
SANDIA REPORT
SAND2011-6659
Unlimited Release
Printed September 2011

Accelerated Molecular Dynamics and
Equation-Free Methods for Simulating
Diffusion in Solids
Gregory J. Wagner, Jie Deng, Lindsay C. Erickson, Steven J. Plimpton, Aidan P.
Thompson, Xiaowang Zhou, Jonathan A. Zimmerman, W. Michael Brown

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2011-6659
Unlimited Release

Printed September 2011

Accelerated Molecular Dynamics and Equation-Free
Methods for Simulating Diffusion in Solids

Gregory J. Wagner, Jie Deng, Lindsay C. Erickson, Steven J. Plimpton,
Aidan P. Thompson, Xiaowang Zhou, Jonathan A. Zimmerman

Sandia National Laboratories
Livermore, CA 94551
gjwagne@sandia.gov

W. Michael Brown
Oak Ridge National Laboratories

Oak Ridge, TN 37831
brownw@ornl.gov

Abstract

Many of the most important and hardest-to-solve problems related to the synthesis, per-
formance, and aging of materials involve diffusion through the material or along surfaces
and interfaces. These diffusion processes are driven by motions at the atomic scale, but
traditional atomistic simulation methods such as molecular dynamics are limited to very
short timescales on the order of the atomic vibration period (less than a picosecond), while
macroscale diffusion takes place over timescales many orders of magnitude larger. We have
completed an LDRD project with the goal of developing and implementing new simulation
tools to overcome this timescale problem. In particular, we have focused on two main classes
of methods: accelerated molecular dynamics methods that seek to extend the timescale at-
tainable in atomistic simulations, and so-called “equation-free” methods that combine a fine
scale atomistic description of a system with a slower, coarse scale description in order to
project the system forward over long times.

3

Acknowledgments

We are very grateful for helpful discussions with several individuals throughout the course
of this project, especially Art Voter of Los Alamos National Laboratory, Iannis Kevrekidis
of Princeton University, and Dongbin Xiu of Princeton University.

4

Contents

1 Overview 15

2 New Accelerated-Time Algorithms for LAMMPS 19

2.1 Motivation . 19

2.2 Parallel replica dynamics (PRD) . 21

2.2.1 Standard PRD Algorithm . 21

2.2.2 Details of LAMMPS implementation . 22

2.2.3 Example PRD calculation . 25

2.3 Nudged elastic band (NEB) . 27

2.3.1 Original Implementation of NEB . 27

2.3.2 Improved tangent estimate for NEB . 30

2.3.3 Climbing image NEB . 30

2.3.4 Details of LAMMPS implementation . 31

2.4 Temperature-accelerated dynamics (TAD) . 35

2.4.1 Standard TAD Algorithm . 35

2.4.2 Details of LAMMPS implementation . 37

2.4.3 Example TAD calculation . 40

2.5 Enhancements to SPPARKS . 42

3 The Equation-Free Method for Surface Evolution in 2D 45

3.1 Introduction . 45

3.2 Solid-on-Solid Model . 47

3.3 Equation-Free Projective Integration . 51

5

3.4 EFPI for the SOS Model . 53

3.4.1 Coarse Time Stepper Tests . 53

3.4.2 Projective Integration Tests . 58

3.5 Discussion and Conclusions . 64

4 Improved Lift Operators for Surface Evolution 67

4.1 Introduction . 67

4.2 Maximum Entropy Method . 68

4.2.1 Average Energy Constraint . 69

4.2.2 General Constraints . 70

4.3 A Solution Algorithm for the Maximum Entropy Lagrange Multipliers 71

4.3.1 The Metropolis Monte Carlo Algorithm using the MaxEnt PDF 72

4.3.2 Iterative Methods for Solving for the Lagrange Multipliers 73

4.4 Efficient Generation of Realizations using the Maximum Entropy Principle . . 75

4.4.1 The SOS Model in 3D . 75

4.4.2 Lift Operator Development . 78

4.4.3 Solution for the Lagrange Multipliers . 79

4.4.4 A Simple Example of the Maximum Entropy Partition Function 83

4.4.5 Iterative Solution for the Lagrange Multipliers 85

4.5 Results . 88

4.5.1 Test 1: Lx = 40, Ly = 1 . 89

4.5.2 Test 2: Lx = 40, Ly = 4 . 92

4.5.3 Test 3: Lx = 80, Ly = 32 . 92

4.5.4 Test 4: Lx = 120, Ly = 32 . 94

4.6 Maximum Entropy Method: Conclusions . 94

4.7 Choice of Coarse Scale Variables . 98

4.7.1 Diffusion maps . 99

6

4.7.2 Model reduction techniques: POD . 99

5 Design of Lift and Restrict Operators for Equation-Free Projective Inte-
gration of Vacancy Diffusion in Solid Materials 101

5.1 Motivation . 101

5.2 Restrict Operator . 103

5.2.1 Estimation using Hardy’s approach . 103

5.2.2 Estimation using atomic quadrature . 104

5.2.3 Defining weights for atomic quadrature . 105

5.2.4 Properties of restrict operator . 108

5.3 Lift Operator . 112

5.4 Improvements to the Lift Operator . 117

5.5 Example Simulations . 120

5.5.1 Uniformly random vacancy concentration . 120

5.5.2 Bilinear vacancy concentration profile . 127

5.6 Concluding Remarks . 134

References 137

7

List of Figures

2.1 Visualization of a vacancy in a 4x4x4 supercell of a silicon crystal. The four
atoms adjacent to the vacancy are colored red, while all other atoms are
colored transparent blue . 26

2.2 Comparison of MD (black) and PRD (red) results for mean squared displace-
ment of a silicon vacancy versus time at 2000 K. In both cases, the three
statistically independent and equivalent x, y, and z displacement components
are plotted separately, indicating the level of statistical variation for each
sample point. 27

2.3 Parallel speed-up versus processor count (replicas) for PRD simulations (cir-
cles) of vacancy diffusion in silicon at 300 K. Ideal scaling is indicated by
the solid red line. The inset figure shows corresponding values for parallel
efficiency. See text for definitions of speed-up and efficiency. 28

2.4 Comparison of MD (black) and TAD (red) results for mean squared displace-
ment of a silicon vacancy versus time at 2000K. 41

2.5 TAD speed-up versus simulation time, t or tlo, for simulations of vacancy
diffusion in silicon at different temperatures. The orange line represents the
conventional MD simulation at 2300 K, whose speed-up is unity, by definition. 44

2.6 Normal (left) and pinned (right) grain growth. 44

3.1 Initial condition from equation (3.3) with L = 40 and b0 = 5.5. 48

3.2 Average profile h̄(t) over time for L = 40, b0 = 5.5, T = 0.8. 49

3.3 Semi-log plot and exponential fit of the decay of leading Fourier coefficient C1

for various system sizes, with b0 = 5.5, T = 0.8. Relaxation time τ for each
value of L is the negative reciprocal of the slope of the line on the semi-log plot. 50

3.4 Variation of τ with L for b0 = 5.5, T = 0.8. The slope of 4.17 is very close to
the continuum theory prediction of 4.0. 50

3.5 Magnitude of leading Fourier coefficient C1 for various choices of coarse time
step τ in equation (3.19), using lift and restrict operators based on the ensemble-
averaged height array. Results are shown for L = 40, T = 0.8, and b0 = 5.5. . . 55

8

3.6 Average energy per site for various choices of coarse time step τ in equation
(3.19), using lift and restrict operators based on the ensemble-averaged height
array. Results are shown for L = 40, T = 0.8, and b0 = 5.5. 55

3.7 Magnitude of leading Fourier coefficient C1 for various choices of coarse time
step τ in equation (3.19), using lift and restrict operators based on C1 and
the 2-point correlation function G(d). Results are shown for L = 40, T = 0.8,
and b0 = 5.5. 58

3.8 Average energy per site for various choices of coarse time step τ in equation
(3.19), using lift and restrict operators based on C1 and the 2-point correlation
function G(d). Results are shown for L = 40, T = 0.8, and b0 = 5.5. 59

3.9 Schematic of a single coarse step in the projective integration scheme. The
initial set of coarse variables U is lifted to a corresponding set of fine scale
variables. The fine scale solution is updated for a time of jmax∆tf using KMC,
and restrict operators are performed at intervals of ∆tf . For each coarse scale
variable U , a linear regression is fit to the last jF + 1 points (the black circles
in the diagram), and this line is used to predict U at time interval of ∆tc.
Using multiple points for the regression reduces the effects of noise on the
solution. In the figure, jmax = 12 and jF = 6. 60

3.10 Application of EFPI to the SOS model with lengths of 20 and 40, using lift
and restrict operators based on C1 and the 2-point correlation function G(d).
Solid lines show the fully integrated solution (no projection). For the EFPI
solutions, circles show the values of the fine scale system after restriction,
sampled at intervals of ∆tf = 25; dotted lines represent the best-fit line used
to extrapolate over each coarse step. For both cases, jmax = 12, jF = 6,
∆tc = 1000, T = 0.8, and b0 = 5.5. 61

3.11 Application of EFPI to the SOS model with lengths of L = 40 for various
choices of ∆tc. For all cases, jmax = 12, jF = 6, ∆tf = 25, T = 0.8, and
b0 = 5.5. 62

3.12 (a) Time evolution of the first four components of GK(k, t), computed using
full KMC integration beginning with an initially flat profile. Inset shows
early time. Simulation parameters were L = 40, T = 0.8. (b) Equation-free
projective integration of the same problem, using the components of GK(k, t)
as the projected coarse scale variables. jmax = 12, jF = 6, ∆tc = 2000,
∆tf = 25. 63

3.13 (a) EFPI of the SOS model with L = 40. Parameters are identical to those
used in Figure 3.11, except that the elements of GK(k) (rather than G(d)) are
used as the coarse variables. (b) EFPI of the same problem, but using Eqn.
(3.27) to set the fast variables (k ≥ 2) at each projection step. 64

9

4.1 MMC results for a simplified 2D system, using Lagrange multipliers computed
from Equation (4.45). Blue bars are histograms of states generated in the
simulation, showing distribution of variables (a) B1 and (b) B3. Red lines
show Gaussian distribution computed using goal values of mean and standard
deviation for each variable, P (B) = exp

[
(B − B̄)2/(2σ2)

]
. 85

4.2 MMC results for a simplified 2D system, using Lagrange multipliers β1 =
β3 = 0, α1 = 1/(2σ2

B1
), α3 = 1/(2σ2

B3
). Blue bars are histograms of states

generated in the simulation, showing distribution of variables (a) B1 and (b)
B3. Red lines show Gaussian distribution computed using goal values of mean
and standard deviation for each variable, P (B) = exp

[
(B − B̄)2/(2σ2)

]
. 86

4.3 Comparison of effects on system evolution of 1D, Lx = 40 system with lift
operator applied at fixed intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉 vs. time, (c)
σB1 vs. time, (d) Average height profile after the first lift operation at t = 400,
compared with profile before lifting. 91

4.4 Comparison of effects on system evolution of 2D, Lx = 40 system (Test 1)
with lift operator applied at fixed intervals. (a) Ensemble-averaged energy vs.
time, (b) 〈(A2

1 +B2
1)

1/2〉 vs. time. See text for discussion. 92

4.5 Comparison of effects on system evolution of 3D, Lx = 40, Ly = 4 system
(Test 2) with lift operator applied at fixed intervals. (a) 〈B1〉 vs. time, (b)
〈B3〉 vs. time, (c) σB1 vs. time, (d) Height profile, averaged along the y
direction and over the ensemble, after the first lift operation at t = 3000,
compared with profile before lifting. 93

4.6 Comparison of effects on system evolution of 3D, Lx = 80, Ly = 32 system
(Test 3) with lift operator applied at fixed intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉
vs. time, (c) σB1 vs. time, (d) Height profile, averaged along the y direction
and over the ensemble, after the lift operation at t = 30, 000, compared with
profile before lifting. 95

4.7 Comparison of effects on system evolution of 3D, Lx = 120, Ly = 32 system
(Test 4)with lift operator applied at fixed intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉
vs. time, (c) σB1 vs. time, (d) Height profile, averaged along the y direction
and over the ensemble, after the lift operation at t = 100, 000, compared with
profile before lifting. 96

4.8 Comparison of ensemble-averaged heights for the Lx = 120, Ly = 32 system
(Test 4). (a) Before lift operation. (b) After lift operation, using updated β3

(Case 2). 97

5.1 Atomic system of Cu atoms with vacancies and an overlaying FE mesh of 125
nodes. Atoms are colored by potential energy, with vacancies corresponding
with clusters of atoms at higher-than-bulk potential energy values. 102

10

5.2 cv(x) for 3 different lift / restrict iterations (left to right: 0, 1, 20) for a system
with c̄ = 0.01. 120

5.3 Atomic sites colored by occupancy (blue - atom, red - vacancy) for 3 different
lift/restrict iterations (left to right: 0, 1, 20) for a system with c̄ = 0.01. 121

5.4 (a) E and (b) ∆E as a function of simulated annealing iteration number for
a 32,000 atom system with initial mean porosity of 1%. 122

5.5 σc as a function of lift/restrict iteration number for repeated calls of µ and
M for a 32,000 atom system with initial mean porosity of 1%. 122

5.6 MD simulation of 1% vacancy system with 10,000 time-steps between restrict
/ lift interrupts, NVE at initial temperature of 0 K. Horizontal axis is in units
of 100 timesteps. 124

5.7 MD simulation of 1% vacancy system with 10,000 time-steps between restrict
/ lift interrupts, NVE at initial temperature of 500 K. Horizontal axis is in
units of 100 timesteps. 125

5.8 MD simulation of 1% vacancy system with 10,000 time-steps between restrict
/ lift interrupts, NVT at temperature of 500 K. Horizontal axis is in units of
100 timesteps. 126

5.9 cv(x) for 4 different lift / restrict iterations (left to right: 1, 2, 10, 20) for a
system with a bilinear distribution varying from 0 at the ends to 0.03 at the
middle plane of nodes on a grid of 14 elements in the z-direction. 128

5.10 Atomic sites colored by occupancy (blue - atom, red - vacancy) for 4 different
lift / restrict iterations (left to right: 1, 2, 10, 20) for a system with a bilinear
distribution varying from 0 at the ends to 0.03 at the middle plane of nodes
on a grid of 14 elements in the z-direction. 129

5.11 (a) E and (b) ∆E as a function of simulated annealing iteration number for
a 96,000 atom system with a bilinear distribution of cv that varies between 0
and 0.03 on a grid of 14 elements in the z-direction. 129

5.12 (a) c̄ and (b) σc as a function of lift / restrict iteration number for repeated
calls of µ and M for a 96,000 atom system with a bilinear distribution of cv
that varies between 0 and 0.03 on a grid of 14 elements in the z-direction. . . . 130

5.13 Histogram of site weights for the 96,000 atomic site system where 60 unit cells
and 14 elements are used in the z-direction. The pink bar shows the mean
site weight, w̄ . 131

5.14 Difference between mean atom (occupied site) weight and mean site weight
(δw̄) as a function of lift / restrict iteration number for the bilinear example. 132

11

5.15 (a) Variation of vacancy concentration as a function of nodal position in the
z-direction for the 1st, 2nd and 20th lift / restrict iterations. (b) Same graph
also showing z-direction variation of site weights. 132

5.16 (a) c̄ and (b) σc as a function of lift / restrict iteration number for repeated
calls of µ and M for a 96,000 atom system with a bilinear distribution of cv
that varies between 0 and 0.03 on a grid of 10 elements in the z-direction. . . . 133

5.17 (a) c̄ and (b) σc as a function of lift / restrict iteration number for repeated
calls of µ and M for a 96,000 atom system with a bilinear distribution of cv
that varies between 0 and 0.03 on a grid of 16 elements in the z-direction. . . . 133

5.18 Difference between mean atom (occupied site) weight and mean site weight
(δw̄) as a function of lift / restrict iteration number for the bilinear example:
(a) 10 elements in the z-direction, (b) 16 elements in the z-direction. 134

5.19 Variation of vacancy concentration as a function of nodal position in the z-
direction for the 1st, 2nd and 20th lift / restrict iterations: (a) 10 elements in
the z-direction, (b) 16 elements in the z-direction. 135

5.20 Variation of vacancy concentration as a function of nodal position in the z-
direction for the 20th lift / restrict iteration for the 10, 14 and 16 element
systems. 135

12

List of Tables

4.1 Parameters used in lift operator example simulations . 90

13

14

Chapter 1

Overview

Many of the most important and hardest-to-solve problems related to the synthesis, per-
formance, and aging of materials involve diffusion through the material or along surfaces
and interfaces. Since accurate interatomic potentials exist to describe many materials at
the atom scale, these problems would seem to be candidates for modeling via molecular
dynamics (MD) simulation. However, MD requires integration of timescales on the order of
atomic vibrations (picoseconds), while many processes of interest in solids, including surface
or bulk diffusion, occur on much larger timescales. This scale discrepancy renders MD sim-
ulation of many of these important problems intractable. A number of simulation methods
have been put forward to remedy this difficulty. Notable among these are kinetic Monte
Carlo (KMC) and temperature-accelerated dynamics (TAD), both of which follow individ-
ual events on the atomic scale (e.g. atom hopping) that drive the evolution of the material.
These methods help to extend the achievable timescales, but have their own limitations on
attainable timescales and number of atoms in the simulation. To make further progress,
we can note that the quantities most of interest to a modeler, such as concentrations and
structural feature sizes, can be described at a much coarser level than the atomic scale. One
method that takes advantage of this fact is the so-called ”equation-free” approach, which
uses microscale computations as a set of numerical experiments from which can be distilled
macroscale information, such as time derivatives of coarse scale variables.

Our project has had two major goals. The first was to implement and study extended-
timescale molecular dynamics methods. The two methods on which we have focused are
Parallel Replica Dynamics (PRD) and Temperature-Accelerated Dynamics (TAD), two sep-
arate approaches to finding transition events between low-energy system states. The second
goal was to develop extended timescale methods for surface and bulk diffusion in solids using
equation-free projective integration (EFPI). The keys to this method are the identification of
a set of coarse scale variables that parameterize the system, and the development of interscale
operators that map between the coarse and fine descriptions.

The results of our project can be summarized in four major areas of achievement:

1. We have added parallelized implementations of accelerated MD methods
to LAMMPS. In particular, the Parallel Replica Dynamics (PRD) and Temperature
Accelerated Dynamics (TAD) methods, have been implemented, along with Nudged
Elastic Band (NEB), a method for computing activation energies between states. In-

15

novations have been made in the parallelization of these schemes, and clear and concise
user command lines have been added, example problems have also been added to the
LAMMPS release. These methods will impact a range of research projects in the design
and analysis of complex materials, including NW and energy applications. By includ-
ing these methods in the LAMMPS software release, we have made them available
throughout Sandia the external research community.

2. We have demonstrated the use of the Equation-Free Projective Integra-
tion method for accelerated simulations of solid surface evolution. This is
the first application of the method to the evolution of solid surface profiles, a phe-
nomenon which is extremely important in understanding the aging of nano-structured
materials. Simulation speed-ups of 20× have been demonstrated, with the possibility
of further improvement. As part of our research, we have shed light on the types of
coarse variables that must be used to parameterize the slow dynamics of evolving solid
systems.

3. We have developed a new, generalized method for initializing fine-scale
systems based on the principle of maximum entropy. This work was motivated
by our previous difficulty with generating systems that are both consistent with a given
coarse scale description, but also obey the proper dynamics in time. The method that
we have developed allows all but the slow coarse scale variables to come into equilibrium
in the sense that maximizes entropy; we have shown that properly doing this allows
us to reproduce the correct dynamics of the system. This method has use not just in
our EFPI algorithm but in MD, atomistic-to-continuum, and any method in which it
is useful to generate the fine scale representation of a system based on a coarse scale
description.

4. We have developed new interscale operators for bulk diffusion processes,
and implemented them in LAMMPS. These operators can be used to distill a set
of atomic positions into a spatially varying continuum concentration field (the “restrict”
operation), and in the other direction, to randomly generate a set of atomic positions
consistent with a given continuum concentration field (the “lift” operation). These
newly developed operators and the insights we have gained from their development
will impact other atomistic-to-continuum projects that rely on dual fine and coarse
descriptions of complex atomic arrangements.

The rest of this report goes into more depth on each of these topics. In Chapter 2
we summarize extended-timescale MD methods, describe their LAMMPS implementation,
and show some examples. In Chapter 3 we provide an introduction to the Equation-Free
method and show results for the simulations of surface diffusion in 2D; this section is in
large part a reproduction of a journal article based on our project published in 2010 in the
International Journal for Multiscale Computational Engineering [64]. Chapter 4 describes
some recent developments we have made to the interscale operators used for the problem
of surface diffusion in 3D to overcome some of the shortcomings of our earlier 2D work;
in particular, present our new method for generating fine scale realizations based on the

16

maximum entropy method. Finally, in Chapter 5 we describe the development and testing
of interscale operators used in the application of EFPI to bulk vacancy diffusion in a lattice.

17

18

Chapter 2

New Accelerated-Time Algorithms for
LAMMPS

2.1 Motivation

Standard molecular dynamics (MD) is limited in the length and time scales it can simulate.
If atoms are modeled explicitly (as opposed to coarse-grained approaches), then the funda-
mental length scale for atom-atom separations is ångstroms, and required timesteps are on
the femtosecond scale. This means a million-atom simulation run for a million timesteps,
a moderate-sized calculation, using an interatomic potential such as the embedded atom
method (EAM), requires a few hours on a hundred or so processors. Yet, in the case of bulk
Ni, it only models a nanosecond of elapsed time for a cube of material 215 ångstroms on a
side.

These limitations are exacerbated if more realistic interatomic potentials are used, such
as modified EAM (MEAM) or reactive potentials like ReaxFF, since the CPU cost per atom
per timestep goes up by factors of 10 to 100 to 1000. In the context of this LDRD, these
time and length scales are a bottleneck to effective multiscale coupling since they force the
“fine” scale to be very small compared to the desired observable continuum “coarse” scale,
and they require more computational resources be spent on modeling the fine scale systems.

Because of these limitations, there has been considerable work within the MD community
in the last decade to devise “accelerated” time methodologies that enable much longer time
scales to be modeled. In solid-state systems the most attractive of these methods for the
kinds of defect- and diffusion-driven problems considered in this project are the collection
of methods devised by Art Voter at LANL. Two in particular, the parallel replica dynamics
(PRD) method [62] and the temperature-accelerated dynamics (TAD) method [55], seemed
good candidates in this project for extending the timescale of the fine-scale models. Both
methods are designed to accelerate the task of finding rare events, such as a diffusive hop
(either by a single atom or in coordinated fashion by several atoms), so that computations
focus on the trajectories of interesting events and less on the uninteresting vibrations of
atoms about their lattice sites. Additionally, part of the accelerated effect for both methods
is achieved through parallelism, which made them good candidates for implementation in
Sandia’s parallel molecular dynamics package LAMMPS [38].

19

As explained below, both methods invoke multiple replicas (copies) of the system being
simulated and run them simultaneously on different processors. LAMMPS is designed to
allow this because the user can specify that the set of P processors allocated for use by
LAMMPS be split into M partitions of one or more processors. Each partition can run an
independent simulation, or in the case of these accelerated methods, M replicas can be run
in a loosely coordinated fashion, communicating information between replicas as needed.
This even works if the user desires to run more replicas than there are physical processors
(e.g. on his desktop machine), since the MPI message-passing library, which LAMMPS uses
for distributed-memory parallelism, supports virtual processors. For example, a 20-replica
model can be run on a quad-core processor (4 physical cores) without any modifications by
the user to his input script.

When the TAD method identifies an energy barrier that the system has transitioned
across, the height of the barrier must be calculated. This can be done using the nudged-
elastic band (NEB) method, which itself is a multi-replica method. NEB is also useful on its
own for calculating the trajectory of a system across a barrier between two minimum-energy
states. Thus we implemented NEB as a third multi-replica method in LAMMPS, usable
either as a stand-alone command, or invoked internally by the TAD method.

We note that implementing these 3 methods in LAMMPS has several benefits beyond its
utility for this LDRD:

• Since LAMMPS is an open-source, widely-used tool in the computational materials sci-
ence community, it makes the methods available to a broad user base. This often helps
us find bugs and leads to new features being added to the methods, either LAMMPS
developers in response to user requests, or by the users themselves.

• It allows the methods to be used in conjunction with the wide variety of existing
boundary and constraint conditions in LAMMPS, and with the many interatomic po-
tentials available in LAMMPS [39]. In the latter case, this means that accelerated-time
simulations can now be performed for a wider variety of materials.

• It gives other LAMMPS users the option to use the accelerated methods as part of their
own multiscale efforts, e.g. by coupling LAMMPS to other coarse-grained methods such
as mesoscale kinetic Monte Carlo simulators. We already have users attempting to do
this.

In the subsequent sections we give a brief overview of each method (PRD, NEB, TAD),
some details of the LAMMPS implementation, and illustrate what they can model.

20

2.2 Parallel replica dynamics (PRD)

2.2.1 Standard PRD Algorithm

PRD is a method devised by Art Voter [62] for performing accelerated dynamics on systems
that undergo infrequent events that obey first-order kinetics. Because the events are infre-
quent, multiple copies of the system can be simulated independently, until the first event
occurs in any of the replicas. This gives an effective enhancement in the timescale spanned
by the multiple simulations, and can achieve a parallel speed-up nearly linear in the number
of replicas used.

The steps for performing a PRD simulation, as described in the paper by Voter [62] are
as follows. The global clock referred to is the effective time simulated by the ensemble of
replicas.

1. Starting from an initial or current configuration of the system, replicate the configura-
tion M times.

2. Perform an energy minimization to generate a reference configuration in each replica.
This reference state will later be used for transition checks.

3. In each replica, randomize velocities to eliminate correlations between replicas. For
example, in [62] Voter presents the example problem of diffusion of a surface vacancy
on the Cu(100) surface at a temperature of 500 K (the system contains 5 layers of 18
atoms per layer except for the top layer, which consists of 17 atoms). For this step,
atomic momenta are randomized every 1.0 ps over a total run time of 10 ps. Transitions
can be accepted or prevented during this stage, depending on whether or not this run
time is included in the global clock.

4. Each replica runs a standard NVT simulation (using a Langevin or other thermostat)
and checks for transition events every ∆tblock of integration time. This check typically
consists of performing a conjugate gradient (CG) or steepest descent (SD) minimization
of the system energy and comparing characteristic variables of the system between the
current minimized configuration and the reference configuration. Characteristics may
include system energy, center of mass, the sum or max of atomic displacements above
a threshold value, average value of atomic coordination number, etc. If no event has
occurred on any replica, all replicas continue running dynamics from their respective
pre-minimized states. When one replica detects an event, all replicas stop, and proceed
to the next step.

