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Abstract 
 

Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate 
prediction of the critical conditions of fracture remains elusive.  Sandia National 
Laboratories has been developing and implementing several new modeling 
methodologies to address problems in fracture, including both new physical models 
and new numerical schemes.  The present study provides a double-blind quantitative 
assessment of several computational capabilities including tearing parameters 
embedded in a conventional finite element code, localization elements, extended 
finite elements (XFEM), and peridynamics.  For this assessment, each of four teams 
reported blind predictions for three challenge problems spanning crack initiation and 
crack propagation.  After predictions had been reported, the predictions were 
compared to experimentally observed behavior.  The metal alloys for these three 
problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel 
PH13-8Mo H950.  The predictive accuracies of the various methods are 
demonstrated, and the potential sources of error are discussed.      
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1. EXECUTIVE SUMMARY 
 
The X-Prize Foundation has sponsored a series of technological challenges including the 
first private sector manned space flight (Anasari X-Prize), production-ready 100 mpg 
vehicles (Progressive X-Prize), and private sector moon landing (Google Lunar X-Prize).  
The X-Prize Foundation has demonstrated that competition drives innovation.  We have 
borrowed the spirit of the X-Prize competitions to promote our own internal competition 
on the topic area of simulating ductile fracture scenarios.  The purpose of the Sandia X-
Prize competition is to facilitate an honest assessment of current prediction capabilities in 
the area of ductile fracture, and to identify avenues for improvement. 
 
Ductile tearing of metallic materials is relevant to many Sandia applications but difficult to 
predict. This assessment effort has evaluated four different modeling paradigms for use in 
ductile failure predictions, specifically (1) peridynamics, (2) localization elements, (3) 
tearing parameters, and (4) extended finite elements (XFEM).  This assessment has posed a 
series of three ‘challenge’ scenarios where the four modeling teams are asked to predict 
key quantitative failure metrics, such as the peak force prior to fracture and the critical 
stretch to cause fracture.  After blind predictions were reported, experiments were 
conducted to confirm repeatable validation results.   
 
The first challenge focused on predicting crack initiation of an inclined blunt notch in a 
thin plate of precipitation hardened stainless steel.  The second challenge sought to predict 
conditions for both initiation and crack propagation from the same inclined blunt notch, but 
this time in a common aluminum alloy 2024-T3.  Finally, the third challenge examined 
predictions of crack propagation in a side-grooved, fatigue-precracked compact-tension 
geometry, again made from 2024-T3. 
 
Each of these challenges was chosen to be geometrically simple but mechanically difficult 
to predict.  All three challenges investigated specimen thicknesses that were too thin to 
meet plane strain fracture requirements.  The first two challenges involved blunted notches 
that deviated from sharp crack geometries needed for linear elastic fracture mechanics.  
These two challenges also involved an inclined crack with significant shear stresses during 
crack nucleation and mode mixity during crack propagation.  Otherwise, the challenges 
should have been readily accessible: the loading conditions were simple pin loading with 
quasi-static strain rates.  The materials were reasonably common.  And the geometries 
were nominally extruded 2-dimensional geometries, although non-plane-strain fracture is 
inherently 3-dimensional.  
 
None of the four modeling paradigms were able to consistently predict the conditions for 
crack initiation and propagation within the desired error margin of ±10%.  In fact, while 
each method showed the promise of predictivity in certain challenges, they each also 
‘missed the mark’ by factors of 2 or more in other challenges.  This effort has clearly 
shown that there is no ‘silver bullet’ in place to predict ductile failure scenarios – the 
problem of fracture is not trivial.  Even within the narrow application space represented by 
the X-Prize challenges, it is clear that these modeling tools each possess strengths and 
weaknesses that render their predictivity application specific. 
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After each of the blind predictions was compared to experimental results, the modeling 
teams were given a several months to assess the source(s) of error in their predictions.  
These sources of error can be generally divided into five categories: (1) physical model, (2) 
numerical implementation, (3) boundary conditions, (4) material properties, and (5) 
operator error.  This fifth category operator error represents inappropriate assumptions, 
misinterpretation of the question, or misreporting of the results.  While each of the five 
sources of error played a role in the competitions, it was surprising to see that the operator 
error category was often the overwhelming source of error. 
 
IMPACT: 
 
Sandia Failure Workshop 
In 2008 Sandia held the first internal workshop on fracture, bringing together 30+ 
participants from several Sandia centers including 1400, 1500, 1800, and 8700.  One of the 
key findings from this workshop was that Sandia lacked a strong strategic vision for its 
disparate fracture modeling efforts.  As a result of this effort, the ASC Physics and 
Engineering Models campaign embarked on the ductile failure' X-Prize' internal 
competition.  In 2010, the 2nd biennial Fracture Workshop was held in SNL/CA.  The 
unifying nature of the X-Prize effort was evident: nearly all the talks in this 2-day 
workshop used the X-Prize challenges as illustrations of the strength and weaknesses of 
their methods.  Clearly, the X-Prize effort has initiated a new era of communication, idea 
sharing, and honest evaluation on common ground to help move our fracture modeling 
capabilities forward. 
 
Additional Internal Impact: 
The X-Prize assessment activity has been highlighted in three internal reviews: the Fall 
Leadership Forum (2010), the Engineering Sciences External Review Panel (2010), and the 
Predictive Engineering Science Panel (2011). The X-Prize effort was selected as a 
Corporate Level 2 milestone for FY11, and this document provides evidence of fulfillment 
of that milestone.  Futhermore, the X-Prize effort is being considered as a template from 
which to initiate a nation-wide ductile failure prediction assessment challenge.     
 
DOE/NNSA/ASC Impact: 
The X-Prize effort was highlighted at the 2010 ASC Predictive Science Academic Alliance 
Program (PSAAP) Workshop at the University of Texas, Austin.  Also, the X-Prize effort 
was featured as the introductory presentation at a Tri-lab Damage Workshop.  As a result 
of that workshop, the DOE is considering a Tri-lab validation exercise which bears 
similarity to the X-Prize effort as well as a similar JOWOG 42 effort.  The first ASC Tri-
lab challenge may involve predicting the deformation, damage, fracture, petaling, spalling, 
and fragmentation of a steel target impacted by a gas gun projectile.   
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2.  INTRODUCTION 
 
Making predictions of when and how a component will fail is a very challenging 
engineering problem.  To address problems of ductile fracture, Sandia has fostered several 
parallel computational efforts.  The present study provides an honest, quantitative 
assessment of the predictive capability of these emerging computational methods.  To this 
end, the present study has adopted a series of three ‘toy problems’: relatively simple 
problems that are still challenging to predict.  These toy problems have several key 
features: (a) no intuitively-obvious or closed-form solution exists, (b) the solution is 
unambiguous, (c) the boundary conditions are well defined and simple, (d) the geometry of 
the test piece is easily manufactured, easily measured, and easily tested, (e) there are no 
stress gradients or unusual surface conditions such as EDM’d surfaces, (f) the geometry is 
simple and relatively easy to mesh, and (g) the problem avoids buckling or other unwanted 
deformation modes. 
 
For honest assessment, the X-Prize effort adopted a double-blind methodology.  The 
simulation predictions were reported in the absence of any knowledge of the experimental 
outcome of the toy problem, or and knowledge of the predictions made by other teams.  To 
facilitate this double-blind interaction, a moderator (Brad Boyce) employed a sharepoint 
website, which allowed permission-controlled access, as well as logging of submission 
date and submitter ID.  The four modeling teams were given similar amounts of funding 
and similar time to complete the ‘assignments’.  All teams were given an opportunity to 
preview the assignments to verify that the problem did not possess intrinsic ‘show-
stoppers’.  The teams were asked to not share their predictions or details of their 
methodology until all teams had submitted their predictions.  An important exception was 
material property data, where the teams were asked to share all sources of material 
property data that they used to calibrate their models. 
 
To facilitate an X-Prize style competition, it was necessary to identify several competing 
‘teams’.  These teams were identified based on a key characteristic of the modeling 
paradigm that each team would employ:  tearing parameters, localization elements, 
extended finite elements (XFEM), and peridynamics.  Note that the ‘tearing parameter’ 
team name is associated with a specific physical model for crack initiation, whereas the 
other three team names were associated with various numerical implementation methods.  
These four teams were chosen to represent much of the breadth of modeling paradigms that 
are in use or under extensive development currently at Sandia.  An overview of the 
modeling landscape applicable to solving ductile fracture problems is shown in Figure 1 
and  
Figure 2.  Other than the methodologies that the team titles imply, there was not other 
artificial stipulations placed on how each of the teams made their predictions.  They were 
left to choose the modeling techniques that were most palatable.  Moreover, each team was 
given the freedom to bound the uncertainty in their predictions with whatever bounding 
analysis they chose.  In this way, the X-Prize was also an assessment on how well our 
analysts can bound the uncertainty in their predictions.    
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Figure 1.  The ‘landscape’ of physical models that describe the conditions of crack 
nucleation and/or crack propagation, and computational methods for numerical 
implementation of the physical models. 
 

 
 
Figure 2.  An alternative way to visualize the combinations of balance laws, numerical 
implementation, and physical models used to predict fracture scenarios. 
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The roadmap for this document is as follows: the three toy problems or challenge 
assignments are presented in Chapter 3, in much the same way as they were originally 
presented to each of the four prediction teams.  Chapter 4 compares the blind predictions 
that were made to the experimental outcomes.  The first four Appendices (A-D) describe in 
detail the modeling methodology, predictions, and error assessments for each of the four 
modeling paradigms.  Finally, Appendix E provides additional quantitative details 
regarding the experimental outcomes of the three challenge problems. 
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3.  CHALLENGE ‘ASSIGNMENTS’ 
 
3.1 Challenge 1A: Crack Initiation from an Inclined Blunt Notch 
 
Challenge 1A: For a specimen as shown in Figure 3 (detailed drawings in Figure 4), with 
notch tip radius r = 0.0260”, notch inclination length, L = 0.150”, and inclination angle, α 
= 45º, what is the loadline displacement Δd, needed to induce crack initiation (in inches)? 
What is the peak force F applied to the sample prior to crack initiation (in pounds)? 
 
Some additional information was also provided: 

• Material was precipitation hardened stainless steel alloy PH13-8Mo in the H950 
heat treatment condition.  

• Crack initiation was defined as the incurrence of a sharp flaw that was at least 100 
µm in length. 

• The sample was pin loaded in clevis grips, akin to a compact tension test described 
in ASTM E399. 

• Load line displacement was measured via a knife-edge crack opening displacement 
gage. 

• The test was conducted under displacement control, with a quasistatic displacement 
rate. 

 
 
Figure 3. Schematic of the inclined blunt notch crack initiation problem for Challenge 1A.  
Detailed engineering drawings were also provided, as shown in Figure 4. 
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Figure 4. Detailed engineering drawings of the inclined blunt notch geometry.  
Dimensional tolerances represent the machining tolerances. 
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3.2 Challenge 1B: Propagation from an Inclined Blunt Notch 
 
Challenge question 1B 
1B.1 For a specimen as shown in Figure 5, with geometry defined previously in Challenge 
1A, what is the loadline displacement Δd needed to induce crack initiation (in inches) in 
aluminum alloy 2024-T3?  What is the peak force prior to crack initiation?   
1B.2   Six lines labeled A-G will be scribed prior to testing in the locations indicated.  
What is the order of crack propagation (e.g. A-B-D-C, etc.)? 
1B.3  What is the force and displacement at which the crack reaches the 1st line? 
Please use the table below to report results.  You can bound your answers if necessary.  
 
Table 1. Format for prediction reporting for Challenge 1B. 

1B.1
Δd at crack
initiation 
(mm)

1B.1
Peak 
force prior
to crack 
initiation 
(kN)

1B.2
Crack path 
(e.g. D-E-F 
or D-A-E-B-
F, etc.)

1B.3
Displacement 
Δd when crack 
reaches f irst 
line (mm)

1B.3
Force when 
crack 
reaches f irst 
line (kN)

2024-T3 Upper bound

BEST ESTIMATE

Lower bound
 

 
Figure 5. Schematic of the test geometry for Challenge 1B.  Note that the geometry is 
identical to Challenge 1A.  The only difference is the presence of fiduciary lines labeled A-
F, with locations identified on this drawing. 
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3.3 Challenge 2A: Crack Propagation from a Sharp Mode-I Crack 
 
The Challenge 2A geometry was manufactured from aluminum alloy 2024-T3.  A detailed 
machining drawing is shown in Figure 6, including tolerances on all dimensions.  It has the 
same outer dimensions as the previous X-Prize specimens (W=1.0”), but has a thickness of 
0.25” (rather than the 0.125” thick specimens used in previous X-Prize studies).  This 
specimen does not contain an inclined notch, but rather a straight pure mode-I notch to a 
length of a/W = 0.2, and a mode-I fatigue precrack has been grown to a/W = 0.3 per ASTM 
E399 standard load shedding techniques.  To avoid shear lips on the surface of the 
specimen, 0.063” deep V-grooves have been machined into both sides along the Mode-I 
crack path.   
 
For a displacement-controlled loading regimen, as shown in Figure 7 predict the unloading 
compliance (change of force over change in displacement),  for unloads labeled A-D.  
What was the crack length at the peaks associated with A-D?  Please report your 
compliance values in N/mm, and your crack length values in mm.  You are welcome to 
bound your results as you see fit. 
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Figure 6. Engineering drawings for the Challenge 2A geometry 
. 
 



30 

 
 
Figure 7. Loading profile for Challenge 2A 
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4. COMPARISON OF PREDICTIONS TO EXPERIMENTAL 
OBSERVATIONS 
 
4.1 Challenge 1A: Crack Initiation from an Inclined Blunt Notch 
 
In Challenge 1A, the modeling teams were asked to predict both the peak force prior to 
crack initiation and the loadline displacement at crack initiation.  The details of how the 
predictions were made are described in Appendices A1, B1, C1, and D1.  In addition, 
experiments were conducted to measure the actual forces and displacements, as described 
in Appendix E1.  The resulting comparison between experimental results (red) and blind 
simulation predictions (black lines) is shown in Figure 8 and Figure 9.  After this 
comparison had been made, each modeling team was given the opportunity to assess the 
sources of discrepancy if any.  Those assessments can be found in Appendices A2, B2, C2, 
and D2. 
 
It is worth noting that both the localization elements team and tearing parameter team had 
reported the force at crack initiation rather than the peak force prior to crack initiation.  
This can be viewed as misreporting of the results or misinterpretation of the question.  
Careful examination of their complete predictions revealed that the simulation itself had 
much more closely captured the experimental behavior than Figure 9 would imply.  
Nevertheless, this ‘human’ error is important to quantify, since it also can play a significant 
role in predictivity.   
 
Once these ‘human’ reporting errors had been remedied, the resulting predictions 
compared much more favorably to the experimental outcome as shown in Figure 10.  In 
fact, both the localization elements and tearing parameter teams appear to have produced 
results that coincide with the experimental outcome.  However, these corrections were only 
made after the experimental results had been released, and in this way, they were no longer 
completely ‘blind’.  Both teams indicated that they had not made any adjustments to the 
code to report these new values, and indeed their blind force displacement curves were 
consistent with these reported values. 
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Figure 8.  Comparison of blind predictions to experimental outcomes for Challenge 1A 
loadline displacement. 
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Figure 9. Comparison of blind predictions to experimental outcomes for Challenge 1A 
peak force prior to crack initiation. 
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Figure 10.  Comparison of predicted peak forces to experimental outcomes, after the 
localization elements and tearing parameter teams had remedied their reporting error.  
This graph better represents the predictivity of the codes than Figure 9. 
 
4.2 Challenge 1B: Propagation from an Inclined Blunt Notch 
 
In Challenge 1B, the teams were asked to predict a number of aspects of crack initiation 
and crack propagation.  All teams (with the exception of an early implementation of XFEM 
in Sierra) were able to correctly predict the path of crack propagation within the fidelity 
demanded from the challenge.  There was a more broad range of predictions regarding the 
point at which a propagating crack would reach line D, the first horizontal line, as shown in 
Figure 11.  To examine the discrepancy between predictions and experimental results more 
closely, it is instructional to compare the complete load-displacement curves from 
predictions to experimental observations.  This result is shown in Figure 12.  It is clear 
from this figure that the Localization Elements and Tearing Parameter suffered the greatest 
errors due to poor prediction of the onset of cracking (initiation).  On the other hand, both 
the XFEM and Peridynamics methods struggled to capture the softening behavior 
associated with crack propagation.  Details of the experimental and computational methods 
as well as assessment of the sources of error are presented in the appendices. 
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Figure 11. A comparison of the predicted ranges of Forces and Crack Opening 
Displacements (blue boxes) to the experimentally observed behavior (red dots) for the 
crack to reach the first horizontal line (line D).  The five data curves represent the 
experimental force-displacement profile of five independent tests.  Crack initiation 
occurred at the peak of this curve. The light blue dot in the tearing parameter box 
indicated the ‘expected’ mean behavior. 
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Figure 12. A comparison of the complete predicted load-displacement curves to 
experimental observation. 
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4.3 Challenge 2A: Crack Propagation from a Sharp Mode-I Crack 
 
In Challenge 2A, the teams were asked to predict the normalized crack length (a/W) and 
remnant stiffness during crack propagation associated with a loading profile shown in 
Figure 7.  The teams were asked to make such predictions at each of four unload peaks, 
labeled A-D in Figure 7.  Two of those unload results are shown here in Figure 13 and 
Figure 14, respectively.  In these figures, both the remnant stiffness and crack length are 
plotted for experiments (red dots) compared to the blind predictions (other data points).  If 
one were to only compare predictions to experimental outcome in Figure 13 associated 
with Unload “A”, one might come to the conclusion that the XFEM Abaqus method was 
the most predictive.  However, Figure 14 associated with Unload “C” shows that the 
XFEM Abaqus method actually was underpredicting the degree of crack propagation and 
commensurate stiffness loss. 
 
Another important ‘human’ error was present in these blind predictions.  Here the tearing 
parameter group reported part of their results in units of total crack length (a/W), 
intermixed with results reported in relative crack length Δa/W.  This intermixing without 
proper labeling led to the misinterpretation of the data, resulting in an offset of a/W of 0.3 
on some of the data points.  Note that 3 orange data points on Figure 13 and all 5 orange 
data points on Figure 14 should be shifted left 0.3 if the results had been properly reported. 
So, aside from this human error, the tearing parameter had much more realistic predictions, 
as can be seen in the corrected figures, Figure 14 and Figure 15. 
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Figure 13. Comparison of experiments (red) to blind predictions for Unload A.
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Figure 14. Comparison of experiments (red) to blind predictions for Unload C. 
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Figure 15.  A comparison of the stiffness and crack length predictions to experimental 
values at unload “A” after the Tearing Parameter team had fixed the 0.3 a/W offset 
reporting error.
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Figure 16.  A comparison of the stiffness and crack length predictions to experimental 
values at unload “C” after the Tearing Parameter team had fixed the 0.3 a/W offset 
reporting error. 
 



41 

5. CONCLUSIONS AND SUMMARY 
 
Each of the four modeling teams had substantial errors in their blind predictions.  None of 
the teams were able to consistently predict quantitative force or displacement values to 
within the desired accuracy of ±10%, and in many instances the predictions were in error 
by a factor of 2X or more.  The discussion of sources of error, included in the appendices, 
highlights the developmental nature of these methods.   
 
The most mature technique was the tearing parameter technique, which has been in use at 
Sandia for over a decade.  This technique has known shortcomings (mesh sensitivity 
issues, empirical form of the governing equation, etc.), but seemed to have the least 
dramatic errors in prediction, aside from cases of ‘human’ error.  What is most troubling is 
that the tearing parameter severely underpredicted the onset of crack initiation in alloy 
2024-T3, an error that was ascribed to the empirical exponent of 4 in the crack initiation 
constitutive equation.  It was unclear from this study how the tearing parameter could be 
adjusted to be more robust against such an error, without extensive calibration data on the 
particular alloy of interest. The predictions reported by the Localization elements team 
clearly showed promise, with similar quantitative degrees of error to the tearing parameter.  
Yet, this method still had issues: a factor of 2 non-conservative overprediction of crack 
initiation displacements in Challenge 1B, and difficulties replicating unloading compliance 
in Challenge 2A.  Both peridynamics and XFEM are clearly still in early phases of 
development and implementation.  While these techniques may alleviate some of the 
concerns raised by tearing parameters in a conventional FEM framework, the early stage of 
their development may make it difficult to fairly assess the future potential of these 
methods at present time. 
 
It is clear that this blind assessment effort has helped make each of the modeling teams 
more acutely aware of some of the weaknesses of their methods.  Many of these 
weaknesses are discussed in detail in the Appendices, and as a result of the present effort, 
many of the teams are working to address these weaknesses.  One surprising source of 
error that became apparent through an honest evaluation of the capabilities was ‘operator’ 
error, such as misinterpreting the desired prediction quantities, misreporting the results, or 
making dubious assumptions.  It appears that these mistakes can overwhelm any 
predictivity (or numerical/physical error) that may be present in the models.  Even issues 
with units can present real hurdles to making accurate predictions.  These ‘simple’ 
mistakes are often quickly discounted after the fact. Yet they can have a quantitatively 
large effect on blind predictivity. 
 
One common theme that appears to affect all of the modeling methods is the availability of 
calibration data on the particular alloy of interest.  The current effort was restricted to 
readily available data, which typically includes tensile and KIC data.  All of the methods 
would benefit from more extensive calibration data beyond traditional material property 
tests.  For example, a suite of test geometries spanning different degrees of stress 
concentrations, stress state, mode mixity, etc. could be useful to calibrate models prior to 
using them on an ‘unknown’ problem.  There already appear to be early discussions 
regarding the development of such a test suite.  Nevertheless, it is important to remember 
that reliance on such a test suite would mean that each alloy of interest would require 
extensive experimental evaluation prior to modeling. 
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APPENDIX A:  TEARING PARAMETER APPROACH 
Jerry Wellman, John Emery, and Kristin Dion 
 
 
A1. Predictions For Challenge 1A 
 
Executive Summary 
 
There are a total of 12 finite element results report herein.  For two element formulations 
there are three mesh densities and their appropriate energy dissipation terms.   The 
Uniform Gradient ‘UG’ element formulation is the most reliable and stable.  The Selective 
Deviatoric ‘SD’ element formulation requires further maturation.  Predictions for crack 
nucleation should be taken from the intermediate or fine, uniform-gradient mesh results.  
The expected gage displacement range is 0.108 – 0.150 inch.  The expected load range is 
2740 – 2696 lbs.  
 
A1.1 Introduction 
 
The accurate modeling and prediction of ductile crack growth is of utmost importance to 
our mission at Sandia National Laboratories.  Typically, void nucleation, growth and 
coalescence are the mechanisms attributed to ductile failure.  Ductile crack nucleation and 
growth originating from smooth stress concentrators, e.g. bolt holes, are of particular 
interest and preclude traditional fracture mechanics approaches in the absence of a sharp 
crack.  Further, models which account for the high stress triaxialities that force void growth 
are essential.   
 
In the following report, the general approach used for ductile crack nucleation prediction is 
the multilinear elastic-plastic with tearing parameter failure (MLEPF) model.  An overview 
of the approach is provided.  Then, the details, as they relate to the x-Prize geometry and 
alloy, are described, the results of these analyses are reported and discussed.  A, somewhat 
unsuccessful, attempt to use selectively reduced-integration elements to compare with 
standard under-integrated element formulation was conducted.  The upside to the 
selectively reduced-integration is that they do not posses so-called zero-energy modes.  
This has been seen to be important in simulations using cohesive surface elements for 
sharp crack propagation.  However, simulating failure with these elements is somewhat 
less mature than with single-point quadrature elements, as will be seen here, and requires 
further development.  Nonetheless, for geometries with a smooth stress concentrator, as 
opposed to a sharp notch or crack, the single-point quadrature elements are proven to 
resolve the plasticity and provide accurate analysis results.   
 
A1.2 General details of the multilinear elasto-plastic with tearing parameter failure 
approach 
 
The MLEPF approach uses a multilinear elasto-plastic constitutive model with the standard 
von Mises yield criterion.  In this report, the multilinear hardening curve was obtained by 
fitting experimental data from a round-bar tensile test.  Further, the MLEPF approach uses 
a tearing parameter as a failure criterion, which was also obtained from the round-bar 
tensile test data. Crack propagation is modified by dissipating energy (critical crack 
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opening strain) during the element failure. The critical crack opening strain is a function of 
both material properties and element size. The following sections describe these processes 
in detail.   
 
 A1.2.1 Determining the multilinear elasto-plastic curve fit from round-bar tensile data 
 
The multilinear hardening curve is obtained by using a finite element model of the round-
bar tensile specimen to fit observed engineering stress versus engineering strain data.  To 
do this, a 20-degree wedge of the round-bar specimen is modeled, using 3-planes of 
symmetry.  Figure A17 shows a typical mesh.  In order to force the localization and 
necking (geometric instability) to occur at the longitudinal mid-plane, the mesh uses a 
large-radius to slightly reduce the cross-sectional area at the longitudinal mid-plane.   
 

 
Figure A17.  20-degree wedge model for round-bar tensile test. 
 
 
A1.2.2 Determining the critical tearing parameter  
 
The tearing parameter accounts for the stress triaxiality at the crack tip by integrating a 
measure of triaxiality over the equivalent plastic strain.  The tearing parameter is given by 
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2  (1) 

where ε is the equivalent plastic strain, fε is the final equivalent plastic strain, σT is the 

maximum tensile stress, σm is the mean stress and the notation •  represents the standard 
Macaulay Bracket.  One can note that for uniaxial loading, the term inside the Macaulay 
Brackets becomes unity and the tearing parameter is equivalent to using a limiting plastic 
strain for a crack growth criterion.   
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A critical value of the tearing parameter is chosen using the engineering stress versus strain 
curve from a standard round-bar tensile test.   
 
A1.2.3 Determining the appropriate energy dissipation term 
 
Ordinarily, the energy dissipation term, the critical crack opening strain, must be 
determined by a second physical test.  A theoretical relationship can be established 
between element size and the value of critical crack opening strain to provide an element 
size independent simulation of crack extension. This relationship requires several 
assumptions of questionable accuracy. However, in the absence of data to establish an 
empirical relationship, this theoretical relationship was employed. 
 
A1.3 Specific details of the approach for the x-Prize  
 
For the x-Prize competition, the alloy chosen was PH13-8 H950.  There were two sources 
of tensile data used, but neither came from a sample of material that will actually be used 
in the experimental component of this study.  One source for tensile data came from 
Ref[1], section 2.6.6 of the Metallic Materials Properties Development and Standardization 
(MMPDS) handbook, referred to in the following as the “handbook” data.  The other 
source of tensile data came from previous experimental work conducted at Sandia, referred 
to in the following as the “SNL test” data.  There were a total of 3 tensile tests performed.   
 
Two distinct element formulations were used in conjunction with the MLEPF model.  First, 
a stand under-integrated, uniform-strain hexahedral element, the uniform-gradient (UG) 
element, with hour glass suppression was used.  Second, a modified selectively-reduced-
integration hexahedral element, the selective deviatoric (SD) element, was used.  These 
element formulations necessarily give rise to different deformation behavior and, therefore, 
the extraction of Cauchy-stress, Logarithmic-strain hardening curves is somewhat 
dependent upon the element type selected. This is unavoidable given that the finite element 
analysis of the tensile test is an integral part of the curve fitting process.  
 
In addition, there were multiple levels of mesh refinement studied with each element 
formulation.  With the UG elements, three unstructured meshes were used with average 
element size of 0.01 inch, 0.005 inch, and 0.002 inch in the region of crack nucleation and 
propagation.  With the SD elements, a structure mesh was used in an annular region near 
the stress concentrator.  Here, the average element sizes were 0.0104 inch, 0.0044 inch, and 
0.0024 inch.  The following presents the material data used and the fits for both element 
formulations.   
 
A1.3.1 Material data 
 
Two sets of material stress-strain curves for PH13-8 H950 were used: the “handbook” and 
“SNL test”.  The handbook curve is the H950 curve from Ref[1] Figure A2.6.6.1.6(c): 
Typical tensile stress-strain curves (full range) at room temperature for various heat treated 
conditions of PH13-8Mo stainless steel bar.  The dramatic difference between the 
handbook curve and the SNL test curves is attributed to differences in the gage length 
defined by differently sized extensometers. According to Ref [2], ASTM E 8 section 6.6.1, 
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the gage length shall be equal to four times the specimen diameter.  For these specimens 
with diameter of 0.5 inch, the standard size clip gage is a 2-inch gage length. A 1-inch gage 
length gage was used in the SNL tests because ASTM E 8 section 5.4.1 states that 
“extensometers with gage lengths equal to or shorter than the nominal gage length of the 
specimen … may be used to determine the yield behavior.”  There is some risk that the 
shorter gage length did not span the entire necked region, producing some error in the 
curve between yield and failure.  Use of the nominal 2 inch gage in future tensile tests may 
provide more accurate data between yield and failure.  The engineering stress versus 
engineering strain curves for the tensile data are plotted in Figure A18.  

 
Figure A18.  Engineering stress versus engineering strain curves for the tensile data. 
 
 
A1.3.2 Material data fit for the uniform-gradient element formulation    
 

The Cauchy-stress, Logarithmic-strain curves resulting from the fit using the uniform-
gradient element are shown in Logarithmic Strain 

 
Figure A19.  The “handbook” and the “test-3” curves were selected to give an upper and 
lower bound (at least for strength) results for this data. The tearing parameters computed 
for these curve fits are also displayed on the figure.   
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Logarithmic Strain 

 
Figure A19.  Hardening curves for the uniform-gradient element formulation. 
 
 
In absence of data, two values of the critical crack opening strain (parameter defining the 
energy dissipation for crack extension) were chosen. A critical crack opening strain of 0.1 
is expected to be a reasonable value for 0.01 inch element and the Ph13-8Mo material 
properties. A critical crack opening strain of 0.2 should be regarded as an upper bound for 
a 0.01 inch element. Using the theoretical relationship addressed above, the critical crack 
opening strains for the 0.005 inch elements around the keyhole are 0.19 and 0.38. 
Likewise, the critical crack opening strains for the 0.002 inch elements are 0.44 and 0.8.  
 
A1.3.3 Material data fit for the selective deviatoric element formulation 
 
The Cauchy-stress, Logarithmic-strain curves resulting from the fit using the uniform-
gradient element are shown in Figure A20.  Again, the “handbook” and the “test-3” curves 
were selected to give an upper and lower bound (at least for strength) results for this data. 
The tearing parameters computed for these curve fits are also indicated.   
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Figure A20.  Hardening curves for the selective deviatoric element formulation. 
 
In absence of data, two values of the critical crack opening strain (parameter defining the 
energy dissipation for crack extension) were chosen. A critical crack opening strain of 0.1 
is expected to be a reasonable value for 0.0104 inch element and the Ph13-8Mo material 
properties. A critical crack opening strain of 0.22 should be regarded as an upper bound for 
a 0.0104 inch element. Using the theoretical relationship addressed above, the critical crack 
opening strains for the 0.0044 inch elements around the keyhole are 0.22 and 0.48. 
Likewise, the critical crack opening strains for the 0.0024 inch elements are 0.4 and 0.81. 
 
A1.4 Results 
 
There were two element formulations used in conjunction with the MLEPF model.  The 
following describes the results of the simulations within the context of the two element 
formulations.   
 
A1.4.1 MLEPF with uniform-gradient elements  
 
Three unstructured meshes were prepared for the analysis of the X-Prize specimen 1a. All 
three meshes made use of a symmetry plane at the through-thickness center of the 
specimen. That is, the centerplane was constrained to provide no out-of-plane displacement 
while the outer surface was unconstrained appropriate to a free surface. The use of a plane-
of-symmetry implies no out-of-plane displacement at the loading pins as well as no 
buckling of the specimen. The specimen is assumed to be thick enough that neither of these 
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deformation modes is possible. Half the loading pins are modeled as elastic material 
meshed equivalently with the bulk of the specimen. The specimen is loaded via imposed 
displacement (displacement control) at a single node in the elastic pin. Rotation about the 
load point is allowed but lateral translation is prevented. The coarsest of these meshes had 
near cubical elements near the keyhole of 0.01 inches. The total number of elements for the 
coarse mesh was 9,552. The intermediate mesh had keyhole elements of 0.005 inches for a 
total of 66,992 elements. The finest mesh had keyhole elements of 0.002 inches with a total 
element count of 433,584. The three meshes are shown in Figure A21. 
 

 
Figure A21. Coarse, intermediate and fine unstructured meshes - looking at the free 
surface. 
 
Results are presented in Table A1 for the three meshes, the two material stress-strain 
curves, and the two energy dissipation terms. The start displacement and load refers to 
when the element first reaches the failure criterion (tearing parameter). The complete 
displacement and load refers to when the stress in the element has been decayed to zero. 
There is some ambiguity in the definition of failure between these two extremes. The 
failure location is approximated by hour on a clock face. The face of the specimen used is 
consistent with the machined slot at 10:30. The element number can be used to obtain a 
more accurate failure location when such a method has been defined. Results for the finest 
meshes are pending. Finite element solutions for these meshes are so computationally 
intensive as to be on the verge of being impractical. 
 
Table A1.  Surface tear predictions for the uniform-gradient elements.   
Mesh Material CCOS Start 

Displ. 
(inch) 

Start 
Load 
(lb) 

Comp. 
Displ. 
(inch) 

Comp 
Load 
(lb) 

Fail 
Elem. 
No. 

Fail 
Loc 

Coarse Hdbk 0.1 0.0957 2983 0.0982 2904 308 5:00 
Coarse Hdbk 0.2 0.1118 2924 0.1195 2618 312 4:00 
Coarse Test-3 0.1 0.1115 3115 0.1180 3038 308 5:00 
Coarse Test-3 0.2 0.1318 3169 0.1485 3090 316 3:00 
         
Inter Hdbk 0.19 0.1084 2740 0.1111 2633 1288 4:30 
Inter Hdbk 0.38 0.1174 2803 0.1273 2641 1288 4:30 
Inter Test-3 0.19 0.1307 2853 0.1359 2696 1288 4:30 
Inter Test-3 0.38 0.1422 2877 >.1496 n.a. 1288 4:30 
         



50 

Fine Hdbk 0.44 0.1118 2329 0.1134 2102  4:30 
Fine Hdbk 0.8 0.1235 2375 n.a. n.a.  n.a. 
Fine Test-3 0.44 0.1343 2178 n.a. n.a.  n.a. 
Fine Test-3 0.8 n.a. n.a. n.a. n.a.  n.a. 
 
 
The deformed shape and extent of the plastic zone for a typical result at failure is shown in 
Figure A6.  Obviously, there is diffuse plasticity in the specimen by the time a visible crack 
has formed on the surface.   
 

 
Figure A22.  A typical deformed shape at failure showing the extent of the plastic 
straining. 
 
The load versus gage-line displacement curves from the analyses are plotted in Figure A23. 
Figure A7 through Figure A26 shows the load versus displacement for all analyses that 
employed the Handbook material properties.  Figure A24 shows the same results for the 
analyses that used the SNL test-3 material properties.  To ease the comparison between the 
handbook properties and the SNL test-3 properties, a typical set of results is presented in 
Figure A25.  The effect of energy dissipation is shown in Figure A26.   
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Figure A23.  Load versus Displacement curves for the Handbook Ph13-8Mo. 
 

 
Figure A24. Load versus Displacement curves for Test-3 Ph13-8Mo. 
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Figure A25. Typical difference between handbook and SNL test-3 results. 
 

 
Figure A26. Typical difference resulting from varying the critical crack opening strain 
(energy dissipation) term. 
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A1.4.2 MLEPF with selective deviatoric elements 
 
Three meshes were used with the selective deviatoric element formulation.  The meshes 
were progressively refined and structured in an annular region near the stress concentrator.  
The finite element models using the SD elements used all the same symmetry and 
boundary conditions employed with the UG elements.  For each mesh, the elements on the 
surface of the keyhole had aspect ratios of 1.0.  The element size on the key hole was 
0.0104 inch, 0.0044 inch, and 0.0024 inch for the coarse, medium and fine meshes, 
respectively.  There were 3,392 elements, 23,112 elements, and 125,184 elements for the 
coarse, medium and fine meshes, respectively.  The three meshes are shown in Figure A27.   
 

 
Figure A27.  Three structured meshes used with selective deviatoric elements. 
 
 
The SD element formulation uses full 8-point quadrature for the linear hexahedral 
elements.  Consequently, meshes with SD elements are three to four times slower than with 
under-integrated UG elements.  Further, the small element size in the medium and fine 
meshes in combination with the nature of the problem require very small load steps.  As a 
result, the crack initiation results reported here, in Table A2, are for the coarsest mesh; 
results for the medium and fine mesh are pending successful completion of the analyses.  
However, the load versus clip gage curves reported do included results from the finer 
meshes and, by nature of their tending towards convergence, suggest that the coarsest mesh 
is inadequate.   
 
Table A2.  Surface tear predictions for the selective deviatoric elements.   
Mesh Material CCOS Start 

Displ. 
(inch) 

Start 
Load 
(lb) 

Comp. 
Displ. 
(inch) 

Comp 
Load 
(lb) 

Fail 
Elem. 
No. 

Fail 
Loc 

Coarse Hdbk 0.1 0.1277 2546 0.1325 2440 2859 5:00 
Coarse* Hdbk 0.22 n.a. n.a. n.a. n.a. n.a. n.a. 
Coarse Test-3 0.1 0.1616 2604 0.1690 2466 2860 5:00 
Coarse Test-3 0.22 0.1801 2590 0.1970 2404 2860 5:00 
* result pending successful completion of analysis.  
 
Figure A28 and Figure A29 plot the applied load versus clip gage displacement for the 
handbook and test-3 results, respectively.  Clearly, the finer meshes are required for a 
converged solution.  In general, the solution with the quasi-static solver is difficult to 
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obtain once the system begins to shed load.  This is likely do to ill conditioning in the 
global tangent stiffness.  The MLEPF model is applied per gauss point, which further 
complicates the analyses for elements with 8-quadrature points.  Analyses with smaller 
time stepping could improve the capability to achieve a solution (and are queued on the 
capacity machines).  Further exploration as to how to fail elements with multiple 
quadrature points is necessary.   

 
Figure A28.  Load versus Displacement curves for the handbook data and selective 
deviatoric elements. 
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Figure A29. Load versus Displacement curves for the test-3 data and selective deviatoric 
elements. 
 
Figure A30 compares the coarse mesh to the fine mesh and plots the extent of plasticity at 
an applied displacement of +/- 0.05 inch (i.e. prior to crack nucleation on the surface).  
Clearly, the fine mesh resolves the plasticity at the keyhole to a finer degree.   
 

 
Figure A30.  Plasticity in the specimen with coarse and fine meshes and selective 
deviatoric elements. 
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A1.5 Discussion  
 
The results showed some interesting features. Failure of the first element on the free 
surface and thus all the loads reported in Table A1 and Table A2 occur post peak-load. 
This implies that the stiffness (energy stored) of the test machine, load train, etc. could be 
important to these results. In the case of load control, for quasistatics, only the peak load 
could be computed. There is no equilibrium position past peak load so no quasistatics code 
could converge on a solution. Of course, reality lies between load control and the 
displacement control assumed here. 
 
For all cases with the UG elements the crack tunneled. That is, the crack initiated and 
extended at the center-plane prior to initiation at the free surface. The extent of tunneling 
appears to be primarily related to the energy dissipation term (CCOS). For the lower CCOS 
values, the extent of tunneling is about 0.02 inch (the extent of cracking is about 0.02 inch 
greater at the center-plane than at the surface). For the higher values of CCOS, the crack 
appears to tunnel about twice a much or about 0.04 inch.  For the set of coarse mesh results 
with SD elements, the observations of crack tunneling are similar.   
 
The failure does not start until a large, unconfined plastic zone has formed. Yielding occurs 
from the keyhole to free surfaces both to the nearest side and to the bottom of the 
specimen. Linear elastic fracture mechanics or even small scale yielding solutions are not 
appropriate to characterize failure in this specimen with this material. As is evident in 
Figure A22 and Figure A30, the displacements are also quite large, as expected for the 
extent of plastic deformation, with the keyhole noticeably deformed from its originally 
circular shape. The slot has opened extensively. However, of most importance, the notches 
for measuring the load line displacement show significant vertical displacement (not out-
of-plane) along with the in-line displacement. Because the imposed displacement was only 
in-line (all lateral displacement was constrained) this vertical displacement of the 
measurement notches is entirely due to rotation of the specimen ears, primarily the ear 
above the keyhole and notch.  
 
The predictions are made with a range of values for several obvious reasons.  Primarily, 
there is a lack of experimental data to calibrate the energy dissipation variable in the 
computational model.  Further, there is some ambiguity in the definition of crack 
nucleation due to the physical processes that are inherently lumped-into the tearing 
parameter and energy dissipation terms.  In the absence of a sharp notch or starter crack, 
the tearing parameter and energy dissipation combine to account for gross plasticity, and 
void growth and coalescence.  Thus, the experimental results are expected to lie 
somewhere between the starting displacement/load and the complete displacement/load, 
referring to Table A1 and Table A2.  Further, the results for the SD elements are not robust 
enough at this point to make a reasonable comparison between element formulations.   
 
A1.6 Summary and Conclusions  
 
In conclusion, there were a total of 12 finite element results report herein.  For two element 
formulations there were three mesh densities and their appropriate energy dissipation 
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terms.   The UG element formulation is the most reliable and stable.  The SD element 
formulation requires further maturation.   
 
