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Abstract

We present a statistical method, predicated on the use of surrogate models, for the “real-time”
characterization of partially observed epidemics. Observations consist of counts of symptomatic
patients, diagnosed with the disease, that may be availablein the early epoch of an ongoing out-
break. Characterization, in this context, refers to estimation of epidemiological parameters that can
be used to provide short-term forecasts of the ongoing epidemic, as well as to provide gross infor-
mation on the dynamics of the etiologic agent in the affectedpopulation e.g., the time-dependent
infection rate. The characterization problem is formulated as a Bayesian inverse problem, and
epidemiological parameters are estimated as distributions using a Markov chain Monte Carlo
(MCMC) method, thus quantifying the uncertainty in the estimates. In some cases, the inverse
problem can be computationally expensive, primarily due tothe epidemic simulator used inside
the inversion algorithm. We present a method, based on replacing the epidemiological model
with computationally inexpensive surrogates, that can reduce the computational time to minutes,
without a significant loss of accuracy. The surrogates are created by projecting the output of an
epidemiological model on a set of polynomial chaos bases; thereafter, computations involving the
surrogate model reduce to evaluations of a polynomial. We find that the epidemic characterizations
obtained with the surrogate models is very close to that obtained with the original model. We also
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find that the number of projections required to construct a surrogate model isO(10)−O(102) less
than the number of samples required by the MCMC to construct a stationary posterior distribution;
thus, depending upon the epidemiological models in question, it may be possible to omit the offline
creation and caching of surrogate models, prior to their usein an inverse problem. The technique is
demonstrated on synthetic data as well as observations fromthe 1918 influenza pandemic collected
at Camp Custer, Michigan.

4



Acknowledgment

This work was supported by the DTRA Contract HDTRA1-09-C-0034. We want to acknowledge
helpful suggestions from Habib Najm in the development of this report. Sandia National Labora-
tories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94-AL85000.

5



This page intentionally left blank.



Contents

1 Introduction 13

2 Literature Review 15

2.1 Estimation of epidemiological parameters from partialobservations . . . . . . . . . . . . 15

2.2 Surrogate models using polynomial chaos expansions . . .. . . . . . . . . . . . . . . . . . . . 17

3 Statistical Characterization of Partially Observed Epidemics 19

3.1 Formulation of Inverse Problem . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 19

3.2 Epidemic Models and Priors . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 21

3.3 Epidemic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 22

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 23

3.4.1 Plague Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 23

3.4.2 Influenza Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 24

3.4.3 Anthrax Epidemic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 26

3.4.4 Computational Expense . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . 28

4 Surrogate Models 31

4.1 Construction of Surrogate Models . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 31

4.2 Surrogate Models for Plague . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 32

4.3 Surrogate Models for Influenza . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 34

4.4 Computational Expense . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 39

5 Summary and Conclusions 41

7



References 42

8



List of Figures

3.1 Time series of reported counts of symptomatic cases for (a) plague, (b) 1918 pan-
demic influenza outbreak at Camp Custer, MI, and (c) anthrax. . .. . . . . . . . . . . . . . 22

3.2 Estimates for (a) the number of index casesNi, (b) start of the epidemic,τ and (c)
total number of cases for a plague epidemic,Ntot for the synthetic plague epidemic.
The error bars correspond to the 25th and 75th percentiles, respectively. The blue
lines correspond to an alarm date of Day 4 whereas red lines correspond to an
alarm date of Day 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 25

3.3 Posterior predictive tests of the plague epidemic usingthe MCMC samples. The
red lines show the 25th and 75th percentile respectively, while the blue lines show
the median. The original data is shown with black circles. The posterior values are
based on 9 and 15 days of data in subfigures (a) and (b) respectively. The alarm
date is Day 6, and so the start date for the predicted evolutions is Day 7. . . . . . . . . . 26

3.4 Estimates for the start of the epidemic (left), and totalnumber of cases (right), for
the Camp Custer outbreak. The length of the error bars correspond to the 25th and
75th percentile, respectively. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 27

3.5 Posterior predictive tests of the Camp Custer influenza epidemic using the MCMC
samples. The red lines show the 25th and 75th percentile respectively, while the
blue lines show the median. The original data is shown with black circles. The
posterior values are based on 9 and 13 days of data, for subfigures (a) and (b)
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 27

3.6 Estimates for (a) the number of index cases, (b) start of the epidemic, and (c) dose
magnitude for the anthrax epidemic. The length of the error bars correspond to the
25th and 75th quantiles, respectively. The blue and red lines correspond to alarm
dates of Day 4 and 6 respectively. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 29

3.7 Posterior predictive tests of the anthrax outbreak progression using the MCMC
samples. The red lines show the 10th and 90th percentile respectively, while the
blue lines shows the median. The original data is shown with circles. The posterior
values are based on 5 and 9 days of data, respectively. The alarm date is Day 6,
and so the start date for the predicted evolutions is Day 7. . .. . . . . . . . . . . . . . . . . . 30

9



4.1 Evolution of plague epidemic as a function of the infection rate parameter. The
blue wireframe results are based on the full model, while thered wireframes cor-
respond to surrogate models using 5, 11, 15, and 19 order polynomials. All results
correspond toθvd = 0.3. Subfigures (a) and (b) show poor comparisons but the
19th order polynomial in (d) shows good agreement. . . . . . . . .. . . . . . . . . . . . . . . . 33

4.2 Evolution of plague epidemic for several infection rateparameter values. Left
frame surrogate models are based on Eq. (4.6) while those in the right frame are
based on Eq. (4.7). The surrogate models use 19th order polynomials. . . . . . . . . . . 34

4.3 Estimates for total number of cases for a plague epidemic. The length of the error
bars correspond to the 25th and 75th percentiles, respectively. The left frame sur-
rogate model results correspond to Eq. (4.6), using 5th (S5), 11th (S11), and 19th
(S19) order polynomials. The left frame results correspondto Eq. (4.7) and the
same sequence of polynomial fits. The dashed line shows the actualNtot value. . . . 35

4.4 Evolution of influenza epidemic as a function of the infection rate parameter. The
full model is shown in blue and the surrogate models in red. The day axis consists
of (a) one 50-day partition, (b) two 25-day partitions, and (c) five 10-day parti-
tions. All surrogate models use 9th order polynomial expansions and the results
correspond toNtot = 104, α = 0.99, andθvd = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Evolution of influenza epidemic as a function of the infection rate parameter. The
full model is shown in blue and the surrogate models in red. The surrogate models
use (a) 3-rd order, (b) 5th order, and (c) 9th order polynomial expansions. For
all frames the day axis consists of 10 5-day partitions. The values for the other
parameters are the same as for Fig. 4.4. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 37

4.6 Influenza model parameters,Ntot andθir , estimated using 9th order polynomials,
split over 5-day (d5), 10-day (d10), and 25-day (d25) intervals. . . . . . . . . . . . . . . . . 38

4.7 Influenza model parameters,Ntot andθir , estimated using 3rd (S3), 5th (S5), and
9th (S9) order polynomials split over 5 day intervals. . . . . .. . . . . . . . . . . . . . . . . . . 38

10



List of Tables

3.1 Prior distributions for the plague model parameters . . .. . . . . . . . . . . . . . . . . . . . . . 24

3.2 Prior distributions for the influenza model parameters.. . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Prior distributions for the anthrax model parameters. .. . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Computational expense for the inference of plague, influenza, and anthrax parameters 30

4.1 Computational expense for the inference of plague, influenza, and anthrax param-
eters using the surrogate model approach . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 39

11



This page intentionally left blank.



