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Abstract

We present a statistical method, predicated on the use ofgaie models, for the “real-time”
characterization of partially observed epidemics. Ola#ras consist of counts of symptomatic
patients, diagnosed with the disease, that may be availalhe early epoch of an ongoing out-
break. Characterization, in this context, refers to estonaif epidemiological parameters that can
be used to provide short-term forecasts of the ongoing epajes well as to provide gross infor-
mation on the dynamics of the etiologic agent in the affegteplulation e.g., the time-dependent
infection rate. The characterization problem is formuaés a Bayesian inverse problem, and
epidemiological parameters are estimated as distribsitising a Markov chain Monte Carlo
(MCMC) method, thus quantifying the uncertainty in the est@sa In some cases, the inverse
problem can be computationally expensive, primarily duthwepidemic simulator used inside
the inversion algorithm. We present a method, based onadieplahe epidemiological model
with computationally inexpensive surrogates, that camecedhe computational time to minutes,
without a significant loss of accuracy. The surrogates agated by projecting the output of an
epidemiological model on a set of polynomial chaos basesetifter, computations involving the
surrogate model reduce to evaluations of a polynomial. \Wkthiat the epidemic characterizations
obtained with the surrogate models is very close to thatiodtawith the original model. We also
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find that the number of projections required to constructreogiate model i€©(10) — O(10?) less
than the number of samples required by the MCMC to construett@sary posterior distribution;
thus, depending upon the epidemiological models in questimay be possible to omit the offline
creation and caching of surrogate models, prior to theiiruae inverse problem. The technique is
demonstrated on synthetic data as well as observationgfred918 influenza pandemic collected
at Camp Custer, Michigan.
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Chapter 1

Introduction

Epidemiological models, i.e., models that predict the ettoh of an epidemic, given certain model
parameters, are routinely used to characterize diseasesoinitbreak data. Often, these are used
in retrospective studies to estimate epidemiologicalaldeis which form the model inputs. The
rate of spread of a communicable disease is a commonly dstimaodel parameter [13, 5, 7, 16,
43]; the genesis of outbreaks caused by accidents [6, 58s40jother example. Fewer studies
have targeted the use of models to estimate in real-time riblgapility of human transmission
for emerging infectious diseases [3, 60] or to gauge theetiecountermeasures in an ongoing
outbreak [51, 34, 54].

The estimation of epidemiological parameters, in reaktipose certain challenged he data
is generally sparse and often, only hospitalization tintesaa&ailable, rather than times of appear-
ance of symptoms. Thus models, fitted to real-time data, baeecount for the hospital visit
delay [51]. Further, all estimates are generally unceraaith estimates are best expressed as dis-
tributions [34] developed via a Monte Carlo sampler. A paittic difficulty faced during online
model fitting to data, especially during the early stageshefdutbreak, is the representation of
the highly variable dynamics associated with disease dpmhile sophisticated modeling may
be able to address these, the computational expense of anie sampling does not allow their
use within time-constraints of online estimation. Thus trey@demiological models are com-
partmental ones using some variant of uniform mixing to nhapeead, though modified by a
time-dependent effective reproduction number [43, 51].a@¥e an ability to reduce the compu-
tational time of a disease model can favorably impact thditydeith which an outbreak can be
characterized from partial observations.

In this paper, we demonstrate a method to do so. At its corediices to replacing the epi-
demiological model with a polynomial surrogate, which cannbade arbitrarily accurate (at the
expense of computational cost). The choice of the variablagomodeled by the surrogate is
crucial; smoothly varying functions are easily approxietbby parsimonious surrogates. The sur-
rogate model is created by projecting the output of the epidiegical model, run repeatedly with
a sampled set of input parameters, on a basis set; a weightedf¢he bases constitutes the surro-
gate model. The bases are chosen to minimize the number dlmeealuations and maximize the
fidelity with which the resultant surrogate reproduces thgimal model. However, the replace-

INote that in epidemiology, where data is often availabley@ml a daily resolution, a “real-time” computational
process is defined as one that can accomplished in condiglezad than a day - for our purposes, we take it to mean
less than an hour.
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ment of the “true” epidemiological model with a surrogatehe parameter estimation problem
introduces an error in the inferred parameters and we expih@ magnitude and nature of its im-
pact; in principle, the impact of the model error can be madallsenough so that it is negligible
compared to the errors due to lack of data or due to imperfeetsnrements. We also investigate
the efficiency gained, as measured by the reduction in caatipoal time, by employing the sur-
rogate instead of the original model. The cost of building shirrogate model in the first place is
also included in this analysis.

The rest of the paper is organized as follows. In Chapter 2 wegmnt a literature review of
existing work on the estimation of partially observed epigts and the construction of surrogate
models using polynomial chaos expansions. In Chapter 3 vmeullate an inverse problem for the
characterization of epidemics with partial observatiatescribe the epidemiological models used
in the inverse problem and detail the method by which syrtlegidemiological data (used later in
tests) was generated. We also solve the inverse problentdesatbp estimates of epidemiological
parameters using an adaptive Markov chain Monte Carlo (MCMQChate In Chapter 4, we
describe the method to construct the surrogate model amingade the estimates obtained in
Chapter 3 using surrogates. The differences in the epidegiaal estimates so obtained (vis-
a-vis Chapter 3) are quantified, along with the savings in agatnal time. We conclude in
Chapter 5.
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Chapter 2

Literature Review

In this section we review existing literature on the estioradf epidemiological parameters as well
as the use of polynomial chaos expansions to construct catnmally inexpensive surrogate
models. The former will focus on methods that are amenableetased in a real-time setting,
where only partial observations may be available.

