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Abstract 

  

In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating 

to the NNSA nuclear weapon surveillance program.  The purpose of the metrics was to 

develop a more quantitative and/or qualitative metric(s) describing the results of 

realized or non-realized surveillance activities on our confidence in reporting reliability 

and assessing the stockpile.  As a part of this effort, a statistical sub-team investigated 

various techniques and developed a complementary set of statistical metrics that could 

serve as a foundation for characterizing aspects of meeting the surveillance program 

objectives.  The metrics are a combination of tolerance limit calculations and power 

calculations, intending to answer level-of-confidence type questions with respect to the 

ability to detect certain undesirable behaviors (catastrophic defects, margin 

insufficiency defects, and deviations from a model).  Note that the metrics are not 

intended to gauge product performance but instead the adequacy of surveillance. 

 

This report gives a short description of four metrics types that were explored and the 

results of a sensitivity study conducted to investigate their behavior for various inputs.  

The results of the sensitivity study can be used to set the risk parameters that specify 

the level of stockpile problem that the surveillance program should be addressing. 
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1. INTRODUCTION 
 

In September of 2009, a Tri-Lab team was formed to develop a set of metrics relating to the 

NNSA nuclear weapon surveillance program.  The purpose of the metrics was to develop a more 

quantitative and/or qualitative metric(s) describing the results of realized or non-realized 

surveillance activities on our confidence in reporting reliability and assessing the stockpile.  As a 

part of this effort, a statistical sub-team investigated various techniques and developed a 

complementary set of statistical metrics that could serve as a foundation for characterizing 

aspects of meeting the surveillance program objectives.  The metrics are a combination of 

tolerance limit calculations and power calculations, intending to answer level-of-confidence type 

questions with respect to the ability to detect certain undesirable behaviors (catastrophic defects, 

margin insufficiency defects, and deviations from a model).  Note that the metrics are not 

intended to gauge product performance but instead the adequacy of surveillance. 

 

This report gives a short description of four metrics types that were explored and the results of a 

sensitivity study conducted to investigate their behavior for various inputs.  The results of the 

sensitivity study can be used to set the risk parameters that specify the level of stockpile problem 

that the surveillance program should be addressing. 

 

 

2. BACKGROUND AND SCOPE OF THE STUDY 
 

The objective of the surveillance metrics is to provide a statistical measure of certain aspects of 

the surveillance program relating to data collection.  Hence the inputs of these metrics all relate 

to some aspect of the surveillance program, with the output being a measure of that program’s 

ability to identify selected deleterious behaviors such as defects or trends.  However each of the 

surveillance metrics requires one or more decisions relating to the amount of risk one is willing 

to take; for example, the size of the defect in the stockpile.  Further, the tolerance limit metrics 

depend upon the initial margin of the product.  And finally, there are assumptions associated 

with some of the metrics (e.g., linearity, normality) that may not be met. 

 

As can be seen from this, the scope of the sensitivity study is potentially very broad.  For this 

exercise, there were four general areas of focus that were identified prior to the study for 

exploration: 

 

 Parameter values 

 Trend scenarios 

 Sampling profiles 

 Other data considerations 

 

Further, three classes of parameters were identified for exploration: 

 

 characteristics of the surveillance program 

 characteristics of the product and measurement system 

 risk characteristics 
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In general, linear trends were examined but some other trend scenarios based upon past 

experiences with real data were explored for one of the metrics.  This will be discussed later in 

the paper. 

 

Some of the metrics also depend upon how the samples are allocated over time, in addition to 

how many there are.  The intent was thus to examine cases where samples were allocated at 

regular intervals as well as in “clumps”.  Again, this was explored only to a limited extent to date 

but with some interesting results. 

 

The other data considerations listed below were also considered to be important but were not 

fully explored.  In particular, non-homogeneity is known to exist in the stockpile and poses 

unique surveillance challenges but its implications for the variables data metrics are not yet fully 

explored. 

 

A. Sub-populations 

B. Non-normal data (one case explored) 

C. Other data anecdotes? 

D. Measurement error issues: presumed to be convolved with the data 

 

Table 1 summarizes the sensitivity study plan that the authors completed for this report.   The 

listed metrics are defined in the body of the report.  R code
1
 was written to do the calculations.   

The code is included in Appendix A. 

 

                                                 
1
 R is a free software environment for statistical computing and graphics.  It can be downloaded at http://www.r-

project.org. 
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Table 1: Sensitivity Study Work Completed 

  
Metric 1a Metric 1b Metric 2a Metric 4 Metric 2b/c Metric 3a/b 

Characteristics 

of the 

Surveillance 

Program 

Total Samples 
1-50 

50-250  
1-50 

   

Sample History 
 

1-100 
1-20  

Evenly distributed vs. 

split 50:50, 80:20 

beginning and end; 
Over 10, 30 years 

N=1-100 

Evenly distributed, 

Over 10, 30 years 
N=1-100 

1-50 

Characteristics 

of the Product 

and 

Measurement 

System 

Population size 
100, 500, 

infinite 
100. 500, 
infinite     

Non-normality 
  

Normal 
LN (same SD, 

5x SD as 

normal) 
   

Initial (or static) 

probability within 

spec.   

.8, .9, .95, .99, 

.995, .999, 

.99999 

.8, .9, .95, .99, .999, 

.9999, .999999 
.8, .9, .95, .99, .999, 

.9999, .999999  

SNR (slope/s
slope

) 
   

Determined by initial 

and final margin and 

work back to give .01, 

.05, .1 

Ending proportion 

.0001, .001, .01, .05, 

.1, .25  

Risk 

Characteristics 

Defect Size 
.01, .05, .1, 

.25 
.01, .05, .1, 

.25 
.01, .05, .1, .25 

.0001, .001, .01, .05, 

.1, .25 
.1 

 

Lookback Time 
 

4 yrs* 
 

From time zero 
 

4 yrs* 

Predictive Time 
   

15 years from today 
(a) today 

(b) 15 years from 

today  

False Positive Rate 
   

5% 
 

5% 

Size of Effect 
     

(a) 1, 2, 3 sigma 
(b) 1.5, 2, 3 sigma 

*This does not affect the sensitivity calculation, but, of course, the number of samples and hence power will depend on the number of years to 

detect a change. 
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3. PRESENTATION OF RESULTS 
 

For each of the metrics, the following will be presented: 

 

 A brief description of the metric and its role 

 One or more representative graphs of results, illustrating the general metric behavior 

 One or more representative tables of results which help to highlight the relationship 

between N (the number of samples) and the metric value under various conditions 

 A discussion of general observations, insights, and dependencies 

 

An example for Metric 1a is shown below to illustrate how to interpret the graphs. 

 

 

 

 P1a level 

Defect 
rate 0.6 0.7 0.8 0.9 

0.01 92 120 161 230 

0.05 18 24 32 45 

0.1 9 12 16 22 

0.25 4 5 6 9 
 

 

 
 

 

 

The x-axis of the plot is N, the number of samples (the input characterizing the surveillance 

program in this case).  There are separate curves drawn to show the dependence on risk level (in 

this case, defect size).  Other assumptions are noted in the heading of the graphs (e.g., the “large 

population” case).  The y-axis is the metric value calculated for each surveillance program input, 

risk level, and other assumptions. 

 
3.1.  Metric 1a/1b Discussion 
 

The purpose of Metric 1a/1b is to assess the power to detect defective units.  The power to detect 

defective units is addressed by two sub-metrics: 

 

P1a:  The probability of identifying a static defect in stockpile. 

 

P1b:  The probability of identifying a latent defect in stockpile. 

 

P=0.8 

N=161 
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For large populations, one can use the binomial distribution to calculate Metric 1a/1b.  If Ntotal is 

the total number of samples and p is the proportion in the population with a problem, 

 

 totalN

a pP )1(11   (1) 

 

If Nxyears is the total number of samples in the last x years and p is the proportion in the 

population with a problem, 

 xyearsN

b pP )1(11   (2) 

 

For small populations, we use the hypergeometric distribution.  If Npopulation is the size of the 

population and Ntotal is the total number of samples and p is the proportion in the population with 

a problem, 

 

 

      
(             

 
) (                         

      
)

(           

      
)

 (3) 

 
If Nxyears is the total number of samples in the last x years and p is the proportion in the population with a 

problem, 

 

      
(             

 
) (                         

       
)

(           

       
)

 (4) 

 

Because of their close relationship, the results for Metrics 1a and 1b will be discussed together.  

In each case we use N to represent the total number of samples that are counted to detect the 

static or latent defect. 

 

The graphs below show the general behavior of the metric. 
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Figure 1: Representative Graphs for Metric 1a and 1b 

N=1-50                                                      N=1-250 

 
 

The left graph shows metric calculations for sample sizes ranging from one to 50, and defect 

sizes of one, five, ten, and 25 percent. Two sets of curves show exact hypergeometric 

calculations for sampling from populations of 100 (black) and 500 (green).  A third set of curves 

show approximate, binomial calculations for sampling from an arbitrarily large population (red). 

 

The right graph compares hypergeometric (black) and binomial (red) calculations for sampling 

from a total population of 500, with sample sizes of one to 250.   The table shows the results for 

sampling from a total population of 500 in terms of the number of samples needed to achieve 

metric levels of 0.6, 0.7, 0.8, and 0.9. 

 

See Appendix B for the entire set of graphs generated for Metrics 1a and 1b. 

 
Table 2: Metric 1a/b Number of Samples (Population of 500) 

 P1a or P1b level 

Defect 
size 

0.6 0.7 0.8 0.9 

0.01 84 107 138 184 

0.05 18 23 31 43 

0.1 9 12 16 22 

0.25 4 5 6 8 

 

General observations include the following: 

 

 There is a strong dependence upon the risk level (defect size) selected.  More samples are 

required to detect smaller defect sizes.  This conforms to one’s intuition. 
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 There is a strong dependence upon the number of samples, N.  This dependence is 

approximately linear for small sample sizes.  However there is a knee in the curve above 

which there is relatively little improvement in the metric once N reaches a certain value.  

The location of the knee in the curve depends upon the defect size and also depends on 

the population size. 

 For population size of 500 and defect sizes of five percent or greater, the binomial 

distribution offers an acceptable approximation, although certainly the hypergeometric 

distribution calculations are easy with Excel or other tools. 

 The definition of P1b includes a time window to gauge data currency.  The calculation is 

independent of this choice, but it will obviously affect the value of N which is a critical 

input.  The table below shows the value of P1b for various annual sample rates and a 4-

year window.  It assumes an arbitrarily large population.  For small annual sample rates, 

this metric will have a low value.  For example, even for a 10% defect size the metric 

value is only 0.34 for a sample rate of one per year.  Even so, this underscores an 

important fact about the surveillance program.  If the population is not evolving 

homogeneously (i.e., only a subset is defective at a given point in time), one needs 

several samples per year to have a chance of detecting emerging defectiveness in a timely 

fashion. 

 The choice of time window for P1b poses a tradeoff.  Experience shows that latent defects 

can show up in a relatively short period of time, so the time window should not be too 

long or the metric will be misleading in its assessment of data currency.  On the other 

hand, the surveillance program experiences ebbs and flows in testing and we do not want 

the metric artificially “bouncing” due simply to logistical issues.  Somewhere in the 3-5 

year range should provide a reasonable compromise for the time window, although 

certainly other choices can be made for selected datasets based upon other considerations. 

 
Table 3: Metric 1b by Annual Sample Rate and Defect Size 

Annual 
Sample Rate 

4-Year 
Total 

P1b 
(.01 defect) 

P1b 
(.05 defect) 

P1b 
(.1 defect) 

P1b 
(.25 defect) 

1 4 0.04 0.19 0.34 0.68 
3 12 0.11 0.46 0.72 0.97 
5 20 0.18 0.64 0.88 1.00 
7 28 0.25 0.76 0.95 1.00 
9 36 0.30 0.84 0.98 1.00 
11 44 0.36 0.90 0.99 1.00 

 

 One important assumption for P1a and P1b that was not explored in the sensitivity study is 

that it is presumed that any defect present in a sample will be detected by the testing that 

is performed on that sample.  That is less a mathematical question than an engineering 

question, yet it greatly affects the outcome.  In most cases, the most expedient means of 

dealing with this is by sub-setting the data appropriately (e.g., including in N only cold 

temperature tests if there is a failure mechanism known to only be manifested at cold 

temperature).  However if one is searching for unknown mechanisms, it is impossible to 

anticipate what sub-setting might be appropriate.  It should thus always be borne in mind 

that P1a and P1b may be misleadingly high for particular mechanisms that are not 

detectable in all tests.  Continuous engineering review of test efficacy and diversity is as 
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important as continuous review of test quantities in understanding the state of the 

stockpile. 