5. The global clock is advanced by tsum = M × n × ∆tblock, where n is the number of
checks performed by the replica that detected an event. Since events are rare, this is
the main source of parallel speed-up provided by the PRD algorithm.

6. Subsequent events correlated to the original event must be detected and allowed to
occur before a new state is assigned to all replicas. The replica that detected the event

21

does this by running additional dynamics until a correlation time ∆tcorr elapses with no
events. Note that ∆tcorr should be larger than the correlation time τcorr characterizing
the vibrational dynamics of the system within a local energy basin. Also note that
dynamics in this step is running on a single replica, hence the time spent here detracts
from the overall parallel scalability.

7. The global clock is advanced by the total dynamics time run on the single replica in
the preceding step (∆tcorr or greater if correlated events occurred) and the final state
of this replica becomes the current configuration that will be shared with all replicas
in step (1). Steps 1-6 are then repeated.

2.2.2 Details of LAMMPS implementation

The PRD algorithm of Section 2.2.1 was implemented in LAMMPS as a new “prd” input
script command. Mike Brown (formerly at Sandia, now at ORNL) did much of the coding
and testing. Similar to NEB and TAD calculations, PRD within LAMMPS runs as a multi-
replica simulation.

This means thatM replicas are simulated simultaneously, each on one or more processors.
This is invoked in a LAMMPS simulation, by using the “-partition” command-line switch to
allocate M partitions of processors for the simulation. For example, the following commands

mpirun -np 10 lmp_linux -partition 10x1 -in in.prd

mpirun -np 20 lmp_linux -partition 10x2 -in in.prd

would run a PRD calculation (specified in the in.prd input script) on 10 or 20 processors,
using 10 replicas in each case. The first command assigns one processor per replica; the
second command assigns two.

Note that LAMMPS allows the use of multiple processors per replica. If the system is
large, this can be an effective way to use many processors, e.g. 1000 processors, using 100
replicas with 10 processors each. For PRD, LAMMPS insures that when one replica sends
its current state (all the atom coordinates) to other replicas that each processor receives the
atom coordinates it needs. This communication operation accounts for the fact that there is
no guarantee that the P th processor in the sending replica owns the same subset of atoms as
the P th processor in a different replica, since the two replicas may have diverged over time,
with atoms migrating to different processors within each replica.

Also note that it is not possible to define multiple partitions per processor with LAMMPS.
However this is not a restriction, even when performing a PRD calculation on a desktop
machine with one or a handful of cores. This is because the mpirun command allows an
MPI program, such as LAMMPS, to run on more virtual processors than there are physical
processors. In the PRD context, this means any number of replicas M can be run on P
processors, even if M > P or P = 1.

22

The syntax for the new “prd” command is as follows:

prd N t_event n_dephase t_dephase t_correlate compute-ID seed keyword value ...

where

• N = # of timesteps to run (not including dephasing/quenching)

• t event = timestep interval between event checks

• n dephase = number of velocity randomizations to perform in each dephase run

• t dephase = number of timesteps to run dynamics after each velocity randomization
during dephase

• t correlate = number of timesteps within which 2 consecutive events are considered to
be correlated

• compute-ID = ID of the compute used for event detection

• seed = random # seed (positive integer)

The user also specifies a “compute” command in the input script with the compute-
ID referred to. This is the piece of code that checks if the current state of a replica is
sufficiently different than a previous state, so that an “event” is considered to have occurred.
The interface for this style of compute is defined so that users can easily add their own
definitions of events. A prototypical ”compute event/displace” command is provided where
a threshold distance is defined. Two minimum energy states are compared (the current
and reference states). An event is considered to have occurred if any atom has displaced a
distance further than the threshold, i.e. a diffusive hop has taken place. As discussed in
step (4) of Section 2.2.1 other criteria for an event could be encoded as well. For example,
another group at Sandia is writing their own “compute” that defines an “event” peculiar to
grain boundary re-configuration, in hopes of using PRD to track grain boundary evolution
at longer timescales.

The implementation of the PRD algorithm in LAMMPS follows the 7 steps outlined in
Section 2.2.1. N is the total number of timesteps to run on each replica. The dephasing
portion of the PRD loop is step (3) of Section 2.2.1 and is run in n dephase segments, each
of t dephase timesteps.

The search-for-events step (4) is then run independently on each replica, checking for
events every t event steps. Once an event is found the correlation check of step (6) is run on
one replica until t correlate steps have elapsed without an event occurrence.

The specified random number seed is used to generate random velocities within each
replica, as part of the dephasing procedure. Additional keyword/value pairs of arguments

23

can be specified to adjust the tolerance for energy minimizations, the target temperature for
dephasing, and options for how the random velocities are generated.

Four kinds of output can be generated during a PRD calculation: (1) event statistics, (2)
thermodynamic output by each replica, (3) dump files, and (4) restart files.

The statistics printed to the screen and main log file each time an event occurs are the
timestep, CPU time, global clock, event number, a correlation flag, the number of coincident
events, and the replica number which observed the event.

The timestep is the usual LAMMPS timestep, except that time does not advance during
dephasing or quenches, but only during dynamics. Note that there are two kinds of dynamics
in the PRD algorithm. The first is when all replicas are performing independent dynamics.
The second is when correlated events are being searched for, and only one replica is running
dynamics.

The CPU time is the total processor time since the start of the PRD run.

The global clock is the same as the timestep except that it advances by M steps every
timestep during the first kind of dynamics when the M replicas are running independently.
The global clock thus represents the real time that effectively elapses during a PRD simula-
tion of N steps on M replicas. If most of the PRD run is spent in this stage, searching for
infrequent events, then the clock will advance nearly N ∗M steps.

The event number is a counter that increments with each event, whether it is uncorrelated
or correlated.

The correlation flag will be 0 when an uncorrelated event occurs in step (4) of Section
2.2.1. The flag will be 1 when a correlated event occurs during step (6) Section 2.2.1, i.e.
when only one replica is running dynamics.

When more than one replica detects an event at the end of step(4) of the algorithm, then
one of them is chosen at random. The number of coincident events is the number of replicas
that detected an event. Normally, this value should be 1. If it is often greater than 1, then
either the number of replicas is too large, or t event is too large.

The replica number is the ID of the replica (from 0 to M -1) that found the event.

Any dump files defined in the LAMMPS input script, will be written to during a PRD
run at timesteps corresponding to both uncorrelated and correlated events. This means the
the requested dump frequency in the dump command is ignored. There will be a single
dump file (per dump command) created for all partitions.

The atom coordinates of the dump snapshot are those of the minimum energy config-
uration resulting from quenching following a transition event. The timesteps written into
the dump files correspond to the timestep at which the event occurred. A dump snapshot
corresponding to the initial minimum state used for event detection is also written to the
dump file at the beginning of each PRD run. Thus the sequence of snapshots in the dump

24

file represent successive events for the system.

If the restart command is used, a single restart file for all the replicas is generated, which
allows a PRD run to be continued by a new input script. When an input script reads a
restart file from a previous PRD run, the new script can be run on a different number of
replicas or processors.

2.2.3 Example PRD calculation

We have validated the LAMMPS implementation of PRD by direct comparison with trajec-
tories generated using standard MD at a high temperature. The chosen test problem was
the diffusion of a single-site vacancy in a bulk silicon crystal (4x4x4x8 atoms), as illustrated
in Figure 2.1. A conventional NVT MD simulation at 2000 K was run for 100 ps using a 1
fs timestep. This temperature was chosen to be as high as possible, in order to maximize
the vacancy hopping rate while avoiding melting the crystal, thus enabling a large number
of vacancy hops to be sampled. In addition, because the time between hopping events is
very short (about 0.5 ps), this provides a stringent test of the approximations invoked by the
PRD method. The positions of the atoms adjacent to the vacancy were printed out every 100
timesteps. These atoms were identified by relaxing all the atom positions to the local mini-
mum and then searching for atoms with fewer than 4 neighbors within a distance of 2.835 Å.
The instantaneous position of the vacancy was taken to be the centroid of these atoms. The
PRD method was then run on 1 replica for 1000 ps. Running on a single replica is actually
less efficient than standard MD, due to the PRD overhead, and so would not be useful for
a real calculation. Nonetheless, it does test the validity of the PRD implementation, as
it exercises the various steps in the PRD algorithm (dephasing, event checking, correlated
event checking) . The PRD parameter values used were t event = 100, n dephase = 10,
t dephase = 10, and t corr = 100. The compute event/displace threshold displacement was
0.5 Å. Figure 2.2 shows a comparison of the mean square displacement of the vacancy versus
time for both methods. In both cases, the three statistically independent and equivalent x,
y, and z displacement components are plotted separately, indicating the level of statistical
variation for each sample point. The PRD results lie within the expected range of the MD
results at all times. The scatter in the PRD is less than that for MD, because roughly ten
times more events were sampled using PRD.

In order to evaluate the parallel efficiency of the method, we ran PRD simulations on
different processor counts at 300 K. At this low temperature, the time between hops is large,
and PRD is expected to exhibit high accuracy and parallel efficiency. The PRD values used
were the same as before, except t event = 1000. PRD simulations were run for 104 steps (10
ps) on Sandia’s Red Sky capacity compute cluster. Processor counts ranged from 1 to 1024,
and one replica was assigned to each processor i.e. M = P . Parallel efficiency was defined
to be the CPU time required to run 104 steps on 1 processor divided by the time to run 104

steps on P processors

25

ParEff =
CPU(1)

CPU(P)
. (2.1)

This definition assumes that for the same number of timesteps, the effective time simu-
lated using P replicas is P times the time simulated using straight MD. In situations where
the time spent dephasing and checking for events is negligible compared to the time spent
trapped in a single basin, this is a good assumption. Using the same assumption, the parallel
speed-up was defined as

SpeedUp = P ∗ CPU(1)

CPU(P)
. (2.2)

Figure 2.3 shows parallel speed-up and parallel efficiency (inset) versus processor count.
The speed-up obtained on 1024 processors was 873.5. The inset shows that the parallel
efficiency drops slowly with increasing processor count, giving an efficiency of about 85%
on 1024 processors. Most of this loss is due to time spent communicating the results of the
event detection between the processors.

Figure 2.1. Visualization of a vacancy in a 4x4x4 supercell
of a silicon crystal. The four atoms adjacent to the vacancy
are colored red, while all other atoms are colored transparent
blue

26

0.1 1 10
∆t (ps)

1

100

<
∆R

α2 (∆
t)

>
 [

Å
2]

MD NH 1997 K
PRD NH 1999 K

Figure 2.2. Comparison of MD (black) and PRD (red)
results for mean squared displacement of a silicon vacancy
versus time at 2000 K. In both cases, the three statistically
independent and equivalent x, y, and z displacement compo-
nents are plotted separately, indicating the level of statistical
variation for each sample point.

2.3 Nudged elastic band (NEB)

2.3.1 Original Implementation of NEB

The Nudged Elastic Band (NEB) method for finding minimum energy paths was originally
developed by Mills, Jónsson and Schenter [30, 31]. However, the method is detailed in a
straight-forward manner in the later work by Henkelman and Jónsson [14]. The method is
as follows:

1. Starting with two known configurations to act as the endpoints of a minimum energy
path (MEP), R0 and RN , create N − 1 images between these configurations. The
endpoints R0 and RN should be states corresponding to different energy minima of
the system, else the minimization procedure described below will collapse the MEP to
a single point. The endpoints are often chosen to be actual energy minima, though
this is not required. The intermediate states can be generated in different ways; the
most common is simply to linearly interpolate atom positions between configurations
0 and N .

2. Once the images are created calculate the unit tangent vector τ̂ i = τ i/ |τ i| for each
configuration i = 1, 2, . . . , N − 1, where

27

1 10 100 1000
Replicas

1

10

100

1000

PR
D

 S
pe

ed
U

p

Ideal
PRD

0.8

0.9

1.0

Figure 2.3. Parallel speed-up versus processor count (repli-
cas) for PRD simulations (circles) of vacancy diffusion in sil-
icon at 300 K. Ideal scaling is indicated by the solid red line.
The inset figure shows corresponding values for parallel effi-
ciency. See text for definitions of speed-up and efficiency.

τ i =
Ri −Ri−1

|Ri −Ri−1|
+

Ri+1 −Ri

|Ri+1 −Ri|
.

3. Calculate the spring force along the unit tangent direction,

Fs
i = k (Rs

i · τ̂ i) τ̂ i

where Rs
i ≡ (Ri+1 −Ri)− (Ri −Ri−1) and k is a spring constant. k does not have to

be the same constant for all springs, but if it is then the images will be equally spaced.
Although no guidance is provided in [14] regarding what to use for k, according to the
theory for NEB, the magnitude of k should not affect the motion of the elastic band
away from or to the minimum energy path. k merely affects the motion along the
band.

4. Calculate the true force from the governing inter-atomic potential, Ft
i = −∇V (Ri),

and take its component perpendicular to the tangent direction,

F⊥i = Ft
i −
(
Ft

i · τ̂ i

)
τ̂ i.

5. Combine these two forces to get the total force acting on each image,

Fi = Fs
i + F⊥i .

28

6. A minimization algorithm (e.g. conjugate gradient) is applied to minimize the total
force on each image, repeating steps 2 - 5 as often as needed.

7. Once the forces on all images have been minimized, the minimum energy path (MEP) is
now defined and can be scanned and interpolated to determine the energy of the saddle
point, i.e. the maximum point on the MEP. In the Appendix of [14], interpolation is
done using a cubic polynomial between adjacent images i and i+ 1:

V (x) = aix
3 + bix

2 + cix+ di

ai = −2 (Vi+1 − Vi)

R3
− Fi + Fi+1

R2

bi =
3 (Vi+1 − Vi)

R2
+

2Fi + Fi+1

R
ci = −Fi

di = Vi

NOTE: The relations for ai and bi are incorrect as they appear in the Appendix of
[14]. The relations given above are correct. In these expressions, R is described as
the “length of the ith segment”. However, it is probably given by the relation R =
|Ri+1 −Ri|. Similarly, x is the distance from Ri for an arbitrary configuration X
where x = |X−Ri| and 0 < x < R. Alternatively, we can express this arbitrary
configuration as X = Ri + x

R
(Ri+1 −Ri). From this, we notice that

∂V

∂x
=
∂V

∂X
· ∂X
∂x

= ∇V (X) · 1

R
(Ri+1 −Ri) = −Ft(X) · R̂

where R̂ ≡ (Ri+1 −Ri) /R. Hence, we can deduce that Fi = Ft
i ·R̂ and Fi+1 = Ft

i+1 ·R̂.
In [14], Fi and Fi+1 are referred to as “parallel forces”. Clearly, the term “parallel”
means with respect to the direction R̂.

The above expressions produce the results that when x = 0, V = Vi and when x = R,
V = −2Vi+1 + 2Vi − (Fi + Fi+1)R + 3Vi+1 − 3Vi + (2Fi + Fi+1)R − FiR + Vi = Vi+1.
The maximum and minimum of V (x) are located at:

xextrema =
−bi ±

√
b2i − 3aici

3ai

By evaluating the second derivative of V (x), V ′′(x) = 6aix+2b, we can determine that

the maximum within this segment occurs at xmax =
(
−bi −

√
b2i − 3aici

)
/ (3ai) and

has the value

V (xmax) =
bi

27a2
i

(
2b2i − 9aici

)
+

(2b2i − 6aici)

27a2
i

√
b2i − 3aici + di.

29

The maximum of V (xmax) among all segments along the elastic band is the saddle
point.

2.3.2 Improved tangent estimate for NEB

In [14], Henkelman and Jónsson show that the original NEB method is prone to the occur-
rence of kinks and an instability in the elastic band if the number of images is sufficiently
large. The then propose the following revision to the method (a different definition of the
local tangent) in order to eliminate kinks:

1. Repeat step 1 of the original implementation.

2. The tangent vector τ i is now defined as follows:

τ i =

τ+

i if Vi+1 > Vi > Vi−1,

τ−i if Vi+1 < Vi < Vi−1,

τ+
i ∆V max

i + τ−i ∆V min
i if Vi+1 < Vi > Vi−1 or Vi+1 > Vi < Vi−1 and Vi+1 > Vi−1,

τ+
i ∆V min

i + τ−i ∆V max
i if Vi+1 < Vi > Vi−1 or Vi+1 > Vi < Vi−1 and Vi+1 < Vi−1.

where τ+
i = Ri+1−Ri, τ−i = Ri−Ri−1, Vi = V (Ri), ∆V max

i = max(|Vi+1 − Vi| , |Vi−1 − Vi|)
and ∆V min

i = min(|Vi+1 − Vi| , |Vi−1 − Vi|). The unit tangent vector is determined by
τ̂ i = τ i/ |τ i|.

3. The spring force is also altered in its definition:

Fs
i = kRs

i τ̂ i

where Rs
i ≡ |Ri+1 −Ri| − |Ri −Ri−1| and k is the spring constant.

4. Steps 4-7 are the same as in the original implementation.

2.3.3 Climbing image NEB

The theory above provides a good estimate for the saddle point while avoiding kinks in the
elastic band. However, since the configuration images are equal spaced (or arbitrarily spaced
if each image has its own spring constant k), there is no guarantee that the interpolation
estimate for the saddle point has converged on its true value. Henkelman et al. [16] point
this out by stating that “When the energy barrier is narrow compared with the length of the
MEP, few images land in the neighborhood of the saddle point and the interpolation can be
inaccurate”. To rectify this, they suggest the following modification to the NEB algorithm:

1. Perform a few iterations of the normal NEB method, steps 1-7 of the previous section
that uses the improved tangent estimate.

30

2. Identify the image with the highest energy, imax. Modify the force on this image to the
following:

Fimax = −∇V (Rimax) + 2 (∇V (Rimax) · τ̂ imax) τ̂ imax

Henkelman et al. note that this expression is the full force due to the potential with the
component along the elastic band inverted. Obviously, this expression is not affected
by spring forces.

3. Henkelman et al. also suggest adjusting the spring constant k for images near the
saddle point. The use of strong springs results in images moving closer to the saddle
point, thereby improving the approximation made with interpolation. This adjustment
is expressed as

ki → k′i =

{
kmax −∆k

(
Vmax−Vi,max

Vmax−Vref

)
if Vi,max > Vref

kmax −∆k if Vi,max < Vref

where Vi,max = max {Vi, Vi−1} is the higher energy of the two images connected by
spring i (Presumably, segment i that contains spring k′i connects images i and i − 1.
Hence, there are N images along the elastic band that are numbered i = 1, 2, . . . , N .),
Vmax is the maximum value of Vi,max along the elastic band, and Vref is a reference value
(in [16], Vref is the energy of the higher endpoint of the MEP). No guidance is given
in [16] regarding what values to specify for either kmax or ∆k. Since the springs on
either side of image i no longer have the same spring constant, a modification of the
spring force is warranted. While Henkelman et al. do not provide an expression for
this modification, a reasonable form is

Fs
i =

(
k′i+1 |Ri+1 −Ri| − k′i |Ri −Ri−1|

)
τ̂ i.

2.3.4 Details of LAMMPS implementation

The NEB algorithm was implemented in LAMMPS as a new “neb” input script command
which follows the details of Section 2.3.3 and its preceding sections, except for step (3) of
Section 2.3.3. The NEB calculation within LAMMPS runs as a multi-replica model. Each
of the M “configurations” of the system, denoted as R0,R1, . . .RM−1, for the two end-point
configurations and M − 2 intermediate images are treated as a replica.

See the discussion at the beginning of Section 2.2.2 for how such a simulation is invoked
in parallel with LAMMPS. Note that a NEB calculation is often performed on a small
number of atoms which are assumed to reconfigure as the system transitions over the energy
barrier. These mobile atoms may be a geometrically local subset of a larger, essentially static,
background of atoms which can be held motionless during the minimization procedure. Thus
it is often not necessary to use more than one processor per replica, since the system size is

31

small, though LAMMPS allows a NEB calculation to be configured with multiple processors
per replica.

Also note that as with PRD, more NEB replicas can be used than there are physical
processors, since MPI enables a simulation to run on virtual processors. An entire NEB
calculation with multiple replicas can even be run on a single processor.

The syntax for the “neb” command added to LAMMPS is as follows:

neb etol ftol N1 N2 Nevery filename

where

• etol = stopping tolerance for energy

• ftol = stopping tolerance for force

• N1 = max # of timesteps to run initial NEB

• N2 = max # of timesteps to run barrier-climbing NEB

• Nevery = print NEB status every this many timesteps

• filename = file specifying configuration on other side of barrier

The user must also precede the “neb” command with a “min style” command and a
“fix neb” command in the input script. The “min style” command must select either the
QuickMIN or FIRE minimizer:

min_style quickmin

min_style fire

The syntax for the “fix neb” command is as follows:

fix ID group-ID neb Kspring

where

• ID = ID of fix command

• group-ID = ID of group of atoms to include in NEB calculation

• neb = style name of this fix command

32

• Kspring = inter-replica spring constant

The meaning of all these parameters is described below. Note that the group of atoms
specified in the “fix neb” command can be a subset of the atoms in the system. Inter-replica
spring forces are only applied to these atoms, which we term the NEB atoms. Non-NEB
atoms can move (slightly) during the NEB procedure, or can be held fixed by setting forces
on them to zero via the “fix setforce” command in LAMMPS.

The current configuration of atoms (when the “neb” command is issued) becomes the
initial endpoint configuration for the NEB calculation. It should represent a state with the
NEB atoms (and all other atoms) having coordinates on one side of the energy barrier. These
coordinates become the first replica. A perfect energy minimum is not required, since the
NEB calculation will relax the configuration of the first replica to a true energy minimum,
but it will converge faster if the initial state is already at a minimum. For example, for
a system with a free surface, the surface should be fully relaxed before attempting a NEB
calculation.

The final endpoint configuration is specified in the file filename, which is simply a list of
atom IDs and coordinates. Only NEB atoms or a subset of them should be included in the
file. As in the initial case, this configuration should be at or near an energy minimum. The
final coordinates of atoms not listed in the file are set equal to their initial coordinates. This
set of coordinates becomes the last replica. Note that a final coordinate for a NEB atom need
not be specified if it is only expected to displace a small amount during the NEB procedure.
For example, only the final coordinate of the single atom diffusing into a vacancy need be
listed in the file if the surrounding atoms will only relax slightly in the final configuration.

The intermediate configurations for the other replicas are set to values linearly interpo-
lated between the corresponding atoms in the initial and final configurations.

The first stage of NEB runs by relaxing the collective coordinates of the set of replicas.
As described above, this involves two kinds of forces: inter-atomic forces within a replica,
and inter-replica forces between an atom and its image in neighboring replicas. The strength
of the spring is specified by Kspring in the “fix neb” command.

The energy minimization of the overall multi-replica system is not performed using a
conjugate-gradient (CG) style minimizer for two reasons. First, it would require calculation
of global information across all replicas, e.g. the norms of vectors of length 3NM where N
is the number of atoms (per replica) and M is the number of replicas.

Second, the global energy and force functions are actually inconsistent in a mathematical
sense, which means that a gradient-based minimizer (e.g. CG) will not work effectively.
This is because the NEB forces applied to the atoms contain several modifications to the
global energy (negative) derivatives. Spring forces are projected on to the tangent direction,
while potential energy forces have the tangent component removed. Moreover, we do not
require the two endpoint configurations to initially be in minimum energy states, but allow
them to relax independently to a nearby minimum energy state. This is done by turning off

33

inter-replica forces on atoms in the endpoint states. Thus a NEB atom in the second replica
feels a force from its image in the first (endpoint) replica, but not vice versa.

Because of these issues, we implemented two damped-dynamics minimizers in LAMMPS,
which are commonly used by NEB practitioners in the literature. These are the QuickMin
[51, 22] and FIRE [3] minimizers. Prior to the “neb” command, one of these must be explic-
itly selected using the “min style” command described above. They work by timestepping
positions and velocities in a simple Euler integration scheme while damping the velocity of
each atom in a prescribed manner as a function of the magnitude and direction of the force
on it. This has the added benefit of allowing the atoms some freedom to escape local minima,
which can be beneficial in stand-alone energy minimization of a (single replica) system; the
two minimizers added to LAMMPS can also be used in this mode.

The first NEB stage runs until the specified etol or ftol criteria for energy or force tolerance
is met for every replica. If one of the tolerances is set to 0.0, the other tolerance effectively
sets the precision of the calculation. If both tolerances are 0.0, then no more than N1
timesteps are run.

At the end of the first stage, each replica’s state should be equally spaced (in a reaction
coordinate sense) over the energy barrier. The replica with the highest energy (near the top
of the barrier) is flagged, and the second stage begins. As discussed in step (2) of Section
2.3.3, the forces on atoms in this replica are altered, so that it will climb to the top of the
energy barrier as the NEB calculation proceeds. The second stage continues using the same
etol or ftol tolerances or for at most N2 steps.

Four kinds of output can be generated during a NEB calculation: (1) energy barrier
statistics, (2) thermodynamic output by each replica, (3) dump files, and (4) restart files.

The energy barrier data is printed to the screen and main log file, once every Nevery
timesteps. It includes the timestep, the maximum force per replica, the maximum force
per atom (in any replica), potential gradients in the initial, final, and climbing replicas,
the forward and backward energy barriers, the total reaction coordinate (RDT), and the
normalized reaction coordinate and potential energy of each replica.

The “maximum force per replica” is the two-norm of the 3N -length force vector for the
atoms in each replica, maximized across replicas, which is what the ftol setting is checking
against. In this case, N is all the atoms in each replica. The “maximum force per atom” is
the maximum force component of any atom in any replica. The potential gradients are the
two-norm of the 3N -length force vector solely due to the interaction potential i.e. without
adding in inter-replica forces. Note that inter-replica forces are zero in the initial and final
replicas, and only affect the direction in the climbing replica. For this reason, the “maximum
force per replica” is often equal to the potential gradient in the climbing replica. In the first
stage of NEB, there is no climbing replica, and so the potential gradient in the highest energy
replica is reported, since this replica will become the climbing replica in the second stage of
NEB.

The “reaction coordinate” (RD) for each replica is the two-norm of the 3N-length vector

34

of distances between its atoms and the preceding replica’s atoms, added to the RD of the
preceding replica. The RD of the first replica RD1 = 0.0; the RD of the final replica RDN
= RDT, the total reaction coordinate. The normalized RDs are divided by RDT, so that
they form a monotonically increasing sequence from zero to one. When computing the RD,
N only includes NEB atoms.

The forward (reverse) energy barrier is the potential energy of the highest replica minus
the energy of the first (last) replica.

When running on multiple partitions, LAMMPS produces additional log files for each
partition, e.g. “log.lammps.0”, “log.lammps.1”, etc. For a NEB calculation, these contain
the thermodynamic output for each replica.