2.1 Estimation of epidemiological parameters from partial ob-
servations

Real-time estimation of epidemiological characteristicgng time-series data from an on-going
outbreak, has recently gained prominence. Most of the ndsthave targeted the estimation of
a time-dependent spread-rate, often couched in terms wfdfiective reproductive numbég;.

In [2] Bettencourt describes a statistical method based mpkiag a prior distribution of epidemi-
ological model parameters, and iteratively forming a pastedistribution based on comparing
simulated epidemic evolutions to sparse observationk,awiew of improving the predictive skill
of the model. His earlier paper [3] developed a Bayesian fgciento estimate a time-dependent
R: (for various influenza outbreaks), conditioned on stregndetta. In [42] Nishiurat al. develop
an epidemic model that includes a time-depend®nand an estimator for it based on the serial
interval observed in an outbreak. The model was fit to histddata.

Real-time epidemiological characterization can also beedging data from contact tracing.
Wallinga and Teunis [54] developed a method, based on coingaing data, to estimate tlig for
SARS outbreaks in Hong Kong and elsewhere and gauge the immpaotintermeasures on the
outbreaks. The method is purely retrospective, requinitickhowledge of chains of transmission,
and is similar to the work (done for plague outbreaks) in [£3uchemeet al. [8, 9] adapted the
method to be applicable in a real-time context, where datanbya small sample of transmission
chains and a small number of symptomatic secondary casesvaitable. The model assumes
that no index cases are injected into the population aftestart of the epidemic and there is no
delay between the appearance of symptoms and hospitafiziitne. They developed posterior
distributions forR; for the SARS epidemic as data became available; within 25 oftye start of
the epidemic (and 5 days post implementation of counteranealR;, as estimated from data from
Hong Kong, showed an exponential decline. A similar declas calculated for plague outbreaks
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in [22]. More recently, particle filters have been used tovte forecasts of HIN1 outbreaks in
2009 in Singapore [45]. In [51, 34] the authors track the 28RS epidemic in Hong Kong
with a compartmental epidemic model where disease traggmiglue to superspreading and non-
superspreading events were represented separately. €kelpped estimates (distributions) of
R:. A novelty in their approach was the inclusion of a model fitdelay, i.e., unlike the work
described above, they did not assume that the time of exdmnlof symptoms was known; the data
consisted of the times that symptomatic patients sougket car

Retrospective methods to estimate spread-rate of a disedlse face of partial data and struc-
tured populations have also been demonstrated for influd@and smallpox [13]. A very dif-
ferent approach was followed in [5, 48] where they inferree spread rates and the chains of
transmission over a latent social network. The approachBeg®sian and distributions for the
estimated quantities were developed. Brookmeyer and gpiésse[32, 7] have developed a method
to estimate an latent time-dependent infection rate byaemg it with the incubation period dis-
tribution and equating it to noisy observations. Smootkresstraints were imposed on the time-
dependent infection rate profile, and a point estimate (iceuncertainty bounds) was obtained by
expectation maximization. The method was used to estirhatevolution of the infection rate of
HIV in the 1980s and 1990s in USA and provide forecasts ofadisencidence.

Far less work has been done in the estimation of epidemicsedally non-communicable
diseases. They mostly deal with anthrax epidemics [50, 3158, 25], caused either through
an attack or an accidental release. In [50, 31, 53] the asithimploy a Bayesian formulation to
pose an inverse problem to infer the time of the attack, tation, dosage, the number of index
cases and their distribution in space with application torfiizing the care of the infected people.
A time-series less than a week long was sufficient to drawremfees which were informative
enough to mount a response. The inference was in the form dti@bdtion for the estimated
guantities. In [25] a slightly different approach was feled, not to characterize an anthrax attack
but to provide an alarm (via syndromic surveillance) untierassumption that an anthrax attack
had occurred. Nevertheless, the procedure required onsitnage the size of the attack, which
followed a Bayesian formulation but obtained the estimatasnaximum likelihood estimation.
The work in [40] analyzed the Sverdlovsk accident by fittingp@del of aerosol dispersion to the
residential locations of the approximately 70 people itéddan the accident; the fit showed that
the location of the release was a military compound whererartwas used for medical research.
This may be considered to be an early (and manual) approatie tcharacterization techniques
described in [31, 25]. In [58], the approach outlined in [#@s followed to elucidate the dose-
dependent incubation period of the anthrax.

In this paper, we will extend Brookmeyer’s approach [7] sd thean be used in a real-time
setting, with data that reflect symptomatic patients sepkare at healthcare facilities. We do so
by augmenting it with a model for visit delay. Unlike Brookneeywe will assume a parametric
form for the infection rate; furthermore, the form will aldor the introduction of index cases into
the affected population at arbitrary times. This allowsittteoduction of transient index cases e.g.,
travellers, who can seed a transmission chain in a popualatithout contributing to the morbidity
time-series obtained from it. In doing so, we partially ke$®@me of the assumptions inherent in
Cauchemeet al. s construction in [8, 9].
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2.2 Surrogate models using polynomial chaos expansions

Surrogate models are computationally inexpensive anadbgxpensive computational models.
These models approximate one (and sometime more) outputedél as a function of model
inputs. The surrogate models, sometimes also called respmurface models, typically do not
have any scientific/phenomenological arguments undeylgheir construction and can be likened
to “curve-fitting”. The primary issues involved during sogate model construction are (1) min-
imizing the number of expensive-model evaluations to gaeethe data to which surrogates are
fit (generally accomplished with some kind of sampling) aByrfinimizing the difference be-
tween predictions/outputs of the expensive model and @spansive surrogate. Descriptions of
the issues involved in generating surrogates can be foupidbja4, 24, 14]. Surrogate models are
popular in inversion and optimizations studies since theglve repeated evaluation of models for
different parameter values.