Predictions for crack nucleation should be taken from the intermediate or fine, uniform-
gradient mesh results.  The expected gage displacement range is 0.108 – 0.150 inch.  The 
expected load range is 2740 – 2696 lbs.  
 
A1.7 Appendix A.1 References 
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S. Air Force Research Laboratory.  Metallic Materials Properties Development and 
Standardization (MMPDS).  DOT/FAA/AR-MMPDS-01, January 2003. 

 
2. ASTM International. Standard Test Methods for Tension Testing of Metallic 

Materials.  ASTM E 8/E 8M-08, 2008. 
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A2. Follow-Up for Challenge 1A 
	
  

1. Describe	
  what	
  material	
  model	
  you	
  used	
  for	
  deformation	
  (not	
  crack	
   initiation)?	
   	
  How	
  did	
  
you	
   calibrate	
   that	
   model	
   against	
   material	
   properties?	
   	
   What	
   parameters	
   did	
   you	
  
calibrate?	
   	
   Please	
   specify	
   what	
   specific	
   resources	
   (datasets)	
   you	
   used	
   to	
   calibrate	
   the	
  
parameters.	
  

The multilinear elastic-plastic hardening model with the standard von-Mises yield criterion 
was used to represent the PH13-8Mo during deformation.  This material model is 
documented in the Adagio 4.14 User’s Guide section 4.2.7 and requires two elastic 
constants, a yield stress, and a hardening function to calculate the elastic and plastic 
deformation of the material. 

The elastic constants and yield stress were obtained from the DOT/FAA/AR-MMPDS-01 
handbook properties for PH13-8Mo.  The Young’s modulus used was 28,000 ksi, which is 
approximately equal to the handbook value of 28,300 ksi, and the Poisson’s ratio used was 
0.3, which is approximately equal to the handbook value of 0.28 reported in MMPDS 
Table 2.6.6.0(b).  The yield stress of 175 ksi was obtained by visually inspecting the H950 
curve from MMPDS Figure 2.6.6.1.6(c) to identify the proportional limit.  These material 
properties were used for both element formulations and all mesh sizes and were not varied. 

The hardening function was calibrated against four engineering stress-strain data sets, three 
from SNL experiments and one from the MMPDS-01 handbook.  The handbook curve is 
the H950 curve from MMPDS-01 Figure 2.6.6.1.6(c): Typical tensile stress-strain curves 
(full range) at room temperature for various heat treated conditions of PH13-8Mo stainless 
steel bar.  The dramatic difference between the handbook curve and the SNL test curves is 
due to the use of a smaller clip gage for the SNL data. According to ASTM E 8 section 
6.6.1, the gage length shall be equal to four times the specimen diameter.  For these 
specimens with diameter of 0.5 inch, the standard size clip gage is a 2-inch gage length. A 
1-inch gage length gage was used in the SNL tests because ASTM E 8 section 5.4.1 states 
that “extensometers with gage lengths equal to or shorter than the nominal gage length of 
the specimen … may be used to determine the yield behavior.”  There is some risk that the 
shorter gage length did not span the entire necked region, producing some error in the 
curve between yield and failure.  Use of the nominal 2 inch gage in future tensile tests may 
provide more accurate data between yield and failure.  The engineering stress versus 
engineering strain curves for the tensile data are plotted in Figure A31.  
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Figure A31. Engineering stress versus engineering strain curves for the tensile data. 
 
The multilinear hardening curve is obtained by using a finite element model of the round-
bar tensile specimen to fit observed engineering stress versus engineering strain data.  To 
do this, a 20-degree wedge of the round-bar specimen is modeled, using 3-planes of 
symmetry.   
Figure A32 shows a typical mesh.  In order to force the localization and necking 
(geometric instability) to occur at the longitudinal mid-plane, the mesh uses a large-radius 
to slightly reduce the cross-sectional area at the longitudinal mid-plane.  The mesh has a 
nominal element size of 0.012 inch and is biased so that element at the intersection of the 
axis and longitudinal mid-plane will have an aspect ratio of approximately 1:1 at failure.  A 
finer mesh of the round bar tensile specimen was used to determine that the hardening 
curve and tearing parameter are insensitive to mesh refinement below the 0.012 mesh size. 
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Figure A32.  20-degree wedge model for round-bar tensile test. 
 
Two distinct element formulations were used in conjunction with the MLEPF model.  First, 
a standard under-integrated, uniform-strain hexahedral element, the uniform-gradient (UG) 
element, with hour glass suppression was used.  Second, a modified selectively-reduced-
integration hexahedral element, the selective deviatoric (SD) element, was used.  These 
element formulations necessarily give rise to different deformation behavior and, therefore, 
the extraction of Cauchy-stress, Logarithmic-strain hardening curves is somewhat 
dependent upon the element type selected. 
 
The Cauchy-stress, Logarithmic-strain curves resulting from the fit using the uniform-
gradient element are shown in Figure A33.  The “handbook” and the “test-3” curves were 
selected for the analyses in this report to account for the upper and lower bound for Cauchy 
stress from these data. The tearing parameters computed for these curve fits are also 
displayed on the figure.   
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Figure A33. Hardening curves for the uniform-gradient element formulation. 
 
The Cauchy-stress, Logarithmic-strain curves resulting from the fit using the selective 
deviatoric element are shown in Figure A34. Again, the “handbook” and the “test-3” 
curves were selected as representative of the upper and lower bound of Cauchy stress 
results for these data. The tearing parameters computed for these curve fits are also shown.   
 

 
Figure A34.  Hardening curves for the selective deviatoric element formulation. 
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2. Describe	
  what	
  material	
  model	
  you	
  used	
  for	
  crack	
   initiation?	
   	
  How	
  did	
  you	
  calibrate	
  that	
  
model	
  against	
  material	
  properties?	
   	
  What	
  parameters	
  did	
  you	
  calibrate?	
   	
  Please	
   specify	
  
what	
  specific	
  resources	
  (datasets)	
  you	
  used	
  to	
  calibrate	
  the	
  parameters.	
  

The multilinear elastic-plastic hardening model with failure (mlep-fail) was used to predict 
crack initiation.  This material model is documented in the Adagio 4.14 User’s Guide 
section 4.2.7 and requires a critical tearing parameter and critical crack opening strain to 
calculate crack initiation and propagation.   

The tearing parameter accounts for the stress triaxiality at the crack tip by integrating a 
measure of triaxiality over the equivalent plastic strain.  The tearing parameter is given by 
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where ε is the equivalent plastic strain, fε is the final equivalent plastic strain, σT is the 

maximum tensile stress, σm is the mean stress and the notation •  represents the standard 
Macaulay Bracket.  One can note that for uniaxial tensile loading, the term inside the 
Macaulay Brackets becomes unity and the tearing parameter is equivalent to using a 
limiting plastic strain for a crack growth criterion.   
 
The finite element analyses of the round bar tension specimen were post processed with 
Algebra to calculate the tearing parameter.  The critical tearing parameter is chosen as the 
maximum value of tearing parameter in the analysis at the end of the engineering stress 
versus engineering strain curve. Each analysis of a tension specimen produces a hardening 
curve and critical tearing parameter which should be used together.  The critical tearing 
parameters for all tension specimen analyses are shown in Figure A33 and Figure A34 
above.  The contour plot of tearing parameter for the analysis of SNL Test 3 is shown in 
Figure A35 as a typical result. 
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Figure A35. Analysis of tension test fit to SNL Test 3 data using uniform-gradient element 
formulation. 

	
  

After the critical tearing parameter has been reached at a material point, the stress at that 
point is uniformly decayed to zero over a user-specified amount of strain in the mode one 
direction.  This energy dissipation term is referred to as the critical crack opening strain.  
The critical crack opening strain is a function of both material properties and element size.  
Ordinarily, the critical crack opening strain must be determined by a second physical test. 
This second test has not yet been specified, but it should ideally be one in which significant 
stable crack propagation exists.  
 
Due to an absence of test data for PH13-8Mo, the critical crack opening strain could not be 
determined for this material.  Consequently, two values of the critical crack opening strain 
were chosen for each element size.  These two values were chosen based on previous 
experience with other precipitation hardened steels and were representative of an average 
value and an upper bound. 
 
For uniaxial straining, the work of separation can be analytically computed for a given out-
of-plane element dimension and critical crack opening strain.  Using this relationship, the 
critical crack opening strain to maintain a constant work of separation for a different 
element size can be calculated as 
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where e1 and e2 are the critical crack opening strains corresponding to out-of-plane element 
heights h1 and h2, respectively.  Equation 2 assumes a constant, element-size-independent 
traction at crack initiation which may not be realized numerically. Preliminary evidence 
suggests a functional dependence on in-plane element dimension as well as the out-of-
plane dimension in equation 2. However, in the absence of data to establish an empirical 
relationship, this theoretical relationship was employed. 
 
A2.1 Crack opening strain for uniform-gradient element 
 
A critical crack opening strain of 0.1 is expected to be a reasonable value for 0.01 inch 
element and the Ph13-8Mo material properties.  This value was chosen to be approximately 
equal to the critical crack opening strain of 0.07 calculated for 17-4PH with a 0.01 inch 
element.  Based on the characterization of many metallic materials, a critical crack opening 
strain of 0.2 should be regarded as an upper bound for a 0.01 inch element.  
 
Using the theoretical relationship addressed above, the critical crack opening strains for the 
0.005 inch elements around the keyhole are 0.19 and 0.38. Likewise, the critical crack 
opening strains for the 0.002 inch elements are 0.44 and 0.8.  
 
A2.2 Crack opening strain for selective deviatoric element 
 
A critical crack opening strain of 0.1 is expected to be a reasonable value for 0.0104 inch 
element and the Ph13-8Mo material properties. A critical crack opening strain of 0.22 
should be regarded as an upper bound for a 0.0104 inch element. Using the theoretical 
relationship addressed above, the critical crack opening strains for the 0.0044 inch 
elements around the keyhole are 0.22 and 0.48. Likewise, the critical crack opening strains 
for the 0.0024 inch elements are 0.4 and 0.81. 
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3. How	
  was	
  uncertainty	
  captured	
  in	
  your	
  simulation:	
  (a)	
  material	
  variability,	
  (b)	
  uncertainty	
  
in	
  the	
  failure	
  criterion?	
  

Uncertainty due to material variability was addressed by selecting hardening curves and 
associated tearing parameters that provide an upper and lower bound for maximum Cauchy 
stress developed in the material.  Further uncertainty in the failure criterion was addressed 
by selecting a typical value and an upper bound value for the critical crack opening strain 
which governs energy dissipation during crack development. 
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4. Please	
  summarize	
  your	
  examination	
  (if	
  any)	
  of	
  mesh	
  dependency	
  of	
  your	
  result.	
  	
  

Mesh dependency was examined as a function of element formulation and of mesh size.  
There were two element formulations used in conjunction with the MLEPF model.  For 
each element formulation, a coarse, medium and fine mesh were used to investigate the 
effect of mesh size on the result.  The use of selective deviatoric elements with element 
death is an active area of development that may provide more accurate answers in 
problems involving large deformations.  However, the analyses using selective deviatoric 
elements are not robust enough at this point in time to compare to the analyses using 
uniform gradient elements.  The results for the medium and fine meshes with uniform 
gradient elements are similar, so these results are considered to be a converged answer for 
this analysis approach.   
 
A2.3 MLEPF with uniform-gradient elements  
 
Three unstructured meshes were prepared for the analysis of the X-Prize specimen 1a. All 
three meshes made use of a plane-of-symmetry mid way through the thickness of the 
specimen. Thus, the hidden face of the meshes of Figure A36 were constrained to no 
displacement normal to that face. The faces shown were constraint and traction free. The 
coarsest of these meshes had near cubical elements near the keyhole of 0.01 inches. The 
total number of elements for the coarse mesh was 9,552. The intermediate mesh had 
keyhole elements of 0.005 inches for a total of 66,992 elements. The finest mesh had 
keyhole elements of 0.002 inches with a total element count of 433,584. The three meshes 
are shown in Figure A36. 
 

 

Figure A36. Coarse, intermediate and fine unstructured meshes - looking at the free 
surface. 
 
Results are presented in Table A3 for the three meshes, the two material stress-strain 
curves, and the two energy dissipation terms. The start displacement and load refers to 
when the first element on the free surface at the key-hole reaches the failure criterion 
(tearing parameter). The complete displacement and load refers to when the stress in that 
element has been decayed to zero. There is some ambiguity in the definition of failure 
between these two extremes. The failure location is approximated by hour on a clock face. 
The face of the specimen used is consistent with the machined slot at 10:30. The element 
number can be used to obtain a more accurate failure location when such a method has 
been defined. Some results for the finest meshes are pending. Finite element solutions for 
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these meshes are so computationally intensive as to be on the verge of being impractical. 
Note: for all meshes, the crack tunnels. That is, cracking occurs earlier and extends further 
at he center-plane than at the free surface. For the finest mesh, the first element to fail was 
a small distance from the edge of the key-hole. The failure then propagated back to the 
key-hole surface. 
 
 
Table A3.  Surface tear predictions for the uniform-gradient elements. 
Mesh Material CCOS Start 

Displ. 
(inch) 

Start 
Load 
(lb) 

Comp. 
Displ. 
(inch) 

Comp 
Load 
(lb) 

Fail 
Elem. 
No. 

Fail 
Loc 

Coarse Hdbk 0.1 0.0957 2983 0.0982 2904 308 5:00 
Coarse Hdbk 0.2 0.1118 2924 0.1195 2618 312 4:00 
Coarse Test-3 0.1 0.1115 3115 0.1180 3038 308 5:00 
Coarse Test-3 0.2 0.1318 3169 0.1485 3090 316 3:00 
         
Inter Hdbk 0.19 0.1084 2740 0.1111 2633 1288 4:30 
Inter Hdbk 0.38 0.1174 2803 0.1273 2641 1288 4:30 
Inter Test-3 0.19 0.1307 2853 0.1359 2696 1288 4:30 
Inter Test-3 0.38 0.1422 2877 >.1496 n.a. 1288 4:30 
         
Fine Hdbk 0.44 0.1118 2331 0.1169 2004 4448 4:30 
Fine Hdbk 0.8 0.1213 2354 0.1362 2175 4448 4:30 
Fine Test-3 0.44 0.1343 2285 0.1430 2156 4448 4:30 
Fine Test-3 0.8 0.1430 2536 0.1612 2155 4448 4:30 
 
The deformed shape and extent of the plastic zone for a typical result at failure is shown in 
Figure A37.  Obviously, there is diffuse plasticity in the specimen by the time a visible 
crack has formed on the surface.   
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Figure A37.  A typical deformed shape at failure showing the extent of the plastic 
straining. 
 
The load versus gage displacement curves from the analyses are plotted in Figure A38 
through Figure A41.  Figure A38 shows the load versus displacement for all analyses that 
employed the Handbook material properties.  Figure A39 shows the same results for the 
analyses that used the SNL test-3 material properties.  To ease the comparison between the 
handbook properties and the SNL test-3 properties, a typical set of results is presented in 
Figure A40.  The effect of energy dissipation is shown in Figure A41.   
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Figure A38.  Load versus Displacement curves for the Handbook Ph13-8Mo. 
 

 
Figure A39. Load versus Displacement curves for Test-3 Ph13-8Mo. 
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Figure A40. Typical difference between handbook and SNL test-3 results. 
 

 
Figure A41. Typical difference resulting from varying the critical crack opening strain 
(energy dissipation) term. 
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A2.4 MLEPF with selective deviatoric elements 
 
Three meshes were used with the selective deviatoric element formulation.  The meshes 
were progressively refined and structured in an annular region near the stress concentrator.  
The finite element models using the SD elements used all the same symmetry and 
boundary conditions employed with the UG elements.  For each mesh, the elements on the 
surface of the keyhole had aspect ratios of 1.0.  The element size on the key hole was 
0.0104 inch, 0.0044 inch, and 0.0024 inch for the coarse, medium and fine meshes, 
respectively.  There were 3,392 elements, 23,112 elements, and 125,184 elements for the 
coarse, medium and fine meshes, respectively.  The three meshes are shown in  
Figure A42.   
 

 
 
Figure A42.  Three structured meshes used with selective deviatoric elements. 
 
 
The SD element formulation uses full 8-point quadrature for the linear hexahedral 
elements.  Consequently, meshes with SD elements are three to four times slower than with 
under-integrated UG elements.  Further, the small element size in the medium and fine 
meshes in combination with the nature of the problem require very small load steps.  As a 
result, the crack initiation results reported here, in Table A4, are for the coarsest mesh; 
results for the medium and fine mesh are pending successful completion of the analyses.  
However, the load versus clip gage curves reported do included results from the finer 
meshes and, by nature of their tending towards convergence, suggest that the coarsest mesh 
is inadequate.   
 
Table A4.  Surface tear predictions for the selective deviatoric elements.   
Mesh Material CCOS Start 

Displ. 
(inch) 

Start 
Load 
(lb) 

Comp. 
Displ. 
(inch) 

Comp 
Load 
(lb) 

Fail 
Elem. 
No. 

Fail 
Loc 

Coarse Hdbk 0.1 0.1277 2546 0.1325 2440 2859 5:00 
Coarse* Hdbk 0.22 n.a. n.a. n.a. n.a. n.a. n.a. 
Coarse Test-3 0.1 0.1616 2604 0.1690 2466 2860 5:00 
Coarse Test-3 0.22 0.1801 2590 0.1970 2404 2860 5:00 
* unable to obtain a converged result.  
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Figure A43 and Figure A44 plot the applied load versus clip gage displacement for the 
handbook and test-3 results, respectively.  Clearly, the finer meshes are required for a 
converged solution.  In general, the solution with the quasi-static solver is difficult to 
obtain once the system begins to shed load.  This is likely do to ill conditioning in the 
global tangent stiffness.  The MLEPF model is applied per gauss point, which further 
complicates the analyses for elements with 8-quadrature points.  Analyses with smaller 
time stepping were unable to obtain convergence.  Further exploration as to how to fail 
elements with multiple quadrature points is necessary.   

 
Figure A43.  Load versus Displacement curves for the handbook data and selective 
deviatoric elements. 
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Figure A44. Load versus Displacement curves for the test-3 data and selective deviatoric 
elements. 
 
Figure A45 compares the coarse mesh to the fine mesh and plots the extent of plasticity at 
an applied displacement of +/- 0.05 inch (i.e. prior to crack nucleation on the surface).  
Clearly, the fine mesh provides higher resolution of the plasticity at the keyhole.   
 

 
Figure A45.  Plasticity in the specimen with coarse and fine meshes and selective 
deviatoric elements. 
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5. Computational	
  Efficiency.	
  	
  Estimate	
  the	
  node-­‐hours	
  and	
  processor	
  speed	
  used	
  to	
  run	
  one	
  
solution	
   to	
   the	
  problem.	
   	
  Report	
  a	
   range	
   if	
  necessary,	
   for	
  example	
   if	
   you	
  used	
  different	
  
mesh	
  sizes,	
  report	
  the	
  time	
  for	
  each	
  of	
  the	
  mesh	
  sizes.	
  

Table A5 presents the data regarding computational efficiency.  The time is not reported 
for the analyses using the selective deviatoric element formulation with the medium and 
fine meshes because no converged solution was achieved after peak loading.   
 
Table A5. Computational Efficiency on TLCC Glory.   
Element 
formulation 

Mesh # of elems # of procs Wall Time (hr) Node-hours 

UG Coarse 9,552 16 13-20 208-320 
UG Medium 66,992 16 67-77 1072-1232 
UG Fine 433,584 64 192 12288 
SD* Coarse 3,392 2 0.63 1.27 
* run on the standard Linux desktop (4 cores @ 3.0GHz, 4GB RAM),  
 



76 

6. What	
  force	
  (or	
  range	
  of	
  forces)	
   is	
  predicted	
  at	
  a	
   load	
  line	
  displacement	
  of	
  0.01	
  in?	
  	
  0.02	
  
in?	
  	
  0.03	
  in?	
  	
  0.04	
  in?	
  

 
Force and gage opening pairs are tabulated for the requested openings in Table A6 and 
Table A7 for the calculations with the uniform-gradient formulation and the selective 
deviatoric formulation, respectively.  For clarity, Figure A46 provides an illustration of the 
gage displacement reported.  In the figure, the locations where gage displacements are 
measured are indicated as “gage attachments”.  In the undeformed, as-manufactured 
configuration, the gage opening measures “h”, see figure inset.  As deformation is applied, 
the gage attachment points will deform with an x- and y-component, indicated as “dx” and 
“dy” in the figure.  Table A6 and Table A7 report the total displacement as  
 

22 dydx +=δ .   (3) 
 

 
Figure A46.  Illustration of gage displacement calculation. 
 
 
Table A6.  Force (lb) versus gage displacement (in.) with uniform-gradient formulation.   
Element Mesh Material Force (lb) at gage displacement δ (in.) 

δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 
Uniform Gradient Medium Handbook 1090 1961 2528 2841 
Uniform Gradient Medium Test 3 1087 1951 2509 2822 
Uniform Gradient Fine Handbook 1089 1956 2523 2829 
Uniform Gradient Fine Test 3 1087 1950 2508 2816 
       
Minimum   1087 1950 2508 2816 
Maximum   1090 1961 2528 2841 
Mean   1088 1955 2517 2827 
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For the calculations with the selective deviatoric element formulation, the force 
corresponding to a given gage displacement for the medium versus the fine mesh was 
virtually indistinguishable.  Consequently, Table 5 reports only one set of forces for each 
material data set.   
 
Table A7.  Force (lb) versus gage displacement (in.) with selective deviatoric formulation.   
Element Material Force (lb) at gage displacement δ (in.) 

δ = 0.01 δ = 0.02 δ = 0.03 δ = 0.04 
Selective Deviatoric Handbook 1096 1966 2527 2833 
Selective Deviatoric Test 3 1092 1954 2511 2818 
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7. Describe	
  the	
  strengths	
  and	
  weaknesses	
  of	
  your	
  approach.	
  

A major strength of this approach is that the analyst does not need to guess the crack 
direction to build the model. Meshing techniques typically used for nonlinear analyses may 
be employed.   
  
A strength of this analysis approach is that a modest number of parameters are required.  
Five scalar parameters and one function are required to characterize the material. All 
materials properties, except the critical crack opening strain, are available from a simple 
tension test. 
 
A weakness is mesh line dependencies exist with this approach because a crack path is 
constrained to follow a series of adjacent hex elements.  Different mesh topologies will 
produce different crack paths. This effect is reduced but never eliminated by mesh 
refinement. 
 
A weakness in the use of uniform gradient elements is the presence of zero energy, or 
hourglass, modes of deformation.  Hourglass control forces are used to resist the zero 
energy modes of deformation and stabilize the results.  These hourglass forces also resist 
localized deformations and have been shown to negatively affect the ability to characterize 
ductile materials in the structural softening regime. 
 
A weakness in the use of selective deviatoric elements is that the implementation of 
element death in an element with eight integration points is not well understood.  An 
additional parameter, “kill when _ integration points remain”, is required.  For these 
calculations the element was killed when six integration points remain. 
 
A weakness is that an analyst will often not have enough data to calculate the correct 
critical crack opening strain for a given material and mesh size.  A topic of active research 
is to improve the method of determining the critical crack opening strain for various 
materials and mesh sizes. Uncertainty in critical crack opening strain will create some error 
in the analyses of this challenge assignment and is expected to generate larger error in 
problems with more significant crack propagation. 
 
Another limitation is that it is difficult to predict when the crack becomes visible on the 
surface of the specimen.  The method assumes that no significant voids or cracks are 
present in a hex element before the critical tearing parameter is reached, and that the 
element can carry no load after the critical crack opening strain is reached.  The crack is 
assumed to be visible on the surface after the surface element reaches critical tearing 
parameter and before the element reaches the critical crack opening strain.  The challenge 
assignment is to predict when the crack is between 0.00394 in. (0.1 mm) and 0.0197 in. 
(0.5 mm) in length on the free surface of the specimen.  Based on the uniform gradient 
meshes, this range of lengths is 39% to 197% of the coarse mesh size, 79% to 394% of the 
medium mesh size, and 197% to 985% of the fine mesh size.  The results reported in Table 
A3 and Table A4 bound the point at which the crack emerges in the first surface element.  
Further post-processing of analysis results would be required to determine the load and 
displacement at the specified surface crack lengths of 0.00394 inch and 0.0197 inch. 
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A2.5 Wrap-Up Questions 
 

Q1.	
   	
  What	
  was	
   the	
  %	
   difference	
   of	
   your	
   predictions	
   to	
   the	
   experimental	
   values	
   (max	
   force	
  
prior	
  to	
  crack	
  initiation	
  and	
  COD	
  displacement	
  at	
  crack	
  initiation)?	
  	
  	
  

 
The predictions of maximum force prior to crack initiation and crack opening displacement 
at crack initiation from the Uniform Gradient element are shown in Table A8.  Three mesh 
sizes, two material property sets, and two values of critical crack opening strain were used 
in twelve analyses.  The start crack opening displacement (COD) is measured at the time at 
which an element on the specimen free surface first reaches the failure criterion (tearing 
parameter). The complete crack opening displacement is measured at the time at which the 
stress in that element has been decayed to zero. There is some ambiguity in the definition 
of failure between these two points in time, so both the start and the complete COD are 
reported. 
 
Table A8.  Analysis Results Using Uniform Gradient Elements 
Mesh Material CCOS Max. 

Load 
(kN) 

Start 
COD 
(mm) 

Complete 
COD 
(mm) 

Coarse Hdbk 0.1 14.18 2.431 2.494 
Coarse Hdbk 0.2 14.2 2.840 3.035 
Coarse Test-3 0.1 14.41 2.832 2.997 
Coarse Test-3 0.2 14.43 3.348 3.772 
Inter Hdbk 0.19 13.77 2.753 2.822 
Inter Hdbk 0.38 13.77 2.982 3.233 
Inter Test-3 0.19 13.95 3.320 3.452 
Inter Test-3 0.38 13.95 3.612 3.800 
Fine Hdbk 0.44 13.67 2.771 2.969 
Fine Hdbk 0.8 13.7 3.015 3.459 
Fine Test-3 0.44 13.8 3.294 3.449 
Fine Test-3 0.8 13.8 3.498 3.990 

 
Table A9 shows the comparison of the results from the twelve uniform gradient element 
analyses to the results from the experiments from both laboratories.   
 
Table A9.  Comparison between Analysis Results Using Uniform Gradient Elements and 
Experimental Results 
  Analysis Experiment % Difference 
Max. Load (kN) Mean 13.969 13.955 0.10 
 Std Dev 0.270 0.161  
COD (mm) Mean 3.174 2.960 7.22 
 Std Dev 0.411 0.091  
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The results of the analyses using the selective deviatoric element integration are 
summarized in Table A10.  As has been previously discussed, the unstable nature of this 
crack geometry gave rise to significant numerical difficulty when the crack began to 
propagate.  Hence, the gage openings at crack initiation are not captured for all mesh 
densities.  Table A11 presents the statistics of the maximum load prediction.  Unlike Table 
A9, the gage opening is not included in Table A11 because there are too few results to 
provide meaningful statistics.   
 
Table A10. Summary of results from analyses using selective deviatoric element integration 
Mesh Material CCOS Max. 

Load 
(kN) 

Start 
COD 
(mm) 

Complete 
COD 
(mm) 

Coarse Hdbk 0.1 13.88 3.244 3.366 
Coarse Hdbk 0.22 13.88 2.619 n.a.* 
Coarse Test-3 0.1 14.05 4.105 4.293 
Coarse Test-3 0.22 14.05 4.575 5.004 
Intermediate Hdbk 0.22 13.63 n.a. n.a. 
Intermediate Hdbk 0.48 13.63 n.a. n.a. 
Intermediate Test-3 0.22 13.78 n.a. n.a. 
Inter Test-3 0.48 13.78 n.a. n.a. 
Fine Hdbk 0.4 13.59 n.a. n.a. 
Fine Hdbk 0.81 13.59 n.a. n.a. 
Fine Test-3 0.4 13.75 n.a. n.a. 
Fine Test-3 0.81 13.75 n.a. n.a. 

*n.a. = not available  
 
Table A11. Statistics of results from analyses using selective deviatoric element integration 
  Analysis Experiment % Difference 
Max. Load (kN) Mean 13.78 13.955 1.25 
 Std Dev 0.16 0.161  
 
 
 

Q2.	
   	
   If	
  you	
  (or	
  your	
  team)	
  submitted	
  revised	
  predictions,	
  either	
  after	
  the	
   initial	
  due	
  date,	
  or	
  
after	
   the	
  comparison	
  between	
  modeling	
  results,	
  did	
  your	
  revisions	
  bring	
  the	
  prediction	
  
closer	
  to	
  the	
  experimental	
  values?	
  

 
The team made an error in reports prior to April 15th, 2010 and mistakenly reported the 
force at crack initiation rather than the maximum force prior to crack initiation.  For the 
intermediate and fine mesh sizes, the force at crack initiation on the surface is between 
12% and 30% smaller than the maximum force.  Reporting the correct quantity reduced our 
error from over 20% to less than 1%. 
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Q3.	
   	
   Describe	
   the	
   source(s)	
   of	
   discrepancy	
   (if	
   any)	
   between	
   your	
   prediction	
   and	
   the	
  
experimental	
  result.	
   	
  Where	
  possible,	
  provide	
  quantitative	
  estimates	
  of	
  how	
  much	
  your	
  
prediction	
  might	
  have	
  improved	
  if	
  these	
  sources	
  were	
  incorporated	
  into	
  the	
  prediction.	
  	
  
Discuss	
  the	
  ease	
  or	
  difficulty	
  in	
  incorporating	
  such	
  improvements	
  in	
  future	
  work.	
  

 
Figure A47– Figure A49 show that the analyses results are close to the experimental values 
on average and have a larger variation.  The spread in the analyses results was due to three 
factors: 1) variation in the strain hardening behavior of the material from multiple tests; 2) 
the definition of crack nucleation; and, 3) limited data from which to appropriately choose 
the energy dissipation term (the critical crack opening strain).  As discussed in previous 
reports, there were several sets of stress/strain data available.  The results reported here 
summarize the findings using upper and lower bounds from the available material data.  
For the xPrize Challenge Problem 1a, crack nucleation was specifically defined as a visible 
surface crack between 100 and 500 microns in length.  Crack initiation in our model is 
defined and reported for both the onset of stress decay at the free surface and for when the 
stress has been fully decayed to zero at the free surface.  Finally, determining the 
appropriate value for the energy dissipation term independent of element size is an area of 
ongoing research.  Data from a stable crack growth experiment can, and has successfully 
been, used to determine the energy dissipation term for a set element size; however, no 
such data was available for this PH13-8Mo H950.  Thus, best-guess estimates for the 
parameter, as well as its variation for element size, were used for this project.   
 
Figure A50– Figure A52 show selected results from the analyses using the selective 
deviatoric element integration formulation.  The predictions for maximum load prior to 
cracking are very accurate.  The results for gage opening displacement are less conclusive 
due to the lack of data for the medium and fine meshes.   
 
A sample of this material was tested according to ASTM E8 by Modern Industries, Inc. in 
April 2010, and the results indicate that this material is approximated fairly well by the 
handbook test data.  The external lab data measured a tensile strength of 225.85 ksi.  The 
handbook data, which was used as the lower bound for stress, had a tensile strength of 
228.30, which is 1.1% higher.  SNL-Test 3, which was used as the upper bound for stress, 
had a tensile strength of 229.81 ksi, which is 1.75% higher.  The handbook data gives 
predictions which are closer to the X-Prize results.  This external lab did not record the full 
range engineering stress-engineering strain data, so a Cauchy stress-logarithmic strain 
curve could not be determined.  Since the handbook properties seem to work well, further 
testing is not required. 
 
Comparison of the analyses to the X-Prize results indicates that the most accurate analyses 
were run on intermediate and fine meshes with the handbook material properties.  The 
estimated nominal value of critical crack opening strain bounds the experimental minimum 
crack opening displacement while the estimated maximum value of critical crack opening 
strain bounds the experimental maximum.  These four analyses are compared to the 
experimental data in Table A12. 
 
The handbook data is the only material property data generated using the recommended 2 
inch long extensometer on a 0.5 inch diameter round bar specimen.  The SNL tests used a 1 
inch extensometer and there is some risk that this did not capture the entire necked region 
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of the tension specimen and introduced some error in the Cauchy stress-logarithmic strain 
curve. 
 
Table A12. Comparison between Experimental Results and Analysis Results Using 
Uniform Gradient Elements with only Handbook Properties on Intermediate and Fine 
Meshes 
  Analysis Experiment % Difference 
Max. Load (kN) Mean 13.728 13.955 -1.63 
 Std Dev 0.051 0.161  
COD (mm) Mean 3.001 2.960 1.38 
 Std Dev 0.243 0.091  
 
 

 
Figure A47. Maximum Load Prior to Crack 
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Figure A48. Crack Opening Displacement at Crack Initiation Using Uniform Gradient 
Elements with a Nominal Value of Critical Crack Opening Strain 
 

 
Figure A49. Crack Opening Displacement at Crack Initiation Using Uniform Gradient 
Elements with a Maximum Value of Critical Crack Opening Strain 



84 

 

 
Figure A50. Predicted maximum load from analyses using selective deviatoric element 
integration. 
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Figure A51. Predicted gage opening displacement from analyses using selective deviatoric 
element integration with nominal energy dissipation. 
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Figure A52. Predicted gage opening displacement from analyses using selective deviatoric 
element integration with maximum energy dissipation. 
 
 
 

Q4.	
  	
  Was	
  this	
  effort	
  helpful	
  for	
  the	
  development	
  and	
  evaluation	
  of	
  your	
  modeling	
  paradigm?	
  	
  
How	
  might	
  we	
  improve	
  the	
  challenges	
  in	
  the	
  future?	
  

 
This effort provided an excellent source of validation data.  For the “tearing parameter” 
approach, crack propagation is the area most in need of further development.  The lack of 
slow stable crack propagation in the current geometry, material system did not provide data 
of use to the investigation of slow stable crack propagation.  For optimum use in 
development of the “tearing parameter” approach, a more ductile material and/or test 
geometry would provide a greater development value. 
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A3. Predictions For Challenge 1B 
 
Executive Summary 
 
There are a total of 10 finite element results report herein.  There are three mesh densities, 
two material properties descriptions (primary difference is the strain hardening), and two 
approaches to the energy dissipation to try to achieve element size independence. Because 
the intent of challenge 1-b was investigate crack propagation, the selective deviatoric (SD) 
element formulation was not included. The SD element requires further development for 
stability in a material softening regime such as that produced during stress decay utilized 
with the tearing parameter approach to ductile failure. The uniform gradient (UG) element 
formulation was used exclusively here. For initiation, the expected gage displacement 
range is 0.754 – 1.212 mm.  The expected maximum load range prior to cracking is 3.268 – 
3.371 kN. The first scribe line intersected is line D. Intersection of line D by the crack 
occurs between 1.003 – 1.422 mm. displacement at a load between 0.65 – 2.45 kN. 
 
A3.1 Introduction 
 
The ductile failure X-Prize is a project to assess the maturity of failure modeling 
approaches as well as their accuracy and potential. In the following report, the general 
approach used to predict ductile failure initiation and propagation is the multilinear elastic-
plastic with tearing parameter failure (MLEPF) model.  An overview of the approach is 
provided.  Then, the details, as they relate to the x-Prize geometry and alloy, are described, 
the results of these analyses are reported and discussed.  In an earlier challenge, an attempt 
to use SD elements was conducted.  The advantage of the SD elements is the lack of zero-
energy modes thus eliminating the need for suppression of such modes. This has been 
shown to be valuable in simulations using cohesive surface elements for sharp crack 
propagation.  However, simulating failure with SD elements is somewhat less mature than 
with single-point quadrature UG elements, and requires further development.  For 
geometries with a low gradient, smooth stress concentrator, as opposed to a sharp notch or 
crack, the single-point quadrature UG elements were proven in challenge 1-A to resolve 
the plasticity and provide sufficiently accurate analysis results. At present, it is an 
assumption that UG elements are adequate for the stress and strain gradients associated 
with crack propagation.  
 
A3.2 General details of the multilinear elasto-plastic with tearing parameter failure 
approach 
 
The MLEPF approach uses a multilinear elasto-plastic constitutive model with the standard 
von Mises yield criterion.  In this report, the multilinear hardening curve was obtained by 
fitting experimental data from a round-bar tensile test.  Further, the MLEPF approach uses 
a tearing parameter as a failure criterion, which was also obtained from the round-bar 
tensile test data. Crack propagation is accompanied by dissipating energy (critical crack 
opening strain) during the element failure. The critical crack opening strain is a function of 
both material properties and element size. Element size independent crack propagation can 
be achieved by appropriately varying the critical crack opening strain with element size. 
The following sections describe these processes in detail.   
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A3.2.1 Determining the multilinear elasto-plastic curve fit from round-bar tensile data 
 
Prediction of ductile failure is inherently a large strain, large deformation process. The 
Cauchy-stress, logarithmic-strain conjugates are used in the finite deformation codes at 
SNL. The strain hardening defined in terms of Cauchy-stress and logarithmic-strain is 
obtained by using a finite element model of the tensile specimen to perform the inverse 
problem. That is, the Cauchy-stress versus logarithmic-strain curve that gives the 
experimental engineering-stress versus engineering-curve as the solution to a finite element 
analysis of the tensile specimen is extracted. Here, the gage section of a flat tensile 
specimen is used. Figure A53 shows the finite element mesh. There are 3-planes of 
symmetry, the back, left hand side and the bottom.  There are imposed displacements on 
the top of the specimen. The front and right hand side of the specimen are traction free. In 
order to force the localization and necking (geometric instability) to occur at the 
longitudinal mid-plane (plane of symmetry), the mesh uses a large-radius to slightly reduce 
(less than 0.1 per cent) the cross-sectional area at the longitudinal mid-plane. The 
engineering-stress versus engineering-strain result is derived from the load and 
displacement of finite element model and compared to the experimental results. 
 

 
Figure A53.  Model for flat specimen tensile test. 
 
 
A3.2.2 Determining the critical tearing parameter  
 
The tearing parameter accounts for the stress triaxiality at the crack tip by integrating a 
measure of triaxiality over the equivalent plastic strain.  The tearing parameter is given by 
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where ε is the equivalent plastic strain, fε is the final equivalent plastic strain, σT is the 

maximum tensile stress, σm is the mean stress and the notation •  represents the standard 
Macaulay Bracket.  One can note that for uniaxial loading, the term inside the Macaulay 
Brackets becomes unity and the tearing parameter is equivalent to using a limiting plastic 
strain for a crack growth criterion.   
 
A critical value of the tearing parameter is chosen by integrating equation (1) for all 
elements of the tensile test simulation and picking the maximum value of the tearing 
parameter at the maximum displacement (maximum engineering strain) achieved in the 
actual tensile test.  
 
There are mesh sensitivities, particularly for coarse meshes, in this entire material property 
fitting process. It is assumed that these mesh sensitivities are minimized for sufficient 
geometric resolution to adequately capture the size and shape of the necked region. For 
highly ductile materials, such resolution probably requires insight into the initial aspect 
ratio of the elements that will be in the necked region or remeshing. In the model used here 
(shown above), the elements at the bottom corners of the specimen were roughly 0.01 inch 
with aspect ratios close to 1 to 1 to 1. This was deemed adequate for the low ductility of 
2024-T3 aluminum which exhibits minimal necking behavior.  
 
A3.2.3 Determining the appropriate energy dissipation term 
 
In theory, the energy dissipation term, the critical crack opening strain, can be determined 
from a second physical test. The optimum form of this second test is open to discussion. 
The critical crack opening strain is expected to be a function of material properties as well 
as specimen size. A theoretical relationship can be established between element size and 
the value of critical crack opening strain to provide an element size independent simulation 
of crack extension. However, this relationship does not address the material properties 
effects. This relationship also requires several assumptions of questionable accuracy. Both 
this relationship and an empirical relationship based on a series of solutions to one form of 
a second test are used here. The starting point (the critical crack opening strain for the 
coarsest mesh) was based on this empirical relationship. 
 
A3.3 Specific details of the approach for challenge 1-B  
 
For challenge 1-B, a heat treatable aluminum alloy, 2024-T3, was chosen. The details of 
the material description are discussed below. Because the intent of challenge 1-B was crack 
propagation, prior experience dictated the use of the single-point-integrated, uniform-
strain, 8-noded hexahedral element, uniform-gradient (UG) element, with hour glass 
suppression. The tearing parameter approach is more mature using this element than with 
available higher order elements   
 
In addition, there were multiple levels of mesh refinement studied with each element 
formulation.  With the UG elements, three unstructured meshes were used with average 
element size of 0.01 inch, 0.005 inch, and 0.002 inch in the region of crack nucleation and 
propagation.  The following presents the material data used and the fits for both element 
formulations.   
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A3.3.1 Material data 
 
There were little full stress-strain data available for this alloy in a suitable product form. 
The primary source of data selected was clad sheet material [1]. The cladding was quite 
thin (2.5% of the total thickness) and not expected to contribute significantly to the strain 
hardening behavior of the specimen. Yield, ultimate and elongation values from tensile 
testing on this particular plate of material (not the full stress-strain curve, were available. 
These values were used to adjust the stress-strain curve from the clad material. The stress-
strain curve for the clad material was shifted upward by 3.5 ksi and extended horizontally 
by 0.07 in/in to match these reported values. Later in the challenge, full stress-strain tensile 
data for this material became available [2]. This curve had numerous local increases in 
stress (curve was lumpy). Prior to use the curve was smoothed. The engineering stress 
versus engineering strain curves for both sets of tensile data (modified for set 1 and 
smoothed for set 2) are plotted in Figure A54.  
 