Chapter 1

Introduction

Epidemiological models, i.e., models that predict the evolution of an epidemic, given certain model
parameters, are routinely used to characterize diseases from outbreak data. Often, these are used
in retrospective studies to estimate epidemiological variables which form the model inputs. The
rate of spread of a communicable disease is a commonly estimated model parameter [13, 5, 7, 16,
43]; the genesis of outbreaks caused by accidents [6, 58, 40]is another example. Fewer studies
have targeted the use of models to estimate in real-time the probability of human transmission
for emerging infectious diseases [3, 60] or to gauge the effect of countermeasures in an ongoing
outbreak [51, 34, 54].

The estimation of epidemiological parameters, in real-time, pose certain challenges1. The data
is generally sparse and often, only hospitalization times are available, rather than times of appear-
ance of symptoms. Thus models, fitted to real-time data, haveto account for the hospital visit
delay [51]. Further, all estimates are generally uncertainand estimates are best expressed as dis-
tributions [34] developed via a Monte Carlo sampler. A particular difficulty faced during online
model fitting to data, especially during the early stages of the outbreak, is the representation of
the highly variable dynamics associated with disease spread; while sophisticated modeling may
be able to address these, the computational expense of MonteCarlo sampling does not allow their
use within time-constraints of online estimation. Thus most epidemiological models are com-
partmental ones using some variant of uniform mixing to model spread, though modified by a
time-dependent effective reproduction number [43, 51]. Clearly, an ability to reduce the compu-
tational time of a disease model can favorably impact the fidelity with which an outbreak can be
characterized from partial observations.

In this paper, we demonstrate a method to do so. At its core, itreduces to replacing the epi-
demiological model with a polynomial surrogate, which can be made arbitrarily accurate (at the
expense of computational cost). The choice of the variable being modeled by the surrogate is
crucial; smoothly varying functions are easily approximated by parsimonious surrogates. The sur-
rogate model is created by projecting the output of the epidemiological model, run repeatedly with
a sampled set of input parameters, on a basis set; a weighted sum of the bases constitutes the surro-
gate model. The bases are chosen to minimize the number of model evaluations and maximize the
fidelity with which the resultant surrogate reproduces the original model. However, the replace-

1Note that in epidemiology, where data is often available only on a daily resolution, a “real-time” computational
process is defined as one that can accomplished in considerably less than a day - for our purposes, we take it to mean
less than an hour.
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ment of the “true” epidemiological model with a surrogate inthe parameter estimation problem
introduces an error in the inferred parameters and we explore the magnitude and nature of its im-
pact; in principle, the impact of the model error can be made small enough so that it is negligible
compared to the errors due to lack of data or due to imperfect measurements. We also investigate
the efficiency gained, as measured by the reduction in computational time, by employing the sur-
rogate instead of the original model. The cost of building the surrogate model in the first place is
also included in this analysis.

The rest of the paper is organized as follows. In Chapter 2 we present a literature review of
existing work on the estimation of partially observed epidemics and the construction of surrogate
models using polynomial chaos expansions. In Chapter 3 we formulate an inverse problem for the
characterization of epidemics with partial observations,describe the epidemiological models used
in the inverse problem and detail the method by which synthetic epidemiological data (used later in
tests) was generated. We also solve the inverse problem, anddevelop estimates of epidemiological
parameters using an adaptive Markov chain Monte Carlo (MCMC) method. In Chapter 4, we
describe the method to construct the surrogate model and recompute the estimates obtained in
Chapter 3 using surrogates. The differences in the epidemiological estimates so obtained (vis-
à-vis Chapter 3) are quantified, along with the savings in computational time. We conclude in
Chapter 5.
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Chapter 2

Literature Review

In this section we review existing literature on the estimation of epidemiological parameters as well
as the use of polynomial chaos expansions to construct computationally inexpensive surrogate
models. The former will focus on methods that are amenable tobe used in a real-time setting,
where only partial observations may be available.

2.1 Estimation of epidemiological parameters from partial ob-
servations

Real-time estimation of epidemiological characteristics,using time-series data from an on-going
outbreak, has recently gained prominence. Most of the methods have targeted the estimation of
a time-dependent spread-rate, often couched in terms of their effective reproductive numberRt .
In [2] Bettencourt describes a statistical method based on sampling a prior distribution of epidemi-
ological model parameters, and iteratively forming a posterior distribution based on comparing
simulated epidemic evolutions to sparse observations, with a view of improving the predictive skill
of the model. His earlier paper [3] developed a Bayesian technique to estimate a time-dependent
Rt (for various influenza outbreaks), conditioned on streaming data. In [42] Nishiuraet al. develop
an epidemic model that includes a time-dependentRt , and an estimator for it based on the serial
interval observed in an outbreak. The model was fit to historical data.

Real-time epidemiological characterization can also be done using data from contact tracing.
Wallinga and Teunis [54] developed a method, based on contact tracing data, to estimate theRt for
SARS outbreaks in Hong Kong and elsewhere and gauge the impactof countermeasures on the
outbreaks. The method is purely retrospective, requiring full knowledge of chains of transmission,
and is similar to the work (done for plague outbreaks) in [43]. Cauchemezet al. [8, 9] adapted the
method to be applicable in a real-time context, where data ononly a small sample of transmission
chains and a small number of symptomatic secondary cases areavailable. The model assumes
that no index cases are injected into the population after the start of the epidemic and there is no
delay between the appearance of symptoms and hospitalization time. They developed posterior
distributions forRt for the SARS epidemic as data became available; within 25 daysof the start of
the epidemic (and 5 days post implementation of countermeasures),Rt , as estimated from data from
Hong Kong, showed an exponential decline. A similar declinewas calculated for plague outbreaks
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in [22]. More recently, particle filters have been used to provide forecasts of H1N1 outbreaks in
2009 in Singapore [45]. In [51, 34] the authors track the 2002SARS epidemic in Hong Kong
with a compartmental epidemic model where disease transmission due to superspreading and non-
superspreading events were represented separately. They developed estimates (distributions) of
Rt . A novelty in their approach was the inclusion of a model for visit delay, i.e., unlike the work
described above, they did not assume that the time of exhibition of symptoms was known; the data
consisted of the times that symptomatic patients sought care.

