tiles. The distribution is an exact fit when the scatter points are exactly linear.

Let k be defined as a piecewise constant field in one dimension following a log-normal
distribution, k = exp[Y ] for Y ∼ N(µY ,ΣYY ). Furthermore, let ΣYY be described through an
exponential covariance kernel of the form in Eq. 4.41. Taking 400,000 Monte Carlo of Y
and computing e with Eq. 4.48 shows that e is approximately joint log-normally distributed
as well. Figs. 4.11 and 4.12 show the joint distribution of the elemental integrals when
5 coarse elements were used with 20 fine elements for each coarse element for a total of
100 fine elements over [0,1]. The fitted covariance kernels are also shown. The densities
pass the eyeball test of normality, Fig. 4.10 also shows that these e are well approximated
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by log-normal distribution. Through the majority of parameter space, the sample quantiles
match what is expected of a log-normal density. However, the tail probabilities are off, as
you would expect in an approximation and with a finite number of samples. Each color
corresponds to a different elemental integral. The plot only shows a few dimensions but
similar results are found in all dimensions.
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Figure 4.11: Distribution of log(e) based on Monte-Carlo sampling of a piecewise constant
log-normal k field with exponential prior.

Therefore, for a prior parametrized by a given length scale, power, and variance, the dis-
tribution of elemental integrals can be well approximated by a log-normal distribution of a
similar form to the prior. The fitted parameters for π(log(e)) were found using maximum
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Figure 4.12: Distribution of log(e) based on Monte-Carlo sampling of a piecewise constant
log-normal k field with Gaussian prior.

likelihood estimation. The optimization was done with a simple implementation of the
Levenberg-Marquadt algorithm with constant Marquadt parameter λ.

It is infeasible to perform the Monte Carlo sampling and fitting each time a prior for e is
needed. However, using a database of previously run samples provides an empirical way to
map the parameters describing π(k) to parameters characterizing π(e). All the work to build
the database can be done before an inference is required and reused each time the algorithm
is run. Performing the same fitting procedure used in Figs. 4.11 and 4.12, the surfaces in
Fig. 4.13 were constructed. Some sampling error is visible, especially in the power plots.
These mappings are critical to this multiscale framework; given the parameters of the prior,
the corresponding parameters of the elemental integrals can be trivially found. Distances
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between elemental integrals are the distances between the center of each coarse element.
It may seem unusual to represent a vector quantity e as a spatially dependent parameter.
However, in a case where k was a continuous random process, the elemental integrals could
be interpreted as the reciprocal of a moving average of 1

k(x) over a length δx= xi−xi−1. The
elemental integrals used in the coarse stiffness matrix are then snapshots of a continuously
varying random process.

Fig. 4.13 shows the coarse length scale is only a function of the fine correlation length.
For significant correlation lengths, the coarse variance is also only a function of the fine
variance. However, as the fine scale correlation length d f goes to zero, so does the coarse
variance. Conceptually, this is expected. When σ f → 0, Y becomes white noise on top of
µY , so integration on each coarse element will give approximately the same quantity, and
var[log(e)]→ 0.

4.2.3.1 Proof of Positive Definiteness in One Dimension

Using the information in Fig. 4.13, a coarse scale prior distribution is defined in terms
of the prior on k. Using the log-normal π(e), samples of the stiffness matrix can easily
be generated. It can also be shown that these samples of A are guaranteed to be positive
definite in the one dimensional setting. Here we will show that in one dimensional, the
coarse scale stiffness matrix is identical to a matrix derived with linear basis functions and
a coarse representation of k. Thus, coming from a standard finite element discretization of
an SPD operator, we conclude that by construction, any sample of π(e) will create a SPD
stiffness matrix A.

Using linear basis functions on the coarse grid in a standard Galerkin projection; the fol-
lowing elemental integrals, ẽ, are created:

ẽi =
∫ xi

xi−1

k̃(x)
∂φ0

i
∂x

∂φ0
i−1

∂x
dx (4.49)

Note that a different permeability field k̃ was used here. The field k̃ is assumed to be
piecewise constant on the coarse grid, whereas the field k used in the MsFEM formulation
is piecewise constant on the fine grid. From standard finite element theory, using Eq. 4.49
is guaranteed to produce a symmetric positive definite stiffness matrix when k̃ > 0. Thus,
to guarantee A will be symmetric positive definite for any sample of π(e) it suffices to show
there exists a field k̃ such that ẽi = di for any e.

Proof. Let e∗i be a sample of π(e). On each element, choose

k̃i =−h2e∗i (4.50)
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Figure 4.13: Mapping from π(Y ) to π(log(e)) for exponential and Gaussian covariance
kernels in π(Y ). The fine scale correlation length, L f , has been scaled by the coarse element
size h to allow for arbitrary discretizations. Notice the x axis of the power plots is in the
opposite direction to the other plots.

where h = xi− xi−1. Then

ẽi =
∫ xi

xi−1

−h2e∗i
∂φ0

i
∂x

∂φ0
i−1

∂x
dx (4.51)

= −h2e∗i

∫ xi

xi−1

∂φ0
i

∂x
∂φ0

i−1

∂x
dx (4.52)

= e∗i
h2

h2 (4.53)135



The last step comes from the fact that φ0
i and φ0

i−1 are linear with slopes 1
h and −1

h respec-
tively. Thus, the MsFEM stiffness matrix from any sample of π(e) is equivalent to a coarse
Galerkin discretization of the pressure equation on a permeability field k̃ and is guaranteed
to be symmetric positive definite.

In higher dimensions, it is not clear whether a similar proof can be found. Currently, our
only solace is that a proposal of e resulting in a non-SPD stiffness matrix may result in an
inaccurate pressure and have a very small probability of being accepted.

4.2.4 Iterative Nonlinear Conditioning

At first glance, generating a sample of π(k|A) may seem just as difficult as sampling a
posterior. Indeed, using Bayes’ rule would give

π(k|A) ∝ π(A|k)π(k)

which is no easier to compute than π(k|d). However, for each sample A(i), we are condi-
tioning on a point density, which means that π(k|A) will only have positive measure on a
low dimensional manifold constrained by A(i). The constraint comes from the nonlinear
relationship map between k to A. Sampling from π(k|A) can be seen as sampling from a
slice of the prior on k. Fig. 4.14 illustrates this idea.

Y1

Y2
π(Y )

F(Y ) =W (i)

Figure 4.14: Illustration of π(k|A) as a constraint on the prior. We wish to sample from the
“slice” of π(k) along the constraint.

Ultimately, the goal is to characterize k through A. To do this, it will be convenient to work
with Gaussian distributions; however, k and A are distributed log-normally. Thus, we will
instead consider Y = log(k) and W = log(e) in the following analysis.
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4.2.4.1 Linear Conditioning

Let F(Y ) be the mapping from Y to W . Assume for the moment that this mapping is linear:
F(Y ) = FY . In this case, the joint distribution of Y and W is given by[

W
Y

]
∼ N

([
FµY
µY

]
,

[
FΣYY FT FΣYY
ΣYY FT ΣYY

])
(4.54)

The dimension of W is equal to the number of coarse elements in the system and will be
significantly smaller than the dimension of Y , which is equal to the total number of fine
elements. The goal here is to express Y in terms of W . To do this, we can use the Schur
complement of the joint covariance, which can also be viewed here as a block Gaussian
elimination. We obtain:

IE[Y |W ] = µY +ΣYY FT (FΣYY FT)−1
(W −FµY ) (4.55)

Cov[Y |W ] = ΣY −ΣYY FT (FΣYY FT)−1
FΣYY (4.56)

which is more commonly written as

IE[Y |W ] = µY +K(W −FµY ) (4.57)
Cov[Y |W ] = ΣYY −KFΣYY (4.58)

where K = ΣYY FT (FΣYY FT)−1 is often called the Kalman gain. Clearly, in the linear
Gaussian case a simple analytic form exists for π(Y |W ) in terms of the prior mean and
covariance. Alternatively, independent samples of π(Y |W ) can be generated by taking
samples of the prior, and using a modified version of Eq. 4.55 to move the sample onto the
constraint. The moments of the moved samples are guaranteed to converge to the analytic
mean and covariance using the linear update equation:

Y ∗a = Y ∗+ΣYY FT (FΣYY FT)−1
(W −FY ∗) (4.59)

The following proof shows that sampling from the prior and then moving those samples to
the constraint with Eq. 4.59 will converge in distribution to π(k|A).

Proof. Let Y ∼ N(µ,Σ) be a multivariate Gaussian random variable with dimension N.
Given a linear operator F of size M×N with M ≤ N, define the multivariate Gaussian
W = FY . Thus, IE[Y |W = b] is defined in Eq. 4.55 and Cov[Y |W = b] is given by Eq. 4.56.
Now, consider the linear operation:

Z = Y +FΣ(FΣFT )−1(b−FY )
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where Z is a multivariate Gaussian random variable of dimension N. The expectation of Z
is:

IE[Z] = IE[Y +FΣ(FΣFT )−1(b−FY )]
= IE[Y ]+FΣ(FΣFT )−1IE[(b−FY )]
= IE[Y ]+FΣ(FΣFT )−1(b−FIE[Y ])
= µ+FΣ(FΣFT )−1(b−Fµ)

and the covariance of Z is:

Cov[Z] = IE[(Z− IE[Z])(Z− IE[Z])T ]

= IE
[(

Y +FΣ(FΣFT )−1(b−FY )−µ−FΣ(FΣFT )−1(b−Fµ)
)

∗
(
Y +FΣ(FΣFT )−1(b−FY )−µ−FΣ(FΣFT )−1(b−Fµ)

)T
]

= IE
[(

Y −µ−FΣ(FΣFT )−1FY +FΣ(FΣFT )−1Fµ
)

∗
(
Y −µ−FΣ(FΣFT )−1FY +FΣ(FΣFT )−1Fµ

)T
]

= IE
[(

Y −µ−FΣ(FΣFT )−1F(Y −µ)
)(

Y −µ−FΣ(FΣFT )−1F(Y −µ)
)T
]

= IE
[(

Y −
(
µ+FΣ(FΣFT )−1(FY −Fµ)

))(
Y −

(
µ+FΣ(FΣFT )−1(FY −Fµ)

))T
]

= IE
[
(Y − IE [Y |FY ]) (Y − IE [Y |FY ])T

]
= Cov[Y |FY ]

The mean and covariance match the mean and covariance of W . Therefore, since the mean
and covariance of a multivariate Gaussian completely describe the distribution, Z d

= W .
This implies sampling from Y and then updating the samples is equivalent to sampling
from W since the update is linear.

4.2.4.2 Nonlinear Conditioning

The idea of taking a sample from the prior and moving it to a representative location is
not unique to this work. This concept is also fundamental to the Ensemble Kalman Filter
(EnKF) [126]. In a dynamic problem, the EnKF works by running several samples (an
ensemble) through the forward model until an observation time is reached. Then the ob-
servation is incorporated by using Eq. 4.59 on the entire ensemble. The samples are then
again propagated through the forward model until another observation is reached. The ba-
sic EnKF assumes a linear observation function.4 That is, even if the forward simulation is
nonlinear, the relationship between simulation output and the observational data is linear.
Interestingly, sampling π(k|A) is identical to a incorporating observations in the EnKF with

4Additionally, the EnKF assumes Gaussianity of the ensemble members when incorporating observations.
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a nonlinear observation function. To surmount the nonlinearity, we follow years of math-
ematical tradition and simply approximate the nonlinear F(Y ) with a linearization around
Y0:

F(Y )≈ F(Y0)+ J(Y0)(Y −Y0) (4.60)

where J(Y0) is the Jacobian matrix of F(Y ) evaluated at Y0. The constraint, F(Y ) =W can
now be approximated with

F(Y0)+ J(Y0)(Y −Y0) =W (4.61)
⇒ J(Y0)Y =W + J(Y0)0−F(Y0) (4.62)

and a linear update can be performed:

Y1 = Y0 +ΣYY JT (JΣYY JT)−1
(W + JY0−F(Y0)− JY0)

= Y0 +ΣYY JT (JΣYY JT)−1
(W −F(Y0)) (4.63)

where J = J(Y0). In this situation, Y1 is an approximation to a sample of π(Y |W ). The
linear approximation gets Y1 closer to satisfying F(Y ) =W , but will not in general satisfy
the constraint. To obtain a better approximation, the linearization process is repeated at Y1
and another linear conditioning step can be performed. This iteration is repeated until a
point Yn satisfying ‖F(Yn)−W‖2 < ε is reached for some small ε. Linearization errors are
significant in this process and only an approximate sample of π(k|A) will be generated. The
errors can be corrected after the constraint is reached through additional measures such as
MCMC. However, samples more closely representing π(k|A) will require less correction
and less MCMC will be required. Use of MCMC is discussed more thoroughly in later
sections. For now, the focus remains on approximately getting to the constraint.

Several variations of the simple iterative linearization introduced above can be used. In
fact, the linear update step can be viewed as a forward Euler discretization of the nonlinear
ordinary differential equation

∂y
∂t

= ΣYY JT (y)
(
J(y)ΣYY JT (y)

)−1
(W −F(y)) (4.64)

with initial condition y(t = 0) = Y0. By using higher order integration techniques, the
linearization error can be reduced. In fact, as the timestep ∆t → 0, the high order terms
originally truncated in Eq. 4.61 become negligible and virtually no approximation error
exists. However, computational costs will require the use of a more moderate ∆t, and some
linearization errors will undoubtedly be introduced.

Using high order methods to integrate Eq. 4.64 is similar to the mollified Ensemble Kalman
Filters, where data is incorporated into the system gradually using a continuous time deriva-
tion of the EnKF [127]. Another related concept is the idea of nonlinearly constrained
Kalman Filters. Sampling from π(Y |W ) is nearly identical to the EnKF update equation in
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that setting. The nonlinear constrained EnKF has been thoroughly discussed in [128] and
more recently in [129]. The idea proposed by Geeter et al. is to replace the hard constraint
F(Y ) =W with a series of weak constraints J(Yn−1)Yn =W + εY for some ε∼ N(0,ηnΓ0).
Where

Γ0 = αJΣYY JT

This follows from the fact that linearly conditioning a Gaussian random variable on ob-
servations with variance σ is equivalent to conditioning the random variable on the same
observation 10 times with observation variance 10σ. In the presence of this article noise,
the update equation becomes

Yn+1 = Yn +ΣYY JT (JΣYY JT +ηΓ0
)−1

(W −F(Yn)) (4.65)

Where the observation error ηΓ0 is meant to roughly approximate the linearization error
at each step. As the iteration progress and F(Yn) approaches W , the incremental stepsize
Yn+1−Yn will decrease and a decrease in linearization error will ensue. To incorporate this
into the artificial noise, [128] proposes shrinking η with

ηn = αexp(−n)

In true EnKF fashion, a covariance is approximated at each step, replacing ΣYY in sub-
sequent position updates. The complete method for approximately sampling π(Y |W ) is
outlined in algorithm 1.

Algorithm 1 Smoothly constrained Kalman filter sampling

Require: Prior distribution, π(Y )∼ N(µY ,ΣYY )
Error parameter, η

Nonlinear constraint F(Y ) =W , Stopping tolerance δ.
1: Draw a sample, Y0 from π(Y )
2: Set initial covariance, Σ0 = ΣYY
3: Set initial error, Γ0 = αJ(Y )Σ0JT (Y );
4: n = 0
5: while ‖F(Yn)−W‖2 > δ do
6: Γ = Γ0 exp(−n)
7: n = n+1
8: Yn+1 = Yn +ΣnJT (Yn)

(
J(Yn)ΣnJT (Yn)+Γ

)−1
(W −F(Yn))

9: Σn+1 = Σn−ΣnJT (Yn)
(
J(Yn)ΣnJT (Yn)+Γ

)−1 J(Yn)Σn
10: end while
11: Return Yn+1 as approximate sample of π(Y |W )

Fig. 4.15 shows a comparison of this smoothly constrained Kalman filter (SCKF) approach
with a 4th-5th order adaptive Runge-Kutta integration of Eq. 4.64. The prior distribution is
simply N(0, I) in two dimensions with a constraint

y = 0.2x3−0.2x+1
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Clearly, the SCKF method provides a better initial approximation compared to the Runge-
Kutta solver. However, after a few hundred MCMC steps along the constraint, any error
is erased and the samples represent the true posterior shown in black. In general, as the
problem becomes more nonlinear, more MCMC correction will be needed to ensure the
final sample represents π(Y |W ).
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Figure 4.15: Comparison of high order ODE integration with SCKF for sampling from a
constraint. The densities are plotted over x.

The iterative conditioning procedure can also be viewed as Monte Carlo integration. For
uncorrelated jointly Gaussian random variables, x1 and x2, marginalizing is equivalent to
conditioning: π(x1|x2) = π(x1). This can be generalized to correlated random variables by
introducing a linear transformation. Specifically, marginalization in linearly transformed
coordinates is equivalent to conditioning in the original coordinates. This can be used to
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cast “sample and move” linear conditioning as Monte-Carlo integration. Begin by trans-
forming Y to an uncorrelated vector of random variables, z, with Y = µY +Lz where L is a
matrix square root (e.g. Cholesky factorization) of ΣYY

LT L =V T
ΣkV

The goal now is to find π(z|FLz = W ). Where z ∼ N(0, I). Consider the singular value
decomposition of FL,

FL =USV T

where V contains right eigenvectors, S is the diagonal matrix of singular values, and U
contains the left eigenvectors. Since F has fewer rows than columns, some singular values
will be zero. Using the SVD in the conditional density gives

π(z|FLz =W ) = π(z|USV T z =W )

= π(z|SV T z =UTW ) (4.66)

Next, introduce the transformed coordinates, x = V T z. The new problem becomes to find
π(x|Sx =W ′) where W ′ =UT A and the prior on x is

x∼ N(V T µk,V TV )

which is equivalent to
x∼ N(V T µk, I)

Note that x is uncorrelated and S is diagonal. Also observe that rows of S corresponding to
the zero singular values are completely zero. Now, consider the set Z of all nonzero rows
of S. The conditional distribution can then be decomposed as

π(x|S′x =W ′′) = ∏
i/∈Z

π(xi) (4.67)

where xi =
W ′′i
S′i
∀i ∈ Z. Thus, conditioning in the original coordinates, π(Y |W ) is simply

marginalizing over xi for i ∈ Z. Back to sampling from π(Y |W ). It is clear that for a linear
map, sampling a Y and moving it to Y ∗ with Eq. 4.59 is a projection of the point onto a sub-
space. Many samples of π(Y ) can be mapped to x space and then moved to the constraint.
This process eliminates all Z directions. By elimination, we mean those coordinates have
been marginalized out of the final distribution. The sample and move strategy can now be
seen as a Monte-Carlo integration over the Z directions. In the nonlinear case, the singular
value decomposition of the Jacobian is not constant over the entire parameter space, so the
integration directions will not be lines. Instead, the integration directions will be given by
Eq. 4.64. Fig. 4.16 illustrates the linear and nonlinear directions along which Monte-Carlo
integration is taking place. Any sample of the prior that lands on one of these lines will
move to the same location on the constraint. In the linear case, moving along a line to the
constraint represents a projection onto the null space of F . The norm in this projection is
defined by the prior covariance. Thus, moving along a line to a nonlinear constraint is a
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Figure 4.16: Illustration of integration paths for nonlinear conditioning and linear condi-
tioning

projection to the nullspace of F(Y ) using a warped nonlinear metric. In fact, this nonlinear
projection might be related in some way to geodesics and Riemannian manifolds.

