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Abstract

Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are
physical systems whose responses to input stimuli (i.e., challenges) are easy to measure (within
reasonable error bounds) but hard to clone. This property of unclonability is due to the ac-
cepted hardness of replicating the multitude of uncontrollable manufacturing characteristics
and makes PUFs useful in solving problems such as device authentication, software protec-
tion, licensing, and certified execution. In this paper, we focus on the effectiveness of PUFs
for software protection and show that traditional non-computational (black-box) PUFs cannot
solve the problem against real world adversaries in offline settings.

Our contributions are the following: We provide two real world adversary models (weak
and strong variants) and present definitions for security against the adversaries. We continue
by proposing schemes secure against the weak adversary and show that no scheme is secure
against a strong adversary without the use of trusted hardware. Finally, we present a protection
scheme secure against strong adversaries based on trusted hardware.
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1 Introduction

Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are physical
systems whose responses to input stimuli (i.e., challenges) are easy to measure (within reasonable
error bounds) but hard to clone. This unclonability property comes from the accepted hardness of
replicating the multitude of uncontrollable manufacturing characteristics.

In essence, PUFs rely on hiding secrets in circuit characteristics rather than in digitized form.
On different input stimuli (challenges) a PUF circuit exposes certain measurable and persistent
characteristics (responses). Several varieties of PUFs have been proposed since being introduced
by Pappu in [10] and range from optical PUFs to silicon timing PUFs.

Although initially envisaged as a new tool for simple device identification and authentication,
the attractiveness of PUF unclonability has greatly broadened the scope of possible applications.
Current and emerging applications range from software protection and licensing to hardware tam-
per proofing and certified execution. However, the problem with the largest potential impact is
software protection – software piracy costs the software industry a colossal loss of $51.4 billion
annually [12].

Software protection in offline scenarios is extremely challenging because of malicious hosts.
Malicious hosts have complete control, access, and visibility, over all software they execute, i.e.,
an extremely powerful adversary. This explains why most approaches fail to protect software from
illegal tampering and/or duplication. Only well designed schemes, based on trusted devices (e.g.,
trusted hardware or servers), have had success in defending against malicious hosts. This prompts
the question: Can PUF technology be used to build secure software protection schemes?

1.1 Contributions

In this paper, we investigate the effectiveness of PUFs for software protection from a theoretical
standpoint. We make the case that traditional (black-box) PUFs cannot solve the software protec-
tion problem in offline settings. We define a traditional PUFs as devices that do not perform any
computation, but behave solely as black box functions, i.e., given a challenge as input, output an
unpredictable (but consistently repeatable) response.

Our contributions are the following: We provide two real world adversary models (weak and
strong variants) and present definitions for security against each adversary. We continue by propos-
ing schemes secure against the weak adversary and show that no scheme is secure against a strong
adversary without the use of trusted hardware. Finally, we present a protection scheme secure
against strong adversaries based on trusted hardware.
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1.2 Related Work

The first work geared towards the anti-piracy and software protection problem was in 1980 by
Kent [9]. Kent suggested the use of tamper resistant trusted hardware and encrypted programs.
He was also the first to differentiate the trusted host problem from the trusted code problem. In
1985, Gosler [7] proposed the use of dongles and magnetic signatures in floppy drives along with
several anti-debugging techniques to prevent software analysis and copying. Unfortunately, these
early works are vulnerable to an OORE attack.

In 1993, Cohen [4] proposed a solution using software diversity and code obfuscation as a
software protection mechanism. Cohen’s methods were based on simple code transformation and
obfuscation techniques. Additional transformation and obfuscation techniques were later proposed
by Collberg et al[5] and Wang [13]. Finally, Goldreich and Ostrovsky provided the first theoretical
analysis and foundation to the software protection problem in 1990 and later again in 1996 [6].
They used schemes to hide/obfuscate data access patterns in conjunction with trusted hardware to
prevent illegal software replication.

More recently, Boaz Barak et al[2] completed a theoretical analysis of software obfuscation
techniques. Their contribution was an interesting negative result that, in essence, proved that there
exists a family of programs that are non-learnable and yet, unobfuscatable (by any code obfusca-
tor). This implies, in its most extreme interpretation, that there does not exist a provably secure
obfuscation algorithm that works on every program. Taking a new approach, Chang and Atallah [3]
proposed a scheme that prevented software tampering using a set of inter-connected (code) guards
programmed to perform code verification and repairs.