Retrospective methods to estimate spread-rate of a disease,in the face of partial data and struc-
tured populations have also been demonstrated for influenza[10] and smallpox [13]. A very dif-
ferent approach was followed in [5, 48] where they inferred the spread rates and the chains of
transmission over a latent social network. The approach wasBayesian and distributions for the
estimated quantities were developed. Brookmeyer and colleagues [32, 7] have developed a method
to estimate an latent time-dependent infection rate by convolving it with the incubation period dis-
tribution and equating it to noisy observations. Smoothness constraints were imposed on the time-
dependent infection rate profile, and a point estimate (i.e., no uncertainty bounds) was obtained by
expectation maximization. The method was used to estimate the evolution of the infection rate of
HIV in the 1980s and 1990s in USA and provide forecasts of disease incidence.

Far less work has been done in the estimation of epidemics caused by non-communicable
diseases. They mostly deal with anthrax epidemics [50, 31, 53, 58, 25], caused either through
an attack or an accidental release. In [50, 31, 53] the authors employ a Bayesian formulation to
pose an inverse problem to infer the time of the attack, its location, dosage, the number of index
cases and their distribution in space with application to prioritizing the care of the infected people.
A time-series less than a week long was sufficient to draw inferences which were informative
enough to mount a response. The inference was in the form of a distribution for the estimated
quantities. In [25] a slightly different approach was followed, not to characterize an anthrax attack
but to provide an alarm (via syndromic surveillance) under the assumption that an anthrax attack
had occurred. Nevertheless, the procedure required one to estimate the size of the attack, which
followed a Bayesian formulation but obtained the estimates via maximum likelihood estimation.
The work in [40] analyzed the Sverdlovsk accident by fitting amodel of aerosol dispersion to the
residential locations of the approximately 70 people infected in the accident; the fit showed that
the location of the release was a military compound where anthrax was used for medical research.
This may be considered to be an early (and manual) approach tothe characterization techniques
described in [31, 25]. In [58], the approach outlined in [40]was followed to elucidate the dose-
dependent incubation period of the anthrax.

In this paper, we will extend Brookmeyer’s approach [7] so that it can be used in a real-time
setting, with data that reflect symptomatic patients seeking care at healthcare facilities. We do so
by augmenting it with a model for visit delay. Unlike Brookmeyer, we will assume a parametric
form for the infection rate; furthermore, the form will allow for the introduction of index cases into
the affected population at arbitrary times. This allows theintroduction of transient index cases e.g.,
travellers, who can seed a transmission chain in a population without contributing to the morbidity
time-series obtained from it. In doing so, we partially relax some of the assumptions inherent in
Cauchemezet al. ’s construction in [8, 9].
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2.2 Surrogate models using polynomial chaos expansions

Surrogate models are computationally inexpensive analogsof expensive computational models.
These models approximate one (and sometime more) outputs ofmodel as a function of model
inputs. The surrogate models, sometimes also called response-surface models, typically do not
have any scientific/phenomenological arguments underlying their construction and can be likened
to “curve-fitting”. The primary issues involved during surrogate model construction are (1) min-
imizing the number of expensive-model evaluations to generate the data to which surrogates are
fit (generally accomplished with some kind of sampling) and (2) minimizing the difference be-
tween predictions/outputs of the expensive model and its inexpensive surrogate. Descriptions of
the issues involved in generating surrogates can be found in[46, 44, 24, 14]. Surrogate models are
popular in inversion and optimizations studies since they involve repeated evaluation of models for
different parameter values.

In this work we will employ polynomial chaos (PC) expansions to construct surrogate models
that will replace the costly epidemic model evaluations during the inference process. The poly-
nomial chaos (PC) was defined first by Wiener [57], and it has since found a significant number
of applications in various engineering fields [19, 17, 18, 59, 12]. This approach consists of ap-
proximating a generic random variable in terms of standard random variables through a spectral
polynomial expansion. In the context of this paper the disease evolution will be cast as a ran-
dom variable that is function of uncertain input parametersthat define the epidemiological models.
These spectral approximations are constructed using a relatively small number of function evalu-
ations, and can represent accurately the smooth input-output dependencies. For cases where the
model exhibits non-smooth behavior, several domain partitioning methods have been proposed
[28, 55, 52]. This generates a series of sub-domains where models have a smooth behavior, thus
enabling the use of efficient spectral approximations in each region.

Marzouk et al. [38] proposed using surrogate models based on PC expansionsin order to
accelerate Bayesian inferences. This approach was followedby several authors in a wide range
of scientific fields; for source and parameter estimation in porous media [35, 33], analysis of
supersonic combustion [11], stochastic data assimilation[39] to name a few. To our knowledge
this work is the first attempt to accelerate the inference of epidemic model parameters using a
surrogate model approach based on PC representations.
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Chapter 3

Statistical Characterization of Partially
Observed Epidemics

In this section, we formulate a Bayesian inverse problem to estimate epidemiological parameters
conditioned on sparse data. The data consist of a truncated time-series of symptomatic patients
diagnosed with the disease, collated on a daily basis, as might be available in the early epoch of
an epidemic. The time a patient seeks care at medical facilities is used for data collation (rather
than time of appearance of symptoms) since this informationis generally easily available. We also
discuss the epidemic models used in the inverse problem and the sources of data (both real and
synthetically generated). We conclude with a demonstration of the approach on three different
outbreaks and investigate the length of the time-series of observations required to estimate the
epidemiological parameters to a given level of accuracy.

3.1 Formulation of Inverse Problem

Consider an epidemic seeded byNindex index cases. The stream of symptomatics,νtot, reporting
for care in an interval[ti, ti+1) consists of two parts (a)νind , number of symptomatic people that
were index cases, and (b)νsec, number of symptomatic people that were not index cases, i.e. they
were infected subsequently as the disease spread. Here,∆t = ti+1− ti is usually 1 day.