If dump commands in the input script define a filename that includes a universe or uloop
style variable, then one dump file (per dump command) will be created for each replica. At
the end of the NEB calculation, the final snapshot in each file will contain the sequence of
snapshots that transition the system over the energy barrier. Earlier snapshots will show
the convergence of the replicas to the minimum-energy path (MEP).

Likewise, restart filenames can be specified with a universe or uloop style variable, to
generate restart files for each replica. These may be useful if the NEB calculation fails to
converge properly to the MEP, and you wish to restart the calculation from an intermediate
point with altered parameters.

We also wrote two Python scripts, neb combine.py and neb final.py, included in the
tools/python directory of the LAMMPS distribution, which are useful in analyzing output
from a NEB calculation. Assume a NEB simulation with M replicas, and the NEB atoms
labeled with a specific atom type. Script neb combine.py extracts atom coordinates for
the NEB atoms from all M dump files and creates a single dump file where each snapshot
contains the NEB atoms from all the replicas and one copy of non-NEB atoms from the
first replica (presumed to be identical in other replicas). This can be visualized/animated
to see how the NEB atoms relax as the NEB calculation proceeds. Script neb final.py

extracts the final snapshot from each of the M dump files to create a single dump file with
M snapshots. This can be visualized to watch the system make its transition over the energy
barrier.

2.4 Temperature-accelerated dynamics (TAD)

2.4.1 Standard TAD Algorithm

The steps for performing a TAD simulation, as described in the paper by Sørensen & Voter
[55] are as follows:

35

1. Preselect the desired low temperature, Tlow, a lower bound for prefactors used to esti-
mate transition rate constants, νmin, and a probability value, δ, for the TAD simulation.

2. From the initial configuration of the system, determine its nearest energy minimized
state A using a conjugate gradient (CG) or steepest descent (SD) algorithm.

3. Start an MD simulation at a high temperature, Thigh, using a Langevin thermostat. At
specified time intervals, use CG/SD to check whether A is still the minimized state for
the current configuration.

4. At a certain point, the system will converge to a different minimized state B. At that
point,

(a) If the time interval used is large (∼2 ps), then go back to configuration of last
check and perform CG/SD for a series of states separated by smaller intervals
(∼0.1 ps) to determine when the A − B transition occurs. S&V suggest storing
these intermediate states for easy calculation, but this amounts to storing about 20
states of the system between large interval checks, which can be memory intensive.

(b) If the time interval is small, then presumably one already has the two configura-
tions of interest. While use of a small time interval will be efficient with regard
to memory storage, it would be inefficient as many more CG/SD evaluations are
done for a given amount of simulated time at Thigh.

The two configurations of interest are referred to as X1 and X2. These are not equiva-
lent to A and B, respectively, as the former are configurations at Thigh while the latter
are energy minimized configurations.

5. Using configurations A and B, compute the energy barrier of the transition, Ea by
determining the saddle point of the dividing energy ridge between the two configura-
tions. S&V suggest using a linearized trajectory as input to an nudged elastic band
(NEB) calculation to determine the minimum energy path between A and B. The
saddle point is the highest energy point on the minimum energy path.

6. Once this is done, store configurationX2, its energy barrier Ea, and its low temperature
time extrapolation,

tlow = thigh exp [Ea (βlow − βhigh)] ,

where thigh is the amount of MD simulation time elapsed between the start of the
simulation and when the transition to configuration X2 occurs, βlow = (kBTlow)−1,
βhigh = (kBThigh)

−1, and kB is Boltzmann’s constant. Also, compute and store an
estimate of the high temperature stop time,

thigh,stop =
ln(1/δ)

νmin

(
νmintlow
ln(1/δ)

)βhigh
βlow

Presumably, the atomic velocities for configuration X2 are also stored.

36

7. Return the system to configuration X1 and reverse the velocities for all atoms. As a
Langevin thermostat is used (which injects noise into the atomic trajectories), this will
not result in time reversed trajectory of the system.

8. Proceed from step 3, continuing to check and discover new minimized states different
from either A or B. Repeat steps 4 - 6, with one exception: instead of using a new
configuration’s tlow to estimate thigh,stop, use the shortest among all “new” configura-
tions, tlow,short. With tlow,short and thigh,stop defined, δ represents the probability that
further simulation at Thigh for times t > thigh,stop will result in finding a state with a
shorter event time t < tlow,short. S&V try to keep this value at 0.001 to 0.05 for most

problems. Since thigh,stop ∝ ln(1/δ)
1− Tlow

Thigh , the lower δ is set, the higher thigh,stop will
be.

9. Repeat steps 3 - 8 until thigh ≥ thigh,stop. Then, select the configuration that corresponds
to tlow,short and repeat steps 2 - 8. It probably makes sense to reset all temporary
storage containers at this point, but keep track of total elapsed low temperature time,∑

(all transitions) tlow,short, and low temperature configurations.

2.4.2 Details of LAMMPS implementation

The standard TAD algorithm of Section 2.4.1 was implemented in LAMMPS as a new “tad”
input script command. Although it differs from PRD in many respects, the code imple-
mentation reuses many of the internal features that were developed for PRD. It also makes
direct use of LAMMPS’ NEB functionality described in the previous section. Similar to NEB
and PRD calculations, TAD within LAMMPS runs as a multi-partition simulation. In the
current LAMMPS implementation of TAD, the partitions are only used to run TAD’s NEB
calculations. All the non-NEB TAD operations are performed on the first partition, while
the other partitions remain idle. Multiple partitions are invoked in a LAMMPS simulation,
by using the “-partition” command-line switch to allocate M partitions of processors for the
simulation. See the discussion at the beginning of Section 2.2.2 for how such a simulation is
invoked in parallel with LAMMPS.

As described in Section 2.3.4, the first TAD implementation in LAMMPS was restricted
to exactly one processor per replica. This restriction has now been lifted, so that it is possible
to have more than one processor per partition.

The syntax for the “tad’ command added to LAMMPS is as follows:

tad Nstep t_event T_lo T_hi delta tmax compute-ID keyword value ...

where

• Nstep = # of timesteps to run (not including dephasing/quenching)

37

• t event = timestep interval between event checks

• T lo = temperature at which event times are desired

• T hi = temperature at which MD simulation is performed

• delta = desired confidence level for stopping criterion

• tmax = reciprocal of lowest expected preexponential factor (time units)

• compute-ID = ID of the compute used for event detection

As described in Section 2.4.1, a TAD run has several stages, which are repeated each time
an event is performed. These stages are summarized below and each stage is cross-referenced
to the corresponding step of the standard TAD algorithm given in Section 2.4.1.

while (time remains):

while (time < tstop):

until (event occurs):

run dynamics for t_event steps (step 3)

quench (step 3)

run neb calculation using all replicas (step 5)

compute tlo from energy barrier (step 6)

update earliest event (step 6)

update tstop (step 6)

reflect back into current basin (step 7)

execute earliest event (step 9)

Before the outer loop begins, the initial potential energy basin is identified by quenching
(an energy minimization, see below) the initial state and storing the resulting coordinates
for reference. Inside the inner loop, dynamics is run continuously according to whatever
integrator has been specified by the user, stopping every t event steps to check if a transition
event has occurred. This check is performed by quenching the system and comparing the
resulting atom coordinates to the coordinates from the previous basin. A quench is an
energy minimization and is performed by whichever algorithm has been defined by the min
and min style keywords or their default values. Note that typically, you do not need to
perform a highly-converged minimization to detect a transition event.

The event check is performed by a compute with the specified compute-ID. Currently
there is only one compute that works with the TAD command, which is the “compute
event/displace” command. Other event-checking computes may be added. Compute event/displace
checks whether any atom in the compute group has moved further than a specified threshold
distance. If so, an “event” has occurred. The NEB calculation is similar to that invoked by
the neb command, except that the final state is generated internally, instead of being read

38

in from a file. The TAD implementation provides default values for the NEB settings, which
can be overridden using the neb and neb style keywords.

A key aspect of the TAD method is setting the stopping criterion appropriately. If
this criterion is too conservative, then many events must be generated before one is finally
executed. Conversely, if this criterion is too aggressive, then high-entropy, high-barrier
events will be over-sampled, while low-entropy low-barrier events will be under-sampled. If
the lowest pre-exponential factor is known fairly accurately, then it can be used to estimate
tmax, and the value of delta can be set to the desired confidence level e.g. delta = 0.05
corresponds to 95% confidence. However, for systems where the dynamics are not well
characterized (the most common case), it will be necessary to experiment with the values of
delta and tmax to get a good trade-off between accuracy and performance.

A second key aspect is the choice of the high temperature t hi. A larger value greatly
increases the rate at which new events are generated. However, too large a value introduces
errors due to anharmonicity (not accounted for within hTST). Once again, for any given
system, experimentation is necessary to determine the best value of t hi.

Five kinds of output can be generated during a TAD run: (1) event statistics, (2) NEB
statistics, (3) thermodynamic output by each replica, (4) dump files, and (5) restart files.

Event statistics are printed to the screen and master “log.lammps” file each time an
event is executed. The quantities are the timestep, CPU time, global event number N , local
event number M , event status, energy barrier, time margin, t lo and delt lo. The timestep
is the usual LAMMPS timestep, which corresponds to the high-temperature time at which
the event was detected, in units of timestep. The CPU time is the total processor time
since the start of the TAD run. The global event number N is a counter that increments
with each executed event. The local event number M is a counter that resets to zero upon
entering each new basin. The event status is E when an event is executed, and is D for
an event that is detected, while DF is for a detected event that is also the earliest (first)
event at the low temperature. The time margin is the ratio of the high temperature time
in the current basin to the stopping time. This last number can be used to judge whether
the stopping time is too short or too long (see above). t lo is the low-temperature event
time when the current basin was entered, in units of timestep. delt lo is the time at which
each is detected event, measured since entering the current basin. delt lo is calculated by
rescaling the high-temperature time since entering the current basin, as explained in step 6
of the standard TAD algorithm given in Section 2.4.1. On lines for executed events, with
status E, the global event number is incremented by one, the local event number and time
margin are reset to zero, while the global event number, energy barrier, and delt lo match
the last event with status DF in the immediately preceding block of detected events. The
low-temperature event time t lo is incremented by delt lo.

The NEB statistics are written to the file specified by the neb log keyword. If the keyword
value is none, then no NEB statistics are printed out. The statistics are written every
Nevery timesteps. See the description of the NEB implementation in Section 2.3.4 for a full
description of the NEB output statistics. When invoked from TAD, NEB statistics are never

39

printed to the screen.

Because the NEB calculation must run on multiple partitions, LAMMPS produces addi-
tional screen and log files for each partition, e.g. “log.lammps.0”, “log.lammps.1”, etc. For
the TAD command, these contain the thermodynamic output of each NEB replica. In addi-
tion, the log file for the first partition, “log.lammps.0”, will contain thermodynamic output
from short runs and minimizations corresponding to the dynamics and quench operations,
as well as a line for each new detected event, as described above. After the TAD command
completes, timing statistics for the TAD run are printed in each replica’s log file, giving a
breakdown of how much CPU time was spent in each stage (NEB, dynamics, quenching,
etc).

Any dump files defined in the input script will be written to during a TAD run at
timesteps when an event is executed. This means the requested dump frequency in the
dump command is ignored. There will be one dump file (per dump command) created for
all partitions. The atom coordinates of the dump snapshot are those of the minimum energy
configuration resulting from quenching following the executed event. The timesteps written
into the dump files correspond to the timestep at which the event occurred and NOT the
clock. A dump snapshot corresponding to the initial minimum state used for event detection
is written to the dump file at the beginning of each TAD run.

If the restart command is used, a single restart file for all the partitions is generated,
which allows a TAD run to be continued by a new input script in the usual manner. The
restart file is generated after an event is executed. The restart file contains a snapshot of
the system in the new quenched state, including the event number and the low-temperature
time. The restart frequency specified in the restart command is interpreted differently when
performing a TAD run. It does not mean the timestep interval between restart files. Instead
it means an event interval for executed events. Thus a frequency of 1 means write a restart
file every time an event is executed. A frequency of 10 means write a restart file every 10th
executed event. When an input script reads a restart file from a previous TAD run, the new
script can be run on a different number of replicas or processors.

Note that within a single state, the dynamics will typically temporarily continue beyond
the event that is ultimately chosen, until the stopping criterion is satisfied. When the event is
eventually executed, the timestep counter is reset to the value when the event was detected.
Similarly, after each quench and NEB minimization, the timestep counter is reset to the
value at the start of the minimization. This means that the timesteps listed in the replica
log files do not always increase monotonically. However, the timestep values printed to the
master log file, dump files, and restart files are always monotonically increasing.

2.4.3 Example TAD calculation

We have validated the LAMMPS implementation of TAD by direct comparison with tra-
jectories generated using standard MD at a high temperature. We chose the same vacancy

40

diffusion example used to validate the PRD implementation, described in Section 2.2.3. The
TAD low temperature was set to T lo = 2000 K, the same as that used for the NVT MD
simulations. The high temperature was chosen to be T hi = 2300 K; higher values caused
melting of the crystal. The total duration of the high temperature TAD simulation was 1000
ps. Only 3 processors were used, so that the NEB calculation consisted of two end-point
replicas and one intermediate replica. Because of the high symmetry of the vacancy hopping
pathway, a single intermediate replica was sufficient to accurately locate the transition state
and calculate its energy. The compute event/displace threshold displacement was 0.5 Å. The
following tad command was used:

tad 1000000 50 2000 2300 0.01 0.01 event &

min 1e-05 1e-05 100 100 &

neb 0.0 0.01 200 200 20 &

min_style cg &

neb_style fire &

neb_log log.neb

Figure 2.4 shows a comparison of the mean square displacement of the vacancy versus
time for TAD and NVT MD. The x, y, and z components are reported separately, to indicate
the statistical uncertainties in both data sets. The TAD results lie within the statistical range
of the NVT MD results, but appear to be slightly lower, on average.

0.1 1 10
∆t (ps)

1

100

<
∆R

α2 (∆
t)

>
 [

Å
2]

TAD Tlo/hi = 2000/2300 K
MD NH 1997 K

Figure 2.4. Comparison of MD (black) and TAD (red)
results for mean squared displacement of a silicon vacancy
versus time at 2000K.

In order to demonstrate the large speed-ups that are achievable using temperature ac-
celeration, we repeated the 1000 ps TAD simulation using values of T lo equal to 1000 K,

41

500 K, and 300 K, while keeping T hi = 2300 K. Whereas each of these simulations re-
quired roughly the same amount of CPU time, the low temperature time simulated increase
exponentially with decreasing temperature. We define the effective speed-up to be:

SpeedUp =
[CPUMD(t)/t]2300K

[CPUTAD(tlo)/tlo]
. (2.3)

where CPUMD(t) is the CPU time for NVT MD at 2300 K as a function of simulation
time t, and CPUTAD(tlo) is the CPU time for TAD as a function of the low temperature
simulation time tlo. Figure 2.5 shows speed-up as a function of t during the course of the
simulations. For the case of T lo = 2000 K, the speed-up is less than one, due to the
overhead of performing NEB calculations, etc. However, the speed-up increases greatly with
decreasing temperature. At 300 K, the speed-up is about 107.

2.5 Enhancements to SPPARKS

Another tool used in this project to model dynamics at the “fine” scale was the SPPARKS
package for performing parallel kinetic Monte Carlo (KMC) simulations [40]. KMC models
of materials can be parameterized at various length and time scales. For example, the atomic
scale can be modeled as atoms on an fcc lattice, or the mesoscale can be modeled as chunks
of aggregated material on a simpler cubic lattice. “Events” are defined which represent, for
example in the atomic case, atoms diffusing to neighboring lattice sites with associated rate
constants. These could depend on the height of energy barriers which in turn depend on the
energetics of different defect configurations, which can be calculated from more fundamental
methods such as molecular dynamics or ab initio quantum formulations.

The KMC method generates a sequence of events with correct relative probabilities so
that the system evolves over time with accurate dynamics. The method is efficient, since
the computational effort is focused on actual events. The SPPARKS package enables user
definition of new KMC models and their events, either at the atomic or mesoscale, and can
evolve systems in parallel, by breaking up the physical domain into sub-sections, one per
processor.

Aside from developing new models specific to this project, several enhancements were
made to SPPARKS to enable larger-scale simulations:

• The internal “group” solver was made more robust and easily usable for materials style
models. This solver is unique in that it can select an event from a list of N possible
events (e.g. N lattice sites) in constant O(1) time, independent of the size of N .

• The internal labeling of lattice sites and other associated logic was extended to be
64-bit, which now allows models with up to ∼ 1019 sites to be simulated. The previous
limit was around 2 billion sites (due to 32-bit integers).

42

• An on-the-fly parallel visualization capability was added to make it easier to view
and analyze the results from very large simulations. On a requested timestep, each
processor renders (draws) the lattice sites it owns into an JPEG image buffer. The set
of buffers are merged (one for each of P processors) into a single image which is written
to disk. While this approach is not interactive (the user must specify view parameters
in advance, such as resolution and viewing angle), it dramatically reduces the volume
of output for large models and gives the user an animation of the model dynamics as
soon as the simulation has finished, without the need for further post-processing.

An example of these enhancements in action, presented at a recent conference [42], is
shown in Figure 2.6, for a grain growth (microstructural evolution) simulation using a Potts
model, done in collaboration with materials scientists from 1800. These are snapshots at the
end of two simulations of a billion-site model (1000 by 1000 by 1000 periodic lattice), each
run for about 2 hours on 1728 cores of a Cray XT5 machine.

The colors represent regions of the model where all the material has the same underlying
lattice orientation, i.e. a grain in the polycrystalline material. The model was initialized with
each of the billion sites having a different randomized orientation (a billion grains). Over
time some grains grow and others vanish, leaving a final state with a few large grains. The left
panel shows “normal” grain growth driven by curvature at the boundaries between grains,
whereby the boundary energy can be reduced if large grains grow at the expense of small
grains. The model in the right panel contains a small 0.1% fraction of pinning sites which
represent impurities in the material. Grain growth is inhibited as boundaries migrate though
these pinning sites, and growth eventually stalls when all boundaries become “pinned”. This
leads to a different distribution of grain sizes and shapes which can be compared to electron
microscope (TEM) images to validate and parameterize the computational models.

43

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9
10

10

t [ps]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

T
A

D
 S

pe
ed

U
p

T
low

 = 2000 K

T
low

 = 1000 K

T
low

 = 500 K

T
low

 = 300 K

MD T = 2300 K

Figure 2.5. TAD speed-up versus simulation time, t or tlo,
for simulations of vacancy diffusion in silicon at different tem-
peratures. The orange line represents the conventional MD
simulation at 2300 K, whose speed-up is unity, by definition.

Figure 2.6. Normal (left) and pinned (right) grain growth.

44

Chapter 3

The Equation-Free Method for
Surface Evolution in 2D

This section is in large part a reproduction of the paper “Equation-free accelerated simula-
tions of the morphological relaxation of crystal surface.” by Wagner, Zhou and Plimpton
[64].

3.1 Introduction

The evolving morphology of solid surfaces due to diffusion is an important phenomenon in
the synthesis, performance and aging of micro- and nano-structured materials and devices,
and the ability to model these processes depends on the ability to quantitatively predict
this diffusion. Continuum models for surface diffusion exist [32, 35], but for crystals these
models are in general only valid above the roughening temperature of the material, below
which singularities in the surface energy as a function of surface orientation lead to the
formation of facets and other structures that cannot be described by existing coarse scale
models.

An alternative to solving continuum equations is to simulate the individual atomic mo-
tions that drive surface diffusion. Since accurate interatomic potentials exist to describe
many materials of interest at the atomic scale, these problems would seem to be candidates
for modeling via molecular dynamics (MD) simulation. However, MD requires integration of
timescales on the order of atomic vibrations (picoseconds), while many processes of interest
in solids, including surface diffusion, occur on much larger timescales. Diffusion in solid
crystals is a process driven by so-called rare events – motion of individual atoms or groups
of atoms between lattice sites – that occur at a frequency much slower (by many orders
of magnitude) than the atomic vibrational timescale. Methods designed to circumvent this
timescale restriction eliminate or at least reduce the time spent simulating atom vibrations,
focusing only on the rare events themselves. In some cases it is feasible to tabulate the possi-
ble events and their rates for any configuration, leading to an atomistic kinetic Monte Carlo
(KMC) method [6, 17]. In other situations it is difficult or impossible to enumerate the pos-
sible events a priori, and a number of approaches have been developed to compute the most
relevant events on-the-fly as the simulation proceeds, either through dynamic simulation

45

[63, 62, 55, 52, 61] or direct exploration of the energy surface [15].

Unfortunately, for large systems of atoms (such as might be observable in an experiment),
these accelerated methods themselves have timescale limitations because of the very large
number of events taking place. Simulation of morphological changes due to surface evolu-
tion, for example, becomes unfeasible for feature sizes more than a few nanometers in size,
especially at low or moderate temperatures. To make further progress, we can note that
the quantities most of interest to a modeler, such as the mean surface profile shape, can be
described at a much coarser level than the atomic scale; the dilemma is that while we are
interested in coarse scales over long times, we can only simulate fine scales over short times.
The “equation-free” method was introduced by Kevrekidis et al. [23] to address problems of
this type. In this approach, microscale computations (such as MD or KMC) are used as a
set of numerical experiments from which can be distilled macroscale information, including
coarse scale variables and their time derivatives. In this way the coarse scales of the sys-
tem can be evolved in time even though a closed-form kinetic equation for these scales is
unknown. The equation-free method has been applied to a number of multi-scale problems,
including molecular dynamics of fluid diffusion [7], flow in a random medium [66], acoustic
waves in a plasma [49], and flow in carbon nanotubes [56]; see Kevrekidis et al. [24] for a
review and other applications.

In this paper we apply the equation-free projective integration (EFPI) method to a simple
KMC model of surface diffusion in an attempt to accelerate the simulation of mean surface
profile evolution. An important step in the application of EFPI to a given problem is the
identification of an appropriate set of coarse variables with which to describe the problem;
proper selection of these variables often requires physical intuition and insight. As will
be shown, the most obvious choice of variables for the surface diffusion problem does not
adequately parameterize the dynamics, and one of the main contributions of our work is the
identification of a sufficient set of coarse variables. Furthermore, we show that some care
must be taken to integrate these coarse variables in time in a stable manner, and propose
a simple approximation that allows stable integration and large time acceleration of the
simulation. Since our goal in this initial work is to study the feasibility of EFPI for this class
of problems, we focus on the two-dimensional problem (a one-dimensional surface); this small
problem size allows us to accurately simulate the full problem using the unaccelerated KMC
model to provide a baseline for comparison. A successful method will allow the acceleration
of problems of larger size, dimension and complexity that are too expensive to simulate using
KMC alone. However, as will be discussed, extension to large 3D problems requires further
development of some of our techniques, another motivation to limit the scope of this work
to the 2D problem. Extension to 3D will be explored in future papers.

Finally, it should be noted that in this work we are concerned with the evolution of
surface features that may be large, in the normal direction, compared with the atomic layer
thickness. Features of this size are important, for example, when considering the formation or
aging of nanopatterned surfaces or nanostructured materials. This problem is fundamentally
different in its coarse scale description from surface phenomena that take place within a single
monolayer, such as island growth (see, e.g., Bartelt et al. [2]). The large feature size in our

46

problem of interest allows us to consider the dynamics of the average surface profile, obtained
through an ensemble average over many realizations of the same stochastic simulation. This
form of profile averaging is not appropriate for island growth, for which a different set of
statistics, such as average island size and density, must be considered.

3.2 Solid-on-Solid Model

The model for diffusion used in out test studies is the one-dimensional solid-on-solid (SOS)
model, often referred to in the literature as “1+1 dimensional” since in effect it models
the 1D surface of a 2D solid. The equilibrium statistical mechanics of this system have
been elucidated by Leamy et al. [27]; an important characteristic of this model is that the
roughening temperature is 0 K, so that any finite temperature is above the roughening
transition (this is not the case for the equivalent model of the 2D surface of a 3D solid, the
“2+1 dimensional” model). Both the 1+1 and 2+1 dimensional models have been used by
several authors to study the evolution of crystal surface profiles [46, 48, 47, 45, 19, 34, 33,
57, 25].

The SOS model in 1D is parameterized by a set of positions i and the integer surface
heights hi. The energy of each site is proportional to the height difference between that site
and its neighbors:

E = J
L∑

i=1

[
1

2
|hi − hi−1|+

1

2
|hi+1 − hi|

]

= J
L∑

i=1

|hi − hi−1| (3.1)

where L is the number of sites along the length of the system. The system is periodic, so
that sites i = 0 and i = L are equivalent. The bond energy J is taken to be 1.0 throughout
this work.

Surface diffusion is described by Kawasaki dynamics, i.e. by hopping of surface atoms
to neighboring sites. We assume that only individual atoms hop as part of a single event,
so that for any given configuration, there are 2L possible events: an atom from any site
hopping to the left or to the right. For consistency with the 1+1 dimensional Monte Carlo
simulations of Selke and Duxbury [47], we assume that the expected rate for any event can
be computed as a function of the energy difference between the initial state (1) and final
state (2):

P1→2 =

{
1
2

if ∆E12 ≤ 0,
1
2
e−∆E12/T if ∆E12 > 0

(3.2)

where ∆E12 is the change in total energy of the system going from state 1 to state 2, and T
is the temperature of the system. The prefactor of 1/2 in Eqn. (3.2) is chosen so that the

47

-6
-4
-2
 0
 2
 4
 6

 0 5 10 15 20 25 30 35 40

Figure 3.1. Initial condition from equation (3.3) with L =
40 and b0 = 5.5.

timescale matches that of Selke and Duxbury [47], who report time in units of Monte Carlo
steps per site (MCS/S).

To understand the dynamics of surface evolution described by this model, the decay
of a sinusoidal surface is studied using KMC. In anticipation of eventual extension of the
method to larger and more complex systems, we have used the SPPARKS KMC code for all
simulations [41, 40]; this is a parallel Monte Carlo code for on-lattice and off-lattice models
that includes algorithms for KMC as well as Metropolis Monte Carlo (MMC).

The initial condition for all simulations is:

hi(t = 0) = trunc(b0 sin(2πi/L)) (3.3)

where b0 is the initial amplitude and trunc() is a function that truncates its argument to
the next lower integer in magnitude. Figure 3.1 shows the initial condition corresponding to
L = 40 and b0 = 5.5.

Surface evolution data is computed by averaging over a large number of realizations,
where a different random number seed is used to initialize the Monte Carlo simulation for
each realization. The averaging operation will be denoted by an overline, so that h̄i represents
the height at position i averaged over all realizations:

h̄i =
1

NR

NR∑
n=1

hn
i (3.4)

where hn
i is the height at position i in realization n and NR is the total number of realizations.