After the advent of Physical Unclonable Functions, there have been several proposals to use
them for software protection. Most notably, Guajardo et al. in 2007 [8], proposed an FPGA based
intellectual property protection scheme that relied on SRAM PUFs. However, SRAM PUFs are
not ideal due to the possibility an exhaustive read out attack. Atallah et al. provided the inspiration
for this work with [1]. They proposed inter-twining software functionality with the PUF. However,
there are several drawbacks to their approach: (1) it requires trusted hardware to remotely initialize
the protection scheme and (2) it can only protect software with algebraic group functionality.

8



2 The Software Protection Problem

To properly tackle the software protection problem, it is important to accurately define the problem
and any solution requirements. We re-iterate that rather than protecting software from trademark
or copyright violations (i.e., software fingerprinting and watermarking) we aim to protect software
from illegal execution and illegitimate duplication. To do this, we provide methods that ensure
there is no feasible way to create illegal copies of the software that will run on a large number of
machines.

In this section, we review theoretical preliminaries and provide answers to two fundamental
questions: (1) What powers do real world adversaries have? (2) Given an adversary with certain
powers, how can we produce software that is uncrackable without using trusted hardware or online
trusted third parties?

2.1 Preliminaries

Formal PUF Definition

The formal definition of a PUF has been debated by several researchers recently [11]. For our
purposes, we define a PUF as follows:

Definition 1. A Physical Unclonable Function is a physical system with the following properties:

• (Persistent and Unpredictable) The response (Ri) to some challenge (Ci) is random, yet per-
sistent over multiple observations.

• (Unclonable) Given a PUF (P′), it is infeasible for an adversary to build another system (P′′)
– real or virtual – that provides the same responses to every possible challenge.

• (Tamper Evident) Invasive attacks on the PUF essentially destroy them and render them
ineffective.

It is important to note that a randomness property is not explicitly required since the notion of
unclonability supersedes the notion of randomness.

Programs as Turing Machines

A Turing Machine (TM) consists of a finite control, at least one infinite tape divided into cells,
and a read and/or write head on each of the tapes. The finite control may be in one of many (but
finite) number of states (Q). Each cell on the tape may contain one symbol from the alphabet of
the machine (Σ), or a blank symbol (B). The tape head is capable of moving either left (L) or right
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(R) from each cell. The TM begins in an initial state – q0 and halts at a halting state – qh. The
state transition function (δ ) determines how the machine changes state. The set of all inputs to the
machine M that cause it to reach qh is called its language L(M). In our study of programs, we do
not distinguish between (1) recursive and recursively enumerable languages or (2) deterministic
and non-deterministic TMs. In general, a TM is assumed to be as powerful as a real machine, and
can execute any program that a computing device can. We can therefore safely assume that there
exists a TM for every computer program P.

Equivalence of Turing Machines

We say that two TMs M and M′ are equivalent if ∀x,M(x) = M′(x) – i.e., the functions computed
by the two machines are identical on every input x. These two machines may have a different set
of states and may also work with different state transition relations. Throughout this paper we use
the terms program and machine interchangeably (also the notation M and P). We point out that
the control flow graph of a program is an alternate visualization of the TM state transition diagram
it represents.

Control Flow Graphs

A control flow graph (CFG) is a directed graph that denotes all execution paths traversed by a
program during execution. The exact paths taken are usually dependent on user input and/or other
branching conditions. Each node in the graph represents a linear block of code and each edge
denotes the flow of control from one block to the next. Control flow graphs have two standard
nodes: an entry node and an exit node. The entry node typically includes all instructions required
for setting up the program execution environment, global declarations, etc. The exit block is where
all execution halts – analogous to a TM halting state. When this block is reached we say that the
program is complete.
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3 Formalizing the Weak Adversary (W-ADV)

This model captures the scenario in which an adversary does not have access to the legitimate PUF.
A real world analogue is a pirate that downloads or copies software to install and execute on its
local systems.

3.1 PUF IP-Protection in the presence of a W-ADV

Consider the following experiment, defined for any PUF Intellectual Property-Protection (IPP)
scheme, any adversary A, and any security parameter n (which determines the number of PUF
challenges inserted in the output of IPP):

The W-ADV Experiment (WADVA,IPP(n)):

1. The IPP oracle picks at random two strings (that represent the Turing machines M and PUF)
and produces the string M′ which is of length p(|M|), where p(.) is some polynomial.