Fig. 4.16 also gives insight into why the nonlinear conditioning approximations in Fig. 4.15
show larger peaks than the true posterior. Exact integration of π(Y ) along each line in 4.16
with a numerical integration rule will give correct density evaluations along the constraint.
However, moving random samples of the prior along the integration path results in more
samples where the integration paths converge towards one another, resulting in an overes-
timation of the density. By incorporating some artificial noise into the system the SCKF
results in some diffusion, alleviating the impact of converging integration paths.

4.2.4.3 MCMC Along A Constraint

The approximate nonlinear conditioning approaches generate a point Y ∗ that is an approx-
imate sample of π(Y |W ). Linear approximation errors as well as the convergence of inte-
gration paths will need to be corrected by performing MCMC on the constraint itself. The
constraint can be seen as a nonlinear manifold in a high dimensional space. Moving around
such as manifold is non-trivial. Here, we instead consider a slight relaxation by replacing
the constraint F(Y ) = W with ‖F(Y )−W‖2 ≤ ε for a small tolerance ε. A likelihood
function for satisfying this constraint is given by

π(W |Y ) =
{

0 ‖F(Y )−W‖2 > ε

1 ‖F(Y )−W‖2 ≤ ε
(4.68)

Using Bayes’ rule, the density we need to sample is

π(Y |W ) ∝ π(W |Y )π(Y ) (4.69)
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A naive Metropolis-Hastings or DRAM approach could be used here. However, for small ε

these methods will mix poorly and many evaluations of F(Y ) will be needed. We can take
advantage of the fact that more information is at our disposal then is typically available for
Metropolis-Hastings or DRAM. During the nonlinear conditioning, Jacobian approxima-
tions to F(Y ) were used in an approximate linear conditioning step. During the MCMC,
this same information will be available and can be used to build efficient proposal densities
adapted to the local topology of F(Y ). In fact, an isotropic proposal covariance can be
adapted to local structure through the same equations used for nonlinear conditioning. In
the absence of noise, updating the covariance Σ = σ2I is done through

Σa = Σ−ΣJT (Yn)
(
J(Yn)ΣJT (Yn)

)−1
J(Yn)Σ

Within the MCMC framework, Σ, should be chosen like a standard Metropolis-Hastings
proposal. The updated covariance Σa will then be tuned to local effects of F(Y ). In cases
where large global correlations exists, that information should be incorporated into Σ. Only
local adaptation will be introduced here.

The linear conditioning update causes Σa to become rank deficient. Positive variance will
only exist on the plane spanned by the rows of J(Yn). A Gaussian proposal with this covari-
ance will result in a non-ergodic chain and also cripple the chain’s ability to move around
any regions of the parameter space where F(Y ) has curvature in directions perpendicular
to the rowspace of J(Yn). Thus, much like the SCKF and Levenberg-Marquadt algorithm,
artificial noise is introduced into the system:

Σprop = Σ−ΣJT (Yn)
(
J(Yn)ΣJT (Yn)+λI

)−1
J(Yn)Σ (4.70)

where λ controls the width of the proposal in the nullspace of J(Yn). The choice of λ

is problem dependent. Generally, λ should be less than ε to stay within the constraint
tolerance but large enough to account for the linearization error and allow the chain to scoot
around high curvature regions of F(k). Fig. 4.17 shows two examples of the conditioned
proposal. In both cases, λ = 0.01. The gray outline is the isotropic Gaussian density, Σ and
the colored contours show the distribution updated with Jacobian information.

Table 4.1 shows the acceptance rates of the above MCMC algorithm using a cubic con-
straint with Y ∼ N(0, I) as a prior in two dimensions. The bold entries represent the pro-
posal variance that minimizes error between the true density and nonlinear conditioned
estimate. The estimate comes from iteratively conditioning and correction 500 samples of
the prior. Note that even though smaller proposals have a higher acceptance rate, the larger
proposals the entire parameter space more effectively. Additionally, for small λ, the MCMC
iteration tended to get trapped in regions between high curvature. The linear approximation
used in the proposal creation, prevented the chain from moving through these regions in a
finite number of samples, even though asymptotic convergence to π(Y | ‖F(Y )−W‖2 < ε)
is guaranteed.
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Figure 4.17: Illustration of conditioned proposals in two dimensions on a cubic constraint.
In both cases, λ = 0.01.

Table 4.1: Comparison of acceptance rates for MCMC on cubic constraint with ε = 1e−2.
The bold rates are the combinations that result in the smallest density reconstruction error
from 500 nonlinear conditioning runs and 500 MCMC steps.

Isotropic Variance, σ

1.00E-03 1.00E-02 1.00E-01 1.00E+00
5.00E-04 38.55% 31.92% 19.96% 0.0741

λ 1.00E-03 32.04% 24.16% 16.35% 6.41%
5.00E-03 24.41% 13.01% 9.25% 4.10%
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4.2.5 Multiscale Framework Overview

A summary of the entire multiscale inference framework presented here is given in algo-
rithm 2. Each iteration of the procedure is more computationally expensive than a single
MCMC iteration. However, W and e have many fewer dimensions than Y and k. Fur-
thermore, less correlation exists in W compared to Y . These two changes allow MCMC
to more efficiently sample the posterior. Furthermore, the majority of the computational
cost in the multiscale framework comes from the iterative nonlinear conditioning, which is
embarrassingly parallel. Once MCMC has generated samples of e, all samples of k can be
generated simultaneously. More precisely, no communication is needed between iterations
of the loop in algorithm 2. When sufficient processing power is available, a new thread can
be created for each step of the coarse MCMC chain to perform the nonlinear conditioning.
It is also possible to only generate a fine scale realization for every k MCMC steps. This
can be useful when a user sees the MCMC chain is not mixing quickly and has limited
computational resources.

Algorithm 2 Basic summary of multiscale inference algorithm

Require: Prior distribution, π(Y )∼ N(µY ,ΣYY ) and π(W )∼ N(µW ,ΣWW )
Pressure observations d
Number of samples Ns
Nonlinear mapping from Y to W , F(Y ) =W

1: Generate N samples of π(W |d), W 1,W 2, ...,W N using DRAM
2: for i = 1...N do
3: Use SCKF or ODE integration to obtain Y i satisfying F(Y i) =W i

4: Correct Y i with M steps of MCMC on the constraint
5: end for
6: Return exp(Y 1), ...,exp(Y N) as samples of π(k|d)

4.2.6 Implementation Details

4.2.6.1 Jacobian in One Dimension

To perform nonlinear conditioning, the Jacobian of F(Y ) is needed. Recall the mapping

Wi = log

[
1∫ xi

xi−1
exp(−Y )dx

]
Let Y be piecewise constant on each fine element. Let Nc be the number of fine elements
and N f be the number of fine elements in each coarse element. Thus, Yi j is the log perme-
ability in the jth fine element of the ith coarse element. Using this notation, the mapping
becomes:

Wi = log

 1

δx∑
N f
j=1 exp(−Yi j)

 (4.71)
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where δx = xi− xi−1. The derivative of Wi with respect to Yi j is then

∂Wi

∂Y(i j)
=

1

exp(Yi j)
(

∑
N f
k=1 exp(−Yik)

) (4.72)

The analytic form in one dimension makes computing the Jacobian trivial. In higher di-
mensions, where no clear analytic form exists, more effort is required.

4.2.6.2 Other Notes

As an implementation note. In cases where J(k) has a row of very small values, the term
J(Y )ΣkJT (Y ) can be nearly singular. In this case, a nugget needs to be added to diago-
nal, J(Y )ΣYY JT (Y )+ εI. This is essentially adding some artificial width to the constraint,
placing a lower bound on the eigenvalues of J(Y )ΣkJT (Y )+ εI and reducing the condition
number. The value of ε is usually very small, ≈ 10−10.

4.2.7 Generalization to Other Multiscale Settings

The framework presented here uses MsFEM to map fine scale quantities to coarse scale
quantities. However, the framework is not restricted to this case. Any method that provides
a coarse quantity sufficient to represent p can apply, even upscaling could be used. MsFEM
can be viewed as a local reduced order modeling technique. Other methods that represent
the solution by a limited number of basis functions could also be used in this framework.
For the multiscale framework to be effective, the coarse parameter should be sufficiently
low dimensional for efficient MCMC and the mapping should not be extremely nonlinear.
That is, the mapping should at least be continuous to ensure that MCMC can be efficient at
correcting for linearization errors acquired during the iterative conditioning.

4.3 Numerical Results

4.3.1 Test Cases

This section illustrates the multiscale framework presented in the previous chapter on sev-
eral one dimensional test problems. Initially, a comparison is done with single scale infer-
ence to validate the multiscale approach. Then several examples are given to demonstrate
the framework’s applicability in a wide variety of situations. A summary of the additional
problems can be found in Table 4.4.
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4.3.1.1 Problem Description

All example problems share the same type of boundary conditions, Dirichlet on the left and
Neumann on the right. However, each problem consists of a different type of permeability
field and varying amounts of data. A fine scale simulation using a true permeability field
is combined with additive noise to generate the data. The variance of this noise is 0.01 for
all situations, which is approximately 1% of the pressure range for each case. This low
noise level was used to ensure that the likelihood has a strong impact and the posterior is
sufficiently different than the prior.

In the multiscale framework, DRAM is used for sampling the elemental integrals before
iterative conditioning is performed with the SCKF and constrained MCMC. Within DRAM,
the initial proposal size was manually tuned based on the well founded squint test and
practical experience.

The first test is a verification that the multiscale method produces similar results to stan-
dard MCMC approaches. The first example contains a relatively smooth permeability field
without a wide scale separation. This is important for practical applications of MCMC. The
parameter space is already 50 dimensional in this smooth case and would need to be in-
creased for a permeability with large scale separation. An accurate DRAM characterization
in the high dimensional setting would require a prohibitive number of samples.

The remaining tests illustrate the effectiveness of the multiscale inference framework on
more complicated permeability fields. A summary of all the problems can be found in
Table 4.4. As an implementation note, coarse nodes need to be placed at the observation
points because the MsFEM basis functions are never explicitly created. In the ensuing
examples we have the luxury of creating the data, so it is easy to place observations at
coarse node locations. In real situations this is not the case and either the mesh needs to
be constructed with knowledge of the observation locations, or interpolation error must be
introduced by projecting the data onto known basis functions instead of the MsFEM basis
functions.

The standard error of a posterior estimate for a fixed number of samples is minimized
when the posterior samples are uncorrelated. However, an MCMC chain generates corre-
lated samples. Thus, in comparing MCMC methods, the autocorrelation of samples is a
useful measure of performance. In fact, an integrated autocorrelation can be used to com-
pute the effective sample size of a chain. This quantity represents how many independent
samples would be needed to have essentially the same amount of information as the corre-
lated MCMC chain. In the comparisons below, effective sample size (ESS) of a correlated
sequence, Θ, with length N is defined as

ESS(Θ) =
N

1+2∑
∞
k=1 ρk(Θ)

(4.73)

where ρk(θ) is the autocorrelation of the sequence at lag k. This quantity is computed using
all samples after an initial burn-in of the chain. Obviously the sum has to be truncated to
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a finite lag. Here, the maximum lag, n, is chosen so that ρk(Θ) ≤ 0.05 for all k > n.
The effective sample size can be computed for each dimension of the chain so a range of
effective sample sizes is obtained. Unless otherwise noted by Max ESS, or Min ESS, just
ESS will refer to the median effective sample size over all dimensions.

4.3.1.2 Verification with Single Scale Inference Results

Here we compare three different methods. The base case is single scale inference for k
using DRAM for sampling with a standard FEM forward solver with linear basis functions
on the fine scale. The second single scale approach again uses DRAM for sampling but
MsFEM as the forward solver. These methods are compared with the multiscale framework
presented in the last chapter. The single scale methods operate with 50 elements spread over
[0,1] and the multiscale approach uses 5 coarse elements with 10 fine elements in each
coarse element. Fig. 4.18 shows the true pressure with all 4 noisy observations used in this
test as well as the posterior covariances obtained with each method. Fig. 4.19 concentrates
on the posterior mean and variance.

Clearly, all three methods are in fairly good agreement. The mean fields are nearly iden-
tical until the high permeability region on the right of the domain and the variances are
quite close except at a few locations. The multiscale method slightly overestimates the
posterior mean but captures the same covariance trend as the single scale methods. One
possibility is the single scale MCMC chains have not sufficiently converged. While possi-
ble, this is unlikely. Each single scale chain was run for 2×106 steps, achieving a minimum
effective sample size of 3400. A more likely explanation is in the approximate prior dis-
tribution on π(e) and errors in the nonlinear iterative conditioning. Decreasing the step
size of the nonlinear conditioning can help improve the result and the number of MCMC
steps along the constraint so that no error in the iterative conditioning exists. However,
performing enough MCMC samples so the chain “forgets” its initial point on the constraint
is intractable. Thus, the iterative conditioning method should be chosen and tuned to best
approximate the generation of samples from π(k|e). While some errors are introduced,
the computational savings and applicability of the multiscale framework to problems with
large scale separation outweigh this relatively small posterior error.

Although the effect is small, another possible error source also needs to be mentioned.
With the strongly correlated prior in this test case, the update matrix from Eq. 4.59 can
become ill-conditioned and cause issues during the SCKF stage and constrained MCMC
stage. In some cases, the ill-conditioning causes the permeability to go far into the tails
of the parameter space. It is possible to reject these samples and try again, as in rejection
sampling. However, sometimes the error is not as extreme and catching the inaccurate
sample is not possible. This effect may be slightly contributing to the overestimation seen
in Fig. 4.19. The ill-conditioned update occurs predominantly in smooth cases where the
prior places a strong restriction on the posterior. With better conditioned prior covariances,
this issue becomes insignificant. The smooth example here was used for efficient MCMC
comparison but is not the application of interest. The multiscale framework will be most
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Figure 4.18: Location of pressure observations and posterior covariance comparison using
the fully multiscale approach, single scale with FEM forward solver, and single scale with
MsFEM forward simulation.

applicable to problems with weak priors and when the permeability field is expected to have
short length scales. On average, this reduces the condition number of the linear update and
the conditioning errors are less likely to have any impact on the posterior.

In addition to the posterior summaries, Table 4.2 shows a performance comparison. The
ratio of effective sample size to the total number of samples is shown in the first table
while the second table displays how many effectively independent samples were produced
each second. Note that the coarse MsFEM chain was thinned by a factor of 10 before
performing the iterative conditioning. The timings were performed on a MacBook with
2.4Ghz Core2Duo and 2GB of 1067 MHz DDR3 memory. Focusing on ESS/N, it is clear
that the multiscale method generates more than an order of magnitude more effectively
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Figure 4.19: Comparison of posterior mean and variance between standard single scale
approaches and the multiscale framework. The left plot shows the posterior means ±2σ2

Table 4.2: Comparison of single scale performance with multiscale performance. ESS is
the effective sample size, so ESS/N is the effective number of samples related to the total
number of fine scale samples generated and ESS/S is the number of effective samples per
second.

Method Min ESS/N Max ESS/N Median ESS/N
FEM Forward 1.7×10−3 9.5×10−3 7.0×10−3

MsFEM Forward 5.6×10−3 9.3×10−3 7.2×10−3

Multiscale 1.7×10−1 3.1×10−1 2.5×10−1

Min ESS/s Max ESS/s Median ESS/s
FEM Forward 0.26 1.54 1.38

MsFEM Forward 2.03 3.34 2.60
Multiscale 1.12 2.05 1.64

independent samples than the single scale approaches. Not only does the coarse scale chain
more effectively explore the parameter space and reduce correlations between samples, but
additional randomness is introduced into the system by starting the iterative conditioning
from a random sample of the prior. This additional randomness dramatically reduces the
chain correlation.

Now concentrating on the timing, the benefit of the multiscale framework is not as preva-
lent. While still outperforming the standard FEM methods, the gap is not as convincing
as the ESS/N. However, the single scale MsFEM timing is dependent on the analytical
form of the elemental integrals in one dimension. In higher dimensions, MsFEM time is
expected to drop closer to the standard FEM approach. These runs were computed in a
sequential fashion, each iterative conditioning step was performed one after another, but an
additional benefit of the multiscale procedure is its easy parallelization onto nearly as many
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nodes as available. For example, even for a moderate 80 core cluster, the parallel ESS/s
would be over 120. In addition to easy parallelization, the multiscale framework allows the
inexpensive coarse chain to generate many more samples of the elemental integrals than is
needed to characterize the poster of k. The coarse chain can be downsamples to reduce the
number of iterative conditioning steps required.

The example problem here is a smooth problem using a Gaussian kernel prior used solely
for comparison of the multiscale framework with standard single scale approaches. Smooth
priors can be handled efficiently by standard single scale sampling approaches with a di-
mensionality reduction technique like Karhunen-Loeve expansion. However, many inter-
esting problems do not have smooth permeability fields and can have large scale separa-
tions. While problematic for single scale methods, the multiscale framework is ideally
suited for this type of problem. The following three test problems illustrate this fact. For a
summary of the problems, see Table 4.3.

4.3.1.3 Draw from Exponential Prior

Table 4.3: Summary of multiscale inference tests. Kc is the number of coarse elements, K f
is the number of fine elements in each coarse element. d is the correlation length of the
prior, p is the prior power, σ is the prior variance, µY is the prior mean, Nd is the number of
data points.