 

3.2.  Metric 2a/2b/2c Background 
 

The purpose of Metric 2a/2b/2c is to reflect the availability of sufficient test data to determine 

whether a threshold is met, not met, or there is insufficient data to determine whether the 

threshold is met or not met.  The metric is calculated by using a statistical tolerance limit 

approach to find the confidence that a specified proportion of the population meets the 

performance threshold.  In the case of a lower spec limit, the metric is the confidence associated 

with the lowest one-sided tolerance limit that still exceeds the spec limit.  Similarly, in the case 

of an upper spec limit, the metric is the confidence associated with the highest one-sided 

tolerance limit that still does not exceed the limit. 

 

Confidence in margins is addressed by three sub-metrics: 

 

P2a: The confidence that a proportion of a specified performance variable does (or does not) 

exceed a threshold value today, when margins are assumed not to be changing. 

 

P2b: The confidence that a proportion of a specified performance variable does (or does not) 

exceed a threshold value today, when data are trended to allow for the possibility that margins 

may be changing. 

 

P2c: The confidence that a proportion of a specified performance variable does (or does not) 

exceed a threshold value at a specified time in the future, when data are trended to allow for the 

possibility that margins may be changing. 

 

Each of these submetrics will be addressed in turn. 

 

3.3.  Metric 2a Discussion 
 

Metric 2a is the confidence that a proportion of the population does (or does not) exceed a 

threshold value today, if margins are assumed not changing.  We calculate Metric 2a by finding 

the confidence associated with the lowest static one-sided tolerance limit that still exceeds the 

threshold, or the highest static one-sided tolerance limit that still does not exceed the threshold. 

 

The static, one-sided lower tolerance limit (  ) and upper tolerance limit (    are calculated from 

a series of N data points as: 

 

     ̅     
(5) 

     ̅     (6) 

 

in which    is the tolerance factor,  ̅ is the sample mean, and   is the sample standard deviation. 

 

The exact analytical expression for the tolerance factor is given by: 
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√ 
 

(7) 

 

in which       
   is the 100 % percentile of the non-central t-distribution with        degrees 

of freedom and non-centrality parameter  .  The non-centrality parameter is given by: 

 

   √     (8) 

in which    is the 100 % percentile of the standard normal distribution, and P is the target 

conforming proportion of the population that meets the threshold. 

 

In the case of a lower performance limit, we wish to set     , the performance limit.  Solving 

for confidence: 

 

 

        (
 ̅   

 

√ 

) (9) 

 

in which      is the cumulative distribution function of the non-central t-distribution with 

       degrees of freedom and non-centrality parameter  .  ̅ and S are the sample mean and 

standard deviation of the data. 

 

Similarly, for an upper performance limit, the metric is calculated from: 

 

 

        (
   ̅

 

√ 

) (10) 

 

In the sensitivity study, three key parameters were varied: 

 

1. Target conforming proportion, “target” (P):   First of all, the target conforming 

proportion had to be specified.  This is referred to as the “target” in the graphs and 

signifies the particular proportion of the distribution, P, lying inside of the specification 

limit that one wishes to assure with some confidence.  The target values selected for the 

sensitivity study were 0.75, 0.9, 0.95, and 0.99. 

 

2. True conforming proportion, “true”:  Metric 2a also depends upon the true proportion 

of the population lying inside of the specification limit.   This is referred to as “true” in 

the graphs and signifies the true conforming proportion.  The true values selected for the 

sensitivity study were 0.8, 0.9, 0.95, 0.99, 0.995, 0.999, and 0.99999.  For the purpose of 

simulation, the true conforming proportion was set by drawing random samples from a 

standard normal distribution and setting the performance limit equal to the appropriate 

percentile of the standard normal. 
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3. True distribution:  Metric 2a calculates confidence in margin based on the assumptions 

that unit-to-unit variation is normal in distribution.  A study was done for Metric 2a to see 

what impact non-normality might have.  Two non-normal distributions were chosen to 

compare to the results for a normal distribution: a lognormal distribution with the same 

variance as the normal distribution and a lognormal distribution with a variance 

approximately five times that of the normal distribution. 

 

Note that Metric 2a depends not just on the values of “true” and “target”, but also on sampling 

variability.  This random variation is inevitable because the true conforming proportion in the 

population is not known, but is estimated from sample data.  In order to understand the 

uncertainty in the value of P2a introduced by this sampling variability, 10,000 simulations were 

run for each set of parameters.  Quantiles of P2a at 10%, 50%, and 90% were then plotted from 

these simulations. 

 

3.4.  Metric 2a Discussion (Normal Population Distribution) 
 

The graphs below summarize the general behavior of the metric when the data are drawn from a 

normal population.  Each of the four graphs has a fixed value of “target”.  Each different color 

represents a different “true” value.  Solid lines are the 50% quantile and dashed lines are the 10% 

quantile (the 90% quantile is not shown on these graphs to reduce clutter).  See Appendix C for 

the entire set of graphs generated for Metric 2a for a normally distributed population. 
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Figure 2: Metric 2a Summary Graphs (Normal Distribution) 
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The table below shows the median number of samples required to achieve P2a levels of 0.6, 0.7, 

0.8, and 0.9, with “target” fixed at 90% lying within the performance limit and “true” varied.  

Similar tables can be constructed for other choices of “target” and other quantiles of the 

simulated metric values. 

 
Table 4: Metric 2a Median Number of Samples (Target: 0.9 within spec) 

 P2a level 

True fraction 
in spec 

0.6 0.7 0.8 0.9 

0.95 3 6 14 30 

0.99 2 2 4 7 

0.995 2 2 3 5 

0.999 2 2 3 4 

0.99999 2 2 2 3 

 

General observations include the following: 

 

 Metric 2a is dependent upon the actual conforming proportion (“true”), the proportion 

that one wishes to protect to (“target”), sampling variation, and N (the number of 

samples). 

 The true conforming proportion depends on characteristics of the population but also on 

the specification limit used.  It is well-known that specification limits are often 

conservative (or unknown), so the immediate response to a low value of P2a may well be 

to first examine and revise the spec limit to ensure it is not overly conservative. 

 Because of the sampling variation, it is possible that the value of P2a will decrease when 

more tests are done.  This may not be intuitive to users of the metric. 

 When P2a < 0.5, the implication is that it is more certain that the population does not meet 

the target. 

 There are three distinct regimes of behavior: 

o When “true” >> “target”, then P2a converges to 1 quickly (i.e., the 10%, 50%, and 

90% quantiles converge to 1). 

o When “true” << “target”, then P2a converges to 0 quickly (i.e., the 10%, 50%, and 

90% quantiles converge to 0). 

o When “true” = “target”, an interesting behavior is seen.  The 50% quantile is at a 

metric value of 0.5, the 10% quantile is at a metric value of 0.1, and the 90% 

quantile is at a metric value of 0.9.  Further, these values are independent of N and 

of the ratio of “true”/ target”.  This behavior is illustrated in Figure 3.  The metric 

in this case has a uniform distribution in the range [0,1]. 

o The closer “true” and “target” are, the larger the uncertainty is with minimal 

improvement irrespective of the number of samples tested.  This is somewhat 

disconcerting in that the case of maximum ambiguity is not aided by increasing N.  

To have a reasonable metric, the target value should be set lower than the true 

value, and this requires an estimate of the true value. 



19 

 

 For most parameters, it is expected that the “true” conforming proportion will start high 

by virtue of the design process.  In general, margin insufficiency is not common when 

systems enter the stockpile and the true margin likely corresponds to a conforming 

proportion of 0.9999 to 0.99999 for a normal population.  However the concern is that 

margin insufficiency may develop over time due to age-related issues.  As such, when 

thinking about selecting a “target” value, it seems to indicate that we don’t want to set 

“target” so high that it may result in the “true=target” case described above, but we do 

want to balance that with the objective of being predictive which would suggest higher 

values of “target”. 

 
Figure 3: Metric 2a when True=Target 

 
 

 The overly conservative spec limit issue mentioned above also in fact aids us in that it 

tends to highlight cases before they become performance issues.  Given all of this, a 

“target” value of 0.95 may be a reasonable compromise for most parameters.  This is also 

suggested by the data in Table 5 for “target”=0.95.  Note that both the 50% and 10% 

quantiles achieve relatively high levels of the metric value for values of N around 30, 

even when “true” is only 0.99. 
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Table 5: Metric 2a by True (Target: 0.95 within spec) 

[10/50/90% quantile values] 

  True 

N Quantile 0.8 0.9 0.95 0.99 0.995 0.9999 0.99999 

10 
10% 
50% 
90% 

0.00/ 
0.02/ 
0.33 

0.01/ 
0.21/ 
0.73 

0.10/ 
0.51/ 
0.90 

0.51/ 
0.86/ 
0.99 

0.65/ 
0.92/ 
0.99 

0.84/ 
0.97/ 
1.00 

0.98/ 
1.00/ 
1.00 

20 
10% 
50% 
90% 

0.00/ 
0.00/ 
0.08 

0.01/ 
0.12/ 
0.60 

0.10/ 
0.50/ 
0.90 

0.69/ 
0.94/ 
1.00 

0.85/ 
0.98/ 
1.00 

0.97/ 
1.00/ 
1.00 

1.00/ 
1.00/ 
1.00 

30 
10% 
50% 
90% 

0.00/ 
0.00/ 
0.02 

0.00/ 
0.08/ 
0.50 

0.10/ 
0.50/ 
0.90 

0.81/ 
0.98/ 
1.00 

0.93/ 
0.99/ 
1.00 

0.99/ 
1.00/ 
1.00 

1.00/ 
1.00/ 
1.00 

40 
10% 
50% 
90% 

0.00/ 
0.00/ 
0.00 

0.00/ 
0.05/ 
0.40 

0.11/ 
0.50/ 
0.90 

0.88/ 
0.99/ 
1.00 

0.97/ 
1.00/ 
1.00 

1.00/ 
1.00/ 
1.00 

1.00/ 
1.00/ 
1.00 

50 
10% 
50% 
90% 

0.00/ 
0.00/ 
0.00 

0.00/ 
0.03/ 
0.33 

0.10/ 
0.50/ 
0.90 

0.93/ 
1.00/ 
1.00 

0.99/ 
1.00/ 
1.00 

1.00/ 
1.00/ 
1.00 

1.00/ 
1.00/ 
1.00 

 

 

 

3.5.  Metric 2a Discussion (Lognormal Population Distribution) 
 

One of the questions raised in the sensitivity study was the impact of non-normality on the metric 

value.  While it is possible to test for normality prior to calculating the metrics, it will likely be 

difficult in many cases to identify non-normality because of small data quantities.  Hence a study 

was done for Metric 2a to see what impact non-normality might have.  Two non-normal 

distributions were chosen to compare to the results for a normal distribution: a lognormal 

distribution with the same variance as the normal distribution and a lognormal distribution with a 

variance approximately five times that of the normal distribution. 

 

All distributions were constructed to have the same true proportion lying within the spec limit.  

This was done for the purpose of simulation by setting the spec limit to the desired true 

percentile of the standard normal distribution, and then adjusting the lognormal means so that the 

spec limit also coincided with the same desired true percentile of these distributions. The 

probability density plots for some example distributions are shown in Figure 4 and 5.  These 

examples illustrate the differences between the normal and lognormal distributions with the same 

true proportion lying within the spec limit. In general the distributions move farther apart for an 

increasing true proportion lying within spec limit, and the differences are greater when the 

lognormal variance is greater than the normal variance.  These differences are due to the slow 

drop-off in probability in the long left tail of the lognormal distribution. 
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Figure 4: Non-Normal Distributions for Metric 2a: Normal vs. LN Same Variance 

 
 

True=0.9

True=0.99

True=0.8

True=0.95
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Figure 5: Non-Normal Distributions for Metric 2a: Normal vs. LN Larger Variance 

 
 

 

All resulting graphs are shown in Appendix D.  Some illustrative examples are shown in  

Figure 6.  Before discussing them in detail, it is helpful to note that the lognormal distributions 

that we are considering are negatively skewed as shown in Figures 4 and 5.  Recall also that the 

simulations are done using a lower specification limit.  It is believed that these account for the 

different behavior of the metric when comparing the results from the normal vs. lognormal 

distributions. 

 

Figure 6 (a) shows the typical behavior when True >> Target. Figure 6 (b) shows the typical 

behavior when True << Target.  Graphs (c), (d), and (e) show three cases where True = Target. 

 

In general the results are intuitive given the differences between normal and lognormal 

distributions seen in Figure 4.  The lognormal distribution gives increasingly optimistic metric 

values as the true proportion lying within spec is increased, since its distribution then diverges 

further from the normal. 

 

These plots underscore the value of checking for normality prior to calculating the metrics.  

Clearly it is much more difficult (and misleading) to interpret the metric outcomes if the 

distribution is skewed.  A good follow-up study would be to examine, for example, a bimodal 

distribution to see the effect of a sub-population on the metric values.  It is presumed that this too 

True=0.80 True=0.90

True=0.95 True=0.99
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could provide misleading results unless a prior normality check was done and the data 

appropriately subsetted for analysis. 