Because this 1D problem runs very quickly, a large number of realizations can be run to obtain
smooth data; 104 realizations are used to generate data in this paper.

The evolution of the surface can characterized by the Fourier coefficients of the average
profiles:

Ak =
2

L

L−1∑
i=0

h̄i cos(2πki/L) (3.5a)

Bk =
2

L

L−1∑
i=0

h̄i sin(2πki/L). (3.5b)

48

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

– h i

i

t=1200
t=4200

t=10200
t=30000

Figure 3.2. Average profile h̄(t) over time for L = 40,
b0 = 5.5, T = 0.8.

where Ak and Bk are respectively the sine and cosine Fourier coefficients. Also useful is the
magnitude of the components, Ck:

Ck = (A2
k +B2

k)
1/2 (3.6)

Figure 3.2 shows the average profile height h̄(t) for several different times for the case
L = 40, b0 = 5.5 at a temperature T = 0.8. The profile retains its sinusoidal shape. In Figure
3.3 the leading Fourier coefficient C1 is plotted in time for various system sizes, along with
a best fit for each curve to an exponential function; straight lines plotted on the semi-log
axes imply that C1 decays exponentially in time. The parameter τ given in the plot is the
characteristic decay time for each curve, i.e. C1 ∼ exp(−t/τ). Figure 3.4 shows the variation
of τ with L on a log-log plot; the best-fit slope indicates that τ ∼ L4.17.

Since the SOS model is intended to model the evolution of a surface profile under diffu-
sion, these results can be compared with a continuum model of diffusion. The theoretical
continuum equation for surface diffusion, assuming a small-amplitude surface profile, is a
fourth-order PDE [32]:

∂h̄

∂t
= −B∂

4h̄

∂x4
(3.7)

where B is a temperature-dependent surface mobility. This equation can be derived by
assuming the flux of surface atoms is driven by gradients in the chemical potential, which
is proportional to the surface curvature; for small amplitudes, the curvature is given by the
second derivative of the profile height, leading to a fourth-order equation for the rate of
change of the height. Self-similar solutions to Eqn. (3.7) on a periodic domain of length L

49

 0.1

 1

 10

 0 5000 10000 15000 20000 25000 30000

A
m

pl
itu

de

t

τ = 79.74

τ = 1444
τ = 7869

τ = 23453

L=40
L=30
L=20
L=10

Figure 3.3. Semi-log plot and exponential fit of the decay
of leading Fourier coefficient C1 for various system sizes, with
b0 = 5.5, T = 0.8. Relaxation time τ for each value of L is
the negative reciprocal of the slope of the line on the semi-log
plot.

 10

 100

 1000

 10000

 100000

 10 20 30 40 50

τ

L

slope = 4.12

Figure 3.4. Variation of τ with L for b0 = 5.5, T = 0.8.
The slope of 4.17 is very close to the continuum theory pre-
diction of 4.0.

50

have the form

h̄(x, t) = b0 sin

(
2πnx

L

)
exp

(
−B (2πn)4 t

L4

)
(3.8)

where n is an integer, so that sinusoidal profiles decay with a characteristic relaxation time
τ given by

τ =
L4

B(2πn)4
(3.9)

This dependence of τ on L (τ ∼ L4) is in good agreement with that computed using the
SOS model for n = 1 (τ ∼ L4.17), indicating that, at least for long wavelengths modes,
surface evolution under the SOS model is well-described by the continuum model of surface
diffusion.

However, as discussed in the Introduction, the continuum equation in (3.7) has known
deficiencies in modeling real material surfaces. On the other hand, the SOS model (and all
diffusion models that compute motion of individual atoms) are limited by computational
expense in the domain size and time scale over which they can be used. The variables of
interest, such as surface profile height as characterized by the leading Fourier coefficient,
vary on timescales much slower than the individual atom hop rate; the difficulty is that
Eqn. (3.7) may be inaccurate for the general case (such as 3D systems below the roughening
temperature) and an accurate evolution equation for these slow variables is unknown.

3.3 Equation-Free Projective Integration

In order to extend simulations using the SOS model to longer timescales and larger systems,
we will explore the use of equation-free projective integration (EFPI) [23]. EFPI is an
approach to evolving the coarse scales of a system over a long time even though we are only
able to explicitly simulate the fine scales of the system over short times. EFPI is related to,
and in some cases a generalization of, temporal multiscale methods that have been developed
for specific applications, such as the method of homogenization. For example, Oskay and
Fish [36] have developed a time integration scheme for structural fatigue simulations using
multiple time scales, in which the slow (“macro-chronological”) solution is updated over long
times based on the dynamics of the fast (“micro-chronological”) solution over short times.
One difference between EFPI and other techniques is the lack of any assumptions about
the macroscale governing equation in EFPI; coarse scale evolution is driven solely by the
fine scale dynamics. Techniques that require manipulation of a governing equation, such as
homogenization, are not applicable in these cases.

In this report we will largely follow the notation of Kevrekidis et al. [23]. Consider a
system described by a (possibly large) number of fine scale variables, represented by u, and
suppose that we can write a time evolution equation for these variables:

du

dt
= f(u), u ∈ Rm, m� 1 (3.10)

51

Equation (3.10) may represent deterministic or stochastic dynamics, and u may even repre-
sent an ensemble of systems (as it will in our application). The important point is that we
are able to solve numerically for the time evolution of u, although possibly over only very
short times. We represent the solution of this equation symbolically through the fine time
stepper T t

f , an operator defined such that:

u(s+ t) = T t
f u(s) (3.11)

if u is a solution to (3.10).

For many problems, we are not interested in all details of the solution, but in a reduced
set of coarse scale variables that can be denoted U ∈ RM , with M � m. These coarse scale
variables are assumed to be a function of the fine scales through a restriction operator M:

U = Mu. (3.12)

The restriction operator may involve averaging over space, time, an ensemble of realizations,
or some combination of all of these. A successful coarse scale model will require that all
components of U are slowly varying compared with the fine scales u. Ideally, the statistics of
the variables that are not directly captured by U should be well-approximated as functionals
of the selected coarse scale variables, even if the forms of these functionals are not known.
If these conditions are true, the variables U parameterize a fast-attracting slow manifold for
the dynamics.

We are interested in solving for the evolution of U, which is assumed to behave according
to its own evolution equation:

dU

dt
= F(U). (3.13)

where F(U) may be unavailable. To summarize the problem, we want to simulate Eqn.
(3.13) for large or infinite times, but are only able to simulate Eqn. (3.10) over short times.

As a first step toward solving this problem, we will approximate the solution to (3.13)
over some length of time1 τ , where τ is short enough so that the solution of (3.10) over
this time, i.e. the evaluation of T τ

f u, is tractable, but long enough to allow a measurable
change in the coarse scales U. We introduce a lifting operator µ that maps the macroscopic
description U to a consistent microscopic description u. “Consistent” here means that
Mµ = I, i.e. lifting macroscopic to microscopic followed by restricting back to macroscopic
has no net effect. The lifting operator is non-unique and involves the creation of information.
With this operator in hand, we can define a coarse time stepper T τ

c over time period τ
through a series of three steps. Beginning with U(t) known at some time t: 1) Lift to a
a microscale description u(t) = µU(t); 2) Evolve over time τ using the fine time stepper,
u(t + τ) = T τ

f u(t); and 3) restrict back to a macroscale description and define the coarse
time stepper as T τ

c U(t) ≡Mu(t+ τ). So the coarse time stepper is equivalent to

T τ
c = MT τ

f µ (3.14)

1Note that τ in this section is unrelated to the characteristic decay time denoted with the same symbol
in Section 3.2.

52

One detail that is important in designing the lifting operator and choosing the time τ
is how quickly the fine scale variables, once initialized, approach the slow manifold parame-
terized by U. That is, if the statistics of the fine scales are functions of the variables in U,
then regardless of the way in which these fine scales are initialized they should approach the
correct values within a short amount of time. This “healing” time should ideally be much
less than the coarse integration time τ .

With these concepts, we can describe projective integration over time scales that are
long compared with τ . Let ∆tc > τ be a large time step (on the order of the slow coarse
scale dynamics), and ∆tf be a small time step (on the order of τ). Introduce numerical
approximations of the coarse solution U(t) as UN ≈ U(N∆tc), and let uN,0 = µUN be
the lifted fine scale approximation at time N∆tc. Let tj = j∆tf , where j is an integer and
tj < ∆tc. Using the coarse time stepper, we can compute

UN,j = T tj
c UN,0 (3.15)

for a series of values of j in the range [0, jmax]; this is affordable as long as tjmax remains
of the order of τ . Using these values of UN,j, we can design a time integration scheme
by approximating the time derivative F(U) from equation (3.13) at these time points. For
example, a version of the forward Euler integrator is obtained by extrapolating linearly to
time t = (N + 1)∆tc:

UN+1 = UN,jmax + (∆tc − jmax∆tf)F̃(UN,jmax), (3.16)

where F̃(UN,jmax) is an approximation of F(U) at time t = N∆tc + jmax∆tf . A general form
for this approximation can be written:

F̃(UN,jmax) =

jF∑
j=0

αjU
N,jmax−j (3.17)

where jF controls the number of time points used in the approximation (0 < jF ≤ jmax) and
αj are a set of coefficients selected to best approximate the first order derivative of UN,jmax .
For example, jF = 1, α0 = 1/∆tf , α1 = −1/∆tf gives a simple two-point approximation of
the derivative. By using projective integration in this way, we can simulate the evolution
of U(t) using time steps of size ∆tc while only needing to evolve the fine-scale system over
times of size jmax∆tf .

3.4 EFPI for the SOS Model

3.4.1 Coarse Time Stepper Tests

The first step in the application of EFPI to the SOS diffusion model is the choice of ap-
propriate lift and restrict operators. As a first test of our operators, we will require that

53

they should allow the coarse scales of the system to be well approximated over time through
repeated application of the coarse time stepper with no projective integration used at all.
That is, by repeating the lift-integrate-restrict procedure multiple times, we should observe
the same time evolution of the coarse scales as would be obtained by simply integrating the
fine scales over the entire time using Equation (3.10). In the notation of Section 3.3, this is

T nτ
c U(0) ≈ (T τ

c)nU(0), (3.18)

or equivalently,
MT nτ

f µU(0) ≈ (MT τ
f µ)nU(0). (3.19)

Obviously, testing this requires that we solve on a system of only moderate size, so that
computing the time evolution of the fine scales over a long time is affordable. As will be
seen, satisfaction of (3.19) is not trivial for some obvious choices of lift/restrict operators,
and attempts to do so elucidate some key points.

A natural choice for the set of coarse variables U is the set of ensemble averaged heights
h̄i defined in (3.4); the restriction operator M represents the averaging operation in that
equation. Our first choice of lifting operator will be very simple: initialize hi by setting each
profile height for all realizations to the integer value closest to h̄i:

hn
i = round(h̄i) ∀n. (3.20)

Figure 3.5 shows the evolution of the Fourier coefficient C1 over time for one of the same
cases examined in Section 3.2: L = 40, T = 0.8, and b0 = 5.5. The solid line shows the
curve obtained by using the fine scale time stepper for the entire time of 20,000 time units,
i.e. τ = 20,000 and n = 1 in equation (3.19). The other two lines show the results obtained
if the lift and restrict operators are applied every 1000 or 2000 time units; for these cases
n = 20 and n = 10, respectively, so that the total time is the same for all three runs. Clearly,
the overall dynamics is disturbed by applying the restrict and lift operators, so much that
in the case of τ = 1000 the expected decay of the profile stagnates completely. In this case,
every time the restrict and lift operators are applied, the coefficient C1, although initially
unchanged, begins to increase rapidly over a short period of time before slowly decaying
again. The full solution itself (i.e. the solid curve) undergoes this brief increase at time
t = 0, indicating that this behavior may be related to an initial equilibration of the solution
after initialization to a smooth solution. For τ = 2000, the dynamics follow the solid curve
more closely, but still incur deviations every time the restrict and lift operators are applied.

More insight can be gained by examining a similar plot of the energy over time (Figure
3.6). The continuously integrated solution (solid line), after an initial transient, fluctuates
around a slowly decreasing mean energy as expected. But the other two curves in the figure
show that every time the restrict-lift operation is performed, the average energy decreases by
a large amount because of the smoothness of the profile that results from the lift operation.
For the τ = 2000 case the solution approaches the fully integrated solution before the next
perturbation, but for τ = 1000 there is not enough time to re-establish the correct energy,
and the profile statistics begin to deviate from the dynamics of the fully integrated solution.

54

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000

C
1

t

τ = 20000
τ = 2000
τ = 1000

Figure 3.5. Magnitude of leading Fourier coefficient C1 for
various choices of coarse time step τ in equation (3.19), using
lift and restrict operators based on the ensemble-averaged
height array. Results are shown for L = 40, T = 0.8, and
b0 = 5.5.

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 5000 10000 15000 20000

A
ve

ra
ge

 E
ne

rg
y

pe
r

S
ite

t

τ = 20000
τ = 2000
τ = 1000

Figure 3.6. Average energy per site for various choices of
coarse time step τ in equation (3.19), using lift and restrict
operators based on the ensemble-averaged height array. Re-
sults are shown for L = 40, T = 0.8, and b0 = 5.5.

55

The long healing time of the system does not allow a fast enough return to the slowly-varying
manifold indicated by the solid line.

It is not hard to develop a hypothesis for the cause of this behavior. The surface profile
can be thought of as a series of steps and ledges. Whenever our simple lift operator is applied,
the resulting profile is smooth, with a minimum number of steps needed to give the correct
average amplitude. As the fine-scale simulation of each individual realization proceeds,
atoms begin to break away from ledges and diffuse across the steps, and adatom-vacancy
pairs may spontaneously form on the steps. The motion of individual atoms and vacancies
is fast compared with the decay of the profile shape, and within a moderate amount of time
the atoms and vacancies on each step reach some equilibrium distribution. The motion of
atoms and vacancies from step to step within this equilibrium drives the slower dynamics of
the average profile decay. However, when we intermittently apply the restrict-lift operation,
adatoms and vacancies are destroyed. If the time period τ is too short, there is not enough
time to re-establish equilibrium on the steps, and an incorrect profile decay is predicted.

Therefore, to improve the design of our lift-restrict operators, we must incorporate sta-
tistical information about the fluctuations in the height profiles. Instead of computing the
mean surface height everywhere, we can simplify the system by using only the magnitude
of the first Fourier coefficient C1 to parameterize the mean surface profile. We define h̃i

according to the leading Fourier mode of our decaying sine wave, and ĥi as the fluctuation
around this value:

h̃i = C1 sin

(
2πi

L

)
(3.21a)

ĥi = hi − h̃i (3.21b)

The average value h̄i used in the simplest operator represents the first order moment of the
profile. We can capture more information by using the second-order moment, represented
here by the two-point correlation function G(d):

G(d) ≡ 1

L

L−1∑
i=0

ĥiĥi+d (3.22)

where it is understood that the periodic boundary conditions are observed if i+ d > L. As
before, the overbar denotes ensemble averaging. Note that by its definition G(d) = G(−d),
and because of the periodic boundary condition G(d) = G(L− d).

Also useful is the Fourier transform of G(d), denoted by GK(k):

GK(k) =
1

L

L−1∑
d=0

ei2πkd/LG(d) (3.23)

The corresponding inverse transform is

G(d) =
L−1∑
k=0

e−i2πkd/LGK(k) (3.24)

56

An important property of GK(k) is that it is related to the complex Fourier transform of
the height fluctuations, ĥK :

GK(k) = ĥ∗K(k)ĥK(k)

= |ĥK(k)|2 (3.25)

where an asterisk denotes the complex conjugate.

A few more remarks on these quantities:

• It is a property of discrete Fourier transforms that if f(d) = f ∗(L − d) for all d, then
the transform fK(k) is real for all k. Because G(d) is real and G(d) = G(L− d), then
GK(k) is real for all k. Of course, this is also demonstrated by (3.25).

• Also by equation (3.25), GK(k) ≥ 0 for all k.

• Since ĥi is real for all i, hK(k) = h∗K(L− k) for all k.

• By periodicity, hK(0) = hK(L); but by the previous statement, hK(0) = h∗K(L). So
hK(0) = h∗K(0), implying that hK(0) is real. Likewise, if L is even, hK(L/2) = h∗K(L/2)
so that hK(L/2) is also real.

The single scalar value C1 together with the values of G(d) for d = 0 to L/2 make up a set
of coarse scale variables for which we can write corresponding restrict and lift operators. To
perform a restriction given a set of realizations for the height array, we first use Eqns. (3.4)
- (3.6) to compute C1, the magnitude of the leading order Fourier coefficient, then compute
G(d) from Eqns. (3.21) and (3.22). To lift from these coarse variables to a set of realizations,
we take the Fourier transform of G and make use of Eqn. (3.25). At each realization n, for
each value of k between 0 and L/2 we select a random phase φ with uniform probability on

[0, 2π], and assign ĥn
K(k) = ĥn∗

K (L−k) = (GK(k))1/2 eiφ (while enforcing φ = 0 for k = 0 and

k = L/2). We then compute the inverse Fourier transform of ĥn
K and add this fluctuation to

the leading Fourier mode:

hn
i = C1 sin

(
2πi

L

)
+ ĥn

i (3.26)

We repeated our test of the coarse scale time stepper using this new lift/restrict operator
pair. Results are shown in Figures 3.7 and 3.8. The evolution of C1 (Figure 3.7) shows
much better agreement between the solutions, with only a small amount of deviation for the
τ = 1000 case; the τ = 2000 curve follows the full solution almost exactly. The small increases
in C1 seen previously after every restrict/lift step are nearly completely removed. Even more
interesting is the behavior of the system energy (Figure 3.8). Contrary to the previous choice
of operators, in this case the energy actually increases significantly after each re-application.
However, while the operators based on ensemble-averaging showed a long healing time back
to the slowly varying dynamics, the operators using the 2-point correlation show a very fast
healing time back to the continuously integrated solution. An explanation for this may be

57

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000

C
1

t

τ = 20000
τ = 2000
τ = 1000

Figure 3.7. Magnitude of leading Fourier coefficient C1

for various choices of coarse time step τ in equation (3.19),
using lift and restrict operators based on C1 and the 2-point
correlation function G(d). Results are shown for L = 40,
T = 0.8, and b0 = 5.5.

that, while the full statistics of the system are not perfectly reconstructed using the 2-point
correlation function operator (as indicated by the increases in energy), fine scales in the
system may be reproduced more accurately than for the ensemble-average operator, and
healing can occur through processes taking place over much shorter length scales, allowing
fast recovery. Again, we stress that in the equation-free method, we are less concerned with
temporary deviations from the slow manifold, even if they are large, than with how quickly
the solution heals and returns to the slow manifold.

3.4.2 Projective Integration Tests

Using the restrict/lift operators based on the 2-point correlation function described in the
previous section, we can use EFPI to accelerate the time evolution of our simulations. The
algorithm used follows equations (3.15)-(3.17), using a linear regression over jF +1 points to
approximate the time derivative of the coarse scale variables. This is shown schematically
in Figure 3.9. Given a set of coarse scale variables at time t = N∆tc, represented by UN ,
we apply the lift operator to obtain a set of realizations for the height array, represented by
uN,0. We then perform KMC simulations to advance the system by a total time of jmax∆tf ;
we compute UN,j for j = 0 to jmax by applying the restrict operator at intervals of ∆tf . We
then fit a line to the final jF + 1 points. By fitting through more than two points (jF ≥ 2)
we can mitigate the effects of noise in the system; by choosing jF < jmax we can ignore
the initial equilibration phase of the detailed simulation, during which the system may not

58

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 40

 0 5000 10000 15000 20000

A
ve

ra
ge

 E
ne

rg
y

pe
r

S
ite

t

τ = 20000
τ = 2000
τ = 1000

Figure 3.8. Average energy per site for various choices of
coarse time step τ in equation (3.19), using lift and restrict
operators based on C1 and the 2-point correlation function
G(d). Results are shown for L = 40, T = 0.8, and b0 = 5.5.

have returned to the correct slow manifold. Finally, we use this line to extrapolate the
solution at time t + ∆tc. Note that this linear regression and extrapolation is computed
for each individual element of the vector U—in our case, the Fourier coefficient C1 and all
independent values of the 2-point correlation G(d).

Application of EFPI to systems with lengths L = 20 and L = 40 are shown in Figure
3.10. Both cases use ∆tf = 25, jF = 6, and jmax = 12, so that over each coarse time step
a total time of jmax∆tf = 300 is simulated using the full KMC simulation. The coarse time
step is ∆tc = 1000, so that the effective speed-up of the method in these case is 10/3. In
Figure 3.10 and subsequent similar plots, filled circles give the values of the fine scale system
after restriction, sampled at intervals of ∆tf ; dotted lines represent the best-fit line used to
extrapolate over each coarse step. The two cases plotted highlight different sources of error
in the method. For L = 20, the error is clearly dominated by that caused by the first-order
time integration method used for projection (see Eqn. 3.16); at each coarse step the linear
approximation to the curve causes an under-prediction of the correct value. This error can
be alleviated by using a higher-order integration method, or by shrinking the coarse time
step size.

For the L = 40 case, on the other hand, the first-order integration error does not appear
to be the main source of error, as evidenced by the fact that the EFPI curve actually over-
predicts the fully integrated value at times. Instead, the solution error apparently comes at
least in part from errors in the derivative itself, i.e. those incurred in the approximation F̃(U)
to the real derivative (Eqn. 3.17). Some of these errors are inherent to the approximation

59

t

tc

tf∆

U

∆

Figure 3.9. Schematic of a single coarse step in the projec-
tive integration scheme. The initial set of coarse variables U
is lifted to a corresponding set of fine scale variables. The fine
scale solution is updated for a time of jmax∆tf using KMC,
and restrict operators are performed at intervals of ∆tf . For
each coarse scale variable U , a linear regression is fit to the
last jF + 1 points (the black circles in the diagram), and this
line is used to predict U at time interval of ∆tc. Using mul-
tiple points for the regression reduces the effects of noise on
the solution. In the figure, jmax = 12 and jF = 6.

60

 0

 1

 2

 3

 4

 5

 6

 0 5000 10000 15000 20000

C
1

t

L=40

L=20

EFPI
Full Integration

Figure 3.10. Application of EFPI to the SOS model with
lengths of 20 and 40, using lift and restrict operators based
on C1 and the 2-point correlation function G(d). Solid lines
show the fully integrated solution (no projection). For the
EFPI solutions, circles show the values of the fine scale system
after restriction, sampled at intervals of ∆tf = 25; dotted
lines represent the best-fit line used to extrapolate over each
coarse step. For both cases, jmax = 12, jF = 6, ∆tc = 1000,
T = 0.8, and b0 = 5.5.

in Eqn. (3.17) itself, but some may also be caused by fluctuations in the fine scale solution
due to noise or to the application of the restrict/lift operators.

For given values of jmax and ∆tf , the effective speed-up of projective integration is
proportional to the choice of the coarse time step size ∆tc. To improve speed-up, we tested
coarse time steps of 1000, 2000, 4000, and 6000. Results are shown in Figure 3.11. It is clear
that increasing ∆tc much above the original value of 1000 leads to poor results, limiting the
speed-up attainable with this method.

To remedy this, we begin by noting that it was shown by Gear and Kevrekidis [11] that
projective integration schemes similar to ours are stable for problems with both small and
large eigenvalues, but are unstable for moderate eigenvalues if the ratio of ∆tc to jmax∆tf
is too large. Furthermore, the region of instability in the eigenvalue spectrum grows as this
ratio grows larger. Although we cannot directly compute the eigenvalues of our discrete
problem, we can do so for the related continuum diffusion equation (3.7). For that problem,
the eigenmodes are simply the Fourier modes, and the corresponding eigenvalue for each
mode is related to the inverse of its characteristic relaxation time (Equation 3.9). Small
eigenvalues correspond to slowly varying Fourier modes, large eigenvalues to fast modes. The
Fourier modes of the height profile are related in turn to the two-point correlation function

61

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000

C
1

t

∆ tc = 1000
∆ tc = 2000
∆ tc = 4000
∆ tc = 6000

Full Integration

Figure 3.11. Application of EFPI to the SOS model with
lengths of L = 40 for various choices of ∆tc. For all cases,
jmax = 12, jF = 6, ∆tf = 25, T = 0.8, and b0 = 5.5.

through 3.25. Therefore, assuming that our discrete SOS model mimics the dynamics of the
continuum diffusion equation, time integration of the model is equivalent to integrating a
stiff set of equations, with a large range in eigenvalues. The values of GK(k) for various k
provide a set of variables that can be conveniently separated into slow, moderate, and fast
modes.

To demonstrate this, Figure 3.12(a) shows the evolution of GK(k, t) for the first few
modes of the system, where we have started with a flat surface profile; in this case, the
dynamics is driven by thermal fluctuations and each mode evolves toward an equilibrium
amplitude that is determined by the finite system temperature. Clearly, k = 1 corresponds
to a slow variable that is still evolving at the end of the simulation (t = 2 × 104), while
k = 4 is a fast variable that quickly attains its equilibrium value; here, “fast” is defined as
having a rise time that is small compared to our fine scale time step ∆tf , and “slow” implies
a time large relative to the size range of our coarse time step ∆tc. Modes associated with
k = 2 and k = 3 have moderate timescales compared with our integration time step sizes.
Figure 3.12(b) shows the effects that these time scales have on the projective integration
of the variables. In this run, we have used the values of GK(k) for different values of k as
our coarse scale variables for projective integration; since we require GK ≥ 0, we clip any
negative values to zero after the projection step. A coarse time step of ∆tc = 2000 was used
for the simulation shown.

The projective integration of GK(k, t) for k = 1 gives a solution that is similar to fully
integrated curve in 3.12(a). However, the solutions for the k = 2 and k = 3 variables
show large oscillations as the inadequately-sized timestep causes large overshoots. These

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

G
2(

k,
t)

t

k = 1
k = 2
k = 3
k = 4

 0

 0.05

 0.1

 0 100 200 300 400 500

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000

G
2(

k,
t)

t

k = 1
k = 2
k = 3
k = 4

(b)

Figure 3.12. (a) Time evolution of the first four compo-
nents of GK(k, t), computed using full KMC integration be-
ginning with an initially flat profile. Inset shows early time.
Simulation parameters were L = 40, T = 0.8. (b) Equation-
free projective integration of the same problem, using the
components of GK(k, t) as the projected coarse scale vari-
ables. jmax = 12, jF = 6, ∆tc = 2000, ∆tf = 25.

oscillations prevent us from ever approaching the correct long-time dynamics. Interestingly,
while the k = 4 undergoes oscillations, after a time it does remain close to the correct steady-
state value; the healing time for this faster variable is nearly short enough to be captured
within the fine scale integration time of jmax∆tf .