Trial Name Kc K f d p σ µY Nd
Exp. Prior 10 10 0.2 1 1 1 7

SPE Layer 1 11 20 0.075 2 3 3 6
SPE Layer 5 11 20 0.17 1 2 4 11

This test uses an exponential prior covariance kernel on a 100 dimensional permeability
field to create a more difficult problem beyond the single scale MCMC regime. In order to
characterize the field, the number of coarse elements was increased to 10. The fine mesh has
10 fine elements in each coarse element. The number of observations was also increased
from 4 to 8 as shown in Fig. 4.20. In terms of inference results, in the posterior density
plot, the thick black line is the true permeability, the dashed lines are posterior samples, the
thick green line is the posterior mean, and fuzzy shading is a more complete visualization
of the posterior density. Darker shading implies a larger density. The autocorrelation plot
is for the chain of permeability samples generated by sequentially taking each step of the
elemental integral chain and performing iterative conditioning.

In the results from Fig. 4.20, the coarse chain was downsamples by 50 before performing
the iterative conditioning. Little correlation can be seen within the chain. This is a major
advantage over single scale methods, here the level of downsampling can be adaptively
chosen to maximize the information after analyzing the correlation of the coarse chain.
Thus, with a fixed amount of computational power, a user can be confident that as much
information as possible about the posterior was gathered. While not always a good measure
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Figure 4.20: Results for multiscale inference using a draw from the prior. The prior kernel
is defined by p = 1, d = 0.2, σ = 1. Twenty fine elements were used in each coarse element
and 5 coarse elements were used.

of performance, it is encouraging to see the posterior mean agreeing quite well with the true
permeability field. Also, note the relative smoothness of the posterior mean compared to
the true field.

4.3.1.4 First Layer of SPE10

In some sense, the above test problems were “cheating.” The permeability field was drawn
from the prior, which means the prior is related to the true field. This violates the philo-
sophical definition of prior information and does not stress the multiscale framework in the
same way as a realistic problem. To take a small step towards reality, this test considers
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a slice of the SPE10 dataset. The SPE10 dataset is a representative reservoir description
developed by the society of petroleum engineers. It consists of 85 layers of permeability
and porosity information with 60×220 cells. In this test, row 25 of layer 1 is used as the
true permeability field. The prior used here was adapted from a geostatistical characteriza-
tion of the entire dataset developed by Sean McKenna at Sandia National Laboratory. See
Table 4.3 for a complete prior definition. The results are shown in Fig. 4.21.
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Figure 4.21: Results for multiscale inference using a slice of layer 1 of the SPE 10 dataset.
The chain was downsampled by 50 before iterative conditioning.

The permeability field in this test has a very different structure than the prior realizations
used before. There is clearly several inherent scales on a slowly varying field superimposed
with high frequency oscillations. Interesting to note is the significant impact of a low per-
meability area around x = 0.2 on the pressure. The small permeability causes a significant
drop in the pressure. Being a dominant feature of the entire pressure field, matching the
data is very sensitive to matching this drop. The posterior results demonstrate this with less
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uncertainty (darker shading) near x = 0.2. Additionally, throughout the domain the true
log permeability is covered by the posterior, showing that with additional observations, the
variance could be reduced and the posterior could collapse on the true field.

Even in this one dimensional problem, the fine scale inference problem has 220 dimen-
sions. DRAM would require millions of samples to attempt searching this space. However,
in this multiscale framework, only the 11 elemental integral dimensions are searched with
DRAM and an acceptance ratio of 23% is achieved. Furthermore, the lack of significant
autocorrelation shows that most samples are nearly uncorrelated. In a similar fashion to the
previous test, the info the inexpensive coarse MCMC chain was run longer and downsam-
pled to provide less correlation between samples of k. The correlation plot in figure 4.21
was constructed after downsampling the coarse chain by a factor of 50.

4.3.1.5 Fifth Layer of SPE10

The fifth layer of the SPE10 dataset has different characteristics than the first. Here, row
45 of layer 5 is used which has a generally negative slope with a medium correlation length
pattern and some high frequency components. An exponential prior is used and the number
of observations is increased to 11. For a more complicated field like this one with a shorter
lengthscale, more data is required for the posterior to be significantly different than the
prior. Fig. 4.22 shows the results. The pressure is dominated by the two distinct drops near
the right of the domain. The pressure is again sensitive to the permeability values in these
areas. The posterior captures this behavior as expected. There are two low permeability
areas in the posterior with a small variance. These bound the highly uncertain area around
x= 0.9. While the true permeability does not have as large a peak at x= 0.9 as the posterior
mean, the multiscale method samples effectively enough to capture the uncertainty in this
region. The smaller true permeability is well within the high probability region of the
posterior.

4.3.1.6 Summary of Test Cases

Table 4.4: Summary of multiscale inference performance. ESS is the effective sample
size, so ESS/N is the effective number of samples related to the total number of fine scale
samples generated and ESS/S is the number of effective samples per second. Additionally,
acceptance is the acceptance rate of the coarse MCMC chain.

Trial Name ESS/N ESS/S Acceptance
Exp. Prior 0.2267 2.11 0.16

SPE Layer 1 0.028 0.17 0.23
SPE Layer 5 0.067 0.082 0.12

These test cases stress the multiscale inference framework with high dimensionality and
realistic permeability fields with scale separation. Table 4.4 summarizes the test problems
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Figure 4.22: Results for multiscale inference using a slice of layer 5 of the SPE 10 dataset.
The chain was downsampled by 50 before iterative conditioning.

not compared with MCMC. MCMC methods could be applied on these problems but the
comparison between the MCMC results and multiscale results would be moot because the
MCMC would not be able to sufficiently explore the posterior. Some of these test problems
have also been studied with more observation noise, the result is as expected, more noise
results in a posterior more similar to the prior.

In the verification of the multiscale method with MCMC results, its clear that in a smooth
setting, the iterative conditioning process can become difficult due to poor condition num-
bers of the linear update. However, the ability to adaptively down sample and easily par-
allelize the iterative conditioning stage would result in a dramatic increase in the number
of effectively independent samples generated. Some will argue that MCMC can also easily
be parallelized by running multiple chains simultaneously and then combining the results.

156



This is an improvement, but each chain still suffers an inability to effectively search vast
emptiness of large dimensional spaces. Additionally, several coarse MCMC chains could
be also used in the multiscale setting, reducing the amount of down sampling required
before iteratively conditioning.

4.4 Future Work and Conclusions

4.4.1 Future work

One dimensional examples were given here, but it is important to note the framework is
not dependent on the spatial dimension of the parameters being estimated. The exact same
formulation exists for any number of spatial dimensions. This chapter focused on the multi-
scale framework derivation and a discussion of the formulation intricacies with motivation
using a one dimensional field. Compared to the one dimensional setting, no analytical
expression exists for the Jacobian information of the two dimensional mapping from k to
e. However, the Jacobian can be computed by using adjoint methods to first compute the
sensitivity of the MsFEM boundary conditions to the log permeability and then computing
the joint sensitivity of the elemental integrals to the permeability and boundary condition.
Additionally, the number of elemental integrals per element will also increase. It should be
noted however, that once Jacobian information is computed, all other parts of the algorithm
remain unchanged. Implementation in higher dimensions is just one aspect of future work.

4.4.2 Use in Dynamic Problems

In addition to expanding this application of the multiscale framework to higher dimensions,
the method is also applicable to time dependent parabolic equations. In the porous media
context this corresponds to a time dependent pressure equation. An interesting avenue of
research is the use of particle filters or the ensemble Kalman filter to dynamically update the
posterior elemental integral distribution and only generate a few fine scale realizations at
each timestep. This also has applications in real-time PDE constrained dynamic inference.
Being sufficient to describe the coarse pressure, only elemental integrals are needed to
evaluate the likelihood and evolve the ensemble forward in time. By dramatically reducing
the computational cost of a likelihood evaluation, the multiscale approach would allow for
real time inference. Fine scale realizations would not need to be generated in real-time for
many applications and a massively parallel post-processing procedure would allow the fine
scale realizations to be efficiently generated.
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4.4.3 Spatial Decoupling During Iterative Conditioning

The iterative conditioning procedure does not take into account any spatial decomposition.
All components of the permeability could be correlated with other permeabilities. However,
in many applications, some areas of the spatial domain will not be related and further
decomposition could be performed. Using knowledge of uncorrelated parameters would
allow the iterative conditioning process itself to be parallelized. The multiple levels of
parallelism (independent coarse samples and independent spatial regions) would allow this
multiscale framework to capitalize on the advent of highly heterogeneous clusters where
multiple levels of parallelism are needed for maximum efficiency.

4.5 MsFEM Inference Summary

Inference problems found in real-world applications are often characterized by large dimen-
sional parameter spaces and noisy observations. Bayesian inference provides an intuitive
paradigm for formulating the inference problem but requires sampling of a high dimension
space. Especially in the case of elliptic forward models, high probability regions of the pos-
terior distribution can be small compared to the parameter space, making traditional single
scale MCMC difficult. Using a multiscale approach with a nonlinear mapping from fine
parameters to coarse parameters, we showed that when the coarse parameters are sufficient
to describe the model output, the scales can be decoupled and the inference process can be
broken into two stages. The first stage uses standard MCMC sampling tools to characterize
a posterior for the coarse quantities and the second stage takes of the coarse samples and
generates a realization of the fine scale parameter that agrees with the coarse quantity.

It was shown in the context of porous media that this multiscale framework can be success-
fully applied for inference. By decoupling the elemental integrals from the permeability, as
shown in the several test cases above, it is possible to efficiently explore a high dimensional
posterior. It is important to note that the multiscale procedure used here is not limited to
elliptic problems or even hydrology. In fact, the framework should be applicable to many
situations involving smoothing operators (like the pressure equation) and/or nonlinear ob-
servations.

The unique decoupling of fine and coarse scales with a nonlinear mapping between the two,
provides a small step towards tackling large dimensional inference problems in a Bayesian
setting. The several examples of permeability estimation shown here indicate the efficacy
of this decoupling and point towards a future application in currently intractable real-world
inference problems.
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Chapter 5

Computationally Efficient Stochastic
Inference for Multiphase Flow

5.1 Introduction

Fluid flow through porous media is central to many important applications including petroleum
reservoir management, filtration systems, energy storage, physiological processes and ground
water transport. In most cases, the exact material properties of the porous media are un-
known but yet critical to achieving accurate dynamical predictions. Field observations and
laboratory measurements can guide the selection of model parameters but these cannot pro-
vide the coverage needed for accurate dynamics predictions in complicated simulations.
In particular for subsurface geologic transport, material properties such as permeability,
porosity, relative permeability, initial saturations are required at every point in the compu-
tational domain. This motivates the inverse problem in which the goal is to infer the mate-
rial properties by making use of field or laboratory information and comparing these sparse
measurements with numerical predictions of the underlying dynamics. One of the key
challenges for subsurface transport inversion is to characterize the uncertainty that arises
from the lack of complete knowledge of the material properties model approximations and
measurement errors. Other important challenges include handling of large numbers of in-
version parameters, nonlinearities in the dynamics as well as in the inversion problem, and
computational requirements.

The focus of this chapter is to investigate computationally efficient inversion methods that
are capable of also providing statistical characterizations. The data assimilation problem
can be solved with a variety of techniques, the selection of which depends on the avail-
ability of computational resources and the need for complete statistics. On one end of the
spectrum, linearity and Gaussian assumptions allow for adjoint based algorithms that solve
inverse problems quite efficiently [130, 131]. However, if model or measurement errors
are non-Gaussian and the solution requires a complete statistical solution, Monte Carlo al-
gorithms are required that are very computationally demanding. To this end, we employ
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Ensemble Kalman filtering (EnKF) algorithms to reconstruct the underlying permeability
field in a porous media and predict the dynamics of a water-oil displacement process. The
EnKF method makes use of field observations to help calibrate the simulation model and
predict the dynamics. Unlike the Kalman filter in which the covariance matrix depends on
an adjoint of the forward model and the algorithm assumes linearity and Gaussianity, the
EnKF evolves the covariance matrix by post-processing a number of forward simulations
(also known as ensembles) and incorporates nonlinear behavior from the post-processing
of the ensembles. However, the Ensemble Kalman filter algorithm uses a Gaussian update
step and although this algorithm was designed to handle nonlinearities as well as manage
non-Gaussian statistics, it is not clear how accurate the resulting statistical moments are.

This chapter first provides a mathematical formulation to explain the connection between
Bayesian theory, Kalman filters, Ensemble Kalman filters, and MCMC-based solvers. Be-
cause most of these methods are well known, we only provide a general description and
refer the interested reader to other references for additional details [132, 133]. Our goal is
to clarify the important details in each algorithm to provide a concise connection between
approaches in addition to providing enough detail to help explain numerical results. Our
numerical results consist of three parts. First, we report on a parameter study in which the
sensitivities and accuracy of the EnKF algorithm are explored. Second, we apply a hybrid
EnKF-MCMC approach to reconstruct permeabilities and predict saturations using a large
and complicated dataset. Lastly, we show the utility of the EnKF on a complex and large
inversion dataset. New contributions of this work consist of 1) sensitivity study comparing
EnKF to MCMC using a porous media dataset, 2) a hybrid EnKF-MCMC algorithm that
provides a mechanism to incorporate static and dynamics data, and 3) the application of
EnKF on a dataset that is intractable computationally for MCMC solvers.

Large scale numerical simulation is becoming an increasingly important tool for engineer-
ing design in which complicated dynamics are being resolved. Assuming that the formu-
lation, discretization, and implementation are verified, numerical predictions depend on a
multitude of model parameters. Especially in the case of large scale problems and highly
nonlinear dynamics, these underlying properties can span large ranges and pose consider-
able uncertainty in the final solution. Laboratory measurements or field observations of
certain “state” parameters can help to calibrate simulation models and consequently moti-
vate the “inverse” problem. Next we briefly review previous work in this area and identify
which application have benefited from ensemble methods, in addition to reviewing the state
of the art methods in ensemble Kalman filters.

Evenson first introduced the Ensemble Kalman filter in 1996 [134] but acknowledged the
origin of the ensemble approach to be related to the theory of stochastic dynamics dating
back to 1969 (Epstein, [135]) and subsequently extended by several researchers [136, 137,
138, 139]. The assimilation process however is rooted in the Kalman filter algorithm, which
was named after Rudolf Kalman. Eventually, Evenson produced an authoritative text on
the subject that is one of the most cited reference on the subject [132]. The EnKF has
been applied to a range of applications, such as ocean and ice modeling [140], weather
prediction [141], soil moisture [142], reservoir management [143, 144, 145, 146, 147, 148]
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and several other relevant problems.

In this chapter our target application is porous media flows but our methods are applica-
ble to other areas. The following papers are reviewed in some detail to provide additional
context for our work. Liu and Oliver [147] evaluate the performance of gradient based min-
imization methods to EnKF for the problem of estimation of facies boundaries in history
matching. An adjoint based LBFGS algorithm is used. The authors question the quality of
the uncertainty metrics.

Gu et al. [144] apply the EnKF to solve history matching problems for 1D and 2D water
flood. The focus of this paper is to accurately predict the water saturation front by injecting
data from porosity, and permeability at each time period. Two issues are addressed: bi-
modal water saturations in a 1D problem before and after a shock, and the effects of using
ensembles substantially less than the number of variables. One major issue with EnKF is
that the permeability and porosities change with time and there is no guarantee that current
values field match data of previous timesteps.

Gu et al [145] presents an iterative EnKF methodology to address the shortcomings of the
analysis part of EnKF for highly nonlinear problems. The Gauss-Newton formulation is
given for the equivalent minimization formulation to the maximization of the probability
density. In this paper, the EnMLF is compared to EnKF and shows that the Gauss Newton
method performs identically for a linear problem. Problem 3 compared EnKF and EnRML
to an acceptance/rejection algorithm from Ripley (1987). The EnRML matched the ac-
ceptance/rejection algorithm results, whereas the EnKF did not. In the case of nonlinear
problem – waterflood with a shock – EnKF and conforming EnKF did not generate feasible
solutions. EnRML was always feasible and emulated the truth model much better.

Nowak [148] discusses the use of EnKF to transition to geostatistical based inversion. An
extension to the original EnKF method is introduced by using an unbiased ensemble lin-
earization (Jacobian linearization causes a bias). In the case of solute transport, the lin-
earization causes less dispersion in the mean solution.The most compelling reason to use
ensemble based methods is to avoid computationally infeasible sensitivity analysis and
storage of very large autocovariance matrices of parameters.

Zhou et al. [146] present an EnKF based algorithm that addresses non-Gaussian distri-
butions using a normal score transform. The EnKF algorithm causes the distributions to
become more Gaussian as the process evolves. Although Evenson designed the EnKF to
obtain a single optimal estimate of the system state, the EnKF provides as a by-product
the entire ensemble of states, which can be used to assess uncertainty. In this paper log of
hydraulic conductivity is used and for the state variable piezometric head is used. A normal
score transformation ensures that the prior non-Gaussian marginals of the model parame-
ters are kept throughout, in this case a bimodal pattern of log conductivities. The fluvial
examples in this paper look like our “pathological” dataset. The paper describes how these
fluvial datasets are generated using geostatistical tools. They show that the normal score
EnKF algorithms can reconstruct the bimodal distributed material parameters. A normal
score transform changes a non-Gaussian distribution to a Gaussian distribution with zero
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mean and standard deviation of unity.

The remainder of the chapter is organized as follows. First Bayesian theory is reviewed to
provide a common foundation for a comparison between MCMC and EnKF. The Kalman
filter and EnKF derivation is then outlined. MCMC methods are explained which is fol-
lowed by an introduction of our MCMC-EnKF hybrid approach. Our numerical example
consists of a synthetic waterflood dataset that uses a Karhunen-Loève parametrization for
permeability. Finally, the numerical section presents our results consisting of a comparison
of MCMC and EnKF methods for a simple waterflood problem in addition to the recon-
struction of permeability and prediction of saturations for a more complicated dataset. We
end the chapter with conclusions.

5.2 Bayesian Inference Review

Bayesian inference is a flexible and statistically rigorous way to model parameters and
states. The inference problem is usually formulated to statistically estimate parameters
or inputs to a model, based on noisy observations of the model output. The process of
predicting dynamics, in addition to propagating errors through the model, is referred to as
the forward problem and can be defined as

d(x, t)≈ G(x, t;m) (5.1)

where m is a set of model parameters, d is a vector of observable output quantities, x is
position, t is time, and G is potentially a nonlinear function of x and t, parametrized by m.
The model parameters m are unknown and need to be estimated from noisy measurements
of d. To handle the observation uncertainty, both d and m will be modeled as random
variables in a proper probability space.