 
 
Figure A54.  Engineering stress versus engineering strain curves for the 2024-T3 tensile 
data. 
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A3.3.2 Material data fit for the uniform-gradient element formulation    
 
The Cauchy-stress, Logarithmic-strain curves resulting from the fit using the uniform-
gradient element are shown in Figure A55. In order to not “run off the end of the curve” for 
differing stress states where the ductility could be greater then for the tensile specimen, the 
data has been extrapolated based on a straight line through the last two data points from the 
fitting process. The tearing parameters computed for these materials, 0.32 for set-1 data 
and 0.28 for set-2 data, are also displayed on the figure.   
 

 
Figure A55.  Hardening curves for the uniform-gradient element formulation for B024-T3 
Aluminum. 
 
 
A3.3.3 Critical crack opening strain (energy dissipation) 
 
The empirical estimation scheme for the critical crack opening strain yielded a value of 
0.14 for an element size of 0.01 inch for both sets of material descriptions. This same 
scheme results in critical crack opening strains of 0.17 for 0.005 inch element and 0.19 for 
0.0025 inch elements for both material descriptions. The constant energy dissipation 
assumption results in critical crack opening strains of 0.26 for material set 1 and 0.27 for 
material set 2 for an element size of 0.005 inch. Likewise, the constant energy dissipation 
results in a critical crack opening strain of 0.048 for set 1 and 0.050 for set 2 for an element 
size of 0.0025 inch. 
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A3.3.4 Finite element mesh  
 
Three semi-unstructured meshes were prepared for the analysis of the X-Prize specimen for 
challenge 1-B. All three meshes made use of a symmetry plane at the through-thickness 
center of the specimen. That is, the centerplane was constrained to provide no out-of-plane 
displacement while the outer surface was unconstrained appropriate to a free surface. The 
use of a plane-of-symmetry implies no out-of-plane displacement at the loading pins as 
well as no buckling of the specimen. The specimen is assumed to be thick enough that 
neither of these deformation modes is possible. Half the loading pins are modeled as elastic 
material meshed contiguously with the bulk of the specimen. The specimen is loaded via 
imposed displacement (displacement control) at a single node in the elastic pin. Rotation 
about the load point is allowed but lateral translation is prevented. The challenge 1-B 
specimen had grid lines scribed so that crack propagation could be described 
unambiguously (at least within a tolerance). Grid lines “A”, “B”, “C”, were horizontal 
while grid lines “D”, “E”, “F”, were vertical. These lines were reproduced in the finite 
element mesh through the use of element set boundaries. The material properties were 
identical across these element set boundaries. Thus the boundaries were a post-processing 
aid and had no effect upon the solution beyond the imposition of a set of straight line 
element edges. The coarsest of these meshes had near cubical elements near the keyhole of 
0.01 inches. The total number of elements for the coarse mesh was 14,844. The 
intermediate mesh had keyhole elements of 0.005 inches for a total of 69,920 elements. 
The finest mesh had keyhole elements of 0.0025 inches with a total element count of 
470,496. The three meshes are shown in Figure A56. 
 

 
Figure A56. Coarse, intermediate and fine unstructured meshes - looking at the 
centerplane. 
 
A3.4 Results 
 
Results are presented in Table A13 for the three meshes, the two material stress-strain 
curves, and the two energy dissipation terms. The key for the specimen is material set #, 
followed by mesh #, followed by the critical crack opening strain. For example, S1-M1-
P14 refers to material property set 1, Mesh-1 (the coarsest), critical crack opening 
displacement equal to 0.14. Peak load is the maximum load achieved during the analysis.  
Typically, peak load occurs prior the initiation of the failure. Displ @ initiation is the load 
line displacement when the failure has occurred in the first element on the surface of the 
specimen. Crack path refers to the intersection of the crack with the grid lines on the 
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specimen described in section 3.4 above. Displ or Load @ 1st intersect refers to the 
displacement or the load at which the crack intersects the first of the scribe lines, in all 
cases for these analyses, line “D” (the vertical boundary between the magenta and the red 
element blocks shown above). Finally, Displ or Load @ “E” refers to the displacement or 
load at which the crack intersects grid line “E”. Here that intersection takes place along the 
uppermost vertical red and yellow element block boundary. There is some ambiguity in the 
definition of failure. The top value in Table A13 references the achievement of the tearing 
parameter. The lower value references the point at which the stress in the element has 
decayed to zero. The difference between these two values is the energy dissipation 
controlled by the critical crack opening strain. Note: the number of output steps (quasi-
temporal discretization) also contributes to this ambiguity.  
 
Table A13. Analysis results for Challenge 1-B 
Specimen Peak 

Load 
(kN) 

Displ @ 
Initiation 
(mm) 

Crack 
path 

Displ @ 
1st Intersect 
(mm) 

Load @ 
1st Intersect 
(kN) 

Displ 
@ “E” 
(mm) 

Load  
@ “E” 
(kN) 

S1-M1-P14 3.307 0.800 
0.925 

D-E-F-? 1.435 
1.514 

1.49 
1.19 

1.656 
1.727 

0.93 
0.78 

S2-M1-P14 3.319 0.805 
0.859 

D-E-F-? 1.300 
1.387 

1.82 
1.29 

1.542 
1.615 

0.87 
0.76 

        
S1-M2-P17 3.281 0.808 

0.866 
D-E-F-? 1.171 

1.265 
2.06 
1.25 

1.265 
1.379 

1.25 
0.53 

S1-M2-P26 3.337 0.864 
0.919 

D-E-F-? 1.521 
1.603 

1.73 
1.33 

1.763 
1.834 

0.79 
0.65 

S2-M2-P17 3.274 0.754 
0.813 

D-E-F-? 1.130 
1.252 

1.68 
0.69 

1.252 
1.336 

0.69 
0.41 

S2-M2-P27 3.340 0.864 
0.919 

D-E-F-? 1.402 
1.560 

1.87 
1.16 

1.646 
1.720 

0.79 
0.65 

        
S1-M3-P19 3.287 0.815 

0.935 
D-E-F-? 1.003 

1.107 
2.45 
1.25 

1.107 
1.217 

1.25 
0.54 

S1-M3-P48 3.371 1.095 
1.212 

D-E-F-? 1.928 
2.002 

1.33 
1.17 

2.002 
2.210 

1.17 
0.86 

S2-M3-P19 3.268 0.876 
0.937 

D-E-F-? 1.029 
1.146 

1.67 
0.65 

1.029 
1.146 

1.67 
0.65 

S2-M3-P50 3.364 1.039 
1.099 

D-E-F-? 1.803 
1.882 

1.47 
1.19 

1.882 
2.090 

1.19 
0.82 

 
The results in Table A13, are reformatted in terms of best estimate along with upper and 
lower bounds in Table A14. This provides an easier view of average results and variances. 
 
Table A14. Average and variation in results for Challenge 1-B 
 
 Peak 

Load 
(kN) 

Displ @ 
Initiation 
(mm) 

Crack 
path 

Displ @ 
1st Intersect 
(mm) 

Load @ 
1st Intersect 
(kN) 

Displ 
@ “E” 
(mm) 

Load  
@ “E” 
(kN) 
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Upper 
Bound 

1.212 3.371  2.002 2.45 2.002 1.67 

Best 
Estimate 

0.910 3.315 D-E-F-? 1.422 1.437 1.571 0.86 

Lower 
Bound 

0.754 3.268  1.003 0.66 1.029 0.41 

 
A typical deformed shape of the challenge-1B specimen at nearly complete crack 
propagation is shown in Figure A57.  

 
Figure A57. Deformed shape showing crack propagation. 
 
 
The load versus gage-line displacement curves from the analyses are plotted in Figure A58 
through Figure A61. Figure A58 shows the load versus displacement for all analyses that 
employed the set-1 material properties.  Figure A59 shows the same results for the analyses 
that used the set-2 material properties.  To ease the comparison between the set-1 
properties and the set-2 properties, typical (intermediate mesh, critical crack opening strain 
= 0.17) of results are presented in Figure A60.  The typical effect of the critical crack 
opening displacement (energy dissipation term) (set-1 material properties, intermediate 
mesh) is shown in Figure A61. 
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Figure A58. Load versus Displacement curves for set-1 material properties of 2024-
T3Aluminum. 
 

 
Figure A59. Load versus Displacement curves for set-2 material properties for 2024-T3 
Aluminum. 
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Figure A60. Typical difference between handbook and SNL test-3 results. 
 

 
Figure A61. Typical difference resulting from varying the critical crack opening strain 
(energy dissipation) term. 
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A3.5 Discussion  
 
In an attempt to define which parameters led to the most variation, the average values for 
all results with one parameter setting were subtracted from the average values for the 
alternate parameter setting. Table A15 shows these results.  
 
Table A15. Variation  based on a specific parameter for Challenge 1-B 
 displ@ 

initiation 
(mm) 

Peak 
Force 
(kN) 

Displ @ 
1st intersect 
(mm) 

Load @ 
1st intersect 
(kN) 

Displ @ 
“E” 
(mm) 

Load @ 
“E” 
(kN) 

Step size 
& failure 
ambiguity 

 
0.114 

 
0 

 
0.15 

 
0.96 

 
0.113 

 
0.295 

Material 
properties 

0.027 0.0036 0.066 0.176 0.090 0.025 

CCOS 
mesh-2 

0.081 0.061 0.317 0.103 0.433 0. 

CCOS 
mesh-3 

0.221 0.090 0.832 0.215 0.921 0.0175 

 
 
Row 1 shows the effect of the ambiguity in failure definition coupled with the variation 
caused by the load step size (quasistatic temporal discretization). This effect is quite large, 
easily the second largest effect seen. This variation could be mitigated by somewhat by 
increasing the frequency of the results output. However, increasing the quasi-temporal 
frequency output can lead to extremely large files and subsequent post-processing 
difficulties. Row 2 shows the difference caused by the two sets of materials properties. 
Both sets of material properties are quite similar and this is reflected in the small variation 
caused by this parameter. Rows 3 and 4 explore the effects of the energy dissipation term. 
Note: the constant energy dissipation scheme does not allow setting the energy dissipation, 
it just provides a scheme to adjust the value as a function of element size. The initial 
energy dissipation for mesh 1 was set using the empirical estimate. Therefore, there is no 
energy dissipation variation associated with mesh 1. The variation between the empirical 
estimate for critical crack opening strain and the assumption of constant strain energy 
dissipation is large. The values for mesh-3 are larger than those for mesh-2 because the 
element size difference from mesh-1 is larger for mesh-3 than for mesh-2. Neither scheme 
gives an element size independent result. The empirical estimate dissipates too little energy 
with decreasing element size while the constant energy scheme dissipates too much. This is 
an area of active research. 
 
As was the case for challenge 1-A, challenge 1-B results implies that the stiffness (energy 
stored) of the test machine, load train, etc. could be important. This was investigated by 
adding elastic bars (acts like a spring) to the load application points. The mesh used is 
shown in Figure A62 with the imposed displacement boundary condition changed from the 
center of the elastic half plugs to the ends of the thin bars attached to these original loading 
locations. 
 



98 

 
Figure A62. Finite element model for challenge 1-B with added compliance. 
 
Several different spring rates were achieved by varying the elastic modulus of the loading 
bars. The spring rate will be increased until a similar result to the infinite stiffness 
quasistatics result is achieved. To date, the spring rate has been varied from 1100 lb./in to   
1.1E12 lb./in. Even at the highest spring rate tried thus far, the quasistatics result was not 
achieved. At a spring rate of 1.1E12, the difference in horizontal displacement between the 
end of the bar and the original loading point (center of the cyan region above) was 0.7e-9 
inch. It was surprising that this level of stored energy is still important. The primary 
difference between the infinite stiffness results and the compliant results was the stability 
of the crack and the crack direction. Up to reaching crack instability, the results were 
virtually identical. When the crack went unstable (defined here as more than 100 elements 
failing in one load step) the crack path changed from horizontal (cutting grid lines D-E-F) 
to vertical (cutting grid lines A-B-C). This is shown in the left hand side of Figure A63. If 
the solution procedure is switched from quasistatics to transient dynamics at the time of 
crack instability, the original crack path is recovered. This is shown in the right hand side 
of Figure A63. These preliminary results show a great deal of sensitivity to stored and 
dissipated energy. The switch from quasistatics to transient dynamics produces a reduction 
in the load step of several orders of magnitude and also introduces inertia. Both these 
changes can have profound effects on the energy balance in the simulation.  
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Figure A63. Challenge 1-B simulation with added compliance, left hand side shows the 
quasistatic crack path, right hand side shows the crack path with the hand-off to transient 
dynamics at start of unstable crack propagation. 
 
Finally, similar to challenge-1, crack tunneling was observed. That is, the crack initiated 
and extended at the center-plane prior to initiation at the free surface. Crack tunneling 
developed early in the simulation after which propagation appeared occur with a constant 
amount of tunneling (self-similar crack growth). The magnitude of the tunneling was 
nearly element size independent.   
 
A3.6 Summary and Conclusions  
 
In conclusion, two material property sets, three mesh densities with two energy dissipation 
terms for two of the meshes. A total of ten simulations were run for challenge 1-B. 
Simulations were relatively trouble free until the remaining ligament approached 2% of the 
specimen thickness. At this point, not surprisingly, convergence was difficult to attain. 
Energy dissipation can be used to achieve an element size independent solution, however, 
more work is needed to predict the magnitude of this term. The critical crack opening strain 
(energy dissipation) parameter leads to the greatest source of variability in the simulation 
of crack propagation using the “tearing parameter” approach. 
 
Energy storage in the specimen, the load train, and the loading machine are important in 
the simulation. It would be interesting to determine if these predictions could be validated 
experimentally. The transfer from a quasistatic to a transient dynamic framework to handle 
crack propagations instabilities has been demonstrated.  
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A4. Follow-Up for Challenge 1B 
 
Introduction 
 
In keeping with the fundamental premise of the X-Prize challenge, the various techniques 
used to model ductile failure were completed prior to the availability of the experimental 
results. As expected there were differences between the experiment and the analysis. Also, 
in keeping with the intent of the X-Prize, the analysis teams were asked to investigate the 
differences between pre-test predictions and the experiment and apply knowledge gained 
during review of the experimental results in an effort reduce these differences. Specifically, 
each team was asked to answer the following question and engage in the proposed 
discussion. 

 
1. What	
  do	
  you	
  believe	
  were	
  the	
  most	
  significant	
  sources	
  of	
  error	
  that	
  produced	
  discrepancy	
  

between	
   your	
   model	
   and	
   experimental	
   results?	
   	
  Where	
   possible,	
   provide	
   quantitative	
  
estimates	
   of	
   how	
   much	
   your	
   prediction	
   might	
   have	
   improved	
   if	
   these	
   sources	
   were	
  
incorporated	
   into	
   the	
   prediction.	
   	
  Discuss	
   the	
   ease	
   or	
   difficulty	
   in	
   incorporating	
   such	
  
improvements	
  in	
  future	
  work.	
  

 
This memo documents such post-test evaluations for the Tearing Parameter approach to 
modeling ductile failure. 
 
A4.1 Differences between experimental results and Tearing Parameter Predictions 
 
As can be seen in Figure A64, the Tearing Parameter approach under predicts failure 
initiation for the Challenge 1-B specimen.  
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Figure A64.  Predictions versus experiment for challenge 1-b. 
 
The Tearing Parameter approach has only one parameter that is not completely fixed by the 
material properties generated in a tensile test. This parameter is the “critical crack opening 
strain” which is used to define the energy dissipated in propagating the crack. The “critical 
crack opening strain” defines the magnitude of the strain component perpendicular to the 
crack flanks over which the stresses in the element are decayed to zero. As such, this 
parameter is primarily used to adjust the crack propagation behavior. This parameter only 
affects the “apparent” initiation behavior in that it slows the stress decay and can thus 
affect the global peak load marginally. The effect of a change in “critical crack opening 
strain (CCOS)” is shown in Figure A65. 
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Figure A65. Effect of the critical crack opening strain (energy dissipation) parameter (red 
and green curves) compared to one experimental result (black curve). 
 
As can be seen in Figure A65, the “critical crack opening strain” parameter has a small 
effect on the failure initiation load and displacement. The “correct” value for critical crack 
opening strain was chosen for the coarsest mesh used in the previous study. The value of 
0.17 was chosen for the element size in this mesh (the intermediate mesh from the prior 
study) based on an empirical fit to achieve element size independence. The value of 0.26 
was based on a computation by Jay Foulk that assumed element size independence would 
be achieved by making the energy dissipation per unit crack flank area constant. In this 
case, 0.17 was slightly too small while 0.26 was too large. The intent here is to show that 
increasing “critical crack opening strain” is not a reasonable approach to making the 
simulation match the experiment. Should the critical crack opening strain parameter be 
increased enough to match the load drop in the experiment, the propagation regime of this 
problem would be modeled entirely incorrectly (the load decay would be virtually flat). 
 
A second approach to attempting to match the experimental result was based on 
reformulating the tearing parameter itself. Recall that the tearing parameter as currently 
employed has the stress state term has an exponent of 4.  

( ) p
mT

T dTP ε
σσ

σ
∫ −

=
4

3
2  

This exponent was chosen rather arbitrarily to match a series of notched tension tests on 
materials rather more ductile than the 2024-T3 aluminum used here. Perhaps modification 
of the exponent is appropriate for less ductile materials. Figure A66 shows the effect of 
varying the exponent between 0 and 4. 
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Figure A66. Effect of the varying the exponent in the tearing parameter definition. 
 
From Figure A66 it can be seen that the analytical failure initiation appears to be a 
reasonable match to the experiment for an exponent of zero. Note: a tearing parameter 
exponent of zero is equivalent to using a failure criterion of the effective plastic strain. 
Using the effective plastic strain as a failure criterion implies that there is no effect of stress 
triaxiality on the failure. That is, in the limit of pure triaxial tension, there would be no 
failure for this material; clearly an untenable position. In addition, the failure propagation 
is too slow using this modification of the tearing parameter. Decreasing the critical crack 
opening strain to zero has only a minor effect on the analytical propagation curve which 
still lies significantly above the propagation curve for the modified tearing parameter with 
an exponent of one. Modification of the tearing parameter is not an effective way to make 
the simulation match the experiment. 
 
The final option to match simulation to experiment involved using both the tearing 
parameter and the critical crack opening strain as free parameters. If the tearing parameter 
is set to a value of 1.3 and the critical crack opening strain is set to a value of 0.05, the 
simulation curve in Figure A67 results.  
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Figure A67. Best match obtainable – all failure parameters tunable 
 
This is quite a good match to the experiment. However, such manipulations render the 
entire concept of simulation worthless. There is no longer any hint of predictability. This is 
simply an exercise in “tuning” a model to match an experiment with the full expectation 
that such “tuning” is inherently problem dependent. That is, there is an expectation that a 
different set of parameters would be required for each problem modeled. The only thing 
Figure A67 shows is that if an experimental result already exists, the simulation tool can 
reproduce it if the user is willing to manipulate the input parameters using non-physical, 
non-supportable values. 
 
A4.2 Conclusion 
 
There are no easy fixes to the early prediction of failure for the X-Prize challenge 1-b using 
the tearing parameter approach. The tearing parameter approach has been successful for 
other problems, so it becomes important to identify the differences that exist between 
successful use and the overly conservative prediction here. The most obvious difference is 
the material properties of 2024-T3 aluminum compared to all other materials tried so far. 
The 2024-T3 aluminum is very much less ductile than any other material for which the 
tearing parameter has been used. In terms of true-strain to failure, the 2024-T3 has a value 
of about 0.26 while all other materials tried have had a value greater than 1. In terms of 
reduction-in-area, the 2024-T3 has a value of about 0.25 while all other materials have had 
values in excess of 0.5. Finally, all other materials used have shown appreciable necking 
seen as a pre-failure load drop in a tension test. The 2024-T3 shows no such necking. The 
simplest conclusion is that for materials exhibiting insufficient ductility (where insufficient 
ductility is thus far poorly defined), the tearing parameter approach can be expected to give 
conservative (early prediction of failure) results. 
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A5. Predictions for Challenge 2A 
 
Executive Summary 
 
The X-Prize challenge 2-A is a sharp notched compact tension specimen with side grooves 
designed to primarily measure crack propagation. An unloading compliance technique with 
4 unload steps was employed. The experimental displacement versus time loading was 
approximated in the analysis. The stiffness (unloading compliance) of the analysis during 
the unload steps was determined along with the crack length at the start of the unload step. 
These are the primary results that will be reported. 
 
A5.1 Introduction 
 
The ductile failure X-Prize is a project to assess the maturity of failure modeling 
approaches as well as their accuracy and potential. In the following report, the general 
approach used to predict ductile failure initiation and propagation is the multilinear elastic-
plastic with tearing parameter failure (MLEPF) model. There are a total of 5 finite element 
results reported herein.  There are two mesh densities, two material properties descriptions 
(primary difference is the strain hardening). In one additional analysis the energy 
dissipation was adjusted to achieve the same maximum load as the coarse meshes (near 
element size independence). Because the intent of challenge 2-A was investigate crack 
propagation, the selective-deviatoric (SD) element formulation was not included. The SD 
element requires further development for stability in a material softening regime such as 
that produced during stress decay utilized with the tearing parameter approach to ductile 
failure. The uniform gradient (UG) element formulation was used exclusively here. An 
overview of the approach is provided.  Then, the details, as they relate to the x-Prize 
challenge 2-A geometry and alloy, are described.   
 
A5.2 General details of the multilinear elastic-plastic with tearing parameter failure 
approach 
 
The MLEPF approach uses a multilinear elastic-plastic constitutive model with the 
standard von Mises yield criterion.  In this report, the multilinear hardening curve was 
obtained by fitting experimental data from a round-bar tensile test.  Further, the MLEPF 
approach uses a tearing parameter as a failure criterion, which was also obtained from the 
round-bar tensile test data. Crack propagation is accompanied by dissipating energy 
(critical crack opening strain) during the element failure. The critical crack opening strain 
is a function of both material properties and element size. Element size independent crack 
propagation can be achieved by appropriately varying the critical crack opening strain with 
element size. The following sections describe these processes in detail.   
 
A5.2.1 Determining the multilinear elastic-plastic curve fit from round-bar tensile data 
 
Prediction of ductile failure is inherently a large strain, large deformation process. The 
Cauchy-stress, logarithmic-strain conjugates are used in the finite deformation codes at 
SNL. The strain hardening defined in terms of Cauchy-stress and logarithmic-strain is 
obtained by using a finite element model of the tensile specimen to perform the inverse 
problem. That is, the Cauchy-stress versus logarithmic-strain curve that gives the 
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experimental engineering stress versus engineering curve as the solution to a finite element 
analysis of the tensile specimen is extracted. Here, the gage section of a flat tensile 
specimen is used. Figure A68 shows the finite element mesh. There are 3-planes of 
symmetry, the back, the left hand side and the bottom.  There are imposed displacements 
on the top of the specimen. The front and right hand side of the specimen are traction free. 
In order to force the localization and necking (geometric instability) to occur at the 
longitudinal mid-plane (plane of symmetry), the mesh uses a large-radius to slightly reduce 
(less than 0.1 per cent) the cross-sectional area at the longitudinal mid-plane. The 
engineering stress versus engineering strain result is derived from the load and 
displacement of finite element model and compared to the experimental results. 
 

 
Figure A68.  Model for flat specimen tensile test. 
 
 
A5.2.2 Determining the critical tearing parameter  
 
The tearing parameter accounts for the stress triaxiality at the crack tip by integrating a 
measure of triaxiality over the equivalent plastic strain.  The tearing parameter is given by 
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where ε is the equivalent plastic strain, fε is the final equivalent plastic strain, σT is the 

maximum tensile stress, σm is the mean stress and the notation •  represents the standard 
Macaulay Bracket.  One can note that for uniaxial loading, the term inside the Macaulay 
Brackets becomes unity and the tearing parameter is equivalent to using a limiting plastic 
strain for a crack growth criterion.   
 
A critical value of the tearing parameter is chosen by integrating equation (1) for all 
elements of the tensile test simulation and picking the maximum value of the tearing 
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parameter at the maximum displacement (maximum engineering strain) achieved in the 
actual tensile test.  
 
There are mesh sensitivities, particularly for coarse meshes, in this entire material property 
fitting process. It is assumed that these mesh sensitivities are minimized for sufficient 
geometric resolution to adequately capture the size and shape of the necked region. For 
highly ductile materials, such resolution probably requires insight into the initial aspect 
ratio of the elements that will be in the necked region or remeshing. In the model used here 
(shown above), the elements at the bottom corners of the specimen were roughly 0.01 inch 
with aspect ratios close to 1 to 1 to 1. This was deemed adequate for the low ductility of 
2024-T3 aluminum which exhibits minimal necking behavior.  
 
A5.2.3 Determining the appropriate energy dissipation term 
 
In theory, the energy dissipation term, the critical crack opening strain, can be determined 
from a second physical test. The optimum form of this second test is open to discussion. 
The critical crack opening strain is expected to be a function of material properties as well 
as element size. A theoretical relationship can be established between element size and the 
value of critical crack opening strain to provide an element size independent simulation of 
crack extension. However, this relationship does not address the material properties effects. 
This relationship also requires several assumptions of questionable accuracy. Both this 
relationship and an empirical relationship based on a series of solutions to one form of a 
second test are used here. The starting point (the critical crack opening strain for the 
coarsest mesh) was based on this empirical relationship. 
 
A5.3 Specific details of the approach for challenge 2-A 
 
For challenge 2-A, a heat treatable aluminum alloy, 2024-T3, was chosen. The details of 
the material description are discussed below. Because the intent of challenge 2-A was 
crack propagation, prior experience dictated the use of the single-point-integrated, uniform-
strain, 8-noded hexahedral element, uniform-gradient (UG) element, with hour glass 
suppression. The tearing parameter approach is more mature using this element than with 
available higher order elements   
 
In addition, there were multiple levels of mesh refinement studied with each element 
formulation.  With the UG elements, three unstructured meshes were used with average 
element size of 0.01 inch and 0.005 inch in the region of crack nucleation and propagation.  
The following presents the material data used and the fits for both element formulations.   
 
A5.3.1 Material data 
 
There were little full stress-strain data available for this alloy in a suitable product form. 
The primary source of data selected was clad sheet material [1]. The cladding was quite 
thin (2.5% of the total thickness) and not expected to contribute significantly to the strain 
hardening behavior of the specimen. Yield, ultimate and elongation values from tensile 
testing on this particular plate of material were available, but not the full stress-strain 
curve. These values were used to adjust the stress-strain curve from the clad material. The 
stress-strain curve for the clad material was shifted upward by 3.5 ksi and extended 
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horizontally by 0.07 in/in to match these reported values. Later in challenge 1-B, full 
stress-strain tensile data for this material became available [2]. This curve had numerous 
local increases in stress (curve was lumpy). Prior to use the curve was smoothed. The 
engineering stress versus engineering strain curves for both sets of tensile data (modified 
for set 1 and smoothed for set 2) are plotted in Figure A53.  
 

 
 
Figure A69.  Engineering stress versus engineering strain curves for the 2024-T3 tensile 
data. 
 
 
A5.3.2 Material data fit for the uniform-gradient element formulation    
 
The Cauchy-stress, Logarithmic-strain curves resulting from the fit using the uniform-
gradient element are shown in Figure A70. In order to not “run off the end of the curve” for 
differing stress states where the ductility could be greater then for the tensile specimen, the 
data has been extrapolated based on a straight line through the last two data points from the 
fitting process. The tearing parameters computed for these materials, 0.32 for set-1 data 
and 0.28 for set-2 data, are also displayed on the figure.   
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Figure A70.  Hardening curves for the uniform-gradient element formulation for B024-T3 
Aluminum. 
 
 
A5.3.3 Critical crack opening strain (energy dissipation) 
 
The empirical estimation scheme for the critical crack opening strain yielded a value of 
0.17 for an element size of 0.01 inch for both sets of material descriptions. This same 
scheme results in critical crack opening strains of 0.20 for 0.005 inch elements for both 
material descriptions. A trial and error approach showed that a critical crack opening strain 
of 0.25 for the smaller element gave a similar peak load as the coarse element with a 
critical crack opening strain of 0.17. The results for this critical crack opening strain are 
also shown. 
  
A5.3.4 Finite element mesh  
 
Two semi-unstructured meshes were prepared for the analysis of the X-Prize specimen for 
challenge 2-A. Both meshes made use of a symmetry plane at the through-thickness center 
of the specimen. That is, the center-plane was constrained to provide no out-of-plane 
displacement while the outer surface was unconstrained appropriate to a free surface. The 
use of a plane-of-symmetry implies no out-of-plane displacement at the loading pins as 
well as no buckling of the specimen. The specimen is assumed to be thick enough that 
neither of these deformation modes is possible. Half the loading pins are modeled as elastic 
material meshed contiguously with the bulk of the specimen. The specimen is loaded via 
imposed displacement (displacement control) at a line of nodes along the central axis of the 
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elastic pin. Rotation about the load point is allowed but lateral translation is prevented. The 
fatigue crack is represented by removal of a single layer of elements. Thus the fatigue 
crack has a square crack root of 0.01 inch for the coarse mesh and 0.005 for the finer mesh. 
The total number of elements for the coarse mesh was 15,114. The finer mesh had a total 
element count of 112,219. The two meshes are shown in Figure A71. 
 

 
 
Figure A71. Coarse and fine unstructured meshes - looking at the center-plane. 
 
A5.4 Results 
 
The accuracy of the displacement loading in the analysis is shown in Figure A72. The error 
is due to the lack of feedback in the analysis between the applied loading point and the 
displacement measuring location. In the experiment, the displacement is controlled by the 
clip gage. In the analysis, the loading had to be specified a priori.  
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Figure A72. Comparison of Experimental Displacement versus Time with Analysis 
 
Table A16 shows the critical parameters for each of the five analyses. This can be used as a 
key to the results in Table A17 and Table A18. The tearing parameter is based on the 
mechanical properties and the fit to the strain hardening curve for the two descriptions of 
the 2024-T3 aluminum. The critical crack opening strain was based on the current 
estimation scheme under development except for case-5. The critical crack opening strain 
for case-5 was based on achieving the same peak load using the smaller elements as the 
peak load for the larger elements. The crack length at the start of the four (A-D) unloading 
steps is shown in Table A17. Note: this is crack length – the initial slot and fatigue crack 
has been added to the crack extension in the value reported here. Both the minimum 
extension (at the center plane-of-symmetry) and the maximum extension (at the root of the 
side-notch) are reported. The difference in crack length between these locations looks like 
uncertainty. However, it is just an extreme example of crack front curvature. An effective 
crack length, akin to that used in fracture testing, could be defined but this has not yet been 
done. The unloading compliance for the four unloading steps is shown in Table A18. 
 
Table A16.  Description of the 5 analyses 
 Element Size Tearing Parameter Critical Crack 

Opening Strain 
Case-1 0.01 in 0.317 0.17 
Case-2 0.01 in 0.277 0.17 
Case-3 0.005 in 0.317 0.20 
Case-4 0.005 in 0.277 0.20 
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Case-5 0.005 in 0.317 0.25 
 
Table A17. Crack length at start of unload steps A-D 
 Crack length @ A Crack length @ B Crack length @ C Crack length @ D 
Case-1 0 mm 10.4-10.9 mm 13.5-14.2 mm 15.7-16.3 mm 
Case-2 0 mm 10.4-10.9 mm 13.5-14.0 mm 15.7-16.3 mm 
Case-3 9.4–10.3 mm 13.2–14.1 mm 16.3-17.1 mm 18.3-18.9 mm 
Case-4 9.8-10.7 mm 13.6-14.4 mm 16.6-17.3 mm 18.7-18.9 mm 
Case-5 7.7-8.5 mm 10.7-11.8 mm 14.0-14.6 mm 15.9-16.7 mm 
 
Table A18.  Unloading Compliance (stiffness) during unload steps A-D 
 A B C D 
Case-1 29,569 N/mm 17,605 N/mm 9,423 N/mm 5,163 N/mm 
Case-2 29,795 N/mm 16,383 N/mm 8,615 N/mm 4,935 N/mm 
Case-3 20,413 N/mm 9,314 N/mm 4,422 N/mm 2,323 N/mm 
Case-4 18,823 N/mm 8,771 N/mm 3,959 N/mm 2,092 N/mm 
Case-5 28,145 N/mm 15,558 N/mm 8,571 N/mm 4,854 N/mm 
 
The load versus displacement curves for the analyses are shown in Figure A73. 
 

 
 
Figure A73. Load versus Displacement (Unloading Compliance) from Analysis 
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A5.5 Discussion  
 
Given the results of challenge 1-B the crack growth is expected to be over-predicted here.  
Some additional sources of error in the analyses are, as discussed above, the difference in 
application of the displacements. The experiment uses a feedback loop from the clip gage 
to drive the cross-head displacement. In the analysis, the load roller displacements are 
input without any feedback from the displacements at clip gage location. For challenge 2-
A, the analytically predicted crack extension is challenging. The analysis predicts much 
more extensive cracking at the root of the side groove than at any other part of the 
specimen. This is even more pronounced for the finer mesh. This leads to the extremely 
large uncertainty of the crack length for the finer mesh results in Table A17. Finally, the 
results shown here show the need for further research on predicting the “correct” value to 
use for the energy dissipation (critical crack opening strain) term. The two material 
properties sets are very similar. Thus, the analysis results do not show much variation with 
material property. The results are more sensitive to element size largely due to the 
uncertainty in adjusting the energy dissipation term (critical crack opening strain) to 
achieve mesh size independence. The appropriate value of the energy dissipation term is an 
area of active research. 
 
A5.6 Summary and Conclusions  
 
In conclusion, two material property sets, two mesh densities, and with two energy 
dissipation terms for a total of 5 simulations were run for challenge 2-A. Simulations were 
more difficult than for the earlier challenges, with poor convergence occasionally occurring 
during periods where many elements were decaying stress during a load step. The use of an 
hourglass viscosity value of 0.001 stabilized the solution sufficiently to allow the problem 
to run to completion. Finite element “predictions” for the challenge   2-A geometry and 
loading were presented. 
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A6. Follow-Up For Challenge 2A 
 
Introduction 
 
In keeping with the fundamental premise of the X-Prize challenge, the various techniques 
used to model ductile failure were completed prior to the availability of the experimental 
results. As expected there were differences between the experiment and the analysis. Also, 
in keeping with the intent of the X-Prize, the analysis teams were asked to investigate the 
differences between pre-test predictions and the experiment and apply knowledge gained 
during review of the experimental results in an effort reduce these differences. This 
discussion will follow the same format as was used for prior challenges. 
 

1. What	
   do	
   you	
   believe	
   were	
   the	
   most	
   significant	
   sources	
   of	
   error	
   that	
   produced	
  
discrepancy	
  between	
  your	
  model	
  and	
  experimental	
   results?	
   	
  Where	
  possible,	
  provide	
  
quantitative	
   estimates	
   of	
   how	
   much	
   your	
   prediction	
   might	
   have	
   improved	
   if	
   these	
  
sources	
   were	
   incorporated	
   into	
   the	
   prediction.	
   	
  Discuss	
   the	
   ease	
   or	
   difficulty	
   in	
  
incorporating	
  such	
  improvements	
  in	
  future	
  work.	
  

 
This memo documents such post-test evaluations for the Tearing Parameter approach to 
modeling ductile failure. 
 
A6.1 Differences between experimental results and pre-test Tearing Parameter 
Predictions 
 
The major error between the experimental results and the predictions of the Tearing 
Parameter team were due to errors in transmission of the data.  The analysis results match 
the experimental results much more closely than the initial X-Prize post-test figure 
indicates.  The Tearing Parameter team mistakenly included the notch and the initial 
fatigue crack in the reported crack lengths, with the exception of the crack lengths at A for 
the two coarsest meshes. Thus, in the initial X-Prize post-test figure, normalized crack 
lengths are 0.3 too large except for these two cases. These two coarsest mesh cases were 
reported as zero crack length in error. The Tearing Parameter team modeled the problem in 
pounds and inches so the results needed to be converted to report crack lengths in 
millimeters. The 0.3 inches of notch and fatigue crack was added to the crack length prior 
to converting from inches to mm.  Unfortunately, for the two cases of zero crack extension, 
it was recognized that unit conversion was not needed, and the addition of the initial crack 
length during the conversion process was forgotten.  The table below contain the correct 
results of normalized crack length versus stiffness for the tearing parameter technique from 
the pre-test simulations. 
 
 
Table A19.  Corrected crack length predictions for 0.3 a/W offset. 
CASE-1 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.3 0.41-0.44 0.53-0.56 0.62-0.64 

Stiffness 29567 17605 9423 5163 



118 

(N/mm) 
CASE-2 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.3 0.41-0.44 0.53-0.55 0.62-0.64 

Stiffness 
(N/mm) 29795 16383 8615 4935 

CASE-3 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.37-0.405 0.52-0.555 0.64-0.675 0.72-0.745 

Stiffness 
(N/mm) 20413 9314 4422 2323 

CASE-4 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.385-0.42 0.535-0.565 0.655-0.68 0.735-0.745 

Stiffness 
(N/mm) 18823 8771 3959 2092 

CASE-5 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.305-0.335 0.42-0.465 0.53-0.575 0.625-0.66 

Stiffness 
(N/mm) 28145 15558 8571 4854 

 
A plot (Figure A74) of the experimentally measured and analytically predicted (pre-test) 
load displacement curves shows the comparison quite well. 
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Figure A74. Comparison of Experiment and Pre-test Analysis Load versus Displacement 
Curves. 
 
Table A20. Pre-Test Analysis Parameters 
 Element Size Tearing Parameter Critical Crack 

Opening Strain 
Case-1 0.01 in 0.317 0.17 
Case-2 0.01 in 0.277 0.17 
Case-3 0.005 in 0.317 0.20 
Case-4 0.005 in 0.277 0.20 
Case-5 0.005 in 0.317 0.25 
 
Figure A74 includes seven experimental load and five pre-test simulation load versus 
displacement curves. The five pre-test simulations included two coarse meshes (model 
parameters from two tensile tests) and two finer mesh (same two model parameter sets) 
simulations performed with the current “critical crack opening strain” estimation scheme. 
As can be seen from Figure A58, the differences in the material properties from the two 
tensile tests were insignificant. The fifth analysis curve was performed by adjusting the 
“critical crack opening strain” to a value that resulted in element size independent results. 
That is, the fine mesh simulation produced a very similar result to the coarse mesh result. 
The “ critical crack opening strain” is a modeling parameter that controls the energy 
dissipation during crack growth. Establishing the value of this parameter is the focus of 
current research. The current estimation scheme is an attempt to set this parameter to a 
reasonable value “a priori”. As can be seen from Figure A74, the estimation scheme for the 
“critical crack opening strain” yielded a value that over-predicted the crack growth.  
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A6.2 Post-test Tearing Parameter Analysis 
 
With the availability of the experimental results, it was clear that the analyses of the 
Tearing Parameter team were over-predicting the crack growth. The “critical crack opening 
strain” is the model parameter that controls the energy dissipated during crack growth and 
thus crack growth rate. The “critical crack opening strain” parameter was increased until 
the analytical load versus displacement curves matched the experimental results. Because 
of minimal differences between the two material properties sets, only the first set of 
materials properties were used here. These results are shown in Figure A59. 
 

 
 
Figure A75. Comparison of Experiment and Post-test Analysis Load versus Displacement 
Curves. 
 
Table A21. Post-Test Analysis Parameters 
 Element Size Tearing Parameter Critical Crack 

Opening Strain 
Case-1a 0.01 in 0.317 0.20 
Case-1b 0.01 in 0.317 0.25 
Case-3a 0.005 in 0.317 0.30 
Case-3b 0.005 in 0.317 0.34 
 
As shown in Figure A59, the new values of “critical crack opening strain” provide a better 
match for the peak loads and the displacement at peak load. The total “gage length” is less 
for the analyses. The unloading compliance slopes appear to match the experiment quite 
well. The post-test analyses are post-processed to obtain normalized crack length and 
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unloading compliance as was done for the original pre-test analyses. These results are 
shown below. 
 
Table A22.  Post-test analyses. 
Case-1a, Coarse mesh, CCOS = 0.2 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.3 to 0.38 0.36 to 0.47 0.48 to 0.58 0.57 to 0.67 

Stiffness 
(N/mm) 29906 23820 13168 7914 

Case-1b, Coarse mesh, CCOS = 0.25 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.3 to 0.38 0.33 to 0.44 0.43 to 0.54 0.51 to 0.62 

Stiffness 
(N/mm) 29968 28477 18951 12328 

Case-3a, Fine mesh, CCOS = 0.3 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.325 to 0.425 0.405 to 0.515 0.51 to 0.615 0.59 to 0.69 

Stiffness 
(N/mm) 29320 21793 13264 8515 

Case-3b, Fine mesh, CCOS = 0.34 
Load Point A B C D 
Normalized 
Crack Length 
(a/W) 

0.31 to 0.42 0.38 to 0.5 0.465 to 0.585 0.545 to 0.66 

Stiffness 
(N/mm) 29841 24836 16857 11355 

 
 
A6.3 Conclusion 
 
Setting the optimal value for the “critical crack opening strain” (the measure of energy 
dissipation with crack growth) is still a focus of active research.  The lack of well 
controlled crack growth experimental results (along with well characterized material 
properties for the same material) presents some difficulty in establishing the technique for 
setting this model parameter.  The data from the X-Prize challenges, challenge 2-A 
included, will be used to enhance this technique.   
 