 

NOTE: On the graphs that follow, the normal distribution results are shown in green, the 

lognormal with the same variance in black, and the lognormal with large variance in red. 

 
 

Figure 6: Comparison of Metric 2a for Normal and Lognormal Distributions 

[Dashed, solid, dotted lines are .1, .5, .9 quantiles respectively] 

(a) True >> Target                                                     (b) True << Target 

 
(c) True = Target = 0.9                 (d) True = Target = 0.95            (e) True = Target = 0.99 

 
 
 
3.6.  Metric 2b/2c Discussion 
 

Metrics 2b and 2c are similar to Metric 2a in calculation but represent a population that may be 

changing over time: 
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 Metric 2b is the confidence that a proportion of the population does (or does not) exceed 

a threshold value today, if the data are trended to allow for the possibility that margins 

may be changing. 

 

 Metric 2c is the confidence that a proportion of the population does (or does not) exceed 

a threshold value at a specified time in the future, if the data are trended to allow for the 

possibility that margins may be changing. 

 

Metric 2b/2c use a regression model to predict the property of interest (e.g., from a trend or 

polynomial fit).  One-sided tolerance limits are then calculated for a single, pre-specified time, t, 

as: 

 

        ̂      (11) 

        ̂      (12) 

 

Here    is the tolerance factor and   ̂ is the predicted mean response for the specified time, t.   

Further,   is the estimated standard deviation around the regression line. 

 

The exact analytical expression for the tolerance factor is given by: 

 

          
  √  (13) 

in which       
   is the 100 % percentile of the non-central t-distribution with        degrees 

of freedom, where   is the number of predictor variables.  The non-centrality parameter   is 

given by: 

 

   
  

√ 
 (14) 

in which    is the 100 % percentile of the standard normal distribution, and P is the target 

conforming proportion of the population that meets the threshold.  In addition, 

 

   √  
 (         

(15) 

in which   is the matrix of predictor variables, and    is the vector of predictors for the specified 

time, t. 

 

For the specified time, t, we set        and calculate the confidence: 

 

 
           (

  ̂   

 √ 
) 

(16) 

 

Similarly, for an upper performance limit: 
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           (

    ̂

 √ 
) 

(17) 

 

in which      is the cumulative distribution function of the non-central t-distribution with 

       degrees of freedom, where   is the number of predictor variables. 

 

Sensitivity studies for Metrics 2b/2c varied sampling and prediction times, as well as the total 

number of samples: 

 

1. For Metric 2b, the prediction time, t, was set to the end of the sampling period (to 

represent confidence in margins today). 

2. For Metric 2c, prediction time was set to the end of the sampling period plus 15 years. 

3. Sampling periods of 10 years and 30 years were evaluated.  Results were summarized to 

compare metric values at N/30 samples per year in the 30-year period with metric values 

at N/10 samples per year in the 10-year period. 

4. The “target” at prediction time was set to 0.9 proportion conforming. 

5. The “true” at prediction time was set to varying levels of 0.95, 0.99, 0.995, 0.999, and 

0.9999 proportion conforming. 

6. In addition, the true proportion conforming at the start of the sampling period was set to 

varying levels. 

 

All graphs for Metric 2b are in Appendix E, with graphs for Metric 2c in Appendix F. 

 

General observations for P2b: 

 

 If one examines the graphs for P2b for all conditions, it appears that there is little 

difference between spreading the samples over a 10-year period or over a 30-year period.  

Further, it appears that the metric value depends only upon the true conforming at 

prediction time (i.e., the end of the sampling period, denoted end(per) on the graph) and 

not upon true conforming at the start of the sampling period (denoted start on the graph).  

In other words, P2b appears to be independent of the slope.
2
 These two observations are 

illustrated by data shown on Figure 7. 

 P2b is thus mainly dependent upon “end (per)”, target, and N. 

 

 

                                                 
2
 This fact can be verified from Equations 11 through 17 above, which show that Metric 2b/2c does not depend on 

the starting margin or slope, but only on   ̂  , the predicted response at time t. 
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Figure 7: Comparison of Metric 2b For Different Sample Period, Different Start but Same 
End(per) 

 
 

 In   
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 Figure 8 below, the values for P2a and P2b are compared for similar conditions.  Note that 

the x-axes have different ranges.  Graphs (a)-(c) show the results for P2a where the 

target=0.9 while the true value is varied.  This is compared with graphs (c)-(f) for P2b, 

where again the target=0.9 and the true is varied.  These results show that it takes more 

data to achieve the same confidence when the data are trended by regression analysis to 

allow for the possibility that margins may be changing. 
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Figure 8: Comparison of Metric 2a and 2b 
[Note that the x-axes have different ranges] 

(a) P2a True=0.95 Target=0.9      (b) P2a True=0.99 Target=0.9     (c) P2a True=0.999 

Target=0.9 

 
 
(d) P2b True(end)=0.95 Target=0.9   (e) P2b True(end)=0.99 Target=0.9     (f) P2b True(end)=0.999 
Target=0.9 

 
 

 The tables below show the median number of samples it took to achieve given metric 

values for a specified end(per) and target. 

 
Table 6: Metric 2b for End=0.95 (Target: 0.9 within spec) 

 P2b level 

Sampling 
period 

0.6 0.7 0.8 0.9 

30 years 10 20 30 60 

10 years 10 20 40 70 
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Table 7: Metric 2b for End=0.99 (Target: 0.9 within spec) 

 P2b level 

Sampling 
period 

0.6 0.7 0.8 0.9 

30 years 10 10 10 20 

10 years 10 10 10 20 

 

General observations for P2c are as follows: 

 

 As with P2b, there is no dependence upon the “start” value. 

 Compared to P2b, for P2c there is a greater difference between spreading the sample over 

a 10-year period vs. over a 30-year period.   This difference is readily seen by comparing 

representative graphs for P2b (Figure 7) and P2c (Figure 9). 

 
Figure 9: Representative Graphs for Metric 2c 
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 From Equations 8 through 10, it can be seen that the systematic (as opposed to random) 

differences between the 10-year and 30-year sampling periods are due to the matrix H.  

Table 8 below presents the results of some additional calculations that were done to 

explore the behavior of the matrix H for various sampling and prediction periods. 
 

Table 8: Matrix H and Tolerance Factor k 
(Confidence=0.9,Target=0.9) 

Sampling 
period 

Sample 
rate 

Prediction 
year 

H k 

Prediction at end of period (Metric 2b) 

30 years 1/yr 30 0.127 1.85 

15 years 2/yr 15 0.121 1.84 

10 years 3/yr 10 0.115 1.83 

6 years 5/yr 6 0.105 1.81 

Prediction at end plus 15 years (Metric 2c) 

30 years 1/yr 45 0.421 2.21 

15 years 2/yr 30 0.898 2.60 

10 years 3/yr 25 1.570 2.99 

6 years 5/yr 21 3.533 3.81 

 

 The effect of sampling period and prediction time is further illustrated by calculating 

tolerance limits for simulated data sets at 3/yr over 10 years (Figure 10) and 1/yr over 30 

years (Figure 11).  Tolerance limits for 90 percent confidence and 90 percent coverage 

are shown, for simulated data from a population whose true conforming proportion trends 

down from 0.9999 to 0.99 over the sampling period plus 15 years.  The interpretation of 

Figures 10 and 11 is that the confidence that 90% of units exceed zero (which was the 

spec limit used for simulation) is exactly 90 percent when the lower tolerance band 

crosses the x-axis, and less than 90 percent for later times. Comparison of Figures 10 and 

11 shows that the prediction uncertainty is clearly magnified in the 10-year case, due to 

extrapolation with a less precise estimate for slope. 
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Figure 10: Tolerance Limits for Simulated Data Sets at 3/yr Over 10-Years 

(confidence = 0.9,  target = 0.9, true trends from 0.9999 to 0.99 over 25 years) 
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Figure 11: Tolerance Limits for Four Simulated Data Sets at 1/yr Over 30-Years 

(confidence = 0.9, target = 0.9, true trends from 0.9999 to 0.99 over 45 years) 

 

 
 

 It is apparent from  

  

 Table 8 (above) that Metric 2b (representing the ability to estimate current conditions) is 

only slightly improved when the same number of samples are taken over a shorter period 

that is closer to the current time (H and k values for Metric 2b in the top half of the table 

are relatively constant compared to H and k values for Metric 2c in the bottom half of the 

table).  On the other hand, Metric 2c (representing the ability to project future conditions) 

is greatly improved by taking samples over an extended period to better estimate slope.  

This suggests that a sustained sampling program over time would be a better allocation of 

resources, relative to a short burst of sampling activity. 

 Note that Metric 2c was worse for the 10-year than 30-year sampling periods when 

prediction times were Year 25 and Year 45, respectively.  The 10-year sampling period 

will clearly perform worse still if a Year 45 prediction time is used for both sample 

periods. 

 As with Metric 2a, the immediate response to a low value of Metric 2b/2c may well be to 

first examine and revise the spec limit to ensure it is not overly conservative. 

 Another response may be to get more current data to better estimate the slope and 

current/future values. 
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 Measurement error is another possible cause of noisy data.  Measurement error will tend 

to lower the calculated metric, since the tolerance limit approach assumes that all of the 

observed scatter in the data is due to true unit-to-unit variation.  Various steps could 

reduce the effect of measurement error, e.g.: 

o estimate the contribution of measurement error and revise the metric to account 

for it. 

o develop a less noisy measurement procedure. 

o Another response is to simply collect additional data.  However, although getting 

more data will improve the precision of the slope estimate, it will not improve the 

estimated scatter around the regression line.  Hence measurement error will still 

lead to conservative, under-estimates of the metric. 

 

3.7.  Metric 3a/3b Discussion 
 

The purpose of this metric is to assess data adequacy to detect departures from previous 

predictions from a science model. More specifically, this metric is the probability that a 

surveillance sample will reveal a specified change in the mean or standard deviation of its 

measured parameter from that previously predicted by science models.  Metric 3 addresses on-

going validation of the predictive capability of science models.  The time period during which 

this metric is applied is determined from guidance of subject matter experts about the need for 

on-going validation.  The SMEs may take into account subjective information about model 

quality in specifying the time period during which the on-going validation is conducted. 

 

The power for model validation is addressed by two sub-metrics: 

 

P3a: The power to detect a 2-sigma shift in mean from the model prediction.  This calculation 

also uses the model prediction of the population standard deviation, σ. 

 

P3b: The power to detect a doubling in standard deviation from the model prediction. 

 

The test statistic for a difference in mean from a science-based model is the chi-square score 

 

 
∑

(    ̂ )
 

  
 

 

   
 

(18) 

 

in which  ̂  is the science-based model prediction corresponding to the ith measurement.  In 

general the science-based model includes a Gaussian model of unit-to-unit variation in which 

   is the model prediction for the standard deviation among units. 

 

Under the null hypothesis, the sample measurements are drawn from distributions predicted by 

the model, so that 

     (    ̂    
   (19) 

 

and the chi-square score follows the chi-square distribution with n degrees of freedom. 
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We propose to reject the null hypothesis when the probability of the chi-square score is less than 

0.05.  This gives the criterion for rejection of the null hypothesis 
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(20) 

 

in which the critical value,        
  , is the 95

th
 percentile of the chi-square distribution with   

degrees of freedom. 

 

If the actual measurement means differ from the model predictions so that     ̂    , the chi-

square score follows a non-central chi-square distribution with n degrees of freedom and non-

centrality parameter 

 
  ∑ (

  

  
)
  

   
 

(21) 

Using our five-percent significance test, the power to detect a set of shifts,   , is 

 

 Power            (       
  ) (22) 

in which      is the cumulative distribution function of the non-central chi-square distribution 

with    degrees of freedom and non-centrality parameter   . 

 

P3b:  Power to detect a difference in standard deviation from a science-based model 

 

The test statistic for a difference in standard deviation from a science-based model is the chi-

square score 
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(23) 

 

in which  ̂  is the science-based model prediction corresponding to the ith measurement.  In 

general the science-based model includes a Gaussian model of unit-to-unit variation in which 

  is the model prediction for the standard deviation among units. 

 

Under the null hypothesis, the sample measurements are drawn from distributions predicted by 

the model, so that 

     (    ̂   
   (24) 

and the chi-square score follows the chi-square distribution with n degrees of freedom.  We 

propose to reject the null hypothesis when the probability of the chi-square score is less than 

0.05.  This gives the criterion for rejection of the null hypothesis 
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in which the critical value,        
  , is the 95

th
 percentile of the chi-square distribution with   

degrees of freedom. 

 

If the actual standard deviation,   , is some multiple such that       the chi-square score 

divided by    follows the chi-square distribution.  Using our five-percent test of significance, 

the power to detect the difference in standard deviation is therefore 

 
Power         (

       
  

   )  
(26) 

 

Similar to Metric 1a and 1b, Metrics 3a and 3b will be discussed together because of their 

similarity.  These metrics have the very attractive feature that, as defined, their values are a 

function only of N.  The sensitivity study graphs are shown in Figure 12 with the information for 

Metric 3a and Metric 3b summarized in Table 9 and Table 10 respectively. 