To estimate parameters, we invoke Bayes’ rule to condition the model parameters on d:

f (m|d) = f (d|m) f (m)∫
f (d|m) f (m)dm

(5.2)

where f (m) is the prior density of m, which represents previously held degrees of belief
about m. This information could come from physical meanings of the model parameters or
simply expert opinion. In a Bayesian setting, as opposed to the frequentist paradigm, prob-
abilities represent degrees of belief that the model parameters will take particular values.
An informative prior acts as a regularization term as well, allowing for the solution of ill
posed and under-determined problems. While the prior distribution represents previously
held beliefs about model parameters, the likelihood function, f (d|m) measures how well a
particular set of model parameters match the available measurements. By using both the
prior distribution and likelihood function, Bayes’ rule updates previously held beliefs with
the current measurements in d. In a static problem, only one update will be used because all
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information is presented at once. However, Bayes rule can also be used iteratively to update
the densities as each new measurement arrives. Thus, the posterior at time t becomes the
prior for an update at time t +δt. This is the basis of sequential data assimilation methods
which will be discussed in section 5.3.1.

Simplifying Bayes rule by disregarding the normalization constant gives:

f (m|d) ∝ f (d|m) f (m) (5.3)

A major challenge of using Bayes’ law for inferences is sampling from the posterior den-
sity p(m|d). Often posterior evaluations require a computationally expensive forward sim-
ulation to evaluate the likelihood function, making methods such as Markov chain Monte
Carlo (MCMC) methods difficult to apply. MCMC methods use a random walk to construct
a Markov chain with a stationary distribution equal to f (m|d). These methods are guaran-
teed to converge to f (m|d) in the limit of infinite samples and can therefore capture highly
non-Gaussian and multimodal distributions. However, constraints on computation time of-
ten do not allow users to run MCMC methods for many samples. Significant research has
been devoted to variants of the MCMC algorithms in an attempt to accelerate the conver-
gence. However, the sequential nature of this random walk algorithm poses computational
challenges that currently prevent consideration of inverting large numbers of parameters
constrained by complex dynamics.

In Bayes rule, the likelihood function is equivalent to a probabilistic description of the
measurement errors. If Gaussian noise is assumed as in (also assumes i.i.d.):

d = G+η (5.4)

where η∼ N(0,σ2), will result in a Gaussian likelihood function

f (d|m)∼∏
i

1√
2πσ2

exp
(
−(Gi−di)

2

2σ2

)
(5.5)

and provides one of the components of the mathematical foundation to consider less statis-
tically robust but computationally more efficient methods such as the Kalman filter [149].
This algorithm recursively averages a prediction of a system’s state with new measurements
using a weighted average, also known as the covariance and represents the uncertainty as-
sociate with the predictions of the systems state. Gaussianity is assumed and the dynamics
must be linear. To address the nonlinearities in G, the extended Kalman Filter makes use of
Taylor’s series to linearize the system. Both algorithms however require an adjoint of the
system Jacobian to calculate the covariance. This can be difficult to implement and simply
not tractable in complex simulators. The Ensemble Kalman Filter, on the other hand, does
not depend on any linearizations or adjoint calculations. In addition it can capture some
nonlinear behavior in the model G because the covariance is based on post-processing the
ensemble members which depend entirely on the dynamics. The following sections provide
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a mathematical formulation starting from Bayes theory to help compare solution strategies
using MCMC and EnKF solvers.

5.3 Comparison Formulation

MCMC and the EnKF filter handle data in fundamentally different ways, necessitating
an appropriate inference problem that can be formulated as a dynamic data assimilation
problem for the EnKF and a batch assimilation (static) inference problem for the MCMC.
Consider the general dynamical system

∂s(x, t)
∂t

= G(s(x, t),m(x)) (5.6)

where s(x, t) is the system state, G is a potentially nonlinear model operator parametrized by
the model parameters m. Although appropriate boundary conditions and initial conditions
also exist these are not explicitly stated to maintain a concise presentation. In addition
to the dynamical system, measurements of the system are available through some linear
functional M:

M[s,m] = d + ε (5.7)

where ε represents additive measurement noise. The goal here is to obtain probabilistic
estimate of the model parameters m(x) using the observations of the measurements d + ε.
Formulating this inference problem in a Bayesian framework gives the posterior density:

f (m|d) ∝ f (m) f (d|m) (5.8)

Note that spatial and temporal dependencies have been dropped here to simplify notation.
The EnKF is generally used to estimate the system state in addition to the model parame-
ters, according to

f (s,m|d) ∝ f (s,m) f (d|s,m) (5.9)

However, attempting to estimate the state and model parameters simultaneously is in-
tractable for MCMC on most applications due to large state dimensions on fine resolution
grids. Thus, the formulation in Eq. 5.8 will be used for comparison.

The measurements in d will generally become available at several discrete times {t0, t1, ..., tk},
k > 0. Denote these measurements as d = {d0,d1, ...,dk}. MCMC will handle all of these
observations at once with batch processing, and will use Eq. 5.8 directly. The EnKF on
the other hand, will assimilate the data sequentially, updating the estimate of m after each
observation. This requires the likelihoods and posterior density in Eq. 5.8 to be expanded
in the time dimension.

For both MCMC and the EnKF, measurements are assumed to be uncorrelated in time,
and the model integration assumes a Markovian process, implying that given the state and
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model parameters at time ti, the model state at ti +δt is completely determined. No infor-
mation from t < ti is necessary. With this assumption, applying Bayes’ rule to all available
data gives the joint posterior density for the model parameters:

f (m|d) ∝ f (m)
k

∏
j=1

f (d j|m) (5.10)

5.3.1 Sequential Processing

The static description in Eq. 5.10 gives the joint posterior density after all data have been
accumulated. This expression can be used in a MCMC sampling of the posterior; however,
the additional sequential structure of the posterior can also be exploited to sequentially
update the posterior as in EnKF. At the first time step, the intermediate density will be

f (m|d1) ∝ f (m) f (d1|m) (5.11)

and then at the second time step,

f (m|d1,d2) ∝ f (m|d1) f (d2|m) (5.12)

In general, the intermediate density for the first j measurements is given by

f (m|d1,d2, ...,d j) ∝ f (m|d j−1) f (d j|m) (5.13)

This recursive update of the posterior can continue until all observations have been pro-
cessed, resulting in the posterior described by Eq. 5.10. The EnKF uses this formulation
with a variance minimizing update of ensemble locations to efficiently approximate the
full posterior. Our numerical results (section 5.9) attempts to show that the EnKF can
sufficiently approximate the posterior for porous media inference applications.

5.4 Kalman Filter

The EnKF approach depends on fundamental components from the original Kalman Filter
algorithm which is described next. Consider a simple case where the operator G is linear
and both the error model and prior distribution are Gaussian. The standard Kalman filter
fully captures the posterior statistics, which consequently will also be Gaussian. After
temporal discretization, this linear system becomes:

st
k = Gst

k−1 +qk−1 (5.14)

where k is the index in time, the superscript t denotes that this is the true system state, and
q is the error in the model dynamics. First, consider a time-step when no observations are
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Figure 5.1: Comparison of MCMC and EnKF approach to estimating the posterior density
in Eq. 5.10. Note the potential for parallelism in the EnKF.

present. In this case, the model dynamics provide the best estimate of the state at the next
time step. The prediction, s f (tk), is then given by:

s f
k = Gsa

k−1 (5.15)

where sa is the best estimate from the previous time-step. For time steps without observa-
tions, s f = sa = E[s]. Thus, the Kalman filter simply integrates the mean in time to obtain
the predictions. The covariance can be propagated forward by first subtracting the best
numerical estimate from the unknown true field:

st
k− s f

k = Gst
k−1 +qk−1−Gsa(tk−1) (5.16)

= G
(
st

k−1− sa
k−1
)
+qk−1 (5.17)

This is the model forecast error at time tk when no new observations have occurred. Now,
the model error covariance becomes

C f
ss =

(
st

k− s f
k

)(
st

k− s f
k

)T
= GCa

ss(tk−1)GT +Cqq(tk−1) (5.18)

where the model state has error covariance

Ca
ss(tk−1) =

(
st

k−1− sa
k−1

)(
st

k−1− sa
k−1

)T

and model error covariance is

Cqq(tk−1) = qk−1qT
k−1

In most cases, the model G is not linear and variants of the standard Kalman filter need to
be used. A popular alternative is the extended Kalman filter (EKF) which simply linearizes
the nonlinear operator with a Taylor expansion around the mean, sa

k−1.
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The best estimate from the EKF is also computed by integrating the mean forward in time,

s f
k = G(sa

k−1) (5.19)

Not surprisingly, nonlinearities in G can cause this estimate to be biased, as thoroughly
discussed in [148]. The EKF covariance update step follows the usual approach when
extending linear methods to nonlinear cases and uses a truncated Taylor expansion of G, to
arrive at the approximate covariance update:

C f
ss ≈ G′k−1Ca

ss(tk−1)G′
T
k−1 +Cqq(tk−1) (5.20)

where G′k−1 is the Jacobian matrix at the previous time step.

The Kalman filter and EKF updates shown above are used when no data are available.
When data are available, the sequential Bayes’ formulation in Eq. 5.12 is used in addition
to the model dynamics to update the mean and covariance. The “best” estimate in this case
is the maximum a posteriori estimate (MAP), obtained by maximizing the log posterior
distribution in Eq. 5.12.

With a Gaussian error model and a continuous state, Bayes’ rule gives the posterior distri-
bution of the model parameters and system state when observations are present:

f (s,m|d) ∝ f (s|m) f (d|s,m)

= exp
[
−1

2

∫∫ (
s f (x1)− s(x1)

)
W f

ss(x1,x2)
(

s f (x2)− s(x2)
)

dx1dx2

−1
2
(d−M[s])Wεε (d−M[s])

]
(5.21)

where M is a linear measurement functional relating the field s to d, Wss is the functional
inverse of the covariance function, and Wεε = C−1

εε is the inverse of the error covariance.
Here, s f is the system state integrated forward from the previous time-step as if no ob-
servations were present. The first term in the exponential is the Gaussian prior and the
second term is the likelihood. In a discretized system where the likelihood is a multivariate
Gaussian distribution and not a Gaussian process, the integrals would be unnecessary and
Wss(x1,x2) would be replaced by the matrix Wss =C−1

ss . The integration simply replaces the
summation that occurs when pre and post multiplying Wss by vectors of discretized states.
From this posterior distribution, it is clear that when data are available, the best estimate of
s occurs at the maximum of this density. This is the MAP estimate for s.

To find the MAP estimate, it is generally easier to minimize the negative log posterior

−2log[ f (ψ,m|d)] =
∫∫ (

ψ
f (x1)−ψ(x1)

)
W f

ψψ(x1,x2)
(

ψ
f (x2)−ψ(x2)

)
dx1dx2

+ (d−M[ψ])Wεε (d−M[ψ]) (5.22)
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than to operate on the posterior directly. In [132] a variational derivative and the Euler-
Lagrange equation approach was used to minimize this functional and find the data assim-
ilation update step. The result is:

sa = s f +K
(

d−Ms f
)

(5.23)

where the Kalman gain matrix K is defined as:

K =C f
ssM

T (MCF
ssM

T +Cεε

)−1
(5.24)

and where Cεε is the covariance of the error term ε and C f
ss is:

C f
ss = GCa

ss(tk−1)GT +Cqq(tk−1). (5.25)

Note that s f and sa are two estimates for the same time step, the former is the estimate
before data assimilation and the latter is the analyzed estimate that includes observations. It
is the covariance of the model error that differentiates the EnKF from the standard Kalman
Filter, which requires the transpose (or the adjoint operator) of G and is not always easily
implemented, especially in parallel code. The EnKF approach calculates this covariance
by post-processing a collection (the ensemble) of forward runs per time-step.

5.5 Ensemble Kalman Filter

In addition to the adjoint implementation and the errors that arise when using a truncated
Taylor expansion as an approximation to a nonlinear function, the standard Kalman filter
algorithms also have to store a potentially large covariance matrix. Many realistic prob-
lems, especially in geophysics, have millions of degrees of freedom, making it impossible
to store the covariance matrix required by the KF and EKF. The ensemble Kalman filter
(EnKF) resolves two of the major issues with the KF and EKF: the EnKF does not need to
store the covariance matrix and no linearization of the model operator is required. Instead,
the EnKF uses ensemble averaging to compute the mean and covariance after each update.
Randomly instantiated ensemble members are propagated between observation times with
the deterministic model G. Using the ensemble members as Monte Carlo samples of the
model parameters, m, and system states, s, the ensemble mean and covariance are used
instead of propagating the mean and covariance directly. Data assimilation is similar to the
Kalman filter, except each of the ensemble members is updated individual by replacing the
mean and covariance in Eq. 5.23 with ensemble equivalents. The ensemble mean is chosen
as the best estimate although this estimate may be biased. Thus,

s f
k = sk =

1
Ne

Ne

∑
j=1

s j,k =
1

Ne

Ne

∑
j=1

G(s j,k−1) (5.26)
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where the subscript s j denotes the jth ensemble member, and Ne is the ensemble size. Now,
defining the ensemble error covariances as:

(Ce
ss)

f =
(

s f − s f
)(

s f − s f
)T

(5.27)

(Ce
ss)

a =
(
sa− sa

)(
sa− sa

)T (5.28)

where the ensemble average defined by · is defined in Eq. 5.26. To incorporate observations,
ensemble members are individually updated according to the KF assimilation step:

sa
j = s f

j +(Ce
ss)

f MT
(

M (Ce
ss)

f MT +Ce
εε

)−1(
d−Ms f

j

)
(5.29)

By using the mean and covariances in this way, the ensemble Kalman filter assumes the
system state and parameters have a Gaussian PDF; however, ensemble members are in-
dividually propagated through the model G and can therefore capture some of the model
nonlinearity. By using the KF update during assimilation, the EnKF is maximizing a Gaus-
sian posterior for the update step. For a highly nonlinear G, this may not be a sufficient
approximation. For certain porous media flow applications as discussed below, the EnKF is
an apt procedure. In different dynamics and possibly with bimodal or highly skewed distri-
bution, EnKF may not be able to capture all nonlinearities and non-Gaussian statistics. As
we will demonstrate, the EnKF is able to reconstruct permeabilities and predict saturation
profiles from a complex porous media dataset and is easily extended to a hybrid approach
in which other information is processed with a Markov Chain Monte Carlo method.

5.5.1 Implementation Details

In Eq. 5.29, the inverse of
(

M(Ce
ψψ)

f MT +Ce
εε

)
, which we will label S, needs to be com-

puted. Because S may not be full rank in some cases, the Moore-Penrose pseudo inverse
S+ is used, [150]. When S is full rank (i.e. there are more measurements than parameters)
then the pseudo inverse is equivalent to the inverse, C+ =C−1. The pseudo inverse can be
derived through an eigenvalue factorization:

S = ZΛZT

where the columns of Z hold the eigenvectors and Λ is a diagonal matrix containing the
eigenvalues in increasing order. The pseudo inverse is then defined as:

S+ = ZΛ
+ZT

where Λ+ is still diagonal but

diag(Λ+) =
(

λ
−1
1 , ...,λ−1

p ,0, ...,0
)
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where p = rank(S) and the eigenvalues are in increasing order, λi ≥ λi+1. In practice, the
pseudo inverse is not computed directly. Instead, given that S+ is the solution to the least
squares problem Sx= b, the solution x can be found by more efficient and stable algorithms.
Additionally, Evenson [132] presents a subspace pseudo inversion algorithm that reduces
the factorization of the full covariance matrix C to factoring a matrix in the ensemble space
of size Ne.

The equivalence of the EnKF and KF update equations is based on an assumption of in-
finite ensemble size, which ensures the ensemble statistics are equal to the true mean and
covariance. In the infinite ensemble case, the EnKF will provide identical results to the KF.
However, in most cases, results in finite time are desired and a finite ensemble size will
be used. The finite ensemble can only provide an estimate of ψ f and Ce

ψψ. In some cases,
particularly with small ensemble sizes, poor estimates may allow the EnKF to make un-
physical predictions. Evenson [132] calls these effects spurious correlations, and suggests
a localization scheme to dampen their effects. In addition to errors in the state estimate,
these spurious correlations can cause the ensemble variance to shrink and underestimate
the true variance. Thus, artificial inflation of the variance has been proposed in [132].

5.5.2 Localization and Inflation

To reduce the effects of high correlations between distant points, Houtekamer et al. [151]
suggest the computation of a Schur product (elementwise product) of the ensemble covari-
ance matrix with a different covariance matrix derived from a given covariance function
and correlation length. Let Cloc

εε and Cloc
ss be the localized covariances defined as:

Cloc
εε = Aε ·Ce

εε (5.30)
Cloc

ss = Aψ ·Ce
ss (5.31)

where Aε and Aψ are covariance matrices with the same sizes as Ce
εε and Ce

ψψ respectively.
These matrices are built from a correlation function ρ(·). In our case, a Gaussian correlation
function with a length of 5δx was used, where δx is the uniform grid size.

While the localization approach will help filter out spurious correlations, the ensemble
variance will still decrease. Inflation is used to alleviate this problem. An inflation factor is
used to update the ensemble at each step with the expression:

ψ j = ρ(ψ j−ψ)+ψ (5.32)

where ρ is the inflation factor, usually slightly larger than one (∼ 1.02).
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5.6 Markov Chain Monte Carlo Methods

We next describe Markov chain Monte Carlo (MCMC) methods.We highlight the compu-
tational and the statistical differences between the two methods. Additionally, EnKF is
designed for transient problems and is not capable of easily incorporating static data. For
our porous media problem the goal is to perform a reconstruction of permeability, as well
as a prediction of dynamics, using not only observations of the dynamics, but also static
measurements. This leads to our hybrid MCMC-EnKF approach.

Markov chain Monte Carlo (MCMC) methods are statistically robust methods for sampling
any target probability density π(x) as long as a function proportional to the density can be
evaluated. These methods construct a Markov chain in parameter space that has π(x) as a
stationary distribution. Thus, as the Markov chain evolves, the sample statistics of the chain
approach the statistics of π(x). A popular approach is to combine Metropolis-Hastings
(MH) and MCMC to update the Markov chain using a proposal distribution q(x′;xt) with
rejection sampling. From the current position xt in the chain, a sample of the proposal
distribution is taken and then evaluated on the target density, π(x). The probability, α, that
the chain will move to this proposed state is given by the Metropolis-Hastings rule:

α = min
{

1,
π(x′)q(xt ;x′)
π(xt)q(x′;xt)

}
(5.33)

The chain continues to be updated in this fashion until a maximum number of iterations
have been performed. The difficulty in MH-based MCMC is to choose an appropriate and
efficient proposal density because if the proposal is too wide, (large variance), many pro-
posals will be rejected and little information will be gained about π(x). On the other hand,
if the proposal is too small, the chain will only explore a limited area of the parameter
space and distribution tails or multiple high probability regions will be characterized prop-
erly. Delayed rejection and the Adaptive Metropolis methods proposed in [152] and [76]
respectively, are modifications to MH MCMC that attempt to overcome initially poor pro-
posal distributions and dramatically improve mixing. In fact, combining these methods [77]
can operate successfully on some problems where the basic method fails. The many other
MCMC variants in the literature are beyond the scope of this paper; however, some im-
pressive results on specific applications can be achieved, see [153, 154]. Here, only the
DRAM MCMC is investigated because of its growing application to Bayesian inference
across scientific and engineering disciplines [155, 156, 157].