For challenge 2-A, the analysis results are insensitive to the value of “tearing parameter” 
and sensitive to the value of “critical crack opening strain”.  The differences in Figure A74 
and Figure A75 are due to changes in critical crack opening strain.  For the coarse mesh, 
Figure A74 shows our best pre-test estimate of the value of “critical crack opening strain” 
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was 0.17, and Figure A75 shows that values of 0.2 and 0.25 match the experimental results 
very closely.  For the fine mesh, Figure A74 shows that our best pre-test estimate of the 
value of “critical crack opening strain” was 0.2 while Figure A75 shows values of 0.3 and 
0.34 match the experiment very closely.  
 
It is possible that our use of a uniform gradient element formulation is contributing to the 
difficulty in setting the critical crack opening strain parameter a priori to achieve accurate 
mesh size independent analysis results.  A potentially more accurate element formulation is 
a selective deviatoric (SD) hex, but currently element death is not a robust capability with 
the SD element.  A potential path forward includes improvements to element death in SD 
hexes. Current research into integrating the element size into the stress decay to implement 
a constant energy dissipation per unit crack area are underway in the Sierra Mechanics 
framework. 
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APPENDIX B:  PERIDYNAMICS APPROACH 
John T. Foster and Stewart A. Silling 
 
 
B1. Predictions for Challenge 1A 
 
Abstract 
 
The Ductile Failure X-Prize project is funded by Advanced Simulation and Computing 
(ASC) and coordinated at Sandia National Laboratories.  The intent is to challenge 
different groups of computational solution techniques in conducting blind simulations of 
increasing complexity in modeling the nucleation, initiation, and propagation of ductile 
failure in engineering materials.  The simulations are to be conducted in a blind fashion 
without any analyst knowledge of the experimental results nor the results of the other 
computational teams.  This paper documents the results of the peridynamics team for 
assignment 1A, a compact-tension-like specimen that has been uniquely featured and 
loaded to failure.  Peridynamics is a reformulation of classical continuum theory that 
replaces the partial differential equations of motion with a set of integral-differential 
equations, and has the unique ability to model discontinuous displacement fields in a 
mathematically consistent fashion, where the spatial derivatives in the classical theory 
would be undefined.  This allows for straightforward modeling of crack nucleation, 
coalescence, and propagation without the need for special numerical techniques or external 
crack growth laws.  Discussion of the modeling methods utilized along with the results of 
the simulations are shown. 
 
B1.1 Introduction 
 
The peridynamic model [references B1-B4] is a continuum reformulation of the classical 
partial differential equation of motion (conservation of momentum). It has been most 
notably used to model the deformation of bodies in which discontinuities (e.g., cracks) 
occur spontaneously. The basic equations are applicable even when singularities appear in 
the deformation field. These discontinuous deformations would lead to an inability to 
evaluate spatial derivatives in the classical formulation and special techniques would be 
required to analyze the problem. Recalling from classical continuum theory the 
conservation of momentum equation shown in Equation 11 

€ 

 
where, ρ, u, b are statistically defined quantities representing continuum notions of mass 
density, vector valued displacement, and body force density, respectively. σ is a second 
order tensor which satisfies the equation, typically called the first Piola-Kirchhoff stress 
tensor.  The independent variables x and t are defined as a position vector in the reference 
configuration and time, respectively. 

                                                
1 Notation convention:  Throughout this paper tensor quantities will be denoted by boldface 
type.  First order tensors may be referred to in the text as vectors. States are denoted by 
uppercase bold letters with an underscore. 
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In the peridynamic model, the second term on the right hand side of Equation 1, called the 
divergence of the stress tensor, is replaced with an integral functional.  The functional 
relates forces or “bonds” between material particles in a continuum and is valid over any 
body without restriction on displacements (e.g., continuity, differentiability).  The word 
“bond” appears in quotation here because there isn't necessarily any notion of connectivity, 
such as a spring like force, between material points; there is simply some force potential 
between them.  The peridynamic equation of motion is given in Equation 2 

 
where, x’ is the position vector of some neighboring material point with respect to x and 
dVx’ is the differential volume of x’.  H describes the family of continuum points x’ with 
respect to x. H is typically defined by a sphere of radius δ with center at x. Figure B76a 
shows an illustration of a peridynamic continuum body, B.  
 

 
Figure B76. Schematic of peridynamic representations. 
 
 T is defined as the peridynamic force-vector state. The concept of vector states is similar 
to that of a second order tensor in that they both map vectors into vectors, but vector states 
do not have to be linear or continuous functions.  The angle brackets, 〈〉, in Equation 2 
indicate the vector on which the state operates. T maps a deformation-vector state into a 
force-vector state for each material point within H . All of the material constitutive 
response is contained in the force-vector states which are dependent on the totality of 
deformations of all material points within the family H , not just on the deformation of x 
and x’(i.e., they are not pairwise forces). 
It has been shown that if the analyst is only interested in the bulk response of the material 
then the choice of δ is essentially arbitrary [B1]. However, if length scale is important, δ 
can be chosen appropriately, for example, to account for van der Waals forces in molecular 
dynamics modeling. Equation 2 has been shown to reduce to Equation 1 in the limit as δ → 
0, assuming a certain smoothness of the displacement field as required for the existence of 
the partial derivatives [B5]. 
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In order to solve general problems in solid mechanics Equation 2 is discretized and the 
integral is replaced with a finite sum.  The resulting formula is shown in Equation 3 

	
  
where xi represents a discrete material particle, or node, and xj represents a single node 
within the horizon, H . k represents the total number of nodes within H , and N 
represents the total number of nodes within the peridynamic body of interest. Vj is the 
volume of the xj node.  Figure B76b shows an illustration of a discretized peridynamic 
body B.  Figure B76b is shown with a structured grid of material points, however this is 
just for illustrative purposes as the grid could be unstructured.  This process is described in 
detail in Silling et al.[B6], and results in a mesh free method of solving complex mechanics 
problems. An explicit time integration scheme is used to solve these equations for dynamic 
problems in the Sandia National Laboratories code, Emu.  Emu discretizes a continuum 
body into nodes, each with a known volume in the reference configuration; this results in a 
meshfree method in the sense that there are no elements or geometric connectivities 
between the nodes.  Emu has been used to solve many problems of interest for engineering 
communities who deal with projectile penetration and perforation, fragmentation, etc. 
 
In this paper, we will use the peridynamic method along with a novel failure model, 
implemented in Emu, to conduct blind simulations of Ductile Failure X-Prize specimen 
1A, in order to determine the load-line displacement and loading force at which a crack 
will nucleate. 
 
B1.2 Constitutive Modeling 
 
While it is possible to define material response purely in terms of force-vector states, most 
constitutive modeling to date has been done in terms of classical notions of stress and 
strain.  Within the peridynamic framework we can take advantage of the existing database 
of constitutive models and experimental data with the process described in the following 
sections. 
 
The first step in implementing a traditional (formulated in terms of stress and strain) 
constitutive model into the peridynamic framework is finding an approximation to the local 
deformation gradient, F, for each node.  Recall from classical continuum mechanics that 
the deformation gradient is a defined by Equation 42 

 
where, I is the identity tensor and ∇x is the gradient operator with respect to x in the 
reference configuration.  In order for F to be defined, all of the partial derivatives 
contained in u ∇x must exist.  This requires the displacement field to be continuously 
differentiable.  In other forms of computational mechanics (e.g., Finite Element Method) 
these partial derivatives must only be defined in a weak sense in order for F to exist; 

                                                

2	
   	
  using	
  indicial	
  notation.	
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however, we will not make this restriction in the peridynamic formulation [B7].  We will 
use the true deformation, defined by a deformation-vector state Y〈ξ〉(Equation 5), to 
approximate F 

  
where, ξ  is the relative position between two material points, 

 
and η  is the relative displacement,  

 
Y〈ξ〉 is a vector function that associates any bond ξ  with the deformed image of the bond. 
Because   

€ 

)  
F  is a second order tensor it is only capable of mapping a sphere into an ellipsoid, 

whereas, Y is capable of mapping more complex kinematics. 
 
To approximate the deformation gradient from the true deformation via the deformation 
vector-state we start by defining a non-local shape tensor with the following integral: 

 
where ⊗ is the dyadic product operator, and ω is defined as an influence function, which is 
scalar valued and dependent on |ξ |.  In this implementation, ω is always either 0 or 1, 
which corresponds to whether the bond is “broken” or not.  Broken bonds are the method 
in which material failure is introduced in the peridynamic theory, and while this is one of 
the primary advantages of the theory its discussion will be postponed until the next section. 
ω could also be used as a distributable influence function where certain material neighbors 
have more influence than others.  The integral in Equation 8 results in a positive definite 
tensor when evaluated; therefore, K will always be invertible.  
 
Knowing the shape tensor, the approximated deformation gradient, F, at a material point x 
is given by Equation 9. 

 
The deformation gradient can be shown to be exact for a homogenous deformation.  This is 
always true irrespective of the location of a material point within a body, even along 
boundaries or near discontinuities.  If we assume a constant deformation-vector state, Yi = 
Fip ξp, then the proof follows: 
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With the deformation gradient in hand, the rest of the kinematics follow the standard 
definitions laid out in many texts.  If we assume a hyperelastic material (in the sense of 
classical elasticity theory) which has a strain energy density function, Ω(F) in the classical 
description of F, as well as a strain energy density function, W(Y), in the peridynamic 
description of  Y then through the correspondence of the two descriptions, the following 
relationship can be verified [4]: 

  
where, σ  is the first Piola-Kirchhoff stress defined by the following tensor gradient:  

 
For the Ductile Failure X-Prize Assignment 1A specimen3, which is made of the steel alloy 
Ph13-8Mo with the H950 heat treatment, an elastic-perfectly plastic constitutive response 
was chosen to represent the material.  The Cauchy stress, τ , is provided using von Mises 
plasticity theory and then converted to the first Piola-Kirchhoff stress using the relationship 
shown in Equation 12, 

 
which is then substituted into Equation 10 in order to resolve the force-vector states acting 
on the “bonds.” 
 
A model fit of the constitutive response is shown in Figure B77. The data was collected in 
a quasi-static test apparatus manufactured by MTS, and conducted by technicians in Sandia 
National Laboratories Structural Mechanics Lab on July 1, 2008.  The data was provided in 
raw (force as a function of displacement) form to the participants of the Ductile Failure X-
Prize project by Dr. Jerry Wellman.  The data was then converted to measures of true stress 
and Lagrangian strain for comparison to an Emu simulation of a representative specimen in 
uniaxial tension. It is believed that the apparent “softening” of the material at 
approximately 10% strain is due to necking of the material at which time the data is not 
representative of the actual stress state, but becomes a structural test.  For this reason, the 
“softening” is ignored and the material treated as perfectly plastic.  The model fit results in 
an elastic (Young's) modulus of 198 GPa with a flow stress of 1630 MPa; a Poisson ratio 
of 0.278 was taken from the Aerospace Structural Metals Handbook [B8]. 

                                                
3	
  A	
  detailed	
  drawing	
  of	
  the	
  specimen	
  is	
  included	
  in	
  the	
  appendix	
  of	
  this	
  document.	
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Figure B77. Constitutive model fit. 
 
B1.3 Failure Models 
 
The method of damage (failure, cracks, etc.) nucleation, coalescence, and propagation 
within the peridynamic model is through the permanent breaking of ‘bonds’.  Recall that 
within the state-based peridynamic framework, the state-forces could potentially act in any 
conceivable direction, Figure B78 shows a notional illustration of this relationship, 

  
Figure B78. Notional illustration of relationship between state-forces and “bond 
 
In the numerical simulation of fracture many methods have been utilized to characterize 
when a material might fail.  A few examples are the plastic strain to failure, stress 
triaxiality, lode angle dependence, etc.  Most of these methods have some dependence on 
either the stress or strain histories.  Since peridynamics is cast in a form that does not 
require the notion of stress (although we use stress as a convenience for material modeling 
in the previous section), we wish to develop a failure criterion derived not from any stress 
or strain criterion, but instead using thermodynamic notions of work or energy.  We can 
calculate the amount of work (energy) density performed on a “bond”, wξ , projecting the 
force vector-states onto the relative displacement vector.  The calculation is performed by 
Equation 13. 
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where the integrand of Equation 13 is known as the dual force density. Equation 13 defines 
wξ as having units of energy per unit volume squared.  It represents an amount of work 
density done on a bond due to displacing the two material points x and x’ relative to one 
another from zero to some final scalar value of displacement, η(tfinal), which is a function 
of time.  This projection neglects any work done on the points due to rigid body translation. 
 
We will assume that the energy density contained in a bond is fully recoverable4 by 
reversing the deformation, unless it exceeds some critical energy density, wc.  Let us 
attempt to define wc in terms of material property that can be experimentally determined. 
Referring to Figure B79,  

 
Figure B79. Schematic of fracture surface. 
 
let us consider all points A along the dashed line, 0 < z < δ, connected to all points B across 
a fracture plane of unit area and within a spherical cap of radius δ with respect to A (the 
shaded area in Figure B79).  If we assume there is a critical energy density, wc, associated 
with moving each point A relative to each point B, that when exceeded will cause the 
removal of any potential between the two points (irreversible bond breakage), then we can 
sum up all of these energy densities through integration and equate the result with the 
energy release rate, G.  That is, the energy required to open a new fracture surface of unit 
area.  This equation is as follows: 

                                                
4	
  The	
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When evaluated and solved for $w_c$, Equation 15 reduces to: 

 
Now we have a critical value of energy density that is based solely on material properties.  
We can compare this critical energy density to the individual bond energy densities 
calculated via Equation 13 to determine when the bonds will individually fail.  Cracks will 
nucleate and grow when a number of bond failures coalescence into a surface and 
propagate.  This phenomenon will emerge naturally without the need to specify when and 
where the cracks will appear through some external criterion.  Another advantage to the 
peridynamic model and allowing the bonds to break in this fashion is that it leads to an 
unambiguous notion of damage, ψ.  The percentage of material damage a continuum point 
has undergone is simply the volume fraction of broken bonds.  For example, if one material 
point interacts with one hundred others and one bond is broken, the material point is 
considered 1% damaged. 
 
To numerically implement this failure criterion with the constitutive model described in the 
previous section, we will activate bond breakage through the use of the influence function 
contained in the deformation gradient and shape tensors. The term ω( |ξ |) was defined as an 
influence function.  It can be used to assign a weight to the amount of influence each bond 
within the horizon exerts on the point x.  We can use it to implement damage by setting the 
influence to zero for the bonds that are broken.  Therefore, the failure criterion expressed 
mathematically is as follows:  

 
When numerically implemented into the explicit dynamics code Emu, we calculate wξ for 
every bond at each time step in the simulation and compare it to wc. If wξ exceeds wc, then 
the influence function is set to zero for that bond, and the bond is effectively left out of the 
calculation of the deformation gradient at the next time step.  The force that was exerted on 
the point x by the broken “bond” will now have to be assumed by the remaining intact 
“bonds”.  This additional load on the intact “bonds” may cause them to subsequently break 
thereby mimicking damage propagation throughout the structure; however, if we are using 
the method of relating classical stress-strain relationships back into force vector-states as 
described in the last section we can also employ the classical damage mechanics technique 
of lowering the yield surface by some percentage of damage allowing the material to 
effectively soften.  This is illustrated mathematically in Equation 17. 

 
where, Yd, is the scalar value of the damaged yield surface and Y is the original flow stress 
 
The method described above is one advanced way to model damage evolution within 
peridynamics.  A simpler method of breaking “bonds” would be to define a critical stretch, 
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sc, at which a “bond” will irreversibly break.  The critical stretch is then compared to the 
actual “bond” stretch shown in Equation 18. 

 
The damage is then activated in a analogous fashion to that described previously through 
the influence function.  The critical stretch criterion allows for a simple and effective way 
to allow damage to propagate within peridynamics, but is not readily determined from 
convention material properties testing; therefore, it must be estimated using the analysts 
engineering intuition or by first “fitting” to one set of fracture experiments. 
 
Both the critical work (energy) density criterion and the critical stretch criterion will be 
used to explore the crack nucleation on the Ductile Failure X-Prize specimen 1A in the 
following section. 
 
B1.4 Grid Generation 
 
The objective of Ductile Failure X-Prize Assignment 1A was to numerically simulate the 
quasi-static loading of a uniquely featured specimen made from Ph13-8Mo steel with the 
H950 heat treatment, and attempt to predict the load line displacement, loading force, and 
geometric location at which a crack will nucleate. 
 
The first challenge undertaken in the predictive simulations was to generate a discrete grid 
of peridynamic nodes that efficiently represent the specimen.  Initially, a rectangular lattice 
of nodes was generated that filled the volume of the sample and then the individual 
features were removed to provide the final geometry.  The initial grid spacing was set to 
2.54 x 10-4 m, the resulting grid is shown in Figure B80a.  This grid resulted in 159780 
total nodes with 16 nodes around the circumference of the small hole at the end of the 
notch. 
 
An artifact of the rectangular lattice configuration is that the small hole is not resolved 
exactly.  This can cause crack nucleation artifacts because of stress concentrators along the 
hole edges.  By using a smaller grid spacing the resolution of the small hole improves, but 
the number of total nodes increases dramatically.  Because Emu is an explicit dynamics 
code and we are trying to use it to model quasi-static events we must apply the load very 
slowly to make any dynamic effects negligible, this results in very long run times even 
with moderate grid spacings. 
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Figure B80. Comparison of grid configurations 
 
If the grid spacing is decreased too much the time step must be lowered for stability of the 
numerical simulation and the total run time becomes prohibitively long.  Therefore, another 
grid arrangement was utilized where concentric circles of nodes radiate out from the small 
hole with a distance between the concentric circles of 2.54 x 10-4 m with a target dimension 
of the circumferential grid spacing of the same value.  Of course, if we divide the 
circumference of each circle by 2.54 x 10-4 m we would rarely get an integer value and if 
the nodes were placed along the circumference with this spacing the circle would not 
complete itself and strange grid artifacts would occur.  Therefore, the circumferential grid 
spacing is only a target distance and allowed to change by a small amount for each 
concentric circle so that when the circumference is divided by this target distance ± some 
small perturbation, the result is an integer number of nodes.  This results in each circle 
appearing to be complete, and is a nice luxury of a meshless numerical technique.  This 
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technique resulted in 159864 total nodes and 18 nodes around the circumference of the 
small hole, the resulting grid is shown in Figure B80b. 
 
The maximum perturbation from the target grid spacing resulted in a circumferential grid 
spacing of 2.60 x 10-4 m and the minimum result was 2.51 x 10-4 m.  Because the 
perturbations where small, we used the assumption that the individual node volumes are 
identical, but the internal volume calculator in Emu may not result in the exact node 
volumes, therefore, a CAD program was used to find the exact volume of the entire 
specimen and this volume was divided by the total number of nodes which resulted in an 
individual node volume manually supplied to the code of 1.703 x 10-11 m3. When the other 
features are removed from this radial mesh, the features and the outer edges of the sample 
appear to be somewhat “ragged” this is acceptable because it was assumed, and later 
shown, that the crack does in fact nucleate from the small hole and therefore the exact 
resolution of the other features is not as important as the exact resolution of the small hole.  
Magnified images of the hole resolution are shown in Figure B81. 
 

 
Figure B81. Comparison of magnified hole. 
 
Simulations were run using both grid descriptions above and an identical failure criterion.  
The results of crack tip position in the x1 (positive to the right, in Figure B80 and Figure 
B81) as a function of load line displacement from these simulations is shown in Figure 
B82.  A discussion of how the load is applied and how the actual nucleation point is 
determined will be discussed in the following sections; Figure B82 is only intended to 
show the solution differences that result because of irregularities around the small hole.  
The hatched region in Figure B82 is the x1 coordinate region where the hole lies.  The x1 
crack tip position lines that are within this hatched region are meaningless and occur 
because the search algorithm that looks for crack nucleation begins its search from the 
center of the hole. Δ in Figure B82 refers to the driving dimension for grid spacing. 
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Figure B82. x1 crack tip position as a function of load line displacement. 
 
 
B1.5 Numerical Simulations – Energy Failure Criterion 
 
There is not an implicit solver within the numerical peridynamics code Emu; therefore, in 
order to simulate quasi-static experiments we have to apply a velocity boundary condition 
with a small magnitude; this, combined with a very small time step creates long run 
simulation times even when running in on parallel processors. Unfortunately, the energy 
failure criterion described earlier has not been programmed to run in parallel, therefore, the 
number of simulations and discretization level of the grid was somewhat limited for this 
failure criterion.  These simulations took approximately 4 days on a single processor. 
 
The velocity boundary condition was applied through a special contact boundary condition 
at the edges of the two large holes in a fashion that allowed displacement in the x2 direction 
(positive up in Figure B80 and Figure B81) without restriction on motion in any other 
direction (i.e., there are no artificial moments at the “contact points” around the large 
holes).  The load line displacement was tracked through time by monitoring two “tracer” 
nodes along the load line at locations near where a clip-gage would be used in experiments 
to monitor load line displacement.  The “quasi-static” loading conditions were considered 
valid by monitoring the load line displacement for oscillations. A velocity was chosen that 
was small enough that the oscillations were minimal and nearly gone completely by the 
crack nucleation time. 
 
The energy failure model described earlier uses an input of energy release rate, G.  Energy 
release rate is not a commonly collected experimental measurement; however, we can 
convert from fracture toughness to energy release rate for plane stress loading with the 
following equation: 
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where, E, is the elastic modulus and KIc is the materials fracture toughness.  Of course, 
these relationships are derived from the assumptions (e.g., small scale yielding) of linear 
elastic fracture mechanics (LEFM) and if the material has a large plastic response at the 
crack initiation point and these assumptions are not valid, then KIc is not a meaningful 
experimentally determined measurement.  Nevertheless, a fracture toughness value for 
Ph13-8Mo was reported to be 70 MPa-m1/2 from [B9], and was used as in input to the code. 
Although not reported in [B9], there is usually some experimental spread on values for 
fracture toughness; therefore, simulations were also ran at ± 10% of the reported value. The 
relationship in Equation 14 is, in fact, more general and not restricted to LEFM 
assumptions, therefore G could equally be replaced with a J-Integral type failure 
parameter, JIc, for elastic-plastic failure if such a measurement was available.  Another 
possibility would be to experimentally determine a J-Integral like measurement around a 
blunt notch (this would be more representative of a hole, rather than a sharp crack) and use 
it an input to this failure model.  These other suggested measurements may provide more 
accurate results for a ductile failure. 
 
Because of the way cracks nucleate and growth in an unguided fashion within Emu and the 
fact that there is not connectivity between the node locations it is somewhat difficult to 
determine exactly when a very small crack will nucleate.  An algorithm was used to search 
for the maximum x1 location where a threshold amount of bond failure was reached and 
this is assumed to be the crack tip position.  The search begins from the center of the small 
hole in the specimen.  To determine the actual load line displacement we will assume the 
crack growth rate is constant right after the nucleation and fit a line to this increment of 
crack growth.  The place where this line intersects the boundary of the small hole will be 
the crack nucleation point.  This fit is done on a plot of x1 crack tip position as a function of 
load line displacement and is shown in Figure B83. 
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 Figure B83. x1 crack tip position as a function of load line displacement – 
 energy failure criterion. 
   
The fit results in the following equation: 

 
where, x1 is the crack tip position and ull is the load line displacement.  If we substitute the 
x1 position for the edge of the small hole into Equation 20 and solve for ull we can estimate 
the load line displacement at which a crack will nucleate.  This assumes that the crack 
nucleates at the maximum x1 position of the hole which may not be exact, but should give a 
very close approximation.  Using this procedure the load line displacement at which a 
crack will nucleate is 0.00051 m.  The ± 10% simulations are also shown in Figure B83.  
There appears to be very little effect of changing the KIc by 10% on the load line 
displacement at crack nucleation, but there is definite effect on the propagation. 
 
If we take any plane normal to the x2 direction in the specimen we can easily sum all the 
peridynamic forces acting on the nodes to get a total force, if the sample is assumed to be 
in equilibrium then this total force should be equal to the applied load on the specimen.  
Because these are explicit dynamics simulations there are some (while minimal) transient 
dynamic effects which cause “noise” in the total load; therefore, the total load was filtered 
at 10000 Hz to eliminate some of he higher frequency “noise.”  This filtered load was then 
plotted as a function of load line displacement along with a reference to the crack 
nucleation point that was solved previously.  The result is shown in Figure B84.  The result 
is a load of approximately 8.5 kN at the crack nucleation point. 
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Figure B84. x2 total force as a function of load line displacement –  
energy failure criterion. 
 
While propagation was not part of this assignment it was necessary to run the simulation 
out some time past nucleation in order to back fit the nucleation time. Since the results 
were available they are shown in for qualitative purposes. 

  
Figure B85. Simulation results showing crack initiation and  
propagation – energy failure criterion. 
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B1.6 Numerical Simulations – Critical Stretch Criterion 
 
The critical stretch energy criterion is a much simpler method to model material failure in 
peridynamics and has been shown to give representative results for many materials.  In 
fact, for a state-based material model in which the force vector-state directions are colinear 
with the “bond” vector, ξ , which we call an ordinary state based material, the critical 
stretch criterion represents a failure criterion where the “bonds” fail at a constant energy 
release rate.  However, it is somewhat difficult to determine experimentally what the 
correct critical stretch, sc, should be for a given material.  The results shown here are for a 
critical stretch of sc=0.12, this number was based on engineering intuition gained from 
observing the elongation in the uniaxial tension tests and the total elongation reported in 
[B8]. Ideally, if one where to have the experimental results from one set of fracture 
experiments, the analyst could “fit” the critical stretch criterion and proceed with blind 
simulations of other fracture experiments. 
 
Another advantage of the critical stretch criterion as implemented within Emu is that is 
runs efficiently in parallel; therefore, providing greatly reduced run times and the 
opportunity to utilize a smaller grid spacing. The grid used in these simulations was similar 
to the concentric circular grid described earlier except used a driving dimension of Δ=2.03 
x 104 m, resulting in 312000.  This simulation took approximately 10 hours on 16 
processors.  The results for the crack nucleation as a function of load line displacement is 
shown in Figure B86. 
 
The resulting equation from the curve fit is shown in Equation 21. 

 
Substituting the x1 position of the hole into Equation 21 and solving for ull gives a load line 
displacement at the time of fracture of 0.00072 m. 
 
The x2 total force as a function of load line displacement is shown in Figure B86.  The 
maximum load at crack nucleation is 11.65 kN. 



139 

 
Figure B86. x1 crack tip position as a function of load line displacement – 
critical stretch criterion. 
 
For a qualitative look at the crack nucleation and propagation, a simulation for the critical 
stretch criterion loading condition is shown in Figure B87.  

 
Figure B87. x2 total force as a function of load line displacement – 
critical stretch criterion. 
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Figure B88. Simulation results showing crack initiation and  
propagation – critical stretch criterion. 
 
 
B1.7 Summary of Results 
 
The results from the two failure criterion simulations are summarized in Table B1:  
 
Table B1. Summary of results from simulations. 
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B2. Follow-Up for Challenge 1A 
 

1. What	
  was	
  the	
  %	
  difference	
  of	
  your	
  predictions	
  to	
  the	
  experimental	
  values	
  (max	
  force	
  prior	
  
to	
  crack	
  initiation	
  and	
  COD	
  displacement	
  at	
  crack	
  initiation)?	
  
	
  

	
   Load	
  Line	
  Displacement	
   Peak	
  Force	
  
Critical	
  Stretch	
  Criterion	
   72.4%	
   15.16%	
  
Critical	
  Energy	
  Criterion	
   76.5%	
   38.62%	
  

	
  
	
  

2. If	
   you	
   (or	
   your	
   team)	
   submitted	
   revised	
   predictions,	
   either	
   after	
   the	
   initial	
   due	
   date,	
   or	
  
after	
   the	
   comparison	
   between	
   modeling	
   results,	
   did	
   your	
   revisions	
   bring	
   the	
   prediction	
  
closer	
  to	
  the	
  experimental	
  values?	
  

	
  
Additional predictions are summarized below: 
 
After the results from the experiments were released additional simulations were ran, by 
changing the critical stretch “bond” breakage criterion, which for the perfectly plastic 
material model used here corresponds to a constant energy release rate at the crack tip.  
Using a much larger critical stretch criterion than was used in the blind simulations, the 
Emu codes was able to simulate the force as a function of load line displacement curve 
quite well.  This is shown in the Figure B89. 
 

 
Figure B89.  Predicted force-displacement response compared to experimental ‘Sample 1’. 
 
The value of critical stretch used here was 40% whereas the value used in the initial 
experiments was 12%.  By simply changing the critical stretch criterion (effectively 
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increasing the materials ductility) and nothing else, the initial direction of crack 
propagation was also captured well, even though this was not part of the objectives of this 
assignment, it is shown in Figure B90 below for illustration. 
 

 
Figure B90.  Crack propagation trajectory as predicted by Peridynamics. 
 
The results of the revised simulations are shown in the following table.  The energy failure 
criterion was abandoned for these simulations because for a perfectly plastic material 
model, both criterions correspond to a constant energy release rate, and the appropriate 
information to populate the energy criterion model is not available.   
 
Table B2.  Revised simulation results. 
 Load Line Displacement Peak Force 
Critical Stretch Criterion 10.3% 1.3% 
 
More simulations to really hone in on the exact value of critical stretch could possibly 
bring the simulations and results even closer. 
 

	
  
3. Describe	
   the	
   source(s)	
   of	
   discrepancy	
   (if	
   any)	
   between	
   your	
   prediction	
   and	
   the	
  

experimental	
   result.	
   	
  Where	
   possible,	
   provide	
   quantitative	
   estimates	
   of	
   how	
  much	
   your	
  
prediction	
  might	
   have	
   improved	
   if	
   these	
   sources	
   were	
   incorporated	
   into	
   the	
   prediction.	
  
	
  Discuss	
  the	
  ease	
  or	
  difficulty	
  in	
  incorporating	
  such	
  improvements	
  in	
  future	
  work.	
  

	
  
The biggest source of discrepancy as illustrated above was the incorrect failure criterion 
value.   As demonstrated with a better value for the critical stretch criterion we have greatly 
improved the accuracy of the simulation.  In future work, if there is available data of actual 
crack initiation/propagation tests for a material we should be able to get a better fit for this 
value.  As stated in the original report the values for the failure criterion used in the initial 
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predictions were based on fracture toughness type tests that assume an existing flaw.  
These were not adequate values for initiating a new crack from a blunt notch. 
 

4. Was	
   this	
  effort	
  helpful	
   for	
   the	
  development	
  and	
  evaluation	
  of	
   your	
  modeling	
  paradigm?	
  
	
  How	
  might	
  we	
  improve	
  the	
  challenges	
  in	
  the	
  future?	
  

 
Yes, this was a helpful effort, it showed highlighted the deficiencies in using fracture 
mechanics type initiation physics for ductile failure problems.   I believe the direction the 
program is taking moving into crack propagation problems is the correct course. 
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B3. Predictions for Challenge 1B 
 
Peridynamics was applied to predict crack initiation and propagation for the Challenge 1B 
specimen.  The peridynamic analysis utilized state-based peridynamics as implemented in 
the solid mechanics code Sierra/SM.  Material behavior was modeled with an elastic-
plastic constitutive law with piecewise linear hardening, and material failure was captured 
with a critical stretch bond breaking law.  Calibration of material properties was achieved 
via a simulated a tensile test and a simulated compact tension test. 
 
Table B3.  Predictions for Challenge 1B. 
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Figure B91 . Reaction force vs. load line displacement (filtering applied to remove high-
frequency noise). 

  1B.1 
Δd at crack 
initiation 
(mm) 

1B.1 
Peak force 
prior to 
crack 
initiation 
(kN) 

1B.2 
Crack 
path (e.g. 
D-E-F or 
D-A-E-
B-F, etc.) 

1B.3 
Displacement Δd 
when crack 
reaches first line 
(mm) 

1B.3 
Force 
when crack 
reaches 
first line 
(kN) 
 

1B.4 
Displacement 
Δd when 
crack reaches 
line E (mm) 

1B.5 
Force 
when 
crack 
reaches 
line E 
(kN) 
 

2024-T3 Upper bound 3.4 3.8 D-E-F-A 6.7 2.4 10.5 1.3 

BEST 
ESTIMATE 

2.8 3.8 D-E-F-A 6.3 2.3 9.9 1.3 

Lower bound 2.2 3.7 D-E-A-F 5.9 2.2 9.5 1.0 
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Figure B92. Damage (percentage of broken bonds) during crack propagation. 
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B4. Follow-Up for Challenge 1B 
 

What	
   do	
   you	
   believe	
   were	
   the	
  most	
   significant	
   sources	
   of	
   error	
   that	
   produced	
   discrepancy	
  
between	
   your	
   model	
   and	
   experimental	
   results?	
   	
  Where	
   possible,	
   provide	
   quantitative	
  
estimates	
   of	
   how	
   much	
   your	
   prediction	
   might	
   have	
   improved	
   if	
   these	
   sources	
   were	
  
incorporated	
   into	
   the	
   prediction.	
   	
  Discuss	
   the	
   ease	
   or	
   difficulty	
   in	
   incorporating	
   such	
  
improvements	
  in	
  future	
  work.	
  

	
  
The largest discrepancy in the load displacement history seen in our work was the rate at 
which the force was shed after crack initiation.  Factors contributing to this discrepancy 
may include the choice of bond failure criterion, an error in the hourglass control 
algorithm5 utilized in the simulation, and the loading rate applied in the explicit dynamics 
simulation. 
 
A possible source of error is the bond failure criterion.  We use a critical stretch criterion 
that corresponds to a constant energy release rate.  It is observed in experimental data that a 
constant energy release rate is valid for brittle materials, but that is most likely not the case 
for these ductile materials.  Improvements will likely need to be made here.  It is believed 
that by averaging nodal state variables over a bond it may be possible to implement more 
classical failure models into this implementation of peridynamics, this has not been 
thoroughly explored yet. 
 
During the course of this work, it came to light that the hourglass control algorithm within 
the peridynamics implementation of Sierra Mechanics had an error in which rigid body 
motion was penalized, this could have been one source that caused the load shedding 
inaccuracy.  This algorithm has been fixed and is undergoing evaluation to see if any 
improvements are seen in the simulation of this problem. 
 
Finally, we know that having to run these simulations using an explicit time-stepping 
scheme causes unwanted dynamic effects to enter the simulation.  Usually this shows up as 
oscillations in the force-displacement curves, but it is possible that we are loading the 
sample at a rate faster than the finite crack growth velocity and therefore not getting the 
desired outcome.  This is speculation at this point and needs to be investigated further. 

                                                
5	
  Hourglass	
  control	
  is	
  needed	
  in	
  this	
  peridynamics	
  implementation	
  that	
  utilizes	
  an	
  approximate	
  deformation	
  gradient	
  in	
  
order	
  to	
  map	
  the	
  kinematics	
  back	
  to	
  a	
  classical	
  model	
  that	
  utilizes	
  a	
  stress	
  tensor	
  to	
  describe	
  the	
  material	
  constitutive	
  
properties.	
  	
  This	
  is	
  done	
  as	
  a	
  convenience	
  in	
  order	
  to	
  hook	
  into	
  Sierra’s	
  Lame	
  material	
  library,	
  but	
  is	
  not	
  really	
  part	
  of	
  
“standard”	
  state-­‐based	
  peridynamics.	
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B5. Predictions for Challenge 2A 
 
 
Abstract 
 
The Ductile Failure X-Prize  project is funded by DOE  Advanced  Simulation and  
Computing (ASC)  and  coordinated at Sandia National Laboratories.   The  intent is to  
challenge  different  groups  of computational  solution  techniques  in  conducting blind  
simulations  of increasing complexity in modeling  the nucleation, initiation, and 
propagation of ductile failure  in engineering materials.  The  simulations  are to be 
conducted in a blind fashion without any analyst knowledge of the experimental  results  
nor  the results  of the other  computational teams. This  paper  summarizes the results of 
the  peridynamics team  for Challenge 2A, a compact-tension specimen  with side grooves 
that was loaded and  unloaded   via  a  prescribed displacement  control  measured at the 
crack  mouth opening.   Peridynamics is a reformulation  of classical  continuum theory 
that replaces  the partial differential equations of motion with a set of integral-differential 
equations, and  has  the unique  ability to model  discontinuous displacement fields in a 
mathematically  consistent fashion,  where the spatial derivatives in the classical  theory 
would be undefined.  This  allows for straightforward modeling  of crack  nucleation, 
coalescence,  and propagation without the need for special numerical  techniques  or  
external  crack  growth  laws.   A reproduction  of the problem  statement and summary of 
results for simulations of Challenge 2A using peridynamics is provided. 
 
B5.1 Problem statement 
 
The Challenge 2A geometry has been prepared  from aluminum alloy 2024- T3.   A  
detailed  machining  drawing  is included  as a pdf (in Appendix  A), including  tolerances  
on all dimensions.   It has  the same  outer  dimensions as  the previous  X-Prize  specimens  
(W=1.0), but has  a  thickness  of 0.25 (rather than the 0.125  thick  specimens  used  in 
previous  X-Prize  studies). This  specimen  does  not  contain  an  inclined  notch,  but 
rather a  straight pure mode-I notch to a length of a/W = 0.2, and a mode-I fatigue precrack 
has  been  grown  to a/W  = 0.3 per  ASTM  E399  standard  load  shedding techniques.  To 
avoid shear  lips on the surface of the specimen,  0.063 deep V-grooves have been 
machined  into both sides along the Mode-I crack path. For a displacement-controlled 
loading regimen, as shown below (reproduced in Figure B93 with time scaling),  predict 
the unloading compliance  (change  of force over change in displacement), for unloads 
labeled A-D. What was the crack length at the peaks associated with A-D? Please  report 
your compliance values in N/mm, and your crack length values in mm. You are welcome to 
bound your results as you see fit, but recognize that overly broad  bounds suggest a lack of 
predicitivity.  
 
B5.2  Predictions 

 
An aspect of Challenge  2A that proved  challenging  to the analyst was the  prescribed  
displacement loading/unloading.  In the experiment, a clip gage that  measured  
displacement  was attached  to the knife edges at the crack mouth and this measurement 
was fed into the standard test frame as a reference signal which  in turn controlled  the pin 
displacement.  Without considerable  effort,  given the tools available  to the analyst,  
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controlling  the pin  displacement  based  on  measurements  taken  at the knife  edge  is not 
possible to do using the peridynamics implementation in the SIERRA/Solid Mechanics  
transient dynamics code.  Therefore,  a trail-and-error effort was undertaken to match the 
experimental  displacements.  This  trial-and-error approach  was further complicated  by 
the fact that the knife edge load line displacement  changes  considerably  with  crack  
initiation  and advancement. What this means  is that any changes  to the  simulation  
material  or failure model which influences crack initiation and propagation requires a new 
trail- and-error  calibration  of the loading/unloading.   The  “best-fit” prescribed 
displacement results compared  to the experimental displacements is shown in Figure B93.  
Note  that the simulation  displacements are much  “smoother” than the experimental 
displacements.  This was done intentionally by fitting trigonometric functions through the 
experimental data. The purpose of this “smoothing” was to reduce any dynamic effects that 
may result from abrupt transitions in displacement in an explicit dynamics  calculation.  In 
addition, the  total  time  in which  the simulation  was conducted  is several  orders  of 
magnitude  faster than the total time of the experiment.  For  this reason, the experimental  
displacement  curve  shown  in Figure B93 is time  scaled  to match  the total  simulation  
time.   It is unknown,  at this  point,  how much affect either the “smoothing” of the 
prescribed  displacement or running the computation  very  fast  as required  by  the explicit  
integration  scheme  will have on the reported results. 
 
Many simulations were conducted over the course of this challenge.  Figure B94 represents 
the analyst team’s best prediction for pin reaction force as a function of load line 
displacement  measured  at the knife edges.  Straight lines were fit to each of the four 
unload regions to infer the unloading compliance of the sample.  The slope of these lines 
(represented as m in the legend of Figure B94) are respective  unloading  compliances.   In 
addition,  the crack length was estimated at the beginning of each of these unloads,  
referred to as A, B, C,  and  D in the problem  statement.  The  reason  for describing the 
crack length as an estimation, stems from the nature of how cracks are formed in a 
peridynamics simulation.  In  peridynamics, cracks  are formed when many broken “bonds” 
coalesce to a surface; therefore, precisely defining the resulting  surface  is difficult.   Table 
B4 summarizes  the compliances during the unloads that occur after the peaks labeled A, B, 
C, and D in the problem  statement and the crack length (measured  from the knife edge) as 
best estimated at these peaks. 
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Figure B93. Load line displacement as a function of time 

 

 
 
Figure B94. Pin reaction force as a function of load line displacement 
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Table B4.  Summary  of results from simulation 
  

Peak  Label 
 
Unloading  
Compliance 

 
Total Crack  Length, a 

A 7935 N mm−1 11.78 mm 
B 3906 N mm−1 16.67 mm 
C 2594 N mm−1 18.66 mm 
D 2847 N mm−1 19.81 mm 
   

 
 
Figure B95. Snapshot of simulation animation 
 
Figure B95 shows an animation of the load/unload simulation showing the crack 
advancement in color contours of damage.   Displacements are exaggerated by a scale 
factor of two to aide in the visualization. 
 