 

 

General observations include the following: 

 

 These metrics are formulated to be independent of the actual mean and standard deviation 

(SD) values for the population as well as the specification limit. 

 As noted in the graphs, there is no direct dependence upon the time window in which one 

is counting tests, but that will clearly affect the value of N. 

 
Figure 12: Metric 3a/3b Summary Graphs 

 
 

Table 9: Metric 3a by Size of Shift in Mean (in Standard Deviations, SD) 

 P3a level 

Mean 
shift size 

0.6 0.7 0.8 0.9 

1 SD 12 17 22 31 
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2 SD 2 2 3 4 

3 SD 1 1 1 2 

 
Table 10: Metric 3b by Size of Increase in Standard Deviation (in Standard Deviations, 

SD) 

 P3b level 

SD 
increase 

0.6 0.7 0.8 0.9 

1.5 x 10 14 18 26 

2 x 4 5 7 10 

3 x 2 2 3 4 

 

 There is a major difference in sample quantities required to achieve the same level of P3a 

between looking for a one standard deviation (SD) vs. a two SD shift in mean.  Given 

that (1) these are limited to quantities of units tested at the upper end of the age range and 

(2) that these tests must be done on an on-going basis, it is unlikely that the sample rates 

needed to detect a one SD shift are sustainable. 

 This is likewise true for P3b.  Even a 2x increase in SD requires a relatively large number 

of samples on an on-going basis, given that data lose their currency. 

 Note that this calculation presumes a sudden shift in mean and/or standard deviation.  

Analysis must be done on the test data itself to determine if in fact there has been a 

statistically significant change in the variable or just in the measurement system. 

 There are at least two considerations for selecting the time window for Metrics 3a/3b.  

For the most part, the time period for which the data are included is determined from 

guidance of subject matter experts about the need for on-going validation.  The SMEs 

may take into account subjective information about model quality in specifying the time 

period during which the on-going validation is conducted. However it is likely prudent to 

have an upper bound for this time period (10 years, perhaps) to cap the risk at some point.  

It is certainly possible to place too much confidence in a model and position ourselves to 

miss the opportunity to detect something unexpected. 

 The size of the mean shift or standard deviation increase can be set at the same number of 

standard deviations for all parameters.  However it is probably also reasonable to 

consider the option of letting this vary from parameter to parameter based upon that 

parameter’s margin; i.e., parameters with a larger margin could be set to detect a larger 

mean or standard deviation shift than those with smaller margin.  If this approach is used, 

the rationale for selecting the shift to be detected should be documented. 

 

3.8.  Metric 4 Discussion (Linear Trend) 
 

The purpose of Metric 4 is to quantify the power to detect a trend that would eliminate margin 

over a period of 15 years from the present.  The power to detect a trend is particularly important 

when data trend analysis is used as the primary means to identify changes of concern for further 

study. 
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Metric 4 assumes that analysts test for a trend by fitting the model 

 

             
 

(27) 

where     i = 1, ..., n are the unit ages at test,   and   are unknown, and    are independent 

normally distributed random errors with expected value 0 and unknown variance   , and     
i = 1, ..., n are observed variables measurements. 

The test statistic to test for a significant trend is the t-score: 

  ̂

  ̂
 (28) 

in which  ̂ is the ordinary least squares estimate of the slope,  , and   ̂ is the standard deviation 

of  ̂  

   ̂  
 

√∑ (    ̅   
   

 (29) 

Further,   is the estimated standard deviation around the regression line: 
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(30) 

Under the null hypothesis that the slope   is equal to 0, the t-score follows the t-distribution with 

      degrees of freedom.  Therefore, the probability of observing a t-score as large or 

larger (in absolute value) is for a negative trend 

 
  (

 ̂

  ̂
) (31) 

 

and for a positive trend 
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(32) 

in which    is the cumulative distribution function of the t-distribution with n-2 degrees of 

freedom. 

We propose to reject the null hypothesis when the probability of the t-score is less than 0.05.  

This gives the criterion for rejection of the null hypothesis 
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(33) 

in which the critical value,        
  , is the 95

th
 percentile of the t-distribution with        

degrees of freedom. 

 

If the actual trend is some value     , the t-score follows a non-central t-distribution with 

       degrees of freedom and non-centrality parameter 
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(34) 

Using our five-percent test of significance, the power to detect a trend is therefore calculated 

from the non-central t-distribution 
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(35) 

in which      is the cumulative distribution function of the non-central t-distribution with  

      degrees of freedom and non-centrality parameter   . 

 

The non-centrality parameter and therefore the power calculation depends on the population 

standard deviation,  , which in general is not known.  As a point estimate, we propose to 

estimate   by substituting the sample standard deviation, s, for  : 
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In addition, a lower bound can be calculated for the non-centrality parameter using an exact 

calculation presented by Taylor and Muller (1995).  The lower bound for the non-centrality 

parameter derives from the distributional relation: 
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Hence, e.g. 
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in which          
   is the 5

th
 percentile of the chi-square distribution with n-2 degrees of freedom.  

Then 
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So a 95-percent one-sided lower bound estimate for the non-centrality parameter,  , is 
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(40) 

Similarly a 95-percent one-sided upper bound estimate for the non-centrality parameter,  , is 
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Because of the strict monotone dependence of the non-central t-distribution on noncentrality, the 

lower and upper bounds for power can be found from 
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We propose to “grade” data adequacy in terms of the power to detect a trend that eliminates 

margin in the weakest 10% of units over a period of 15 years.  The critical trend is defined as: 
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(44) 

in which (      is the initial margin and   is the standard deviation among units.  Note that, at 

the extreme, if the initial margin is only       then a slope of zero would be critical. 

 

The simulation study examined the behavior of Metric 4 under a range of temporal behaviors 

including linear and various non-linear trends. 

 

Graphs for the simulation study of Metric 4 for the linear trend case are in Appendix H.  Figure 

13 shows a graph for a single case, and Table 11 and Table 12 are the same case except for the 

period of time over which the samples are distributed. 
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Figure 13: Representative Graph for Metric 4, Linear Trend 

 
 

General observations include the following: 

 

 In practice, Metric 4 will be a random variable due to the need to estimate the initial 

mean value, Y0, and population standard deviation, .  For the purpose of the simulation 

study, the behavior of Metric 4 was examined by treating Y0 and   as known.  The results 

of the simulation study correspond to typical (average) values for Metric 4. 

 A review of all of the graphs indicates that spreading the samples over 30 years results in 

a higher metric value than spreading them over 10 years.  This is consistent with the 

improved precision of the slope estimate that was also noted for Metric 2b/2c. 

 Distribution of the samples also has a large effect on the metric value.  Not surprisingly, 

the 50-50 distribution (half of the samples taken at the starting time and half at the ending 

time) is more effective for identifying the behavior of interest in this case, a linear trend.  

80-20 is the next best, and evenly spaced samples yields the lowest metric value.  It is 

important to not read too much into this, though.  While 50-50 may be the optimal 

distribution for this particular behavior, it will be less effective at finding other types of 

defectiveness.  This was explored to some extent in a sensitivity study using non-linear 

trends (described in the next section). 
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 The power to detect a trend depends on both the slope and the standard deviation as 

combined into the signal-to-noise ratio (SNR): 

 

     
           

 
 (45) 

 

Note that the SNR is equal to the starting and ending quality indices: 

 

 
    

        

 
 

      

 
 

 

(46) 

The quality indices determine the start and end proportion lying within the spec limit, 

which is the factor shown on the graphs. 

 

 For cases where the SNR is small (e.g., start = 0.95, end = 0.9), the metric value will be 

low even for relatively large N. 

 

 
Table 11: Metric 4, Sampling over 30 Years (Start=0.9999, Start+15 Years=0.95) 

 P4 level 

Sample 
distn. 

0.6 0.7 0.8 0.9 

Even 30 40 50 60 

80:20 20 20 30 40 

50:50 10 20 20 30 

 
Table 12: Metric 4, Sampling over 10 Years (Start=0.9999, Start+15 Years=0.95) 

 P4 level 

Sample 
disn. 

0.6 0.7 0.8 0.9 

Even 70 90 120 160 

80:20 50 60 80 100 

50:50 30 40 50 70 
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3.9.  Metric 4 Discussion (Non-Linear Trend) 
 

The following cases for trend scenarios were developed.  These profiles were based upon past 

experiences with real data.  The intent was to try to study different trend types with variations in 

their characteristics: 

 

A. Linear 

a. Vary slope, constant variance 

b. Vary slope, vary variance 

 

B. Asymptote 

a. Vary rate of decay, constant variance 

b. Vary rate of decay, vary variance 

 

C. Step function 

a. Vary time period over which degradation occurs 

b. Vary delta in means, constant variance 

c. Vary delta in means, vary variance 

D. Half-line 

a. Vary time period over which degradation occurs 

b. Vary delta in means, constant variance 

c. Vary delta in means, vary variance 

 

However different trend scenarios were studied only to a limited extent and for only one of the 

metrics, P4.  For each of the four trend curves, the beginning and ending points were set to be the 

same.  For the step function and half-line, the transition occurred at the mid-point in time.  This 

is shown in Figure 14. 

 
Figure 14: Example of Linear and Non-Linear Trends 
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Studies that explored the effect of non-linear trends on the Metric 4 calculation are included in 

Appendix I.   

 

Figure 15 shows a representative example from these calculations, where the different colors 

indicate the difference trend assumptions. 

 
 
 

Figure 15: Representative Graph for Metric 4, Comparison of Linear and Non-Linear 
Trends 

 
 

General observations include the following: 

 

 Only the equal spacing sampling cases are displayed.  The 50:50 and 80:20 sampling 

schemes yielded exactly the same metric results for each trend line. This is due to the fact 

that the problem was set up such that the beginning points and end points were chosen to 

be identical for each trend line.   Since those two sampling schemes only sample at the 

beginning and ending, it doesn’t matter what happened in between vis-à-vis the metric 

calculation.  This actually raises a good point about P4.  While the 50:50 sampling 

strategy is the best for detecting a linear trend, clearly there is no information gained 

about performance between the points in time defined as the beginning and ending.  If 

one wants to be responsive to behaviors other than linear trends, 50:50 is not necessarily 

the best approach. 

 This reinforces that one should always review the raw data on an on-going basis rather 

than just relying on the metrics to highlight issues. 

 Spreading the samples over 30 years always yields a higher P4 value than spreading them 

over 10 years. 
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 The asymptote was the worst case for all variants of starting margin and period.  This is 

likely because there is so little data obtained prior to the large decrease in value, which 

happens quite early in life. 

 The half-line and step function have higher metric values than the linear trend.  This 

corresponds with one’s intuition that the slope change after the mid-point would appear 

to be more dramatic than that for the linear trend. 

 

 

4. CONCLUSIONS AND RECOMMENDATIONS 
 

This sensitivity study of the proposed set of statistical metrics was performed to evaluate the 

behavior of the metrics within a range of parameter values that need to be specified to fully 

define the metrics.  The parameters are related to risk. What types of defectiveness or magnitude 

of problems do surveillance managers want to have a high confidence of detecting?  Knowing 

these risk parameters allows the determination of a sample size to achieve the stated level of risk. 

 

The study allowed us to select the following as reasonable values for metric calculation: 

 

 10% defectiveness level; 

 10% level for fraction of population with low margin; 

 4 year look-back for data currency; 

 15 year prediction interval; 

 2-sigma shift in mean for model invalidation; 

 Doubling of standard deviation for model invalidation. 

 

The team concluded that all metrics evaluated showed reasonable behavior with the 

recommended risk parameters.  However, the team noted the Metric 4, whose purpose is to 

convey the confidence in detecting trends, was sensitive to the parametric form of the trend 

equation.  In particular, the metric has low probability of detecting an asymptotic-type of trend 

line.   For this reason, the Metric 4 is not recommended to be deployed further. 