5.7 MCMC-EnKF Hybrid Method

The major drawback of using MCMC for full dynamic inference is the large number of
required forward simulations. On the other hand MCMC has the capability to fully char-
acterize the posterior density whereas the EnKF filter implicitly assumes the posterior co-
variance is an accurate description . In our porous media application, typically a hybrid
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approach combining the power of MCMC with the efficiency of the EnKF is a natural step
forward. A hybrid method is implemented here where MCMC is used for static inversion
of a permeability field using a KL decomposition, taking advantage of the very rapid like-
lihood evaluation. The posterior MCMC samples are then used to select initial ensemble
members. Since the EnKF estimate is always a linear combination of the initial ensemble,
pulling KL dimensions of the ensemble members from a good estimate is highly advanta-
geous. The numerical results show a dramatic improvement in this hybrid over a standard
EnKF implementation. Fig. 5.2 shows the general structure of the hybrid algorithm.

Figure 5.2: Outline of MCMC-EnKF hybrid.

5.8 An Example from Hydrology

For comparison of the EnKF and MCMC, we will consider a two phase flow problem with
unknown permeability, as described by Aarnes et al. [158]. Two phases are modeled, a
water phase and a hydrocarbon phase. The hydrocarbon phase consists of oil with dissolved
gas and is assumed to be immiscible with the water phase. Furthermore, both liquid phases
and the aquifer are assumed to be incompressible. With these restrictions, conservation of
mass requires:

φ
∂sw

∂t
+∇ · vw =

qw

ρw
(5.34)

φ
∂so

∂t
+∇ · vo =

qo

ρo
(5.35)

where φ is porosity, sw and so are the saturations of water and oil respectively, vw and vo
are the Darcy velocities, qw and qo are source/sink terms, and ρw and ρo are the respective
phase densities. We also require

sw + so = 1
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Using this constraint and then combining Eq. 5.34 with Eq. 5.35, gives the mixed pressure
equation:

∇ · v = q (5.36)
v =− [Kλw(∇pw−ρwG)+Kλo(∇po−ρoG)] (5.37)

where q = qw/ρw + qo/ρo, λw = krw/µw and λo = kro/µo are the phase mobilities, K is
the permeability tensor, and G = −g∇z. In solving this expression, a global pressure p =
po− pc is introduced where

pc =
∫ sw

1
fw(ξ)

∂pcov

∂sw
(ξ)dξ

is a saturation dependent complementary pressure and fw = λ− 2/(λw + λo) is the frac-
tional flow function. Introducing the total mobility λ = λw +λo, the global pressure equa-
tion is found:

−∇ · [Kλ∇p−K (λwρw +λoρo)G] = q (5.38)

The relatively permeabilities needed to compute the mobilities depend on saturations. Thus,
given saturations, the pressure equation allows us to solve for p; however, the saturations
are dependent on the pressure. This coupling means two additional equations relating p, sw
and so are needed. By definition, so = 1− sw, so Darcy’s law,

vα =−K
krα

µα

(∇pα−ραG)

provides the final necessary relationship for a complete model. Using Darcy’s velocity in
the incompressible and immiscible case gives

Kλoλw∇pcow = λovw−λwvo +Kλoλw(ρo−ρw)G (5.39)

which can be rearranged to give the standard saturation equation:

φ
∂sw

∂t
+∇ · ( fw(sw) [v+d(sw,∇sw)+g(sw)]) =

qw

ρw
(5.40)

Note that each term f (s)v, f (s)d(s,∇s), and f (s)g(s) represent viscous, capillary, and
gravitational forces respectively. In general the capillary forces are small compared to the
other two processes. This causes the parabolic equation in Eq. 5.40 to behave almost as
a hyperbolic equation, suggesting that the same discretization used on the almost elliptic
pressure equation will not be applicable here. To remedy this issue, an operator splitting
approach where the solution of the pressure equation is solved using the previous timestep’s
saturations and with this updated pressure, the saturation equation is solved. Within each
saturation solve or pressure solve, a simple finite volume scheme is used for discretization
and the Newton-Raphson method is used for nonlinear solves. Details of this strategy can
be found in [158].
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5.8.1 Karhunen-Loeve Expansion of Permeability Field

A Gaussian process prior is used for the log-permeability field. The process is usually
discretized to a multivariate Gaussian of size Nx×Ny. However, this is still high dimen-
sional, making estimation difficult. To reduce the dimension, a Karhunen-Loeve expansion
of the system can be used. A Karhunen-Loeve (KL) expansion is a generalization of the
Fourier expansion where a process is projected onto eigenfunctions. The KL expansion of
a random process, Y (x,ω), separates real space from stochastic space as follows:

Y (x,ω) =
∞

∑
i=0

√
λiφi(x)zi(ω) (5.41)

where λi and φ are the eigenvalues and eigenfunctions of a covariance kernel C(x1,x2) that
satisfy the integral equation:∫

D
C(x1,x2)φk(x2)dx2 = λkφk(x1) (5.42)

and zi(ω) are uncorrelated random variables. In our case Y (x,ω) is assumed Gaussian and
thus zi(ω) are not only uncorrelated but are iid standard normal random variables.

A numerically robust way of solving λi and φi(x) in discretized space is to solve Eq. 5.42
using the Nystrom method. It is also possible to simply discretize Eq. 5.42 at the grid points
and solve the eigenvalues and eigenvectors of the resulting covariance matrix; but in that
case, only a relatively small number of the eigenvalues can be trusted as accurate.

The Nystrom method is a general method for solving integral equations similar to Eq. 5.42
by using a quadrature rule for discretization. Consider the general N point quadrature
formula:

I[ f (x)]≈
N

∑
i=1

wi f (xi)

Using this for the integral in Eq. 5.42 yields the discretized linear system:

λkφk(x1) =
N

∑
i=1

wiC(x1,xi)φk(xi) (5.43)

By also evaluating this function at the quadrature points, we have the system:

λkφk(x j) =
N

∑
i=1

wiC(x j,xi)φi(xi) (5.44)

This linear system can be used to solve for the eigenvalues and eigenvectors at the quadra-
ture points. However, we are not interested in eigenvectors at the quadrature points but
rather the grid points. This is simple to overcome by noticing Eq. 5.43 is also an inter-
polation formula. Now that λi and φk(xi) are known, the value of φk(x1) can be easily be
computed by finding the covariance of x1 and xi. Here, a Gauss-Lagrange quadrature rule
was used but in general, any quadrature scheme could be easily incorporated.
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Once the KL expansion has been computed and truncated, the permeability field is com-
pletely parametrized by the random variables zi. Since the initial process was Gaussian,
all zi are i.i.d. standard normal random variables. This is the prior density for each zi. By
trying to estimate each zi instead of the entire field, a dramatic increase in performance can
be achieved by both MCMC and the EnKF. Additional errors introduced during the KL
truncation can be controlled by looking at the spectrum of λ and truncated after most of the
energy has been preserved.

5.9 Numerical Results - Sensitivities

The goal of this section is to evaluate the sensitivity and statistical accuracy of the EnKF
algorithms. The posterior distributions of permeability are compared by evaluating sensi-
tivities of KL modes, observations, ensemble size, model discretization, observation noise
and length scale. Given the optimal combination of parameters, the statistical accuracy is
evaluated by comparing statistical moments from a MCMC solver.

The Gaussian assumption in the updating process of the EnKF imposes some statistical
restrictions but it is unclear what the effects are on reconstructing permeabilities and pre-
dicting dynamics. In certain design or control problems, robust solutions will depend on the
complete characterization of higher statistical moments. For instance, failure of structural
members may be caused by material properties that are characterized in the tails of non-
Gaussian distributions. However, in our porous media problem where the goal is ultimately
to identify bypassed oil and delay the breakthrough of water at the producing well, the lack
of failure modes and the presence of smoothing effects in the dynamics may suppress the
importance of higher order moments. This part of the numerical studies will therefore focus
on the quality of the EnKF inversions and compare moments to MCMC results.

In particular, this section will report on

• the computational efficiency of the methods by measuring the total number of re-
quired simulations,

• accuracy of the mean estimate; since artificial observations are used, the true pa-
rameters of the model are known, the root mean square error is used to measure the
accuracy of MCMC and EnKF parameter estimates,

• how well the EnKF captures the posterior density compared to the MCMC posterior
density; this is described qualitatively by comparing marginal posterior densities and
quantitatively through the Kullback-Leibler divergence of the posterior densities.

Our numerical prototyping procedure considers the problem of estimating a permeability
field k(x) from noisy observations of saturation:

d(t) = Msw(t)+ ε
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at discrete times {t1, t2, t3, ...}, where M is a measurement matrix and ε is additive Gaussian
noise. To avoid an “inversion crime”, 200 KL modes are used to generate the “truth”
model and fewer modes are used for the inference. Furthermore, k(x) is generated by using
a Gaussian process, and a KL expansion is used to parameterize the field.

As with most numerical methods, the use of EnKF with the porous media transport model
has several parameters that require tuning. To this end, a Latin Hypercube Design (LHD)
strategy systematically explores the influence of the multidimensional parameter space on
the reconstruction of permeability and the prediction of the waterflood dynamics. The Root
Mean Square Error (RMSE) of the ensemble mean estimate, ensemble estimate variance,
and posterior parameter density entropy are computed from the EnKF output as measures of
the EnKF performance. All tests are performed with Karhunen-Loeve (KL) parametrized
permeability fields augmented with sparse and noisy observations of a water saturation
field.

The first numerical experiment is an 84 point LHD over all of the parameters with bounds
as specified in Table 5.1. Ensemble estimates of the mean, variance, skewness and kur-
tosis are computed at each point in the computational domain for both permeabilities and
saturations. A RMSE is computed to compare the reconstruction to the truth model. The
LHD strategy generates statistics at a sparse set of points in the 7 dimensional tunable pa-
rameter space and to visualize general trends and relationships, kriging is used to generate
continuous interpolated surfaces [159]. The kriging estimate for the RMSE fits a Gaussian
process with quadratic mean to the sparse EnKF RMSE information from the LHD points.
Coefficients of normalized parameters in the quadratic regression with a large magnitude
indicate an important factor for EnKF tuning. Furthermore, plotting the kriging estimate
shows general trends in the RMSE with respect to EnKF parameters. Table 5.2 shows the
kriging coefficients for each tunable parameter and Table 5.3 show each pair of tunable
parameters.

Table 5.1: Bounds used on Latin Hypercube Design of all EnKF inversion parameters and
fixed values for sub-designs.

Parameter Lower Bound Upper Bound Fixed
Number of Sensors (S) 10 500 50

Ensemble Size (E) 10 1500 500
Number KL Modes (K) 10 200 100

Discretization (D) 10×10 40×40 20×20
Noise Variance (N) 1e-4 0.05 1e-3

Prior Length Scale (L) 2e-2 6e-2 5e-2
Observation spacing in time (O) 1 t-step 10 t-steps 1 t-step

The magnitude of the regression coefficients indicates the relative importance of the pa-
rameter but the coefficient sign also gives useful information. For example, grid resolution
has the largest effect on EnKF performance. Additionally, the negative sign on the number
of sensors shows, as expected, that increasing the number of sensors will in general reduce
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Table 5.2: Linear model coefficient estimates for permeabilities and saturations, as a func-
tion of various parameters. The definitions of the parameters S, E, K etc are in Table 5.1,
as are their fixed values.

Parameter Perm. Coefficient Sat. Coefficient
S -5.01e-02 -1.88e-01
E -6.45e-03 2.77e-02
K 1.14e-01 1.58e-01
D 9.63e-01 5.44e-01
N 1.27e-01 3.06e-01
L 9.50e-02 1.52e-03
O 7.08e-02 -9.80e-02

Table 5.3: Permeability and saturation coefficient estimates for pairs of the LHS runs. The
top half of the table are the permeability coefficients and the lower half are the saturation
values; the first value on the diagonal are permeability coefficients and the second value are
saturation coefficients. See Table 5.1 for the definition and details of the parameters.

S E K D N L O
S 0.02/0.05 -0.002 -0.004 -0.04 0.006 -0.003 0.02
E 0.2 0.01/-0.2 -0.005 0.02 -0.01 0.006 -0.005
K -0.1 -0.03 -0.04/-0.09 0.06 -0.01 -0.01 -0.0008
D -0.2 -.2 0.2 0.2/0.3 0.05 0.04 0.04
N -0.03 0.009 -0.1 0.2 -0.05/0.006 0.01 -0.01
L 0.2 -0.1 0.1 -0.2 -0.02 -0.06/0.2 0.0009
O 0.4 0.03 -0.1 0.4 -0.1 0.1 -0.02/0.1

the final estimate error. Table 5.3, shows the number of KL modes, the noise variance, and
the number of sensors are also important for accurate EnKF predictions.

In a general application, the grid discretization and the observation noise structure will be
predefined through the forward modeling process and scientific judgment. Beyond these
parameters, the large sensitivity run shows the number of observations, the ensemble size,
and the number of KL modes to be the next most important parameters. The joint effects of
these parameters is studied in more detail below, using additional Latin Hypercube Designs.
24 point designs were used for each parameter pair, resulting in three additional LHDs.

Tables 5.4, 5.5, 5.7, 5.8, 5.10, and 5.11 summarize the sensitivity runs while Tables 5.6, 5.9,
and 5.12 show the kriging coefficients and relative parameter importance. In the tables,
red represents the largest RMSE value, green represents the lowest RMSE, purple is the
largest skew, and brown is the smallest skew. The skew here is used as an indication of
non-Gaussian behavior in the estimated posterior density.

In the standard Kalman filter or extended Kalman filter, no non-Gaussian behavior can
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Figure 5.3: Kriging estimate comparison of sensors and KL for permeability.

be captured. While the Gaussian assumption of the EnKF for data assimilation seems to
restrict the posterior to be nearly Gaussian, the nonzero skewness in the results suggests the
EnKF filter can capture more statistical information about the posterior than just mean and
covariance. The statistical capabilities of EnKF are analyzed more rigorously in the next
section, where EnKF posterior estimates are compared to MCMC posterior estimates.

Based on Tables 5.12 and 5.6, the number of KL modes is the main indicator of EnKF per-
formance for the permeability estimate, but is not the most important factor when predicting
saturation. The saturation is most dependent on the number of sensors. The saturation can
be thought of as a smoothed function of permeability, thus it is no surprise that a parameter
dealing directly with saturation, the number of observations, is more important than the
number of KL modes. Any errors caused by too few KL modes will be partially filtered by
the parabolic saturation equation and will have a smaller influence on the saturation. On
the other hand, being directly parametrized by the KL modes the permeability will be more
sensitive to an inadequate basis. In a more general context this implies that the advantages
of using a more sophisticated model (more KL modes in this case) depends on the goal of
model calibration. For example, a user interested in accurate state predictions for oil pro-
duction analysis will require a relatively low fidelity model when compared to a researcher
interested in characterizing subsurface structures. In this case, the user interested in oil
production would be best suited to finding more measurements or reducing measurement
error, while the researcher interested in geological structure would find it more beneficial
to investigate modeling assumptions (isotropy, etc...). Figs. 5.3 and 5.4 illustrate the sensi-
tivity of the RMSE in saturation and permeability to the number of KL modes and number
of sensors. Fig. 5.5 shows the L∞ error between the true saturation and the best EnKF
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Figure 5.4: Kriging estimate comparison of sensors and KL for saturation.

prediction for a range of sensor and KL coefficients.

Fixing the number of KL modes and investigating the effects of the number of sensors and
the number of ensembles shows that after a suitable ensemble size has been reached, further
increasing the ensemble size has little effect on EnKF performance. Table 5.9 and Fig. 5.8
illustrate this point. Fig. 5.8 shows that after approximately 200 ensembles, the difference
between the true saturation and EnKF estimated saturation is dependent mainly on the
number of sensors. Here, the small contour plots show the absolute difference between
the true and predicted saturation fields while the color of the scatter point represents the
relative RMSE obtained at that point. Thus, when a reasonable ensemble size is used, the
number of observations is the primary indicator of EnKF performance.

Figs. 5.6 and 5.7 show the sensitivity of the RMSE in saturation and permeability to the
number of sensors and ensembles. Fig. 5.8 shows the L∞ error between the true saturation
and the best EnKF prediction for a range of sensors and ensembles. Figs. 5.9 and 5.10
show the sensitivity of the RMSE in saturation and permeability to the number of sensors
and ensembles. Fig. 5.11 shows the L∞ error between the true saturation and the best EnKF
prediction for a range of sensors and ensembles.

The goal of statistical parameter estimation is to provide a good estimate of the parameters
and also to quantify the uncertainty in that estimate. Both the EnKF and MCMC provide
this information but Gaussian assumptions made during the data assimilation step in the
EnKF affect the quality of the final EnKF statistical estimate. Here, the statistical quality
of the EnKF posterior estimates are compared to MCMC results as an indication of EnKF
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Figure 5.5: L∞ error between true saturation and best EnKF prediction. The comparison is
made between sensors and KL for permeability.

applicability to porous media inference problems. Two comparisons between the MCMC
and EnKF are made, first we consider a fixed number of KL modes and use each algorithm
to infer permeabilities. Secondly, we place a computational constraint on the methods and
change the number of KL modes for the EnKF to demonstrate the strengths of the EnKF
compared to MCMC.

In the first comparison, three runs of DRAM MCMC were performed with either 10,000
samples or 500,000 samples and initial proposal variances of 0.1 or 0.3. The EnKF fil-
ter used 500 ensembles. The reconstructed permeabilities and respective saturations for
each of the MCMC runs is shown next to the EnKF results in Figs. 5.13-5.18. Clearly, the
MCMC reconstructed permeability is suspect. With 30 parameters to estimate in a nonlin-
ear model such as this, ensuring proper mixing of the DRAM chain is very difficult and
the results shown in these figures is most likely related to an insufficient exploration of the
parameter space.
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Figure 5.6: Kriging estimate comparison of sensors and ensemble size.