B5.3 Final Remarks 
 
In preparation for this challenge a tremendous amount of time was spent by the  analysts 
calibrating the peridynamic bond failure models based  on the results of Challenge 1B. 
The recent simulations of Challenge 1B show a marked  improvement over the blind 
simulations that where turned in originally.   Additional  physics  where  added  to the 
bond failure  models  which resulted in these improvements.  When  the parameters that 
gave the “best results” for Challenge  1B where used in the blind simulations for 
Challenge 2A, the result was that the precrack never advanced.  There is a considerable 
amount of difference in the two Challenges,1B having a very blunt defect and 2A having  
a sharp  precrack,  and it is not completely  a surprise  that our calibration parameters did 
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not work as it is observed  in experiments to collect  Fracture Toughness  and Notch  
Toughness  values in metals that the energy  release  rates are  much  larger  when  the 
defect is blunt.   Since our calibrations from 1B  resulted  in zero crack  growth  in the 2A 
simulations, and  it was assumed  that we  were not being  asked  to predict a “fracture 
experiment” without fracture, an  extrapolation  technique  was used to de- termine what 
the bond failure should be using information from 1B after the crack  initiated  from the 
blunt defect.  The crack  behavior  is quite strongly sensitive to the bond failure model and 
for this reason  we chose to turn in our single “best estimate” as opposed to submitting 
many answers resulting in large error bounds. 
 
One extremely  positive  take-away  from this  exercise was that all of the analysis  effort  
concentrated  on investigations  into  the physics  and  choice of the bond failure model, as 
well as the time spent attempting to achieve the proper  displacements  through  the 
load/unloading  cycles.  Peridynamics was successful in providing  a framework  for 
modeling three-dimensional crack growth, no numerical  difficulties were encountered in 
modeling crack propagation, arrest, and further propagation. 
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B6. Follow-Up for Challenge 2A 
 
The presentation of the experimental results revealed that our simulations under predicted the 
unloading stiffness and over predicted the crack length at the unloads.  The over prediction of 
crack length is explained by the fact that the crack initiated too soon, or at too small a peak load.  
A possible explanation is that our failure model was calibrated using data from Challenge 1B, in 
which the crack initiated after a considerable amount of plastic flow had taken place around the 
inclined notch.  This plastic flow created a complex stress state in the vicinity of the crack 
initiation site, possibly including a high degree of ``triaxiality'' or ``confinement'' that aided in 
the crack initiation.  Since our bond failure model did not include an explicit dependence on 
triaxiality, but rather used a heuristic fit to the Challenge 1B data, and because it is very unlikely 
that the current Challenge included anything but a pure Mode I stress state with little plasticity at 
the crack tip, it is speculated that the crack initiated too soon due to an artificial effect of 
triaxiality that implicitly appeared in the bond failure model but was not occurring in the 
experiments.  This could be improved by utilizing a bond failure model that had an explicit 
dependence on triaxiality.  This feature was discussed during the lead up to submission of the 
predictions for this Challenge, but was not implemented in time to turn in results.  Since the 
unloading stiffness is related to the crack ligament in the sample, it only follows that we under 
predicted the stiffness as a result of over predicting the crack length.  The crack length reported 
in our prediction for Unload A roughly corresponds to the crack length reported at Unload C in 
the experiments.  Taking this into consideration, it is encouraging that the unloading stiffness 
reported in our prediction for Unload A is roughly comparable to the unloading stiffness reported 
at Unload C in the experiments. 
 
In summary, had our bond failure model not severely under predicted the load at which the crack 
initiated, it is believed that our crack length and unloading stiffness predictions would have been 
in closer agreement with the experiments. 
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APPENDIX C:  LOCALIZATION ELEMENTS 
Jay Foulk, Alejandro Mota, Jake Ostein, Arthur Brown, and John Emery, Alex Lindblad 
 
 
C1. Predictions for Challenge 1A 

 
Abstract 
 
The simulation of fracture and failure in a production environment with limited experimental 
data is a daunting task. In this work, we examine fracture/failure in the context of a local damage 
model regularized by localization elements. We demonstrate that not only is the method 
convergent but also explore the applicability of the methodology in the context of both academic 
and non-standard fracture geometries. We illustrate how one with limited data might populate the 
models and then how to apply them with rigor. In short, we attempt to demonstrate that the 
implementation is sufficiently verified and validated for a production environment and can be 
employed for implicit quasi-statics as well as explicit transient dynamics.  
 
Key words:  localization elements  ductile fracture  damage mechanics  Finite elements    

 
C1.1  Introduction 
 
Ductile crack nucleation and growth is a complex phenomenon that plays a key role in 
component structural reliability. Thus, computational models that accurately predict such 
phenomenon are of utmost importance to structural analysts and designers. Void nucleation, 
growth and coalescence are the mechanisms typically associated with ductile failure. Ductile 
crack nucleation and growth originating from smooth stress concentrators, e.g. bolt holes, are of 
particular interest and, in the absence of a sharp crack, preclude traditional fracture mechanics 
approaches. The stress field in the vicinity of such geometrical stress concentrators is often 
complex having a high stress triaxiality, the ratio between the mean stress and the effective 
stress. This triaxial stress state exacerbates the mechanisms. Hence, predictive models frequently 
include the triaxiality. 

 
C1.2  Framework for Prediction 

 
We seek to develop a class of methods for solution to the balance of linear momentum for quasi-
statics, implicit-dynamics, and explicit-dynamics. In this document, we will focus on quasi-
statics. However, we will include a the conditions for a stable time step for explicit calculations. 
Because many applications involving ductile fracture evolve over ms , explicit transient 
dynamics can be employed. However, discretization issues and longer time scales favor implicit 
dynamics. Implicit dynamics can also be favorable to quasi-statics regarding issues of crack 
stability. 

 
C1.2.1  Material 

 
In this work we will focus on structural metals. Specifically, the alloy selected for analysis is 
PH13-8 H950 martensitic stainless steel. The H950 condition was selected because it is the most 
commonly employed heat treatment and contains both high strength and relatively high 
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toughness. Data sheets provided the elastic properties and the hardness. A series of tensile tests 
were also given. It is evident that the yield strength of the alloy (no matter the metric) is 
substantial. Those series of tests are noted in Figure C96. We note that without information 
regarding neck formation, one might assume the material necks after relatively small strains 
(~0.02 mmmm/ ). An inverse problem must them be employed to examine the extend of 
hardening within the neck. Without information regarding the evolution of the neck, that inverse 
problem might be problematic. In addition to an inhomogeneity in the strain field, one must also 
deal with inhomogeneities in strain rates. In addition to providing information regarding 
deformation, each tests also fails. Fortunately the tests are closely grouped so that we will not 
worry (initially) about specimen to specimen variations.  

  

 
Figure C96. Three tensile tests performed on PH13-8 H950 stainless steel. After relatively little 
deformation, necking might have occurred. Geometric information with regard to the shape and 
evolution of the neck was not available. Note that the yield stress is nearly 1.6 PaG . 

    
After looking through the literature, we could only supplement a tensile test with the plane strain 
fracture toughness. Given in [C3] , the plane strain fracture toughness IcK  is 70 mPaM . The 
alloy was employed on the B-1B bomber and the values are quoted as valid fracture toughness 
tests performed for that program. 

 
C1.2.2  Failure modes 

 
Out the outset, we assume that the alloy will fail through the micromechanics of void nucleation, 
growth, and coalescence. The evolution of these processes is influenced the geometry, product 
form, and loading. Specifically, we will be predicting fracture initiation for a particular 
thickness. Given the plane-strain fracture toughness, we cannot easily predict the variation of 
toughness with thickness (without tests that explore that transition). Decreasing thickness results 
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in lower triaxialities and reduced void growth. In addition, increased plasticity aids resistance 
curve (R-curve) behavior. In general, the fracture mode will change from flat-fracture (mode I) 
to mixed-mode fracture (mode I-III) with decreased thickness. Without experimental data, one 
will have difficulty being predictive. However, we can explore simple models tuned to limited 
data to determine both the applicability of the model and need for future testing. 

 
C1.2.3  Constitutive model 

 
Because we are employing a single quasi-static test to characterize the deformation of the alloy, 
we limit elastic-plastic response to independent of both rate and temperature. In this work, we 
employ a viscoplasticity model (Brown 2010) and essentially turn off rate dependence and 
temperature dependence. The flow rule is given as  

n
p Y

f 1]}
))((1

[sinh{= −
+− κφ

σ
ε  (1) 

 where pε  is the equivalent plastic strain, σ  is the effective stress, f  and n  govern rate 
dependence, φ  is the scalar damage parameter concentrating the stress, and Y  and κ  and 
represent the initiate yield stress and isotropic hardening variable, respectively. For our studies, 
we consider f  to be large such that the response is effectively rate independent and also 
independent of n . The yield stress Y  was taken to be 1.6 PaG . The isotropic hardening variable 
κ  evolves through an evolution equation that incorporates hardening H  and recovery dR .  

pdRH εκκ  ][= −  (2) 
 We note that if H  is constant and dR  is effectively zero, we obtain linear hardening. For this 
study, we have chosen H  to be 492 PaM  and dR  to be 0.001. The hardening modulus was 
based on data obtained from [C4] for PH13-8 H977. Bridgman correction factors were employed 
to yield a final true stress and true strain (effective) of 1.75 GPa and 0.308, respectively. 

In addition to a model for plastic flow, the model also incorporates scale damage (or 
porosity). By scalar, we assume that the damage evolution to be isotropic and described by [C5]  

p
h

m m
m

ε
σ
σ

φ
φ

φ  ]
12
1)2(2[sinh)}(1

)(1
1{= 〉〈

+

−
−−

−
 (3) 

 where the evolution of the damage φ  is governed by the hydrostatic stress ][tr
3
1= σσ h , 

effective stress σ , power-law creep exponent m , and the equivalent plastic strain pε . For power 

law creep, m
ss )/(= 00 σσεε   and 0ε , 0σ , and m  are material properties. Note that, in practice, we 

do not conduct a creep test to obtain material properties. Rather, we use the aforementioned 
functional form and fit m  to experimental data (or handbook values). If we are able to span 
many triaxialities σσ /〉〈 h  for a single m , we might consider that the approximation of dilute 
void growth in a power-law medium is justified. However, without experimental data spanning 
triaxility, we cannot adequately evaluate the applicability of the functional form. 

Because of the lack of experimental data, we attempted to bound m  through extremes in 
the triaxiality. Given that Figure C96 does provide the displacement at failure, we can model the 
evolution of the neck and predict the displacement at failure. We consider this to be a lower 
bound on the triaxility but it is possible that thin sheet (a product form not addressed in this 
study) may exhibit lower constraint. The other experimental quantity we can employ is the 
plane-strain fracture toughness IcK . Through the application of a far-field displacement field 
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derived from linear elastic fracture mechanics (LEFM), we can effectively simulate a plane-
strain fracture toughness test. One still needs to contend with the issue determining the crack 
length for initiation, but at least we can explore an upper bound on the triaxiality. The details of 
these studies and the bounds they yield will be discussed in Section C1.3.  

 
C1.2.4  Regularization 
 
Because we have chosen to employ a local damage model that includes softening, we need 
employ a method for regularization. If we choose to plow ahead with a local model, the system 
will bifurcation and corrupt the partial differential equation. In short, we will be solving an ill-
posed problem. The corruption of the equation we are attempting to solve, the balance of linear 
momentum, is revealed to the analyst as a mesh-dependent solution. Because common methods 
of regularization add a length scale to the system that is independent of the mesh size, we often 
refer to regularization as mesh-independent methodologies. In general, the methods of 
regularization can be grouped into surface and bulk approaches. Surface methodologies relegate 
the failure process to surface separation. Laws that govern surface separation are often referred 
to as cohesive laws. A length scale governing gap separation yields a process zone size. A 
cohesive surface element contains both the upper and lower surfaces and integrates the response 
through a mid-plane. Alternate bulk methodologies include nonlocal and gradient methods. 
Nonlocal methods typically employ the same local model with nonlocality in the variables that 
load to bifurcation. The classical implementation is a nonlocal ball with a gaussian weight 
function. Gradient methods may mirror nonlocal methods or introduce additional physics. Partial 
differential equations are introduced to regularize local ordinary differential equations. In each 
case, one must resolve the introduced length scale. Many elements should span the process zone 
size, nonlocal ball, or damage front. 
 
Another methodology recently introduced by [C12] is localization elements. Localization 
elements still seek to lump the failure process to a surface. However, rather than pose an 
additional model for surface separation, localization elements employ the same local model and 
introduce a novel, multiplicative deformation gradient to evolve the failure process. The 
deformation gradient stems from a multiplicative decomposition of in-plane PF  and an out-of-
plane ⊥F  deformation gradients where ⊥FFF P= . The in-plane or membrane deformation is 
constrained by NNF =P  and the out-of-plane deformation is  

.= N
h

IF ⊗
Δ

+⊥  (4) 

 The length scale is imparted through h  and it typically referred to as the band thickness. We 
must note that this thickness is a material property but the length scale introduced into the 
simulation (via a process zone size) is an outcome of h , the material model, and the mode of 
loading. Figure C97 illustrates the displacement jump Δ , input length scale h , and the mid-plane 
with normal N  and traction T .  
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Figure C97. The deformation gradient results from a multiplicative decomposition of the 
deformation gradient of in-plane and out-of-plane deformations. The perpendicular 
displacement gradient ⊥F  results from the displacement jump Δ , input length scale h , and mid-
plane normal N . 

   
We again note that this approach contrasts other surface methods which employ both a bulk 
model and a surface (typically cohesive) model. The two model approach does have applicability 
but it also suffers from a few notable issues when applied to ductile fracture. One issue revolves 
around the cohesive strength. If the cohesive strength is over 5 times the yield stress, 2J  with 
hardening cannot guarantee that local fields will satisfy the required cohesive strength. 
Consequently, the crack will blunt and not propagate. Although one can invoke other 
phenomenological approaches to plasticity (strain-gradient plasticity, crystal plasticity, etc.), this 
argument stems from the fact that the analyst has chosen a cohesive approach to fracture and not 
that 2J  is necessarily inadequate. 
 
Other issues that can complicate cohesive formulations stem from the fact that the 
micromechanics might convolute the cohesive approach. For example, in many structural alloys, 
void nucleation, growth, and coalescence dominate the failure process. Void growth have been 
shown to be heavily dependent on the triaxiality, σσ /〉〈 H  where Hσ  is the hydrostatic stress and 
σ  is the effective stress. Put simply, the traction on a surface is independent of the in-plane 
stresses. Consequently, it is difficult to incorporate features such as the triaxiality into cohesive 
approaches to fracture. One must employ data structures to sample or project (and average) the 
triaxility from adjacent bulk elements. The kinematics of localization elements (with PF ) 
simplifies the implementation and naturally yields quantities σσ /〉〈 H  relevant to void growth. 

For the work presented herein, we will limit our work to predefined planes. This is 
obviously a disadvantage and we are working on adaptive methods for generalized fracture. 
Adaptive insertion, adaptive remeshing, and X-FEM are being considered. We still believe that 
we can still learn a great deal from a seeded path. Verification and addressing challenging 
problems is necessary to make improvements and modifications to the methodology. 

 
C1.2.4.1  Addressing volumetric locking 
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Initial simulations revealed that fully-integrated localization elements, like four-noded 
quadrilateral elements, lock during isochoric deformations. To remedy this issue, we 
implemented a constant pressure formulation (Nagtegaal 1974, Hughes 1980). Rather than form 
an averaging operator (B ), we instead elect to volume average (or in this specific case, area 
average) the pertinent kinematic quantities such that a mean pressure will result for each 
integration point. For hypoelasticity, the stress in the “unrotated” configuration can be written as  

dIdT µλ 2][tr= +  (5) 
 where T  and d  are the stress and the rate of deformation tensor in the unrotated configuration 
( RRT Tσ= , DRRd T= ). Because the pressure is only a function of the tr ][d , we can find  

dAd
dA

d
eS

eS

][tr1=ˆ ∫
∫

 (6) 

 and use the area averaged quantity d̂  to redefine the unrotated rate of deformation tensor  

Idddd ])[trˆ(
3
1= −+  (7) 

 at each integration point in the element spanning eS . We did verify that this construction does 
yield a constant pressure and did remedy locking. For hyperelastic models, the methodology is 
very similar. Provided the stored energy function is uncoupled, the pressure is a function of J  
where ][det= FJ . We define Ĵ  to be the area averaged quantity  

dAV
dA

J
eS

eS

][det1=ˆ ∫
∫

 (8) 

 where V  is the left stretch tensor and ][det=][det FV . Note that we use V  because it is handy 
and the material model interface does not pass F . We can then redefine the left stretch  

)(ˆ= 3
1

3
1

VJIJV
−

 (9) 
 at each integration point in the element spanning eS . We still need to verify the methodology for 
uncoupled stored energy functions. 

 
C1.3  Populating the resistance 
 
Given little information, we are challenged to populate a damage model. As noted in Section 
C1.2, we will attempt to employ simulations of vastly different triaxialities to bound the material 
behavior. Because we expect the failure process zone to be on the order of hundreds of microns, 
we select a normal length scale h  to be roughly an order of magnitude smaller than the process 
zone size. For this specific case, we selected h  = 30 mµ . It is our hope that for the boundary 
value problem of interest, the selected h  will generate a process zone size that is representative 
of the failure mode. Because we do have IcK  toughness, we will employ a K-field boundary 
condition and simulate the plane-strain fracture toughness. In addition we will also consider 
necking in the smooth tension. The ability to use the bounds from the K-field simulation to 
simulate failure in a necked sample will provide insight with regard to the damage model and 
determine if the model for void growth is applicable over a range of triaxialities. 

 
C1.3.1  K-field simulations 
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The K-field boundary condition is employed through the analytical solution for a crack in an 
infinite domain. That solution yields the stresses, strains, and displacements at some radius r  
and angle θ . Therefore, given a crack location in the body, one can always establish a local, 
polar coordinate system to yield the displacement field ( 21,uu ) for any ( 21, XX ). We stress that 
the linear elastic fracture mechanics solution is not appropriate for near-tip fields but it is quite 
appropriate for the far-field. Provided that the crack-tip nonlinearities are in a small region 
compared to the region of the body (small-scale yielding) one can apply a far-field LEFM 
displacement field and accurately assess the predicted fracture toughness. We should also add 
that because the fields at the far-field are reflective infinitesimal deformations, we have a nice 
representation of the driving force. The coarsest K-field mesh is illustrated in Figure C98. 
Elements at the crack tip are 60 µ m. In this case the element size is twice the value of h . Future 
refinements, 30=s  µ m and 15=s  µ m, are employed to investigate mesh convergence. 
Because we only have the plane-strain fracture toughness IcK  = 70 mPaM , we are not quite 
sure the crack length about which IcK  was recorded. Consequently, we will sample the applied 

appK  for increasing crack lengths and make judgements regarding initiation and resistance-curve 
behavior.  

  

 
Figure C98. Discretization of the K-field geometry. For a given applied stress intensity factor, 

appIK , , a displacement field is derived from LEFM and applied to the outer boundary via a node 
set. Elements are the crack tip are on the order of 60 mµ . 

   
To illustrate the concept of varying m  and recording the appK  at two elements of crack growth, 
we include Figure C99. The element size is 30 mµ  and we are recording the toughness cK  at an 
increment of crack growth 60=aΔ  mµ . As expected, the toughness varies with m . For the 
selected bulk model, it appears that m  = 5 is near the plane-strain toughness and that the value is 
bounded by m  = 4 and m  = 6. In Figure C99, the plastic zone (red) is shown through pε  >  
0.001. Again, as expected, the plastic zone size scales with the toughness. Less obvious is the 
shape of the plastic zone. For values of m  = 4 and m  = 5, the plastic zone appears to be 
“physical” or aligned with what one might obtain if they just simulated crack-tip blunting 
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without damage evolution. Large values of m  clearly distort the plastic zone size. For m  = 8, 
the plastic zone appears almost circular.  

  

 
Figure C99. The plastic zone size for varying damage parameter m  after 60 mµ  of propagation 
( aΔ ). The mesh size s  at the crack tip is 30 mµ . The plane-strain fracture toughness for PH13-
8 H950 is 70 mPaM . 
 
After numerous simulations, one can construct a table to differentiate the element size s  and the 
material parameter m , Table . Increases in toughness with crack length do indicate resistance 
curve (R-curve) behavior. Although we do expect that finer meshes to yield increased R-curve 
behavior, there is a definite transition between the predicted toughness for s  = 60 mµ  and s  = 
30 mµ . This transition stems from the fact that larger mesh sizes do not enable the crack to 
blunt. The material has an extremely high yield stress and small plastic zone size. For larger 
meshes, both the peak triaxility and the equivalent plastic strain reside in the same element (at 
the crack tip). In contrast, for finer elements, blunting occurs and the peak triaxility moves into 
the body. Now, the peak triaxility and the peak equivalent plastic strain reside at different 
locations and the evolution of damage is mitigated thus yielding an increased toughness. The 
lack of convergence between 15=s  mµ  and 30=s  mµ  is cause for alarm. For 15=s  mµ , the 
element size is half of h . Thus the membrane forces might play a role in this process. While 
consistent with the derivation of a “band” of thickness h , localization elements have zero-
thickness in the reference configuration. Future work will focus on the role membrane forces and 
how they affect crack tip fields and the resulting toughness when s  is on the order of h . Based 
on these findings, we align the bounds for m  with simulations for s  = 30  mµ . We will consider 

6<<4 m .  
 
Table C1. The predicted toughness under variance in the damage parameter m  and the mesh 
size s.  

   m   mesh size  Δ a = 30 
mµ   

Δ a = 60 
mµ   

Δ a = 120 
mµ   

Δ a = 240 
mµ  

 3*4  15  100>   100>   100>   100>  
  30  60  81  100>   100>  
  60      65  66 

 3*5  15  100>   100>   100>   100>  
  30  52  68  82  87 
  60      59  59 

 3*6  15  87  87  ?  ? 
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  30  47  60  70  77 
  60      51  52 

 3*7  15  74  77  78  79 
  30  44  55  62  65 
  60      50  50 

 3*8  15  67  70  70  71 
  30  42  51  57  58 
  60      47  49 

  
  

  
 

C1.3.2  Smooth tension 
 
Given bounds for m  from the K-field simulations, we can now revisit the smooth tension 
specimen and determine the applicability of the bounds for lower triaxialities. The discretizations 
used to simulate smooth tension are illustrated in Figure C100. Because the necking process is 
not localized, our meshes are relatively coarse ( 318=s  mµ , 635 mµ ) compared to those 
employed in the K-field simulations. Consequently, the results are not valid beyond crack 
initiation because we are not capturing the process zone size. That said, the process appears to be 
over-driven so we do not, in this particular case, need to resolve crack propagation. Note that 
although the simulations do exhibit this behavior, we derive our notions of crack stability from 
the experiment and not the simulations (they are not resolved).  

 

 
Figure C100. Discretization of the tension geometry. The bar radius is 12.7 mm  and length is 
50.8 mm . Within a gauge section of 25.4 mm , the specimen is tapered by 2.54 mµ  over 12.7 
mm  to control the location of the neck. 
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The simulated specimen is 50.8 mm  long with a radius of 12.7 mm . We taper the bar by 2.54 
mµ  over 12.7 mm  within the 25.4 mm  gauge section to control the location of the neck. 

Because we only have access to three-dimensional formulations, we approximate axisymmetry 
with a o30  wedge. Results from the smooth tension simulations are given in Figure C101. We 
note that linear hardening is clearly only an approximation to the material behavior. We might 
interpret through the experimental results that more hardening at lower strains and less hardening 
at higher strains. However, it is difficult to quantify without knowledge of neck geometry. Rather 
than fit to the curve without knowledge of the neck, we have accepted the current approximation 
which does effectively illustrate that the material is hardening in the necking region. Simulations 
that did not include hardening yielded a slope tremendously different than the experimental 
finding. 
 
Examining the smooth tension results, we might choose to select 6=m . Although this does 
seem logical, we remind the reader that we would be tuning our material properties to relatively 
low triaxiality. For this geometry, the peak triaxility σσ /〉〈 h  is 0.66. In contrast, triaxialities 
reach 2.44 in the K-field simulations. Without experimental data at numerous σσ /〉〈 h , we 
cannot validate our current model parameters (which include a fixed h ) or even if the model is 
adequate to span 2.44</<0.66 σσ 〉〈 h . We do not hold [C5] sacred. It is only a dilute model for 
void growth. Without data spanning the triaxialities of interest, one might consider simulating 
the range of m  and then examining the fields of triaxiality for the body of interest. If the fields 
are similar to the fields employed to tune the model one may have more confidence in the 
solution (similitude). However, there is no substitute for more experimental data that may or may 
not exhibit a change in the mode of failure.  

  

 
Figure C101. Simulated necking for a smooth bar with geometric imperfection. While linear 
hardening is a tremendous approximation, it does yield an unloading slope that reflects the 
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necking process. Note that the unloading slope is not a function of damage and is controlled 
through continued hardening in the necking region. 

 
C1.4  Prediction mixed-mode initiation and propagation 
 
For the purposes of validating the method, a unique specimen was designed, fabricated and 
tested. In this section, the problem is described and the results are presented. 

 
C1.4.1  Specimen geometry and the model 
 
Figure C102 shows the geometry for the X-prize competition. The specimen was modeled after 
the well known compact tension specimen geometry. At of the notch opening, there were 
attachment points for the extensometer to measure notch opening as a function of applied 
displacement. The notch lead straight away from these attachment points for approximately 6.3 
mm, perpendicular to the axis of loading. The straight section of the notch was followed with a 
section of approximately 7.25 mm inclined at 45. At the terminal end of the notch, a 0.66 mm 
radius keyhole was drilled to provide a smooth stress concentration. The geometry was not 
fatigue pre-cracked and the resulting stress triaxiality at mid-thickness was 0.93. For comparison 
purposes, the predictions for crack nucleation were to be compared with an experimentally 
visible surface crack 100-500 µ m in length. Given these, predictive capabilities had to include 
crack nucleation mechanisms as well as crack propagation mechanisms. This geometry was 
designed to obfuscate the location of crack nucleation and the path of crack propagation. This 
was desirable to avoid an obvious answer for the experienced analyst, yet allow the 
experimentalist to focus data collection at an appropriate location. 

 

 
Figure C102. Specimen geometry. 
 
The finite element model used the one plane of symmetry about the mid-thickness of the 
specimen, allowing only one half of the volume of material to be modeled. Four mesh 
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discretizations were used for the calculations. The meshes were progressively refined with a 
structured annular region near the stress concentrator. For each mesh, the elements on the surface 
of the keyhole had aspect ratios of 1.0. The element size on the key hole was 0.0104 inch, 0.0044 
inch, 0.0024 inch, and 0.0012 inch for each progressively finer mesh. The meshes contained 
3,392 elements, 23,112 elements, 125,184 elements and 1,015,812 elements. The three finest 
meshes are shown in Figure C103. 

 

 
Figure C103. Discretizations employed in the analysis. The mesh size at the surface of the notch, 
s , is 120 µ m, 60 µ m, and 30 µ m for meshes 02, 03, and 04, respectively. 

   
In the finite element model, one half of the loading holes were filled with a semi-cylinder of rigid 
material to represent the loading pins. The kinematic boundary conditions were then applied to 
the nodes comprising the axis of the semi-cylinder allowing the loads to be appropriately 
distributed around the edge of the holes. Although it may have been more physical to use contact 
and friction between the rigid semi-pins and the fracture specimen, it was deemed unnecessary at 
this stage. Further, the mid-thickness plane of symmetry was restrained against out-of-plane 
deformation. 

 
C1.4.2  Simulation results 

 
Figure C104 shows a set of results for the three mesh sizes with the damage exponent set to six. 
In the top half of the figure, the first principal stresses are contour plotted on the mid-thickness 
face. In the bottom half of the figure, the accumulated damage on the fracture plane is contour 
plotted. As the mesh is progressively refined, the stress contour and accumulated damage show 
convergence in the mesh sizes 60 µ m and 30 µ m. The following uses the results from the 60 
µ m as they are considerably less computationally expensive and sufficiently accurate. 
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Figure C104. Contour plots of the first principal stress and accumulated damage at crack 
initiation showing convergence of the global and local fields as the mesh is refined for: (a) mesh 
size 120 µ m; (b) mesh size 60 µ m; and, (c) mesh size 30 µ m. 

   
Figure C105 shows additional detail for the analysis results with mesh size 60 µ m and damage 
exponent equal to six. In Figure C105 (a), the first principal stress is contour plotted on the plane 
of mid-thickness. In part (b) of the figure, the first principal stress is contour plotted on the 
fracture plane. In part (c), the accumulated damage is contour plotted on the fracture plane. In 
part (d), the reaction force for one node in the top loading pin is plotted versus solution time. 
This set of plots was used to determine the applied loading at crack initiation which was said to 
occur when the first element in the hole had completely unloaded. Note, the calculations indicate 
a precipitous decline in the applied loading indicating that unstable crack growth rapidly follows 
crack initiation. 

 

 
Figure C105. Graphical results for damage exponent m = 6 showing: (a) the principal stress 
contour plot at specimen mid-thickness; (b) the principal stress contour plot on the fracture 
plane; (c) the contour plot showing the accumulated damage on the fracture plane; and, (d) the 
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y-direction reaction force for one finite element node at the applied boundary condition plotted 
versus solution time. 

   
Figure C106 provides an illustration of the gauge displacement reported. In the figure, the 
locations where gauge displacements were measured are indicated as ``gauge attachments''. In 
the undeformed, as manufactured configuration, the gauge opening measured ``h'', see figure 
inset. As deformation was applied, the gauge attachment points deformed with an x- and y-
component, indicated as ``dx'' and ``dy'' in the figure. The total displacement is reported and was 
calculated as  

 .= 22 dydxgauge +Δ  (10) 
 

 

 
Figure C106. Gauge opening displacement measurement. 

   
Figure C107 plots the global applied load versus gauge opening displacement for several sets of 
data. The solid black lines and blue lines plot experimental data. The black lines were from 
experiments run by [C1] while the blue lines represent experimental data from the laboratory of 
[C6]. These data were obtained at different loading rates with apparent affects. The data 
collected by Boyce was run at a constant loading rate of 0.0127 mm/s. The data collected by 
Cordova was run at a rate of 0.0027 mm/s up to an applied displacement of 2.03 mm when the 
rate was reduced to 0.00025 mm/s. From the plot, it is apparent that the simulation results with 
the damage exponent equal to five are the best fit to the slower rate data while something 
between five and six would nicely match the faster rate data. There is nothing in the simulation 
model to account for loading rate. This is an open area of investigation. The crack initiation with 
damage exponent equal to five occurred at an applied displacement of 2.52 mm. 
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Figure C107. Gauge opening versus applied load. The solid black and blue lines plot the 
experimental results. 

   
The solution was obtained with the quasi-static finite element code Adagio, part of the 
SIERRA/Solid Mechanics suite ([C11]). Adagio uses a nonlinear, preconditioned, conjugate 
gradient (CG) solution algorithm with a number of options for the preconditioning. The 
preconditioner used in these calculations was the FETI parallel scalable linear solver with fifty 
node-based smoothing iterations ([C8, C7]). With this preconditioner and prior to crack 
propagation, the norm of the residual was reduced by eight orders of magnitude (1.0e-08) in an 
approximate average of fifty-six iterations. For the mesh size of 60 µm with damage exponent of 
six, this performance occured at a constant time step of approximately 2.0e-03 seconds up to the 
crack initiation time of 0.666 seconds. The 120 µm and 30 µm exibited similar performance. Of 
the fifty-six iterations, fifty were the node-based smoothing iterations, which are very 
inexpensive, and only six iterations formed the full tangent matrix. Upon crack propagation, the 
adaptive load stepping algorithm had to reduce load increments and the simulation slowed down. 
Table  summarizes the performance of the three meshes with the damage exponent equal to six 
on the Tri-Lab Linux Capacity Clusters (TLCC) at housed Sandia National Laboratories. 

  
Table C2. Processing time on 2.2 GHz AMD quad core processors with 2 GB DDR2 SD RAM 
per processor with damage exponent equal to six. 
 mesh size (µ m)  element count  processor count   processing time (hh:mm)  
  120   23,112   64   01:39  
 60   125,184   128   06:19  
 30   1,015,812   256   70:40  
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C2. Follow-Up for Challenge 1A 
 
C2.1 Initial X-prize predictions 
 
1. Describe what material model you used for deformation (not crack initiation)? How did you 
calibrate that model against material properties? What parameters did you calibrate? Please 
specify what specific resources (datasets) you used to calibrate the parameters. 
2. Describe what material model you used for crack initiation? How did you calibrate that model 
against material properties? What parameters did you calibrate? Please specify what specific 
resources (datasets) you used to calibrate the parameters. 
 
We used a local damage model that provided the means for plasticity (deformation) and eventual 
crack initiation (via damage evolution). We fit the plasticity model to a single uniaxial stress-
strain curve (taken from a tensile test prior to the jump). We did not initially address the jump in 
the load-displacement curve and it seems that this jump is actually critical to resolving smooth 
necking. We then assumed a length scale for the localization element (h  = 30 mm ) and fit the 
damage parameter, m , through K-field simulations of the given plane-strain fracture toughness, 
IcK . 

 
3. How was uncertainty captured in your simulation: (a) material variability, (b) uncertainty in 
the failure criterion? 
 
For this initial attempt, we did not attempt to address material variability. The little data we do 
have indicates that the smooth tensile tests do not exhibit a tremendous amount of variability in 
deformation (plasticity) or displacement at failure. This is predicated on the fact that we 
extracted data prior to the jump in the load-displacement curves. Recent simulations indicate that 
this is important in modeling necking. We addressed uncertainty in the failure criterion through a 
simple parametric study based on K-field simulations. 

 
4. Please summarize your examination (if any) of mesh dependency of your result. 
 
While mesh convergence studies were also performed for the K-field simulations (with more 
documentation forthcoming), multiple meshes of the fracture specimen were considered. 
Elements at the notch for the coarse and finer mesh were on the order of s  :  120 mm and s :  60 
mm , respectively. A larger model is also being simulated with roughly 1 million elements and 
elements at the notch being s :  30 mm  (with results forthcoming). While the process zone size at 
the crack tip probably merits the million element discretization (uniform refinement), the load-
displacement behavior of both the coarse and finer mesh were convergent. We stress that we are 
using localization elements to regularize the evolution of damage so convergence in the far-field 
is expected. 

 
5. Computational Efficiency. Estimate the node-hours and processor speed used to run one 
solution to the problem. Report a range if necessary, for example if you used different mesh 
sizes, report the time for each of the mesh sizes. 
 
Simulations were run on a variety of platforms. Simulations of the fracture geometry were run on 
many processors (32--128) on both glory and thunderbird. Glory has 2.2 GHz AMD quad 
socket/quad core processors while thunderbird has Dual 3.6 GHz Intel EM64T processors. 
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Although glory might be a bit faster, our experience is that the difference is not marked. For m  = 
7 (this is an upper bound, m  = 5, 6 exhibit faster simulation times). 

  
Mesh 02 s ~ 120 mm: 64 processors on tbird ~ 78 minutes with a total system time (sum of all 
processors) of ~ 84 hours  
Mesh 03 s ~ 60 mm: 128 processors on tbird~ 5 hours with a total system time (sum of all 
processors) of  ~ 670 hours.  

 
Note that in roughly 5 hours we simulated the entire failure process - not just initiation. This was 
completed under quasi-static conditions with extremely tight tolerances on equilibrium (quasi-
statics). 

 
6. What force (or range of forces) is predicted at a load line displacement of 0.01 in? 0.02 in? 
0.03 in? 0.04 in? 
 
In looking at cmod versus load, one can see that this exercise is probing the plasticity model, 
discretization, and applied boundary conditions. Because all damage parameters lie on a common 
curve for the indicated levels of the load line displacement, the below values are given for m  = 5 
but hold for m  = 6 and m  = 7. 
 
0.01 in, 0.245 mm CMOD of 0.249 mm and a load of 4.83 kN 
0.02 in, 0.508 mm CMOD of 0.503 mm and a load of 8.62 kN 
0.03 in, 0.762 mm CMOD of 0.763 mm and a load of 10.97 kN 
0.04 in, 1.016 mm CMOD of 1.032 mm and a load of 12.19 kN 

 
7. Describe the strengths and weaknesses of your approach. 
 
We are using a model that contains some of the relevant micromechanics for void nucleation, 
growth, and coalescence in ductile metals. The model is only for growth and depends heavily on 
the triaxiality. Shear lips are not well represented (see next slide). We currently seed a path for 
localization elements and are working on methods to make the path adaptive (and general). Other 
methods (nonlocal, gradient) do not suffer from this path issue but those methods are still in 
development. Although the method is currently not general (in either the physics or numerics), 
the simulations contained herein do show promise. The method is convergent and numerically 
robust. And while smooth tensile results are forthcoming, our approach is relatively 
straightforward. We do not stipulate a criterion. Rather, we simulate the evolution of a process 
and out of the process stems regularized initiation and propagation. 
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C2.2 Revised predictions 

 
8. What force (or range of forces) is predicted at a load line displacement of 0.01 in? 

0.02 in? 0.03 in? 0.04 in? 
In looking at prior figure of load-cmod, one can see that this exercise is probing the 

plasticity model, discretization, and applied boundary conditions. Because all damage parameters 
lie on a common curve for the indicated levels of the load line displacement, the below values 
are given for m  = 6. 

  
0.01 in, 0.245 mm CMOD of 0.249 mm and a load of 4.98 kN 
0.02 in, 0.508 mm CMOD of 0.502 mm and a load of 8.97 kN 
0.03 in, 0.762 mm CMOD of 0.762 mm and a load of 11.55 kN 
0.04 in, 1.016 mm CMOD of 1.029 mm and a load of 12.91 kN 
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C2.3 Source of discrepancies 

 
9. What was the % difference of your predictions to the experimental values (maximum force 
prior to crack initiation and COD displacement at crack initiation)? 
 
There was an error in our prior statement on maximum load. We reported the load at initiation to 
be 13.4 kN . The maximum load prior to failure was 13.7 kN . This essentially matches the lower 
bound of the data and is 2.1% off the average (13.95 kN ). You can also clearly see in the 
experimental results that the lower bound of the load is essentially the rate-independent result. 
Consequently, we match the lower rates in Cordova's experiments (13.7 kN ) quite well. 
 
Our crack opening displacement error was larger. We predicted 2.16 mm  and the lower bound 
was 2.83 mm . Given an average was 2.96 mm , the error in our calculation was 27.0%. We have 
included more analysis to illustrate the origins of this error and address this specifically in 
Question 3. 

 
10. If you (or your team) submitted revised predictions, either after the initial due date, or after 
the comparison between modeling results, did your revisions bring the prediction closer to the 
experimental values? 
 
Yes and no. We did improve our estimate of the maximum load after the initial due date because 
we took into account the extended hardening. Our peak load increased from 12.9 kN  to 13.7 
kN . 
 
However, because we decided to not provide a span of a material property, 6<<5 m , and 
instead relied on a particular material property (m  = 6), our prediction for the cod decreased. 
The upper bound moved from 2.60 mm  (m  = 5) to 2.16 mm  (m  = 6). The error on 2.60 mm  is 
still substantial, 12.2%, but better than 27.0%. Note that the average measured cod was 2.96 
mm . If we consider the difference from the lower bound (2.83 mm ), the error is 8.1%. 
 
Through revisiting K-field simulations and noting differences in the triaxiality between the 
smooth tension and x-prize geometries, we conducted additional simulations at m  = 5 and m  = 
4. The cod for m  = 5 and m  = 4 are roughly 2.60 mm  and 3.31 mm , respectively. Note that the 
bounds of the experimental data were 2.84 mm  and 3.15 mm . Through additional simulation 
motivated by K-field findings, we now span the experimental findings. See included plots of the 
experimental and simulated data. 

 
11. Describe the source(s) of discrepancy (if any) between your prediction and the experimental 
result. Where possible, provide quantitative estimates of how much your prediction might have 
improved if these sources were incorporated into the prediction. Discuss the ease or difficulty in 
incorporating such improvements in future work. 
 
We did not predict the failure cod with tremendous accuracy. We believe that this reflects issues 
regarding the fitting of parameters. Although we did change the material hardening to adequately 
model the smooth tensile necking, we never revisited the K-field simulations. Consequently, the 
bounds for our damage parameter, m , were in error. Rather than 7<<5 m , we should have 
simulated 6<<4 m . In fact, we eventually settled on m  = 6 because it matched the failure 
displacement in the smooth tensile test. Although this seemed logical, we were essentially tuning 
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our damage model to a lower triaxiality and hoping that it extrapolated to higher triaxialities. 
This was a bit naive. Hey, we got excited. We should know better. Simulations were conducted 
to prove these hypotheses. With some success, we have justified looking at different bounds for 
m . These new bounds allow us to span the experimental data. In addition, we make some 
attempts to examine fields of triaxiality in the three geometries (K-field, smooth tension, x-prize) 
and make sense of the arguments required for lumping dissipation in the K-field results. Two 
issues that were not revisited will be incorporated into future work. We need to eliminate all in-
plane membrane forces generated by localization elements when bulk elements are on the order 
of h . Although the formulation does stipulate a thickness of h , the thickness is a modeling 
construct. Localization elements have zero thickness (in the simulation). This only matters when 
the bulk elements are on the order of h  and the generated membrane forces affect field 
quantities. We have a fix in the works. We believe that this may, in fact, be causing issues in the 
K-field simulations. Also, we never varied h ! We need to do this systematically and have begun 
this process. This is not terribly difficult. It just takes a little time. 

 
12. Was this effort helpful for the development and evaluation of your modeling paradigm? How 
might we improve the challenges in the future? 
 
This effort was extremely helpful in our development and the processes we use to model failure 
using localization elements. In fact, this provided the impetus to really put localization elements 
to work on a real boundary value problem. 

  
    1.  Need nice tensile tests that have load-displacement information and the evolution of the 

necking geometry. We could match the final, necked geometry. We could also use 
compression testing to get a large portion of the finite deformation behavior. Might include 
a few rates. In the macroscopic x-prize tests, differences in displacement rates were noted. 
If one notices a strain-rate dependence in the macroscopic data, local fields might span 
many rates.  