To stabilize the integration, we must replace the projection of the fast and moderate
variables, which leads to instability, with a different scheme. This new scheme is based on
the recognition that the slow manifold we are trying to simulate should be parameterized
only by the slow variables in our system; the fast variables should be “slaved” to the slow
ones, as long as the system lies on the slow manifold. The problem then becomes how to
specify the fast variables as a function of the slow ones. One simple approach is to set these
fast values to their steady-state values, which can be computed in a single fully integrated
simulation as in figure 3.12(a). However, anticipating applications where such steady states
are unknown a priori, we will avoid this technique. Another approach to initializing the fast
variables has been developed by Gear and coworkers [10, 12], in which an iterative scheme
is used to project the fast variables toward the slow manifold; however, it is not clear that
this method will be successful for the moderate-speed variables that lead to instability in
our problem.

An approach that we have found to yield stable results with acceptable accuracy is to
simply “freeze” the fast and moderate variables over the projection step. That is, rather
than using linear extrapolation to compute the updated fast variables at time t+ ∆tc, as we

63

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000

C
1

t

∆ tc = 1000
∆ tc = 2000
∆ tc = 4000
∆ tc = 6000

Full Integration

(a)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 5000 10000 15000 20000

C
1

t

∆ tc = 1000
∆ tc = 2000
∆ tc = 4000
∆ tc = 6000

Full Integration

(b)

Figure 3.13. (a) EFPI of the SOS model with L = 40.
Parameters are identical to those used in Figure 3.11, except
that the elements of GK(k) (rather than G(d)) are used as
the coarse variables. (b) EFPI of the same problem, but
using Eqn. (3.27) to set the fast variables (k ≥ 2) at each
projection step.

do for the slow variables, we set:

GK(k, t+ ∆tc) = GK(k, t+ jmax∆tf) (3.27)

for k ≥ 2. Application of this scheme is demonstrated in figure 3.13. Figure 3.13(a) shows a
simulation identical to that in 3.11, except that the elements of GK(k) (rather than G(d)) are
used as the coarse variables, with projective integration used for all values of k. Oscillations
and loss of accuracy are seen for large values of ∆tc. In figure 3.13(b), the same cases are
plotted using Eqn. (3.27) to update the fast variables at each projection step. Solutions
remain stable and give good overall prediction of profile height decay, although some loss of
accuracy is seen for large values of ∆tc.

3.5 Discussion and Conclusions

Our work demonstrates that equation-free projective integration can successfully be used
to accelerate simulations of surface diffusion using the solid-on-solid model. However, at
least two points seem to be crucial in obtaining accurate, stable results. The first is the
recognition that the most obvious choice of coarse variables for the problem, describing the
average surface profile, do not adequately describe the dynamics. This was demonstrated
in our inability to recover the correct profile evolution after applying a lift operator based
only on these variables. Instead, the coarse variables must include statistics that capture
information about the fine scales in the system, since it is the fine scales themselves that
drive the motion. The 2-point correlation function or its Fourier transform have been shown

64

here to adequately capture this fine scale information in a statistical sense and reconstruct
the correct dynamics after lifting.

One limitation of the technique we have used to reconstruct the random system given the
2-point correlation function is the requirement that the correlation function G(d) is known
for all values of d so that the Fourier transform can be computed; this limitation is shared by
the Karhunen-Loève expansion technique [29], another common method for reconstructing
a Gaussian random field from its correlation function. The computation and storage of
G(d) may be unfeasible, especially for large problems in three dimensions. However, other
techniques for reconstructing random fields have been introduced (e.g. [43, 67]), and their
application to larger problems will be studied in future work.

A more fundamental question that is raised by our search for the correct set of coarse
scale variables is whether there is a more systematic way of determining the appropriate
parameterization than the trial-and-error approach used here. One possible approach is the
“Baby-Bathwater Scheme” of Li et al. [28], in which the sensitivities of the macroscopic
behavior to spatial derivatives of the coarse scale concentration profile are systematically
explored. While this scheme can shed light on the nature of the coarse scale equation
(assuming it exists), it is unclear whether it can be used to explore the possibly very large
space of possible coarse scale variables in a complex problem. Kevrekidis and Samaey [24]
point out the link between the identification of coarse variables in equation-free computations
with dimensionality reduction techniques used in data mining (e.g. [59]); this analogy is a key
area for future research. It should also be recognized that selection of the ideal set of coarse
variables may not lead to accurate lifting if secondary (“fast”) variables cannot be properly
initialized. For example, in our surface diffusion problem the mean profile shape might be
sufficient for lifting, if we were able to prescribe the 2-point correlation function as a function
of the mean profile; because this function is unknown, we must track the correlation function
with additional coarse variables. Gear et al. [10] have introduced a method for initializing
fast variables by iteratively enforcing that time derivatives of these variables are equal to
zero after a lift operation. Extension and testing of this idea on more complex problems is
also an area of research.

The second important point in applying EFPI that our results demonstrate is that even
when a set of coarse variables that correctly parameterize the system has been found, care
must be taken to identify fast variables that lead to instabilities when projective integration
is applied. This can be difficult, as when the fast variables are related to modes that may
be “hidden” depending on the choice of parameterization. For example, when the values of
the 2-point correlation function G(d) for various d are used as a set of coarse variables, a
separation into fast and slow variables is not obvious; only by transforming to GK(k) can we
identify fast and slow modes. In the case of the SOS model for surface diffusion, the timescales
of the various modes are most easily understood by referring to the continuum equation for
surface diffusion, but in general it is precisely the lack of such a known continuum description
that motivates the use of the equation-free method in the first place. An interesting direction
for future research is to develop techniques for identifying the correct separation of fast and
slow variables using only the fine scale description, without appealing to a continuum model.

65

Once the fast and moderate speed variables have been identified, the problem remains of
how to initialize them at each projection step (assuming they cannot be stably integrated
through projective integration). The method employed in our work, of keeping these values
constant over the projection step, seems valid for the very fast variables (which presumably
have reached their slow-manifold values during the fine scale simulation), but not necessarily
for the more moderate-speed variables; in this case, we are simply constraining the variables
to avoid instability rather than accurately predicting their new values. It is likely that this
gives acceptable results only because it is the fastest variables (the smallest length scales)
that drive the dynamics we are interested in. For problems where this is not the case, better
strategies for initializing the unprojected variables must be developed.

66

Chapter 4

Improved Lift Operators for Surface
Evolution

4.1 Introduction

In Section 3, we showed that the lift operator for 2D surface evolution simulations had to
include the spatial correlation function as a coarse scale variable in order to successfully
reproduce the dynamics of the system after lifting. This approach has several shortcomings,
especially as we attempt to apply it to more complex systems in 3D:

• The 2-point correlation function may itself vary spatially in real problems, whereas
we assumed in Section 3 that it was a function only of the distance d between two
points (see for example equation 3.22); this extra dependence makes it impossible to
reconstruct the height field using a convolution in Fourier space.

• The correlation between two sites in 3D has a directional dependence on the vector
between the two sites that must be stored; this makes it much more expensive both to
store the correlation function and reconstruct the height field.

• The height field for a given realization is a set of integers, while the values reconstructed
using the correlation function are real values that must be rounded to the nearest
integer; even in 2D, this rounding operation leads to modified statistics (which helps
explain why we still see a jump in the energy function after lifting in Section 3).

• More generally, the importance of the 2-point correlation function was identified only
after trial and error. We would like to develop an algorithm for lifting that is less
problem-specific and does not require such a priori knowledge of which higher-order
statistics are important.

The last point above is an important one. We expect that for these multi-scale systems,
higher-order statistics are in some way slaved to the coarse mean field values; i.e. assuming
the system is already on some slow manifold, there is a one-to-one mapping between the
coarse slow variables (the average height profile, in this case) and the higher order statistics
(the correlation function). Unfortunately, we do not know what this mapping is, and if the

67

higher order statistics are incorrectly initialized in our problem, we are no longer on the slow
manifold.

Since we know only the coarse scale description of the system, one way to proceed in the
lift operation might be to run the microscale system using the fine scale time integrator (e.g.
KMC in our surface diffusion examples) while holding the coarse scale – and only the coarse
scale – fixed. Over time, we may hope that the higher order statistics come into equilibrium
with the constrained coarse scales, effectively giving the correct mapping and ensuring that
the system is on the desired slow manifold. This procedure can be thought of as an artificial
“healing” step, where the constrained variables do not change during the healing process
(recall that this was not the case with the healing time in our examples in Section 3, when
coarse variables tended to drift away from the desired values). Unfortunately, it is not always
obvious how to constrain a general set of variables during a KMC simulation. One approach
to doing this that holds promise in our early tests is the maximum entropy method.

4.2 Maximum Entropy Method

The maximum entropy method has its roots in the work of E. T. Jaynes [18]; a summary of
the basic approach is given here.

For simplicity we will assume that we have a system that can be described in terms of
discrete states, although extension to continuous systems is straightforward. These discrete
states might be finite in number (e.g. the roll of a die has 6 possible outcomes) or infinite
(e.g. our solid-on-solid surface model in Section 3 allows any combination of integer heights
that preserve the total mass of the system). Let Pi be the probability of finding the system
in state i. Our goal is to find the most likely values for the individual Pi’s, given the known
constraints of the system.

According to the maximum entropy principle, the appropriate values of Pi are those that
maximize the entropy S, defined as:

S(P1, P2, ...) = −
∑

i

Pi lnPi, (4.1)

subject to the known system constraints. One constraint that is always present is that the
sum of the probabilities must equal unity:∑

i

Pi = 1 (4.2)

For the case where no other information is known about the system, there are no other con-
straints, and the probabilities can be solved by maximizing the augmented entropy function
S̄:

S̄ = −
∑

i

Pi lnPi − ν(
∑

i

Pi − 1) (4.3)

68

where ν is a Lagrange multiplier. This function is maximized by taking the partial derivative
with respect to Pi and setting equal to zero:

∂S̄

∂Pi

= 0 = − lnPi − 1− ν (4.4)

giving
Pi = e−ν−1. (4.5)

Setting the partial derivative of S̄ with respect to ν to zero results in constraint (4.2). To
solve for the Lagrange multiplier, we can substitute this result into this constraint; the final
result for the probability is

Pi =
1

N
. (4.6)

where N is the total number of possible states. Thus, in the absence of any other knowledge
of the system, we conclude that all states are equally likely.

4.2.1 Average Energy Constraint

A simple non-trivial example of the use of the maximum energy principle is the case where
the average system energy 〈E〉 is known; this is expressed through an additional system
constraint: ∑

i

PiEi = 〈E〉 (4.7)

where Ei is the energy of the system in state i. We use an additional Lagrange multiplier β
in the augmented entropy function to enforce this constraint:

S̄ = −
∑

i

Pi lnPi − ν
(∑

i

Pi − 1
)
− β

(∑
i

PiEi − 〈E〉
)

(4.8)

Taking the partial derivative with respect to Pi and setting equal to zero yields:

Pi = e−1−ν−βEi (4.9)

To eliminate ν, we can again substitute into (4.2), giving:

e−1−ν = Z−1, (4.10a)

Z ≡
∑

i

e−βEi . (4.10b)

The resulting expression for Pi is then:

Pi = Z−1e−βEi . (4.11)

We recognize this as the probability distribution function for the canonical ensemble, where
Z is the partition function. The solution for the Lagrange multiplier β is more difficult; it
must be specified so as to satisfy the average energy constraint (4.7):∑

i

Z−1e−βEi = 〈E〉 (4.12)

69

which can be rewritten:

〈E〉 = − ∂

∂β
lnZ. (4.13)

This is in general a nonlinear equation that must be solved by incorporating information
about the form of the energy Ei; this is difficult to solve in closed form without a concise
expression for Z as a function of β, which is only available for very simple systems. Note
that the maximum entropy principle alone does not give us the relationship between β and
temperature (β = 1/kBT) that we know from classical statistical mechanics. To derive this
expression requires more insight into the physics of the problem.

4.2.2 General Constraints

We can use the maximum energy principle to derive the form of the probability distribution
function for the more general case of m system constraints, in addition to the constraint on
the sum of the probabilities (4.2). Suppose we have m different functions, fk(x) for k = 1 to
m, where x is a vector of all of the system variables; the ensemble average of each function
fk (designated 〈fk〉) is to be constrained to a known value, Fk. These constraints can be
written: ∑

i

Pifk(xi) = Fk. (4.14)

Following the same procedure as above, we can write an augmented entropy function using
Lagrange multipliers λk:

S̄ = −
∑

i

Pi lnPi − ν(
∑

i

Pi − 1)−
∑

k

λk(
∑

i

Pifk(xi)− Fk) (4.15)

The resulting form of the probability distribution is:

Pi = Z−1 exp
[
−
∑

k

λkfk(xi)
]

(4.16a)

Z =
∑

i

exp
[
−
∑

k

λkfk(xi)
]

(4.16b)

We recognize that the microcanonical ensemble distribution derived in the previous section is
just a special case of this more general expression. The Lagrange multipliers must be solved
through the set of m nonlinear equations obtained by substituting into the constraints:

Fk = 〈fk〉 = − ∂

∂λk

lnZ(λ1, λ2, ...), k = 1...m (4.17)

A few additional properties of this general maximum entropy expression can be explored.
Taking the partial derivative of 〈fk〉 with respect to a given Lagrange multiplier λj gives:

∂〈fk〉
∂λj

= − ∂2

∂λj∂λk

lnZ (4.18)

70

Assuming lnZ is a smooth function of the Lagrange multipliers, the right hand side of the
above equation is insensitive to the order of j and k, implying the symmetric result:

∂〈fk〉
∂λj

=
∂〈fj〉
∂λk

(4.19)

These derivatives can be related to the statistical fluctuations of the f functions. First,
note that the ensemble average of the product of two functions, 〈fjfk〉, is

〈fjfk〉 =
∑

i

Pifj(xi)fk(xi)

=
∑

i

Z−1 exp
[
−
∑

l

λlfl(xi)
]
fj(xi)fk(xi)

= Z−1
∑

i

∂2

∂λj∂λk

exp
[
−
∑

l

λlfl(xi)
]

= Z−1 ∂2Z

∂λj∂λk

(4.20)

This can be used to write the fluctuations of the f functions in terms of derivatives of the
partition function:

〈(fj − 〈fj〉)(fk − 〈fk〉)〉 = 〈fjfk〉 − 〈fj〉〈fk〉

= Z−1 ∂2Z

∂λj∂λk

− Z−2 ∂Z

∂λj

∂Z

∂λk

=
∂2

∂λj∂λk

lnZ

= −∂〈fk〉
∂λj

= −∂〈fj〉
∂λk

(4.21)

4.3 A Solution Algorithm for the Maximum Entropy

Lagrange Multipliers

The maximum entropy principle gives a probability distribution function (PDF) that, for the
correct choice of Lagrange multipliers, obeys the desired constraints. This PDF can be used,
for example, in a Metropolis Monte Carlo algorithm to sample from the desired ensemble
and obtain realizations that obey the constraints; other variables, such as the higher order
statistics of the system, can be expected to be at equilibrium in the sense that they maximize
the entropy.

However, determination of the correct values of the Lagrange multipliers λk is not trivial.
Several authors have used a method based on the maximum entropy principle, the so-called
MaxEnt method, to generate random microstructures [26, 68]. In these works, iterative

71

methods are used to solve the nonlinear set of equations defined by equation (4.17) for the
set of Lagrange multipliers. At the core of these methods is the use of a stochastic simulation
method, such as the Metropolis Monte Carlo (MMC) method [9], to generate realizations
with a given PDF, as well as corresponding ensemble averages. This algorithm will be given
in the next section, while a general approach for iterative solution of the Lagrange multipliers
will be outlined in Section 4.3.2.

4.3.1 The Metropolis Monte Carlo Algorithm using the MaxEnt
PDF

The PDF in equation (4.16) has the form:

Pi = Z−1 exp
[
−H(xi,λ)

]
(4.22)

where the generalized Hamiltonian function is:

H(xi,λ) =
∑

k

λkfk(xi). (4.23)

The function H plays the same role as the term E(xi)/kBT in the classical MMC method
[9]: at each step, a trial move is generated, and the change in value of H(xi,λ) is computed.
If ∆H < 0, the trial move is accepted automatically; otherwise, the move is accepted with
probability exp

[
−∆H

]
. The algorithm is given in Algorithm 1.

A few remarks on this algorithm:

• The form of the trial move depends on the system being simulated, as well as any
constraints on the system that are not explicitly captured in the functions fk. For
example, in our simulations of surface diffusion using the SOS model (Section 3.2), the
total amount of material is assumed to be conserved. A reasonable form of a trial move
in this case is to move individual “atoms” from one site to another, i.e. increment a
column at random by 1 while decrementing a different column by 1.

• Note that in order to compute the change in the functions fk, it is usually not necessary
to actually compute the function at the new state; rather, the change in the function
can be computed directly, and more efficiently, especially if effects of an event are local.
For example, if fk is the total energy of the system, and can be written as the sum
of the energies of individual sites, ∆fk can be calculated as the change in energy at
only the sites whose values are affected by the trial move (i.e. the sites involved in the
move, and their nearest neighbors).

• It is important to compute updated statistics even when the trial move has been
rejected. In this way, configurations that are energetically favorable, which are more
likely to persist for multiple steps, are weighted more heavily in the computation of
ensemble averages.

72

Algorithm 1 Metropolis Monte Carlo Method using a generalized maximum entropy PDF

1: Given a set of m Lagrange multipliers λk and functions of interest fk(x), k = 1 to m,
and initial state x0

2: Compute each function of interest fk,0 = fk(x0) at the initial state.
3: for i = 1 to Nsteps do
4: Generate a trial new state, xtrial

5: Compute the change in each function of interest caused by the trial move: ∆fk =
fk(xtrial)− fk(xi−1)

6: Compute the change in H caused by the trial move: ∆H =
∑

k λk∆fk

7: if ∆H < 0 then
8: accept = true
9: else

10: Generate random real number r with uniform distribution on [0, 1]
11: if r < exp

(
−∆H

)
then

12: accept = true
13: else
14: accept = false
15: end if
16: end if
17: if accept = true then
18: xi = xtrial

19: fk,i = fk,i−1 + ∆fk for k = 1 to m
20: else
21: xi = xi−1

22: fk,i = fk,i−1 for k = 1 to m
23: end if
24: Update statistics (e.g. ensemble averages of each fk, pair correlations, etc.)
25: end for

4.3.2 Iterative Methods for Solving for the Lagrange Multipliers

As discussed above, the set of Lagrange multipliers needed for the construction of the maxi-
mum entropy PDF, i.e. the solution to the nonlinear set of equations given in (4.17), can be
solved for iteratively. A convenient way to understand this approach is as the minimization
of the scalar quantity G:

G(λ) = lnZ(λ) +
∑

k

λkFk (4.24)

where as before Fk are the desired values of the constrained ensemble averages of function fk.
To see that this minimization is equivalent to solving (4.17), note that setting the derivatives
of G with respect to the individual Lagrange multipliers to zero simply gives:

Fk = − ∂

∂λk

lnZ(λ) = 〈fk〉. (4.25)

73

Furthermore, the components of the Hessian matrix (the second derivatives with respect to
λ) are:

∂2G

∂λj∂λk

=
∂2

∂λj∂λk

lnZ = 〈fjfk〉 − 〈fj〉〈fk〉 (4.26)

This is recognized as the covariance matrix for the random vector f . Since covariance matrices
are positive definite, the surface described by G(λ) is concave upward everywhere, and the
solution to (4.25) therefore gives a unique global minimum.

This minimization problem can now be solved using a gradient-based iterative method,
such as nonlinear conjugate gradient. Details of such methods depend on the specific choice
of method and are given elsewhere ([26, 68]), but the basic approach is as follows: Given an
initial guess of λ, the residual of equation (4.25) is computed. This is done by using the given
values of λk to form the probability distribution function given by (4.16), and then using
the resulting PDF in a stochastic simulation, such as the Metropolis Monte Carlo algorithm
described in Section (4.3.1), to compute the ensemble averages of the functions fk.

Typically, iterative methods also require the Hessian matrix to be computed. Again, this
can be done using a Monte Carlo simulation to compute the variances of the functions fk;
by equation (4.26), these fluctuations give the components of the Hessian. A single Monte
Carlo simulation at each iteration can give the ensemble averages and covariances of all of
the fk functions for a given set of values for λk. Using these values, the λ vector is updated
according to the chosen iterative method. This process is repeated until the residuals of
equation (4.25) are driven below a given tolerance.

With values for the λk Lagrange multipliers in hand, yet another MMC simulation can
be used to generate realizations with the probability distribution function given by (4.16).
In this case, configurations obtained at the end of each step of the MMC simulation can be
taken as the set of realizations that form the result of the lift operation. Alternatively, a
subset of realizations can be used (e.g. the result of every nth step of the algorithm where n
is an integer); these realizations will still be distributed according to the desired PDF.

In practice, the MaxEnt method described in this section has a number of shortcomings,
all of which are mentioned in the literature (e.g. [26, 37]) and verified by our own numerical
experiments:

1. Because there is an inherent statistical error in the MMC method that only goes away
as the number of steps becomes very large, there is an uncertainty in the ensemble
averages and fluctuations (i.e. the first and second derivatives of the function being
minimized) at each iteration of the algorithm. This uncertainty can slow down or
destroy the convergence of the method. This problem can be somewhat alleviated by
modifying the method to allow for this uncertainty (see for example the stochastic
conjugate gradient methods of Schraudolph and Graepel [44]), but in our own test
problems we have found this issue to be difficult to surmount for large systems.

2. The problem of error in the MMC method is compounded by what Koutsourelakis
[26] calls the critical slowing down phenomenon, in which the MMC method becomes

74

“stuck” in a low energy region of phase space and cannot efficiently sample the space.
This lowers the accuracy of the MMC method even further. One possible remedy for
this that we have explored is to use a method similar to the Kinetic Monte Carlo
method, rather than MMC, which can improve efficiency for simulations close to equi-
librium (see e.g. Bortz et al. [4]). This seems to improve results for some cases, but
not all.

3. Because of the above issues, the computational cost of the method is very high. For
example Patelli and Schueller [37] compared the MaxEnt method to two other methods
for generating random microstructures, simulated annealing and the genetic algorithm,
to reconstruct microstructures based on given sets of statistical correlation functions.
They concluded that the MaxEnt method is too expensive for all but very small sys-
tems.

The high computational cost of the MaxEnt method makes it unattractive for use in con-
junction with the Equation-Free Projective Integration (EFPI) method, since the purpose of
EFPI is to allow acceleration of time integration; for this to be useful, the computation saved
by projective integration must outweigh the cost of the lift operation. However, there are
at least two advantages to the MaxEnt method that make it attractive, especially compared
with other methods for reconstructing microstructures such as simulated annealing [67]:

1. The MaxEnt method can reconstruct a microstructure based on only a small number
of coarse variables, while higher-order statistics come into equilibrium in a natural way.

2. Unlike simulated annealing, which provides a single realization at a time, the Max-
Ent method allows the generation of a large number of realizations very quickly once
the correct values of the Lagrange multipliers have been obtained. If our EFPI sys-
tem requires an ensemble average over many realizations (as in our surface diffusion
simulations), this is advantageous.

Because of these properties, we seek a more efficient implementation of the maximum entropy
principle for generation of realizations in our lift operator.

4.4 Efficient Generation of Realizations using the Max-

imum Entropy Principle

4.4.1 The SOS Model in 3D

It is useful to make our ideas in this section concrete by considering our particular system of
interest: the solid-on-solid (SOS) model of surface evolution described in Chapter 3. Recall

75

that in that model, the energy of each site is proportional to the height difference between
that site and its neighbors:

E =
N∑

i=1

Ei (4.27a)

Ei =
J

2

∑
j∈neighi

|hi − hj| (4.27b)

where N is the total number of sites, J is the the bond energy (taken to be 1.0 throughout
this chapter), and neighi is the set of neighbors of site i. In our 3D simulations, where hi is
the height defined on a 2D square lattice, we count interactions with the 4 nearest neighbors,
i.e. the neighbors that share an edge in the square lattice (and not the corner neighbors).

As in Chapter 3, we are interested in developing a lift operation to be used in an Equation-
Free Projective Integration simulation. As before, the fine scale dynamics over short times
will be simulated using a KMC method. The system evolves by executing a series of events
with rates that can be computed based on the energy change. In the 3D case, an event
consists of motion of a single atom from its original site to any one of that site’s 8 nearest
neighboring sites (including the corner neighbors). The rate for each event transforming the
system from state 1 to state 2 is given by:

P1→2 =

{
1
8

if ∆E12 ≤ 0,
1
8
e−∆E12/kBT if ∆E12 > 0

(4.28)

where ∆E12 is the change in total energy of the system going from state 1 to state 2, kB is
Boltzmann’s constant, and T is the system temperature. Note that the only difference with
the corresponding rate expression for the 2D system (Equation 3.2) is the prefactor, 1/8
instead of 1/2; in both cases this prefactor is the reciprocal of the number of possible events
originating at each site (the number of neighboring sites to which an atom can move), and
is chosen to make our effective timescale consistent with other authors [48].

As in the 2D case, the initial condition for our simulations will be a sine wave in the x
direction, with wavelength equal to the system size and amplitude b0. Let Lx and Ly be
the number of sites in the x and y direction on our rectangular lattice of sites. The initial
condition is simply:

hi(t = 0) = trunc(b0 sin(2πxi/Lx)) (4.29)

where again trunc() is a function that truncates its argument to the next lower integer in
magnitude. We assume a grid spacing of 1, so that xi (the x location of site i) is an integer
in the range [0, Lx − 1].

Surface evolution data is again computed by ensemble averaging over many realizations
of the system:

h̄i =
1

NR

NR∑
n=1

hn
i (4.30)

76

where hn
i is the height at position i in realization n and NR is the total number of realizations.

The evolution can be characterized in terms of the Fourier coefficients of the height profiles.
We will be especially interested in the pure x-directional modes, so that the coefficients for
mode k for a given realization are:

An
k =

2

LxLy

N∑
i=1

hn
i cos(2πkxi/Lx) (4.31a)

Bn
k =

2

LxLy

N∑
i=1

hn
i sin(2πkxi/Lx) (4.31b)

The main quantities tracked in the evolution of a given set of realizations will be the ensemble
averages and standard deviations of the Fourier coefficients:

Ak =
1

NR

NR∑
n=1

An
k (4.32a)

Bk =
1

NR

NR∑
n=1

Bn
k (4.32b)

σAk
=
(NR∑

n=1

(An
k − Ak)

2
)1/2

(4.32c)

σBk
=
(NR∑

n=1

(Bn
k −Bk)

2
)1/2

(4.32d)

Note that the ensemble averages of the Fourier coefficients, Ak and Bk, are equivalent to the
Fourier coefficients of the ensemble averaged heights h̄i. The coefficients of the individual
realizations are required, however, to compute the standard deviations of Ak and Bk.