In this work we will employ polynomial chaos (PC) expansiomgonstruct surrogate models
that will replace the costly epidemic model evaluationsythe inference process. The poly-
nomial chaos (PC) was defined first by Wiener [57], and it hasesfound a significant number
of applications in various engineering fields [19, 17, 18, B2]. This approach consists of ap-
proximating a generic random variable in terms of standandiom variables through a spectral
polynomial expansion. In the context of this paper the diseavolution will be cast as a ran-
dom variable that is function of uncertain input parametieas define the epidemiological models.
These spectral approximations are constructed using @vedyasmall number of function evalu-
ations, and can represent accurately the smooth inputstbdgpendencies. For cases where the
model exhibits non-smooth behavior, several domain pamtitg methods have been proposed
[28, 55, 52]. This generates a series of sub-domains whedelsibave a smooth behavior, thus
enabling the use of efficient spectral approximations irneagion.

Marzouk et al. [38] proposed using surrogate models based on PC expansianger to
accelerate Bayesian inferences. This approach was folltwyeskveral authors in a wide range
of scientific fields; for source and parameter estimationanops media [35, 33], analysis of
supersonic combustion [11], stochastic data assimild88hto name a few. To our knowledge
this work is the first attempt to accelerate the inferencepademic model parameters using a
surrogate model approach based on PC representations.
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Chapter 3

Statistical Characterization of Partially
Observed Epidemics

In this section, we formulate a Bayesian inverse problem timase epidemiological parameters
conditioned on sparse data. The data consist of a truncatedseries of symptomatic patients
diagnosed with the disease, collated on a daily basis, astrbeavailable in the early epoch of
an epidemic. The time a patient seeks care at medical fesilg used for data collation (rather
than time of appearance of symptoms) since this informasigenerally easily available. We also
discuss the epidemic models used in the inverse problemhendaurces of data (both real and
synthetically generated). We conclude with a demonstratiothe approach on three different
outbreaks and investigate the length of the time-seriesbeéwvations required to estimate the
epidemiological parameters to a given level of accuracy.

3.1 Formulation of Inverse Problem

Consider an epidemic seeded yigex index cases. The stream of symptomatigs;, reporting
for care in an intervaltj,ti 1) consists of two parts (a)i,q , number of symptomatic people that
were index cases, and (e NUuMber of symptomatic people that were not index caseshiey
were infected subsequently as the disease spread. Aterd; 1 —t; is usually 1 day.

The index-case component,q, observed ift,t + At) can be given by

tiy
Vind = Neot (1 —a) /T ' finc(S— T; Binc) [Fua(ti+1 — S, 6va) — Rud(ti — S;Bvg)| ds (3.1)

whereNqt is the total number of people infected during the course efeppidemic (i.e., the final
size of the epidemic), anal is the fraction of people showing symptoms that are not irteses.
For the index cases the incubation starts at the time of fieetiont. The probability of develop-
ing symptoms between tineands+ dsis given by finc(S— T;6inc), (Wherefinc is the probability
density function for the incubation period) aRg(ti — s, 8yq) is the cumulative distribution func-
tion (CDF) for the visit delay. Her8j,; and8,4 are parameters that control the incubation period
and visit delay models, respectively. Note that we have tisedact that,q = 0 for (t —s) <0

to simplify the above expression. The models for the indobgteriod and the visit delay are in
Sec. 3.2.
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The number of secondary casesys is given by

tir1 pliva
Vsec= NiotOl / Qir (U—T; B ) finc(S—T; Binc) x
w=T Ju=t1
[Fud(ti+1 — wW; Byg) — Rua(ti —w; Byg)] dudw (3.2)

For the secondary cases, the infection takes place atutaweording to the infection rate modeled
by qgir. The visit delay is also applied to the secondary cases agetter with the infection model,
results in the double integral above. The infection rate @haghich depends on paramety, is
described in Sec. 3.2.

Thus, the total number of people requesting medical catesiimterval(tj,ti1) is given by the
sum
Vtot = Vind + Vsec (3.3)

and depends on the set of parame@ts (Niot, O, T, Binc, Oy, Bir ). Here the incubation period, visit
delay, and infection rate models, can be controlled by ommeare parameters.

Given datad in the form of a time-series of observegh (t;,ti+1], the epidemic model parame-
ters® can be estimated in the form of a multivariate PDF via Bayesr#re:

p(d|©) - p(©)
p(d)

where p(d|©) is the probability distribution of observing the dataalso called the likelihood
function), given a particula®, p(©) is our prior belief distribution in that particular value &f
p(d) is the probability of observing the data. This term is a ndization factor in Eqg. 3.4 and is
not important when computing(®|d) which is the posterior distribution & conditioned ord.
The likelihoodp(d|®) describes the discrepancy, here assumed Gaussian, beheaammber of
symptomatic people predicted by the model and the numbgmoptmatic people observed:

Ng ot  h)2
p(d|@):_uexp<—(v((t"t'+ﬂ) n')> (3.5)

2
i 20M

p(Old) = (3.4)

where{n;,i = 1,...,Nqg} is the time series of symptomatic people requesting medea. The
standard deviationgy, between the model and observations can also be inferred atdh the
model parameters. However its value does not affect thelesioas of this paper on the use of
surrogate approximations to replace the expensive epalegical models. For this reason, we
chose a constant valuey, = 150, for all results presented in this paper.