    2.  Fracture toughness tests. Any true measure of initiation stems from the evolution of a 
process that will employ some measure of propagation. Being able to clearly lump the 
dissipative mechanisms using a fracture toughness test rather than a book value for KIc  
would be helpful.  

    3.  Notched tensile tests provide experimental information on intermediate triaxialities. If 
shear-lips dominate, other test geometries might be more helpful.  

    4.  In addition to DIC, one might consider IR. It might be interesting to see if we need to 
include temperature and conduction.  
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C3. Predictions for Challenge 1B 
 

 
 
Figure C108. Challenge 1B assignment 
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Figure C109.  Load-displacement response predictions. 
 

 
Figure C110. Damage and EQPS contours, Time=612. 
 

 

initiation,  
t = 612 s or 
t = 625 s 

line D, 
t = 660 s or  
t = 673 s 

line E, 
t = 704 s or 
t = 738 s 

Arrows are 
approximate 
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Figure C111. Damage and EQPS contours, Time=625. 

 
Figure C112. Damage and EQPS contours, Time=660. 
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Figure C113. Damage and EQPS contours, Time=700. 

 
Figure C114. Damage and EQPS contours, Time=704. 
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Figure C115. Damage and EQPS contours, Time=704. 
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C4.  Follow-Up for Challenge 1B 
 
Question:	
  What	
   do	
   you	
   believe	
   were	
   the	
  most	
   significant	
   sources	
   of	
   error	
   that	
   produced	
   discrepancy	
  
between	
  your	
  model	
  and	
  experimental	
   results.	
   	
  Where	
  possible,	
  provide	
  quantitative	
  estimates	
  of	
  how	
  
much	
   your	
   prediction	
   might	
   have	
   improved	
   if	
   these	
   sources	
   were	
   incorporated	
   into	
   the	
   prediction.	
  
Discuss	
  the	
  ease	
  or	
  difficulty	
  in	
  incorporating	
  such	
  improvements	
  in	
  future	
  work.	
  
 
We believe that the most significant errors are  
 

1. Failure mode. We tune our triaxiality-dependent damage model to the plane strain 
fracture toughness and extrapolate that parameter to the X-Prize calculations. Brad has 
mentioned that fracture plane is slanted and we do not have the physics (or numerics) to 
represent the experimentally measured fracture plane which derives from lower 
constraint. 

2. Fracture angle. We insert the plane at a give angle (51° to the mode I path).  This will 
affect both initiation and propagation (the crack cannot curve). Angles are observed on 
the surface but one cannot really deduce the interior angle because the slanted nature of 
the crack will cause surface variations. 

3. Material characterization. We employed a single tensile test to derive the deformational 
properties. Additional tests confirmed that the yield stress can vary by almost 10%.  We 
did attempt to include this variation in additional X-Prize simulations and the 
corresponding K-field simulations which yield the damage parameter m.  Figure C116 
illustrates the effect on the load-displacement curve. While using a lower bound for the 
fracture toughness does push the evolution toward the experimental findings, these 
variations are not sufficient to bring our simulations into agreement.  We could continue 
to raise the damage parameter to fit the data but we cannot justify those changes. 

 
With regard to the numerics of localization elements, we have identified multiple sources of 
error and we are currently improving the implementation. Issues we are currently correcting 
include 
 

1. An objective update scheme for the rate of deformation tensor.  This update does filter 
out rigid body motions and we are currently testing the series expansion of log(Fn+1Fn

-1). 
We have implemented this method and are currently debugging. 

2. A revision to the multiplicative decomposition of the deformation gradient. We have 
derived that revision and have just implemented the new form into Sierra. It is our hope 
that it will further stabilize propagation. 

3. Exclusion of the membrane forces. Because the length scale is on the order of the element 
size (60 µm), membrane forces generated by the methodology may be affecting crack tip 
fields. We have implemented this option, studied the effects, and reasoned that the 
elimination of the membrane forces is justified when the mesh size is on the order of the 
element size.  However, when we do turn off those forces in the X-Prize calculations, the 
global calculation becomes unstable. We suspect this will be remedied by (1 & 2). In fact, 
the corrections given in (1) and (2) were motivated by the X-Prize calculations. 

4. The probe for the pre-conditioner has been modified and may require additional 
debugging.  

 
Regrettably, we cannot estimate the error associated with (1) and (2) without performing the 
simulations. These changes may enable convergence for (3) and significantly impact the 
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solution.  We will revisit the X-Prize calculations for 2024 after the model changes have been 
verified. 
 

 
 
Figure C116. An examination of varying the exponent governing the evolution of damage m and 
the yield stress Sy. 
 
The damage exponent was tuned to the fracture toughness of the material. For Sy = 375 MPa, m 
= 5 represents roughly 32 MPa√m and m = 6 corresponds to 27 MPa√m. For Sy = 350 MPa, m 
= 6 represents roughly 29 MPa√m and m = 7 corresponds to 26 MPa√m. An average toughness 
for 2024-T651 is roughly 30 MPa√m with a lower bound being near 27 MPa√m. These changes 
alone cannot explain the deviation from experimental findings. 
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C5. Predictions for Challenge 2A 
 
C5.1 Background  

Prior Challenge 2A, we reformulated the localization element and also derived a better 
approximation for the velocity gradient at Ln+1 from the deformation gradient at Fn and Fn+1.  
The prior formulation of the localization element was not objective (under rigid body motions). 
Small changes to the multiplicative decomposition ensure objectivity and also simplified the 
work conjugates. The prior method for calculating the velocity gradient was also not objective. 
This resulted in stresses being induced from rigid body motions. The new methodology derives 
from the Baker-Campbell-Hausdorff expansion and is more accurate than the strongly objective 
methodology currently employed for other element types.  
 

C5.2 Determining material constants  
 
Prior to beginning this work, we revisited prior findings and considered two variations in the 
large deformation behavior for 2024-T3. The first assumes that the yield stress is 375 MPa and 
allows for some hardening consistent with the experimental tensile stress-strain curve. Because 
aluminum has limited work hardening, another fit was also explored with a yield stress of 370 
MPa and less work hardening.  The plasticity is described through the constitutive model 
BCJ_mem in Sierra mechanics. We assume the hardening to be isotropic and to be of a 
hardening-recovery form, causing the effective stress to eventually asymptote at large strains. 
For the case with higher yield stress, the stress-strain curve asymptotes to approximately 640 
MPa true stress at 60% true strain.  Conversely, for the case with lower yield stress, the “plateau” 
case, the hardening is minimal and the stress-strain curve asymptotes to approximately 588 MPa 
at 33% true strain.  Although we believe the first case to be representative of the material 
behavior and the second case to be a lower bound on the hardening, we do not have experimental 
data to justify our assumptions.  Consequently, we carry both descriptions through both our 
fitting procedures and into the final calculations to understand the impact on our predictions. For 
all cases, the large-deformation behavior of 2024-T3 does not greatly impact our solutions 
because the specimen remains at, or near, the small scale yielding condition.  
 
After fixing the two cases for large deformation plasticity, we need to develop a procedure for 
fitting both the exponent for the evolution of damage  m and the length scale governing the 
localization element h. As in prior challenges, we employ the plane-strain fracture toughness. 
 The literature indicates that the plane strain fracture toughness KIc in the LT direction varies 
from 27 MPa√m to 36 MPa√m with an average near 31 MPa√m. As in prior challenges, a K-
field boundary condition is employed.  Trying to match a range of values for the plane strain 
fracture toughness, we vary m and h to determine combinations that yield the proper resistance. 
 This is ideal because we are prescribing the driving force and “recording” this resistance in a 
nearly criteria-free manner. The length scale h was chosen to be 30, 60, and 90 µm. The damage 
exponent m was varied from 4 to 8. Although the determination of h and m is not unique, clear 
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trends emerge from the analysis. The fracture toughness scales with h. This can actually be 
proven analytically for a given functional form. For the damage exponents chosen for this study, 
a length scale of 30 microns was insufficient to generate even the lower bound of the toughness. 
For the damage exponent, the toughness increases with decreasing m. As m increases the damage 
evolves more quickly and limits the resistance. With the plane strain, K-field boundary 
conditions, the crack propagates at the average resistance (32 MPa√m) for h = 60 µm, m = 5. 
Values greater than (m = 6) and less than (m = 4) represent the lower (27 MPa√m) and upper 
bound (41 MPa√m) of the resistance, respectively.  
 
We should note a few things from these analyses. Determining when crack propagation in the 
simulations is subjective and requires the administration of a criterion. For this study, we have 
chosen to define propagation as the decay to zero of the normal stress for two elements in front 
of the original crack tip. This definition coincides with that of a cohesive zone approach to 
fracture. First the cohesive zone must form and then it will propagate.  Also, the numerical 
convergence rate at the beginning of the simulations is slow and the solver must reduce the initial 
time step considerably.  After an initial transient time period, the solution recovers and the time 
step is adaptively increased to the user- specified maximum. This behavior appears to be specific 
to the localization elements.  We have changed the finite difference tangent of the localization 
element, resolving previous sources of error. More work is needed to understand the source of 
slow convergence, but a coding error cannot be ruled out at this time. We witnessed the same 
difficulty with the compact-tension cases, but we have been successful in driving down the 
residual to acceptable (and quite tight) tolerances. Finally, membrane forces are still an issue. We 
have investigated this before and need to revisit those calculations. We believe that the pressure 
field is being affected by membrane forces. Those pressures will affect local crack-tip fields and 
the resulting resistance.  More study is needed to quantify the numerical implications of 
neglecting membrane forces. First and foremost, we have concentrated on solving issues with the 
standard formulation.  
 
C5.3 Compact tension simulations  
 
Having fit the material parameters through K-field simulations, we now can transition to 
predicting behavior for the side-grooved compact-tension specimen.  We can, however, employ 
additional checks because the geometry has a sharp crack tip.  Given the toughness of 2024-T3, 
we can actually apply fracture mechanics to the problem of interest and determine if the input 
resistance matches the global, far-field driving force at crack propagation. This can be 
accomplished via two methods. The easiest and most accurate approach is to apply the new J-
integral capability in Sierra Mechanics. Employing the same mesh with a sharp pre-crack at a/W 
of 0.3, we need only select a node set on the crack front and a side set specifying the crack face. 
Using the same constitutive model without damage, we calculate the driving force as a function 
of simulation time, Figure C117. Note that the driving force is directly correlated with simulation 
time.  Further, the driving force is independent of the two choices of plasticity parameters.  
 
Next, following ASTM E399 9.1.1, we plot the global force versus displacement curve and the 
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secant line to determine the load at which the crack propagates, Figure C118.  With this load we 
can determine the simulation time at which the crack propagated using Figure C119.  Thus, 
because of the direct correlation between driving force and simulation time, we can determine 
the resistance as per ASTM E399. Ideally, the macroscopic crack propagates at the resistance 
“tuned” with the K-field simulation, indicating a direct correspondence between the idealized K-
field simulations and the small-scale yielding solution at the centerline of the specimen.  In 
practice, however, the correspondence shows the input resistance differs from the simulated 
resistance by 10%. More work is needed to understand that difference.  
 
Following the procedure outlined above, for h = 60 µm, m = 5, the macroscopic crack propagates 
at a driving force of ~28 MPa√m while the tuned resistance was 32 MPa√m. Instead of h = 60 
µm, m = 5 representing the average resistance, it is more closely aligned with a lower bound for 
the resistance.  Additional simulations for h = 60 µm, m = 4.5 illustrate that the resistance at 
propagation is approximately 31 MPa√m, the average toughness from the literature.  For h = 60, 
m = 4, the toughness is approximately 34 MPa√m, approaching the upper bound. We need to do 
more work to understand the discrepancy between the K-field tuning and the toughness as 
determined per E399. However, because we must provide a solution, we tend to side with the 
macroscopic simulations. Although the K- field simulations do yield insight and general trends, 
we are using the J-integral calculations for the actual specimen geometry to yield solutions that 
correspond to a near lower-bound, average, and upper-bound toughness.  
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Figure C117. The  computed  driving  force,  mode-I    stress  intensity  factor,  versus  time 
 when  the    constitutive  model  is  used  with  no  damage.   
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Figure C118.  Force    versus  displacement  for  the    compact  tension  specimen  with  the   
 ASTM E399    straight    line 
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Figure C119. Force    versus  time    for  the    compact  tension  specimen. 
     
 Note    from  Figure C117,  time    and    driving  force  are  directly  correlated.      
 
C5.4 Comparison to analytical solutions  
 
Although we do rely on a computed driving force for the side--grooved specimen, we also 
compared driving force solutions from Sierra mechanics to the analytical solutions provided in 
ASTM standards. ASTM E399 was employed to find Kapp from the reaction force P. In order to 
compare with our computational solution, we also needed to employ a correction for the side 
grooves. That correction is given in ASTM E1820, Beff = (B Bnet)1/2. Rather than complete a 
full J-integral analysis per the standard, we only wanted to compare for small loadings. The 
computational and analytical solutions coincided for small loadings and slowly diverged near the 
first unloading. As expected, the computational prediction for the driving force (assuming a 
nonlinear elastic material through J2 plasticity) is slightly greater than the LEFM solution.  
 
We also attempted to correlate our compliance solutions with those given in the literature. This 
turned out to be much more difficult than expected. Although one can obtain some agreement 
among solutions for the compliance, ASTM E399 should not be used as it does differ from other 
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solutions in later standards. Both ASTM E1820 and the fatigue standard, ASTM E647, employ 
the same solution for relating crack length to compliance. All 2-D solutions for compliance are 
given in plane stress as this stress state is generally more accurate for the displacement field 
while plane strain is employed for the driving force (ASTM E647). Finding the compliance from 
the crack length requires that one just find the root of a fourth-order polynomial. These solutions 
can also be related to Newman’s solution (International Journal of Fracture, Vol. 17, No. 6, 
1981) provided that you assume that 2VLL = Δ. Using E647, we find the initial stiffness (P/Δ) to 
be 2.37E7 while the stiffness calculated from simulation is  
3.13E7 N/m. We ascribe some of the difference to the calculation of the effective width and the 
possibility that the heavily side-grooved specimen might more exhibit plane strain. The 
differences, however, are quite large and probably cannot be explained by these factors. These 
differences probably stem from how we load the specimen. We effectively “weld” a stiff elastic 
region into the pin location. This region has a stiffness of 200 GPa (steel) which is roughly three 
times the stiffness of the aluminum. This might cause significant deviations in stiffness for all 
a/W. One can seek to minimize the error by placing a small elastic region at the top of the pin 
and the increased stiffness would not greatly contribute to the overall beam stiffness (or 
compliance). Future calculations will consider this change in the applied loading and determine 
the effect on the compliance.  
 
C5.5 Results  
 
Figure C120 shows the global response of the compact tension specimen for the various material 
properties used in our simulations. This demonstrates the strong dependence on the choice of the 
damage exponent, m, with peak load ranging from 3268 N to 4401 N for m = 5 to m = 4, 
respectively. The early post-peak response appears to be relatively independent of the damage 
exponent; however, the unloading compliance and latter stages of the response do exhibit 
dependence on the exponent. Also, the solid and dotted red curves for m = 5 results reflect both 
model fits and show that there is no dependence on the choice of plasticity model in the global 
response. Hence, the results reported in Tables 1 and 2 (below) are only for the plasticity model 
with yield stress of 370 MPa and the lower-bound, mean and upper-bound values of the damage 
exponent, m = 5, m = 4.5, and m = 4, respectively.  
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Figure C120. Force versus displacement curve for various material properties. 
 
We should not that that although the displacement shown in Figure C120 is crack mouth opening 
displacement at the load line, we are controlling the simulation through load-line displacement. 
During the latter portion of propagation the load-line displacement (and longer crack lengths) 
can be correlated with the crack mouth opening displacement. However, for the first 45two 
unloadings, substantial errors are incurred. These errors also scale with the damage parameter 
because smaller values of m results in shorter cracks for a given load-line displacement. The 
difference between the controlling load-line displacement at the pin and the measured crack-
mouth opening displacements below the pin are illustrated in Figure C121.  
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Figure C121. Differences between the applied load-line displacement and the measured crack-
mouth opening displacement along the load line. Although the differences for small long crack 
lengths are minimized (m = 5), shorter crack lengths (m = 4) at t = 60 s do generate significant 
errors.  
 
 
Table C3 through Table C5 tabulate the results of crack length and compliance for the four 
unloading programs. Included in the table are the time of unload, the total crack length at the 
peak associated with unload, the change in crack length associated with the peaks, the a/W ratio 
(W = 25.4 mm), the stiffness of unloading/reloading and the compliance of unloading/reloading. 
The crack length that is reported is the total crack length and includes the initial 7.62 mm crack 
length (initial a/W = 0.3). The change in crack length reported represents the amount of crack 
propagation leading up to the peak in loading. The compliance reported is merely the inverse of 
the stiffness. The stiffness was computed by a least squares fit to the data in the unloading 
portion of the curve. Finally, Table 4 merely compares all the results for varying toughness.  
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Table C3. Results for lower-bound material properties, m = 5.  
 
Unload  Time (s)            crack length (mm) Δ a 

(mm) 
a/W  Stiffness (N/mm)  Ccompliance 

(mm/N)  
-  0 7.62  -  0.3  -  -  
A  50 16.36  8.74  0.64  7170  1.39e-04  
B  85 19.47  11.85  0.77  2830  3.53e-04  
C  120 20.89  13.27  0.82  1510  6.64e-04  
D  155 22.02  14.40  0.87  836  1.20e-03  

 
Table C4. Results for average material properties, m = 4.5.  
Unload  Time (s)  Cr  crack length (mm)  Δ a 

(mm) 
a/W  Stiffness (N/mm)  Ccompliance 

(mm/N)  
-  0 7.62  -  0.3  -  -  
A  50 14.18  6.56  0.56  18100  5.53e-05  
B  85 17.90  10.28  0.71  13900  7.21e-05  
C  120 20.02  12.40  0.79  12300  8.16e-05  
D  155 21.15  13.53  0.83  11300  8.88e-05  

  
Table C5. Results for upper-bound material properties, m = 4.  
Unload  Time (s)  Cr  crack length (mm) Δ a 

(mm) 
a/W  Stiffness (N/mm)  Ccompliance 

(mm/N)  
-  0 7.62  -  0.3  -  -  
A  50 10.69  3.071  0.42  23600  4.23e-05  
B  85 14.71  7.089  0.58  16500  6.06e-05  
C  120 17.80  10.18  0.70  13200  7.57e-05  
D  155 19.73  12.11  0.78  11700  8.57e-05  

   
Table C6. Comparison of a/W for the upper-bound, average, and lower-bound toughness  
Unload  Time (s)  a/W  

KIc = 34 MPa√ m  
m = 4  

a/W  
KIc = 31 MPa√ m  
m = 4.5  

a/W  
KIc = 28 MPa√ m  
m = 5  

-  0 0.3  0.3  0.3  
A  50 0.42  0.55  0.64  
B  85 0.58  0.71  0.77  
C  120 0.70  0.79  0.82  
D  155 0.78  0.83  0.87  

 
C5.6 Sources of error  
 
We have identified multiple sources of error. We have attempted to rank these errors but some 
have not been quantified and we can only reference analytical solutions without additional 
simulations.  
 
1. We must rely on literature values for the toughness. Consequently, we provide an upper 
bound, average, and lower bound solution for a fracture toughness of 34 MPa√m, 31 MPa√m, 
and 28 MPa√m, respectively. 

2. We did not match the compliance from linear elastic fracture mechanics. Late in the 
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assignment we began to check our solutions with LEFM solutions of the compliance (ASTM 
E1820, ASTM E647, literature) and determined that we did not match the initial compliance. We 
note that we did match the LEFM solutions for the driving force but the compliance is more 
sensitive to the methodology in which we are applying the loading. Specifically, we believe that 
our welded, steel pins are increasing the specimen stiffness and contributing to this error. We can 
apply the load through a local elastic region at the top of the pin but those studies were not 
completed. Thus, our solution for the compliance has been polluted for all a/W.  
3. We did not follow a crack mouth opening displacement (CMOD) profile. Instead, we followed 
a load-line displacement profile. This difference is minimal for large a/W but does impact the 
result for smaller a/W.  
4. Smaller values of m lead to cracks that are not straight. The curving crack front leads to an  
increased stiffness for an equivalent value of a/W for larger m. In this sense, the compliance is a  
3-D quantity because it does reflect a curved front. We term this an error because we believe that 
the front is curved a bit more than one can physically justify. Even if the crack length is 
reflective of the experiment the compliance will be less than physically justified and provides 
additional motivation for increased physics in our damage models.  
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C6. Follow-Up for Challenge 2A 
 
After our predictions, the experimental load-displacement curves and compliances were shown. 
Our predictions could have been much better and we sought to determine major sources of error. 
 
C6.1 False assumptions 
 
Prior work assumed that the macroscopic driving force could be equated to the plane strain 
toughness of the material. Because our extrapolation was not robust, we tuned our material 
parameters to the driving force calculated through a J-integral calculation. The driving force does 
converge in the center of the specimen and we believed the center of the specimen to be under 
plane strain. While this seemed logical at the time, it was, in fact, erroneous in that the given 
specimen was not fully constrained. Even with the large side grooves, the specimen thickness is 
much smaller than the plane-strain thickness that would be employed to generate a valid plane-
strain fracture toughness.  J-integral calculations can be converged and “flat” for specimens not 
in plane strain.  Tuning to the plane strain fracture toughness resulted in our simulation 
propagating at lower driving forces and hence, smaller loads. 
To avoid future issues, we need to rectify our extrapolation procedure from the plane strain 
fracture toughness to the specimen geometries. In the last few weeks, we have explored two 
potential areas of concern. First, we wanted to examine the membrane forces and their 
contribution to crack-tip fields.  Second, we are working with Arthur Brown to implicitly 
integrate the damage evolution within the material model. This is still in progress. We are still 
employing the old integration scheme and, in some cases, chasing our tail.  We emphasize that 
future work will remedy this issue so that we can be assured that the model is properly integrated 
and assumptions regarding volumetric strain are consistent with void growth and coalescence. It 
is our hope that modification of the membrane forces and a robust integration scheme will enable 
us to tune to the damage model to the plane-strain fracture toughness and extrapolate to lower 
constraint geometries. 
 
C6.2 Rectifying membrane forces 
 
We spent time after reporting results to determine if membrane forces.  In addition to verifying 
the implementation, we systematically investigated the role of the membrane forces on the 
generated toughness. The study was encouraging.  In the absence of membrane forces, the 
computed fields are smooth and look correct.  In addition, unlike prior studies, the resistance did 
not significantly change with mesh size and varies smoothly (relatively) with both the damage 
exponent m and the characteristic length h.  Finer meshes should yield increasing resistance but 
converge (asymptotically) with subsequent refinements.  One difficulty with having membrane 
forces off is that it leads to a nonsymmetric stiffness matrix.  With significant effort, we have 
made great strides to overcome this and we are able to solve those systems using a different 
scheme (newton with a line search) with different iterative and direct solvers (ML and SuperLU).  
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Figure C122. Effect of the membrane forces on the stress field  
 
When h is on the order (or greater) than the element size, membrane force can corrupt crack tip 
fields. In this specific case, the “tiling” of the stress field hampers crack propagation. Turning 
off the membrane forces enables smooth fields and permits crack tip blunting.  
 
C6.3 Integration scheme of BCJ_mem 
 
Time step studies conducted in prior work motivated us to re-examine the integration scheme for 
BCJ_mem. Arthur Brown has moved to an implicit scheme for pressure and damage and we are 
currently debugging the implementation for X-Prize. While we are very close, a few issues 
emerged that we need to consider.  If one assumes dilute void growth, should the dilatational 
strain continue to grow with increasing porosity? Because coalescence will occur, large 
volumetric strains are non-physical and will affect the boundary value problem in unexpected 
ways. We are currently considering this matter. We also should note the obvious - the need to 
move to an implicit integration scheme. We still are having issues with the prior, explicit 
implementation. Large, nonphysical triaxilities develop in the localization elements prior and 
during crack propagation. This complicates both the fitting process and ultimately the reliability 
of our X-Prize predictions. We hope to be using an implicit scheme in the very new future and 
we will revise both our fitting procedures and our predictions with the new scheme. 
 
C6.4 Issues with the compliance 
 
We investigated the role of specimen compliance and its impact on our predictions.  Included in 
our original report, we asserted that our assumed boundary conditions would be artificially rigid 
and, therefore, would reduce the initial compliance.  To test the hypothesis, a new set of 
boundary conditions was applied which removed the rigid plugs from the loading holes and 
applied the displacements at the distal edges of the loading holes.  Figure C123 plots the load 
versus displacement for the experiments and three simulation results.   
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Figure C123. Load versus displacement prior to crack propagation showing the experimental 
observations plotted with three simulation results: a) the original simulation with geometry 
exactly matching specimen drawings and assumed pin-loading boundary conditions; b) an 
alternate boundary condition focusing the applied load at the top (and bottom) of the loading 
holes; and, c) an alternate geometric arrangement reflective of the average “as-built” geometry 
of the experiments. 
 
In the figure, the solid black line shows the original prediction while the gray lines are the 
experimental observations. It is noted that the initial compliance of the experimental specimens 
is not adequately captured in the original simulation.  The dashed black line is the simulation 
result with the modified boundary conditions.  By design, this set of results is less stiff than the 
original simulation and represents a greater deviation from the experimental findings.  The 
possible sources of this discrepancy are initial geometry and materials properties because there is 
no crack propagation in this early stage of loading.  Upon request, Brad Boyce quickly provided 
a micrograph of a failed specimen which clearly illustrates the fatigue pre-crack. Closer 
observation of the fatigue pre-crack revealed that the initial crack depth was smaller than per the 
design drawing.   
 
Figure C124 shows the experiment observation and measurement of the crack depth (courtesy B. 
Boyce).   



204 

 
 
Figure C124. The fatigue pre-cracked surface of one of the experimental specimens. 
 
Furthermore, in the experimental records, the net section width was recorded.  The average of 
these was 0.12595”, which is 0.00195” greater than the design drawing.  These differences are 
small; however, they do make a noticeable difference in the initial compliance.  In Figure C123, 
the solid blue line shows the simulation result with the original boundary condition, but with the 
geometry modified to accommodate the small perturbations in the observed geometry.   
One can see that the small changes in the geometry and boundary conditions make significant 
differences in the initial compliance.  These differences are dramatically escalated in the driving 
force.  Figure C125 plots the driving force calculation for the original simulations and the 
modified boundary conditions (with the calculation for the modified geometry/modified 
boundary condition yet completed).  For the difference in initial stiffness between the original 
boundary conditions and the modified boundary conditions, the difference in the driving force is 
large.  This will likely be larger for the as-built geometry.   
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Figure C125. The driving force for the original results and for the simulation with modified 
boundary conditions.   
 
In summary, we are still pushing ahead on multiple fronts to better understand both the 
methodology and our ability to tune and predict crack initiation and propagation for the given 
geometry with our given physics. 
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APPENDIX D: XFEM 
Jim Cox (1524), Ben Spencer (1542), and David Littlewood (1435) 
 
D1. Predictions for Challenge 1A 
 
The X-Prize XFEM group analyzed the 1A challenge using finite element modeling with elastic-
plastic material models and a failure criterion based on equivalent plastic strain. Two analysis 
codes were used: Abaqus and Sierra Mechanics. In both cases, model calibration was carried out 
against experimental data provided by Jerry Wellman. In neither case was the stress triaxiality 
considered. A criterion that does account for the triaxiality, the tearing parameter (Wellman), has 
been used in Sierra with success. Other criteria that treat the bound on equivalent plastic strain as 
a function of the stress triaxiality are given in the literature by e.g. Wiezbicki et al. 
  
The calibrated models and failure criterion were then applied to the 1A problem. The resulting 
predictions are: 
  
Table D1. Predictions for Challenge 1A. 

Software Load-Line Displacement Reaction Force 
Abaqus 0.09 inches 3100 pounds 
Sierra Mechanics 0.086 inches 3080 pounds 

 
Details regarding the analyses are provided below. For both codes, additional analyses have been 
completed since the January 4th submission. The analyses carried out with Abaqus include a 
mesh refinement (which reduced the load-line displacement from approximately 0.1 to 0.09 
inches). The analysis carried out with Sierra Mechanics contains several improvements, 
specifically, changing the element type to the nodal-based tetrahedron and explicitly modeling 
the loading pins. 
 
D1.1. Introduction 
 
Extended finite element method (XFEM) capabilities are in a research and development state 
both at Sandia and within commercial FEA codes. This is reflected in the results obtained for this 
first challenge problem. To “predict” crack initiation two “XFEM approaches” were taken – one 
using Abaqus, and the other using Sierra mechanics. Neither code is equipped yet with the ability 
to apply general initiation criterion and to introduce a strong discontinuity in an arbitrary position 
within the domain – though both are quickly approaching this goal. While Abaqus (version 6.9) 
has 2d and 3d XFEM capabilities, its crack initiation criteria for XFEM are limited to upper 
bounds on the maximum principal stress or elastic strain. Sierra mechanics can not yet initiate an 
XFEM crack based upon mechanics. Note that because the codes’ limitations, the more 
meaningful results presented do not use XFEM to represent the kinematics of a crack but rather 
answer the question of when the crack would initiate at a point if it were based upon equivalent 
plastic strain. Overviews of some the Abaqus and Sierra mechanics results are presented in the 
two sections below. 
 
D1.2. Abaqus XFEM Results 
Jim Cox (1524) 
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The table below summarizes the candidate initiation states highlighted in Figure D126. The 
underlined results are those reported in January. Since measures of elastic strain are not 
commonly used for crack initiation for ductile fracture, only the states of equivalent plastic strain 
are considered useful; even these predictions do not address the stress triaxiality. After the first 
mesh refinement a better prediction is Δd~0.09 in. and F~3100 lbs, but Figure D126 suggests 
that while the load may not change much with mesh refinement Δd might. However, the 
omission of making the initiation criterion dependent of the stress triaxiality may be a bigger 
factor than the mesh density. 
 
Table D2.  Candidate crack initiation7 states. 
Initiation Criterion Mesh 1 

Δd (in) 
Mesh 1 
F (lbs) 

Mesh 2 
Δd (in) 

Mesh 2 
F (lbs) 

max(εep)>0.81 0.09920 3119 0.08928 3086 
max(εep)>0.815 0.09965 3118 0.08977 3085 
max(εep)>0.852 0.10324 3113 0.09325 3080 
max(

€ 

εmax
e )> 0.0113 0.2462 2801 0.13577 2981 
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 Figure D126. Challenge 1A solutions for 2 meshes. 
 
 
D1.3. Sierra Mechanics “XFEM Results” 
Ben Spencer (1542) and David Littlewood (1435)  
 
The load line displacement and pin reaction force at the onset of cracking in the 1A challenge 
problem have been reevaluated using explicitly modeled pins and the nodal-based tetrahedron 
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element type available in Sierra Mechanics. The XFEM capabilities in Sierra are operable only 
with single-integration-point four-node tetrahedron elements, of which there are two types: the 
standard four-node tetrahedron, and the nodal-based tetrahedron. The standard four-node 
tetrahedron was used for the initial analysis of the 1A challenge problem (submitted January 4th). 
The results from the initial analysis, however, exhibited signs of overly stiff material response, 
which is characteristic of the standard four-node tetrahedron. A secondary analysis using the 
nodal-based tetrahedron yielded improved results. Further improvements were achieved by 
explicitly modeling the loading pins, as opposed to applying loading directly to a node set on the 
inner portion of the loading holes. 
 
Using nodal-based tetrahedron elements, the Sierra Mechanics simulation predicts crack initiation 
at: 
 
Load line displacement = 0.086 inches 
Force = 3080 pounds 

 
Figure D127. Sierra Mechanics simulation at failure. 
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D2. Follow-Up for Challenge 1A 
 
D2.1  Abaqus XFEM 
 
The questions given in January are first answered followed by the main results. The results 
submitted in January were limited to single meshes. After the initial submission, additional work 
on mesh convergence was conducted and presented here (mesh 2). 

1.	
  Describe	
  what	
  material	
  model	
  you	
  used	
  for	
  deformation	
  (not	
  crack	
  initiation)?	
  How	
  did	
  you	
  calibrate	
  
that	
  model	
  against	
  material	
  properties?	
  What	
  parameters	
  did	
  you	
  calibrate?	
  Please	
  specify	
  what	
  
specific	
  resources	
  (datasets)	
  you	
  used	
  to	
  calibrate	
  the	
  parameters.	
  

 
Abaqus’s isotropic hardening plasticity model was applied to the problem. To calibrate the 
plasticity model, I modeled the gage length region of a tensile specimen (mesh provided by John 
Emery), and then fit a piecewise linear hardening function to match the engineering stress versus 
nominal strain results. The experimental data used to calibrate the model were those provided by 
Jerry Wellman from tests performed in Theresa Cordova’s structural mechanics lab for three round 
bars (labeled on the share-point site as ph13-8-h950-testN-smooth.dat). The FEA model consisted 
of a half model axially and a twenty-degree section radially. 

Additional details:  
The elastic properties were taken from the Carpenter 13-8 stainless data sheet: E=28.3e6 psi, 
ν=0.28. 
 
Figure D128 shows the first 3 calibrations for the hardening functions. The first hardening function 
came from the sharepoint file labeled handbook-tru.dat. Figure D129 shows how the first three 
calibrations affect the predicted specimen response and compares them with experimental test 3. 
Figure D130 and Figure D131 shows the results for the fourth calibration. Calibration 4 made the 
predicted tensile test behavior closer to the average of the three tensile tests – biased less to test 3. 
As such the slope of the hardening curve was reduced in the last line segment. Calibration 5 
extended the hardening to larger values of effective plastic strain. Without extending the hardening 
curve, the plastic response was perfectly plastic after the last line segment. 

2.	
   Describe	
   what	
   material	
   model	
   you	
   used	
   for	
   crack	
   initiation?	
   How	
   did	
   you	
   calibrate	
   that	
   model	
  
against	
   material	
   properties?	
   What	
   parameters	
   did	
   you	
   calibrate?	
   Please	
   specify	
   what	
   specific	
  
resources	
  (datasets)	
  you	
  used	
  to	
  calibrate	
  the	
  parameters.	
  

 
Abaqus’s crack initiation criteria for XFEM are limited to upper bounds on the maximum principal 
stress or elastic strain. Thus each criterion requires a single parameter – the corresponding bound. 
Since these criteria are not expected to be very useful for ductile fracture, I also examined the state 
at which the equivalent plastic strain reached critical values observed in the tensile specimen 
(crack initiation and specimen failure). The same data used to calibrate the plasticity model was 
used to calibrate the initiation models. The end of the curves in the experimental data was assumed 
to be the failure point for the specimens. Similarly the lack of convergence in the FEA model was 
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assumed to be the point where the specimen would fail (i.e., the elastic strain energy exceeded the 
energy needed to create the new surface). Numerically convergence fails, as it is very difficult to 
capture the dynamic response under displacement control alone. A caveat here is that cohesive 
crack model was not calibrated for the material, rather a low fracture energy was attributed to the 
interface. While not usable in the Abaqus XFEM implementation yet, critical values of equivalent 
plastic strain were also recorded to determine when the crack might initiate based upon these 
values. 

Additional details:  
Figure D131 shows two model responses, the only difference of which was the criterion used for 
the crack initiation. One was tuned for the maximum principal stress criterion (smax= 393 ksi) and 
the other for the maximum principal elastic strain criterion (

€ 

εmax
e =0.0113). The calibrations for the 

crack initiation occur nearly at the same state and fall within the experimental scatter. (Considering 
that neither are expected to be accurate, matching them closely is like putting a $1000 saddle on a 
$10 horse.) Note that the equivalent plastic strain at these failure points is approximately 0.852. 
 
The motivation for extending the hardening in calibration 5 was that the initiation criteria were not 
being satisfied with a 3D model of the challenge specimen, even when the loading appeared to be 
extreme. The equivalent plastic strain in the tensile specimen exceeded the last segment of the 
hardening function, and thus perfect plasticity was occurring at some points in the specimen. The 
only perceptible change in the tensile specimen modeled response with the change in calibration 
was when the crack initiated and failed. Figure D132 shows that failure occurred earlier with the 
change of calibration. All of the initial material calibration work was done using Abaqus’s c3d8r 
element – an 8-node brick that uses reduced integration. The initial models of the challenge 
specimen had used the c3d8 element – an 8-node brick that uses selectively reduced integration. 
While the element type had some effect on when failure occurred (run 10 vs. run 11), it was less 
significant than the change in calibration (run 9 vs. run 11). Figure D133 shows that the initiation 
criterion for principal elastic strain can be calibrated to give good results for plasticity model 
calibration 5; in this case the criterion was 

€ 

εmax
e =0.01122. For simplicity, since I don’t expect the 

strain initiation criterion to be useful, I used 

€ 

εmax
e =0.0113 for both plasticity model calibrations. 

Note that using the XFEM capability there is a distinction between when the crack initiates and 
when the specimen fails. The maximum equivalent plastic strain is about 0.81 at initiation and 
about 0.85 at failure – both values are later considered. 
 
The initial submission results did not include a mesh convergence study for the material 
calibration. Figure D134 shows the original calibration mesh and a refined mesh (h->h/2). Figure 
D135 shows the results for both meshes indicating excellent convergence. The only noticeable 
difference is when the specimen fails. These results are for strain initiation when 

€ 

εmax
e =0.0113. For 

mesh 2 the specimen fails at an engineering strain of about 0.003 less. 

3.	
   How	
   was	
   uncertainty	
   captured	
   in	
   your	
   simulation:	
   (a)	
   material	
   variability,	
   (b)	
   uncertainty	
   in	
   the	
  
failure	
  criterion?	
  

Uncertainty was not explicitly modeled, as statistical data for the material and failure criterion was 
not readily available. While one could examine the effects of varying the initiation criterion within 
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the experimental bounds, it didn’t seem like that fruitful of an exercise with an experimental 
population of 3. 

4.	
  Please	
  summarize	
  your	
  examination	
  (if	
  any)	
  of	
  mesh	
  dependency	
  of	
  your	
  result.	
  

The only mesh dependence of these results is that associated with having a sufficiently fine mesh 
to obtain convergence. Another mesh refinement for the challenge problem would be useful in 
evaluating the “closeness to convergence.” Since this initiation study did not examine the 
development of the crack until it reached the outer surface of the specimen “pathological mesh 
dependence” was not an issue. As discussed in more detail below, this type of mesh dependence is 
a key concern in modeling failure and is overcome by the XFEM formulation. 

Additional details:  
Typically when the phrase “mesh dependency” is used in the context of failure modeling, it is 
referring to the classic “pathological mesh dependence” that occurs when softening is explicitly 
included in the constitutive response and is not defined to be dependent on the element size. For 
this type of mesh dependence, the response during softening is “pathologically dependent” upon 
the mesh size – pathologically in the sense that the energy required to create a new surface in a 
quasi-brittle tensile specimen will approach zero with mesh refinement (i.e., convergence is to a 
physically meaningless solution). The cohesive crack idealization kinematically represents the 
failure response by a strong discontinuity in displacement. As such the failure region is idealized 
by the surface over which these jumps occur, and the corresponding softening is described in terms 
of these jumps. The cohesive crack formulation includes a length scale associated with the failure 
via the cohesive crack law, and inherently does not have pathological mesh dependence. The 
XFEMs considered in this study adopt a cohesive crack formulation and thus do not have a 
pathological mesh dependence either. 

5.	
  Computational	
  Efficiency.	
  Estimate	
  the	
  node-­‐hours	
  and	
  processor	
  speed	
  used	
  to	
  run	
  one	
  solution	
  to	
  
the	
  problem.	
  Report	
  a	
  range	
  if	
  necessary,	
  for	
  example	
  if	
  you	
  used	
  different	
  mesh	
  sizes,	
  report	
  the	
  
time	
  for	
  each	
  of	
  the	
  mesh	
  sizes.	
  

All analyses reported below were run using a single processor on the new blade workstation 
(Processor speed: 2.93 GHz). 
 
Analysis details – Final Time: 0.902, Pin displacement at Final time: 0.2 inches, Maximum time 
increment: 2e-3. The analysis did not reach the final time with mesh 2, as noted below. 
 
Table D3.  Computational efficiency. 
Mesh No. Nodes No. Els No. Vars Time 

increments 
Time 
completed 

Total CPU 
Time (hrs) 

1 15,589 6134 46,767 451 0.902 0.48 
2 109,886 49,072 329,658 434 0.848 7.3 
 

6.	
  What	
  force	
  (or	
  range	
  of	
  forces)	
  is	
  predicted	
  at	
  a	
  load	
  line	
  displacement	
  of	
  0.01	
  in?	
  0.02	
  in?	
  0.03	
  in?	
  
0.04	
  in?	
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Table D4.  Predicted force. 
Load line 
Displacement (in) 

Mesh 1 
Force (lbs) 

Mesh 2 
Force (lbs) 

0.01 1145 1133 
0.02 2037 2018 
0.03 2602 2577 
0.04 2905 2877 

7.	
  Describe	
  the	
  strengths	
  and	
  weaknesses	
  of	
  your	
  approach.	
  

Weaknesses 
• Initiation criteria that can be use the XFEM capabilities are limited to maximum principal stress 

and elastic strain. Use of a criterion that bounds equivalent plastic strain as a function of the 
stress triaxiality is supposed to be available in the next release. For now, simple bounds on the 
equivalent plastic strain were examined. 

• I did not have meaningful cohesive crack properties; arbitrary, small values were used for the 
fracture energy. 

• Initiation of crack did not account for propagation to the outer surface where it would be 
observed in the experiment. 