Because the evolving surface, in the ensemble average, is fairly smooth, the average profile
can be described well in terms of a small number of Fourier coefficients. Because the initial
condition is a sine wave, the cosine modes (the values of Ak) are on average very close to
zero; additionally, because of symmetry, the even-numbered sine modes are also negligible.
Thus, only the odd-numbered sine waves (B1, B3, etc.) are typically needed to describe the
ensemble-averaged surface.

Finally, as in the 2D case and by analogy with continuum surface diffusion, the short-
wavelength modes are expected to evolve quickly, so that the slow dynamics of the system
can be parameterized by just a few of the longest modes, i.e. the smallest values of k. Our
goal, then, will be to trace the evolution of the first few odd-numbered sine modes (typically
just B1 and B3). Because we have an ensemble of realizations, each of which will display
slightly different evolution because of the stochastic nature of the dynamics, we expect the
standard deviation of these variables to grow with time, and a complete description of the
ensemble must also include these standard deviations. So the set of coarse variables that
will be used for the EFPI method will include 4 variables: B1, B3, σB1 , and σB3 . The lift
operator we design must generate a set of realizations consistent with these coarse variables.
This is the operator we will develop in the next section.

77

4.4.2 Lift Operator Development

The simplest approach to generating a set of realizations consistent with our set of coarse
scale parameters is to run a KMC simulation, just as is done for the evolution of the fine
scale dynamics during the EFPI process, but with the coarse variables constrained in some
way to equal the intended values. However, applying general constraints within a Monte
Carlo simulation (either MMC or KMC) is not trivial, and requires that the PDF of the
constrained system be known. The form of this PDF is assumed to be that derived using
the maximum entropy principle, Equation (4.16).

Before forming our PDF, we note that in addition to the ensemble means and standard
deviations of the leading Fourier sine modes, we expect our PDF to be dependent on the
total energy of the system. To see that this must be true, consider what results from an
unconstrained energy: higher modes of the system, which are independent of the constrained
modes, can grow without bound, which is clearly not physical. To avoid this, we will assume
that our PDF depends on the energy in the same way as the unconstrained PDF used to
evolve the fine scale dynamics: through a term proportional to exp (−β0EI).

Combining this with the form of the maximum entropy PDF given in Equation (4.16),
and including constrained functions B1, B3, σB1 , and σB3 , gives:

PI = Z−1 exp
[
−β0EI − β1B1I − β3B3I − α1

(
B1I − B̄1

)2 − α3

(
B3I − B̄3

)2]
(4.33a)

Z =
∑

I

exp
[
−β0EI − β1B1I − β3B3I − α1

(
B1I − B̄1

)2 − α3

(
B3I − B̄3

)2]
(4.33b)

A few remarks on this PDF:

• The notation B1I and B3I is used to denote the Fourier sine coefficients computed at
state I, and EI is the energy of state I, i.e. EI = E(hI). Note that we have switched
in this section to using uppercase I to denote the state, rather than lowercase i which
may refer to the site; i.e. hi and Ei are the height and energy of site i, while hI and
EI are the vector of all heights and the total energy for a given state I.

• Rather than constraining the standard deviations directly, we constrain the square of
each standard deviation, i.e. the variance. This is done because the variance can be
written as an ensemble average (it is the ensemble average of squared fluctuations),
and the maximum entropy principle is used to constrain ensemble averages.

• The Lagrange multipliers enforcing the constraints (the values of λk in Equation 4.16)
are now β1, β3, α1, and α3, enforcing respectively the goal values B1, B3, σB1 , and σB3 .

• Comparing with Equation (4.16), we recognize the energy term as a constraint on the
ensemble average of the total system energy, with Lagrange multiplier β0. However,
we do not prescribe a given value for the system energy, just as we do not prescribe
an average energy for the KMC simulations used to simulate the fine scale dynamics.
Instead, we prescribe the Lagrange multiplier to be β0 = 1/kBT , just as for the fine
scale evolution.

78

• The terms weighted by α1 and α3 are the squared differences with respect to B̄1 and
B̄3, which denote the given, “goal” values of the ensemble averages of B1 and B3.
Only for the correct choice of Lagrange multipliers are these goal values equal to the
actual averages 〈B1〉 and 〈B3〉 that would be computed directly from the PDF. For
that choice of Lagrange multipliers, the quantities constrained by α1 and α3 are equal
to the variances of B1 and B3 according to the standard definition.

4.4.3 Solution for the Lagrange Multipliers

As in Section 4.3, once the form of the PDF has been defined as in Equation (4.33), the
problem remains to solve for the Lagrange multipliers. It would be straightforward to com-
pute or approximate these multipliers analytically, but for one complication: the energy of
the system, EI , is not independent of the Fourier coefficients.

To demonstrate the ramifications of this, and to make some analytical headway, we start
by making the approximation that the site heights can take any real value, rather than just
integers. In this case the heights can be written as a sum of modes whose coefficients can
also take any real value:

hi =

nφ∑
k=1

Ckφk(xi, yi) (4.34)

where φk(x, y) are the set of modes and Ck are the coefficients. For the case of our 3D
solid-on-solid model, these modes can be taken as the set of Fourier modes, including modes
that vary in the y direction. We assume that the total mass of the system is conserved,
so that the sum of all site heights is constant. Because of this constraint, the number of
degrees of freedom in the system, and therefore the number of modes, is one less than the
number of sites in the array: nφ = LxLy − 1. We will take the first two modes to be the two
odd-numbered Fourier sine modes, so that C1 = B1 and C2 = B3.

Since the coefficients can take any value, the partition function Z given in (4.33b) is no
longer a sum over discrete states, but an integral over all possible values of all of the modal
coefficients, including B1 and B3:

Z =

∫ +∞

−∞
. . .

∫ +∞

−∞
exp
[
−β0E(B1, B3, C3, . . . , Cnφ

)− β1B1 − β3B3

− α1

(
B1 − B̄1

)2 − α3

(
B3 − B̄3

)2]
dB1dB3dC3dC4 . . . dCnφ

(4.35)

In this expression the dependence of the energy on the modal coefficients has been made
explicit. This dependency makes it impossible to factor this integral any further without
making some approximations.

As a first step in approximating the partition function, we will decompose the energy
into two components, the first capturing the dependence on B1 and B3, the second the
dependence on the other Ck coefficients:

E(B1, B3, C3, . . . , Cnφ
) = E0(B1, B3) + E ′(B1, B3, C3, . . . , Cnφ

) (4.36)

79

where E0(B1, B3) is defined as the minimum energy over all possible values of the Ck coeffi-
cients. That is,

E0(B1, B3) ≡ E(B1, B3, C
min
3 , . . . , Cmin

nφ
) (4.37)

where the coefficients Cmin
k are the values that give the minimum energy. The second part of

the energy decomposition, E ′, is then by definition positive and equal to zero when Ck = Cmin
k

for all k ≥ 3.

We can further approximate E0(B1, B3) by noting that if α1 and α3 are positive and of
large enough value in Equation (4.35), the corresponding terms in the exponential will drive
the integrand to zero except where (B1 − B̄1)

2 and (B3 − B̄3)
2 are small; in other words,

states have low probabilities except in the vicinity of B1 = B̄1 and B3 = B̄3. This justifies a
Taylor expansion of E0 about these values, in which we keep only the first order terms:

E0(B1, B3) ≈ E0(B̄1, B̄3) +
∂E0

∂B1

(B1 − B̄1) +
∂E0

∂B3

(B3 − B̄3) (4.38)

The second part of the energy, E ′, can be expanded about the minimum coefficient values,
Cmin

k . In a typical Taylor expansion about a minimum function value of zero, the leading
order terms would be of second order. However, a simple Taylor expansion is not appropriate,
because the energy may in fact be a discontinuous function of some of the Ck values at the
minimum, particularly if the energy depends on absolute values, as does the SOS model
energy. To account for this, we will separate the coefficients into two sets: k ∈ K1, for which
the dependence of E ′ on Ck is continuous, and k ∈ K2, for which the dependence of E ′ on
Ck is discontinuous at Cmin

k . We can write an expansion of E ′ as:

E ′(B1, B3, C3,· · · , Cnφ
) =

∑
k∈K1

1

2

∂2E

∂C2
k

(B1, B3)(Ck − Cmin
k)2 +

∑
k∈K2

∣∣ ∂E
∂Ck

(B1, B3)
∣∣∣∣Ck − Cmin

k

∣∣
(4.39)

It has been assumed that the dependence on Ck for k ∈ K2 is symmetric, so that to leading
order it can be written in terms of the absolute value, and the absolute value of the partial
derivative is equal on both sides of the discontinuity. However, we will see in the ensuing
analysis that the exact form of this expansion is not crucial, since this term will not contribute
to the approximation for the Lagrange multipliers. It is important to note, however, that
the partial derivatives in (4.39) may themselves depend on B1 and B3.

This decomposition and expansion for the energy can be substituted into the expression

80

for the partition function, Equation (4.35). After some rearrangement, we obtain:

Z ≈
∫ +∞

−∞

∫ +∞

−∞
exp
[
−
(
β0
∂E0

∂B1

+ β1

)(
B1 − B̄1

)
− α1

(
B1 − B̄1

)2]
exp
[
−
(
β0
∂E0

∂B3

+ β3

)(
B3 − B̄3

)
− α3

(
B3 − B̄3

)2]
[∏

k∈K1

(∫ +∞

−∞
exp
[
−1

2
β0
∂2E

∂C2
k

(Ck − Cmin
k)2

]
dCk

)]
[∏

k∈K2

(∫ +∞

−∞
exp
[
−β0

∣∣ ∂E
∂Ck

(B1, B3)
∣∣∣∣Ck − Cmin

k

∣∣]dCk

)]
dB3dB1 (4.40)

Here we have taken advantage of the fact that multiplying the partition function by a constant
does not change the statistics of the system, as long as the same factor is applied to the
exponential term in the PDF. To see that this is true, note that ensemble averages are
related to derivatives of lnZ (Equation 4.17); multiplying Z by a constant increases lnZ by
an additive constant, which does not contribute to the derivative. This has allowed us to
remove a factor of exp

[
−β0E0(B̄1, B̄3)

]
in (4.40), and also to write everything in terms of

(B1− B̄1) and (B3− B̄3). Strictly speaking we should use a different symbol for the partition
function in (4.40) to reflect this multiplicative constant, but throughout this section we will
assume that such constants can be absorbed into Z an avoid introducing more notation.

The integrals in Ck can be evaluated analytically, giving:

Z ≈
∫ +∞

−∞

∫ +∞

−∞
exp
[
−
(
β0
∂E0

∂B1

+ β1

)(
B1 − B̄1

)
− α1

(
B1 − B̄1

)2]
exp
[
−
(
β0
∂E0

∂B3

+ β3

)(
B3 − B̄3

)
− α3

(
B3 − B̄3

)2]
((

2π

β0

)M1/2 ∏
k∈K1

(
∂2E

∂C2
k

(B1, B3)

)−1/2
)

((
2

β0

)M2 ∏
k∈K2

∣∣ ∂E
∂Ck

∣∣−1

)
dB3dB1 (4.41)

where M1 and M2 are the number of modes k in the sets K1 and K2, respectively.

To complete the approximation, we must estimate the dependence of the partial deriva-
tives of E on Ck on the variables B1 and B3. Although it is almost certainly not universally
true, we have found both through numerical experiments and analysis of simple cases that
typically, the second derivative with respect to Ck behaves as 1/B1 for k ∈ K1, and that
the first derivative does not depend strongly on either B1 or B3 for k ∈ K2. Using these
estimates, and again noting that multiplying Z by a constant factor does not affect statistics,

81

allows us to write:

Z ≈
∫ +∞

−∞
B

M1/2
1 exp

[
−
(
β0
∂E0

∂B1

+ β1

)(
B1 − B̄1

)
− α1

(
B1 − B̄1

)2]
dB1

×
∫ +∞

−∞
exp
[
−
(
β0
∂E0

∂B3

+ β3

)(
B3 − B̄3

)
− α3

(
B3 − B̄3

)2]
dB3 (4.42)

Finally, by expanding the term B
M1/2
1 about B̄1, we can incorporate this term into the

exponential:

B
M1/2
1 = exp

[M1

2
lnB1

]
≈ exp

[M1

2

(
ln B̄1 +

1

B̄1

(B1 − B̄1)−
1

2B̄1
2 (B1 − B̄1)

2

)]
≈ B̄1

M1/2
exp
[M1

¯2B1

(B1 − B̄1)−
M1

4B̄1
2 (B1 − B̄1)

2
]

(4.43)

Substituting into the expression for Z and again removing multiplicative constants leaves:

Z ≈
∫ +∞

−∞
exp
[
−
(
β0
∂E0

∂B1

− M1

2B̄1

+ β1

)(
B1 − B̄1

)
−
(
α1 +

M1

4B̄1
2

)(
B1 − B̄1

)2]
dB1

×
∫ +∞

−∞
exp
[
−
(
β0
∂E0

∂B3

+ β3

)(
B3 − B̄3

)
− α3

(
B3 − B̄3

)2]
dB3 (4.44)

This partition function is finally in a form that can be used to compute analytically the
mean and standard deviation of the coarse scale variables B1 and B3, and thus solve for the
Lagrange multipliers. In fact, it is now easy to see by inspection that the following choice of
variables leads to the desired statistics:

β1 = −β0
∂E0

∂B1

+
M1

2B̄1

(4.45a)

β3 = −β0
∂E0

∂B3

(4.45b)

α1 =
1

2σ2
B1

− M1

4B̄1
2 (4.45c)

α3 =
1

2σ2
B3

(4.45d)

With these values for the Lagrange multipliers, the partition function takes the simple form:

Z =

∫ +∞

−∞
exp
[
− 1

2σ2
B1

(
B1 − B̄1

)2]
dB1 ×

∫ +∞

−∞
exp
[
− 1

2σ2
B3

(
B3 − B̄3

)2]
dB3 (4.46)

This partition function has the standard Gaussian form in each variable and gives means of
B̄1 and B̄3, and standard deviations of σA1 and σA3 .

82

The derivation of these values required many approximations, and in general the results
given in (4.45) are only meant as an estimate, a starting point for an iterative solution for
a more precise set of multipliers. This iterative approach will be outlined in Section 4.4.5.
In particular, the value of M1, the number of modes for which the dependence of energy on
the modal coefficient Ck is continuous at the minimum value, is difficult to compute for real
systems and must itself be estimated. However, for some simple systems, this approximate
partition function can be computed in more detail and shown to give good results. An
example of such a simple system is shown in the next section.

For clarity, it should be pointed out that the approximate partition function derived
here is only meant to help derive approximate values for the Lagrange multipliers, and to
understand how the interdependency of the modal coefficients and the system energy affects
the form of the PDF. Once initial estimates have been made for the Lagrange multipliers, all
stochastic simulations, whether to solve iteratively for more precise multiplier values or to
generate realizations in the lift operator, use the full form of the PDF given by the maximum
entropy principle in Equation (4.33).

4.4.4 A Simple Example of the Maximum Entropy Partition Func-
tion

Consider a periodic 2D system with length Lx (equivalent to a 1D system with thickness
Ly = 1). To simplify analysis, we will assume that although the system is described by Lx

discrete sites, these sites can have any height (i.e. hi is not limited to integers, as in the
real SOS model). Furthermore, shape changes are such that only 3 modes of the system
are nonzero: the first and third Fourier sine modes parameterized by B1 and B3, along with
the first cosine mode, which is parameterized by A1 (see Equation 4.31). By the notation
introduced in the previous section,, we have nφ = 3, and C3 = A1. The height profile is
given by:

h(xi) = B1 sin

(
2πxi

Lx

)
+B3 sin

(
6πxi

Lx

)
+ C3 cos

(
2πxi

Lx

)
. (4.47)

The system energy, normally written as a sum of site energies (Equation 4.27), can be
approximated as a continuous integral (we choose bond energy J = 1):

E =

∫ Lx

0

∣∣∣∂h
∂x

∣∣∣dx (4.48)

Alternatively, the system energy can be thought of as summing the absolute values of each
peak-to-valley distance in the function; thus the energy of a pure sine wave is equal to 4
times the amplitude.

We will choose goal values of B̄1 = 4.0, B̄3 = 0.0, σB1 = 0.5, and σB3 = 0.1. Now
we need to compute the dependence of the energy on the coefficients. Even for this simple
system, the absolute value in the energy function makes it difficult to write this dependency

83

for arbitrary values of the coefficients. However, for small values of B3, we have:

E0(B1, B3) = 4B1 − 4B3 (4.49)

To see that this is true, consider that when B3 = 0, E0 is 4 times the amplitude of the sine
wave (E0 = 4B1). Perturbing this profile by a sine wave with wavelength Lx/3 decreases the
amplitude by an amount B3 at both extremes, giving a new energy of E0 = 4(B1 −B3).

The perturbation to the energy due to the C3 coefficient can be approximated by again
considering only the vicinity of B3 = 0. In that case, the height profile is:

h(xi)
∣∣∣
B3=0

= B1 sin

(
2πxi

Lx

)
+ C3 cos

(
2πxi

Lx

)
. (4.50)

which we recognize as a phase-shifted sine wave with amplitude (B2
1 + C2

3)1/2. Thus the
energy is 4(B2

1 +C2
3)1/2, which is continuous in C3, the minimum value is Cmin

3 = 0, and the
second partial derivative of energy with respect to C3 at the minimum is:

∂2E

∂C2
3

=
4

B1

(4.51)

Note that this has the 1/B1 dependency noted in the previous section for typical modes with
k ∈ K1.

Summarizing, we have ∂E0

∂B1
= 4, ∂E0

∂B3
= −4, and M1 = 1. Using Equation (4.45) gives

β1 = 0.125 − 4β0, β2 = 4β0, α1 ≈ 1.984, and α3 = 50 (recall that β0 = 1/kBT is a given
parameter of the simulation). We have written a small Metropolis Monte Carlo simulation
code in Matlab to use the PDF given in (4.33) to generate a number of realizations by
choosing trial moves that perturb one of the 3 active modes of the system, at random, by a
small increment of random size. The resulting set of realizations is consistent with the PDF
in (4.33), and from these we can compute the mean and standard deviation of each variable
of interest.

Figure 4.1 shows the results of this simulation, using 106 MMC steps, system size Lx = 20
and a temperature of kBT = 1.0. These two plots compare histograms of the values of B1 and
B3 with the Gaussian distribution generated using the desired mean and standard deviation
for each variable, as in Equation (4.46); the agreement is very good. The mean values
computed in the simulation are 〈B1〉 = 3.979, 〈B3〉 = −0.010, σB1 = 0.518, and σB3 = 0.099.
These are all very close to the specified goal values, demonstrating that we have achieved
our goal of finding values of the Lagrange multipliers that give the desired statistics, at least
for this simple system.

It is interesting to explore what happens when the Lagrange multipliers are chosen more
arbitrarily. Suppose that we näıvely choose values of the Lagrange multiplier that, when
substituted into (4.33), more closely mimic a Gaussian form of the PDF. That is, choose
β1 = β3 = 0, α1 = 1/(2σ2

B1
), α3 = 1/(2σ2

B3
); when substituted into (4.33), these values

give a partition function is similar to that in (4.46), but include a dependence on energy
(we emphasize again that it is the full PDF in (4.33) that is used in the MMC simulation,

84

(a) (b)

Figure 4.1. MMC results for a simplified 2D system, using
Lagrange multipliers computed from Equation (4.45). Blue
bars are histograms of states generated in the simulation,
showing distribution of variables (a) B1 and (b) B3. Red
lines show Gaussian distribution computed using goal values
of mean and standard deviation for each variable, P (B) =
exp

[
(B − B̄)2/(2σ2)

]
.

including the energy term). Results of the simulation using these values are shown in Figure
(4.2). Now the comparison with the desired PDF is poor, especially for B1. Computed
statistics are 〈B1〉 = 3.036, 〈B3〉 = 0.026, σB1 = 0.498, and σB3 = 0.098. Although standard
deviations are well-constrained, the mean values are far from the goals. We can conclude from
this that the modifications given in (4.45) to the “näıve” values of the Lagrange multipliers
are necessary to achieve the desired statistics; these modifications come from the dependence
of the PDF on the system energy.

4.4.5 Iterative Solution for the Lagrange Multipliers

With an initial guess in hand for the Lagrange multipliers, based on an analytical approxi-
mation, we now seek to solve more precisely for the values of the multipliers that give the
desired statistics in a real simulation of a complex system. As in the general approach out-
lined in Section 4.3, we will use an iterative method to achieve this goal. However, there are
several differences between the approach we will take here and the methods that have been
applied previously in the literature, as described in Section 4.3:

• We will use a KMC algorithm, rather than the MMC algorithm applied in the literature
(as in Algorithm 1), to compute realizations; in this way we hope to alleviate the
“critical slowing down problem” noted elsewhere [26].

85

(a) (b)

Figure 4.2. MMC results for a simplified 2D system, using
Lagrange multipliers β1 = β3 = 0, α1 = 1/(2σ2

B1
), α3 =

1/(2σ2
B3

). Blue bars are histograms of states generated in
the simulation, showing distribution of variables (a) B1 and
(b) B3. Red lines show Gaussian distribution computed using
goal values of mean and standard deviation for each variable,
P (B) = exp

[
(B − B̄)2/(2σ2)

]
.

• We are including a constraint on the standard deviation of each of the coarse scale
variables of interest, which drives the probability distribution function to zero if the
coarse variables at a given state are too far away from the desired mean values. This
leads to tighter control of the coarse variables and better convergence behavior, espe-
cially when the desired standard deviation is small (i.e. the Lagrange multipliers α are
large).

• We have a reasonable initial guess for the multipliers (Equation 4.45) from which to
start our iterative algorithm.

• Instead of a nonlinear conjugate-gradient method, we use a very simple quasi-Newton
method in which the Hessian matrix of the system is assumed to be diagonal, i.e. each
statistical quantity (mean or standard deviation) that we are trying to constrain is
assumed to be a function of a single Lagrange multiplier.

We will make this last point clearer by presenting our iterative algorithm in more detail.
Returning to the notation of Section 4.3.2, we want to solve for the vector of Lagrange
multipliers λ that minimizes the scalar quantity G(λ) defined in Equation (4.24). Denote
the derivatives of G with respect to λ as g; the minimization problem is equivalent to setting
g = 0:

gk =
∂G

∂λk

= Fk − 〈fk〉 = 0 (4.52)

86

where, as previously, Fk are the desired values of the constrained ensemble averages of
function fk. To make the connection with the case in which we constrain the means and
variances of the Fourier coefficients B1 and B3, we have:

λ = {β1, β3, α1, α3} (4.53a)

F = {B̄1, B̄3, σ
2
B1
, σ2

B3
} (4.53b)

f = {B1, B3, (B1 − 〈B1〉)2, (B3 − 〈B3〉)2} (4.53c)

Note that although our PDF (Equation 4.33) includes a Lagrange multiplier β0 that multi-
plies the system energy, we do not include either β0 or the energy in our vectors λ, F or f ,
because we are not constraining the energy. In all cases we use the same value of β0 used
for the fine scale simulations, i.e. β0 = 1/kBT .

The algorithm we use is based on Newton’s method, which we write for a given iteration
as:

g(λn+1) = 0 ≈ g(λn) + B∆λn (4.54)

where superscripts denote an iteration number, and B is an approximation to the Hessian
matrix:

Bjk ≈
∂2G

∂λj∂λk

=
∂gk

∂λj

(4.55)

Note that in a true Newton method B would be exactly equal to the Hessian, while for a
quasi-Newton method it is only an approximation. Solving for ∆λn and using it to update
λ gives:

∆λn = −B−1g(λn) (4.56a)

λn+1 = λn + ∆λn = λn −B−1g(λn) (4.56b)

This completes an iteration, but it remains to specify the approximation used for B. A
typical strategy in a quasi-Newton method is to use a secant method, in which approximate
Hessian is computed from the n and n− 1 states as:

g(λn)− g(λn−1) = B(λn − λn−1) = B∆λn−1 (4.57)

If λ is a vector of dimension greater than one, B is underdetermined, and various quasi-
Newton methods take different strategies to solve for B. In our case, we will make the
simple approximation that B is diagonal, Bjk = Bjjδjk, leading to:

Bjj =
gj(λ

n)− gj(λ
n−1)

λn
j − λn−1

j

(4.58)

and

λn+1
j = λn

j −
(λn

j − λn−1
j

gn
j − gn−1

j

)
gn

j (4.59)

This expression uses the shorthand gn
j ≡ gj(λ

n). This defines a single iteration of the
algorithm.

87

At each iteration, the function g must be computed by calculating the ensemble averages
of the functions fk for a given set of Lagrange multipliers. As mentioned above, this is done
using a KMC simulation that uses the PDF given in Equation(4.33) in place of the usual
canonical ensemble PDF. That is, we write the PDF as:

PI = Z−1 exp [−H(hI ,λ)] (4.60)

where now
H(hI ,λ) ≡ β0E(hI) +

∑
k

λkfk(hI) (4.61)

Note that the PDF we use for these KMC simulations is similar to that used in the MMC
simulations of Section 4.3.1, but with a more explicit dependence on system energy and the
multiplier β0. The expected rate for an event transforming the system from state 1 to state
2 is now

P1→2 =

{
1
8

if ∆H12 ≤ 0,
1
8
e−∆H12 if ∆H12 > 0

(4.62)

Possible system events are again chosen to be atom hops between neighboring sites. Ensem-
ble averages of the functions of interest are computed by collecting data points at regular
intervals in the computed time (and not at regular intervals in the number of steps, which
for KMC would give incorrect statistics). The mean of these data points gives the ensemble
average over the ensemble defined by the given PDF. These ensemble averages are the values
〈fk〉,

Iterations can be continued either until the norm of the vector g is less than some toler-
ance, or a maximum number of iterations is reached. The full algorithm is given in Algorithm
2.

4.5 Results

In this section we present some preliminary results of the use of our newly developed lift
operator on SOS model systems. All of our tests are similar to the lift/restrict operator
tests described in Section 3.4.1, in which the operators are applied repeatedly as the system
evolves in time, but without a projective integration step. Ideally, restricting to a set of
coarse variables followed by lifting back to a set of re-initialized fine scale realizations should
have minimal effect on either the values or the time evolution of the coarse variables.