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample fritra posterior prob-
ability p(©|d). MCMC is a class of techniques that allows sampling from agyast distribution
by constructing a Markov Chain that has the posterior as asostary distribution [15, 20]. In
particular, we use an adaptive Metropolis algorithm [23hisTmethodology is an improvement
over the original Metropolis algorithm [41]. It uses the agance of the previously visited chain
states to find better proposal distributions, allowing iexplore the posterior distribution in a far
more efficient manner; see [23] for details.

20



3.2 Epidemic Models and Priors

We describe the models, specifically the PDFs and CDFs useestoide epidemiological vari-
ables. We will do so for the etiologic agents (plague, infageand anthrax) to be used in this
study.

The incubation period is described using a log-normal ithstion i.e.
log® (t/ m))

finc(t) = —=exp| ————5— 3.6

ine(t) toV/2m p( 202 (36)

For plague the values fqip and o, obtained from [16], are.8 and 03762, respectively. For
influenza, the corresponding figures &ter9,0.47}, indicating a mean incubation period of 2 days
and a variance of 1 day [4]. For anthrax is dose dependent and is obtained from Wilkening’s
A2 model [58].0 = 0.804— 0.079:log, (D, is also taken from [58], wher® is the dose, in terms
of spores inhaled by the infected individual. For the anttmadel,Bjc is set to log,D.

The visit delay i.e., the delay between exhibition of sympgcand the time at which a symp-
tomatic seeks care, is modeled using a Gamma function. Adogral model for the visit delay
observed for severe diseases is available in [26], base@dtancdllected by [27]. However, since
the log-normal model was used in the epidemic simulatord@yed to generate synthetic data for
our tests, we adopted a Gamma model in the inverse problenevemt an “inverse crime” (using
the same model to generate the synthetic data and thenhefpatameters). The CDF for the visit

delay is given by
1.992

1
Fualt: ) = £ 15 | ©52exp(~6yg- D). (3.7)

In this equation, the shape parameter, 1.992, is obtainétting to the log-normal model in [26].
However, the rate paramet@yg is left as an unknown (i.e., to be inferred when solving tiverse
problem) since the visit delay can shorten during an oukbasahe population becomes aware of
it.

We model the rate at which the secondary cases are infedteglaiSamma distribution. This
is best conceived as the number of people infected on a dadlig Isince the time of introduction
of the index cases. The Gamma function, for appropriatenpetréc values can model an epidemic
when the infection rate initially increases (as more intec people become available in the pop-
ulation) followed by a waning as countermeasures are putitep The peak of the infection rate
and the speed of its decay can be adjusted parametricakyinitfal rate of increase is controlled
by its shape paramet&mwhich is generally difficult to infer from partial data. Weeds= 2 for
plague [49] ank = 23 for influenza (see [30] for derivation).

oty -
e (1:67) = i | ¥ Pexp(~0y D)o, (3.8)
(k) Jo
Here 6 is a rate parameter that largely controls the decay of theaspfinfection) rate. Since
this decay will be affected by medical countermeasureseated this as a parameter to be inferred

from data.
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The priors used in the inference of epidemiological modeapeeters will be defined in the
Sec. 3.4.

3.3 Epidemic Data

The time-series dathused in this study is generated using epidemic simulatorp(dgue and an-
thrax outbreaks) and actual observations from the 1918sinfla pandemic. The methodology for
simulating epidemics caused by an aerosol release is Heddn detail elsewhere. We reproduce
a summary below.
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Figure 3.1. Time series of reported counts of symptomatic cases
for (a) plague, (b) 1918 pandemic influenza outbreak at Camp
Custer, MI, and (c) anthrax.

Plague Epidemic The plague epidemics are simulated using a SEIR model veitfsimission
of the disease occurring over a social network. The detéilseonetworked disease model are in
[48]. We select a set of index cases depending upon theitigosit a given moment; thereafter
the disease proceeds per the effective reproductive nuaflibe disease that varies in time, as
described in [49]. The evolution of an epidemic depends eniridividuals designated as index
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cases; thus one may obtain many different realizations effhidemic for the same number of
index cases, by varying the individuals (alternativelyvayying the attack site). We designed the
time varying reproduction rate such that the epidemic w@tety comes to an end i.e., the final size
of the epidemic is a finite number. Figure 3.1(a) shows thgnassion of the plague epidemic.

Influenza Epidemic. The data for the influenza epidemic is obtained from [4]. SEhare
observations of symptomatic patients seeking care at firenearies of Camp Custer, MI, on a
daily basis, during the 1918 influenza pandemic. Note thatddita is not biosurveillance data
i.e., there is no visit delay in the observations. Fig. 3.Jlbts the evolution of the Camp Custer
outbreak.

Anthrax attacks: The procedure for simulating attacks is fully describethi@ Appendix of
[48]. We consider a population distributed unevenly in gpi&ca square domain. An aerosolized
preparation of anthrax is released from the origin (lowérderner) of the domain. The release
is evolved in time using a simple Gaussian plume model toigeoa time-resolved value of the
aerosol concentration at ground level. A breathing rate®@f/@in is assumed, which is then
used to calculate the time-integrated dosage for all theviohahls in the population, and using
Glassman’s formula [21], the probability of infection. Timéected individuals are allocated their
dose-dependent incubation period (a random variable) pigelihg’s A2 model [58] and a visit
delay per the log-normal distribution in [26]. These togettletermine the time-series of patients
who would seek care over a period of time, and serve as themmdsignature. Figure 3.1(c)
shows the progression of the anthrax epidemic.