Figure 5.7: Kriging estimate comparison of sensors and ensemble size for saturation.
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Figure 5.8: L∞ error between true saturation and best EnKF prediction. The comparison is
made between N sensors and ensemble size.
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Figure 5.9: Kriging estimate comparison of ensemble size and KL.

Figure 5.10: Kriging estimate comparison of ensemble size and KL for saturation.
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Figure 5.11: L∞ error between true saturation and best EnKF prediction. The comparison
is made between ensemble size and KL.
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Figure 5.12: Kriging estimate of RMSE at fixed slices. Green lines with ’x’ are for the
saturation prediction and red lines with ’o’ represent permeability RMSE. Kriging surface
is made from data using LHS.
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Table 5.4: Ensemble (error) statistics for permeability field as a function of the number of
sensors (N Sensors) and the number of Karhunen-Loève modes (N KL). All other parame-
ters were fixed at the values detailed in Table. 5.1.

N Sensors N KL ∑ rmse min rmse max rmse min var max var mean skew
365 23 1.41e+02 2.72e-02 1.09e+00 6.46e-04 1.75e-02 3.05e-02
396 53 8.84e+01 7.38e-02 6.97e-01 4.47e-03 3.88e-02 1.32e-01
320 198 8.88e+01 1.24e-01 6.91e-01 1.48e-02 5.17e-02 7.99e-02
60 103 1.08e+02 1.63e-01 7.66e-01 2.32e-02 5.27e-02 7.82e-02

245 137 9.04e+01 1.35e-01 4.95e-01 1.61e-02 5.62e-02 6.77e-02
224 78 9.02e+01 1.14e-01 5.66e-01 9.67e-03 4.08e-02 7.61e-02
413 179 8.97e+01 1.18e-01 5.46e-01 1.35e-02 4.27e-02 7.97e-02
15 127 1.19e+02 1.92e-01 6.82e-01 3.55e-02 5.98e-02 3.75e-02

137 146 9.53e+01 1.45e-01 6.57e-01 2.05e-02 5.05e-02 8.69e-02
294 64 8.80e+01 8.39e-02 5.54e-01 7.03e-03 4.07e-02 6.24e-02
487 106 8.45e+01 1.04e-01 5.90e-01 9.17e-03 4.04e-02 7.75e-02
102 12 1.26e+02 3.31e-02 1.00e+00 1.26e-04 1.18e-02 5.48e-02
351 168 9.22e+01 1.28e-01 6.40e-01 1.46e-02 4.28e-02 5.28e-02
188 133 1.01e+02 1.40e-01 7.07e-01 1.53e-02 5.81e-02 6.56e-02
310 95 8.82e+01 1.03e-01 6.06e-01 1.04e-02 4.43e-02 8.50e-02
466 157 9.21e+01 1.29e-01 6.78e-01 1.17e-02 4.04e-02 8.30e-02
261 169 8.98e+01 1.24e-01 5.37e-01 1.50e-02 4.59e-02 8.17e-02
441 185 8.62e+01 1.22e-01 6.21e-01 1.30e-02 5.51e-02 7.90e-02
209 115 9.40e+01 1.25e-01 5.84e-01 1.43e-02 4.48e-02 8.11e-02
164 88 9.50e+01 1.28e-01 6.06e-01 1.24e-02 4.66e-02 1.09e-01
421 33 1.05e+02 5.16e-02 9.30e-01 1.84e-03 2.19e-02 6.52e-02
75 42 9.27e+01 1.10e-01 5.81e-01 5.99e-03 4.62e-02 9.92e-02
46 35 1.01e+02 9.39e-02 6.91e-01 4.92e-03 4.04e-02 8.19e-02
46 35 8.75e+01 1.18e-01 4.83e-01 1.09e-02 4.36e-02 9.57e-02
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Table 5.5: Ensemble (error) statistics for the final saturation field as a function of the num-
ber of sensors (N Sensors) and the number of Karhunen-Loève modes (N KL). All other
parameters were fixed at the values detailed in Table. 5.1.

N Sensors N KL ∑ rmse min rmse max rmse min var max var mean skew
365 23 3.00e+00 1.14e-12 6.92e-02 1.27e-24 4.65e-04 3.05e-02
396 53 2.26e+00 7.39e-13 4.93e-02 5.33e-25 1.14e-03 1.32e-01
320 198 2.62e+00 2.27e-07 4.73e-02 3.45e-14 2.23e-03 7.99e-02
60 103 1.85e+01 6.48e-07 8.54e+00 1.56e-13 5.90e+01 7.82e-02

245 137 2.84e+00 8.87e-13 4.10e-02 7.79e-25 1.38e-03 6.77e-02
224 78 2.60e+00 8.68e-13 4.13e-02 7.35e-25 1.65e-03 7.61e-02
413 179 2.34e+00 1.01e-12 5.06e-02 7.26e-25 1.52e-03 7.97e-02
15 127 3.30e+01 8.17e-07 1.32e+01 2.05e-13 1.15e+02 3.75e-02

137 146 9.05e+00 5.30e-07 4.94e+00 8.79e-14 2.26e+01 8.69e-02
294 64 2.50e+00 7.19e-07 4.87e-02 2.05e-13 7.31e-04 6.24e-02
487 106 2.07e+00 8.36e-13 3.62e-02 6.93e-25 1.10e-03 7.75e-02
102 12 4.66e+00 9.18e-13 9.58e-02 7.91e-25 9.12e-04 5.48e-02
351 168 2.52e+00 7.59e-13 5.73e-02 5.63e-25 2.25e-03 5.28e-02
188 133 3.21e+00 8.17e-13 1.04e-01 5.89e-25 2.00e-03 6.56e-02
310 95 2.44e+00 6.89e-08 5.55e-02 3.79e-15 6.92e-04 8.50e-02
466 157 2.17e+00 1.75e-07 3.29e-02 2.68e-14 1.08e-03 8.30e-02
261 169 2.64e+00 8.03e-13 9.65e-02 6.30e-25 9.26e-03 8.17e-02
441 185 2.14e+00 1.48e-07 4.22e-02 1.49e-14 1.52e-03 7.90e-02
209 115 3.09e+00 1.72e-08 1.23e-01 2.94e-16 1.42e-02 8.11e-02
164 88 2.81e+01 3.30e-07 2.49e+01 8.88e-14 6.04e+01 1.09e-01
421 33 2.44e+00 3.16e-07 4.78e-02 6.80e-14 4.13e-04 6.52e-02
75 42 5.23e+00 8.66e-13 2.41e-01 7.29e-25 4.96e-02 9.92e-02
46 35 1.47e+01 4.84e-07 5.03e+00 1.12e-13 2.53e+01 8.19e-02
46 35 1.79e+01 4.77e-07 1.40e+01 1.31e-13 1.03e+02 9.57e-02

Table 5.6: Linear model coefficient estimates for permeability and saturation as a function
of the number of sensors and Karhunen-Loève modes.

Parameter Perm. Coefficient Sat. Coefficient
N Sensors -4.18e-01 -7.14e-01

N KL -2.20e-01 1.67e-01
(N Sensors)×(N Sensors) 3.09e-01 4.70e-01

(N Sensors)×(N KL) -5.48e-01 -2.32e-01
(N KL)×(N KL) 6.85e-01 1.67e-01
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Table 5.7: Ensemble (error) statistics for permeability field, as a function of the number of
sensors (N Sensors) and the EnKF ensemble size (Ens Size). Other parameters were kept
fixed at the values detailed in Table 5.1.

N Sensors Ens Size ∑ rmse min rmse max rmse min var max var mean skew
228 19 1.05e+02 1.77e-02 1.13e+00 1.50e-04 4.90e-03 -1.48e-01
137 296 9.49e+01 1.22e-01 5.29e-01 1.19e-02 4.07e-02 7.66e-02
274 1209 8.87e+01 1.14e-01 5.79e-01 1.21e-02 4.57e-02 1.00e-01
94 1439 9.84e+01 1.61e-01 5.21e-01 2.44e-02 5.14e-02 9.70e-02
22 480 1.15e+02 1.84e-01 5.75e-01 2.87e-02 5.98e-02 5.84e-02

164 1002 9.34e+01 1.32e-01 5.32e-01 1.50e-02 4.68e-02 1.03e-01
443 1169 8.65e+01 1.02e-01 5.15e-01 1.02e-02 4.39e-02 1.00e-01
191 1039 9.31e+01 1.36e-01 5.44e-01 1.42e-02 4.65e-02 9.66e-02
326 1256 8.65e+01 1.15e-01 5.89e-01 1.19e-02 4.44e-02 9.88e-02
364 153 8.52e+01 8.95e-02 5.87e-01 5.09e-03 2.50e-02 7.20e-02
32 413 1.09e+02 1.58e-01 6.29e-01 2.47e-02 5.80e-02 7.20e-02

494 604 8.90e+01 1.14e-01 5.45e-01 9.60e-03 4.00e-02 7.68e-02
345 99 8.67e+01 6.81e-02 5.54e-01 3.85e-03 1.74e-02 -1.53e-02
61 1099 1.03e+02 1.64e-01 6.27e-01 2.34e-02 5.50e-02 1.01e-01

240 215 8.59e+01 1.15e-01 5.61e-01 9.13e-03 3.38e-02 8.98e-02
395 799 8.23e+01 1.15e-01 4.27e-01 1.08e-02 4.65e-02 9.99e-02
424 512 8.49e+01 1.11e-01 5.21e-01 1.03e-02 4.03e-02 7.58e-02
121 826 9.46e+01 1.47e-01 5.11e-01 1.62e-02 5.03e-02 8.95e-02
78 347 1.01e+02 1.44e-01 5.89e-01 1.88e-02 4.86e-02 7.17e-02

402 632 8.62e+01 1.09e-01 5.51e-01 1.07e-02 4.17e-02 8.98e-02
459 1357 8.73e+01 1.12e-01 4.80e-01 1.22e-02 4.44e-02 1.16e-01
306 935 8.72e+01 1.16e-01 6.06e-01 1.21e-02 4.53e-02 9.37e-02
207 1399 9.54e+01 1.30e-01 5.22e-01 1.53e-02 4.98e-02 1.16e-01
207 1399 8.73e+01 1.11e-01 5.40e-01 1.22e-02 4.54e-02 9.62e-02
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Table 5.8: Ensemble (error) statistics for the final saturation field, as a function of the
number of sensors (N Sensors) and the EnKF ensemble size (Ens Size). Other parameters
were kept fixed at the values detailed in Table 5.1.

N Sensors Ens Size ∑ rmse min rmse max rmse min var max var mean skew
228 19 5.23e+00 6.42e-08 1.33e-01 4.67e-16 1.70e-04 -1.48e-01
137 296 3.17e+00 8.24e-13 4.36e-02 6.76e-25 1.82e-03 7.66e-02
274 1209 3.14e+00 5.07e-07 4.40e-01 9.53e-14 1.93e-01 1.00e-01
94 1439 6.21e+00 2.53e-08 9.48e-01 6.41e-16 8.98e-01 9.70e-02
22 480 9.92e+00 1.25e-07 1.75e+00 1.39e-14 3.05e+00 5.84e-02

164 1002 7.01e+00 4.02e-07 3.70e+00 6.14e-14 1.32e+01 1.03e-01
443 1169 2.11e+00 8.02e-13 3.53e-02 6.13e-25 1.06e-03 1.00e-01
191 1039 3.89e+00 1.48e-07 2.91e-01 2.12e-14 7.63e-02 9.66e-02
326 1256 2.28e+00 5.67e-07 4.87e-02 1.29e-13 1.71e-03 9.88e-02
364 153 2.35e+00 8.45e-13 3.16e-02 5.33e-25 6.43e-04 7.20e-02
32 413 7.93e+00 8.49e-13 4.97e-01 6.92e-25 2.45e-01 7.20e-02

494 604 2.21e+00 7.93e-13 3.98e-02 5.98e-25 9.97e-04 7.68e-02
345 99 2.61e+00 7.51e-13 4.83e-02 5.50e-25 2.62e-04 -1.53e-02
61 1099 2.59e+01 8.35e-07 1.28e+01 2.19e-13 6.07e+01 1.01e-01

240 215 2.57e+00 7.05e-13 4.70e-02 4.70e-25 9.34e-04 8.98e-02
395 799 2.12e+00 8.53e-13 5.24e-02 7.24e-25 5.55e-04 9.99e-02
424 512 2.20e+00 7.77e-13 4.10e-02 6.03e-25 5.99e-04 7.58e-02
121 826 3.52e+00 8.16e-13 1.45e-01 6.58e-25 2.09e-02 8.95e-02
78 347 6.17e+00 5.40e-08 3.71e-01 2.08e-15 1.35e-01 7.17e-02

402 632 2.23e+00 3.20e-07 3.70e-02 5.66e-14 5.51e-04 8.98e-02
459 1357 2.22e+00 1.23e-07 3.78e-02 1.49e-14 1.09e-03 1.16e-01
306 935 2.39e+00 7.52e-13 4.13e-02 5.54e-25 8.05e-04 9.37e-02
207 1399 3.02e+00 7.97e-13 6.66e-02 6.05e-25 3.53e-03 1.16e-01
207 1399 2.57e+00 4.46e-07 1.51e-01 6.71e-14 1.72e-02 9.62e-02

Table 5.9: Linear model coefficient estimates for permeability and saturation, as a function
of the number of sensors (N Sensors) and EnKF ensemble size (Ens Size).

Parameter Perm. Coefficient Sat. Coefficient
N Sensors -8.42e-01 -6.25e-01
Ens Size -1.79e-01 1.00e-01

(N Sensors)×(N Sensors) 3.99e-01 4.84e-01
(N Sensors)×(Ens Size) 1.78e-01 -3.01e-01
(Ens Size)×(Ens Size) 2.91e-01 1.00e-01
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Table 5.10: Ensemble (error) statistics for permeability field as a function of the EnKF
ensemble size (Ens Size) and the number of Karhunen-Loève modes (N KL). All other
parameters are kept fixed at the values in Table 5.1.

Ens Size N KL ∑ rmse min rmse max rmse min var max var mean skew
760 162 1.05e+02 1.67e-01 5.72e-01 2.77e-02 6.03e-02 9.20e-02
980 103 1.05e+02 1.69e-01 6.61e-01 2.59e-02 5.35e-02 8.90e-02

1120 90 1.03e+02 1.58e-01 5.74e-01 2.36e-02 5.28e-02 1.04e-01
553 80 1.02e+02 1.33e-01 6.06e-01 1.76e-02 5.27e-02 8.63e-02

1056 61 9.99e+01 1.33e-01 5.38e-01 1.34e-02 5.29e-02 8.96e-02
574 111 1.09e+02 1.67e-01 6.87e-01 2.75e-02 5.75e-02 8.75e-02
927 192 1.05e+02 1.78e-01 6.63e-01 2.95e-02 6.01e-02 8.43e-02

1397 143 1.10e+02 1.82e-01 6.26e-01 3.00e-02 5.99e-02 8.19e-02
155 123 9.96e+01 1.49e-01 5.45e-01 1.76e-02 5.55e-02 9.34e-02
403 38 9.71e+01 9.73e-02 6.76e-01 5.75e-03 4.39e-02 1.00e-01
90 54 9.79e+01 1.02e-01 6.67e-01 7.08e-03 4.28e-02 2.12e-02
458 146 1.02e+02 1.66e-01 4.55e-01 2.61e-02 5.77e-02 7.38e-02
234 47 1.03e+02 1.07e-01 6.06e-01 6.18e-03 4.69e-02 1.02e-01
744 25 1.26e+02 6.37e-02 1.01e+00 2.07e-03 3.76e-02 8.70e-02
304 177 1.07e+02 1.60e-01 6.38e-01 2.51e-02 6.52e-02 6.46e-02

1131 30 9.89e+01 8.69e-02 6.79e-01 3.47e-03 4.22e-02 7.81e-02
1351 134 1.08e+02 1.78e-01 5.75e-01 2.81e-02 5.55e-02 7.24e-02
1279 12 1.25e+02 4.19e-02 1.11e+00 1.77e-04 1.82e-02 9.30e-02
1472 189 1.08e+02 1.82e-01 5.97e-01 3.11e-02 6.14e-02 8.67e-02
823 69 9.97e+01 1.48e-01 5.58e-01 1.83e-02 4.99e-02 9.52e-02
348 89 1.03e+02 1.49e-01 7.73e-01 1.99e-02 5.08e-02 8.58e-02

1232 157 1.07e+02 1.78e-01 5.25e-01 3.09e-02 5.76e-02 7.70e-02
633 169 1.05e+02 1.72e-01 7.39e-01 2.88e-02 5.41e-02 7.65e-02
633 169 1.11e+02 7.43e-02 7.54e-01 2.58e-03 3.62e-02 9.95e-03
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Table 5.11: Ensemble (error) statistics for the final saturation field as a function of the
EnKF ensemble size (Ens Size) and the number of Karhunen-Loève modes (N KL). All
other parameters are kept fixed at the values in Table 5.1.

Ens Size N KL ∑ rmse min rmse max rmse min var max var mean skew
760 162 2.29e+01 6.84e-07 1.15e+01 1.61e-13 1.05e+02 9.20e-02
980 103 9.76e+00 2.89e-07 2.99e+00 4.24e-14 8.88e+00 8.90e-02

1120 90 1.41e+01 3.42e-07 3.80e+00 7.18e-14 1.43e+01 1.04e-01
553 80 2.12e+01 5.31e-07 9.92e+00 1.49e-13 7.11e+01 8.63e-02

1056 61 2.75e+01 6.59e-07 1.36e+01 1.73e-13 1.29e+02 8.96e-02
574 111 9.96e+00 1.54e-07 1.54e+00 2.17e-14 2.38e+00 8.75e-02
927 192 3.34e+01 1.18e-06 1.21e+01 3.13e-13 1.19e+02 8.43e-02

1397 143 6.47e+00 1.25e-12 4.09e-01 8.44e-25 1.42e-01 8.19e-02
155 123 3.19e+01 6.43e-07 1.44e+01 2.31e-13 8.97e+01 9.34e-02
403 38 4.43e+00 2.04e-08 2.11e-01 3.60e-16 4.31e-02 1.00e-01
90 54 4.15e+00 1.04e-12 1.10e-01 6.57e-25 8.37e-03 2.12e-02
458 146 2.39e+01 7.65e-07 9.31e+00 2.20e-13 5.18e+01 7.38e-02
234 47 4.58e+00 1.01e-12 2.53e-01 5.21e-25 6.40e-02 1.02e-01
744 25 2.39e+01 5.80e-07 1.04e+01 1.69e-13 9.36e+01 8.70e-02
304 177 5.83e+00 1.22e-12 3.32e-01 7.26e-25 4.51e-02 6.46e-02

1131 30 3.24e+01 6.66e-07 1.37e+01 2.93e-13 1.41e+02 7.81e-02
1351 134 3.67e+01 9.16e-07 1.11e+01 3.68e-13 1.02e+02 7.24e-02
1279 12 5.16e+00 1.16e-12 2.23e-01 1.08e-24 2.88e-02 9.30e-02
1472 189 2.02e+01 5.43e-07 1.08e+01 1.47e-13 8.06e+01 8.67e-02
823 69 7.53e+00 1.25e-12 6.06e-01 7.45e-25 2.53e-01 9.52e-02
348 89 6.19e+00 1.07e-12 5.39e-01 6.62e-25 2.33e-01 8.58e-02

1232 157 6.45e+00 1.35e-12 4.07e-01 7.25e-25 1.65e-01 7.70e-02
633 169 5.70e+00 1.33e-12 2.80e-01 8.49e-25 3.85e-02 7.65e-02
633 169 6.18e+00 1.50e-12 4.40e-01 8.00e-25 1.93e-01 9.95e-03

Table 5.12: Linear model coefficient estimates for permeability and saturation, as a function
of ensemble size (Ens Size) and number of Karhunen-Loève modes (N KL).