In these tests, we are interested in several things:

• The effect of system size on our ability to effectively apply lifting operators

• The effect of leaving Fourier coefficient B3 unconstrained

• The effect of choosing not to update β3, the Lagrange multiplier associated with B3,
during the iterative solution

88

Algorithm 2 Iterative quasi-Newton algorithm to solve for the Lagrange multipliers

1: Given a set of functions of interest f (e.g. the coarse-scale Fourier coefficients of a surface
profile) and goal values F for the ensemble averages of these functions (the means and
variances).

2: Choose a maximum number of iterations nmax, and a residual tolerance ε
3: Set the initial value of the set of Lagrange multipliers λ0 to be used in the maximum

entropy PDF using Equation 4.45
4: Call a KMC simulation to compute 〈f〉(λ0), and set g0 = F− 〈f〉(λ0).
5: Compute the norm of the residuals, r = ‖g0‖
6: if r ≤ ε then
7: Stop.
8: end if
9: Choose a small initial value ∆λ0, and set λ1 = λ0 + ∆λ0.

10: Call a KMC simulation to compute 〈f〉(λ1), and set g1 = F− 〈f〉(λ1).
11: for n = 1 to nmax do
12: Compute the norm of the residuals, r = ‖gn‖
13: if r ≤ ε then
14: Stop.
15: end if
16: Update λ via λn+1

j = λn
j − gn

j

(
λn

j − λn−1
j

)
/
(
gn

j − gn−1
j

)
.

17: Call a KMC simulation to compute 〈f〉(λn+1), and set gn+1 = F− 〈f〉(λ0).
18: end for

4.5.1 Test 1: Lx = 40, Ly = 1

We have first applied our results to a 2D system of length Lx = 40, similar to the systems
explored in Chapter 3. For these 2D simulations, our initial condition is a sine wave with
wavelength Lx and an initial amplitude of b0 = 5.5 (see Equation 4.29). The system is
run for a total time of ttot = 2000, and the restrict and lift operator is applied at intervals
of tR/L = 400. The system temperature is kBT = 0.8, and number of realizations in the
ensemble NR is 10, 000. These parameters, along with those used for all other example
simulations in this chapter, are given in Table 4.1.

In previous 2D simulations shown in Chapter 3, the evolving surface was well-described by
the first Fourier mode, parameterized by B1. We are interested in exploring how important
the variable B3 is for reproduction of the coarse dynamics. We therefore test three cases:
1) Set β3 = α3 = 0 to leave B3 completely unconstrained, 2) Set β3 and α3 according to
the approximate initial conditions computed from (4.45), but do not update them in the
iterative scheme to improve efficiency, and 3) Update β3 and α3 at each iteration. In this
last case, we have chosen to constrain the standard deviation of B3 to a small value of 0.05
at each lift step. We have found that a small value of σB3 improves the robustness of the
iterative method because B3 is constrained to a smaller neighborhood around the goal mean
value, B̄3. This adjustment of σB3 has not been found to affect the dynamics of the system.

89

Table 4.1. Parameters used in lift operator example simu-
lations

Section Lx Ly b0 ttot tL/R kBT NR

Test 1 4.5.1 40 1 5.5 2× 103 4× 102 0.8 1× 104

Test 2 4.5.2 40 4 5.5 1.2× 104 3× 103 0.8 2× 103

Test 3 4.5.3 80 32 5.5 6× 104 3× 104 0.8 96
Test 4 4.5.4 120 32 15.5 2× 105 1× 105 0.8 96

Results are plotted in Figures 4.3 and 4.4. All cases are plotted together against a
continuous simulation over the total time, with no restrict or lift operators applied; this
continuous simulation can be treated as the “correct” solution. Figures 4.3(a) and 4.3(b)
show average coefficients 〈B1〉 and 〈B3〉, respectively, and Figure 4.3(c) shows the standard
deviation in B1. All three cases show good agreement with the continuous curve, with
the exception of the B3 for the case with β3 = α3 = 0, for which B3 is unconstrained.
Interestingly, for this unconstrained case B3 jumps to a value close to the long-time value
eventually reached by the other cases. The conclusion is that this is a long-time equilibrium
value that has not yet been reached by the continuous solution for B3 by time t = 400.
This is a validation of the maximum entropy method; when Lagrange multipliers are used
properly the value of B3 can be constrained to a non-equilibrium value, but otherwise it finds
a value that is at equilibrium with respect to the rest of the system. Also interesting is that
even in case 2 (fixed values of β3 and α3), B3 is constrained closely to the goal value. This
indicates that, at least for this simple system, our approximated values in Equation (4.45)
are good estimates for the ideal values of those multipliers. The average height profiles just
after application of the first lift operation at time t = 400 are plotted in Figure 4.3(d), and
compared with the profile just before the application of the restrict/lift. Again, agreement
is good.

However, a plot of the evolution of the system energy (Figure 4.4(a)) shows some dis-
agreement with the continuous solution for all cases, beginning at the first lift operation. A
possible reason for this discrepancy is shown in Figure 4.4(b), which compares the evolution
of the average total amplitude of the leading order Fourier mode, 〈(A2

1 +B2
1)

1/2〉, where A1 is
the leading Fourier cosine mode. Comparing with Figure 4.3(a), this jump is clearly coming
from a non-zero value of A1 in the lifted cases. We conclude that this leading cosine mode
is finding a non-zero equilibrium value in the maximum entropy lifting operation, but that
because this is a long-wavelength, slow mode, it has not yet had time to reach this equilib-
rium value in the continuous solution. Interestingly, this difference is not manifest in the
average height profiles (Figure 4.3(d)). One way to think about this is that each realization
generated by the lift operation has a random phase shift that averages to zero, giving the
correct average height profile but an incorrect average amplitude. To correctly deal with
this, we could either include A1 in the list of coarse variables to be constrained (since it is
in fact a slow variable that parameterizes the system), or to remove this random phase shift
from each state that get generated during our lift operation. We have not yet tested either
of these strategies.

90

 4.5

 4.55

 4.6

 4.65

 4.7

 4.75

 4.8

 4.85

 4.9

 0 500 1000 1500 2000

<
B

1>

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Case 3: β3, α3 updated
Continuous Simulation

(a)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 500 1000 1500 2000

<
B

3>

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Case 3: β3, α3 updated
Continuous Simulation

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

σ B
1

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Case 3: β3, α3 updated
Continuous Simulation

(c)

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

<
h>

x

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Case 3: β3, α3 updated
Pre-lift height profile

(d)

Figure 4.3. Comparison of effects on system evolution
of 1D, Lx = 40 system with lift operator applied at fixed
intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉 vs. time, (c) σB1 vs.
time, (d) Average height profile after the first lift operation
at t = 400, compared with profile before lifting.

91

 20

 22

 24

 26

 28

 30

 32

 0 500 1000 1500 2000

E
ne

rg
y

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Case 3: β3, α3 updated
Continuous Simulation

(a)

 4.5

 4.6

 4.7

 4.8

 4.9

 5

 5.1

 0 500 1000 1500 2000

<
(A

12 +
 B

12)1/
2 >

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Case 3: β3, α3 updated
Continuous Simulation

(b)

Figure 4.4. Comparison of effects on system evolution of
2D, Lx = 40 system (Test 1) with lift operator applied at
fixed intervals. (a) Ensemble-averaged energy vs. time, (b)
〈(A2

1 + B2
1)1/2〉 vs. time. See text for discussion.

4.5.2 Test 2: Lx = 40, Ly = 4

We now demonstrate that, unlike in the 2D case, the inclusion of the coarse parameter B3

is important in capturing the dynamics correctly in 3D. We test on a fairly small system of
size 40 × 4; other parameters are given in Table 4.1. Two cases are run for this system: 1)
Set β3 = α3 = 0, and 2) Set β3 and α3 according to the approximate initial conditions, but
do not update during the iterative solve.

The time histories of 〈B1〉, 〈B3〉, and σB1 , as well as the average height profiles after the
first lift operation, are shown in Figure 4.5. In this case, the dynamics is not well preserved
unless B3 is constrained through the use of the Lagrange multipliers. The reason is clear from
looking at the height profiles (Figure 4.5(d)); when B3 is unconstrained, that mode takes
on a value that leads to a “flattening” of the profile peaks. It appears that this flattening
leads to a lower total energy of the system. The continuous system has not yet reached this
lower-energy profile, and so the real system dynamics can only be reproduced by constraining
B3 to evolve as it does in the continuous system. Note that the profiles in Figure 4.5(d) are
averaged both over the ensemble and over the y direction, to give profiles that depends on
x.

4.5.3 Test 3: Lx = 80, Ly = 32

As the system size increases, we find that the initial estimate for the Lagrange multipliers
is less accurate, and it is necessary to update β3 during the iterative solution. This is
demonstrated on a system of size 80×32; other parameters are given in Table 4.1. Note that

92

 4.35

 4.4

 4.45

 4.5

 4.55

 4.6

 4.65

 4.7

 4.75

 4.8

 4.85

 0 2000 4000 6000 8000 10000 12000

<
B

1>

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Continuous Simulation

(a)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 2000 4000 6000 8000 10000 12000

<
B

3>

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Continuous Simulation

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2000 4000 6000 8000 10000 12000

σ B
1

t

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Continuous Simulation

(c)

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30 35 40

<
h>

x

Case 1: β3 = α3 = 0
Case 2: β3, α3 fixed
Pre-lift height profile

(d)

Figure 4.5. Comparison of effects on system evolution
of 3D, Lx = 40, Ly = 4 system (Test 2) with lift operator
applied at fixed intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉 vs.
time, (c) σB1 vs. time, (d) Height profile, averaged along the
y direction and over the ensemble, after the first lift operation
at t = 3000, compared with profile before lifting.

93

as the system size increases, longer simulation times are necessary to capture evolution of
the system. Two cases are compared: 1) β3 fixed at its initial condition, and 2) β3 updated
during the iterative solution.

The time histories of 〈B1〉, 〈B3〉, and σB1 , as well as the average height profiles after
the first lift operation, are shown in Figures 4.6. The value of B3 is not well-constrained
unless β3 is included in the iterative update. For this system, the error in the reproduction
of B1 is actually larger when β3 is update than when it is fixed; however, we attribute this
to fluctuations in the system that lead to an imperfect solution in our iterative algorithm;
the numerical difference between the goal and realized average values of B1 is only around
0.02. We may be able to reduce this error by using a tighter tolerance on the iterative solve
or averaging over more realizations, both of which will increase computational cost.

The effects of the incorrect Fourier coefficient B3 are also seen in the profile shape (Figure
4.6(d)); the updated-β3 more closely matches the profile before lifting.

4.5.4 Test 4: Lx = 120, Ly = 32

The largest system we have tested is size 120×32, with other parameters given in Table 4.1.
For this system we ran with a larger initial amplitude of b0 = 15.5. As in Test 3, two cases
are run: 1) β3 fixed at its initial condition, and 2) β3 updated during the iterative solution.
Results are shown in Figure 4.7; as in Test 3, we conclude that the value of β3 must be
updated to properly constrain the B3 Fourier coefficient.

Figure 4.8 shows the full ensemble-averaged surface before and after lifting for Case 2,
with updated β3. There is a slight flattening of the peaks of the profile visible after lifting,
but otherwise the profile is well-predicted (in agreement with Figure 4.7(d), which shows the
y-averaged profiles).

4.6 Maximum Entropy Method: Conclusions

We have developed and implemented an algorithm based on the maximum entropy principle
that initializes a set of realizations based on the known means and standard deviations of
a small number of coarse scale variables. We have also demonstrated that by using this
lift operator, we are able to reproduce the time rate of change of the coarse variables in
our surface diffusion model, as long as care is taken to solve accurately for the Lagrange
multipliers that constrain our system.

However, there are some disadvantages to this method that make it difficult to apply to
real systems in its current form. The first, and most important, is computational expense.
Each iteration of the algorithm to solve for Lagrange multipliers requires a KMC simulation
that that must be run for long enough to obtain good statistics. Since our goal is to use this

94

 4.78

 4.8

 4.82

 4.84

 4.86

 4.88

 4.9

 4.92

 0 10000 20000 30000 40000 50000 60000

<
B

1>

t

Case 1: β3 fixed
Case 2: β3 updated
Continuous Simulation

(a)

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0 10000 20000 30000 40000 50000 60000

<
B

3>

t

Case 1: β3 fixed
Case 2: β3 updated
Continuous Simulation

(b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 10000 20000 30000 40000 50000 60000

σ B
1

t

Case 1: β3 fixed
Case 2: β3 updated
Continuous Simulation

(c)

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80

<
h>

x

Case 1: β3 fixed
Case 2: β3 updated
Pre-lift height profile

(d)

Figure 4.6. Comparison of effects on system evolution of
3D, Lx = 80, Ly = 32 system (Test 3) with lift operator
applied at fixed intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉 vs.
time, (c) σB1 vs. time, (d) Height profile, averaged along the
y direction and over the ensemble, after the lift operation at
t = 30, 000, compared with profile before lifting.

95

 14.55

 14.6

 14.65

 14.7

 14.75

 14.8

 14.85

 14.9

 0 50000 100000 150000 200000

<
B

1>

t

Case 1: β3 fixed
Case 2: β3 updated
Continuous Simulation

(a)

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 50000 100000 150000 200000

<
B

3>

t

Case 1: β3 fixed
Case 2: β3 updated
Continuous Simulation

(b)

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 50000 100000 150000 200000

σ B
1

t

Case 1: β3 fixed
Case 2: β3 updated
Continuous Simulation

(c)

-15

-10

-5

 0

 5

 10

 15

 0 20 40 60 80 100 120

<
h>

x

Case 1: β3 fixed
Case 2: β3 updated
Pre-lift height profile

(d)

Figure 4.7. Comparison of effects on system evolution of
3D, Lx = 120, Ly = 32 system (Test 4)with lift operator
applied at fixed intervals. (a) 〈B1〉 vs. time, (b) 〈B3〉 vs.
time, (c) σB1 vs. time, (d) Height profile, averaged along the
y direction and over the ensemble, after the lift operation at
t = 100, 000, compared with profile before lifting.

96

(a)

(b)

Figure 4.8. Comparison of ensemble-averaged heights for
the Lx = 120, Ly = 32 system (Test 4). (a) Before lift
operation. (b) After lift operation, using updated β3 (Case
2).

97

method together with a projective integration scheme in time to achieve speed-up, it may still
be possible to obtain a substantial gain with this method, as long as a large projection step
is possible. However, any gain in efficiency of our lift operation will lead to improvements in
the efficiency of the entire EFPI scheme.

One route to achieving this may be to derive better approximations for the initial values
of the Lagrange multipliers. We have shown in our calculations that for simple systems, the
approximate values given in Equation (4.45) give well-constrained values of the multipliers,
but that these estimates are less effective for larger systems in 3D. With more analysis, it
may be possible to achieve better estimates even in 3D. In particular, the correct value of
the parameter M1 in these estimates is unclear for 3D systems; we have typically set it equal
to the number of pure x-direction modes that are unconstrained, but more in-depth analysis
may lead to better results.

Another way to improve the method is to implement better quasi-Newton algorithms that
will speed up convergence compared with the simple approach presented in Section 4.4.5.
For example, Abramov [1] has shown improvements in efficiency for a similar maximum
entropy algorithm using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) technique. Such a
technique may also help reduce the effects of iteration-to-iteration fluctuations inherent in
our method, which otherwise can only be reduced by increasing the number of realizations
in the ensemble, which adds to computational expense. This approach should be studied
more thoroughly for our system.

4.7 Choice of Coarse Scale Variables

One topic that is important for EFPI, but that has not been explored in depth in our project,
is the choice of coarse scale variables. In our surface diffusion systems we have assumed that
the long-wavelength Fourier modes give a good parameterization of the slow manifold in
the system, but there is no reason to think a priori that this choice is optimal. We have
made progress through our use of the maximum entropy method lift operator, removing the
need for non-intuitive, higher-order statistics among our coarse variables. But the question
remains: For a general system, how can we find the smallest set of variables that fully
parameterizes the slow dynamics of the system?

This question is closely related to the very active research topics of dimensionality re-
duction and reduced order modeling. In this last section of the chapter, we summarize two
systematic approach for finding low-dimensional projections of high-dimensional spaces that
have been developed in recent years: diffusion maps, and proper orthogonal decomposition.

98

4.7.1 Diffusion maps

Tenebaum et al. [59] developed Isomap, which is a diffusion mapping technique capable of
finding a non-linear, low-dimensional embedding of a high-dimensional data set. Isomap uses
time snapshots of the full system and maps them to points in hyperspace. The algorithm
then finds an optimal lower-dimensional space using a distance measure between these points
in hyperspace. The cut-off for the size of the dimension is up to the user, but this method
does order the dimensions by the magnitudes of their eigenvalues. There is also Matlab code
available online for this procedure. 1

A data mining approach can be used to identify the optimal set of coarse variables
for a problem of our type. Such a method has been used by Sonday et al. for the Ising
model problem of a moving surface within a solid material, where the dimensionality of the
problem is large and there are no intrinsic macroscopic variables [54]. These authors use
a kinetic Monte Carlo simulator for the fine scale dynamics and a Fokker-Planck equation
governing the position of the surface at the coarse scale. Their lift operator is a combination
of simulated annealing alternating with KMC healing steps to get to the target fine scale
following time projection. Diffusion maps are a dimensionality reduction tool that can help
find the best slow manifold for a high-dimensional problem without relying on intuition.
The method helps determine which features are important to the overall system dynamics
by finding hidden variables that may not be slaved to macroscopic observables during a
simulation. It does this by looking at distances of snapshots of the simulation. The crux
of the method is providing the diffusion map with the best distance measure. This part is
not at all obvious or systematic for a general class of problems, but finding the dimension
and best coarse variables once a distance measure is defined is straightforward. Sonday et
al. [54] also discuss how to compare the correlation between the coarse variables found by
diffusion maps to physical observables that may be a more attractive option for the choice
of coarse scale variables.

4.7.2 Model reduction techniques: POD

Proper Orthogonal Decomposition (POD), also known as Principle Component Analysis
(PCA), is a way of rewriting a space-time solution by separating and ordering the time
dependent modes of that solution [5],

u(x, t) =
∑

k

φk(x)ak(t), (4.63)

where φk(x) are orthonormal functions (or vectors in discretized space) and ak(t) are the
time dependent modes with corresponding magnitudes λk. In order to solve for the optimal
set of φk’s, we can define a matrix over a given time interval T

Bij =
1

T

∫ to+T

to

u(xi, t)u(xj, t)dt

1http://isomap.stanford.edu/

99

and determine the basis functions via the eigenvalue problem,

Bijφk = λkφk.

However, it is clear from this setup that the basis functions are not unique, non-constant
in time, and perhaps also not the optimal basis functions for times outside of the interval
[to, to +T]. One needs to choose this time interval wisely in order for the basis to be optimal.
The time dependent modes can then be extracted using the face that the φk’s are orthogonal,

ak(t) =

∫
u(x, t)φk(x)dx.

The basic idea behind POD is that one can approximate a full solution by truncating the
infinite series in Equation 4.63 to obtain the best lower-dimensional description.

The Equation-free method has been used in practice with POD for incompressible Navier
Stokes equations by Sirisup et al [53]. The authors report good speed-up of their method on
a test problem of periodic flow around a cylinder.

100

Chapter 5

Design of Lift and Restrict Operators
for Equation-Free Projective
Integration of Vacancy Diffusion in
Solid Materials

5.1 Motivation

Our objective is to formulate a coarse scale representation of vacancy concentration in a solid
material to be used in the framework of equation-free projective integration (EFPI) as de-
veloped by Kevrekidis and colleagues. Use of EFPI requires the design and implementation
of consistent lift (transfer information from the coarse scale to the fine scale) and restrict
(transfer information from the fine scale to the coarse scale) operators. The definition of
consistency is such that, starting from a coarse scale description of vacancy concentration,
successive application of the lift and restrict operators does not change the coarse scale de-
scription. While not new, this objective of defining specialized operators that exchange fine
and coarse representations of material systems is complex. For example, work has been done
by Torquato and colleagues [67, 50, 60, 20, 21] to mathematically represent complex mi-
crostructures with a limited number of correlation and other statistical functions. This body
of research shows accuracy of fine scale reconstructions requires multiple coarse scale metrics
in order to establish even a minimal amount of consistency between the two representations.

In mathematical terms, cv represents the coarse scale variable of vacancy concentration
or, more accurately, a vacancy fraction equal to the number of vacancies (Nv) divided by the
number of atoms that would be present for a bulk lattice (i.e. the number of sites, Ns). This
is equivalent to mole fraction for an atomic system. At the atomic scale (our fine scale), cv
is determined through simple counting of unoccupied atomic lattice sites and is defined at a
system level.

At the coarse scale, cv is a localized quantity and is considered to be a function of spatial
position, cv(x, t). Practically, cv is evaluated at the nodal positions on a finite element (FE)
mesh that overlays the system of interest, i.e. cI = cv(xI , t). An example of such an atomic
system with an overlaying FE mesh is shown in Figure 5.1. Values of cv at an arbitrary

101

Figure 5.1. Atomic system of Cu atoms with vacancies and
an overlaying FE mesh of 125 nodes. Atoms are colored by
potential energy, with vacancies corresponding with clusters
of atoms at higher-than-bulk potential energy values.

spatial location between nodes is determined through the use of interpolation functions, as
will be defined shortly.

The set of nodal values C = {cI} is defined over the coarse scale domain, C ∈ RNn . In
general, the size of C is far less than the size of a set of variables defined at the fine scale,
in our case the atomic scale, i.e. c ∈ RNa where Na is the number of atoms and Nn � Na.
The coarse scale variable C is assumed to be a function of the fine scale variable c through
a restriction operator M:

C = Mc (5.1)

Similarly, a lifting operator µ can be introduced that maps the coarse scale description C to
a consistent fine scale description c, i.e.

c = µC. (5.2)

Mathematically, consistency equates to the condition Mµ = I, i.e. lifting followed by re-
stricting has no net effect on the coarse scale description. The lifting operator is non-unique
and involves the creation of information.

102

5.2 Restrict Operator

5.2.1 Estimation using Hardy’s approach

We seek to define a mathematical operator that quantifies the vacancy fraction cv localized
to the spatial position x. One obvious route is to define a localized number-density of atoms,
normalize it relative to a number-density expected for a bulk lattice and then subtract this
fraction from unity,

cv(x, t) = 1− ρn(x, t)

ρn0

. (5.3)

Defining ρn(x, t) can be accomplished using the method by Hardy [13, 65], who defined a
localization function ψ that spatially averages atomic properties to evaluate the equivalent
continuum property at a given position and time. Hence,

ρn(x, t) ≡
Na∑
α=1

ψ(xα − x) (5.4)

and

cv(x, t) = 1− Va

Na∑
α=1

ψ(xα − x), (5.5)

where the quantity Va = ρ−1
n0 is the volume per atom attributed to a bulk lattice. In general,

the localization function ψ(r) is non-negative, is of compact-support, has the dimensions
of inverse volume, and is normalized such that

∫
Ω
ψ(r)d3r = 1, where Ω is the domain of

interest containing the collection of atoms.

Equation (5.5) is not general in the sense that deformation of the material would have
the effect of changing the number-density, thereby leading to erroneous estimates of vacancy
fraction even in the case of a lattice with zero porosity. This equation can be modified to
account for deformation as such:

cv(x, t) = 1− VaJF

Na∑
α=1

ψ(xα − x), (5.6)

where JF = det(F) and F = ∂x
∂X

is the deformation gradient evaluated at position x. F itself
can be estimated using Hardy’s approach to calculate the displacement field:

u(x, t) =

∑Na

α=1m
αuα(t)ψ(xα − x)∑Na

α=1m
αψ(xα − x)

, (5.7)

where mα is the mass of atom α, and uα is the displacement of the atom from its reference
(initial) position. This definition for displacement field was proposed by Zimmerman et al.
[69]. As discussed by these authors in [69], Equation (5.7) can be differentiated with respect
to x to define a displacement gradient,

∇xu(x, t) =

∑Na

α=1m
α (uα(t)− u(x, t))⊗∇xψ(xα − x)∑Na

α=1m
αψ(xα − x)

, (5.8)

103

where ∇x ≡ ∂
∂x

, and F is found from the usual relation F = (1−∇xu)−1. Alternatively, the
displacement gradient can be defined using nodal values of displacement and the gradients
of the (dimensionless) interpolation functions associated with each node,

∇xu(x, t) =
Nn∑
I=1

ϕI(x)uI , (5.9)

where uI = u(xI , t) is the displacement of node I, ϕI is a dimensionless interpolation (shape)
function associated with node I and I ∈ Nn. Both equations (5.8) and (5.9) use Hardy’s
definition of velocity (v(x, t)) with the approximation of ignoring time dependency of the
localization function itself to connect v with u. This approximation is exact if reference
positions (X) instead of current positions (x) are used in the formulation. In such a case,
F = 1 +∇xu.

5.2.2 Estimation using atomic quadrature

In the previous section, we used Hardy’s approach to define a restriction operator for esti-
mating vacancy concentration at the coarse scale. Restricting ourselves to cases in which
only vacancy diffusion occurs and the material is otherwise undeformed, we choose to eval-
uate cv(x) at the coordinates of the nodal positions for an overlaying FE mesh. Using the
shorthand expression ψI(x

α) = ψ(xα − xI):

cI(t) = 1− Va

Na∑
α=1

ψI(x
α), (5.10)

It is important to note that localization functions ψI are distinct from conventional nodal
interpolation functions ϕI in the following ways:

1. They are different in terms of their units: ψI has units of inverse volume whereas ϕI

is dimensionless.

2. In general, they do not possess the same functional form nor have the same region of
influence.

3. FE mesh interpolation functions typically obey the partition of unity rule,
∑Nn

I=1 ϕI(x) =
1, while an equivalent relation for ψI does not necessarily exist.

These differences introduce a bit of inconsistency with regard to the use of an FE mesh and
nodal values of the field cv(x). Typically, spatially varying fields are expressed as summations
of products of nodal values and their interpolation functions, i.e. cv(x) =

∑Nn

I=1 cIϕI(x).
However, substitution of equation (5.10) into this expression does not result in the originating
expression given in (5.5).

104

In addition to these issues, we also note that in equation (5.10) we have used an assump-
tion by defining Va, the volume per atom attributed to a bulk lattice. Certainly, Va has a
well-understood meaning for a physical crystal. However, use of a FE mesh to spatially par-
tition a body presents an interesting problem in how to relate the subdivisions of elemental
or nodal volume to subdivisions of atomic volume. It must be the case that for a bulk crystal
where all atoms are occupying lattice sites, both the sum of nodal volumes and the sum of
atomic volumes must add up to the same value of the total volume of the crystal. However,
it is not clear that subsets of atomic volumes for all sites located within a single element will
sum to that element’s volume. When the discreteness of the mesh is uneven with respect
to the discreteness of the underlying atomic lattice in one or more spatial dimensions, it is
conceivable that different elements of the same size will contain different numbers of atomic
sites. In such a scenario, a uniform value of volume per atomic site will not be sufficient to
satisfy any site-element volume correspondence.