3.4 Results

The inference results for plague, influenza, and anthrapm@gented in this section, along with a
discussion on the computational expense for each set sf test

3.4.1 Plague Epidemic

We simulate a plague epidemic using the method describeeédn 3. 1000 index cases are
infected and the epidemic lasts for 50 days. The epidemiw ¢goeabout 15,000 symptomatic
cases. The inference was performed using the method deddnbSec. 3.1. The inference of
plague parameters requireck30® — 5 x 10> MCMC samples to obtain fully converged statistics.
The priors for the model parametés= (Niot, O, T, Binc, Bvg, Bir ) are given in Table 3.1. For certain
parameters that are constrained to be positive (or negatregoerform the inversion with their log-
transformed values. We generally use Gaussian priors lfpaahmeters except for which we
use a uniform distribution. We found out that the models aresgive to this parameter, and the
inverse problems can generate unphysical solutions wittrg small number of secondary cases
for highly contagious diseases, unless we impose striatd®u~or the other parameters, the prior
standard deviations were set large enough to limit the mhsiribution effect on the posterior
distributions. A similar approach was taken for other digaimodels presented in this paper.
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Table 3.1.Prior distributions for the plague model parameters.

Parameter Prior distribution
log(Neot) N(log(10"),2)
o U(0.6,0.99)
log(—1) N(log(5),log(10))
log(6va) | N(log(0.2),1)
log(6;r N(log(0.1),1)

We perform the parameter estimation (epidemic charaet#oiz) starting 4 or 6 days past the
infection of the index cases. This delay encompasses theertiguired for the early cases of the
disease to develop symptoms and seek care in sufficient marabd may be thought of as the
“alarm” date. The inferences use 3-15 days of data past tieeoflalarm. The median values, 25th
and 75th percentile for a number of parameters enteringldgip model are shown in Fig. 3.2.
The data is collected starting 4 (blue lines) and 6 (red )iadt®r the start of the epidemic. For
the number of index cases, the true value of around 1000 kéied between 25th and 75th
percentile using around 7-9 days of data. We also noticertimge between the 25th and 75th
percentile, approx. 800, remains somewhat independehteaiumber of days of data used in the
inference. The inferred values for the start of the epideané&cshown in Fig. 3.2(b). The true
values are -4 and -6 days respectively from the alarm datbotim cases the model overpredicts
the magnitude of these values. The total number of sympiomases is shown in Fig. 3.2(c). The
true value of 15000 is bracketed using 7-9 days of data. &irtolthe number of index cases, the
25-75th quantile range remains nearly constant with thelbmurof days of data used to infer the
model parameters. The convergence of the Markov chains mengtored using thetgi bbsi t
package [56] in R [47] and these results are independentaftimber of samples drawn by the
MCMC.

Figure 3.3 shows posterior predictive tests based on the MGMfiples of the plague model
parameters. The ensemble of evolutions, based on the MCMiInader samples, is then used to
estimate the median, 25th, and 75th quantile and compahedatit: series of reported counts. In
Fig. 3.3(a), the reported counts from days 5 through 14 (wogrfirom the start of the epidemic)
were used to infer the model parameters and then predictatheefnumber of people seeking care,
while for Fig. 3.3(b) the results are based on 6 more days t@f. da both cases the original data
generally lies inside the 25-75th percentile band. In treosé case, in Fig. 3.3(b), inclusion of
more data in the inference narrows the uncertainty in theew®ol number of counts compared to
Fig. 3.3(a).

3.4.2 Influenza Epidemic

Unlike the plague epidemic for which the calculations weaisdal on synthetic data, the computa-
tional tests for the influenza epidemic are based on the @élected in Camp Custer, MI, during
the 1918 pandemic. The data was obtained from [4]. There icaoonical” start date for the
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Figure 3.2. Estimates for (a) the number of index cadés(b)

start of the epidemict and (c) total number of cases for a plague
epidemic,No; for the synthetic plague epidemic. The error bars
correspond to the 25th and 75th percentiles, respectively. The blue
lines correspond to an alarm date of Day 4 whereas red lines cor-
respond to an alarm date of Day 6.

Camp Custer outbreak. About 10,500 people were affected. "Megsion was performed using
the method in Sec. 3.1 ar@(10°) MCMC samples were required (similar to plague). The prior
distribution for the influenza model parameters are pravideTable 3.2.

Figure 3.4 shows estimates of the start of epidemic and notaber of cases, using between
5 and 13 days of data. In the figure, the origin of the horiZcatéas is arbitrarily set at the start
of data collection, since we do not have a fixed day for thet stfathe epidemic. The results
in Fig. 3.4(a) indicate that the epidemic started approxitya6-8 days before the origin of the
horizontal axis. Total number of people who were infectethwifluenza, approximately 10500,
lies within the 25th to 75th percentile band for the resutisven in Fig. 3.4(b). The uncertainty in
the total number of cases decreases significantly when wsgirig 11 days of data. Beyond this
point the inherent noise in the observations, seen in Figby. prevent a further decrease in the
uncertainty bounds.
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Figure 3.3. Posterior predictive tests of the plague epidemic us-
ing the MCMC samples. The red lines show the 25th and 75th
percentile respectively, while the blue lines show the median. The
original data is shown with black circles. The posterior values
are based on 9 and 15 days of data in subfigures (a) and (b) re-
spectively. The alarm date is Day 6, and so the start date for the
predicted evolutions is Day 7.

Table 3.2.Prior distributions for the influenza model parameters.