The index-case component,νind, observed in[t, t +∆t) can be given by

νind = Ntot (1−α)
∫ ti+1

τ
finc(s− τ;θinc) [Fvd(ti+1−s;θvd)−Fvd(ti −s;θvd)]ds (3.1)

whereNtot is the total number of people infected during the course of the epidemic (i.e., the final
size of the epidemic), andα is the fraction of people showing symptoms that are not indexcases.
For the index cases the incubation starts at the time of the infectionτ. The probability of develop-
ing symptoms between times ands+ds is given by finc(s− τ;θinc), (where finc is the probability
density function for the incubation period) andFvd(ti −s;θvd) is the cumulative distribution func-
tion (CDF) for the visit delay. Hereθinc andθvd are parameters that control the incubation period
and visit delay models, respectively. Note that we have usedthe fact thatFvd = 0 for (t − s) < 0
to simplify the above expression. The models for the incubation period and the visit delay are in
Sec. 3.2.
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The number of secondary cases,νsec, is given by

νsec= Ntotα
∫ ti+1

w=τ

∫ ti+1

u=τ
qir (u− τ;θir ) finc(s− τ;θinc)×

[Fvd(ti+1−w;θvd)−Fvd(ti −w;θvd)]dudw (3.2)

For the secondary cases, the infection takes place at timeu according to the infection rate modeled
by qir . The visit delay is also applied to the secondary cases and, together with the infection model,
results in the double integral above. The infection rate model, which depends on parameterθir , is
described in Sec. 3.2.

Thus, the total number of people requesting medical care in the interval(ti , ti+1) is given by the
sum

νtot = νind +νsec (3.3)

and depends on the set of parametersΘ= (Ntot,α,τ,θinc,θvd,θir ). Here the incubation period, visit
delay, and infection rate models, can be controlled by one ormore parameters.

Given datad in the form of a time-series of observedνtot(ti , ti+1], the epidemic model parame-
tersΘ can be estimated in the form of a multivariate PDF via Bayes theorem:

p(Θ|d) = p(d|Θ) · p(Θ)

p(d)
(3.4)

where p(d|Θ) is the probability distribution of observing the datad (also called the likelihood
function), given a particularΘ, p(Θ) is our prior belief distribution in that particular value ofΘ,
p(d) is the probability of observing the data. This term is a normalization factor in Eq. 3.4 and is
not important when computingp(Θ|d) which is the posterior distribution ofΘ conditioned ond.
The likelihoodp(d|Θ) describes the discrepancy, here assumed Gaussian, betweenthe number of
symptomatic people predicted by the model and the number of symptomatic people observed:

p(d|Θ) =
Nd

∏
i=1

exp

(

−(ν((ti , ti+1])−ni)
2

2σ2
M

)

(3.5)

where{ni , i = 1, . . . ,Nd} is the time series of symptomatic people requesting medicalcare. The
standard deviation,σM, between the model and observations can also be inferred along with the
model parameters. However its value does not affect the conclusions of this paper on the use of
surrogate approximations to replace the expensive epidemiological models. For this reason, we
chose a constant value,σM = 150, for all results presented in this paper.

A Markov Chain Monte Carlo (MCMC) algorithm is used to sample fromthe posterior prob-
ability p(Θ|d). MCMC is a class of techniques that allows sampling from a posterior distribution
by constructing a Markov Chain that has the posterior as its stationary distribution [15, 20]. In
particular, we use an adaptive Metropolis algorithm [23]. This methodology is an improvement
over the original Metropolis algorithm [41]. It uses the covariance of the previously visited chain
states to find better proposal distributions, allowing it toexplore the posterior distribution in a far
more efficient manner; see [23] for details.
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3.2 Epidemic Models and Priors

We describe the models, specifically the PDFs and CDFs used to describe epidemiological vari-
ables. We will do so for the etiologic agents (plague, influenza and anthrax) to be used in this
study.

The incubation period is described using a log-normal distribution i.e.

finc(t) =
1

tσ
√

2π
exp

(

− log2(t/µD)

2σ2

)

(3.6)

For plague the values forµD and σ, obtained from [16], are 4.3 and 0.3762, respectively. For
influenza, the corresponding figures are{1.79,0.47}, indicating a mean incubation period of 2 days
and a variance of 1 day [4]. For anthrax,µD is dose dependent and is obtained from Wilkening’s
A2 model [58].σ = 0.804−0.079· log10D, is also taken from [58], whereD is the dose, in terms
of spores inhaled by the infected individual. For the anthrax model,θinc is set to log10D.

The visit delay i.e., the delay between exhibition of symptoms and the time at which a symp-
tomatic seeks care, is modeled using a Gamma function. A log-normal model for the visit delay
observed for severe diseases is available in [26], based on data collected by [27]. However, since
the log-normal model was used in the epidemic simulators employed to generate synthetic data for
our tests, we adopted a Gamma model in the inverse problem to prevent an “inverse crime” (using
the same model to generate the synthetic data and then infer the parameters). The CDF for the visit
delay is given by

Fvd(t;θvd) =
θ1.992

vd

Γ(1.992)

∫ t

0
t̃0.992exp(−θvd · t̃)dt̃, (3.7)

In this equation, the shape parameter, 1.992, is obtained byfitting to the log-normal model in [26].
However, the rate parameter,θvd is left as an unknown (i.e., to be inferred when solving the inverse
problem) since the visit delay can shorten during an outbreak as the population becomes aware of
it.

We model the rate at which the secondary cases are infected using a Gamma distribution. This
is best conceived as the number of people infected on a daily basis since the time of introduction
of the index cases. The Gamma function, for appropriate parametric values can model an epidemic
when the infection rate initially increases (as more infectious people become available in the pop-
ulation) followed by a waning as countermeasures are put in place. The peak of the infection rate
and the speed of its decay can be adjusted parametrically. The initial rate of increase is controlled
by its shape parameterk which is generally difficult to infer from partial data. We use k = 2 for
plague [49] andk= 23 for influenza (see [30] for derivation).

qir (t;θir ) =
θk

ir

Γ(k)

∫ t

0
t̃k−1exp(−θir · t̃)dt̃, (3.8)

Hereθir is a rate parameter that largely controls the decay of the spread (infection) rate. Since
this decay will be affected by medical countermeasures, we leave this as a parameter to be inferred
from data.
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The priors used in the inference of epidemiological model parameters will be defined in the
Sec. 3.4.

3.3 Epidemic Data

The time-series datad used in this study is generated using epidemic simulators (for plague and an-
thrax outbreaks) and actual observations from the 1918 influenza pandemic. The methodology for
simulating epidemics caused by an aerosol release is described in detail elsewhere. We reproduce
a summary below.
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Figure 3.1. Time series of reported counts of symptomatic cases
for (a) plague, (b) 1918 pandemic influenza outbreak at Camp
Custer, MI, and (c) anthrax.