45 

 

APPENDIX A: R CODE 
 

Metric 1a 
 

#metric P1a 

 

p.v=c(.01, .05, .10, .25) #problem sizes 1% etc 

 

pop.v=c(100,500) #population sizes 

 

n1=seq(1,50,1) #sample sizes 

n2=seq(1,250,1) #sample sizes 

 

 

#infinite size population 

n1.len=length(n1) 

n1.inf.ans=NULL 

 

y.inf=NULL 

for(i in 1:4){ 

p=p.v[i] 

m1.inf=1-(1-p)^n1 

n1.inf.ans=rbind(n1.inf.ans,m1.inf) 

y.inf=rbind(y.inf,m1.inf) 

} 

 

 

# treat as finite size population, population 500 

n.pop=pop.v[2] 

n1.ans=NULL 

 

y=NULL 

for(i in 1:4){ 

p=p.v[i] 

n.p=n.pop*p 

m1.small=1-dhyper(n1,n.pop-n.p,n.p,n1) 

n1.ans=rbind(n1.ans,m1.small) 

y=rbind(y,m1.small) 

} 

 

# treat as finite size population, population 100 

n.pop=pop.v[1] 

n1b.ans=NULL 

 

y.b=NULL 

for(i in 1:4){ 

p=p.v[i] 

n.p=n.pop*p 

m1.small=1-dhyper(n1,n.pop-n.p,n.p,n1) 

n1b.ans=rbind(n1b.ans,m1.small) 

y.b=rbind(y.b,m1.small) 

} 
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pdf("metric P1a plots.pdf") 

plot(x,y,type="n",xlab="N",ylab="P1a") 

for(i in 1:4){ 

lines(n1,n1.ans[i,],lty=i) 

} 

for(i in 1:4){ 

lines(n1,n1b.ans[i,],lty=i,col="red") 

} 

legend(30,.23,c(".01",".05",".10",".25"),lty=c(1,2,3,4),title="defect 

size") 

title("100 (black) and 500 (red) population, hypergeometric") 

 

 

#minimum sample size for P1a> prob level, population 500, hypergeometric 

counts.p=c(.6,.7,.8,.9) #prob level 

counts=matrix(rep(0,4*4),ncol=4) 

 

for(i in 1:4){ 

for(j in 1:4){ 

counts[i,j]= min(n1[n1.ans[i,]>=counts.p[j]]) 

} 

} 

counts 

 

#minimum sample size for P1a> prob level, population 100, hypergeometric 

counts.p=c(.6,.7,.8,.9) #prob level 

counts.1b=matrix(rep(0,4*4),ncol=4) 

 

for(i in 1:4){ 

for(j in 1:4){ 

counts.1b[i,j]= min(n1[n1b.ans[i,]>=counts.p[j]]) 

} 

} 

counts.1b 

 

# infinite size population 

n2.inf.ans=NULL 

 

y2.inf=NULL 

for(i in 1:4){ 

p=p.v[i] 

m1.inf=1-(1-p)^n2 

n2.inf.ans=rbind(n2.inf.ans,m1.inf) 

y2.inf=rbind(y2.inf,m1.inf) 

} 

 

# population 500, treat as finite size population 

n.pop=pop.v[2] 

n2.ans=NULL 

 

y2=NULL 

for(i in 1:4){ 

p=p.v[i] 

n.p=n.pop*p 
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m1.small=1-dhyper(n2,n.pop-n.p,n.p,n2) 

n2.ans=rbind(n2.ans,m1.small) 

y2=rbind(y2,m1.small) 

} 

 

x2=rep(n2,4) 

plot(x2,y2,type="n",xlab="N",ylab="P1a") 

for(i in 1:4){ 

lines(n2,n2.ans[i,],lty=i) 

} 

for(i in 1:4){ 

lines(n2,n2.inf.ans[i,],lty=1,col="red") 

} 

legend(50,.23,c(".01",".05",".10",".25"),lty=c(1,2,3,4),title="defect 

size") 

title("hypergeometric (black) for 500 population, binomial (red)") 

 

# 

counts.p=c(.6,.7,.8,.9) 

counts.2=matrix(rep(0,4*4),ncol=4) 

 

for(i in 1:4){ 

for(j in 1:4){ 

counts.2[i,j]= min(n2[n2.ans[i,]>=counts.p[j]]) 

} 

} 

counts.2 

 

counts.p=c(.6,.7,.8,.9) 

counts.2inf=matrix(rep(0,4*4),ncol=4) 

 

for(i in 1:4){ 

for(j in 1:4){ 

counts.2inf[i,j]= min(n2[n2.inf.ans[i,]>=counts.p[j]]) 

} 

} 

counts.2inf 

 

# infinite size population 

n3=seq(1,500,1) 

n3.inf.ans=NULL 

 

y3.inf=NULL 

for(i in 1:4){ 

p=p.v[i] 

m1.inf=1-(1-p)^n3 

n3.inf.ans=rbind(n3.inf.ans,m1.inf) 

y3.inf=rbind(y3.inf,m1.inf) 

} 

x3=rep(n3,4) 

plot(x3,y3.inf,type="n",xlab="N",ylab="P1a") 

 

for(i in 1:4){ 

lines(n3,n3.inf.ans[i,],lty=i,col="red") 
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} 

legend(300,.23,c(".01",".05",".10",".25"),lty=c(1,2,3,4),title="defect 

size") 

title("large population, binomial (red)") 

 

dev.off() 

 

#minimum sample size for P1a> prob level, infinite population, binomial 

counts.p=c(.6,.7,.8,.9) #prob level 

counts.3inf=matrix(rep(0,4*4),ncol=4) 

 

for(i in 1:4){ 

for(j in 1:4){ 

counts.3inf[i,j]= min(n3[n3.inf.ans[i,]>=counts.p[j]]) 

} 

} 

counts.3inf 

 

 

Metric 1b 
 

#metric P1b 

 

p.v=c(.01, .05, .10, .25) # problem sizes 1% etc. 

 

pop.v=c(100,500) #population sizes 

 

n1=seq(1,50,1) #sample size 1-50 

 

 

 

# infinite population 

n1.inf.ans=NULL 

 

y.inf=NULL 

for(i in 1:4){ 

p=p.v[i] 

m2.inf=1-(1-p)^n1 

n1.inf.ans=rbind(n1.inf.ans,m2.inf) 

y.inf=rbind(y.inf,m2.inf) 

} 

 

 

# population 100, treat as finite 

n.pop=pop.v[1] 

n1a.ans=NULL 

for(i in 1:4){ 

p=p.v[i] 

n.p=n.pop*p 

m2.small=1-dhyper(n1,n.pop-n.p,n.p,n1) 

n1a.ans=rbind(n1a.ans,m2.small) 

} 

 

#population 500, treat as finite 
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n.pop=pop.v[2] 

n1b.ans=NULL 

for(i in 1:4){ 

p=p.v[i] 

n.p=n.pop*p 

m2.small=1-dhyper(n1,n.pop-n.p,n.p,n1) 

n1b.ans=rbind(n1b.ans,m2.small) 

} 

 

pdf("metric P1b plots.pdf") 

x=rep(n1,4) 

plot(x,y.inf,type="n",xlab="N",ylab="P1b") 

for(i in 1:4){ 

lines(n1,n1a.ans[i,],lty=i) 

} 

 

for(i in 1:4){ 

lines(n1,n1b.ans[i,],lty=i,col="green") 

} 

 

for(i in 1:4){ 

lines(n1,n1.inf.ans[i,],lty=i,col="red") 

} 

 

legend(25,.60,c(".01",".05",".10",".25"),lty=c(1,2,3,4),title="defect 

size") 

title("100 (black), 500 (green), large (red) populations") 

dev.off() 

 

#minimum sample size for P1b > prob level, population 100 

counts.p=c(.6,.7,.8,.9) # probe level 

counts.1a=matrix(rep(0,4*4),ncol=4) 

for(i in 1:4){ 

for(j in 1:4){ 

counts.1a[i,j]= min(n1[n1a.ans[i,]>=counts.p[j]]) 

} 

} 

counts.1a 

 

#minimum sample size for P1b > prob level, population 500 

counts.1b=matrix(rep(0,4*4),ncol=4) 

for(i in 1:4){ 

for(j in 1:4){ 

counts.1b[i,j]= min(n1[n1b.ans[i,]>=counts.p[j]]) 

} 

} 

counts.1b 

 

#minimum sample size for P1b > prob level, infinite population 

counts.1inf=matrix(rep(0,4*4),ncol=4) 

for(i in 1:4){ 

for(j in 1:4){ 

counts.1inf[i,j]= min(n1[n1.inf.ans[i,]>=counts.p[j]]) 

} 
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} 

counts.1inf 

 

Metric 2a 
 

#metric P2a 

pm.v=c(.75, .90, .95, .99) #targets 

 

p.v=c(.80, .90, .95, .99, .995,.999, .99999) #population proportion above 

spec limit 

 

#n=2-50 for normal 

#n=2-25 for nonnormal 

 

n.v=seq(1,50,1) # sample size 

ans=array(0,c(50,7,4,3)) 

 

#normal 

mu=0 

sigma=1 

 

nsim=10000 #number of simulated data sets 

 

for(i in 2:50){ 

n=n.v[i] 

for(j in 1:7){ 

p=p.v[j] #true prob 

for(k in 1:4){ 

pm=pm.v[k] # metric cutoff 

L= qnorm(1-p) 

nu=n-1 

delta=sqrt(n)*qnorm(pm) 

temp=rep(0,nsim) 

 

for(isim in 1:nsim){ 

y=rnorm(n,0,1) 

ybar=mean(y) 

s=sqrt(var(y)) 

arg= (ybar-L)/(s/sqrt(n)) 

 

conf=pt(arg,nu,delta) 

#conf2=max(conf,1-conf) 

 

#conf2 

#temp[isim]=conf2 

temp[isim]=conf 

} 

ans[i,j,k,]=quantile(temp,c(.10, .50, .90)) 

print(c(i,j,k)) 

}#k 

}#j 

}#i 

 

# target .75 .9 .95 .99  table for n=10, 20, 30, 40, 50 



51 

 

# true .80, .90, .95, .99, .995,.999, .99999 

# .1, .5, .9 quantiles 

# table columns n quantile true .80, .90, .95, .99, .995,.999, .99999 

for(getind in 1:4){ 

print(c("target: ",pm.v[getind])) 

new.tab=NULL 

row.lab=NULL 

for(n in seq(10,50,10)){ 

#print(n) 

new.tab=rbind(new.tab, round(t(ans[n,,getind,]),3) ) 

row.lab=rbind(row.lab,cbind(n,c(.1,.5,.9))) 

} 

print("n quantile true .80, .90, .95, .99, .995,.999, .99999") 

print(cbind(row.lab,new.tab)) 

} 

 

 

pdf("metric P2a true normal.pdf")  

 

for(j in 1:7){ 

for(k in 1:4){ 

 

x=n.v[-1] 

xx=rep(n.v[-1],3) 

y=c(t(ans[2:50,j,k,])) 

plot(xx,y,type="n",xlab="N",ylab="P2a",ylim=c(0,1)) 

lines(x,ans[2:50,j,k,1],lty=2) 

lines(x,ans[2:50,j,k,2],lty=1) 

lines(x,ans[2:50,j,k,3],lty=2) 

title(paste(".1, .5, .9 quantiles, normal: true ", p.v[j], ", target 

",pm.v[k],sep="")) 

 

} 

} 

 

dev.off() 

 

 

 

#combine previous plots 

 

 

pdf("metric P2a true normal combined.pdf")  

col.v=c("black","red","green","blue","brown","blueviolet","deeppink") 

#{lines(c(-1,0),c(.1*i,.1*i),col=col.v[i])} 

 

for(k in 1:4){ 

 

x=n.v[-1] 

xx=rep(n.v[-1],3) 

y=c(t(ans[2:50,j,k,])) 

plot(xx,y,type="n",xlab="N",ylab="P2a",ylim=c(0,1)) 

for(j in 1:7){ 

lines(x,ans[2:50,j,k,1],lty=2,col=col.v[j]) 
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lines(x,ans[2:50,j,k,2],lty=1,col=col.v[j]) 

#lines(x,ans[2:50,j,k,3],lty=2,col=col.v[j]) 

} 

#title(paste(".1(d), .5(s), .9(d) quantiles, normal, target 

",pm.v[k],sep="")) 

title(paste(".1(dashed), .5(solid) quantiles, normal, target 

",pm.v[k],sep="")) 

 

mtext("True: .8(blk), .9(r), .95(g), .99(blu), .995(br), .999(v), 

.99999(p)",3,0) 

 

 

} 

 

dev.off() 

 

 

 

#target .9 

# minimum sample size that give quantile exceeds prob level 

q.v=c(.1,.5,.9) 

for(ll in 1:3){# ll 1-3 for the .10, .5, .9 quantiles 

 

counts.p=c(.6,.7,.8,.9)#prob level 

counts.3=NULL 

 

for(j in 3:7){ #true p 

for(k in 2:2){ #p target .9 

 

pTrue=p.v[j] 

pTarget=pm.v[k] 

 

temp=rep(0,4) 

for(oo in 1:4){ 

temp[oo]= min(n.v[ans[,j,k,ll]>=counts.p[oo]]) #0.50 quantile 

} 

 

counts.3=rbind(counts.3,c(pTrue,pTarget,temp)) 

} 

} 

print(c("ll, q.v[ll]: ",ll,q.v[ll])) 

print(counts.3) 

}#ll 

 

#do all targets 

# minimum sample size that give quantile exceeds prob level 

q.v=c(.1,.5,.9) 

 

for(k in 1:4){# 

pTarget=pm.v[k] 

 

for(ll in 1:3){# ll 1-3 for the .10, .5, .9 quantiles 

 

counts.p=c(.6,.7,.8,.9)#prob level 
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counts.3=NULL 