Parameter Perm. Coefficient Sat. Coefficient
Ens Size 2.60e-01 2.66e-01

N KL -7.25e-02 1.55e-01
(Ens Size)×(Ens Size) 2.41e-01 -1.40e-01

(Ens Size)×(N KL) -3.11e-01 -9.57e-02
(N KL)×(N KL) 3.47e-01 1.55e-01
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Table 5.13: Linear model coefficient estimates permeability and saturation, as a function of
various parameters (as detailed in Table 5.1) and some of their second order combinations.

Parameter Perm. Coefficient Sat. Coefficient
N Sensors -5.01e-02 -1.88e-01
Ens Size -6.45e-03 2.77e-02

N KL 1.14e-01 1.58e-01
DOF 9.63e-01 5.44e-01

Noise Variance 1.27e-01 3.06e-01
Length Scale 9.50e-02 1.52e-03

Obs Time Spacing 7.08e-02 -9.80e-02
(N Sensors)×(N Sensors) 2.14e-02 5.12e-02
(N Sensors)×(Ens Size) -2.48e-03 1.84e-01

(N Sensors)×(N KL) -4.01e-03 -1.14e-01
(N Sensors)×(DOF) -4.23e-02 -2.00e-01

(N Sensors)×(Noise Variance) 6.80e-03 -2.94e-02
(N Sensors)×(Length Scale) -3.07e-03 1.52e-01

(N Sensors)×(Obs Time Spacing) 2.26e-02 3.99e-01
(Ens Size)×(Ens Size) 1.17e-02 -1.72e-01

(Ens Size)×(N KL) -5.66e-03 -3.38e-02
(Ens Size)×(DOF) 2.45e-02 -1.50e-01

(Ens Size)×(Noise Variance) -1.24e-02 8.95e-03
(Ens Size)×(Length Scale) 6.27e-03 -1.46e-01

(Ens Size)×(Obs Time Spacing) -5.53e-03 3.12e-02
(N KL)×(N KL) -4.00e-02 -9.39e-02
(N KL)×(DOF) 6.44e-02 1.57e-01

(N KL)×(Noise Variance) -1.46e-02 -9.70e-02
(N KL)×(Length Scale) -1.55e-02 1.24e-01

(N KL)×(Obs Time Spacing) -8.49e-04 -9.74e-02
(DOF)×(DOF) 1.92e-01 3.07e-01

(DOF)×(Noise Variance) 5.42e-02 1.80e-01
(DOF)×(Length Scale) 4.20e-02 -1.83e-01

(DOF)×(Obs Time Spacing) 4.02e-02 -4.20e-01
(Noise Variance)×(Noise Variance) -4.83e-02 5.51e-03
(Noise Variance)×(Length Scale) 1.41e-02 -2.19e-02

(Noise Variance)×(Obs Time Spacing) -1.21e-02 -1.05e-01
(Length Scale)×(Length Scale) -6.98e-02 -1.55e-01

(Length Scale)×(Obs Time Spacing) 9.29e-04 6.55e-02
(Obs Time Spacing)×(Obs Time Spacing) -1.77e-02 1.23e-01
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Table 5.14: Ensemble (error) statistics for the permeability field, as a function of the EnKF
ensemble size (varied between 500 and 4500). All other parameters were kept fixed at the
values in Table 5.1.

Ens Size ∑ rmse min rmse max rmse min var max var mean skew
500 1.99e+02 4.56e-02 6.29e-01 2.38e-04 2.12e-02 6.30e-02

1500 1.95e+02 4.66e-02 6.01e-01 2.82e-04 2.24e-02 6.24e-02
2500 1.92e+02 4.15e-02 6.34e-01 2.69e-04 2.20e-02 6.99e-02
3500 2.05e+02 4.33e-02 6.74e-01 2.81e-04 2.21e-02 6.53e-02
4500 1.97e+02 4.26e-02 6.72e-01 2.69e-04 2.15e-02 6.83e-02
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Figure 5.13: Comparison of MCMC and EnKF permeability estimates. The EnKF con-
sisted of 500 ensemble members. The MCMC was performed with an initial proposal
covariance of 0.1, and 10,000 samples were drawn.
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Figure 5.14: Comparison of MCMC and EnKF saturation estimates. The EnKF consisted
of 500 ensemble members. The MCMC was performed with an initial proposal covariance
of 0.1, and 10,000 samples were drawn.
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Figure 5.15: Comparison of MCMC and EnKF permeability estimates. The EnKF con-
sisted of 500 ensemble members. The MCMC was performed with an initial proposal
covariance of 0.3, and 10,000 samples were drawn.
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Figure 5.16: Comparison of MCMC and EnKF saturation estimates. The EnKF consisted
of 500 ensemble members. The MCMC was performed with an initial proposal covariance
of 0.3, and 10,000 samples were drawn.
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Figure 5.17: Comparison of MCMC and EnKF permeability estimates. The EnKF con-
sisted of 500 ensemble members. The MCMC was performed with an initial proposal
covariance of 0.3, and 30,000 samples were drawn.
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Figure 5.18: Comparison of MCMC and EnKF saturation estimates. The EnKF consisted
of 500 ensemble members. The MCMC was performed with an initial proposal covariance
of 0.3, and 30,000 samples were drawn.
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Figure 5.19: Comparison of MCMC and EnKF marginal distributions, for the three cases
plotted in Figs. 5.13- 5.18.
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Figure 5.20: Multi-distribution dataset

5.10 Numerical Results: Multiple Distribution Example

In this section a complicated dataset is used to test the EnKF inversion capabilities (Fig. 5.20).
Our original hypothesis was that the EnKF algorithms would not be able to invert for ma-
terial properties of this class. However, as Figs. 5.21 and 5.22 show, the EnKF is able to
reconstruct sufficient features of the permeability paths to produce an excellent water con-
centration prediction in comparison to the truth model. In an attempt to improve on the
statistical characterization of this dataset, a hybrid method was implemented and is briefly
discussed next.

201



Figure 5.21: Permeability reconstruction on the left and the truth model on the right. The
dots are the measurement locations.
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Figure 5.22: Saturation reconstruction on the left and the truth model on the right. The dots
are the measurement locations.
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5.11 Conclusions

Ensemble Kalman Filters (EnKF) are investigated to predict water saturations and recon-
struct Karhunen and Loeve (KL) coefficient representation of permeability fields in water
flooding numerical experiments. Traditionally, Kalman Filters provide computationally
efficient mechanisms to solve large scale inversion problems but achieve this efficiency
through Gaussianity, linear assumptions and adjoints. The EnKF approach avoids adjoints,
addresses deviations from Gaussianity, and accommodates nonlinearities by direct calcula-
tion of the covariance from the ensembles. Sensitivity studies are performed to evaluate the
performance of EnKF and compare to complete statistical solutions using Markov Chain
Monte Carlo (MCMC) algorithms. Using a small dataset with 20 target inversion parame-
ters (KL coefficients), the EnKF results demonstrate excellent water saturation prediction
capabilities despite sparse observations and noisy data. The MCMC results show however
a discrepancy in higher statistical moments. The EnKF is tested on a permeability dataset
that is strongly bimodal and representative of a fracture network in less permeable matrix,
capturing large and scale features of saturations. A hybrid approach is introduced to com-
bine dynamic and static observations and shows that the inversion is not only accelerated
but provides more accurate, higher statistical moments. The hybrid method consists of a
MCMC inversion of static permeabilities to augment the prior information for the EnKF
process, which then in turn performs a dynamic inversion of both permeabilities and water
saturations.

Finally, we demonstrated a good reconstruction of saturations for a large and complicated
dataset. This took 8 hours on a serial processor for 500 ensembles, which can be paral-
lelized and theoretically computed in about one minute on a 500 core machine. MCMC
would require about one million forward simulations to achieve appropriate convergence,
which would require approximately 2 years of compute time on a serial processor.
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Chapter 6

Application of EnKF to High-Plains
Aquifer Ground Water Model

The High Plains aquifer (HPA) underlies an area of 111.4 million acres (174,000 square
miles) in parts of eight States – Colorado, Kansas, Nebraska, New Mexico, Oklahoma,
South Dakota, Texas, and Wyoming [160]. The term High Plains Aquifer is often used
synonymously with the Ogallala Aquifer. The region overlying the HPA is one of the ma-
jor agricultural regions in the world and roughly 10 percent of this area is irrigated farm
land with the HPA serving as the source of the irrigation water. Water level declines be-
gan in parts of the HPA soon after the beginning of extensive groundwater irrigation in the
1950s. Water–level declines have exceeded 150 feet in some areas. The HPA is generally
found at shallow depths and is a water-table (unconfined) aquifer over most of its extent.
The Kansas Geological Survey (KGS) has constructed a complex MODFLOW model of
Groundwater Management District No. 3 (GMD3) in a portion of the HPA in the southwest
corner of Kansas. A full report on the MODFLOW model can be found in [1]. More than
15,000 lithologic logs are used to define the heterogeneous stratigraphy within this model.
Eight hydraulic conductivity (K) values and five specific yield (Sy) values corresponding to
different stratigraphic units within the well logs are calibrated using PEST [161]. While the
GMD3 model spans the years 1944 to 2007, the calibration used in this research is based
on the 18 years between 1990 and 2007. Both water level and streamflow measurements
are used in the calibration. The effective K and Sy values are computed using the satu-
rated thickness at each well. These values are used as conditioning data points to krig the
effective K and Sy fields used in the MODFLOW model. With this model in place, it is
possible to make projections into the future, create “what if” scenarios and overall increase
the profitability of the water management effort in Kansas. To improve predictions of fu-
ture aquifer sustainability, accurate estimates of aquifer parameters (K and Sy) are needed
and uncertainty inherent in those estimates needs to be quantified.

Here, the Ensemble Kalman Filter (EnKF) is applied to the MODFLOW model of GMD3
to estimate K and Sy values. The hydraulic variables are updated based on observed stream-
flow and water levels. The GMD3 model is highly non-linear in that the predicted water
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level is dependent on the estimated effective K at any location, which is a function of the
predicted water level. While the EnKF is designed for use with non-linear models, the
GMD3 model illustrates some challenges to this approach, primarily due to the interde-
pendency between the calibrated hydraulic properties and the water level. The number
of stratigraphic units that contribute to the effective hydraulic properties decreases with
a decline in water level. Furthermore, the hydraulic properties are distributed through-
out the model in a non-linear fashion. The large amount of structural information derived
from the lithologic boreholes constrains the estimated K and Sy values. In this report, we
demonstrate the use of EnKF with the GMD3 model using several cases. We find that the
estimated K and Sy values often diverge from the calibrated model supplied by the KGS
and become unstable through time using the EnKF.

6.1 Ensemble Kalman Filter Background

Details on the theory and algorithms for the Kalman filter and its extensions as used here are
available in Sec. 5.5. A brief summary of the conceptual background of the Kalman filter
and the EnKF is presented here for completeness. The Kalman filter technique for predict-
ing system behavior was first introduced by Kalman [149]. Kalman filter techniques are
predictor-corrector methods and use measured data to correct model predictions by track-
ing the error covariance matrix. Kalman filtering, however, is only applicable to linear sys-
tems. To address this limitation, linearization techniques are added to an extended Kalman
filter algorithm to approximate error statistics in the Kalman filter framework [162]. The
linearization techniques, however, are not successful in highly non-linear systems.

The EnKF approach was developed by Evensen [163] to predict behavior in highly non-
linear systems. A thorough review of EnKF applications has been compiled by Evensen [164].
The EnKF uses an ensemble of model states (state variables) and model estimates (control
variables) to predict error statistics forward in time. Initial representation of state variables
is sampled from a probability distribution function, forming a state matrix. The state ma-
trix is updated using the EnKF in an attempt to improve the model estimate as compared
to physical observations. Each variable within the state matrix is updated based on an error
statistic, called the Kalman Gain (KG), and the difference between predictions and physical
observations. The KG is defined as follows:

KG =COVA(State,Control)/VAR(Control), (6.1)

where COVA is the covariance function, VAR is the variance function, State is the state
variable, and Control is the control variable. The KG is used to update the state matrix
using observational data with the following equation:

Stateu = Statep +KG∗ (Control−Observation), (6.2)

where subscript u denotes the updated state matrix, p denotes the prior state matrix, and
Observation is the observational data at a specified time. The value of the KG serves as
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a weighting scheme to place more or less emphasis on the prior state values versus the
observation data in updating the state variables. More than one observation/control data
pair can be used in the EnKF by adding additional KG terms as follows:

Stateu = Statep +∑KGn ∗ (Controln−Observationn), (6.3)

where n is the number of control/observational data pairs used in the EnKF. Note that one
KG is calculated for each control data type used. In general, one update per time-step is
carried out. Alternatively, an iterative procedure can be applied to ensure that updated state
variables approximate control data within a specified tolerance. Using an iterative proce-
dure, updates are carried out until the difference between control data and observational
data is less than some specified tolerance. Once this error tolerance is met, the model is
advanced to the next time-step.

6.2 Modeling Approach

The GMD3 model covers an area 100 by 150 miles and is discretized into 1 mile square
grids. The model uses a 1 year time step. Several no-flow regions are defined in the model,
associated with locations where bedrock is observed at the surface. The model includes
approximately 5000 pumping wells distributed throughout the model domain and spatially
varying recharge associated with regional precipitation. While recharge was treated as a
calibration variable in the GMD3 PEST calibration done by the KGS, recharge is treated as
a known parameter in this study, with time and space varying values taken from the PEST
calibration. This research focuses on the 18 years between 1990 and 2007.

Stream flow and water level measurements are used to calibrate the model using the EnKF.
Streamflow observations are recorded at 7 locations: Syracuse, Kendall, Deerfield, Garden
City, Dodge City, Cimarron R Forgan OK, and Crooked Cr Englewood. These locations
are located along the Arkansas and Cimarron rivers. Water level elevation is recorded at
122 monitoring wells. These locations are spread throughout the model domain (Fig. 6.1).

Pumping wells are included in the model to simulate the discharge associated with ground
water rights (See Fig. 6.2). There are 10,367 individual water rights within the model
domain. During the 18 year period, an average of 5024 wells were pumping each year.
Individual pumping rates can be as high as 3.8∗105 ft3/day

The model contains time-varying specific head boundary conditions around part of the
bedrock and along the northern and southern perimeter of the area. Along the eastern and
western proximity there are time varying flux boundaries. The model contains several in-
active regions associated with locations where bedrock is observed at the ground surface.
Recharge of the HPA is included in the MODFLOW model and includes recharge originat-
ing from precipitation, irrigation, and diverted rivers. A distribution of precipitation was
applied to cells based on yearly data. The KGS implements a recharge algorithm that takes
into account the different types of recharge during the calibration process. Every cell of the
model area is assigned a recharge value and entered into MODFLOW (See Fig. 6.3).
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Figure 6.1: Locations of the 122 long-term water-level wells (blue cells) and 7 streamflow
gages

The hydrostratigraphy of the HPA in the model domain is complex with approximately
60 different units identified from well log data. The Practical Saturated Thickness Plus
(PST+) program was developed by the KGS to create heterogeneous fields that reflect well
log data. PST+ is used to build hydraulic conductivity and specific storage fields based on
15,715 well logs in the model domain. Each borehole contains data of the different layers
of material at their corresponding depths in the hole. The lithology of each well log is
segregated into 62 categories (called synonymies). These synonymies are then aggregated
into 8 K values and 5 Sy values based on similarities in their estimated K or Sy value
(Fig. 6.4). An effective K and Sy value are assigned for each borehole location based on
the water level at that location and the weighted average of the K and Sy values below the
water table. These locations are used as conditioning points in the 2D kriging program
(KB2D) [165]. A USGS supplemental field is used to fill in the outer region of the model
domain for both K and Sy. The GMD3 model and the large supporting data set provides
an excellent test case for examining the impact of stratigraphic conditioning data on the
resulting estimates of hydraulic properties.

The GMD3 MODFLOW model was calibrated by the KGS using PEST. PEST provides a
deterministic, gradient-based inversion capability. The initial and calibrated values for K
and Sy are listed in Table 6.1. Overall, the calibrated values produce a good fit to observed
streamflow and water levels. The Root Mean Squared Error (RMSE) is calculated for each
of the 7 stream locations and 122 observation wells. RMSE is calculated using all 18 years
for each location. The modeled hydrographs for the 7 stream gages (Fig. 6.5) adequately
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Figure 6.2: Pumping rates for the first year (1990). The magnitude of the circles radius is
proportional to the amount of pumping at that particular location.

209



TimeStep# 1 Recharge Map

 

 

ft3/day
0

0.5

1

1.5

2

2.5

x 10
−3

Figure 6.3: Map of model recharge for the first year in the model (1990).

predicts the observations in all but the “Cimarron R Forgan OK” station. The RMSE for
each hydrograph is listed in 6.2. Water level elevations in the wells are also adequately
predicted using the calibrated values in a majority of the monitoring locations. Over 50
percent of the 122 wells have a RMSE of less than 12 ft. The monitoring wells with the
10 highest RMSE values are illustrated in Fig. 6.6. The corresponding RMSE is also listed
in Table 6.2. The locations and the magnitudes of the RMSE values are shown within the
model domain in Fig. 6.5.