Plague Epidemic: The plague epidemics are simulated using a SEIR model with transmission
of the disease occurring over a social network. The details of the networked disease model are in
[48]. We select a set of index cases depending upon their position at a given moment; thereafter
the disease proceeds per the effective reproductive numberof the disease that varies in time, as
described in [49]. The evolution of an epidemic depends on the individuals designated as index
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cases; thus one may obtain many different realizations of the epidemic for the same number of
index cases, by varying the individuals (alternatively, byvarying the attack site). We designed the
time varying reproduction rate such that the epidemic ultimately comes to an end i.e., the final size
of the epidemic is a finite number. Figure 3.1(a) shows the progression of the plague epidemic.

Influenza Epidemic: The data for the influenza epidemic is obtained from [4]. These are
observations of symptomatic patients seeking care at the infirmaries of Camp Custer, MI, on a
daily basis, during the 1918 influenza pandemic. Note that the data is not biosurveillance data
i.e., there is no visit delay in the observations. Fig. 3.1(b) plots the evolution of the Camp Custer
outbreak.

Anthrax attacks: The procedure for simulating attacks is fully described inthe Appendix of
[48]. We consider a population distributed unevenly in space in a square domain. An aerosolized
preparation of anthrax is released from the origin (lower left corner) of the domain. The release
is evolved in time using a simple Gaussian plume model to provide a time-resolved value of the
aerosol concentration at ground level. A breathing rate of 30 l/min is assumed, which is then
used to calculate the time-integrated dosage for all the individuals in the population, and using
Glassman’s formula [21], the probability of infection. Theinfected individuals are allocated their
dose-dependent incubation period (a random variable) per Wilkening’s A2 model [58] and a visit
delay per the log-normal distribution in [26]. These together determine the time-series of patients
who would seek care over a period of time, and serve as the epidemic signature. Figure 3.1(c)
shows the progression of the anthrax epidemic.

3.4 Results

The inference results for plague, influenza, and anthrax arepresented in this section, along with a
discussion on the computational expense for each set of tests.

3.4.1 Plague Epidemic

We simulate a plague epidemic using the method described in Sec. 3.3. 1000 index cases are
infected and the epidemic lasts for 50 days. The epidemic grew to about 15,000 symptomatic
cases. The inference was performed using the method described in Sec. 3.1. The inference of
plague parameters required 3×105−5×105 MCMC samples to obtain fully converged statistics.
The priors for the model parametersΘ = (Ntot,α,τ,θinc,θvd,θir ) are given in Table 3.1. For certain
parameters that are constrained to be positive (or negative), we perform the inversion with their log-
transformed values. We generally use Gaussian priors for all parameters exceptα for which we
use a uniform distribution. We found out that the models are sensitive to this parameter, and the
inverse problems can generate unphysical solutions with a very small number of secondary cases
for highly contagious diseases, unless we impose strict bounds. For the other parameters, the prior
standard deviations were set large enough to limit the priordistribution effect on the posterior
distributions. A similar approach was taken for other disease models presented in this paper.
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Table 3.1.Prior distributions for the plague model parameters.

Parameter Prior distribution
log(Ntot) N(log(104),2)
α U(0.6,0.99)
log(−τ) N(log(5),log(10))
log(θvd) N(log(0.2),1)
log(θir ) N(log(0.1),1)

We perform the parameter estimation (epidemic characterization) starting 4 or 6 days past the
infection of the index cases. This delay encompasses the time required for the early cases of the
disease to develop symptoms and seek care in sufficient numbers and may be thought of as the
“alarm” date. The inferences use 3-15 days of data past the date of alarm. The median values, 25th
and 75th percentile for a number of parameters entering the plague model are shown in Fig. 3.2.
The data is collected starting 4 (blue lines) and 6 (red lines) after the start of the epidemic. For
the number of index cases, the true value of around 1000 is bracketed between 25th and 75th
percentile using around 7-9 days of data. We also notice thatrange between the 25th and 75th
percentile, approx. 800, remains somewhat independent of the number of days of data used in the
inference. The inferred values for the start of the epidemicare shown in Fig. 3.2(b). The true
values are -4 and -6 days respectively from the alarm date. Inboth cases the model overpredicts
the magnitude of these values. The total number of symptomatic cases is shown in Fig. 3.2(c). The
true value of 15000 is bracketed using 7-9 days of data. Similar to the number of index cases, the
25-75th quantile range remains nearly constant with the number of days of data used to infer the
model parameters. The convergence of the Markov chains weremonitored using themcgibbsit
package [56] in R [47] and these results are independent of the number of samples drawn by the
MCMC.

Figure 3.3 shows posterior predictive tests based on the MCMCsamples of the plague model
parameters. The ensemble of evolutions, based on the MCMC parameter samples, is then used to
estimate the median, 25th, and 75th quantile and compare with data series of reported counts. In
Fig. 3.3(a), the reported counts from days 5 through 14 (counting from the start of the epidemic)
were used to infer the model parameters and then predict the future number of people seeking care,
while for Fig. 3.3(b) the results are based on 6 more days of data. In both cases the original data
generally lies inside the 25-75th percentile band. In the second case, in Fig. 3.3(b), inclusion of
more data in the inference narrows the uncertainty in the expected number of counts compared to
Fig. 3.3(a).

3.4.2 Influenza Epidemic

Unlike the plague epidemic for which the calculations were based on synthetic data, the computa-
tional tests for the influenza epidemic are based on the data collected in Camp Custer, MI, during
the 1918 pandemic. The data was obtained from [4]. There is no“canonical” start date for the
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Figure 3.2. Estimates for (a) the number of index casesNi , (b)
start of the epidemic,τ and (c) total number of cases for a plague
epidemic,Ntot for the synthetic plague epidemic. The error bars
correspond to the 25th and 75th percentiles, respectively. The blue
lines correspond to an alarm date of Day 4 whereas red lines cor-
respond to an alarm date of Day 6.

Camp Custer outbreak. About 10,500 people were affected. The inversion was performed using
the method in Sec. 3.1 andO(105) MCMC samples were required (similar to plague). The prior
distribution for the influenza model parameters are provided in Table 3.2.

Figure 3.4 shows estimates of the start of epidemic and totalnumber of cases, using between
5 and 13 days of data. In the figure, the origin of the horizontal axis is arbitrarily set at the start
of data collection, since we do not have a fixed day for the start of the epidemic. The results
in Fig. 3.4(a) indicate that the epidemic started approximately 6-8 days before the origin of the
horizontal axis. Total number of people who were infected with influenza, approximately 10500,
lies within the 25th to 75th percentile band for the results shown in Fig. 3.4(b). The uncertainty in
the total number of cases decreases significantly when usingup to 11 days of data. Beyond this
point the inherent noise in the observations, seen in Fig. 3.1(b), prevent a further decrease in the
uncertainty bounds.
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Figure 3.3. Posterior predictive tests of the plague epidemic us-
ing the MCMC samples. The red lines show the 25th and 75th
percentile respectively, while the blue lines show the median. The
original data is shown with black circles. The posterior values
are based on 9 and 15 days of data in subfigures (a) and (b) re-
spectively. The alarm date is Day 6, and so the start date for the
predicted evolutions is Day 7.