 

if(k==1) start=1 

if(k!=1) start=k+1 

for(j in start:7){ #true p 

 

pTrue=p.v[j] 

 

temp=rep(0,4) 

for(oo in 1:4){ 

temp[oo]= min(n.v[ans[,j,k,ll]>=counts.p[oo]]) #0.50 quantile 

} 

 

counts.3=rbind(counts.3,c(pTrue,pTarget,temp)) 

}#j 

 

print(c("pTarget, q.v[ll]: ",pTarget,q.v[ll])) 

print(counts.3) 

}#ll 

}#k 

 

 

 

 

 

#lognormal - same sigma as normal 

 

n.v=seq(1,50,1) 

ans.ln1=array(0,c(50,7,4,3)) 

 

mu=0 

sigma=sqrt(.481) 

nsim=10000 #sample size 

 

for(i in 2:50){ 

n=n.v[i] 

for(j in 1:7){ 

p=p.v[j] #true prob 

for(k in 1:4){ 

pm=pm.v[k] # metric cutoff 

L.ln=-exp(qnorm(p,0,sqrt(.481))) 

nu=n-1 

delta=sqrt(n)*qnorm(pm) 

temp=rep(0,nsim) 

 

for(isim in 1:nsim){ 

 y= -exp(rnorm(n,0,sqrt(.481))) 

ybar=mean(y) 

s=sqrt(var(y)) 

arg= (ybar-L.ln)/(s/sqrt(n)) 

 

conf=pt(arg,nu,delta) 

#conf2=max(conf,1-conf) 

#conf2 
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#temp[isim]=conf2 

temp[isim]=conf 

} 

ans.ln1[i,j,k,]=quantile(temp,c(.10, .50, .90)) 

print(c(i,j,k)) 

}#k 

}#j 

}#i 

 

#lognormal - larger sigma as normal about 5 times larger 

 

n.v=seq(1,50,1) 

ans.ln2=array(0,c(50,7,4,3)) 

 

mu=0 

sigma=1 

nsim=10000 #sample size 

 

for(i in 2:50){ 

n=n.v[i] 

for(j in 1:7){ 

p=p.v[j] #true prob 

for(k in 1:4){ 

pm=pm.v[k] # metric cutoff 

L.ln=-exp(qnorm(p,0,1)) 

nu=n-1 

delta=sqrt(n)*qnorm(pm) 

temp=rep(0,nsim) 

 

for(isim in 1:nsim){ 

 y= -exp(rnorm(n,0,1)) 

ybar=mean(y) 

s=sqrt(var(y)) 

arg= (ybar-L.ln)/(s/sqrt(n)) 

 

conf=pt(arg,nu,delta) 

#conf2=max(conf,1-conf) 

#conf2 

#temp[isim]=conf2 

temp[isim]=conf 

} 

ans.ln2[i,j,k,]=quantile(temp,c(.10, .50, .90)) 

print(c(i,j,k)) 

}#k 

}#j 

}#i 

 

pdf("metric P2a lognormal vs normal.pdf")  

 

for(j in 1:7){ 

for(k in 1:4){ 

 

x=n.v[-1] 

xx=rep(n.v[-1],3) 
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y=c(t(ans.ln1[2:50,j,k,])) 

plot(xx,y,type="n",xlab="N",ylab="P2a",ylim=c(0,1)) 

mtext("lognormal same variance (black), normal (red)", 3, 0) 

lines(x,ans.ln1[2:50,j,k,1],lty=2) 

lines(x,ans.ln1[2:50,j,k,2],lty=1) 

lines(x,ans.ln1[2:50,j,k,3],lty=2) 

title(paste(".1, .5, .9 quantiles, lognormal: true ", p.v[j], ", target 

",pm.v[k],sep="")) 

lines(x,ans[2:50,j,k,1],lty=2,col="red") 

lines(x,ans[2:50,j,k,2],lty=1,col="red") 

lines(x,ans[2:50,j,k,3],lty=2,col="red") 

} 

} 

 

for(j in 1:7){ 

for(k in 1:4){ 

 

x=n.v[-1] 

xx=rep(n.v[-1],3) 

y=c(t(ans.ln2[2:50,j,k,])) 

plot(xx,y,type="n",xlab="N",ylab="P2a",ylim=c(0,1)) 

mtext("lognormal large variance (black), normal (red)", 3, 0) 

lines(x,ans.ln2[2:50,j,k,1],lty=2) 

lines(x,ans.ln2[2:50,j,k,2],lty=1) 

lines(x,ans.ln2[2:50,j,k,3],lty=2) 

title(paste(".1, .5, .9 quantiles, lognormal: true", p.v[j], ", target 

",pm.v[k],sep="")) 

lines(x,ans[2:50,j,k,1],lty=2,col="red") 

lines(x,ans[2:50,j,k,2],lty=1,col="red") 

lines(x,ans[2:50,j,k,3],lty=2,col="red") 

#legend() #ln2 vs normal 

} 

} 

 

for(j in 1:7){ 

for(k in 1:4){ 

 

x=n.v[-1] 

xx=rep(n.v[-1],3) 

y=c(t(ans.ln1[2:50,j,k,])) 

plot(xx,y,type="n",xlab="N",ylab="P2a",ylim=c(0,1)) 

mtext("lognormal: same variance (black), large variance (red)", 3, 0) 

lines(x,ans.ln1[2:50,j,k,1],lty=2) 

lines(x,ans.ln1[2:50,j,k,2],lty=1) 

lines(x,ans.ln1[2:50,j,k,3],lty=2) 

title(paste(".1, .5, .9 quantiles, lognormal true ", p.v[j], ", target 

",pm.v[k],sep="")) 

lines(x,ans.ln2[2:50,j,k,1],lty=2,col="red") 

lines(x,ans.ln2[2:50,j,k,2],lty=1,col="red") 

lines(x,ans.ln2[2:50,j,k,3],lty=2,col="red") 

#legend() #ln1 vs ln2 

} 

} 
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for(j in 1:7){ 

for(k in 1:4){ 

 

x=n.v[-1] 

xx=rep(n.v[-1],3) 

y=c(t(ans.ln1[2:50,j,k,])) 

plot(xx,y,type="n",xlab="N",ylab="P2a",ylim=c(0,1)) 

mtext("lognormal: same variance (black), large variance (red); normal 

(green)", 3, 0) 

lines(x,ans.ln1[2:50,j,k,1],lty=2) 

lines(x,ans.ln1[2:50,j,k,2],lty=1) 

lines(x,ans.ln1[2:50,j,k,3],lty=2) 

title(paste(".1, .5, .9 quantiles, lognormal true ", p.v[j], ", target 

",pm.v[k],sep="")) 

lines(x,ans.ln2[2:50,j,k,1],lty=2,col="red") 

lines(x,ans.ln2[2:50,j,k,2],lty=1,col="red") 

lines(x,ans.ln2[2:50,j,k,3],lty=2,col="red") 

#legend() #ln1 vs ln2 

lines(x,ans[2:50,j,k,1],lty=2,col="green") 

lines(x,ans[2:50,j,k,2],lty=1,col="green") 

lines(x,ans[2:50,j,k,3],lty=2,col="green") 

 

} 

} 

 

dev.off() 

 

pdf("compare metric P2a lognormal vs normal pdfs.pdf")  

 

y1=-exp(rnorm(100000,0,sqrt(.481))) 

y2=-exp(rnorm(100000,0,1)) 

plot(density(y1),main="LN same var (black), normal (red), LN larger var 

(green)",xlim=c(-20,3),xlab="") 

x1=seq(-3,3,.1) 

lines(x1-1.27,dnorm(x1),lty=1, col="red") 

lines(density(y2),lty=1,col="green") 

dev.off() 

 

# comment out two following commands 

#save.image("save metric 3 calculations in R revised 041811") # save 

results to replot later 

#load("save metric 3 calculations in R revised 041811") # load results to 

replot 

 

zz=exp(rnorm(100000,0,sqrt(.481))) 

var(zz) 

mean(zz) 

 

> var(zz) 

[1] 0.995539 

> mean(zz) 

[1] 1.270782 

plot(0,0) 

col.v=c("black","red","green","blue","brown","blueviolet","deeppink") 
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for(i in 1:7){ 

{lines(c(-1,0),c(.1*i,.1*i),col=col.v[i])} 

 

#if(i!=7){lines(c(-1,0),c(.1*i,.1*i),col=col.v[i])} 

#if(i==7){i=9;lines(c(-1,0),c(.1*i,.1*i),col=i)} 

} 

 
Metric 2b/2c 
 

#metric P3b, P3c 

 

# first predict at end of period where end of period probabilities below 

spec limit are .01, .05, .10, .25 

# this is to compare with metric P2a; this is metric P2b 

 

# then predict 15 years later where 15 year later probabilities below spec 

limit are .01, .05, .10, .25, slopes 

# are necessarily less in second scenario 

# this is metric P2c 

 

# for now let's do even spacing and .90 case 

 

#metric P2b 

n.v=seq(10,100,10) # sample sizes in increments of 10 

pBegin.v=c(.80, .90, .95, .99, .995, .999, .9999, .999999) #proportions 

above spec L at time 0 

pEnd.v=c( .75, .90, .95, .99, .995, .999, .9999) #proportions above spec L 

at now or 15 years in future 

 

ans.5a=array(0,c(8,7, 2,10, 3,3)) 

m.v=c(1,2,3) 

per.v=c(10,30) 

 

#m.v values - only use equal spaced m.v[1] 

#1 equal spaced 

#2 50:50 at begin (year 1) and end 

#3 80:20 at begin (year 1) and end 

 

nsim=1000 # number of simulated data sets 

pTarget=.9 # target 90% above spec limit 

 

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 

 

for(k in 1:2){ 

for(ll in 1:10){ 

for(mm in 1:1){ 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

n=n.v[ll] 

m=m.v[mm] 
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L=0 # spec limit 0, without loss of generality 

 

if(pEnd<pBegin){ 

print(c("i,j,k,ll,mm: ",i,j,k,ll,mm)) 

beta0OverSigma=qnorm(pBegin) 

kEnd=qnorm(pEnd) 

 

beta1OverSigma=((kEnd-beta0OverSigma)/(per)) # at end of period 

 

if(m==1){#1 

if(per==10) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(per==30){#2 

rem=n%%per; 

if(rem==0) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(rem!=0){#3 

nRep=floor(n/per);  

x=rep(seq(1,per,1),nRep); 

if (rem==10) x=c(x,seq(3,30,3)) 

if(rem==20) x=c(x,seq(2, 29, 3), seq(3,30,3)) 

}#3 

}#2 

}#1 

if(m==2) x=c(rep(1,n/2),rep(per,n/2)) 

if(m==3) x=c(rep(1,n*.8),rep(per,n*.2)) 

x=sort(x) #put in age order 

 

X=cbind(1,x) 

xt=c(1,per) 

H=xt%*%solve(t(X)%*%X)%*%cbind(xt) 

 

nu=n-2 

 

delta=qnorm(pTarget)/sqrt(H) 

mu=beta0OverSigma+beta1OverSigma*x 

mu.per=beta0OverSigma+beta1OverSigma*per 

 

temp=rep(0,nsim) 

for(isim in 1:nsim){ 

y=mu+rnorm(n) 

ls.fit=summary(lm(y~x)) 

s=ls.fit$sigma 

ypred=xt%*%cbind(ls.fit$coef[,1]) 

arg= (ypred-L)/(s*sqrt(H)) 

 

conf=pt(arg,nu,delta) 

temp[isim]=conf 

} 

 

ans.5a[i,j,k,ll,mm,]=quantile( temp,c(.1,.5,.9)) 

}#if 

 

}#mm 

}#ll 
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}#k 

}#j 

}#i 

 

# minimum sample size for P2b > prob level 

counts.p=c(.6,.7,.8,.9) #prob level 

counts.5a=NULL 

 

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 

 

for(k in 1:2){ 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

 

 

temp=rep(0,4) 

for(oo in 1:4){ 

temp[oo]= min(n.v[ans.5a[i,j,k,,1,3]>=counts.p[oo]]) #0.50 quantile 

} 

 

counts.5a=rbind(counts.5a,c(pBegin,pEnd,.9,per,temp)) 

} 

} 

} 

counts.5a 

 

pdf("metric P2b normal.pdf")  

 

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 

 

x=n.v 

xx=rep(n.v,6) 

y=c(ans.5a[i,j,1,,1,1],ans.5a[i,j,1,,1,2],ans.5a[i,j,1,,1,3],ans.5a[i,j,2,

,1,1],ans.5a[i,j,2,,1,2],ans.5a[i,j,2,,1,3]) 

plot(xx,y,type="n",xlab="N",ylab="P2b",ylim=c(0,1)) 

lines(x,ans.5a[i,j,1,,1,1],lty=2) 

lines(x,ans.5a[i,j,1,,1,2],lty=1) 

lines(x,ans.5a[i,j,1,,1,3],lty=2) 

lines(x,ans.5a[i,j,2,,1,1],lty=2,col="red") 

lines(x,ans.5a[i,j,2,,1,2],lty=1,col="red") 

lines(x,ans.5a[i,j,2,,1,3],lty=2,col="red") 

title(paste(".1, .5, .9 quantiles, equal spacing, normal")) 

mtext(paste(" start ", pBegin.v[i], ", end (per) ",pEnd.v[j], ", target 

0.9",sep=""),3,.75) 

mtext("period: 10 (black), 30 (red); prediction at end of period",3,0) 