• Additional mesh convergence studies for the challenge specimen were not completed. 
Strengths 
• XFEM allows the crack to be explicitly represented by a crack surface. The value of this will be 

more apparent with crack propagation. 
 
D2.1.1 Main Results  
 

What	
  is	
  the	
  loadline	
  displacement,	
  Δd,	
  needed	
  to	
  induce	
  crack	
  initiation	
  (in	
  inches)?	
  What	
  is	
  the	
  peak	
  
force	
  F	
  applied	
  to	
  the	
  sample	
  prior	
  to	
  crack	
  initiation	
  (in	
  pounds)?	
  

 
The emphasis this first quarter in using Abaqus was to evaluate what its current capabilities are 
and to start applying it to the challenge problem. John Emery’s coarse mesh was used in the initial 
analyses (Figure D136) and designated as “mesh 1.” This month one mesh refinement analysis was 
completed (mesh2), which contained the first mesh and has 8x as many elements. Both plane 
stress, plane strain, and 3D models were examined, but initial lack of agreement in the analyses 
suggested that a 3D analysis was necessary for the challenge specimen. The plane strain model 
(with strain initiation) did give a maximum load of about 3300 pounds – in the “ball park” of the 
3D results (~3100). The necking is significant in the region where the crack should initiate, 
suggesting the need for 3D analyses. Most of the 3D results given below are for calibration 5. 
 
Using plasticity calibration 4 and the principal stress initiation criterion the specimen did not fail 
for an applied pin relative displacements of 0.3”. Since the equivalent plastic strain was very high, 
this criterion was assumed to not be physically meaningful. 
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Figure D128. First 3 calibrations of the hardening function. 
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Figure D129. Abaqus plasticity model calibrations 1-3 compared with test 3. 
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Figure D130. Plasticity calibration 4 versus 3 experimental tests – full range. 
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Figure D133. Calibration of initiation strain for plasticity model calibration 5 

 
(a) mesh 1 (2070 elements)      (b) mesh 2 (16,560 elements) 
Figure D134. Material model calibration meshes. 
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Figure D135. Calibration 5, mesh convergence test. 
 
 

 
Figure D136. Coarse 3D mesh (mesh 1) used in challenge 1A solution 
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D2.2  Sierra XFEM 

1.	
   Describe	
   what	
   material	
   model	
   you	
   used	
   for	
   deformation	
   (not	
   crack	
   initiation)?	
   How	
   did	
   you	
  
calibrate	
   that	
  model	
   against	
  material	
   properties?	
  What	
   parameters	
   did	
   you	
   calibrate?	
   Please	
  
specify	
  what	
  specific	
  resources	
  (datasets)	
  you	
  used	
  to	
  calibrate	
  the	
  parameters.	
  

The material model selected for modeling PH13-8Mo H950 is the Multilinear Elastic-Plastic 
Hardening Model available in Sierra. Initial model parameters were selected based on the 
calibration provided by John Emery. The parameters for the piecewise linear hardening curve 
were then further refined by comparing the results of a tensile test simulation to the response 
curves provided by Jerry Wellman from tests performed in Theresa Cordova’s structural 
mechanics lab (ph13-8-h950-test-1.cl.txt, ph13-8-h950-test-2.cl.txt, and ph13-8-h950-test-
3.cl.txt).  
 
The finite element model used in the calibration process is shown below. For computational 
efficiency, only 1/8th of the tensile test specimen was modeled and symmetry boundary 
conditions were applied. 

 
Figure D137. Tensile test simulation used for model calibration. 
  
The calibration process involved matching the response curve of the simulated tensile test to the 
experimental response curves provided by Jerry Wellman. The response curve for the final 
calibration is shown below along with the experimental data. 
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Figure D138. Calibration curves. Good agreement was achieved between the Sierra Mechanics 
simulation and experimental results. 
 
The calibrated material data are: 
 

Table D5.  Calibrated material constitutive properties. 
Density 7.34e-4 lb·s2/in4 

Young’s modulus 28.3e6 lb/in2 

Poisson’s ratio 0.28 
Yield stress 190.0e3 lb/in2 
Beta 1.0 (isotropic 

hardening) 
 
The hardening curve is defined by the following points (truncated for brevity): 
 

Table D6.  Hardening curve. 
0.0 190000.0 
0.001248 221768.5 
0.003581 227461.8 
0.006150 230200.0 
0.008695 232150.0 
0.013682 233770.0 
0.020178 235180.0 
0.038934 238170.0 
0.062976 239540.0 
0.09 241500.0 
0.2 246000.0 
0.3 249000.0 
1.0 258000.0 
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A plot of the hardening curve is given below: 
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Figure D139. Calibrated hardening curve for the elastic-plastic material model. 

2.	
   Describe	
  what	
  material	
  model	
   you	
   used	
   for	
   crack	
   initiation?	
   How	
   did	
   you	
   calibrate	
   that	
  model	
  
against	
  material	
   properties?	
  What	
   parameters	
   did	
   you	
   calibrate?	
   Please	
   specify	
  what	
   specific	
  
resources	
  (datasets)	
  you	
  used	
  to	
  calibrate	
  the	
  parameters.	
  

Crack initiation was defined based on a critical value for equivalent plastic strain. The critical 
value was determined using the calibration described in the response to question 1, above. As 
illustrated in the deformed image of the test specimen, the maximum value of equivalent plastic 
strain at the point of failure was calculated to be 0.85. This point corresponds to the right-most 
point in the calibration plot, at which point the experimental specimens failed. 

3.	
  How	
  was	
  uncertainty	
   captured	
   in	
  your	
   simulation:	
   (a)	
  material	
   variability,	
   (b)	
  uncertainty	
   in	
   the	
  
failure	
  criterion?	
  

The modeling approach taken is deterministic in nature and model uncertainty was not 
quantified. It is certainly true that material variability and uncertainty in the failure criterion, 
along with additional uncertainties in the modeling process, lead to uncertainty in the predicted 
load-line displacement and reaction forces in the pins. However, in the absence of a large pool of 
experimental data, it is difficult to make meaningful approximations of the uncertainly in the 
present approach. 
 
One possible approach to estimating uncertainty is to run a series of simulations in which the 
material properties and failure criterion are perturbed. This would provide an estimate of the 
sensitivity of the predicted values for load line displacement and reaction force to uncertainty in 
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the material model parameters. This approach, however, requires knowledge of the statistical 
variability of the material properties and requires a relatively large amount of analysis time. 
 
Uncertainty in the failure criterion is most likely the largest source of uncertainty in the 
prediction of crack initiation. Equivalent plastic strain is a commonly used metric for the failure 
of ductile metals. It is difficult to determine the extent to which this metric is applicable to the 
1A challenge problem, however. Calibrating against a small set of data under relatively simple 
loading conditions, as was done in this study, is a potentially large source of error considering 
the more complex loading conditions present in the 1A challenge problem. 
 
Furthermore, mesh convergence in the sense of a consistent maximum value for equivalent 
plastic strain in the neighborhood of anticipated material failure under a given set of loading 
conditions proved difficult to achieve. Convergence of the maximum value of equivalent plastic 
strain was examined through a series of simulations using meshes that exhibited convergence of 
load line displacement and reaction force. These simulations showed inconsistencies in 
maximum equivalent plastic strain with variations of approximately 0.15 with no clear trend 
toward convergence. When defining failure based on a critical value of equivalent plastic strain, 
these inconsistencies resulted in variations in load line displacement at failure of approximately 
0.01 inches and variations in the corresponding reaction force of approximately 10 pounds. 

4.	
  Please	
  summarize	
  your	
  examination	
  (if	
  any)	
  of	
  mesh	
  dependency	
  of	
  your	
  result.	
  

Mesh dependence was addressed with a series of mesh convergence simulations, both for the 
calibration specimen and the 1A challenge specimen. 
 
Mesh convergence results for the calibration simulation are illustrated below. A uniform mesh 
was applied in each case. The response curves show convergence for all but the coarsest model. 
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Figure D140. Mesh convergence results for the calibration model. 
 
Mesh convergence results for the 1A challenge problem are presented below via plots of load 
line displacement versus reaction force. For the 1A problem, mesh refinement was concentrated 
near the point of anticipated crack initiation and in the neighborhood of applied loading. Note 
that the mesh convergence study for the 1A model problem was carried out with loading applied 
directly to an inner portion of the loading holes (pins were not modeled). 
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Figure D141. Mesh convergence results for the 1A challenge problem 
 
Based on the 1A mesh convergence study, the mesh containing 98K elements, shown below, was 
selected for the predictive simulation. 
 

 
Figure D142. 1A mesh without pins 
 

 
Figure D143. 1A mesh with pins. 
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5.	
  Computational	
  Efficiency.	
  Estimate	
  the	
  node-­‐hours	
  and	
  processor	
  speed	
  used	
  to	
  run	
  one	
  solution	
  
to	
  the	
  problem.	
  Report	
  a	
  range	
  if	
  necessary,	
  for	
  example	
  if	
  you	
  used	
  different	
  mesh	
  sizes,	
  report	
  
the	
  time	
  for	
  each	
  of	
  the	
  mesh	
  sizes.	
  

Calibration specimen mesh convergence study: 
 

Table D7.  Computational Efficiency. 
Number of Elements Total CPU Time 
13314 0:44:00 
32562 2:14:28 (mesh convergence achieved 

here) 
53313 4:48:20 
98859 8:42:44 

1A model mesh convergence study (Adagio quasi-static model without pins): 
Number of Elements Total CPU Time 
43926 1:51:06 
57627 2:41:14 
97963 6:08:35 (mesh convergence achieved 

here) 
150632 10:26:34 

1A model predictive simulation (Presto explicit dynamic model with pins): 
Number of Elements Total CPU Time 
98368 57:30 

6.	
  What	
  force	
  (or	
  range	
  of	
  forces)	
  is	
  predicted	
  at	
  a	
  load	
  line	
  displacement	
  of	
  0.01	
  in?	
  0.02	
  in?	
  
0.03	
  in?	
  0.04	
  in?	
  

The predicted forces are: 
 

Table D8.  Force predictions for displacements from 0.01 to 0.04 inches. 
Displacement Force 
0.01 inches 1100 pounds 
0.02 inches 1990 pounds 
0.03 inches 2540 pounds 
0.04 inches 2850 pounds 

 
A displacement versus force plot is given below, ending at the point of predicted failure 
(equivalent plastic strain > 0.85). 
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Figure D144. Load line displacement versus force (plot ends at predicted failure). 

7.	
  Describe	
  the	
  strengths	
  and	
  weaknesses	
  of	
  your	
  approach.	
  

The approach taken for the prediction of crack initiation in the 1A model has a number of 
strengths in comparison to alternative approaches. Most importantly, the approach taken can be 
directly extended in future X-Prize challenges to include the XFEM capabilities in Sierra 
Mechanics for modeling crack propagation. The approach taken in the 1A challenges is centered 
on the Multilinear Elastic-Plastic Hardening Model and the selection of equivalent plastic strain 
as the crack initiation criterion. Defining material failure based on equivalent plastic strain does 
not require predetermination of the location of failure, as may be required in alternative 
approaches. Both the constitutive model and the failure criterion are relatively simple approaches 
for simulating ductile material response and have the advantage of being easily calibrated against 
the experimental response curves presented above. In the absence of additional experimental data 
and knowledge of the underlying physics of crack initiation in PH13-8Mo these approaches offer 
a sound approach to the 1A challenge problem. 
 
A disadvantage of the approach taken is the uncertainty surrounding the choice of equivalent 
plastic strain as the failure criterion. Crack initiation is a complex process involving material 
microstructure and chemistry in addition to complex local deformation fields. It is impossible to 
determine the extent to which the critical value for crack initiation found in the calibration 
simulation can be applied to the more complex deformation state found in the 1A challenge 
problem. 
 
Wrap-Up Questions 
 

1.	
  What	
  was	
  the	
  %	
  difference	
  of	
  your	
  predictions	
  to	
  the	
  experimental	
  values	
  (max	
  force	
  prior	
  to	
  crack	
  
initiation	
  and	
  COD	
  displacement	
  at	
  crack	
  initiation)?	
  	
  

In previous discussions, we noted that we used three distinct types of analyses each based upon a 
different crack initiation criterion: (a) maximum principal stress, (b) maximum principal elastic 
strain, and (c) maximum equivalent plastic strain. The first two reflected the limitations of 
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Abaqus’s initiation criterion for that version of the code and were not expected to yield good 
quantitative results. As such the only results discussed here are those for criterion (c). The results 
for Abaqus and Sierra were in good agreement in the revised predictions and both were in good 
agreement with the initial Abaqus results.  

The prediction of the maximum force fell within the experimental scatter.  

The prediction of the COD at crack initiation was approximately 15 percent less than the lower 
bound of the experimental results.  

2.	
   If	
  you	
  (or	
  your	
  team)	
  submitted	
  revised	
  predictions,	
  either	
  after	
  the	
   initial	
  due	
  date,	
  or	
  after	
  the	
  
comparison	
   between	
   modeling	
   results,	
   did	
   your	
   revisions	
   bring	
   the	
   prediction	
   closer	
   to	
   the	
  
experimental	
  values?	
  	
  

Initial results with Abaqus and Sierra differed significantly, but we were not able to resolve the 
source of the differences for the initial submission. Upon further analysis, we determined that the 
initial results for Sierra used standard four-noded tetrahedron elements yielding a model that was 
overly stiff and incorporated an approximate boundary condition for the pins that was inaccurate. 
The Sierra model was revised to use nodal-based tetrahedron elements and explicitly modeled 
the pin contact. The Abaqus model was revised to examine the effects of element type and mesh 
refinement. Revised predictions with both Sierra and Abaqus were in good agreement with the 
initial Abaqus results. The Sierra results were significantly improved by the revisions.  

3.	
  Describe	
  the	
  source(s)	
  of	
  discrepancy	
  (if	
  any)	
  between	
  your	
  prediction	
  and	
  the	
  experimental	
  result.	
  
Where	
   possible,	
   provide	
   quantitative	
   estimates	
   of	
   how	
   much	
   your	
   prediction	
   might	
   have	
  
improved	
  if	
  these	
  sources	
  were	
  incorporated	
  into	
  the	
  prediction.	
  Discuss	
  the	
  ease	
  or	
  difficulty	
  in	
  
incorporating	
  such	
  improvements	
  in	
  future	
  work.	
  	
  

Crack initiation was defined experimentally by the state at which a crack reached the surface 
specimen and had a length of 100-500 mm. Since neither code could both initiate and propagate 
the crack to the surface of the specimen using an equivalent plastic strain criterion, we took 
initiation to be the state at which the equivalent plastic strain reached the critical value defined  

Comment [J1]: Based on an estimate of the experimental value of 2.7 mm and a model value of 
0.09” (~2.29 mm)  

by the tensile specimen. As such, our under-prediction of the COD is consistent with the 
differences in the definitions of initiation (i.e., the COD would increase as the crack propagated 
to the surface of the specimen). Until the codes can address the propagation based upon 
equivalent plastic strain, we can’t further quantify the difference caused by the differing 
definitions of initiation. Hopefully both codes will have advanced enough to examine the effect 
for the next challenge.  
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4.	
  Was	
   this	
   effort	
   helpful	
   for	
   the	
   development	
   and	
   evaluation	
   of	
   your	
   modeling	
   paradigm?	
   How	
  
might	
  we	
  improve	
  the	
  challenges	
  in	
  the	
  future?	
  	
  

The first challenge was helpful in being able to examine how well equivalent plastic strain can be 
used to predict initiation, but it leaves the issue of dependency upon the stress triaxiality open. 
To be frank we were surprised to have done so well when not incorporating this effect. For future 
tests that are likely to address propagation more data on the fracture behavior of materials will be 
necessary to effectively utilize a cohesive zone idealization.  
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D3. Predictions for Challenge 1B 
 
Summary 
 
The X-Prize XFEM group analyzed the 1B challenge using finite element modeling with elastic-
plastic material models and a failure criterion based on equivalent plastic strain or maximum 
principal logarithmic strain.  Two analysis codes were used:  Abaqus and Sierra Mechanics.  For 
this challenge, a single model calibration was carried out against the experimental data provided 
(Modern Industries Inc. test of 7/6/10).  As in challenge 1A, the affect of stress triaxiality on 
crack initiation was not considered, because it was not available in our models.  A criterion that 
does account for the triaxiality, the tearing parameter (Wellman), has been used in Sierra with 
success.  Other criteria that treat the bound on equivalent plastic strain as a function of the stress 
triaxiality are given in the literature by e.g. Wiezbicki et al. 
 
The calibrated models and failure criterion were then applied to the 1B problem.  The 
“development state” of both codes has limited what could be modeled for this problem, but “state 
of the codes” results are presented separately below. 
 
Abaqus 
Table D9.  Abaqus predictions for Challenge 1B. 
  Δd at crack 

initiation 
α

 

Peak force 
prior to 

initiation 

Crack Path Δd when 
crack reaches 

1st line 
α

 

Force when 
crack reaches 

1st line 

 “Upper bound” 0.059 in 853 lb    
2024-T3 3D (best est.) 0.041 in 812 lb D-E-A-F 0.348 548 lbΞ 
 2D   D-E-F-A   
* Note that the best estimate value used for initiation corresponds to when the crack would first initiate based upon 
equivalent plastic strain.  This would not yield a visible crack, but it was the measure used in challenge 1a that was 
relatively accurate.  The upper bound value is based upon when the crack was first visible on the surface of the 
specimen, which can only be based upon total strain in Abaqus.  The upper bound value includes the effect of crack 
cohesion. 
Ξ 

This value is expected to be low, since cohesion would increase the value.  The value based on a cohesive crack 
will be reported if Abaqus staff can correct the convergence problem. 
α 
Δd values here are based upon the uy displacements alone – a projected length.  If the measurement is for the total 

distance between the points, these must be recalculated. 

 
D3.1 Introduction 
 
Extended finite element method (XFEM) capabilities are in a research and development state 
both at Sandia and within commercial FEA codes.  This is again reflected in the results obtained 
for this second challenge problem.  To “predict” crack initiation (and continued propagation) two 
“XFEM approaches” were taken – one using Abaqus, and the other using Sierra mechanics.  
Neither code is equipped yet with the ability to apply general initiation criterion and to introduce 
a strong discontinuity in an arbitrary position within the domain – though both are quickly 
approaching this goal.  (The beta version of Abaqus, which we now have, allows the 
initiation/propagation criterion to be defined by a user subroutine, but we received it too late to 
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develop a user subroutine for this challenge problem.)  While Abaqus (version 6.10) has 2d and 
3d XFEM capabilities, its crack initiation criteria for XFEM are limited to upper bounds on the 
maximum principal stress or logarithmic strain.  Version 6.9 (challenge 1A) used maximum 
principal elastic strain, so at least the total strain measure includes the plastic deformation.  
Sierra mechanics can not yet initiate an XFEM crack based upon mechanics, so a preliminary 
analysis was used to seed an initial crack.  Overviews of some the Abaqus and Sierra mechanics 
results are presented in the two sections below. 
 
D3.2 Plasticity Model Calibration 
Jim Cox (1524) 
 
Abaqus’s isotropic hardening plasticity model was used for the model calibration.  To calibrate 
the plasticity model, I modeled the gage length region of a tensile specimen (mesh provided by 
John Emery), and then fit a piecewise linear hardening function to match the engineering stress 
versus nominal strain results.  The FE model used symmetry with respect to each coordinate 
plane.  The tensile specimen was 2”x1/2”x1/8”.  The triple-symmetry model used for calibration 
was 64x16x4 elements, thus each element was a cube measuring 1/64” on each side.  The 
specimen model had a taper of 0.002” over its length with an average width of 0.505”.   
 
Several iterations were used to calibrate the hardening of the plasticity model.  Figure D145 
shows 3 such iterations.  The hardening used for run 11 was used for all of the following results.  
The point where run 11 intersects the experimental response prior to the last drop was the state 
used to initiation cracking.  Two measures of this state were used: (1) the maximum principal 
value of the total logarithmic strain (ε1), and (2) the equivalent plastic strain (εeq).  Abaqus used 
ε1 for all crack initiation and propagation calculations.  I still used εeq to estimate initiation in the 
results.  For Sierra εeq was used for all initiation and propagation calculations. 
 
The fracture energy of the material was initially estimated from a fracture toughness value of 
about 29.1 ksi-in1/2 (Aerospace Specification Metals Inc.).  The estimated fracture energy value 
for plane strain conditions was about 87 lb/in.  Unfortunately, most of the results were obtained 
without incorporating the effect of the fracture energy.  Many attempts were made to incorporate 
it in the Abaqus analyses, but the analyses failed to converge before the crack could reach the 
first lines. 
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D3.3 Abaqus Results 
 
Meshes created by John Emery and Jerry Wellman were used in the Abaqus analyses.  Figure 
D146 shows the coarser mesh created by John Emery.  I quickly refined this mesh, for 2D 
analyses, by doubling the mesh density in each direction.  Because the meshing was graded in 
two concentric rings, the refined mesh is ugly but works.  The Wellman mesh is slightly coarser 
near the “initiation hole” but is finer over much of the crack path.  A caveat in using the 
Wellman mesh is that is assumed symmetry through the thickness of the specimen.  
Unfortunately, I later found that Abaqus does not maintain the symmetry conditions for cracked 
elements.  The effect of this “error” upon the results has not been investigated, but it is expected 
to reduce the plane strain effect near the center of the crack depth.  Formal mesh convergence 
studies were beyond the scope of the study, as I was struggling just to get some results. 
 
Figure D147 presents results from 4, 3-dimensional analyses.  The figure compares the results 
for two different meshes and with and without fracture energy included.  Unfortunately, the 
results with fracture energy will not converge for longer crack lengths, but the fracture energy 
appears to have a significant affect upon the results.  As such, I anticipate that the load levels 
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predicted by the Γ=0 analyses are likely to under predict those of the experimental results, but 
that’s all we can currently obtain.  I will submit the convergence problems to Abaqus to see if 
they can extend the prediction.  Figure D148 shows the predicted crack results for the Emery 
mesh with Γ=0. 
 
While the 3d results indicate that a plane stress approximation is a gross approximation for this 
problem, 2d analyses were used to supplement our results.  In particular, one analysis cracked 
most of the way through the specimen, giving a more complete crack path result.  Figure D149 
shows this 2d model.  A problem with Abaqus that significantly affected our ability to obtain 
results in 2d, was that when a crack path intersected an element edge at a very shallow angle, the 
crack stalled on that edge and plastic deformation increased ahead of the crack.  This occurred in 
the case shown in Figure D148, but in this case the analysis was almost complete. 
 
 

 
Figure D146. Coarse 3D mesh (mesh 1) used in challenge 1B solution. 
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(a) undeformed body            (b) deformed body 
Figure D148. Predicted crack in a 3d analysis of the specimen (Emery mesh, Γ=0). 
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Figure D149. Predicted deformed structure for a 2d model with Γ=0. 
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D4. Follow-Up to Challenge 1B 
 

What	
  do	
  you	
  believe	
  were	
  the	
  most	
  significant	
  sources	
  of	
  error	
  that	
  produced	
  discrepancy	
  between	
  
your	
  model	
   and	
   experimental	
   results?	
   	
  Where	
   possible,	
   provide	
   quantitative	
   estimates	
   of	
   how	
  
much	
   your	
   prediction	
   might	
   have	
   improved	
   if	
   these	
   sources	
   were	
   incorporated	
   into	
   the	
  
prediction.	
  	
  Discuss	
  the	
  ease	
  or	
  difficulty	
  in	
  incorporating	
  such	
  improvements	
  in	
  future	
  work.	
  

 
While further study is needed, we expect that the component of the model that had the greatest 
impact on the inaccuracy of our results was the criterion for crack initiation and propagation.  
There are many empirical criteria in the literature that incorporate additional parameters like 
stress triaxiality and that might allow one to obtain better results.  This will be further 
investigated to see if their inclusion in the code(s) might improve our results for the next 
challenge problem.  The usefulness of these empirical models, however, must be in their ability 
to capture the progressive fracture response (in terms of macroscopic variables) under 
significantly different conditions.  Simply having enough “knobs to turn” to match an individual 
experiment is only a calibration exercise – not prediction. 
 
To better evaluate the most significant source of error would require us to have software that is 
more mature than its current state.  Both Sierra and Abaqus are showing advancements but 
neither is in a state to facilitate extensive parameter studies.  Below is a list of factors that we 
would like to investigate to determine how they affect the results: 

Plasticity model and its calibration 
Cohesive model and its calibration 
Initiation model 
Crack propagation direction model 
Mesh density 
Dynamic effects with higher rate of loading (in original Sierra analyses) 

Limited discussions of these factors are presented below.  In addition to these factors that 
directly affect the accuracy of the calculations, factors affecting the computational efficiency of 
the codes come into play was well because they prevented us from performing more complete 
studies (especially with finer meshes).  Advances in the capabilities (particularly in Sierra SM) 
that will facilitate future studies are also discussed. 
 
D4.1 Plasticity model and its calibration 
 
Comparing the model results with the experiments, the XFEM models exhibited significantly 
more ductility after crack initiation.  This could be a result of the plasticity model, the cohesive 
zone models, or the crack initiation/propagation model.  For the Abaqus runs convergence errors 
occurred much earlier in the analysis when cohesion was included, and the reported model 
results did not even include interface cohesion.  Since the “tearing parameter” results exhibit a 
more brittle response, we compared the hardening model calibration with those of “tearing 
parameter model.”  Figure D150 shows that the models do not differ significantly, especially 
considering they were calibrated with different models for the tensile specimen, different 
elements, and different implementations of isotropic hardening plasticity. 
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Figure D150. Hardening models. 
 
D4.2 Abaqus 
 
Most additional analyses used a modified version of the meshes from Jerry Wellman, mainly 
because he had three different mesh densities available.  The modification was that a symmetry 
plane was not assumed and thus the meshes modeled the full thickness of the specimens.  
Previous analyses using the original meshes did not satisfy the symmetry boundary conditions 
along the crack. 
 
Most of the force-displacement plots presented here use the pin displacement rather than the 
measured COD.  This was just a matter of time constraints.  Either is fine for reflecting changes 
in ductility that might occur due to model changes. 
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D4.3 Cohesive model and its calibration 
 
No additional analyses were conducted to examine the effect of the cohesive zone model, 
because as mentioned above cohesion was not included in the reported results.  Figure D151. 
Shows earlier results using two different meshes, reflecting the obvious trend that including 
cohesion yields a more ductile result. 

 
Figure D151. Effect of cohesion on earlier results. 
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D4.4 Initiation model 
 
For this challenge problem, Abaqus only had two choices for initiation (and continued crack 
propagation): maximum principal stress, and maximum principal strain.  After the blind study, 
we were able to use a beta version of Abaqus that included the ability to define a user subroutine 
for initiation.  The user subroutine also allows one to define the model for the crack direction 
which will be discussed some below.  Figure D152 compares a force-displacement prediction 
using the original criterion (maximum principal strain) with that given by two models using 
maximum equivalent plastic strain.  The second analysis used a crack direction base upon the 
principal stress.  The differing crack geometry (reference the next section) appears to have 
increased the ductility of the specimen response. 

 
Figure D152. Results for both total strain and equivalent plastic strain initiation models. 
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D4.5 Crack propagation direction model 
The results shown here include cohesion, and thus “do not live very long,” but the same trends 
are observed when cohesion is omitted.  Figure D153 and Figure D154 show the initial crack 
geometries when two different models are used for crack direction – maximum principal σ and 

€ 

ε p , respectively.  The latter more closely resembles the crack directions obtained experimentally.  
For both cases equivalent plastic strain was used for initiation. 
 

 
Figure D153. Early cracking when using εeqp for initiation and σ1 for direction. 
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Figure D154. Early cracking when using εeqp for initiation and 

€ 

ε1
p  for direction. 

 
 
D4.6 Mesh density 
 
Figure D155 compares analyses with two different meshes.  The refined mesh, relative to that 
used in previous analyses, is denoted as W2_ns (Wellman mesh 2 without a symmetry plane).  
While refinement of the mesh did reduce the ductility some, the effect was small relative to the 
differences with the experimental results. 
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Figure D155. Effect of mesh refinement on force-displacement response. 
 
The analysis using the finer mesh did not show converge much past the peak response when run 
with quasi-statics.  Using implicit dynamics, the analysis went further but drove the time step 
extremely small and stopped making progress.  With the finer mesh the tendency of the crack to 
exhibit “tunneling” behavior is represented better.  Figure D156 and Figure D157 show the 
cracked specimen and the geometry of the crack alone. 
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Figure D156. Cracked specimen for refined mesh model. 

 
Figure D157. Geometry of Crack alone for refined mesh model. 
 
D4.7 Sierra 
 
The implementation of XFEM in Sierra is very new and under active development, and as a 
result, still has many limitations that will be resolved as it matures.  These limitations affected 
both the ability to run analyses in a timely manner and the ability to include the appropriate 
physics. 
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D4.8 Explicit Dynamic Time Integration 
 
One of the most severe limitations for analyzing X-Prize problem 1B was that Sierra’s XFEM 
implementation could only be run with explicit time integration.  Explicit dynamics is used to 
efficiently solve high rate dynamic problems with many small time steps.  It can be used to solve 
quasistatic problems such as the X-Prize problem by applying the loading at a low rate that 
minimizes dynamic effects.  That is what was done for the original analysis submitted for this 
problem.   
 
The dynamic effects from the loading rate used for the prediction had a significant effect on the 
results.  The Sierra XFEM prediction indicated crack propagation at a small angle above the 
horizontal direction.  This was significantly different from the test results, which indicated that 
the crack should initially propagate at roughly at 45-degree angle from the horizontal, and then 
turn to a nearly vertical direction.  After the test, analyses were performed at lower loading rates, 
and the crack propagated at a higher angle, so it appears that the inertial effects from the dynamic 
loading were at least partly responsible for the poor prediction of the crack path.  
 
A major drawback to running explicit dynamic XFEM simulations currently is that the cracked 
elements cause the stable time step to drop dramatically, which results in very long run times.  
Even with the very coarse mesh used in the pretest analysis, the model took around 3 weeks to 
run on a single processor.  There are currently code issues that prevent the use of XFEM in 
parallel that need to be resolved.  These constraints led to the use of the high loading rate that 
produced errors in the results. 
 
D4.9 Implicit Time Integration 
 
Because of the problems mentioned above, it was clear that it would be very difficult to do a 
reasonable study of the sensitivity of the model to various parameters if it takes several weeks to 
do a single simulation.  An implicit time stepping scheme is much better suited to analysis of this 
problem because the loading rate in the experiment is quasistatic.  In the time since the test was 
conducted, an initial capability to run XFEM with a quasistatic implicit solver was developed to 
facilitate further work.  This has enabled much more efficient solution of this problem without 
the errors due to inertial effects seen in the explicit dynamic solution. 
 
The quasistatic capability was only recently developed, so a very limited number of analyses 
have been performed on the X-Prize 1B problem.   The same mesh used in the pretest analysis 
was used, except that the method for modeling the pins was changed.  The pins were modeled 
with half-cylinders contiguously meshed with the test specimen, and boundary conditions were 
applied to the row of nodes along the axis of the cylinder to allow the specimen to rotate about 
the pins.  This was done to avoid convergence issues associated with contact in an implicit 
solver.   In addition, a preliminary analysis using a more refined mesh was also performed, 
although this model has not yet been run to completion.  The run times have gone down from 
weeks to hours, so future parameter studies will be greatly facilitated by this new development. 
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Figure D158 shows the front and back faces of the coarse mesh with the crack path from the 
quasistatic run.  Figure D159 shows the final deformed shape of the same model.   The run 
ultimately terminated because the crack path got tangled, which is a challenge with XFEM.  
Figure D160 shows a detailed view of the tangled crack path.  The model locks up when the 
crack path gets tangled.  Work is currently underway to address this problem. 
 
 

  
 
Figure D158. Crack path on undeformed mesh for coarse mesh run quasistatically 
 

 
 
Figure D159. Deformed mesh from coarse quasistatic model   
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Figure D160. Tangled crack path on coarse model 
 
Figure D161 shows the load-displacement response of the coarse model run quasistatically 
compared with the earlier explicit dynamic run of the model.  The quasistatic run is stiffer 
because it was run with standard tetrahedral elements rather than the node-based tetrahedral used 
in the explicit run.  This was done because there are still limitations with the quasistatic solver 
and node-based tetrahedra.   
 
Early-time results from a more refined mesh, also run quasistatcally, are shown along with the 
coarse mesh results in Figure D161.  Figure D162 shows the cracked region of the finer mesh in 
the region of crack initiation.  This model was not run to completion, but it clearly demonstrates 
that the response will be significantly softer with a more refined mesh.  The coarse mesh used in 
this work is clearly a significant source of error. 
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Figure D161. Crack path on undeformed mesh for coarse mesh run quasistatically 
 
 

 
 
 
Figure D162. Cracked initiation region with fine mesh 
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D4.10 Other potential sources of error 
 
Because the option to run the model quasistatically was only recently added to the XFEM 
implementation in Sierra, there was not sufficient time to explore the influence of other 
parameters.   The mesh refinement and inertial effects due to dynamic loading have been shown 
above to significantly influence the results.  Material parameters, especially the criterion for 
crack propagation, are certainly important and will be investigated further.   
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251 

D5. Predictions for Challenge 2A 
 
Summary 
 
The X-Prize XFEM group analyzed the 2A challenge using finite element modeling with elastic-
plastic material models and a few different failure criteria.  Two analysis codes were used:  
Abaqus and Sierra Solid Mechanics.  For this challenge, two plasticity model calibrations were 
examined, our own and Jerry Wellman’s from challenge 1B.  I used the former and Ben the 
latter.  Unlike previous challenges, in this one, we put more emphasis upon the 
initiation/propagation criteria, for two reasons: (1) we determined that to be our weakest model 
component in the last challenge and (2) this is not a problem particularly suited to the strengths 
of XFEM since the crack path is known and could be addressed with a simpler approach, e.g., 
using interface elements.  Results for a few criteria were examined but only two are presented.  
The ability to examine different criteria was in part due to access to the beta version of the 
Abaqus code which allowed the initiation/propagation criterion (including crack direction) to be 
defined by a user subroutine. 
 
Insufficient data was available to calibrate the initiation criterion implemented for the Abaqus 
analyses, so those results are not predictive in nature but do demonstrate the application of a new 
criterion.  For the Sierra/SM analyses the tearing parameter was applied with XFEM.  To 
simplify the analyses in Sierra the crack plane was defined a priori, while it was adaptively 
defined in Abaqus.  Using the tearing parameter the extent of the cracking “predicted” in Sierra 
was considerably larger than that “predicted” in Abaqus using a newly implemented criterion. 
 
D5.1 Introduction 
 
Extended finite element method (XFEM) capabilities are in a research and development state 
both at Sandia and within commercial FEA codes.  This is again reflected in the results obtained 
for this third challenge problem.  To “predict” crack initiation (and continued propagation) two 
“XFEM approaches” were taken – one using Abaqus, and the other using Sierra mechanics.  The 
beta version of Abaqus, which we now have, allows the initiation/propagation criterion to be 
defined by a user subroutine.  This capability was used in this challenge to examine a few 
different criteria, with a strong emphasis upon the criteria proposed by Xue and Wierbicki 
[2005].   Sierra was modified to allow the tearing parameter to be used for initiation and 
propagation.  An XFEM model consists of a few different component models, models to: (1) 
predict crack initiation, (2) predict continued crack propagation, (3) predict the incremental crack 
direction, (4) represent the kinematics of the localization, and (5) predict the response of the 
cohesive crack.  Only component (4) is strictly unique to the XFEM approach.  A true strong 
discontinuity in the displacement is introduced by modifying the basis of the approximation on 
the fly with functions that include a discontinuity but without remeshing.  Both Abaqus and 
Sierra are currently limited to enriching this class of problems with Heaviside functions.  For 
both codes model components (1) and (2) are synonymous, though conceptually there is no 
reason they can’t be defined separately. 
 
Sierra mechanics can not yet initiate an XFEM crack based upon mechanics, but for this problem 
that is not a limitation, since the specimen has a pre-existing fatigue crack.  Abaqus did not allow 
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a pre-existing crack to be defined for an imported mesh (created in cubit), so the initial crack was 
simply defined by a plane of “missing elements.”  The “development state” of both codes has 
limited what could be modeled for this problem, but “state of the codes” results are presented 
separately below. 
 
D5.2 Abaqus Analyses 
 
The initiation criterion examined the most for Abaqus was that due to Xue and Wierbicki [2005].  
It has five parameters, one of which can be related to the hardening exponent.  In this work we 
treat all 5 parameters as requiring calibration.  In the paper by Wierzbicki et al. [2005] seven 
different models for ductile fracture are compared, using 15 distinctly different test specimens.  
In this study both the tensile specimen and specimen 1b were used as calibration tests, but there 
was still a 3-dimensional space of parameter combinations to choose from.  As such the 
presented results are not considered to be predictive.  In fact the parameters for which we did not 
have any calibration data for, may be controlling the growth of the crack significantly by 
restraining the crack growth in the middle of the thickness.  While the particular calibration of 
the Xue and Wierbicki [2005] model matches the tensile specimen failure and better represents 
the challenge 1b failure than our previous results, I expect (attempting to get into Brad’s head) 
that it significantly underestimates the extent of cracking in this challenge.  Convergence 
problems, which were only overcome recently, prevented extensive parameter studies with the 
model parameters, but a few analyses were conducted to investigate how the results changed 
with the “uncalibrated parameters.”  Without additional data, these three parameters simply serve 
as three additional ”knobs” whose “correct settings” are unknown. 
 
D5.2.1 Xue and Wierzbicki “Fracture Model” 
 
Xue and Wierzbicki [2005] refer to their model and others as “fracture models.”  In the 
terminology we have used to describe our results we would refer to it as a crack 
initiation/propagation model, similar to the tearing parameter model.  While it is used to 
determine when a crack should initiate or further propagate, the complete model can also include 
a cohesive zone model to characterize the energy required to create a new surface.  Of course 
lumping this energy into a cohesive zone description is artificial since significant energy is 
dissipated in the bulk material near the crack as well.  For brevity we will refer this model as the 
X-W initiation model. 
 
D5.2.2 Model Form 
 
Johnson and Cook postulated that the equivalent strain at fracture (for constant strain rate and 
temperature) was a function of the stress triaxiality (

! 

"), in the form (ref. X-W [2005])  

! 

" f = C1 +C2 exp C3#( ) (1) 
where 

! 

" =
#m

# 
 (2) 

! 

"m  ~ mean stress, and 

! 

"  ~ equivalent or Mises stress. 
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Wierzbicki et al. [2005] indicate that Xue [2005] showed that the equivalent plastic strain at 
fracture “is always bounded by two lines corresponding to the axisymmetric stress state and the 
plane strain state.”  The two bounds were expressed in a form similar to (1) as 

! 

" f
axi = C1 exp #C2$( )       and      

! 

" f
ps = C3 exp #C4$

% 

& 
' 

( 

) 
*  (3a,b) 

States between these bounds are expressed in terms of the deviatoric state parameter (

! 

") defined 
as 

! 

" =
27
2
J3
# 3

 (4) 

where J3 ~ third invariant of the deviatoric stress tensor. 
 
Note that for axisymmetry, ξ=1, and for plane strain ξ=0.  In general, one seeks to express the 
equivalent plastic strain at fracture as a function of (

! 

",ξ), i.e., 

! 

" f = F #,$( ) .  In their formulation, 
they express the normalized drop in the failure strain from the axisymmetric bound and ξ as an 
elliptic function (reference Wierzbicki et al. [2005] for additional details).  Solving for equation 
for 

! 

" f = F #,$( )  gives 

! 

" f = F #,$( ) = " f
axi #( ) % " f

axi #( ) %" fps #( )[ ] 1% $1/ n( )n  (5) 
 
where (

! 

") explicitly denotes the functional dependence of the bounds upon 

! 

".  The above form, 
in concept, could be used directly and the authors do so for calibration using average values of 
the invariants (

! 

",ξ) over the history.  To account for the stress history in a more detailed manner 
they apply it as a weighting function for the equivalent plastic strain integration as 

! 

d" 
F #,$( )0

" f% =1 (6) 

which denotes (for our application) that fracture initiates/propagates when the integral reaches 
the critical value of one.  This criterion was implemented as a user subroutine for Abaqus to 
study a more complex phenomenological criterion for ductile crack initiation/propagation.  The 
integration is approximated using the trapezoidal rule over each time step.  At the very least, its 
use of the stress invariants to characterize the effect of the stress state history is potentially more 
likely to match the response of differing tests specimens than simply placing a bound on the 
equivalent plastic strain.  The question is whether it is inherently more “predictive” in nature 
because of its phenomenological form, or whether it simply provides more knobs to turn.  In this 
study we do not have an optimum ensemble of tests for a given material to calibrate the model 
with, so even the calibration is questionable. 
 
D5.2.3 Model Calibration 
 
To calibrate the model we had two tests available: the tensile test and challenge 1b.  Since the 
model has five parameters, the two tests only limit our unknowns to a three-dimensional space.  
Table 1 shows the parameter values for several calibrations.  Calibration EQPS corresponds to 
using an upper bound on the equivalent plastic strain (independent of the stress state history), as 
used in challenge 1b.  Wierzbicki et al. [2005] calibrated the model for the aluminum alloy 2024-
T351; this calibration is denoted as X-W.  The remaining calibrations used this known calibration 
for as a starting point. 
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Table D10. X-W Calibration Parameters 
Calibration C1 C2 C3 C4 n 1b Runs 
EQPS 0.2351 0 0.2351 0 ∞  
X-W 0.87 1.77 0.21 0.01 6  
1 0.424 1.77 0.102 0.01 6 11 
2 0.87 3.924 0.21 2.164 6 12 
3 0.328 1.0 0.102 0.01 6 13 
4 0.278 0.5 0.102 0.01 6 14 
5 0.260 0.3 0.102 0.01 6 15 
8 0.278 0.5 0.05 0.01 1  
9 0.260 0.3 0.05 0.01 1  
 
Figure D163 shows the approximate range of the stress invariants (

! 