Table 3.2.Prior distributions for the influenza model parameters.

Parameter Prior distribution
log(Ntot) N(log(1.24×104),2)
α U(0.95,0.99)
log(−τ) N(log(5),log(10))
log(θvd) N(log(12),1)
log(θir ) N(log(1.25),0.16)

Posterior predictive tests for the influenza epidemic are shown in Fig. 3.5. The disease pro-
gression estimated based on 9 days of data, in Fig. 3.5(a), shows significant uncertainties beyond
Day 10. This result is somewhat expected, given the 5000-15000 uncertainty in the total number
of cases, shown in Fig. 3.4(b). The uncertainty range reduces significantly when more data points
are included in the computations. Figure 3.5(b) shows posterior predictive tests based on samples
computed using 13 days of data.

3.4.3 Anthrax Epidemic

We simulated an anthrax outbreak using the method in Sec. 3.3. 22,500 index cases were infected
and the epidemic was simulated for 20 days. The inversion wasperformed as described in Sec. 3.1;
note that anthrax is a non-communicable disease and the model being inverted is Eq. 3.1. Figure 3.6
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Figure 3.4. Estimates for the start of the epidemic (left), and
total number of cases (right), for the Camp Custer outbreak. The
length of the error bars correspond to the 25th and 75th percentile,
respectively.
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Figure 3.5. Posterior predictive tests of the Camp Custer in-
fluenza epidemic using the MCMC samples. The red lines show
the 25th and 75th percentile respectively, while the blue lines show
the median. The original data is shown with black circles. The
posterior values are based on 9 and 13 days of data, for subfigures
(a) and (b) respectively.
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shows statistical results for the number of index cases (Ni), start date of the epidemic (τ), and the
average dose of anthrax sporesD, as a function of the number of data points used in the inference.
The prior distributions for the influenza model parameters are provided in Table 3.3.

Table 3.3.Prior distributions for the anthrax model parameters.

Parameter Prior distribution
log(Ni) N(104,10)
log(−τ) N(0,log(10))
log10D N(3,2)
log(θvd) N(0,1)

The true value forNi in Fig. 3.6(a), 22,500, is reasonably well estimated within 8-10 days
after the start of the epidemic, i.e., by using an observation period 4 to 6 days long. Note that the
inferences initially show large uncertainties (the error-bars indicate the inter-quartile range) but
decrease as more data become available. The inferred time ofthe start of the epidemic is shown
in Fig. 3.6(b). The results are calculated with respect withto the start of data collection, 4 and
6 days after the start of the actual epidemic. The results arewithin 1 day for both cases and the
difference between 25th and 75th quantiles decreases to about 1 day which is the resolution of data
collection. The average dose log10D = 2.8 is bracketed within 25-75th quantiles using 3-5 days of
data. The median value agreement with the actual value improves with the number of data points
used to infer the parameter, however the uncertainty does not reduce much beyond 7 days of data.

Figure 3.7 shows posterior predictive tests constructed ina similar fashion as were the results
for plague and influenza tests. In Fig. 3.7(a), the reported counts from Days 5 through 10 were
used to infer the model parameters and then predict the future numbers of sick people requesting
care. In Fig. 3.7(b), the results are based on 4 more days of data, from Day 5 through Day 14. Due
to the additional information contained in these data points, the uncertainty in the reported counts
is smaller compared to the results in Fig. 3.7(a).

3.4.4 Computational Expense

For the plague and influenza computations, the models for thenumber of sick people seeking care
on a daily basis require the evaluation of the single and double integrals in (Eq. 3.1) and (Eq. 3.2)
corresponding to the number of index and secondary cases, respectively. The evaluation of the
double integral is expensive. For the anthrax computations, only the number of index cases are
computed since the disease is not contagious. The computational times presented in Table 3.4 are
for runs on a 2.6GHz Intel Core 2 Duo.

The CPU times correspond to a full set of parameter inferences, e.g. using between 5-15
days of data for plague. The evaluation of the double integral in Eq. (3.2) significantly increases
the computational cost for the estimation of plague and influenza model parameters. For these
computations the CPU time is one order of magnitude larger compared to the anthrax. A surrogate
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Figure 3.6. Estimates for (a) the number of index cases, (b) start
of the epidemic, and (c) dose magnitude for the anthrax epidemic.
The length of the error bars correspond to the 25th and 75th quan-
tiles, respectively. The blue and red lines correspond to alarm dates
of Day 4 and 6 respectively.

29



0 5 10 15 20
Day since the start of epidemic

0

500

1000

1500

2000

R
e
p
o
rt
e
d
 c
o
u
n
ts

(a)

0 5 10 15 20
Day since the start of epidemic

0

500

1000

1500

2000

R
e
p
o
rt
e
d
 c
o
u
n
ts

(b)

Figure 3.7.Posterior predictive tests of the anthrax outbreak pro-
gression using the MCMC samples. The red lines show the 10th
and 90th percentile respectively, while the blue lines shows the
median. The original data is shown with circles. The posterior
values are based on 5 and 9 days of data, respectively. The alarm
date is Day 6, and so the start date for the predicted evolutions is
Day 7.

Table 3.4. Computational expense for the inference of plague,
influenza, and anthrax parameters.

Model Cases No. of samples Time-series CPU time [h]
length [days]

Plague Index & Sec 3×105 5-15 7.0
Influenza Index & Sec 3×105 5-13 5.6
Anthrax Index 5×105 3-15 0.2

model approach is introduced in the next section, in order toreduce the computational expense of
the plague and influenza models.
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Chapter 4

Surrogate Models

The surrogate model approach consists of replacing expensive models with polynomial functions,
which are far cheaper to compute (versus the full epidemic model) but are accurate enough com-
pared to the full model evaluation. Specifically, we will usepolynomial chaos (PC) expansions
[19, 59] to construct a surrogate model for the number of symptomatic people as a function of
time.