 

} 

} 

 

dev.off() 
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#metric P2c 

n.v=seq(10,100,10) 

pBegin.v=c(.80, .90, .95, .99, .995, .999, .9999, .999999) 

pEnd.v=c( .75, .90, .95, .99, .995, .999, .9999) 

ans.5b=array(0,c(8,7, 2,10, 3,3)) 

m.v=c(1,2,3) 

per.v=c(10,30) 

 

#m.v values - only use equal spaced m.v[1] 

#1 equal spaced 

#2 50:50 at begin (year 1) and end 

#3 80:20 at begin (year 1) and end 

 

 

nsim=1000 # number of simulated data sets 

pTarget=.9 # target 90% above spec limit 

 

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 

for(k in 1:2){ 

for(ll in 1:10){ 

for(mm in 1:1){ 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

n=n.v[ll] 

m=m.v[mm] 

 

L=0 # spec limit 0, without loss of generality 

 

if(pEnd<pBegin){ 

print(c("i,j,k,ll,mm: ",i,j,k,ll,mm)) 

beta0OverSigma=qnorm(pBegin) 

kEnd=qnorm(pEnd) 

 

beta1OverSigma=((kEnd-beta0OverSigma)/(per+15)) # at 15 years past end of 

period 

 

if(m==1){#1 

if(per==10) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(per==30){#2 

rem=n%%per; 

if(rem==0) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(rem!=0){#3 

nRep=floor(n/per);  

x=rep(seq(1,per,1),nRep); 

if (rem==10) x=c(x,seq(3,30,3)) 

if(rem==20) x=c(x,seq(2, 29, 3), seq(3,30,3)) 

}#3 

}#2 

}#1 
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if(m==2) x=c(rep(1,n/2),rep(per,n/2)) 

if(m==3) x=c(rep(1,n*.8),rep(per,n*.2)) 

x=sort(x) # sort by age 

 

X=cbind(1,x) 

xt=c(1,(per+15)) # predict 15 years past end of period 

H=xt%*%solve(t(X)%*%X)%*%cbind(xt) 

 

nu=n-2 

 

delta=qnorm(pTarget)/sqrt(H) 

mu=beta0OverSigma+beta1OverSigma*x 

mu.per=beta0OverSigma+beta1OverSigma*per 

 

temp=rep(0,nsim) 

for(isim in 1:nsim){ 

y=mu+rnorm(n) 

ls.fit=summary(lm(y~x)) 

s=ls.fit$sigma 

ypred=xt%*%cbind(ls.fit$coef[,1]) 

arg= (ypred-L)/(s*sqrt(H)) 

 

conf=pt(arg,nu,delta) 

temp[isim]=conf 

} 

 

ans.5b[i,j,k,ll,mm,]=quantile( temp,c(.1,.5,.9)) 

}#if 

 

}#mm 

}#ll 

}#k 

}#j 

}#i 

 

 

pdf("metric P2c normal.pdf")  

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 

 

x=n.v 

xx=rep(n.v,6) 

y=c(ans.5b[i,j,1,,1,1],ans.5b[i,j,1,,1,2],ans.5b[i,j,1,,1,3],ans.5b[i,j,2,

,1,1],ans.5b[i,j,2,,1,2],ans.5b[i,j,2,,1,3]) 

plot(xx,y,type="n",xlab="N",ylab="P2c",ylim=c(0,1)) 

lines(x,ans.5b[i,j,1,,1,1],lty=2) 

lines(x,ans.5b[i,j,1,,1,2],lty=1) 

lines(x,ans.5b[i,j,1,,1,3],lty=2) 

lines(x,ans.5b[i,j,2,,1,1],lty=2,col="red") 

lines(x,ans.5b[i,j,2,,1,2],lty=1,col="red") 

lines(x,ans.5b[i,j,2,,1,3],lty=2,col="red") 

title(paste(".1, .5, .9 quantiles, equal spacing, normal")) 

mtext(paste("start ", pBegin.v[i], ", end (per + 15) ",pEnd.v[j],",target 

0.9 ",sep=""),3, .75) 



62 

 

mtext("period: 10 (black), 30 (red), prediction at end of period + 

15",3,0) 

 

} 

} 

dev.off() 

 

#minimum sample size P2c > prob level 

counts.p=c(.6,.7,.8,.9) #prob level 

counts.5b=NULL 

 

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 

 

for(k in 1:2){ 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

 

temp=rep(0,4) 

for(oo in 1:4){ 

temp[oo]= min(n.v[ans.5b[i,j,k,,1,3]>=counts.p[oo]]) #0.50 quantile 

} 

 

counts.5b=rbind(counts.5b,c(pBegin,pEnd,.9,per,temp)) 

} 

} 

} 

counts.5b 

 

# two following commands are commented out 

#save.image("save metric 5 calculations in R 041811") #save calculations 

if you need them to replot 

#load("save metric 5 calculations in R 041811") #load calculations if you 

need them to replot 

 

 

Metric 3a/3b 
 
#metric p3a 

 

n=seq(1,50,1) #sample size 1-50 

m.v=seq(1,3,1) #mean shifts of 1-3 sd 

 

cv=qchisq(.95,n) #0.05 test 

ans=NULL 

for(i in 1:3){ 

m=m.v[i] 

lambda=n*m^2 

 

ans=rbind(ans,1-pchisq(cv,n,lambda)) 

} 
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pdf("metric P3a P3b plots.pdf") 

y=c(t(ans)) 

x=rep(n,3) 

plot(x,y,type="n",xlab="N",ylab="P3a") 

for(i in 1:3){ 

lines(n,ans[i,],lty=i) 

} 

 

legend(15,.5,c("1 sd","2 sd","3 sd"),lty=c(1,2,3,4,5),title="mean shift") 

 

# get min counts for which P3a> prob level 

counts.p=c(.6,.7,.8,.9) #prob levels of .6, .7, .8., .9 

counts=matrix(rep(0,3*4),ncol=4) 

 

for(i in 1:3){ 

for(j in 1:4){ 

counts[i,j]= min(n[ans[i,]>=counts.p[j]]) 

} 

} 

counts 

 

#metric P3b 

 

n=seq(1,50,1) #sample size 1-50 

m.v=c(1.5,2,3) #sd multipliers 1.5, 2, 3 

 

cv=qchisq(.95,n) #0.05 test 

ans=NULL 

for(i in 1:3){ 

m=m.v[i] 

 

ans=rbind(ans,1-pchisq((cv/m^2),n)) 

} 

 

y=c(t(ans)) 

x=rep(n,3) 

plot(x,y,type="n",xlab="N",ylab="P3b") 

for(i in 1:3){ 

lines(n,ans[i,],lty=i) 

} 

 

legend(15,.5,c("1.5","2","3"),lty=c(1,2,3),title="sd multiplier") 

 

# get min counts for which P3b> prob level 

counts.p=c(.6,.7,.8,.9) #prob levels of .6, .7, .8., .9 

counts=matrix(rep(0,3*4),ncol=4) 

 

for(i in 1:3){ 

for(j in 1:4){ 

counts[i,j]= min(n[ans[i,]>=counts.p[j]]) 

} 

} 

counts 

dev.off() 
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Metric 4 
 
07.26.11 

 

#compare line  asymptote step half-line for metric 4 robustness study 

per=30 

#per=10 

pBegin=.999 

pEnd=.9 

x=seq(0,per,1) 

 

beta0OverSigma=qnorm(pBegin) 

kEnd=qnorm(pEnd) 

 

beta1OverSigma=((kEnd-beta0OverSigma)/(per+15)) #power formula based on 

positive slope 

 

muline=beta0OverSigma+beta1OverSigma*x 

plot(x,muline,type="l",xlab="year",ylab="mu") 

 

#asymptote (previous but close to line) 

#r=log((beta0OverSigma+beta1OverSigma*per)/beta0OverSigma)/per #k is 

period 

#muasymptote=beta0OverSigma*exp(r*x) 

#lines(x,muasymptote,col="red") 

 

#use alternate asymptote 

qEnd=beta0OverSigma+beta1OverSigma*per 

qBegin=qnorm(pBegin) 

if(per==10) muasymptote=((qBegin-qEnd)/(3*x+1))+qEnd 

if(per==30) muasymptote=((qBegin-qEnd)/((x)+1))+qEnd 

lines(x,muasymptote,col="red") 

 

lines(c(0,per/2),rep(beta0OverSigma,2),col="green") 

lines(c(per/2,per),rep(beta0OverSigma+beta1OverSigma*per,2),col="green") 

 

lines(c(0,per/2),rep(beta0OverSigma+.005,2),col="blue") 

 

beta1OverSigmaHalfline=((beta0OverSigma+beta1OverSigma*per)-

beta0OverSigma)/((per/2)) 

 

xx=seq(per/2,per,.5) 

mu=beta0OverSigma+beta1OverSigmaHalfline*(xx - (per/2)) 

lines(xx,mu,col="blue") 

 

title(paste("mean start ",pBegin,", end (per+15) ",pEnd, ", period: 

",per,sep="")) 

mtext("line (black), asymptote (red), step (green), half-line 

(blue)",3,.75) 
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#metric 4 

 

#beta0 - intercept 

#beta1 - slope 

#sigma=1 

 

# initial probabilities above spec are .80, .90, .95, .99, .995, .999, 

.9999, .999999 

#data time period 10 or 30 years 

#data time period + 15 years probabilities above spec are .75, .90, .95, 

.99, .995, .999, .9999 - these have to be less than initial probabilities 

to 

# have a non-zero slope (slope will be negative but make it positive for 

the power calculation) 

 

n.v=seq(10,100,10) # sample size 10 to 100 by 10 

pBegin.v=c(.80, .90, .95, .99, .995, .999, .9999, .999999) 

pEnd.v=c( .75, .90, .95, .99, .995, .999, .9999) 

ans=array(0,c(8,7, 2,10, 3)) 

m.v=c(1,2,3) 

per.v=c(10,30) 

#1 equal spaced 

#2 50:50 at begin (year 1) and end 

#3 80:20 at begin (year 1) and end 

 

for(i in 1:8){ 

for(j in 1:7){ 

for(k in 1:2){ 

for(ll in 1:10){ 

for(mm in 1:3){ 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

n=n.v[ll] 

m=m.v[mm] 

 

if(pEnd<pBegin){ 

beta0OverSigma=qnorm(pBegin) 

kEnd=qnorm(pEnd) 

 

beta1OverSigma=abs((kEnd-beta0OverSigma)/(per+15)) #power formula based on 

positive slope 

 

if(m==1){#1 

if(per==10) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(per==30){#2 

rem=n%%per; 

if(rem==0) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(rem!=0){#3 

nRep=floor(n/per);  

x=rep(seq(1,per,1),nRep); 

if (rem==10) x=c(x,seq(3,30,3)) 

if(rem==20) x=c(x,seq(2, 29, 3), seq(3,30,3)) 
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}#3 

}#2 

}#1 

if(m==2) x=c(rep(1,n/2),rep(per,n/2)) 

if(m==3) x=c(rep(1,n*.8),rep(per,n*.2)) 

 

nu=n-2 

cv=qt(.95,nu) 

delta=beta1OverSigma*sqrt(var(x)*(n-1)) 

 

ans[i,j,k,ll,mm]=1-pt(cv,nu,delta) 

 

}#if 

 

}#mm 

}#ll 

}#k 

}#j 

}#i 

 

 

pdf("metric P4 normal plots.pdf") 

 

for(i in 1:8){ 

for(j in 1:7){ 

print(c(i,j)) 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

 

if(pEnd<pBegin){ 

 

plot(0,0,type="n",xlim=c(0,100),ylim=c(0,1),xlab="N",ylab="P4") 

title(paste("start ",pBegin,", end (per+15) ",pEnd, ", period: 10 (black), 

30 (red)",sep="")) 

mtext("even (solid), 80:20 (dotted), 50:50 (dashed)",3,0) 

lines(n.v,ans[i,j,1, ,1],lty=1)# per 10 data 1 

lines(n.v,ans[i,j,1, ,2],lty=2)# per 10 data 2 

lines(n.v,ans[i,j,1, ,3],lty=3)# per 10 data 3 

lines(n.v,ans[i,j,2, ,1],lty=1,col="red")# per 30 data 1 

lines(n.v,ans[i,j,2, ,2],lty=2,col="red")# per 30 data 2 

lines(n.v,ans[i,j,2, ,3],lty=3,col="red")# per 30 data 3 

} 

 