Parameter Prior distribution
log(Ntot) | N(log(1.2* x 10%),2)
a U(0.95,0.99)
log(—7) | N(log(5).log(10))
l0g(Bya) N(log(12),1)
log(6jr N(log(1.25),0.16)

Posterior predictive tests for the influenza epidemic amvshin Fig. 3.5. The disease pro-

3.4.3 Anthrax Epidemic

gression estimated based on 9 days of data, in Fig. 3.5@psssignificant uncertainties beyond
Day 10. This result is somewhat expected, given the 500Q@d b certainty in the total number
of cases, shown in Fig. 3.4(b). The uncertainty range regdsigmificantly when more data points
are included in the computations. Figure 3.5(b) shows piosteredictive tests based on samples
computed using 13 days of data.

We simulated an anthrax outbreak using the method in Sec23,300 index cases were infected
and the epidemic was simulated for 20 days. The inversiorpedsrmed as described in Sec. 3.1;
note that anthrax is a non-communicable disease and thd beidg inverted is Eq. 3.1. Figure 3.6
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shows statistical results for the number of index cabs ¢tart date of the epidemic)( and the
average dose of anthrax spof2sas a function of the number of data points used in the inferen
The prior distributions for the influenza model parameteesprovided in Table 3.3.

Table 3.3. Prior distributions for the anthrax model parameters.

Parameter Prior distribution
log(N)) N(10%,10)
log(—T1) N(0,log(10))
log,oD N(3,2)
l0g(6va) N(0,1)

The true value folN; in Fig. 3.6(a), 22500, is reasonably well estimated within 8-10 days
after the start of the epidemic, i.e., by using an obserugteriod 4 to 6 days long. Note that the
inferences initially show large uncertainties (the etvars indicate the inter-quartile range) but
decrease as more data become available. The inferred tithe start of the epidemic is shown
in Fig. 3.6(b). The results are calculated with respect watlthe start of data collection, 4 and
6 days after the start of the actual epidemic. The resultsvdhen 1 day for both cases and the
difference between 25th and 75th quantiles decreases tn aloay which is the resolution of data
collection. The average dose lgdp = 2.8 is bracketed within 25-75th quantiles using 3-5 days of
data. The median value agreement with the actual value wepraith the number of data points
used to infer the parameter, however the uncertainty doedace much beyond 7 days of data.

Figure 3.7 shows posterior predictive tests constructedsimilar fashion as were the results
for plague and influenza tests. In Fig. 3.7(a), the reportathts from Days 5 through 10 were
used to infer the model parameters and then predict theefumumbers of sick people requesting
care. In Fig. 3.7(b), the results are based on 4 more daydaffitem Day 5 through Day 14. Due
to the additional information contained in these data goitfite uncertainty in the reported counts
is smaller compared to the results in Fig. 3.7(a).

3.4.4 Computational Expense

For the plague and influenza computations, the models fanih#er of sick people seeking care
on a daily basis require the evaluation of the single and ldaunkegrals in (Eqg. 3.1) and (Eqg. 3.2)
corresponding to the number of index and secondary casgsatvely. The evaluation of the
double integral is expensive. For the anthrax computationly the number of index cases are
computed since the disease is not contagious. The comqmaatimes presented in Table 3.4 are
for runs on a 2.6GHz Intel Core 2 Duo.

The CPU times correspond to a full set of parameter inferenegs using between 5-15
days of data for plague. The evaluation of the double integrgq. (3.2) significantly increases
the computational cost for the estimation of plague and emfaa model parameters. For these
computations the CPU time is one order of magnitude largeipaned to the anthrax. A surrogate
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Table 3.4. Computational expense for the inference of plague,
influenza, and anthrax parameters.

Model

Cases

No. of samples

Time-series
length [days]

CPU time [h]

Plague

Index & Sec

3x 10°

5-15

7.0

Influenza

Index & Sec

3x10°

5-13

5.6

Anthrax

Index

5x 10°

3-15

0.2

model approach is introduced in the next section, in ordeedoice the computational expense of

the plague and influenza models.
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Chapter 4

Surrogate Models

The surrogate model approach consists of replacing expgensidels with polynomial functions,

which are far cheaper to compute (versus the full epidemidet)dut are accurate enough com-
pared to the full model evaluation. Specifically, we will ysgynomial chaos (PC) expansions
[19, 59] to construct a surrogate model for the number of dpmptic people as a function of
time.

4.1 Construction of Surrogate Models

Let f(x) be an expensive model that depends on an array of randonbbesnia= (X1,Xo, ..., Xn)-
For example, for the plague modek Op = (t, Niot, 0, T, 6;, 8,¢). We will approximate the model
f as a polynomial expansion:

P
fx)~ Y oW (x). (4.1)
k=0
whereW(" (x) = Wy, (x1) - W,(X2) - ... - Wi, (o) are multi-variate polynomials obtained by taking

the product of uni-variate polynomials that are functioheach componery; in the array of ran-
dom variablex [29]. Typically, these polynomials form an orthogonal Isasi order to minimize
the numbers of termB required to obtain certain accuracy in the approximatioané¢forth we
will drop the superscript ”(n)” to simplify the notation. €multi-variate polynomial®¥y(x), can
be chosen to be orthogonal with respect to the probabilitysite function ofx (g(x)) in order to
obtain surrogate models that are most accurate whisrenost likely.