4.1 Construction of Surrogate Models

Let f (x) be an expensive model that depends on an array of random variablesx= (x1,x2, . . . ,xn).
For example, for the plague modelx= ΘP = (t,Ntot,α,τ,θir ,θvd). We will approximate the model
f as a polynomial expansion:

f (x)≈
P

∑
k=0

ckΨ(n)
k (x), (4.1)

whereΨ(n)
k (x) = Ψk1(x1) ·Ψk2(x2) · . . . ·Ψkn(xn) are multi-variate polynomials obtained by taking

the product of uni-variate polynomials that are functions of each componentxi in the array of ran-
dom variablesx [29]. Typically, these polynomials form an orthogonal basis in order to minimize
the numbers of termsP required to obtain certain accuracy in the approximation. Henceforth we
will drop the superscript ”(n)” to simplify the notation. The multi-variate polynomialsΨk(x), can
be chosen to be orthogonal with respect to the probability density function ofx (g(x)) in order to
obtain surrogate models that are most accurate wherex is most likely.∫

D
Ψk(x)Ψl (x)g(x)dx= δklαk (4.2)

The expansion coefficientsck (in Eq. 4.1) can be computed in a number of ways; we use the
Galerkin approach that exploits the orthogonality of the terms in the expansion

ck =
〈 f (x)Ψk(x)〉
〈Ψk(x)Ψk(x)〉

, and 〈 f (x)Ψk(x)〉=
∫

D
f (x)Ψk(x)g(x)dx (4.3)

The integrals necessary to evaluate〈 f (x)Ψk(x)〉 are evaluated using numerical quadrature

〈 f (x)Ψk(x)〉 ≈
Nq

∑
q=1

f (xq)Ψk(xq)wq. (4.4)
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Here,xq andwq are the quadrature points and weights, respectively, for the quadrature formula
used to compute the integral. Therefore, in order to evaluate the coefficients of the PC expansion,
the full model f needs to be evaluated at specific values of the input parametersx, chosen to corre-
spond to the quadrature points needed for the numerical evaluation of the projection formulas. In
this paper we will be using Legendre polynomials, orthogonal with respect to uniform probabil-
ity distributions. In order to construct expansions based on Legendre polynomials the parameter
ranges will be rescaled to[−1,1] intervals.

Once a PC approximation for the epidemiological model is fully constructed, this approxima-
tion can replace the evaluations of the full model in the MCMC procedure described above. The
MCMC technique proceeds as usual to determine the distribution of model parameters that best
fits the epidemiological data.

4.2 Surrogate Models for Plague

Careful examination of the equations for the number of index cases (3.1) and secondary cases (3.2)
reveals that the daily counts of the number of people becoming sick can be written as:

νtot(t) = Ntot(α f1(t − τ,θvd)+(1−α) f2(t − τ,θvd,θir )) (4.5)

Here f1 is the integral in Eq. (3.1), whilef2 is the double integral in Eq. (3.2). In this form,
parametersNtot andα are proportionality factors, whileτ leads to a shift in the disease evolution
depending on the start date. This allows us to reduce the number of dimensions from six to three
when writing the polynomial expansion (4.1):

νtot(t) = Ntot

P

∑
k=1

(αc1,k+(1−α)c2,k)Ψk(t − τ,θvd,θir )) (4.6)

The superscript(3) in Eq. (4.6) indicates thatΨk’s are trivariate polynomials. The domain of
integrationD in Eq. 4.3, used to calculateci,k is 0≤ t ≤ 50,10−2 ≤ θvd ≤ 2,10−2 ≤ θir ≤ 2. This
domain was chosen large enough to ensure the surrogate modelis accurate over the entire range of
parameters that can be encountered during the inversion process.

Figure 4.1 shows the evolution of the number of people seeking care for a range ofθir values.
In this figure,Ntot, α, andθvd are set to 104, 0.92, and 0.3, respectively. Several polynomial orders,
from 5 through 19, are considered. Visual inspection shows the agreement between the full model,
in blue, and the surrogate models, in red, is quite bad for polynomials of order 5 and 11, but steadily
improves as the order increases to 19. For the surrogate models using 19th order polynomials,
approximately 20000 model evaluations were necessary to compute the PC coefficients.

Figure 4.2(a) shows epidemic curves corresponding to several slices through the surfaces shown
in Figure 4.1(d). Theθir values are shown near each set of curves in Fig. 4.2(a) and thecolor
scheme is the same as in the previous figure. Some discrepancies are observed between the full
and surrogate models corresponding to smallθir . These discrepancies are inherent to polynomial
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Figure 4.1. Evolution of plague epidemic as a function of the in-
fection rate parameter. The blue wireframe results are based on the
full model, while the red wireframes correspond to surrogate mod-
els using 5, 11, 15, and 19 order polynomials. All results corre-
spond toθvd = 0.3. Subfigures (a) and (b) show poor comparisons
but the 19th order polynomial in (d) shows good agreement.

approximations for highly non-linear functions. To circumvent this problem we introduce an alter-
nate representation for the surrogate model, where the dependency on theθvd andθir is replaced
with a dependency on the natural logarithms of these parameters:

νtot(t) = Ntot

P

∑
k=1

(αc1,k+(1−α)c2,k)Ψk(t − τ, log(θvd), log(θir ))) (4.7)
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This modification naturally adds weight to the lower range ofvalues for bothθvd andθir . Fig-
ure 4.2(b) shows epidemic curves from surrogate models constructed using Eq. (4.7). The new
results show a better agreement for epidemic curves corresponding to small values ofθir . Similar
results are also obtained for the range ofθvd values.
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Figure 4.2. Evolution of plague epidemic for several infection
rate parameter values. Left frame surrogate models are based on
Eq. (4.6) while those in the right frame are based on Eq. (4.7). The
surrogate models use 19th order polynomials.

We repeated the epidemic characterization runs described in Sec. 3.4.1 using the the surrogate
model in Eq. (4.6). The results in Fig. 4.3 show the inferredNtot values using the alternative
approximations Eq. (4.6) and (4.7). The later surrogate model formulation which exhibits a better
agreement with the full model at smallerθvd andθir values also does a better job estimating the
Ntot range of values. While in Fig. 4.3(a) the results show little convergence with polynomial
order, in Fig. 4.3(b) there is a clear improvement when usingpolynomial expansions based on
the transformed parameters in Eq. (4.7). Similar agreementis observed for the other parameters
comprising the epidemic model for plague.