Table 6.1: Initial and calibrated (PEST) K and Sy values from the GMD3 model

Parameter Initial Value Calibrated Value Parameter Initial Value Calibrated Value
(ft/day) (ft/day) (-) (-)

K1 0.0002 0.000037 SY1 0.03 0.05
K2 0.02 0.0001 SY2 0.05 0.03
K3 0.2 4.44 SY3 0.20 0.08
K4 2 10.05 SY4 0.22 0.08
K5 20 1.00 SY5 0.25 0.05
K6 100 47.05
K7 200 236.47
K8 300 0.1

To use the GMD3 MODFLOW model within the EnKF, the state variables, state matrix,
observational data, and related control variables must be defined. The state variables are
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Figure 6.4: Practical Saturated Thickness Plus (PST+) program initial K (ft/day) and Sy
values for each PST+ synonymy lithology code (Table 4 in [1]). The colors denote the
groupings of the synonymies into 8 K and 5 Sy values.
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Figure 6.5: Measured (black dots) and modeled (red line) streamflow from the initial cali-
bration of the GMD3 model with PEST.
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Figure 6.6: Measured (black dots) and modeled (red line) water level from the initial cali-
bration of the GMD3 model with PEST. The 10 wells with the highest RMSE over 18 years
are shown here.
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Table 6.2: RMSE for all 7 streamflow observations and 10 highest RMSE for water level
observations using the GMD3 calibrated model. The average RMSE values for the 7
streamflows and all 122 water levels are shown at the bottom.

Gage Station RMSE Observation Well RMSE
(cfs) (ft)

Syracuse 12.1 R93 C64 62.6
Kendall 7.8 R84 C97 49.7

Deerfield 48.3 R64 C33 38.9
Garden City 17.9 R71 C14 38.4
Dodge City 39.7 R47 C33 37.3

Cimarron R Forgan OK 125.3 R88 C67 36.6
Crooked Cr Englewood 5.1 R7 C4 36.2

R67 C25 35.6
R49 C77 33.8
R72 C91 33.8

Average (7 Streams) 36.6 Average (122 Wells) 15.8

the 8 K and 5 Sy values that are used as input to the PST+ program. The state matrix is an
ensemble of realizations for the state variables. An ensemble of state variables is created
using a log normal distribution for each state variable and 50 realizations are included in
the ensemble. For K, the mean of the ensemble is log10(0.1 ft/day) and standard deviation
is 2. For Sy, the mean of the ensemble is log10(0.05) and standard deviation is 0.3. The dis-
tributions are truncated with respect to the reasonable limits on each parameter (3x10−06
ft/day to 3000 ft/day for K and 0.001 to 0.25 for Sy). Two types of observational data are
used: streamflow and water level. Depending on the type of observation data selected for
the EnKF, either modeled streamflow and/or modeled water level is defined as the control
variables.

The EnKF is used in conjunction with the GMD3 MODFLOW model and PST+ program
by updating the state variables (8 K and 5 Sy values ) after each every time step. A Kalman
Gain (KG) is calculated for each state variable as a function of the covariance between
the state variable (K or Sy) and control variable (streamflow or water level) (see Eq. 6.1).
Positive correlation between the state and control variable results in a positive KG.

EnKF updates are based on 2 methods: a single update per time step, and an iterative pro-
cess. With the single update method, the EnKF updates state variables once per timestep.
With the iterative method, the EnKF continues to update the state variables until the control
variable (modeled stream flow or water level) is within a specified tolerance of the obser-
vational data (20 cfs for streamflow or 10 feet for water level). The maximum number of
iterations per time step is set to 10. Once convergence or the maximum number of time
steps is met, the EnKF moves to the next time-step. Table 6.2 is used to measure how
well the EnKF updates the state of the model; additionally, changes in the state matrix are
tracked to see if the parameters are converging.
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6.3 Results

Before applying the EnKF to the GMD3 model, we run an ensemble of state variables
through the model to analyze the sensitivity of the model outputs to each of the 13 state
variables. This analysis is done using the PST+ program with all 15,715 lithology bore-
holes as input. Using 50 realizations of independently drawn state variables from the state
matrix, we note that several streamflow and water level observations change very little with
changes to the K and Sy variables. Figure 6.8 and Figure 6.9 show measured and modeled
streamflow and 10 of the 122 measured and modeled water levels using the 50 realizations.
In general, the calibrated GMD3 model is in good agreement with observed streamflow
and water levels. Using the calibrated K and Sy values, the GMD3 model has very low
RMSE for streamflow at Syracuse, Kendall, and Crooked Cr Englewood. The RMSE for
modeled water levels are generally below 12 ft. The streamflow at Syracuse, Kendall, and
Crooked Cr Englewood, the same locations where the error is very low, are not sensitive to
changes in K and Sy. There are also 19 monitoring well locations that are not very sensitive
to changes in K and Sy. The EnKF updates state variables based on variability in the model
outcome. When a specific observation is not sensitive to changes in the state, the covari-
ance and variance go to zero. When the variance is small, but not zero, the KG can become
very large. Ideally, state variables are not updated according to observations that are not
sensitive to changes in the model. For this reason, we do not include the 3 streamflow
observations (Syracuse, Kendall, Crooked Cr Englewood) and 20 water level observations
(R4 C73, R7 C4, R9 C29, R11 C143, R23 C3, R23 C9, R23 C11, R23 C83, R24 C15, R24
C15, R25 C14, R27 C23, R27 C105, R29 C29, R29 C32, R30 C33, R34 C132, R40 C13,
R52 C92, R97 C17) in the updating. Based on the 50 realizations used in this sensitivity
analysis, the standard deviation in streamflow and water level at these locations is less than
10 cfs or 10 ft, respectively. This calculation is averaged across the 18 year simulation.

The K and Sy fields created by the PST+ program are highly conditioned. The hetero-
geneous fields are kriged using 15,715 boreholes. The PST+ program can be revised to
accept any number of well logs that constrain heterogeneity. Before using the EnKF, we
reran the sensitivity analysis above with less conditioning points. Here, we limit the num-
ber of stratigraphy boreholes to only 100 boreholes randomly selected from the 15,715
boreholes. This represents a reduction of over 99 percent in the conditioning data with just
0.6 percent of the original conditioning data remaining. Figure 6.10 illustrates the loca-
tion of these selected boreholes. Figure 6.11 shows the difference in PST+ when using
all 15,715 boreholes and the 100 selected locations. As expected, there is a drastic differ-
ence in the K and Sy fields estimated with 15,715 and 100 boreholes. The high frequency
variations in the state variables represented with 15,715 boreholes are smoothed out into
low-frequency variations when only using 100 boreholes. Suprisingly, using only 100 con-
ditioning boreholes, streamflow and water levels change very little as compared to results
using the original PST+ program. This analysis suggests that streamflow and water lev-
els are not highly dependent on the underlying geologic structure. Streamflow and water
level variability increases slightly, but the overall behavior remains the same. Initial EnKF
results are run using the PST+ program with 100 boreholes.
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Figure 6.8: Sensitivity analysis of streamflow using 50 realizations of the K and Sy en-
semble. Measured (black dots), GMD3 calibrated model (red line), and results from 50
realizations (gray lines).
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Figure 6.9: Sensitivity analysis of water level using 50 realizations of the K and Sy ensem-
ble. Y-axis scale for water level is 200 feet for each plot. Measured (black dots), GMD3
calibrated model (red line), and results from 50 realizations (gray lines).
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Figure 6.10: 100 randomly selected boreholes (red) superimposed on the original set of
15715 boreholes (gray) used in the PST program.
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Figure 6.11: K and Sy field using 15,715 boreholes (top) and 100 randomly selected bore-
holes (bottom).

220



The EnKF can update state variables (K and Sy) based on streamflow or water level obser-
vations. Based on the sensitivity analysis, we select 4 of the 7 streams and 102 of the 122
monitoring wells that are influenced by changes to the hydraulic properties. Using a variety
of control data types and single or iterative update, 6 cases are tested. The cases are:

1. Single SF. Single update, control data = streamflow at 4 locations.

2. Single H. Single update, control data = water level at 102 locations.

3. Single SFH. Single update, control data = streamflow at 4 locations and water level
at 102 locations.

4. Iterative SF. Iterative update, control data = streamflow at 4 locations, maximum iter-
ations = 10, convergence is met if average difference between model and observation
is less than 20 cfs.

5. Iterative H. Iterative update, control data = water level at 102 locations, maximum
iterations = 10, convergence is met if average difference between model and obser-
vation is less than 10 ft.

6. Iterative SFH. Iterative update, control data = streamflow at 4 locations and water
level at 102 locations, maximum iterations = 10, convergence is met if average dif-
ference between model and observation is less than 20 cfs and 10 ft.

Table 6.3 summarizes the results from the 6 cases. In general, the EnKF does not improve
the prediction of streamflow and head across all observation points. There are some cases
where the EnKF improves the estimate at one or more points, but this tends to increase the
error elsewhere. Using the EnKF on a large number of observation points tends to dilute the
contribution from any one point. With the single update, the ensemble distribution does not
narrow. While the outer limits of K and Sy migrate toward the mean, the overall ensemble
is relatively unchanged. When we allow the EnKF to iterate on a single time step until the
convergence is met, the ensemble starts to converge to a single value. However, the large
number of observation points show that when the model improves the fit at one point, the
error tends to increases elsewhere.

Results from case 4 (Iterative SF) are illustrated in Figures 6.12, 6.13 and 6.14. These
figures show the streamflow and water level predictions along with changes to the K and
Sy state matrix. Streamflow improves at several locations; however the water levels exag-
gerate the decline measured at observation wells. The K and Sy values converge steadily
between 1990 and 2000. In some cases, the value is close to the calibrated value supplied
by KGS. After the year 2000, the K values in particular change erratically. The feedback
between water level and effective K and Sy is negatively impacting the updated ensemble.
After some point, the declining water level decreases the number of stratigraphic units that
influcence model outcomes. The EnKF was also run using an average water level in the
PST+ program. This fixes the number of stratigraphic units that contribute to the effective
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heterogeneous fields through time. However, this change only reduces some of the non-
linearity in the model. The effective values are still distributed in the model domain in a
non-linear fashion. Results using a constant water level estimate in the PST+ program still
produce errors in the range listed in Table 6.3.

6.4 Discussion

A previously calibrated groundwater model of the HPA was examined here to determine
if parameter estimation using EnKF could improve on the calibration of the model to the
observed data and/or provide additional insight into the variability of the estimated parame-
ters. This application provides a contrast to the model examined in Chapter 5 in that there is
a large database defining the spatial structure of the various hydro-stratigraphic units in the
GMD3 model and relatively less information on the observed state variable, here ground-
water levels, as compared to the more plentiful saturation observations in the Chapter 5
study.

Application of the EnKF to the GMD3 model showed that the density of the borehole data
defining the hydrostratigraphy was such that it exerts a strong control on the sensitivity
of observations to estimated values of K and Sy. For some locations, the observations are
completely insensitive to the estimated parameters, and this independence causes degener-
ate covariance calculations within the EnKF framework. Removal of > 99 percent of the
boreholes from the data set allowed the EnKF to estimate K and Sy, but the ensemble fit
to the observed data did not converge to an accurate and stable state. It may be that more
sophisticated application of the EnKF, including a means of localizing parameter changes
with respect to particular observations would improve the results, but that approach is be-
yond the scope of this study.

The lithologic based heterogeneity and unconfined conditions of the GMD3 model results
in unique non-linear conditions that create instability in the EnKF approach. Several cases
were tested using the EnKF with the GMD3 model and in all cases the estimated hydraulic
properties did not improve the prediction of streamflow and water level. While it was
possible to remove some of the non-linearity by stabilizing the water level used in the PST+
program, the local K and Sy values are still distributed across the model. This non-linearity
makes the relationship between any one parameter and the streamflow at a specific location,
for example, difficult to track. Alternatively, the parameter estimation process could be
modified by by removing the stratigraphic information (using no lithology information)
and estimate effective K and Sy values at a number of locations throughout the model
domain. Here, instead of estimating a limited number of global parameter values that
are then spatially distributed according the lithologic framework, a larger number of local
parameter values would be estimated. These local values would then be spatially distributed
throughout the domain using kriging.
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Figure 6.12: Variability in streamflow from Case 4 (Iterative SF). Measured (black dots),
GMD3 calibrated model (red line), results from EnKF (gray lines), and mean streamflow
from EnKF (blue line).
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Figure 6.13: Variability in water level from Case 4 (Iterative SF). Y axis scale varies.
Measured (black dots), GMD3 calibrated model (red line), results from EnKF (gray lines),
and mean streamflow from EnKF (blue line).
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Figure 6.14: Variability in state variables (K and Sy) from Case 4 (Iterative SF). Measured
(black dots), GMD3 calibrated model (red line), results from EnKF (gray lines), and mean
streamflow from EnKF (blue line).
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Chapter 7

Conclusions

This report documents our investigation into the reconstruction of multiscale fields, gener-
ally permeability fields, from sparse observations. Contemporary studies on the estimation
of fields do so on grids; “multiscale” typically refers to the range of structures/length-scales
in the fields being reconstructed. Algorithmic approaches that seek to reduce the compu-
tational costs associated with estimating small-scale structures form bulk of the research
being conducted today in the world.

In contrast, we consider the case where the field being reconstructed from sparse observa-
tions contains structures too small to be resolved by a mesh. We, too, proceed with a grid,
with the aim of estimating resolved spatial structures, but also seek statistical summaries
of subgrid structures. We perform this investigation first within the context of a binary
medium.

We consider a low permeability matrix containing high permeability inclusions which may
be present in any proportion, but individually are too small to be resolved by a grid. The
proportion of inclusions varies smoothly in space, but in an unknown manner. We are
provided with sparse observations of permeability at a set of “sensor” points, along with
tracer breakthrough times, from an injector-producer test, at the same sensors. The aim of
the investigation is to reconstruct the inclusion proportion field, estimate the inclusion size
and create realizations of the binary field conditioned on data.

In Chapter 2, we construct an analytical subgrid model that summarizes the effect of dis-
persed inclusions at a grid-block level. The inclusions are modeled probabilistically using
truncated Gaussians and their upscaling is performed by adapting an existing upscaling
theory. The subgrid model is parametrized by the inclusion proportion and a proxy for the
inclusion size.

In Chapter 3, this subgrid model is combined with an Eulerian single-phase porous me-
dia transport model to reconstruct the permeability field, determine the inclusion propor-
tion distribution in space and estimate the inclusion size. The inversion is performed on a
grid, but the dimensionality of the inversion, posed as a Bayesian inverse problem, is re-
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duced by modeling the field being estimated with a truncated Karhunen-Loève expansion.
The inverse problem is solved by constructing the posterior distribution of weights of the
Karhunen-Loève modes with an adaptive Markov chain Monte Carlo (MCMC) method,
thus capturing the uncertainty in the estimate. The method is tested on synthetic data.

We find that permeability measurements (static data) are sufficient for reconstructing the
large-scale structures in the problem, whereas the breakthrough times (dynamic data) are
informative about the small-scale structures. The size of the inclusions can only be in-
ferred in very tightly constrained situations; generally, the estimation of the inclusion size
is ruined by structural/model errors. However, the distribution of Karhunen-Loève mode
weights and inclusion size can be used to create realizations of the “fine-scale” binary field,
where individual inclusions are resolved. When used as an input to porous media transport
models, we can perform posterior predictive tests for the breakthrough times at the sensors.
We see that the binary fields conditioned on both static and dynamic data have higher pre-
dictive skill versus the ones reconstructed using just the static data; further, they are also
more robust, retaining their predictive capacity in flow configurations which are different
from the one used to obtain the breakthrough-time measurements. However, dynamic data
is not a silver bullet, as far as estimation accuracy and predictive skills are concerned, and
we provide an example where dynamic data confers very little advantage.

In the investigation above, the subgrid model played the fundamental role of providing a
link across resolved and unresolved scales. In Chapter 4, we consider the case where such
an explicit interscale link does not exist. We consider the case of estimating a permeability
field from one of the layers in the SPE10 dataset, which is similar in structure to a fluvial
bed. Multiscale finite elements are used to provide a local upscaling capability, similar to
the subgrid model described in Chapter 2. We find that the recourse to multiscale finite
elements increases the computational cost and complexity of the inference. In conjunction
with a specialized MCMC sampler, we solve a Bayesian inverse problem for a 1D perme-
ability field, predicated on pressure head measurements. Extensions to 2D are underway.

Our investigations in Chapter 3 revealed that (1) MCMC methods are largely unscalable
and (2) the posterior distributions of Karhunen-Loève weights were approximately Gaus-
sian, indicating the potential of using scalable Ensemble Kalman Filters (EnKF) to perform
the inference. We demonstrate this in Chapter 5, using static observations of permeability
and dynamic observations of saturation history from a waterflood simulation at a set of sen-
sors (i.e., we use synthetic data). In order to incorporate the static data, we hybridized the
EnKF with MCMC. The static data is assimilated first, to construct an informative initial
condition for the EnKF; thereafter, the EnKF assimilates the saturation history sequentially.
The hybrid EnKF was used to reconstruct a smooth permeability field as well as a “patho-
logical” case, whose permeability distribution resembled that of a fractured medium.

Finally, the scalable EnKF was used to address a realistic permeability estimation problem
in the Ogallala acquifer in Chapter 6. For the forward problem, we use a MODFLOW
model of a 100×150 mile corner of the Ogallala aquifer in Kansas. The model was ob-
tained from the Kansas Geological Survey (KGS). We estimate permeability and specific
yield. Water table levels at 122 wells over 18 years, along with lithologic logs, are the ob-
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servations. The EnKF-estimated permeabilities and specific yields were compared against
the estimates obtained by KGS using a deterministic (optimization) approach. We found
that the extreme non-linearity of the MODFLOW model (the permeability and water-table
heights are non-linearly related) creates serious challenges when EnKF are used for the
problem, and the posterior predictive tests sometimes failed to reproduce the measure-
ments. However, the version of EnKF used for this purpose was a “naive” one e.g., without
parameter localization, and it is expected that further modeling and EnKF enhancements,
to address the non-linearity issue, will considerably improve the EnKF estimates.

In summary, it is possible to perform the stochastic reconstruction of a multiscale field; on
occasion, we may even be able to estimate structures which are smaller than the resolution
of the grid on which the estimation is performed. The estimation procedure is the easiest if
one can construct a subgrid model that summarizes the impact of the unresolved structures
at the resolved scale; in its absence, a recourse to multiscale finite elements may bear
fruit. The estimation is performed, with minimum approximation, using MCMC, but the
method is not scalable and one is limited to small problems. EnKF may allow us to scale to
large problems, but requires significant modeling and algorithmic enhancements to address
highly nonlinear problems. In all cases, observations are key, and probabilistic estimation
procedures benefit when the observation schemes are crafted to be most informative on the
problem at hand.
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