[ w001 (900dx = qai (42)

The expansion coefficientx (in Eq. 4.1) can be computed in a number of ways; we use the
Galerkin approach that exploits the orthogonality of thentein the expansion

_ (F)%k(¥)) _
0= i A 0% = [ 109%ig0xax 3)
The integrals necessary to evaluéatéx)Wy(x)) are evaluated using numerical quadrature
Ng
(FOOW() = 3 10) Vel (4.4)
0=
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Here, xq andwg are the quadrature points and weights, respectively, ®tiadrature formula
used to compute the integral. Therefore, in order to evalta coefficients of the PC expansion,
the full modelf needs to be evaluated at specific values of the input pareswetdhosen to corre-
spond to the quadrature points needed for the numericalavah of the projection formulas. In
this paper we will be using Legendre polynomials, orthodevith respect to uniform probabil-
ity distributions. In order to construct expansions based.@gendre polynomials the parameter
ranges will be rescaled fe-1,1] intervals.

Once a PC approximation for the epidemiological model ilyfobnstructed, this approxima-
tion can replace the evaluations of the full model in the MCM@Gcpdure described above. The
MCMC technique proceeds as usual to determine the distibatf model parameters that best
fits the epidemiological data.

4.2 Surrogate Models for Plague

Careful examination of the equations for the number of indeses (3.1) and secondary cases (3.2)
reveals that the daily counts of the number of people beagsizk can be written as:

Viot(t) = Neot (a f1(t —T,0yq) + (L —a) f2(t — T, 8yq, Bir ) (4.5)

Here f1 is the integral in Eq. (3.1), whild; is the double integral in Eqg. (3.2). In this form,

parameterdo: anda are proportionality factors, while leads to a shift in the disease evolution
depending on the start date. This allows us to reduce the auaildlimensions from six to three

when writing the polynomial expansion (4.1):

P

Viot (t) = Neot Z (GCLk‘i‘ (1- G)CZ,k)l'Pk(t —T1,6vq,6i)) (4.6)
k=1

The superscript3) in Eq. (4.6) indicates tha#\’s are trivariate polynomials. The domain of
integrationD in Eq. 4.3, used to calculatgy is 0 <t <50, 102 <8yg<2,102<6; <2. This
domain was chosen large enough to ensure the surrogate imadelirate over the entire range of
parameters that can be encountered during the inversicesso

Figure 4.1 shows the evolution of the number of people sgetane for a range dj; values.
In this figure Niot, 0, andB,q are set to 1) 0.92, and 03, respectively. Several polynomial orders,
from 5 through 19, are considered. Visual inspection shbwagreement between the full model,
in blue, and the surrogate models, in red, is quite bad fomuwhials of order 5 and 11, but steadily
improves as the order increases to 19. For the surrogatelsnosiag 19th order polynomials,
approximately 20000 model evaluations were necessarympute the PC coefficients.

Figure 4.2(a) shows epidemic curves corresponding to aksleres through the surfaces shown
in Figure 4.1(d). The; values are shown near each set of curves in Fig. 4.2(a) ancotbe
scheme is the same as in the previous figure. Some discrepaare observed between the full
and surrogate models corresponding to stall These discrepancies are inherent to polynomial
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Figure 4.1. Evolution of plague epidemic as a function of the in-
fection rate parameter. The blue wireframe results are based on the
full model, while the red wireframes correspond to surrogate mod-
els using 5, 11, 15, and 19 order polynomials. All results corre-
spond toB,q = 0.3. Subfigures (a) and (b) show poor comparisons
but the 19th order polynomial in (d) shows good agreement.

approximations for highly non-linear functions. To circusnt this problem we introduce an alter-
nate representation for the surrogate model, where thendepey on thé, 4 and®, is replaced

with a dependency on the natural logarithms of these pasmet

P
4.7)

Vtot (t) = Neot z
K1

(acyk+ (1 —a)cak) Wk(t —T,109(6va),l0g(8ir )))
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This modification naturally adds weight to the lower rangevaliues for both8,q and6;,. Fig-
ure 4.2(b) shows epidemic curves from surrogate modelstreanted using Eq. (4.7). The new
results show a better agreement for epidemic curves camegpy to small values dj,. Similar
results are also obtained for the rang®gf values.
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Figure 4.2. Evolution of plague epidemic for several infection
rate parameter values. Left frame surrogate models are based on
Eq. (4.6) while those in the right frame are based on Eq. (4.7). The
surrogate models use 19th order polynomials.

We repeated the epidemic characterization runs descnib®dad. 3.4.1 using the the surrogate
model in Eq. (4.6). The results in Fig. 4.3 show the inferMggl values using the alternative
approximations Eq. (4.6) and (4.7). The later surrogateehfmimulation which exhibits a better
agreement with the full model at smalleyy and6;, values also does a better job estimating the
Niot range of values. While in Fig. 4.3(a) the results show litibenergence with polynomial
order, in Fig. 4.3(b) there is a clear improvement when ugiolynomial expansions based on
the transformed parameters in Eq. (4.7). Similar agreemsesttserved for the other parameters
comprising the epidemic model for plague.

4.3 Surrogate Models for Influenza

We attempted to use the same surrogate modeling approaes@ged in Sec. 4.2 using Eq. (4.7),
but applied to an influenza model. We found it impossible tnidy a single polynomial order
that could represemnkq(t) accurately in the entire domain €0t < 50,5 < 6,4 < 25,0.9 < 6 <

1.6. Consequently, we partitioned thedimension and fit a separate surrogate model in each.
Partitioning thet-dimension resulted in regions where the full model behasxgg smoothly and
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Figure 4.3. Estimates for total number of cases for a plague epi-
demic. The length of the error bars correspond to the 25th and 75th
percentiles, respectively. The left frame surrogate model results
correspond to Eq. (4.6), using 5th (S5), 11th (S11), and 19th (S19)
order polynomials. The left frame results correspond to Eq. (4.7)
and the same sequence of polynomial fits. The dashed line shows
the actuaN value.

could be fit with relatively low-order polynomials e.g. ord The surrogate model, thus consists
of a collection of polynomial approximations, each validtgown partition of the parameter space.
The partitioning approach combined with low order polynalsican reduce the total number of
model evaluations. For a collection of 10 partitions with 8tder PC expansions in each partition,
about 13000 model evaluations (compared to 20000 in theque\section) were necessary to
compute the PC coefficients.