2. The adversary A is given as input n and the string of the machine M′.

3. The adversary A now outputs a string M′′.

4. The output of the experiment is defined to be 1 if:

∀x ∈ L(M), [M′′(x) = M′(x)] and [@C ∈M′′ s.t f (R(C)) is unknown].

The output is 0 otherwise. If WADVA,IPP(n) = 1, we say that A succeeded.

We say the adversary wins if M′′ has the same functionality as M′ and M′′ has no PUF chal-
lenges in it whose responses (or function of responses) have not been guessed by the adversary.
Note that this definition allows M′′ to contain zero PUF challenges, i.e., have been removed by the
adversary.

Let E[WADVA,IPP(n) = 1] be the expected number of trials required by adversary A before he
wins the the game (i.e., before WADVA,IPP(n) = 1).

Definition 2. A PUF IP-Protection scheme IPP is said to be ε-secure in the presence of a W-
ADV (or, W-ADV ε-Secure) if for all probabilistic polynomial time adversaries A there exists an ε

exponential in the size of the program, such that:

E[(WADVA,IPP(n)) = 1]≥ ε (1)

where n is the number of PUF challenges inserted in M′ and the probability is taken over the
random coins used by A, as well as the random coins used in the experiment (for choosing PUF
challenges).
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3.2 Formal Requirements of a W-ADV Secure IPP Scheme

Based on the definitions in Section 3.1, we now formally enumerate the requirements of a W-ADV
secure IPP scheme:

• (protected functionality) The protected program P′ must have the same functionality as the
original program P. This requirement can be formalized as follows:

If P is represented by the Turing machine M and P′ is represented by the Turing machine M′

then:

∀x ∈ L(M),M(x) = M′(x) (2)

Further, the program P′ must be protected such that correct execution only occurs on a system
with the attached PUF (i.e., for every challenge (C) in P′, the response received (R′(C)) must
be the expected response for that challenge (R(C))). This requirement is essentially an if and
only if pre-cursor to the above functionality requirement and can be formalized as follows:

∀x ∈ L(M), ∀C ∈M′, M(x) = M′(x) iff R(C) = R′(C) (3)

• (non-trivial inversion) There does not exist a polynomial time algorithm ADV such that,
ADV(M’)→ M. It should be hard for an adversary to create a functionally equivalent piece
of software that does not perform PUF queries. This can be formalized as follows:

∀ADV,Pr[ADV (M′) = M′′ s.t M′′ ≡M and count(C ∈M′′) = 0]≤ 1
p(|M|)

(4)

3.3 A W-ADV Secure IPP Scheme Based on Control Flow Graphs

Let P and PUF be the inputs to the IPP scheme – i.e., P is the program to be protected and PUF
is the PUF required for correct execution. Let G be the control flow graph of the program P where
each node in the graph may represent a block of code with a bound on maximum size (bmax). This
bound will be dependent on a security parameter n in the following way: n ≥ d |P|bmax

e. Each of the
n blocks is assigned an integer label: {b1, ...,bn}.

Construction 1. The following construction causes the n node control flow graph G to be identified
only when the PUF responses to challenges are correct. Given an incorrect PUF, the control flow
graph resembles a complete graph with n nodes.

1. At the exit point of every block bi, a challenge is inserted by the vendor as follows:

(a) If the original control flow graph G of the program P contains an edge from node bi to
b j, then a challenge Ci is picked, such that, f (R(Ci)) equals the integer label of b j.

12



(b) The challenge is inserted as: (1) an unconditional branching statement, e.g., goto
f (R(Ci)), or (2) part of an existing conditional branching statement, e.g., if (a == b)
then goto f (R(Ci)).

2. The above procedure is repeated for every edge in the original control flow graph G.

Properties and Security

The resulting program P′ has the following properties:

• (non-trivial inversion: complete CFG in the presence of a W-ADV) The CFG of P′ appears to
be a complete graph because, at the exit point of a given block, the adversary is unaware of
the correct f (R(Ci)) value and cannot do significantly better than guessing. This means that
each of the remaining n−1 blocks is equally valid as the next node in the CFG. Therefore,
the CFG has edges between all possible blocks and forces the adversary to guess the next
block – a correct guess occurs with probability 1

n−1 for each block.