4.3 Surrogate Models for Influenza

We attempted to use the same surrogate modeling approach as described in Sec. 4.2 using Eq. (4.7),
but applied to an influenza model. We found it impossible to identify a single polynomial order
that could representνtot(t) accurately in the entire domain (0≤ t ≤ 50,5≤ θvd ≤ 25,0.9≤ θir ≤
1.6. Consequently, we partitioned thet dimension and fit a separate surrogate model in each.
Partitioning thet-dimension resulted in regions where the full model behavedvery smoothly and
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Figure 4.3. Estimates for total number of cases for a plague epi-
demic. The length of the error bars correspond to the 25th and 75th
percentiles, respectively. The left frame surrogate model results
correspond to Eq. (4.6), using 5th (S5), 11th (S11), and 19th (S19)
order polynomials. The left frame results correspond to Eq. (4.7)
and the same sequence of polynomial fits. The dashed line shows
the actualNtot value.

could be fit with relatively low-order polynomials e.g. order 9. The surrogate model, thus consists
of a collection of polynomial approximations, each valid inits own partition of the parameter space.
The partitioning approach combined with low order polynomials can reduce the total number of
model evaluations. For a collection of 10 partitions with 9th order PC expansions in each partition,
about 13000 model evaluations (compared to 20000 in the previous section) were necessary to
compute the PC coefficients.

In Figs. 4.4 and 4.5, we explore the impact of the polynomial expansion order on the quality of
the surrogate models, as well as the effect of increasing thenumber of partitions of thet dimension.
We see that, due to smooth model behavior in each domain partition, 5th to 9th order polynomials
are sufficient to capture the full model behavior for 5-day partitions (in Fig. 4.5).

We then repeat the epidemic characterizations in Sec. 3.4.2but with the original epidemic
model replaced with its surrogate. The results in Figs. 4.6 and 4.7 show the effects of the partition
size and polynomial expansion order, respectively, on the inferred 25th percentile, 75th percentile,
and median values for the total number of cases and infectionrate parameters. Both sets of re-
sults show a clear improvement in the accuracy of results when reducing the partition size and/or
increasing the polynomial order. From Figs. 4.6 and 4.7, we find that 10-day partitions with 9th
order polynomials may provide surrogate models sufficiently accurate for use in epidemic charac-
terizations.
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Figure 4.4. Evolution of influenza epidemic as a function of the
infection rate parameter. The full model is shown in blue and the
surrogate models in red. The day axis consists of (a) one 50-day
partition, (b) two 25-day partitions, and (c) five 10-day partitions.
All surrogate models use 9th order polynomial expansions and the
results correspond toNtot = 104, α = 0.99, andθvd = 0.3.
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Figure 4.5. Evolution of influenza epidemic as a function of the
infection rate parameter. The full model is shown in blue and the
surrogate models in red. The surrogate models use (a) 3-rd order,
(b) 5th order, and (c) 9th order polynomial expansions. For all
frames the day axis consists of 10 5-day partitions. The values for
the other parameters are the same as for Fig. 4.4.
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Figure 4.6. Influenza model parameters,Ntot andθir , estimated
using 9th order polynomials, split over 5-day (d5), 10-day (d10),
and 25-day (d25) intervals.
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Figure 4.7. Influenza model parameters,Ntot andθir , estimated
using 3rd (S3), 5th (S5), and 9th (S9) order polynomials split over
5 day intervals.
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4.4 Computational Expense

The computational time required for the surrogate model approach in Table 4.1 show an almost two
orders of magnitude speed-up on the same computing platformcompared to the results based on the
direct plague and influenza model evaluations in Table 3.4. The CPU time values shown here do not
include the CPU times required to generate the coefficients for the polynomial expansions. These
values depend on the polynomial order and the partition size, and are between 0.05-0.1 CPU hours.
However, once computed, the polynomial expansions can be reused to infer the epidemic model
parameters for several data sets. This amortization renders their computational cost negligible.

Table 4.1. Computational expense for the inference of plague,
influenza, and anthrax parameters using the surrogate model ap-
proach.

Model No. of samples Data [days] CPU time [h]
Plague 3×105 5-15 0.14
Influenza 3×105 5-13 0.11
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Chapter 5

Summary and Conclusions

This report presents an approach for the statistical characterization of partially observed epidemics
using surrogate models. Data consists of time series of symptomatic patients diagnosed with the
disease. The characterization is performed using an epidemic model, which contains submodels
for the incubation period, visit delay, and infection rat. The submodels are specialized for three
different diseases (anthrax, plague and influenza). The total number of cases, start of epidemic,
and other epidemiological parameters are estimated from the available time series using a decon-
volution approach. The characterization problem is formulated as a Bayesian inverse problem,
and epidemiological parameters are estimated as distributions using a Markov chain Monte Carlo
(MCMC) method, thus quantifying the uncertainty in the estimates.

We find that epidemiological models that have the ability to reproduce the complex tempo-
ral dynamics of epidemics (generally those of communicablediseases) cannot be naively used
in “real-time” characterization studies with MCMC. Scalabletechniques like Ensemble Kalman
Filters/Smoothers may allow their use, but only if Gaussianassumptions are made regarding the
distribution of the estimated parameters. This is best avoided within the context of sparse data. We
introduce a competing approach, where the epidemiologicalmodel is replaced by its surrogate. The
surrogate model is a polynomial expansion created by projecting the output of the epidemiological
model on a set of orthogonal polynomial bases; thereafter, computations involving the surrogate
model reduce to evaluations of a polynomial. We achieve morethan a factor of 10 speed-up when
we do so, with little or no loss of accuracy. We find that the number of sample points at which the
epidemic model has to be evaluated prior to projection is O(10)−O(102) fewer than the number
of samples required by MCMC to converge; thus it may not even benecessary to construct the sur-
rogate models offline. This advantage arises partially due to our choice of the basis set (polynomial
chaos) and partly due to the large number of MCMC samples required to explore the parameter
space. These results were obtained using synthetic epidemic data for anthrax and plague outbreaks,
and data from the 1918 influenza pandemic collected at Camp Custer, Michigan.

We could not find a systematic way of constructing the surrogate model. In one case, the surro-
gate model consisted of high-order (19th-order) functions of the log-transformed input parameters,
whereas in the other, the parameter domain had to be partitioned and fitted with relatively lower-
order polynomials. The particular approach adopted is dependent on the behavior of the model
in question as well as the region in the parameter space whereaccuracy is desired. While we
adopted domain partitioning and stretching, the same couldpotentially be accomplished by sam-
pling the parameter domain in an uneven or adaptive manner, predicated on the model response (or
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its gradient).

Biosurveillance networks are becoming ubiquitous and are increasingly used to detect the start
of outbreaks. As the accuracy and timeliness of their data improves (and the quantity increases),
automated processing, with a view of detecting patterns or drawing inferences, will gain epidemi-
ological and public health relevance. Accelerated means ofdoing so, along with a quantification
of uncertainty in the inferences, can be expected to assume practical importance. In this paper,
we have demonstrated an approach to do so, without significant loss of accuracy. While the use
of (polynomial chaos) surrogate models may be novel in epidemiology, they are nevertheless used
widely in design and optimization efforts in other fields. Consequently, they may potentially be
useful in real-time epidemiology too.
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