",ξ) for the tensile test, 
challenge 1b, and challenge 2, in the element in which the crack initiates (or further propagates 
the fatigue crack) just prior to propagation, and three curves for plane strain, axisymmetry, and 
plane stress.   
 
For the tensile specimen, ξ∼1 and η~1/3.  Using equation (5), the authors’ calibration values 
would give 

! 

" f  = 0.4819.  This value is greater than the observed value of 0.2351.  The first 
calibration for this study was obtained by scaling C1 and C3 to match 

! 

" f  = 0.2351, with C2, C4, 
and n unchanged from the X-W calibration.  The second calibration, conversely, was obtained by 
changing C2 and C4 to match 

! 

" f  = 0.2351, with C1, C3, and n unchanged from the X-W 
calibration.  Figure D164 shows the axisymmetric and plane strain bounds (equations 3) for the 
first two calibrations.  Since ξ∼1 corresponds to the axisymmetric case, the axisymmetric bounds 
both pass through the point 

! 

" f  = 0.2351 where η~1/3.  As such the calibration changes for the 
plane strain bound do not affect the comparison. 
 
Figure D165 shows the axisymmetric and plane strain bounds (equations 3) for calibrations 5 and 
6.  Note that when the bounds cross their meaning is contradicted, and as such the actual η 
values in the analysis should remain smaller than the intersect value.  This motivated the 
reduction in C3 in calibrations 8 and 9, since sampled η values in challenge 2 suggest it might 
have exceeded the intersect value of calibration 4.  Since these last calibrations were defined late 
in the study, they were not used to re-examine the tensile specimen or challenge 1b.  Certainly 
for the tensile specimen, they would have little effect due to the stress invariant state at failure. 
 
For challenge 1b, ξ∈(0.884,0.942) and η~0.55, so again the axisymmetric bound has the greatest 
affect upon the response.  The monotonic decrease of 

! 

" f
axifor the first two calibrations (Figure 

D164) indicates that the X-W criterion will result in earlier crack initiation (lower 

! 

" f ) for 
challenge 1b than obtained by using constant equivalent plastic strain as a criterion.  As the 
previous results for challenge 1b gave more ductility than the experiments, the decrease would 
appear to be the right trend, but as shown in Figure D166 these calibrations seem to fail too 
early. 
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For challenge 2 the stress state near the middle of the section (i.e., through the thickness) has a 
value of ξ close to a ½.  As such, 

! 

" f
ps can affect the results more, and thus the values C3, C4, and 

n are significant.  The last two calibrations (8 and 9) were defined to examine the effects of two 
of these parameters.  Note that the original value 6 for n, tends to almost eliminate the effect of 

! 

" f
ps except when a plane strain state is almost exactly reproduced.  The value of 1 for n, linearly 

interpolates between the axisymmetric and plane strain bounds. 
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Figure D163. Invariants of the critical element just prior to initiation. 
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Figure D164. Axisymmetric and plane strain bounds for first two calibrations. 
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Figure D165. Axisymmetric and plane strain bounds for calibrations 4 and 5. 
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Figure D166. Challenge 1b results for several X-W calibrations. 
 
For calibrations 3-5, C2 was successively reduced and C1 was calculated to match the tensile 
specimen.  While calibration 5 is closest to the experimental results, it does not reflect the abrupt 
drop in strength exhibited in the experimental results.  The effect of mesh refinement for 
challenge 1b was examined for several cases but found to be small. 
 
While challenge 2a has a significantly different stress state (Figure D163), with respect to ξ it is 
still closer to the axisymmetric bound for the first element to fail.  Unfortunately the first element 
to fail (on the specimen edge) has a very different stress state than those near the middle of the 
thickness.  Near the middle of the specimen just prior to failure, ξ∈(0.435,0.514) and 
η∈(2.15,2.43).  The shift to the left in the invariant space implies C3 and C4 would have a 
significant effect on the predictions for this challenge.  The net effect, as will be seen in the next 
section, is that the crack growth is severely restricted in the middle of the cross-section thus 
inhibiting the growth of the whole crack. 
 
D5.2.4 Challenge 2 Results 
 
A few different initiation criteria were used for this test, but the simpler ones like a bound on 
equivalent plastic strain gave very little crack growth.  The results shown here are limited to 
those obtained using the X-W initiation criterion.  Figure D167 shows the coarser mesh used in 
most of the analyses. 
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Figure D167. Coarse mesh – lower view looking toward the initiating crack 
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In this problem the boundary conditions are not prescribed explicitly but must be defined to 
produce the measured gage displacement.  While one could algorithmically adjust the boundary 
conditions to match the gage displacements, it is not clear if this could be done easily in Abaqus, 
so instead I took a “simpler approach.”  First I applied the measured gage displacement history to 
the pin and determined the corresponding gage displacement.  This is depicted in Figure D168.  
Roughly, the ratio Ugage/Upin varied from about 0.78 to 0.85.  As a correction to applying the 
gage displacements to the pin, in the subsequent analysis the data of Figure D168 was used to 
determine Upin for a prescribed Ugage, and the boundary conditions were modified accordingly. 
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Figure D168. Measured relative displacement vs. pin displacement. 
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Figure D169. Measured displacement for 1st revision of boundary conditions 
 
Figure D169 depicts the resulting history of the gage displacement to the state that most of the 
analysis would die at.  While not perfect I expect the accuracy is much better than our crack 
predictions, and as such sufficient. 
 
Table D11 correlates the analysis or run designation with the differing parameters and gives the 
crack lengths (in terms of uniformly sized elements) at different states.  For all of the analyses 
shown implicit dynamics was applied, and the fracture energy was zero.  In challenge 1b, using 
implicit dynamics in the simulation instead of quasi-statics sometimes improved how far an 
analysis could go before encountering convergence problems.  In this challenge it appeared to 
have little effect as both types of analyses died at the same states.  In most cases, including the 
fracture energy reduces the range over which convergence could be obtained. 
 
Table D11. Run designations. 

Run Initiation 
Calibration 

Convergence 
tolerance 

Cracked 
surface 
els at A 

Cracked 
surface 
els at 
death 

Cracked 
surface 
els at B 

Cracked 
surface 
els at 
death 

Cracked 
surface 
els at C 

Cracked 
surface 
els at 
death 

Cracked 
surface 
els at D 

10d 4 defaults 1  3 5    
18d 4 looser 1  3  9 10  
19d 5 looser 1  2  6  11 
22d 8 looser 7 11      
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23d 9 looser 5  13 16    
 
 
To get the results in analyses 18d – 23d the convergence tolerances were loosened significantly, 
but comparisons with results for analyses with the default convergence tolerances for states A 
and B indicate the accuracy was good.  Figure D169 shows the pin force vs. gage displacement 
for the two calibrations. 
 
The requested results are given in Table D12.  Figure D170 shows the corresponding load 
displacement results for the 4 calibrations.  The expected trends between calibrations 4 and 5 are 
consistent with those seen in challenge 1b; calibration 4 allows cracking to occur more easily.  
For both calibrations the crack grows much more readily along the surface than through the 
middle of the specimen.  As previously noted this is due to the difference in the stress invariants 
through the thickness of the member.  Figure D171 shows the crack profile at the end of run 19d.  
The crack growth near the middle of the specimen appears to restrict the growth of the whole 
crack.   
 
Clearly we can “improve” upon the predicted results, because we still have “three knobs to turn,” 
but the improved results will not constitute a prediction without additional data upon which to 
base the calibration.  Table D12 and Figure D172 shows that in changing the calibration the 
extent of cracking can be increased.  While convergence problems limited the results, Figure 
D170 shows changing the parameters reduced the peak load and thus compliance at each state 
after cracking initiated.  Further reduction in key parameters would be required to shift the 
“unloading responses” to the specimen softening regime as obtained in the Sierra analyses. 
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Table D12.  Requested results. 
State A Calibration 4 

(run 10d/18d) 
Calibration 5 
(run 19d) 

Calibration 8 
(run 22d) 

Calibration 9 
(run 23d) 

Crack length 
(mm) 

2.74 2.73 3.80 3.44 

Crack length 
change (mm) 

0.196 0.193 1.26 0.901 

Stiffness (N/mm) 31,200 31,700 30,000 30,500 
     
State B   n/a  
Crack length 
(mm) 

3.09 2.91  4.87 

Crack length 
change (mm) 

0.548 0.371  2.33 

Stiffness (N/mm) 30,600 30,900  28,600 
     
State C   n/a n/a 
Crack length 
(mm) 

4.15 3.62   

Crack length 
change (mm) 

1.62 1.08   

Stiffness (N/mm) 29,200 29,900   
     
State D n/a  n/a n/a 
Crack length 
(mm) 

 4.51   

Crack length 
change (mm) 

 1.97   

Stiffness (N/mm)  29,000   
     
State Death  <D n/a <B <C 
Crack length 
(mm) 

4.33  4.57 5.41 

Crack length 
change (mm) 

1.79  2.03 2.87 
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Figure D170. Load vs. displacement response for four calibrations. 
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Figure D171. Crack at end of run 19d (calibration 5). 
 

 
Figure D172. Crack at end of run 23d (calibration 9). 
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D5.3 Sierra/SM Analyses 
 
The Challenge 2a problem was also run using the XFEM capability in Sierra/SolidMechanics 
(Sierra/SM), which is still under active development.  Because this capability is under 
development, running this problem uncovered a number of bugs in that code implementation.  As 
a result, there was not sufficient time to do model calibration, and the mesh used was not as 
highly refined as would be ideal for this problem. 
 
For this analysis, the multilinear_ep_fail material model was used with the same parameters that 
were used by the team using element death for Challenge 1b.  Those parameters were calibrated 
against the tensile pull specimen.  In the Challenge 1b problem, that set of parameters resulted in 
excessively rapid load shedding.  It is likely that the load shedding is too rapid for this problem 
as well.  With more time, the parameters could be better tuned.  The tearing parameter was used 
as the criterion for propagation of the crack into a new element.  The multilinear_ep_fail model 
is typically set up to soften when the tearing parameter is reached.  Since the softening is 
modeled by inserting a crack in this case, the material model was set up to never soften. 
 
Sierra/SM’s XFEM capability is currently based on tetrahedral elements.  Figure D173 shows the 
finite element mesh used for this analysis.  The model has 15000 nodes and 77400 elements.  
The mesh is very coarse in the region away from the mesh, but is refined in the region of the 
machined notch.  The elements in the notch zone have a size of approximately 0.08 in (0.2 mm).  
The pins are modeled by inserting semi-circular blocks of material in the holes.  Displacement is 
prescribed on a line of nodes at the center of that semi-circle. 
 
 

  
 
Figure D173. Finite element mesh used for Sierra/SM analysis, showing fatigue crack detail 
 
In the experiment, the displacement is measured at the lips near the tip of the initial notch.  That 
displacement is different from the pin displacement.  It is difficult to prescribe the displacement 
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in terms of this gage displacement in the analysis.  Prescribing the gage displacement would 
require an iterative process.  No attempt was made to prescribe the gage displacement for this 
effort.  The specified displacement history was simply applied at the pins, and the difference was 
noted.  Figure D174 shows the difference between the pin and gage displacement over time.  As 
the crack propagates, the two displacements grow closer together because the two halves of the 
specimen behave more as rigid bodies.  Figure D175 shows the gage displacement plotted as a 
function of pin displacement.  The two displacements are not dramatically different, so this is not 
expected to have a major effect on the results. 
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Figure D174. Pin Displacement and Gage Displacement vs. Time 
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Figure D175. Gage Displacement vs. Pin Displacement 
 
Figure D176 shows the history of the force vs. displacement.  This is shown both in terms of the 
pin and the gage displacement.  The four unloading/reloading curves are annotated in the plot.  
The stiffness at these points was measured using the gage displacement.  In this analysis, Peak A 
in the displacement history occurred well past the point where peak load was reached.  There 
was a notable decay in the stiffness as the loading progressed. 
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Figure D176. Force vs. Displacement 
 
Figure D177 shows the deformed mesh with the crack surface (highlighted in pink) at the four 
peaks.  The crack advanced most rapidly during loading up to the first peak.  Figure D178shows 
a history of the crack surfaces created by XFEM at the four peaks.  These are shown against a 
scale using units of inches measured from the center of the loading pins.  The initial fatigue crack 
started out at a distance of 0.1 inches from the tip of the machined notch, or 0.3 inches from the 
center of the loading pins. 
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 Peak A (t=50s) 

 Peak B (t=85s) 

 Peak C (t=120s) 

 Peak D (t=155s) 
 
Figure D177. Deformed cracked mesh at Peaks A, B, C, and D 
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Peak A (t=50s) 

Peak B (t=85s) 

Peak C (t=120s) 

Peak D (t=155s) 
 
Figure D178. Deformed cracked mesh at Peaks A, B, C, and D (lengths in inches) 
 
Table D13 shows a summary of the state at each of the four peaks.   The gage displacements at 
the peak and at the subsequent trough are reported, along with the corresponding force at the 
peak and trough.  The stiffness computed from the change in force and gage displacement is 
reported.  In addition, the crack length is reported at each peak.  The crack length is reported 
relative to the tip of the initial fatigue crack.  The initial fatigue crack was 0.1 in (2.5 mm) deep, 
so the crack lengths relative to the tip of the machined groove can be calculated by adding 2.5 
mm to these values. 
 
Table D13.  Results at Four Peaks 
Peak Peak Disp 

(mm) 
Trough 
Disp (mm) 

Peak Force 
(N) 

Trough 
Force (N) 

Stiffness 
(N/mm) 

Crack 
Length 
(mm) 

A 0.2396 0.1918 1286 1017 5628 8.1 
B  0.3225 0.2730 703.0 586.8 2348 10.9 
C 0.4020 0.3517 433.0 373.1 1191 12.7 
D 0.4789 0.4284 393.6 345.5 952.5 13.2 
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D6. Follow-Up to Challenge 2A 
 
D6.1 Introduction 
 
The pre-test analysis of the X-Prize 2a problem using the XFEM implementation in Sierra 
reasonably predicted the load-displacement response prior to crack initiation and the point where 
softening started to occur.  However, it dramatically under-predicted the load after that point. 
 
D6.2 Modifications to Analysis Approach 
 
Since the time that pre-test analysis was completed, two important improvements have been 
made to XFEM in Sierra that have resulted in a significantly improved simulation of that test.  
The first is that the capability to use cohesive zone elements on the XFEM cut plane in implicit 
analyses has been added.  The original analysis simply cut elements when a failure criterion was 
reached, and provided no cohesive strength after cracking.  
 
The second improvement made to Sierra’s XFEM implementation is that node-based tetrahedral 
elements can now be used with XFEM for implicit calculations.  The original analysis was 
performed using standard linear tetrahedral elements, which are well known to suffer from 
locking problems in conditions of near incompressibility, which is the case for material that is 
yielding in advance of the propagating crack for ductile fracture problems. 
 
Introducing cohesive zones on the fracture planes was the most important of these two changes 
in the modeling approach.  A Tvergaard-Hutchinson interface cohesive model was used.  This 
model has a linear hardening curve, a flat plateau, and linear softening.  This model takes as 
parameters the maximum traction, normal and tangential relative displacements at which traction 
has completely decayed, and the points at which the stiffening branch ends and at which the 
softening branch starts.   The important parameters used here were peak traction of 120000 psi, 
and normal and tangential relative displacements for complete decay of 0.005in.  Ideally, the 
peak traction should be set based on the stress in the parent element at the point of initiation, but 
that cannot yet be done in our code.  There is still more work to do in this area.  Aside from the 
cohesive zone parameters, all of the parameters used in the original model were kept the same. 
 
D6.3 Results 
 
Figure D179 shows a plot of the load-displacement curve for the post-test analysis shown 
compared to the pre-test analysis and experiment.  From this, it is clear that including the 
cohesive strength has a significant effect on the load-displacement response.  In the post-test 
work, I simply applied monotonic loading rather than unloading and reloading.  The points 
where the model was unloaded and reloaded in the original analysis were off from the actual 
experimental points in the original analysis because they were based on the pin displacement 
rather than the gage displacement.  Since we can’t directly impose the gage displacement, the 
unloading and reloading needs to be specified based on an initial monotonic analysis.  The 
unloading and reloading does not appear to significantly affect the overall load-displacement 
curve.  The post-test model can be modified to include the unloading to obtain the stiffness, but 
that has not yet been done. 
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Figure D179. Comparison of experimental results, original prediction post-test analysis load-
displacement curve for X-Prize 2A 
 
To show the effect of using the node-based tet element on this problem, the model was run 
using three levels of mesh refinement using both the linear tet and the nodal tet.  Figure D180 
shows a comparison of the load-displacement curves for all of these analyses.  In this 
convergence study, the fine mesh was the same mesh used in the original pre-test prediction.  
The medium mesh is twice as coarse as the fine mesh in the region of crack growth, and the 
coarse mesh is twice as coarse as the medium mesh in that region. 
 
From this plot, it can be seen that the nodal tetrahedron consistently produces a softer 
response than the standard linear tetrahedron.  The results produced by the nodal tetrahedron 
are roughly equivalent to those produced by the linear tetrahedron with a mesh with twice the 
refinement.  This convergence study indicates that the fine mesh used here is still likely not 
sufficiently refined to produce a converged solution. 
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 Figure D180. Load-displacement curves for X-Prize 2a problem comparing convergence of 
linear tetrahedral elements with nodal tetrahedral elements 
 
Figure D181 shows plots of the crack progression at Peaks A, B, C, and D, and Table 1 
shows the crack lengths and forces at these four points.  Cohesive zones are introduced when 
the failure criterion is reached.  As can be seen from this figure, the fracture process zone 
where the material still has some cohesive strength has a fairly significant length.  The crack 
lengths reported in Table D 14 are based on the point where the cohesive zone has lost all of 
its strength (i.e. the transition from dark blue to cyan in Figure D181).  
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 Peak A (T=50s) 

 Peak B (T=85s) 

 Peak C (T=120s) 

Peak D (T=155s) 
Figure D181. Deformed cracked mesh at Peaks A, B, C, and D (lengths in inches) 
 
Table D 14.  Results at Four Peaks 
Peak Peak Disp (mm) Peak Force (N) Crack Length 

(mm) 
Crack Length 
(normalized A/W) 

A 0.2396 4610 0.0 0.30 
B  0.3225 3290 2.0 0.38 
C 0.4020 2210 4.8 0.49 
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D 0.4789 1480 6.9 0.57 
 
 
D6.4 Summary 
 
The XFEM capability in Sierra is a work in progress, and as features are being added to this 
capability, its ability to model ductile fracture problems is improving.  The addition of 
cohesive zones on the XFEM cut planes and the use of nodal tetrahedral elements have both 
significantly improved upon the original pre-test prediction of the X-Prize 2A problem.  The 
lessons learned here will be valuable for future modeling of ductile fracture problems.   
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APPENDIX E:  EXPERIMENTAL RESULTS 
 
The purpose of this appendix is to provide supplementary details regarding the experimental 
outcomes for the X-Prize assessment.  These experiments were designed to be relatively easy to 
perform with little ambiguity in the outcome of the tests, aside from natural material variability.  
The test geometries, test material, and test conditions were chosen so that these were very 
accessible experiments, readily performed by nearly any materials mechanics or structural 
mechanics laboratory.  All three challenges required a simple pin-loaded clevis grip arrangement, 
a Crack Opening Displacement (COD) gage, and some sort of high-resolution optical imaging 
with measurement capabilities.  Some of the additional details provided in this appendix can be 
used in addition to the results presented in the main section of this report to validate models in 
the future, albeit no longer blind validation.  Geometric measurements were made of the test 
samples to ensure that they conformed to the desired test geometry within the tolerances 
specified in the machining drawings.  Since the test samples conformed to the machining 
tolerances, those details are omitted here.     
 
E1.  Experiments for Challenge 1A 
 
A total of 14 specimens were tested to measure the peak force prior to crack initiation and the 
loadline crack opening displacement at the crack initiation (crack size > 100 µm).  The testing 
was performed in two separate labs: 6 tests in one lab and 7 tests in another to confirm 
reproducibility.  The labs were provided the machined samples and given the same challenge 
assignments as described in Chapter 3.  There was no additional stipulations placed on the 
method that the lab chose to execute the tests.  Independently, the labs actually chose two very 
different load train configurations:  one lab utilized a load train that was fully constrained (rigid) 
against lateral deflection, whereas the other lab utilized a load train with a universal joint that 
permitted two degrees of freedom for lateral deflection.  Nevertheless, in spite of these very 
different boundary conditions, the two labs reported values that were within ~2% of one another.  
The results are tabulated in Table E1.   
 
Finally, the surface strain field was measured by 3D digital image correlation on one test 
specimen (specimen 3) using Vic3D from Correlated Solutions.  This DIC technique measures 
all three components of surface strain, xx, yy, and xy.  A progression of ~100 images was 
collected throughout the deformation experiment prior to fracture.  The resulting strain fields 
taken in the final frame just before fracture are shown in Figure E182.  While these results were 
not the focus of the X-Prize effort, it is hoped that future validation efforts will also afford direct 
comparison of the models’ predicted strain fields to observed strain fields.  In that same spirit, 
the surface profile of the fracture surface was measured after fracture.  The fracture surface was 
very 3-dimensional due to the presence of significant shear lips on both sides of the sample, as 
shown in Figure E183 and Figure E184.  This complex fracture surface highlights 
phenomenology that is not currently represented in any of the X-Prize codes. 
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Table E1. Experimental results from the two test labs.  Note that the observed peak load prior to 
crack initiation occurs before the reported COD displacement values at crack initation. 

Test Lab Sample ID 
Peak Load prior 
 to crack initiation (kN) 

Load Line Displacement 
at crack initation using  
COD gage (mm) 

Boyce/Crenshaw Sample 1 14.14 2.947 

 
Sample 2 14.01 3.088 

 
Sample 3 14.02 2.935 

 
Sample 4 14.04 2.939 

 
Sample 5 14.14 3.146 

 
Sample 6 14.05 3.029 

 
Sample 7 14.08 3.012 

 
Sample 8 14.13 3.031 

Cordova/Laing S1 13.71 2.865 

 
S2 13.78 2.934 

 
S3 13.87 2.888 

 
S4 13.72 2.944 

 
S5 13.94 2.847 

 
S6 13.74 2.835 

    maximum 
 

14.14 3.146 

minimum 
 

13.71 2.835 
average 

 
13.95 2.960 

std. dev. 
 

0.16 0.091 
 
 



281 

 
Figure E182.  Surface strain contours immediately prior to crack initiation for the three surface 
components of strain, xx, yy, and xy.  Not surprisingly, the crack nucleated in the region of 
maximum shear stress. 
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Figure E183.  Scanning electron microscope image of the 3-Dimensional nature of the fracture 
surface.  The crack initiated near the left side of the image, and propagated from left to right. 
 

 
Figure E184.  Confocal microscope image measuring the surface profile of the crack.  The crack 
moved from lower left to upper right.  The machined cylindrical hole is green in the lower left 
portion of the image. 
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E1.1  Details of Experimental Method and Results for Challenge 1A tests in the Structural 
Mechanics Lab 
Theresa Cordova (1522) 
 
E1.1.1 Introduction 
 
Six 1.2” x 1.25” x 0.125” PH13-8Mo specimens similar to a compact tension specimen were 
quasi-statically testing in the Structural Mechanics Laboratory (SML) in March 2010 to 
support an X-prize challenge proposed by Brad Boyce for purposes of comparing four 
predictive fracture codes used by Sandia national Laboratories. The study was a double 
blind study with experimental participation from the Multiscale Metallurgical Science & 
Technology lab and the Structural Mechanics lab. Only SML test methodology and results 
for Challenge 1A of the X-prize test series are discussed in this memorandum. Overarching 
analytical information and comparison between experiment results are discussed in a SAND 
report to be completed by the end of FY11. 
 
E1.1.2 Test Setup and Methodology 
 
Eight H950 PH13-8Mo samples with geometry of that shown in Figure E185 were provided 
to the SML for quasi-static, displacement controlled testing. Data acquisition and servo-
hydraulic control were provided by an MTS FlexTest GT system. The nomenclature given 
to the CT specimens was S1 through S8. In addition, two incorrectly heat treated specimens 
were provided to the lab for test setup purposes. The incorrectly heat treated samples are 
referred to as D1 and D4. 
 

 
Figure E185. CT-like specimen used for Challenge 1A 
 
Measurements of each sample were recorded prior to testing using a calibrated caliper for 
length measurements and a calibrated micrometer for thickness measurements. 
Measurement locations and values are noted in Figure E186 and Table E2, respectively. 
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Figure E186 - Measurement Locations for CT Specimens 

 
Table E2.  Dimensional measurements corresponding to Figure E186 - Measurement Locations 
for CT Specimens. 

Specimen ID

a b c d e L1 L2 L3 L4 L5
D1* 0.12180 0.12185 0.12270 0.12230 0.12245 0.8740 0.8745 1.1990 1.1990 1.1990
D4* 0.12325 0.12495 0.12340 0.12275 0.12285 0.8780 0.8770 1.2025 1.2035 1.2005

1 0.12345 0.12375 0.12450 0.12340 0.12375 0.8805 0.8770 1.2015 1.2020 1.2015
2 0.12385 0.12365 0.12390 0.12415 0.12400 0.8785 0.8770 1.2010 1.2020 1.2015
3 0.12390 0.12430 0.12470 0.12415 0.12435 0.8780 0.8770 1.2015 1.2015 1.2010
4 0.12345 0.12395 0.12360 0.12380 0.12380 0.8780 0.8780 1.2005 1.2010 1.2010
5 0.12440 0.12450 0.12430 0.12445 0.12445 0.8780 0.8775 1.2010 1.2020 1.2020
6 0.12375 0.12405 0.12280 0.12220 0.12345 0.8765 0.8765 1.2010 1.2015 1.2015
7 0.12375 0.12370 0.12275 0.12360 0.12340 0.8760 0.8760 1.2010 1.2010 1.2010
8 0.12410 0.12440 0.12405 0.12320 0.12420 0.8765 0.8760 1.2000 1.2010 1.2010

Average 0.12383 0.12404 0.12383 0.12362 0.12393 0.87775 0.87688 1.20094 1.20150 1.20131
Standard Deviation 0.000297 0.00031 0.000686 0.000664 0.000368 0.001346 0.00065 0.000464 0.000433 0.000348

Thickness Measurements using QuantuMike by 
Mitutoyo (in.)

Length Measurements using Mitutoyo Absolute 
Digimatic (in)

 
 
 
The notch diameter at location e was measured with a microscope available in the 
Multiscale Metallurgical Science & Technology laboratory. The resolution of the calipers 
was 0.5 mils with repeatability within ± 1 mil. Likewise, the micrometer had a resolution of 
0.05 mils and an accuracy of ± 0.05 mils. 
 
The goal of the experimental work was to uniaxially load the specimen, simplifying loading 
conditions to a two-dimensional plane. It was desired to detect a crack of 100-500 µm in 
length and record the peak load prior to crack initiation. The overall test setup is pictured in 
Figure E187. 
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Figure E187. X-Prize Challenge 1A SML Test Setup 
 
A calibrated 22 kip load cell and calibrated actuator stroke integral to the load frame were 
used for force and stroke measurements, respectively. Optical measurements were taken 
with a digital Cannon SLR Rebel xTi. A horizontal and vertical resolution of 0.5 mils/pixel 
and 0.4 mils/pixel, respectively, were obtained for the given camera position. Images were 
taken throughout the test. The CT specimen was vertically constrained by a clevis set that 
was rigidly connected to the load frame via thread reducing fixtures. Horizontal constraints 
on the CT specimen were achieved by placing bushings on both sides of the top and bottom 
pin holes in the CT specimen, centering the test specimen within the clevises (Figure E188). 

 

 
Figure E188. Close-up of CT Specimen Setup 
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Bushings were marked so that their position in the setup was the same between tests. A 
Crack Opening Displacement (COD) gage was positioned at the radiused notch located at 
the opening of the CT specimen. A linear variable differential transformer (LVDT) 
measured the clevis set displacement and was used for displacement control of 0.1 mil/sec 
rate. Load frame compliance was measured by subtracting the local LVDT displacement 
from the overall load frame actuator displacement when a load of 1 kip was applied to the 
rigid metal plate shown in Figure E189. 
 

 
Figure E189. Rigid Metal Plate Used for Load Frame Compliance Measurements 
 
Holes were drilled into the rigid metal plate at a distance of approximately 0.556” from 
center to center, to match the hole separation of the CT specimens. Although load frame 
compliance compensation was applied to the entire loading sequence, the compensation 
factor looked only at the difference between displacement measurements at a single load 
point and did not account for the relationship between the load frame actuator and LVDT as 
load increased. Error associated with this method of compensation was not quantified, but 
runs on specimens D1 and D4 demonstrated that the compensation more closely related the 
LVDT and actuator stroke than if compensation was not used. This displacement 
compensation technique was applied to the clevis LVDT for test specimen S6 to match the 
COD measurement in an effort to better control the failure of the specimen. 
 
Specimens D1 and D4 were instrumented with strain gages on both CT faces to monitor 
strain behavior and provide confidence that loading through the thickness was not present. 
Pictures of both D4 faces are shown in Figure E190 as an example of strain gage locations 
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Figure E190.  Gaged CT Specimen 
 
Strain readings did not indicate that out of plane bending was present during the test. It was 
noted that a single strain gage reading would increase dramatically with respect to other 
strain gages prior to fracture in the eventual direction of crack growth, predicting the crack 
path. 
 
Four seating cycles were applied to each test specimen prior to loading the specimen to 
failure. Each seating cycle increased load by 500 lbf with a hold at the targeted load for ten 
seconds. The purpose of the seating cycles was to reduce any gaps present in the system and 
essentially “seat” the system and thus establish a repeatable elastic behavior. 
 
E1.1.3 Test Results and Conclusions 
 
The CT specimens failed in a much more brittle manner than was anticipated. A slow 0.1 
mil/sec LVDT displacement rate was used for specimens S1 through S5 during the test in an 
effort to control and capture fracture of the specimens. The load dip in Figure E191 
demonstrates a load relaxation for the steady displacement rate. A linear relationship 
between compensated displacement and the COD reading is apparent from the figure, 
deducing that the COD did not suddenly open when the load dropped and thus a crack did 
not initiate. 
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Figure E191.  Load Behavior of H950 PH13-8Mo CT Specimens 
 
Load is represented by the solid lines in Figure E191 and the COD response is shown with 
dashed lines. Compensated displacement removed load frame compliance from the 
displacement measurement. A calculated compensated displacement was used for 
displacement control on S6. The idea on test S6 was to keep the displacement control rate 
lower than the relaxation rate and encourage stable crack growth in the specimen. The 
failure of the CT specimens occurred so rapidly, however, that imaging was not able to track 
crack propagation as the crack grew despite the use of a compensated displacement control. 
Thus, neither the arrest nor detection of a 100 – 500 µm crack length was obtained. It was 
determined that the servo-control rate of the load frame was insufficient to keep up with the 
elastic energy loaded into the specimen. An example of the changes observed in a CT 
specimen during testing are captured in Figure E192. 
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Figure E192. CT Specimen Images Captured During Testing 
 
The center image in the figure above was taken immediately before the crack visibly 
initiated on the outer surface of the material. It can be seen that significant yielding had 
occurred around the blunt notch prior to failure. Each CT specimen was lightly sanded prior 
to testing to produce the visible vertical lines shown in Figure E192. The vertical lines 
produced pixel variation necessary for optical measurements. Using optical measurements, it 
was noted that a lateral displacement of approximately 55 mils was present during testing. 
This lateral force may have contributed to the repeated failure paths of the “S” specimens 
shown in Figure E193. 
 

 
Figure E193.  Post-test Image of S-specimens 
 
A summary of the associated loads and displacements measured at three critical points during 
testing for each S-specimen are presented in Table E3. 
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 Table E3.  Summary of Three Critical Points During Testing of S-specimens 

 
 
Since the specified 100 - 500 µm crack was not caught, two points of interest in the realm of 
crack propagation were defined. The transition point was defined as the last point on the 
linearly decaying load versus compensated displacement curve. Rupture was the sudden 
load drop in the load versus compensated displacement curve after the maximum load had 
been reached. A scatter of the transition and rupture points is presented in Figure E194. 
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Figure E194. Transition and Rupture Scatter for CT Specimens 
 
A bound on where crack initiation likely occurred is captured in Figure E194. From the 
plotted scatter, crack initiation may have occurred between a load value of 2,974 lbf and 
3,057 lbf and a compensated displacement of 0.11 and 0.116 inches. 
 
Specimens S7 and S8 were not tested for Challenge 1A. A determination was made to use 
these specimens as baseline tests for the next x-prize follow-up challenge. Since a repeatable 
load behavior was obtained for the given setup and the CT specimens tested, S7 and S8 
would be used to determine the affects test setup improvements had on the subsequent test 
series. Unfortunately, funding constraints prevented further testing in the SML.   
 
E1.1.4 Recommendations and Future Work 
 
It is highly recommended that future work include participation from a minimum of two 
experimental labs to gain insight into experimental test methodology and better determine 
the strategies that best work for a variety of tests. There is a lot to be gained by sharing of 
information between experimental labs and a huge benefit to customers of these labs. 
  
A repeat of this test could be performed on a more ductile material with improvements made 
to the test setup. Samples tested up to a specified load could be provided for CT scans so 
that additional information on tunneling within the specimen, not visible to the naked eye 
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may be obtained. Material properties from tensile tests of the same material lot is necessary 
to accurately characterize the material for modeling purposes and compare against those 
properties already in material databases. 
 
Future work should also quantify the uncertainties associated with test measurements.  
 
Photos, data, and other documents associated with this test have been stored in the SML 
archive under SML499 for future reference. 
 
 



293 

E2.  Experiments for Challenge 1B. 
 

Challenge 1B focused on crack propagation from the same inclined blunt notch geometry of 
Challenge 1A, but this time manufactured from alloy 2024-T3.  Due to funding limitations, only 
a single laboratory (Boyce/Crenshaw) participated in Challenge 1B and 2A.  Fiduciary lines A-F 
were scribed onto the surface of the sample by first painting permanent marker ink onto the 
region of interest, and subsequently scribing the surface with a sharp tungsten stylus using a 
motorized XYZ stage.  The stage was feedback controlled with linear glass-scale encoders to 
ensure that the lines were accurately placed.  An example of the fiduciary lines is shown in 
Figure E195.  An example of the subsequent measurements, performed with a Keyence VHX-
1000 digital microscope, is shown in Figure E196.  
 
Two Keyence digital microscopes were positioned in-situ during the tests to observe crack 
propagation at high magnification during the tests.  This allowed the operator to determine the 
force and displacement conditions at which the crack crossed each fiduciary line.  An example of 
the high-resolution images used to determine surface crack position is shown in Figure E197.  
An example of a fully cracked specimen is shown in Figure E198.  The observed crack was not 
flat, but rather inclined at an angle, akin to a shear lip.  For this reason, the crack did not intersect 
both side faces of the sample at the same location.  On one side of the specimen, the crack may 
run nearly straight and intersect lines D-E-F, whereas on the other side of the specimen, that 
same inclined crack may curve more and intersect lines A-D-E-F.  A compilation of the crack 
paths from both sides of the first four tested specimens is shown in Figure E199.  Due to the 
inclined crack path and the significant material variability, the most useful fiduciary lines were 
lines D and E.  The observed forces and displacements for all five test samples as the crack 
reached lines D and E are included in Table E4 and Table E5, respectively.  
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Figure E195.  Optical image of a Challenge 1B specimen with marked fiduciary lines. 
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Figure E196.  Example of measurements taken on each side of each test specimen to confirm that 
the fiduciary lines were properly positioned (within ~20 µm).   
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Figure E197.  An example of the crack nearing the first vertical fiduciary line as viewed in-situ 
during testing using a digital microscope. 
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Figure E198.  An example of the crack propagation direction in one test sample. 
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Figure E199.  The observed crack paths on both sides of the specimen for samples 3, 4, 5, and 6.  
Sample 8 also followed a similar path, within the bounds of these first four observations. 

 
Table E4.  Force and displacement conditions at which the crack reached fiduciary line ‘D’.  
Note that the ‘a’ and ‘b’ designations for the 5 test specimens represent the front and backside of 
the specimens. 
Specimen Force (N) COD (mm) 
3a  1996.0  2.4900       
3b  1382.0  2.7800       
4a  1387.0  3.0160       
4b  1356.0  3.0600       
5a  1993.0  2.5160       
5b  1620.0  2.6400       
6a  1391.0  2.8930       
6b  1470.0  2.8100       
8a  2251.6  2.3375       
8b  1416.2  2.7534    
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Table E5.  Force and displacement conditions at which the crack reached fiduciary line ‘E’.  
Note that the ‘a’ and ‘b’ designations for the 5 test specimens represent the front and backside of 
the specimens. 
Specimen Force (N) COD (mm) 
3a  935.00  3.1200       
3b  594.00  3.5400       
4a  848.00  3.4400       
4b  631.00  3.7000       
5a  768.00  3.2800       
5b  705.00  3.4000       
6a  613.00  3.7600       
6b  499.00  3.9500       
8a  949.00  3.0800       
8b  670.00  3.4000       
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E3.  Experiments for Challenge 2A. 
 
Challenge 2A involved predicting crack propagation behavior (so-called R-curve behavior) from 
a sharp fatigue pre-crack in a side-grooved compact tension specimen, again from alloy 2024-T3.  
The fatigue pre-cracking was performed consistent with ASTM E399, with manual ΔK-shedding 
to minimize the plastic zone at the tip of the pre-crack.  As with challenge 1B, two horizontal 
digital microscopes provided imaging of both side faces of the sample to observe the crack on 
both surfaces independently.  The starting crack lengths of the fatigue precracks are shown in 
Table E6, both from surface measurements taken prior to subsequent fracture testing, and from 
subsurface measurements taken after fracture.  Note that the subsurface crack was ~5-7% shorter 
than the surface crack.  The observed load-displacement response, including the four unloading 
compliance curves, is shown in Figure E200.  In addition, several tabulated values are reported.  
The observed crack length, in normalized a/W units at each of the four unloading peaks is shown 
in Table E7.  The observed force at each of the four loading peaks is reported in Table E8.  
Finally, the unloading stiffness corresponding to each of the four peaks is shown in Table E9. 
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Figure E200.  Observed force-displacement profile for the X-Prize Challenge 2A tests.  Note that 
each test included four partial unloads corresponding to peaks A-D. 
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Table E6.  Surface crack length a/W taken from measurements of the crack intersecting the side 
groove of the sample (‘from side’); internal crack length taken from fracture surfaces after 
fracture (‘crack front’); and sample thickness measured between the side-grooves on either side 
of the sample.  
         Sample a/Wo  a/Wo  Thickness 
  From side crack front Average front to back 
 

3 0.299  0.287  0.127 
4 0.304  0.287  0.127 
5 0.300  0.281  0.126 
6 0.300  0.294  0.126 
7 0.300  0.286  0.126 
8 0.300  0.284  0.126 
9 0.300  0.290  0.126 
10 0.300  0.269  0.126 
11 0.299  0.279  0.126 

 
Table E7.  Crack length (in normalized a/W units) at each of four peaks. 
Specimen ID Peak A Peak B Peak C Peak D 
4 0.321 0.38 0.426 0.449 
5 0.363 0.429 0.532 0.586 
6 0.332 0.395 0.455 0.512 
7 0.365 0.446 0.514 0.598 
8 0.331 0.412 0.491 0.587 
9 0.361 0.439 0.501 0.558 
10 0.324 0.422 0.472 0.536 
11 0.368 0.424 0.512 0.576     
avg 0.345625 0.418375 0.487875 0.55025 
stdev 0.020311 0.022057 0.034958 0.050070 
max 0.368 0.446 0.532 0.598 
min 0.321 0.38 0.426 0.449 
 
Table E8.  Force at each of four peaks (in N). 
Specimen ID Peak A Peak B Peak C Peak D 
4 5408.768 4834.976 4421.312 3585.088 
5 4287.872 3696.288 2788.896 2028.288 
6 5346.496 4674.848 3998.752 3567.296 
7 4319.008 3393.824 2917.888 2126.144 
8 4554.752 3798.592 2895.648 1845.92 
9 4403.52 3843.072 2975.712 2286.272 
10 4732.672 4065.472 3282.624 2530.912 
11 4737.12 4061.024 2793.344 2210.656     
avg 4723.776 4046.012 3259.272 2522.572 
stdev 437.890 488.227 617.046 679.592 
max 5408.768 4834.976 4421.312 3585.088 
min 4287.872 3393.824 2788.896 1845.92 
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Table E9.  Unloading stiffness in N/mm at each of the four peaks. 
Specimen ID Peak A Peak B Peak C Peak D 
4 27502.3 20427.53 16741.29 12158.45 
5 21385.42 15531.23 10069.29 6775.32 
6 26866.62 19716.55 14408.72 12196.98 
7 22022.85 14198.58 10659.44 7088.781 
8 23332.74 16275.48 10799.53 6183.42 
9 22241.75 16321.01 11335.4 7792.756 
10 24556.81 17308.67 11948.31 8473.965 
11 24138.28 17651.91 10302.2 7531.83     
avg 24005.85 17178.87 12033.02 8525.187 
stdev 2239.078 2083.374 2347.211 2354.863 
max 27502.3 20427.53 16741.29 12196.98 
min 
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