• (protected functionality: correct CFG in the presence of PUF) In the presence of PUF , the
program P′ and its control flow graph G′ have the same functionality and structure as the
program P and its graph G, respectively. This is because the correct response f (R(Ci)) is
given for every challenge Ci in block bi with probability equal to 1.

An example of the difference in the control flow graph of P′ with and without the correct PUF
is illustrated in Figure 1.

Figure 1. Example CFG(P′) on PUF →CFG(P′) on PUF ′
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Theorem 1. Construction 1 is W-ADV Secure.

Proof. To show that Construction 1 is W-ADV secure according to Definition 2, we must show
that the expected number of trials before an adversary may win the W-ADV experiment is at least
exponential in n. We know that the probability of an adversary correctly guessing the next block to
enter from block bi is 1

n−1 (if we assume no loops, allowing loops only makes our case stronger).
The probability of correctly guessing a single path with length m is 1

(n−1)m . However, since the
number of paths (and path lengths) in P′ are unknown to the adversary, an exhaustive search over
all n blocks is required to discover all possible paths. The probability of n consecutive correct
guesses for the values of f (R(Ci)) is 1

(n−1)n . Therefore, the expected number of trials before the
adversary is able to guess all f (R(Ci))s correctly is (n−1)n.

Limitations

While our scheme is theoretically secure, it does suffer from what we like calling a reality shock.
In the real world, it is likely that a program will crash if control is randomly transferred from one
block to another. If this behavior occurs with high probability (≈ 1), an adversary can reconstruct
the correct control flow in O(n2) trials. We argue, however, that methods exist to prevent crashing
on unexpected control flow, such as, global declarations in the entry block, choosing very fine
grained block granularity, etc.

Furthermore, the deterministic PUF responses in the above construction make it is possible to
create a crack of P′ given access to the real PUF using the attack described in Section 4.2. In the
following section, we show how to convert the above scheme into one that is secure against an
strong adversary using cryptographic primitives and a trusted computing board. We also illustrate
reasons for why we believe it is impossible to achieve security against a strong adversary without
a trusted computing board.

14



4 Formalizing the Strong Adversary (S-ADV)

This model captures the scenario in which an adversary has limited time access to the legitimate
PUF. In the real world, this captures effectively the scenario where an institution buys a single
software license, studies the software, and attempts to create a cracked version to distribute to
multiple systems.

4.1 PUF IP-Protection in the presence of a S-ADV

The basic idea behind a S-ADV is that the adversary A is allowed to adaptively query the PUF
used by the IPP algorithm. This is formalized by allowing A to interact freely with the PUF oracle
as a black-box that returns responses (or functions of responses) to challenges sent to it by A. The
following experiment is defined for any PUF IP-Protection scheme IPP, any adversary A, and any
security parameter n (the number of PUF challenges inserted in the output of IPP).

The S-ADV Experiment (SADVA,IPP(n)):

1. The IPP oracle picks at random two strings (that represent the Turing machines M and PUF)
and produces the string M′ which is of length p(|M|), where p(.) is some polynomial.

2. The adversary A is given as input n, access to O f (PUF), and the string of the machine M′.

3. The adversary A continues to have oracle access to the machine PUF . It then outputs a string
M′′. Let C′ be the set of all queries sent to the PUF oracle O f (PUF).

4. The output of the experiment is defined to be 1 if:

∀x ∈ L(M), [M′′(x) = M′(x)] and [@C ∈M′′ s.t f (R(C)) is unknown].

The output is 0 otherwise. If SADVA,IPP(n) = 1, we say that A succeeded.

We say that the adversary has won if M′′ has the same functionality as M′ and if M′′ has no PUF
challenges in it whose responses (or function of responses) have not been guessed or learned from
the PUF oracle. Note that this allows M′′ to contain zero PUF challenges, i.e., have been removed
by the adversary.

Let E[SADVA,IPP(n) = 1] be the expected number of trials required by adversary A before he
wins the the game (i.e., before SADVA,IPP(n) = 1).

Definition 3. A PUF IP-Protection scheme IPP is said to be ε-secure in the presence of a S-
ADV (or, S-ADV ε-Secure) if for all probabilistic polynomial time adversaries A there exists an ε

exponential in the size of the program, such that:

E[(SADVA,IPP(n)) = 1]≥ ε (5)
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where n is the number of PUF challenges inserted in M′ and the probability is taken over the
random coins used by A, as well as the random coins used in the experiment (for choosing PUF
challenges).