}#j 

}#i 

dev.off() 

 

#minimum sample size (increments of 10) for P4 > prob level 

counts.p=c(.6,.7,.8,.9) # prob levels 

counts.4=NULL 

 

for(j in 3:7){ #pEnd > 0.90 

for(i in (j+1):8){ #pBegin > pEnd 
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for(k in 1:2){ 

for(m in 1:3){ 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

 

temp=rep(0,4) 

for(oo in 1:4){ 

temp[oo]= min(n.v[ans[i,j,k,,m]>=counts.p[oo]]) #0.50 quantile 

} 

 

counts.4=rbind(counts.4,c(pBegin,pEnd,per,m,temp)) 

} 

} 

} 

} 

counts.4 

 

##########################################################################

##### 

# do some for 4 year period 

# multiples of 4 to 100  

 

n.v=seq(4,100,4) 

pBegin.v=c(.80, .90, .95, .99,.995, .999, .9999, .999999) 

pEnd.v=c( .75, .90, .95, .99,.995, .999, .9999) 

ans.4=array(0,c(8,7, 1,25, 3)) 

m.v=c(1,2,3) 

per.v=c(4) 

#1 equal spaced 

#2 50:50 at begin (year 1) and end 

#3 80:20 at begin (year 1) and end 

 

for(i in 1:8){ 

for(j in 1:7){ 

for(k in 1:1){ 

for(ll in 1:25){ 

for(mm in 1:3){ 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

n=n.v[ll] 

m=m.v[mm] 

 

if(pEnd<pBegin){ 

beta0OverSigma=qnorm(pBegin) 

kEnd=qnorm(pEnd) 

 

beta1OverSigma=abs((kEnd-beta0OverSigma)/(per+15)) #power formula based on 

positive slope 

 

if(m==1) x=rep(c(1,2,3,4),n/4) 

if(m==2) x=c(rep(1,n/2),rep(per,n/2)) 
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if(m==3) x=c(rep(1,n*.75),rep(per,n*.25)) 

 

nu=n-2 

cv=qt(.95,nu) 

delta=beta1OverSigma*sqrt(var(x)*(n-1)) 

 

ans.4[i,j,k,ll,mm]=1-pt(cv,nu,delta) 

 

}#if 

 

}#mm 

}#ll 

}#k 

}#j 

}#i 

 

 

pdf("metric P4 normal 4 years plots.pdf") 

 

for(i in 1:8){ 

for(j in 1:7){ 

print(c(i,j)) 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

 

if(pEnd<pBegin){ 

 

plot(0,0,type="n",xlim=c(0,100),ylim=c(0,1),xlab="N",ylab="P4") 

title(paste("start ",pBegin,", end (per+15) ",pEnd, ", period: 4",sep="")) 

mtext("even (solid), 75:25 (dotted), 50:50 (dashed)",3,0) 

lines(n.v,ans.4[i,j,1, ,1],lty=1)# per 10 data 1 

lines(n.v,ans.4[i,j,1, ,2],lty=2)# per 10 data 2 

lines(n.v,ans.4[i,j,1, ,3],lty=3)# per 10 data 3 

 

} 

 

}#j 

}#i 

dev.off() 

 

 

##########################################################################

##### 

 

#metric 4 robustness to 

# a) asymptote - to same level by end of the period as above - 

beta1OverSigma*period 

# b) step function - half the period - to same level by end of the period 

as above 

 

# do just for 0.90 results 

 

n.v=seq(10,100,10) 
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pBegin.v=c(.80, .90, .95, .99, .995,.999, .9999, .999999) 

pEnd.v=c( .75, .90, .95, .99,.995, .999, .9999) 

ans.asymp=array(0,c(8,7, 2,10, 3)) 

ans.step=array(0,c(8,7, 2,10, 3)) 

ans.halfline=array(0,c(8,7, 2,10, 3)) 

 

m.v=c(1,2,3) 

per.v=c(10,30) 

#1 equal spaced 

#2 50:50 at begin (year 1) and end 

#3 80:20 at begin (year 1) and end 

 

nsim=10000 

 

for(i in 1:8){ 

for(j in 2:2){ #only .90 at per+15 

for(k in 1:2){ 

for(ll in 1:10){ 

for(mm in 1:1){ # only equal spacing 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

per=per.v[k] 

n=n.v[ll] 

m=m.v[mm] 

 

if(pEnd<pBegin){#if 0 

print(c("i,j,k,ll,mm: ",i,j,k,ll,mm)) 

 

beta0OverSigma=qnorm(pBegin) 

kEnd=qnorm(pEnd) 

 

beta1OverSigma=((kEnd-beta0OverSigma)/(per+15)) 

 

if(m==1){#1 

if(per==10) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(per==30){#2 

rem=n%%per; 

if(rem==0) {nRep=n/per; x=rep(seq(1,per,1),nRep)} 

if(rem!=0){#3 

nRep=floor(n/per);  

x=rep(seq(1,per,1),nRep); 

if (rem==10) x=c(x,seq(3,30,3)) 

if(rem==20) x=c(x,seq(2, 29, 3), seq(3,30,3)) 

}#3 

}#2 

}#1 

if(m==2) x=c(rep(1,n/2),rep(per,n/2)) 

if(m==3) x=c(rep(1,n*.8),rep(per,n*.2)) 

x=sort(x) #need to be sorted for step case as well as other cases 

 

nu=n-2 

cv=qt(.95,nu) 
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# simulate asymp 

cnt=rep(0,nsim) 

 

# 1/x form 

qEnd=beta0OverSigma+beta1OverSigma*per 

qBegin=qnorm(pBegin) 

if(per==10) mu=((qBegin-qEnd)/(3*x+1))+qEnd 

if(per==30) mu=((qBegin-qEnd)/((x)+1))+qEnd 

 

for(isim in 1:nsim){ 

y=mu+rnorm(n) 

lm.fit=summary(lm(y~x)) 

tvalue=lm.fit$coef[2,3] 

if(tvalue<=-cv) cnt[isim]=1 

} 

ans.asymp[i,j,k,ll,mm]=sum(cnt)/nsim 

#ans.asymp[i,j,k,ll,mm] 

 

#simulate step 

cnt=rep(0,nsim) 

 

mu=x 

mu[x<=(per/2)]=beta0OverSigma 

mu[x>(per/2)]=beta0OverSigma+beta1OverSigma*per 

for(isim in 1:nsim){ 

y=mu+rnorm(n) 

lm.fit=summary(lm(y~x)) 

tvalue=lm.fit$coef[2,3] 

if(tvalue<=-cv) cnt[isim]=1 

} 

ans.step[i,j,k,ll,mm]=sum(cnt)/nsim 

#ans.step[i,j,k,ll,mm] 

 

#simulate halfline 

cnt=rep(0,nsim) 

 

beta1OverSigmaHalfline=(qEnd-beta0OverSigma)/(per/2) #line start halfway 

through period 

mu=beta0OverSigma+beta1OverSigmaHalfline*(x - (per/2)) 

mu[x<=(per/2)]=beta0OverSigma 

 

for(isim in 1:nsim){ 

y=mu+rnorm(n) 

lm.fit=summary(lm(y~x)) 

tvalue=lm.fit$coef[2,3] 

if(tvalue<=-cv) cnt[isim]=1 

} 

ans.halfline[i,j,k,ll,mm]=sum(cnt)/nsim 

#[i,j,k,ll,mm] 

 

}#if 0 

 

}#mm 
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}#ll 

}#k 

}#j 

}#i 

 

 

 

 

#make plots 

#pdf("metric 4 robustness plots 071811.pdf") 

pdf("metric 4 robustness plots 072611.pdf") 

 

 

for(i in 3:8){ 

for(j in 2:2){ 

print(c(i,j)) 

 

pBegin=pBegin.v[i] 

pEnd=pEnd.v[j] 

 

if(pEnd<pBegin){ 

 

plot(0,0,type="n",xlim=c(0,100),ylim=c(0,1),xlab="N",ylab="P4") 

title(paste("equal spacing start ",pBegin,", end (per+15) ",pEnd, ", 

period: 10",sep="")) 

mtext("line (black), asymptote (red), step (green), half-line 

(blue)",3,.75) 

lines(n.v,ans[i,j,1, ,1],lty=1)# per 10 data 1 

lines(n.v,ans.asymp[i,j,1, ,1],lty=1,col="red")# per 10 data 1 

lines(n.v,ans.step[i,j,1, ,1],lty=1,col="green")# per 10 data 1 

lines(n.v,ans.halfline[i,j,1, ,1],lty=1,col="blue")# per 10 data 1 

 

plot(0,0,type="n",xlim=c(0,100),ylim=c(0,1),xlab="N",ylab="P4") 

title(paste("equal spacing start ",pBegin,", end (per+15) ",pEnd, ", 

period: 30",sep="")) 

mtext("line (black), asymptote (red), step (green), half-line 

(blue)",3,.75) 

lines(n.v,ans[i,j,2, ,1],lty=1)# per 10 data 1 

lines(n.v,ans.asymp[i,j,2, ,1],lty=1,col="red")# per 10 data 1 

#lines(n.v,ans.asymp[i,j,2, ,2],lty=2,col="red")# per 10 data 2 

#lines(n.v,ans.asymp[i,j,2, ,3],lty=3,col="red")# per 10 data 3 

lines(n.v,ans.step[i,j,2, ,1],lty=1,col="green")# per 10 data 1 

lines(n.v,ans.halfline[i,j,2, ,1],lty=1,col="blue")# per 10 data 1 

} 

 

}#j 

}#i 

dev.off() 

 

#save.image("save metric 4 calculations in R 072611") 

#load("save metric 4 calculations in R 072611") 

 

#save.image("save metric 4 calculations in R 071811") 

#load("save metric 4 calculations in R 071811") 
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APPENDIX B: METRIC 1A AND 1B SENSITIVITY STUDY GRAPHS 
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APPENDIX C: METRIC 2A SENSITIVITY STUDY GRAPHS, NORMAL 
DISTRIBUTION 

 

Consolidated Results, Fixed Target Values 
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P2a Results, True=0.8, Varying Target 
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P2a Results, True=0.9, Varying Target 
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P2a Results, True=0.95, Varying Target 
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P2a Results, True=0.99, Varying Target 
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P2a Results, True=0.995, Varying Target 
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P2a Results, True=0.999, Varying Target 
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P2a Results, True=0.99999, Varying Target 
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APPENDIX D: METRIC 2A SENSITIVITY STUDY GRAPHS, LOG-
NORMAL DISTRIBUTION 

 

 

 
 

NOTE: On the graphs that follow, the normal distribution results are shown 

in green, the lognormal with the same variance in black, and the lognormal 

with large variance in red. 
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P2a Lognormal, True=0.8, Varying Target 

 
P2a  
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Lognormal, True=0.9, Varying Target 

 
P2a  
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Lognormal, True=0.95, Varying Target 
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P2a Lognormal, True=0.99, Varying Target 
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P2a Lognormal, True=0.995, Varying Target 
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P2a Lognormal, True=0.999, Varying Target 

 
  



88 

 

P2a Lognormal, True=0.99999, Varying Target 
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APPENDIX E: METRIC 2B SENSITIVITY STUDY GRAPHS 
 

P2b Results, End=0.95, Target=0.9, Varying Start 
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P2b Results, End=0.99, Target=0.9, Varying Start 
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P2b Results, End=0.995, Target=0.9, Varying Start 
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P2b Results, End=0.999, Target=0.9, Varying Start 

 
 

 

 

P2b Results, End=0.9999, Target=0.9, Varying Start 
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APPENDIX F: METRIC 2C SENSITIVITY STUDY GRAPHS 
P2c Results, End=0.95, Target=0.9, Varying Start 
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P2c Results, End=0.99, Target=0.9, Varying Start 
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P2c Results, End=0.999, Target=0.9, Varying Start 

 
 

P2c Results, End=0.9999, Target=0.9, Varying Start 

 

 

 



97 

 

APPENDIX G: METRIC 3A/3B SENSITIVITY STUDY GRAPHS 
 

P3a Results, Varying Mean Shift 

 
 

P3b Results, Varying Standard Deviation Mulitplier 
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APPENDIX H: METRIC 4 SENSITIVITY STUDY GRAPHS, LINEAR 
TREND 

 

P4 Results, End=0.75, Varying Start 
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P4 Results, End=0.9, Varying Start 
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P4 Results, End=0.95, Varying Start 
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P4 Results, End=0.99, Varying Start 
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P4 Results, End=0.995, Varying Start 
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P4 Results, End=0.999, Varying Start 
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P4 Results, End=0.9999, Varying Start 
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APPENDIX I: METRIC 4 SENSITIVITY STUDY GRAPHS, NON-LINEAR 
TREND 

 

P4 Results, Three non-linear trends (half-line, asymptote, step function) 

End=0.90, Varying Start 
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