In Figs. 4.4 and 4.5, we explore the impact of the polynomigb@sion order on the quality of
the surrogate models, as well as the effect of increasinguh®er of partitions of thedimension.
We see that, due to smooth model behavior in each domaitipaytth to 9th order polynomials
are sufficient to capture the full model behavior for 5-dastipans (in Fig. 4.5).

We then repeat the epidemic characterizations in Sec. But.2vith the original epidemic
model replaced with its surrogate. The results in Figs. A7 show the effects of the partition
size and polynomial expansion order, respectively, onrifexiied 25th percentile, 75th percentile,
and median values for the total number of cases and infectitenparameters. Both sets of re-
sults show a clear improvement in the accuracy of resultswrbducing the partition size and/or
increasing the polynomial order. From Figs. 4.6 and 4.7, we tinat 10-day partitions with 9th
order polynomials may provide surrogate models sufficyeaticurate for use in epidemic charac-
terizations.
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surrogate models in red. The surrogate models use (a) 3-rd order,
(b) 5th order, and (c) 9th order polynomial expansions. For all
frames the day axis consists of 10 5-day partitions. The values for

the other parameters are the same as for Fig. 4.4.
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4.4 Computational Expense

The computational time required for the surrogate modelagugh in Table 4.1 show an almost two
orders of magnitude speed-up on the same computing platformpared to the results based on the
direct plague and influenza model evaluations in Table 3%.dPU time values shown here do not
include the CPU times required to generate the coefficiemthépolynomial expansions. These
values depend on the polynomial order and the partition aizé are between 0.05-0.1 CPU hours.
However, once computed, the polynomial expansions canusedeto infer the epidemic model
parameters for several data sets. This amortization rertkdeir computational cost negligible.

Table 4.1. Computational expense for the inference of plague,
influenza, and anthrax parameters using the surrogate model ap-
proach.

Model No. of sampleg Data [days]| CPU time [h]
Plague 3Ix 10 5-15 0.14
Influenza 3x10° 5-13 0.11
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Chapter 5

Summary and Conclusions

This report presents an approach for the statistical cteaation of partially observed epidemics

using surrogate models. Data consists of time series of &ymngtic patients diagnosed with the

disease. The characterization is performed using an emd®wdel, which contains submodels

for the incubation period, visit delay, and infection rathéTsubmodels are specialized for three
different diseases (anthrax, plague and influenza). Tl notmber of cases, start of epidemic,
and other epidemiological parameters are estimated fremavhilable time series using a decon-
volution approach. The characterization problem is foated as a Bayesian inverse problem,
and epidemiological parameters are estimated as disorsutising a Markov chain Monte Carlo

(MCMC) method, thus quantifying the uncertainty in the estasa

We find that epidemiological models that have the abilitygproduce the complex tempo-
ral dynamics of epidemics (generally those of communicaideases) cannot be naively used
in “real-time” characterization studies with MCMC. Scalabéehniques like Ensemble Kalman
Filters/'Smoothers may allow their use, but only if Gaussiasumptions are made regarding the
distribution of the estimated parameters. This is bestwithin the context of sparse data. We
introduce a competing approach, where the epidemiologiodkl is replaced by its surrogate. The
surrogate model is a polynomial expansion created by giogethe output of the epidemiological
model on a set of orthogonal polynomial bases; thereaftenpeitations involving the surrogate
model reduce to evaluations of a polynomial. We achieve rti@e a factor of 10 speed-up when
we do so, with little or no loss of accuracy. We find that the benof sample points at which the
epidemic model has to be evaluated prior to projection(i0D— O(10?) fewer than the number
of samples required by MCMC to converge; thus it may not evemgoessary to construct the sur-
rogate models offline. This advantage arises partially daeit choice of the basis set (polynomial
chaos) and partly due to the large number of MCMC samples nedjio explore the parameter
space. These results were obtained using synthetic epidizta for anthrax and plague outbreaks,
and data from the 1918 influenza pandemic collected at CamgiCdithigan.

We could not find a systematic way of constructing the sutegedel. In one case, the surro-
gate model consisted of high-order {A@rder) functions of the log-transformed input parameters
whereas in the other, the parameter domain had to be paetitiand fitted with relatively lower-
order polynomials. The particular approach adopted is miggret on the behavior of the model
in question as well as the region in the parameter space vategacy is desired. While we
adopted domain partitioning and stretching, the same qootientially be accomplished by sam-
pling the parameter domain in an uneven or adaptive manregfigated on the model response (or
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its gradient).

Biosurveillance networks are becoming ubiquitous and aneasingly used to detect the start
of outbreaks. As the accuracy and timeliness of their dapaores (and the quantity increases),
automated processing, with a view of detecting patternsawitg inferences, will gain epidemi-
ological and public health relevance. Accelerated meammowig so, along with a quantification
of uncertainty in the inferences, can be expected to assuawtigal importance. In this paper,
we have demonstrated an approach to do so, without sigrtificss of accuracy. While the use
of (polynomial chaos) surrogate models may be novel in epid®gy, they are nevertheless used
widely in design and optimization efforts in other fields. Gequently, they may potentially be
useful in real-time epidemiology too.
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