Clearly, if an IPP scheme is secure against a S-ADV, it is also secure against a W-ADV. This
holds because the WADV experiment is a special case of the SADV experiment in which the
adversary A does not access the PUF oracle at all.

4.2 Discussion

At first sight, it appears that security against a S-ADV is impossible to achieve. In particular,
consider an adversary that gets as input a program P′. Since the adversary has oracle access to
O f (PUF), it can request responses (or a function of the responses) for all challenges in P′. This
makes it possible to create P′′ by simply replaying the recorded responses. Such an attack easily
breaks the protection provided by IPP, since Equation 5 is now:

E[(SADVA,IPP(n)) = 1] = 1 (6)

We conclude that no IPP scheme can be secure against an S-ADV if the PUF challenges in P′

are deterministic. Avoiding this issue requires: (1) PUF responses are no longer dependent solely
on the challenge, or (2) non-deterministic PUF challenges. However, the first method violates our
fundamental assumption that a PUF is a non-computational (black-box) device.

4.3 Strong Adversarial Approaches

In general, an S-ADV A may take one of the following two approaches in order to create a cracked
version P′′ of a protected program P′.

1. A may execute the program for a given input on the legitimate PUF and then observe the log
of executed blocks. He then removes all instances of the PUF challenges. This essentially
creates the cracked version P′′ for the single execution path that was reached with the sup-
plied input. Here, the difficulty of creating the crack is expressed in terms of the number of
paths present in the state transition diagram of the machine P′.

2. A may instead scan the program P′ and store every challenge embedded in it. The responses
to each of these challenges are then stored in a table of (C,R) pairs – thereby, virtualizing
the use f ul part of the PUF. Here, the difficulty of creating the crack is expressed in terms of
the probability of the adversary guessing correctly all responses to challenges presented by
the software.
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Based on the above two approaches, the lower bound on the number of iterations required by
the adversary to create a cracked version of the software is: min(# paths, # iterations required
for guessing or learning all correct PUF responses). We point out that the number of paths in
the control flow graph of the protected program P′ (or, in the state transition diagram for M′) is
controlled by the software developer. Various programming techniques, such as, obfuscation, can
increase CFG branching factor. These techniques are beyond the scope of our paper. Instead, we
focus on maximizing the number of iterations required before an adversary can guess all responses
to the challenges in P′ correctly.

4.4 An Impossibility Conjecture

We now show that it is impossible to build a S-ADV secure IPP scheme without using trusted
hardware for secure storage and/or processing. We first present an informal argument to shows
intuitively why we believe this to be true. Note that the following arguments also apply to software
obfuscation, whitebox cryptography, and software watermarking.

Conjecture 1. There cannot exist a S-ADV secure IPP scheme in offline settings without trusted
hardware.

Reasoning. It is clear from the above requirements that there needs to be some type of ran-
domness involved in the selection of challenges. We now set up our program P′ as a probabilistic
Turing machine PT M. As with other probabilistic Turing machines, PT M behaves like an ordi-
nary deterministic Turing machine except that (1) multiple state transitions may exist for entries in
the state transition function, and (2) transitions are made based on probabilities determined by a
random tape R which consists of a binary string of random bits.

We say that x ∈ L(PT My) if PT M(x,y) halts and accepts. Here, y represents the bits on the
random tape. For our machine PT M, the input tape is write enabled and consists of bits that
determine the computation path and responses to challenges issued by the transition function. The
transition function, at each challenge stage, may select one of a large finite number of challenges
based on the string of bits y in the random tape R. At the verify response stage, the transition
function may make a state transition based on the response received to the issued challenge. Any
input x that requests a valid computation and contains correct responses to all challenges issued by
the transition function will result in a halt and accept state.

A fundamental requirement for all probabilistic Turing machines is that the random tape R be
read-only (i.e., it is not write enabled). However, it is impossible to enforce this requirement in
the purely offline setting without trusted hardware – every tape is write-enabled. Since the random
tape is write enabled, an adversary may rewrite the tape with the bits y to enforce a certain set of
challenges on every iteration of PT M. The end result is a deterministic Turing machine PT M(x)
rather than the desired probabilistic machine PT M(x,y). This enables the adversary to launch the
attack described in Section 4.2 and win the S-ADV experiment after just a single trial.
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4.5 A S-ADV Secure Scheme Using Trusted Hardware

Let P and PUF be the inputs to the IPP scheme, i.e., P is the program to be protected and PUF is
the PUF required for correct execution. Let G be the control flow graph of the program P where
each node in the graph may represent a block of code with a bound on maximum size (bmax). This
bound will be dependent on a security parameter n in the following way: n ≥ d |P|bmax

e. Each of the
n blocks is assigned an integer label: {b1, ...,bn} ∈ {1, ...,n}. We make the following assumptions
about the trusted hardware: (1) It is capable of storing O(n logn) bits in secure memory (for the en-
tire lifetime of the program), and (2) It is capable of performing strong pseudo-random permutation
operations (s-PRP).

Strong Pseudo Random Permutations

A function F :{0,1}l×{0,1}l →{0,1}l is a keyed s-PRP if:

• For every k, Fk(·) is a one-to-one function.

• Given k,x there exist efficient functions for computing Fk(x) and its inverse F−1
k (x).

• An adversary with access to the inverse function oracle cannot distinguish between Fk(·) and
a randomly chosen permutation.

We build our IPP scheme based on the assumption that strong pseudo random permutations exist –
a conjecture widely believed to be true. In our construction, the key k for the s-PRP Fk(·) is stored
in secure memory.

IPP-Program State

The IPP-Program State is initialized to {b1, ...,bn}. After the jth execution, the state is updated to
{F( j)

k (b1), ...,F
( j)
k (bn)} where Fk is a keyed s-PRP function. We say that the value F( j)

k (bi) is the
label assigned to the block bi in the jth iteration.

IPP-PRP Tables

In the secure memory provided by the trusted hardware, a 3-tuple-n-record table (called the IPP-
PRP Table) is stored. There is a record for every block in P containing the following fields:

• Block Index: The block index of a block i is the initial label bi assigned to it. This tuple is
the primary key to the PRP-IPP table and does not change during the entire lifetime of the
program P′.
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• PRP Index: The PRP index of a block i is the label assigned to it by the IPP-Program state
described above. The value is unique for each block, however it changes on each iteration in
accordance with the IPP-Program state.

• Challenge Set: The challenge set for a block i is a large but finite set of challenges that
have the following property: for every challenge in the challenge set, f (R(C)) = F( j)

k (bi).
Notice that the input and output domains of the function Fk(·) are the same, therefore, only n
challenge sets need to be collected by the vendor of P′. The set, as with the PRP index also
changes with every update of the IPP-Program state.

Construction 2. Our construction causes the n node control flow graph G to be identified only
when the PUF responses to challenges are correct. Given an incorrect PUF, the control flow graph
resembles an n node complete graph. Note that this construction illustrates only one instance of
the program. The blocks of the program are relabeled on each iteration (or instance), as required
by the software vendor. The same construction applies after relabeling.

1. At the exit point of every block with block index – bi, challenges are inserted by the vendor
as follows:

(a) If the control flow graph G of the program P contains an edge from a block with index
bi to a block with index b j, then a challenge C is selected at random from the challenge
set in the record that contains b j as the block index. Providing the expected response
to this challenge transfers control to the correct block in the re-labeled control flow
graph.

(b) The challenge is inserted as: (1) an unconditional branching statement, e.g., goto
f (R(C)), or (2) part of an existing conditional branching statement, e.g., if (a == b)
then goto f (R(C)) else goto f (R(C′)).

2. The above procedure is repeated for every edge in the control flow graph G.

Properties and Security

• (non-trivial inversion: complete CFG in the presence of a S-ADV)

The control flow graph of the program P′ appears as a complete graph because: On a new
instance of the program (due to relabeling of nodes in the control flow graph), at the exit
point of a given block, the adversary is unaware of the correct (re-labeled) value of f (R(Ci))
and cannot do significantly better than guessing its value. Correctly guessing the next block
occurs with probability 1

n−1 .

• (protected functionality: correct CFG in the presence of PUF) In the presence of PUF , the
program P′ and its control flow graph G′ have the same functionality and structure as the
program P and its graph G, respectively. This is because the correct response f (R(Ci)) is
given for every challenge Ci in block bi with probability equal to 1.
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Figure 2. (example) Initial CFG on iteration 0→ Relabeled CFG
on iteration 1. The value in the first parenthesis is the block index,
the second is the PRP index. The exit point of each block contains
a challenge C such that f (R(C)) == PRP index(b j).

Theorem 2. Construction 2 is S-ADV Secure

Proof. To show that Construction 2 is S-ADV secure, according to Definition 3, we must show
that the expected number of trials before an adversary may win the S-ADV experiment is at least
exponential in n. If FK(·) is a strong pseudo random permutation (as defined in subsection 4.5), on
a new program instance, we know that the probability of an adversary correctly guessing the label
of the next block to enter from block bi is 1

n−1 (if we assume no loops, allowing loops only makes
our case stronger). There are n blocks, therefore the probability of n consecutive correct guesses
for the values of f (R(Ci)) is 1

(n−1)n . Therefore, the expected number of trials before the adversary
is able to guess all f (R(Ci))s correctly is (n−1)n.

Discussion: Challenge Set Size vs. Security

The size of each challenge set directly corresponds to the number of iterations an adversary must
run (on a particular path of the control flow graph) before being able to use the (protected) software
on a virtualized PUF.

Therefore, the challenge set size must be large enough to prevent “brute-force” attacks by the
adversary. This can also be enforced by ensuring that licenses are tied to specific number of uses
rather than unlimited use. After each use (i.e., instantiation) of the program, the challenge entry
of the challenge set is deleted. Eventually, the number of entries for some challenge set will reach
null, causing the program to terminate abruptly. At this point, the user will be required to request
more challenge sets from the software vendor. The size of the challenge set and per-usage licenses
are an important security parameter/policy left in the hands of software vendors.
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5 Rethinking the Software Protection Problem

As is clear from Section 4.4, it is impossible to achieve security against an S-ADV without a trusted
entity (e.g., trusted hardware or online server). This is not reasonable since security against the S-
ADV can be achieved without using a PUF while using a trusted party (e.g., see oblivious RAM).
We reiterate that our goal is to find a feasible offline solution that does not require additional trusted
hardware. To this end, we recognize the need to re-analyze the software protection problem and
explain why traditional (i.e., black-box) PUFs and traditional models of computing (i.e., Turing
machines and RAM) fail to provide headway towards a solution to the software protection problem.

5.1 Failure of Traditional PUFs

The main reason for the failure of traditional PUFs is the impossibility of supplying random chal-
lenges to the PUF from a deterministic program. Further, the PUF is only a peripheral device con-
nected to the device executing the program via some bus, and in the hostile environment (modeled
by the S-ADV), any information flow through the bus is known and monitored by the adversary.
This allows an adversary to easily replicate/virtualize the PUF and makes them unusable against
the S-ADV.

This leads us to recognize the need for a PUF which is intrinsically involved in the actual com-
putation performed by the program, e.g., a processor that exhibits certain timing characteristics.
We call such PUFs intrinsic and personal. Intrinsic because they are inherently involved in the
execution of the software and personal because every computing device possesses such a PUF.

Intrinsic Personal PUFs (IP-PUFs) are PUFs that are intrinsically and continuously involved
in the computation of the program to be protected.

5.2 Failure of Traditional Computing Models

Unfortunately, traditional Turing machines or RAM computing models are not useful with the
software protection problem because intrinsic features and randomness (such as timing delays and
bit errors) cannot be sufficiently modeled. Any future attempts to find a purely PUF based solution
to the offline protection problem should rely on a systems oriented toolkit (recall that theoretical
solutions cannot exist).
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6 Conclusions and Future Work

PUFs have been envisioned as being applicable to practical problems, such as, hardware authen-
tication, certified execution, and most notably software protection. However, current approaches
attempting to use PUFs for offline hardware authentication and software protection are vulnerable
to virtualization attacks

However, we believe that using IP-PUFs as can reduce such attacks significantly by continu-
ously authenticating the device implicitly and transparently. Further, this method of authentication
is useful for software protection by intertwining software and a computing device (e.g., by in-
serting race conditions that resolve correctly only on the correct device). This approach makes it
increasingly difficult for an adversary unhooking functionality from the PUF. The development of
such a PUF is the logical culmination for this project and will be part of our future work.

In conclusion, we first showed that traditional non-computational (black-box) PUFs are not
useful in solving the software protection problem in offline scenarios. We provided two real world
adversary models and proposed schemes secure both (using trusted hardware in the strong case).
Our results show that incorporating PUFs as a method for software protection will require systems
based approaches and research methods.
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