An alternative approach that can resolve these issues is to replace our localization func-
tions in equation (5.10) with the specific form ψI = V −1

I ϕI , where VI is the volume associated
with node I, and replace Va with a weight specific to the atomic site occupied (wα). Hence
our new expression for vacancy concentration at a given node is:

cI(t) = 1− 1

VI

Na∑
α=1

ϕI(x
α)wα. (5.11)

VI will be a constant for a uniform mesh that overlays an atomic system with periodic
boundary conditions. For a non-uniform mesh, the value of VI will vary for each node. For
a system where periodic boundary conditions were not used or not applied to the mesh,
VI would differ between internal and boundary nodes. Equation (5.11) essentially defines
our restrict operation, M, which maps the set of atomic positions {xα} to the set of nodal
vacancy concentration {cI} at any given instant of time. We emphasize the important
distinction that although we use the notation wα, the weight and the volume it represents
is associated with the site occupied by atom α, and not the atom itself.

5.2.3 Defining weights for atomic quadrature

Given a set of nodes Nn and elements Ne that overlap a region of atom sites Ns, we would
like to compute the best quadrature weight for each atomic site, w = {ws}, where s ∈ Ns.
By ‘best’, we mean that we seek to satisfy the criteria:

1. The sum of the weights should equal the known volume of the domain, Ω.

2. Integration of the shape functions associated with each node I ∈ Nn should yield the
known volume associated with the node, VI .

3. Variability of the weights should be as small as possible.

105

Here, we again make the distinction between atoms (α ∈ Na) and atomic sites (s ∈ Ns). In
equation (5.11) and its predecessors, we are referring to atoms present within our material
system, i.e. atomic lattice sites that are occupied. For the case where all sites are occupied
(Na = Ns), we expect that cI = 0. In this section we are defining the individual weights
(w) that produce this equality exactly. Hence, the set of weights w is associated with the
atomic sites, whether or not those sites are occupied. It is only for occupied sites that these
weights are used within the expression given in (5.11).

We begin by noting that if criterion 2 is satisfied, criterion 1 follows by partition of unity.
So, we essentially have 2 criteria:

VI ≡
∫

Ω

ϕI(x)dx =
Ns∑
s=1

ϕI(xs)ws, (5.12)

and the error function

E =
1

2

Na∑
s=1

(ws − w̄)2 (5.13)

is minimized with respect to the set of weights w. Here, w̄ = Ω/Ns. The relations can be
combined through the use of Lagrange multipliers to enforce constraints:

E → Emod =
1

2

Ns∑
s=1

(ws − w̄)2 +
Nn∑
I=1

λI

(
Ns∑
s=1

ϕI(xs)ws − VI

)
(5.14)

The combined function Emod is minimized with respect to both the atomic weights and
Lagrange multipliers:

∂Emod

∂ws

= (ws − w̄) +
Nn∑
I=1

λIϕI(xs) = 0 (5.15)

∂Emod

∂λI

=
Ns∑
s=1

ϕI(xs)ws − VI = 0 (5.16)

These equations can be re-cast as:

ws +
Nn∑
I=1

λIϕI(xs) = w̄ (5.17)

Ns∑
s=1

ϕI(xs)ws = VI (5.18)

These equations can be put into vector/matrix form:

w + ϕλ = w̄ (5.19)

ϕTw = V (5.20)

106

where w = {ws}, w̄ = w̄1s (1s is a vector of length Ns where each component equals 1),
ϕ = [ϕsI], ϕsI = ϕI(xs), and V = {VI}. Substitution of (5.19) in (5.20) yields:

ϕT (w̄ −ϕλ) = V

ϕT w̄ −ϕT ϕλ = V

ϕT ϕλ = ϕT w̄ −V

Thus,

λ = M−1
(
ϕT w̄ −V

)
, (5.21)

where M ≡ ϕT ϕ, and

w = w̄ −ϕM−1
(
ϕT w̄ −V

)
. (5.22)

This relation can be simplified further provided that w̄ can be expressed with regards to the
interpolation functions ϕ, i.e. w̄ = ϕW̄ or w̄s =

∑Nn

I=1 ϕI(xs)W̄I ∀s ∈ Ns. Then,

w = ϕW̄ −ϕM−1
(
ϕT ϕW̄ −V

)
= ϕW̄ −ϕM−1MW̄ + ϕM−1V

= ϕW̄ −ϕW̄ + ϕM−1V

Thus,

w = ϕM−1V. (5.23)

We note that in the final expression given in (5.23), neither w̄ nor W̄ appear.

An additional constraint to consider is that the sum of weights for atoms in a specific
element should equal the volume of that element, i.e.

Ns∑
s=1,s∈e

ws = Ve, (5.24)

where e ∈ Ne. This can alternatively be written as

Ns∑
s=1

ϕ̂e(xs)ws = Ve, (5.25)

where

ϕ̂e(xs) ≡

{
1, if s ∈ e
0, if s /∈ e

(5.26)

As before, we define a modified error function that incorporates the set of nodal Lagrange
multipliers λ = {λI} and a set of elemental Lagrange multipliers θ = {θe}:

Emod =
1

2

Ns∑
s=1

(ws − w̄)2+
Nn∑
I=1

λI

(
Ns∑
s=1

ϕI(xs)ws − VI

)
+

Ne∑
e=1

θe

(
Ns∑
s=1

ϕ̂e(xs)ws − Ve

)
(5.27)

107

Minimizing Emod with respect to the weights and all multipliers leads to the equations:

ws +
Nn∑
I=1

λIϕI(xs) +
Ne∑
e=1

θeϕ̂e(xs) = w̄ (5.28)

Ns∑
s=1

ϕI(xs)ws = VI (5.29)

Ns∑
s=1

ϕ̂e(xs)ws = Ve (5.30)

or, in vector/matrix form:

w + ϕλ + ϕ̂θ = w̄ (5.31)

ϕTw = V (5.32)

ϕ̂Tw = Ve (5.33)

The set of matrix equations is most easily solved by defining the quantities λ̃ =

{
λ
θ

}
,

ϕ̃ = [ϕ ϕ̂], and Ṽ =

{
V
Ve

}
. This allows us to put equations (5.31)-(5.33) in the form:

w + ϕ̃λ̃ = w̄ (5.34)

ϕ̃Tw = Ṽ (5.35)

Comparing these equations with (5.19) and (5.20), we realize that the solution is:

w = w̄ − ϕ̃M̃−1
(
ϕ̃T w̄ − Ṽ

)
, (5.36)

where M̃ ≡ ϕ̃T ϕ̃. We note that our original matrix M was of dimensions Nn × Nn, while
M̃ has dimensions (Nn +Ne)× (Nn +Ne).

5.2.4 Properties of restrict operator

Using the restrict operator defined by equation (5.11) where the atomic site weights are
defined by (5.22), (5.23) or (5.36), we consider some of its properties. We first evaluate the

108

mean value of the vacancy concentration field over the system volume, Ω:

c̄(t) =
1

Ω

∫
Ω

c(x, t)dΩ

=
1

Ω

∫
Ω

Nn∑
I=1

cIϕI(x)dΩ

=
1

Ω

Nn∑
I=1

cI

∫
Ω

ϕI(x)dΩ

=
1

Ω

Nn∑
I=1

cIVI

=
1

Ω

Nn∑
I=1

(
1− 1

VI

Na∑
α=1

ϕI(x
α)wα

)
VI

=
1

Ω

Nn∑
I=1

(
VI −

Na∑
α=1

ϕI(x
α)wα

)

=
1

Ω

(
Ω−

Nn∑
I=1

Na∑
α=1

ϕI(x
α)wα

)

= 1− 1

Ω

Nn∑
I=1

Na∑
α=1

ϕI(x
α)wα

We then use the partition of unity rule discussed above (
∑Nn

I=1 ϕI = 1) to further simplify
the above expression to:

c̄(t) = 1− 1

Ω

Na∑
α=1

wα (5.37)

The expression above has a clear meaning. The term
∑Na

α=1wα is the total volume associated
with sites occupied by atoms in the system. The division of this term by the total system
volume Ω is the fraction of the system occupied by matter. Vacancy concentration is, of
course, the difference of this term from unity.

∑Na

α=1wα can also be equated to an average

volume for occupied sites times the number of occupied sites, i.e.
∑Na

α=1wα = w̄aNa. Earlier,
we expressed the system volume as Ω = w̄Ns, where w̄ is the average volume for all sites.
Hence,

c̄(t) = 1− w̄aNa

w̄Ns

. (5.38)

We recall that in Section 5.2.3 we defined our site weights to possess as little variability as
possible. Thus, w̄a ≈ w̄, and

c̄(t) ≈ 1− Na

Ns

=
Nv

Ns

, (5.39)

where Nv = Ns−Na is the total number of vacancies in the system. This equation confirms
that the system average of our nodal measure of vacancy concentration is consistent with
the physical notion of vacancy concentration as applied to the entire atomic system.

109

c̄ is the mean value of the coarse-grained, spatially-varying vacancy concentration field.
Alternatively, we can calculate an average value of vacancy concentration for all the nodes
in the system, c̄n:

c̄n(t) =
1

Nn

Nn∑
I=1

cI(t)

=
1

Nn

Nn∑
I=1

{
1− 1

VI

Na∑
α=1

ϕI(x
α)wα

}

=
1

Nn

{
Nn −

Nn∑
I=1

1

VI

Na∑
α=1

ϕI(x
α)wα

}

=
1

Nn

{
Nn −

Na∑
α=1

wα

Nn∑
I=1

1

VI

ϕI(x
α)

}

= 1−
Na∑
α=1

wα
1

Nn

Nn∑
I=1

1

VI

ϕI(x
α)

This expression can be simplified further for the case that the amount of volume associated
with any given node, VI , is the same for all nodes, i.e. VI = Vn = Ω/Nn. Given this
assumption,

c̄n(t) = 1−
Na∑
α=1

wα
1

NnVn

Nn∑
I=1

ϕI(x
α)

= 1−
Na∑
α=1

wα
1

Ω

Nn∑
I=1

ϕI(x
α)

= 1− 1

Ω

Na∑
α=1

wα = c̄(t)

Thus, we see that for an equipartition of volume among nodes, the nodal and spatial means
of vacancy concentration are equivalent. In general, the two values would be different from
each other.

110

We can also evaluate the standard deviation of the vacancy concentration field, σc:

σ2
c =

1

Ω

∫
Ω

(c(x, t)− c̄(t))2dΩ

=
1

Ω

∫
Ω

(
c2 − 2c̄c+ c̄2

)
dΩ

=
1

Ω

(∫
Ω

c2dΩ− 2c̄

∫
Ω

cdΩ + c̄2
∫

Ω

dΩ

)
=

1

Ω

(∫
Ω

c2dΩ− 2Ωc̄2 + Ωc̄2
)

=

(
1

Ω

∫
Ω

c2dΩ

)
− c̄2

This expression can be somewhat simplified as follows:

σ2
c =

(
1

Ω

∫
Ω

c2dΩ

)
− c̄2

=

 1

Ω

∫
Ω

(
Nn∑
I=1

cIϕI(x)

)2

dΩ

− c̄2

=

(
1

Ω

∫
Ω

(
Nn∑
I=1

cIϕI(x)

)(
Nn∑
J=1

cJϕJ(x)

)
dΩ

)
− c̄2

=

(
Nn∑
I=1

Nn∑
J=1

cIcJ

(
1

Ω

∫
Ω

ϕI(x)ϕJ(x)dΩ

))
− c̄2

=

(
Nn∑
I=1

Nn∑
J=1

cIcJΛIJ

)
− c̄2,

where ΛIJ ≡ 1
Ω

∫
Ω
ϕI(x)ϕJ(x)dΩ. Λ is a dimensionless version of the commonly used “mass

matrix” in FE analysis (c.f. [58]). Taking the definition of cI and cJ from (5.11) and using
the shorthand notation of WI =

∑Na

α=1 ϕI(x
α)wα, we obtain

σc =

{(
Nn∑
I=1

Nn∑
J=1

(
1− WI

VI

)(
1− WJ

VJ

)
ΛIJ

)
− c̄2

}1/2

(5.40)

Equation (5.40) is the simplest form we can obtain without further information about how
atoms are placed with respect to the mesh, which is necessary to evaluate terms WI and
WJ , or specification of the interpolation functions, needed to evaluate WI , WJ and ΛIJ . In
the trivial case of 1 element (node) for a periodic system, ϕ1(x) = ϕ1(x

α) = 1 and V1 = Ω.
Thus, W1 =

∑Na

α=1wα, Λ11 = 1 and σc =
√
c̄2 − c̄2 = 0. This makes sense since there is only

a single value of c for the system.

As before, we can also calculate the standard deviation of the distribution of nodal values

111

of vacancy concentration{cI}, σcn :

σ2
cn

=
1

Nn

Nn∑
I=1

(cI − c̄n)2

=
1

Nn

Nn∑
I=1

(
c2I − 2c̄n cI + c̄2n

)
=

1

Nn

{
Nn∑
I=1

c2I − 2c̄n

Nn∑
I=1

cI + c̄2n

Nn∑
I=1

1

}

=
1

Nn

{
Nn∑
I=1

c2I − 2Nnc̄
2
n +Nnc̄

2
n

}

=

(
1

Nn

Nn∑
I=1

c2I

)
− c̄2n

Substituting equation (5.11) into this relation, one obtains:

σ2
cn

=

 1

Nn

Nn∑
I=1

(
1− 1

VI

Na∑
α=1

ϕI(x
α)wα

)2
− c̄2n

=

(
1

Nn

Nn∑
I=1

(
1− WI

VI

)2
)
− c̄2n,

and thus,

σcn =

{(
1

Nn

Nn∑
I=1

(
1− WI

VI

)2
)
− c̄2n

}1/2

. (5.41)

This expression is similar in form to the one given in (5.40). Again, we note that more
information regarding the functional form of ϕI(x) and how atoms are placed with respect
to the mesh is needed for further simplification of this expression.

5.3 Lift Operator

We now seek to define the lift operator, µ, that creates an atomistic or fine scale ensemble
that is reflective of the desired coarse scale vacancy concentration profile cv(x) as specified
through the nodal values of vacancy concentration C = {cI} and the interpolation functions
{ϕI}. It is important to remember that whatever the form µ takes, it must be the case that
Mµ = I.

A reasonable starting point for a lift operation is to apply the coarse scale vacancy
concentration on a full atomic lattice with zero porosity, using it to guide the deletion of

112

specific atoms. We first evaluate the coarse scale field cv(x) at the positions of every atomic
site (i.e. s = 1, 2, . . . , Ns),

cs = cv(x
s) =

Nn∑
I=1

ϕI(x
s)cI . (5.42)

Using this “atomic” value of vacancy concentration, we then use a procedure that randomly
considers specific sites from the set of all sites and then uses a random number together with
the value of cs for that site to determine if the atom at that site should be deleted. A few
important considerations should be noted before detailing our deletion algorithm:

• A random integer in the range of [1, Ns] should be used to select each site for consid-
eration/evaluation. This makes the probability for considering each site uniform, as
opposed to a orderly progression through this range, which would favor consideration
and possible deletion of lower-indexed sites.

• As the value of cs ∈ [0, 1] for each site, the random number chosen, rs, should also
be from this range. The evaluation criteria for deletion amounts to deleting the atom
from site s if rs ≤ cs.

• It may be insufficient to consider each atomic site only once when forming a deletion list.
Ideally, upon completion our deletion list would contain Nv = c̄Ns atoms. However,
the introduction of randomness into the site selection and evaluation processes will
generally result in the number of atoms to be deleted, Ndel, not equal to Nv. As such,
we choose to keep a tally of the number of deleted atoms and continue the selection
and evaluation process until the criterion of Ndel = c̄Ns is satisfied.

Given these considerations, we now relate our initial design of a deletion algorithm, shown
in Algorithm 3. Once the appropriate atoms have been deleted, the process is complete as
an atomistic system has been created/initialized that should be consistent with the coarse
scale field C.

In practice, we have found that Algorithm 3 yields (upon successive application of the lift
and restrict operators) the same mean nodal concentration c̄, but produces variations in the
individual nodal concentration values, cI . We can perform a simple analysis to predict the
amount of variation to be expected. We start with defining the square of this variation as
σ2

cI
=
〈
(cI − 〈cI〉)2〉 where the notation 〈〉 is used to denote expectation value of the enclosed

function or property. This expression can be simplified to σ2
cI

= 〈c2I〉 − 〈cI〉
2. Taking each

term separately, we first note that an alternative to equation (5.11) is:

cI(t) = 1− 1

VI

Ns∑
s=1

ϕI(x
s)wsH(rs − 〈cs〉), (5.43)

where H(r) is the Heaviside function equal to 0 for r < 0 and 1 for r > 0, and 〈cs〉 is the
expectation value of cs. For this exercise, we assume that 〈cs〉 = c̄ ∀s = 1, 2, . . . , Ns. Hence,

cI(t) = 1− 1

VI

Ns∑
s=1

ϕI(x
s)wsH(rs − c̄), (5.44)

113

Algorithm 3 Atom deletion algorithm for Ns atomic sites

1: start with the coarse scale description of vacancy concentration, {cI}
2: calculate the mean value of the coarse scale field, c̄
3: for s = 1 to Ns do
4: compute cs using equation (5.42)
5: end for
6: initialize Ndel and integer array (of size Ns) for flagging of atoms to be deleted (del flag)
7: while Ndel < c̄Ns do
8: pick a random site index s from the range [1,Ns]
9: if del flag[s] = 0 then

10: choose a random number from the range [0,1] (rs)
11: if rs ≤ cs then
12: add the atom at site s to the deletion list and set del flag[s] = 1
13: increase Ndel by 1
14: end if
15: end if
16: end while
17: delete atoms from the sites specified in the deletion list

We now calculate 〈cI〉:

〈cI〉 =

〈
1− 1

VI

Ns∑
s=1

ϕI(x
s)wsH(rs − c̄)

〉

= 1− 1

VI

Ns∑
s=1

ϕI(x
s)ws 〈H(rs − c̄)〉

Realizing that 〈H(rs − c̄)〉 = 1− c̄, and
∑Ns

s=1 ϕI(x
s)ws = VI , this expression simplifies to

〈cI〉 = 1− 1

VI

VI (1− c̄) = 1− (1− c̄) = c̄ (5.45)

114

We also calculate 〈c2I〉:

〈
c2I
〉

=

〈(
1− 1

VI

Ns∑
s=1

ϕI(x
s)wsH(rs − c̄)

)2〉

=

〈
1− 2

1

VI

Ns∑
s=1

ϕI(x
s)wsH(rs − c̄) +

(
1

VI

)2
(

Ns∑
s=1

ϕI(x
s)wsH(rs − c̄)

)2〉

= 1− 2
1

VI

Ns∑
s=1

ϕI(x
s)ws 〈H(rs − c̄)〉+

(
1

VI

)2 Ns∑
s=1

Ns∑
t=1

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉
= 1− 2 (1− c̄)

1

VI

Ns∑
s=1

ϕI(x
s)ws +

(
1

VI

)2 Ns∑
s=1

Ns∑
t=1

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉
= 1− 2 (1− c̄) +

(
1

VI

)2 Ns∑
s=1

Ns∑
t=1

ϕI(x
s)wsϕI(x

t)wt

〈
H(rα − c̄)H(rβ − c̄)

〉
〈
c2I
〉

= 2c̄− 1 +

(
1

VI

)2 Ns∑
s=1

Ns∑
t=1

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉
(5.46)

In order to further manipulate the right hand side of the above equation, we need to examine
the double sum separately for the cases where t = s and where t 6= s. For the first case,

Ns∑
s=1,
t=s

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉

=
Ns∑
s=1

(ϕI(x
s)ws)

2 〈(H(rs − c̄))2〉
= (1− c̄)

Ns∑
s=1

(ϕI(x
s)ws)

2. (5.47)

For the case of t 6= s, the expectation values can be evaluated separately:

Ns∑
s=1

Ns∑
t=1,
t6=s

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉

=
Ns∑
s=1

Ns∑
t=1,
t6=s

ϕI(x
s)wsϕI(x

t)wt 〈H(rs − c̄)〉
〈
H(rt − c̄)

〉

= (1− c̄)2
Ns∑
s=1

Ns∑
t=1,
t6=s

ϕI(x
s)wsϕI(x

t)wt (5.48)

115

Equation (5.48) can be further modified by adding and subtracting the t = s term:

Ns∑
s=1

Ns∑
t=1,
t6=s

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉

= (1− c̄)2
Ns∑
s=1

Ns∑
t=1

ϕI(x
s)wsϕI(x

t)wt − (1− c̄)2
Ns∑
s=1

(ϕI(x
s)ws)

2

= (1− c̄)2

(
Ns∑
s=1

ϕI(x
s)ws

)2

− (1− c̄)2
Ns∑
s=1

(ϕI(x
s)ws)

2

= (1− c̄)2 V 2
I − (1− c̄)2

Ns∑
s=1

(ϕI(x
s)ws)

2

Thus,

Ns∑
s=1

Ns∑
t=1,
t6=s

ϕI(x
s)wsϕI(x

t)wt

〈
H(rs − c̄)H(rt − c̄)

〉
= (1− c̄)2

{
V 2

I −
Ns∑
s=1

(ϕI(x
s)ws)

2

}
(5.49)

Combining equations (5.46), (5.47), and (5.49), we obtain:

〈
c2I
〉

= 2c̄− 1 +

(
1

VI

)2
{

(1− c̄)
Ns∑
s=1

(ϕI(x
s)ws)

2 + (1− c̄)2

(
V 2

I −
Ns∑
s=1

(ϕI(x
s)ws)

2

)}

= 2c̄− 1 + (1− c̄)2 +
(
1− c̄− (1− c̄)2)(1

VI

)2 Ns∑
s=1

(ϕI(x
s)ws)

2

= 2c̄− 1 + 1− 2c̄+ c̄2 +
(
1− c̄− 1 + 2c̄− c̄2

)(1

VI

)2 Ns∑
s=1

(ϕI(x
s)ws)

2

= c̄2 +
(
c̄− c̄2

)(1

VI

)2 Ns∑
s=1

(ϕI(x
s)ws)

2

= c̄2 + c̄ (1− c̄)

(
1

VI

)2 Ns∑
s=1

(ϕI(x
s)ws)

2

Hence,

σ2
cI

= c̄ (1− c̄)
1

V 2
I

Ns∑
s=1

(ϕI(x
s)ws)

2 (5.50)

While this expression cannot be simplified further, we do notice that if we approximate ws

by a constant value (w̄) for all sites, then

σ2
cI

= γ

(
w̄

VI

)2

c̄ (1− c̄) , (5.51)

where γ =
∑Ns

s=1 (ϕI(x
s))2. Thus, as larger element volumes are used with a fixed atomic

density (i.e. w̄/VI gets smaller), the accuracy of our lift operator improves.

116

5.4 Improvements to the Lift Operator

As the amount of variance inherent to the lift operator can be quite large, we identify several
possible ways to reduce it:

1. Use of larger elements (more atoms per element) to decrease the variance.

2. Instead of a single realization at the fine scale, the lift operator would create multiple
realizations. The restrict operator would then construct the coarse scale field {cI} based
on information from all realizations. This would improve the consistency between µ
and M.

3. Additional metrics could be used to iteratively adjust the fine scale system to make it
more consistent with starting values of the coarse scale description.

An example of the third method would be as follows: First, we define a nodal error εI as

εI = cpost
I − cpre

I , (5.52)

where cpre
I is the starting value of cI before the lift operation begins and cpost

I is a value
of cI calculated by performing the restrict operation at the end of an iteration of the lift
operation (prior to any dynamics that alters the newly created fine scale configuration).
From this nodal error, we also define a global error E as

E =
1

Ω

Nn∑
I

VIε
2
I , (5.53)

where Ω ≡
∑Nn

I VI . We then perform some type of optimization that minimizes the global
error E.

One such optimization procedure is the simulated annealing method where modifications
to the underlying atomic system are made that change the values of the nodal concentrations,
∆cI and resulting nodal and global errors, ∆εI and ∆E. Here, we choose to modify the
atomic system by deleting an atom occupying a given random site (η), while simultaneously
inserting an atom into a random vacant site (ν). This type of modification preserves the the
mean vacancy concentration of the entire system, c̄. In accordance with the sign convention
used in equation (5.11), the resulting change in nodal vacancy concentration is

∆cI =
1

VI

(ϕI(x
η)wη − ϕI(x

ν)wν) . (5.54)

This change in nodal vacancy concentration modifies the nodal error,

εI → εI + ∆cI , (5.55)

117

and therefore also the global error,

E → 1

Ω

Nn∑
I

VI (εI + ∆cI)
2 . (5.56)

Thus, the change in global error is

∆E = E − 1

Ω

Nn∑
I

VIε
2
I =

1

Ω

Nn∑
I

VI∆cI (∆cI + 2εI) . (5.57)

In the simulated annealing algorithm, the acceptance of this atom-vacancy swap occurs
if ∆E < 0, or it occurs with some finite probability if ∆E > 0. The probability of accepting
a modification that increases global error is estimated using the Boltzmann relation p =
exp(−∆E/T), where T is the ‘temperature’ of the system and represents a measure of
ambient inertia available to increase the global error. For a finite, non-zero value of T , p is
between 0 and 1. The modification is accepted if a random number drawn from this range
(r) is less than this probability, i.e. r < p. T is systematically reduced over the course of
attempted modifications in order to drive the global error to a minimum. Algorithm 4 shows
the lift operation that combines this error metric and simulated annealing method with the
original deletion process.

The performance of algorithm 4 depends on several user-specified pieces of information,
including the initial value of temperature T0, the cooling schedule, and the maximum num-
ber of iterations. Literature suggests that T0 should be set such that for a large number
(maximum number iterations) of atom-vacancy swaps considered, some fixed percentage
(e.g. 50%) of them would be selected, i.e. median(p) = 0.5. However, we have found that
this produces a much higher value of T0 than needed and instead opt to set T0 = 0.01.

There has been much research done to design an optimum cooling schedule, i.e. a
prescription for T (k) that drives down the global error to the smallest value possible over
the minimum number of iterations. This prescription is difficult to optimize; ideally it
should force the global error function to its minimum as quickly as possible and a fast rate
of decay of T accomplishes this. However, if T decays too quickly the system will be frozen
in a local minimum error state such that increasing the number of iterations performed
does little to decrease the final global error. Difficult also is striking a balance between
practicality and robustness when prescribing the maximum number of iterations (atom-
vacancy swaps) done. Too few results in too high a global error while too many increases
the computational cost beyond reasonableness. One example cooling schedule (shown in
Algorithm 4) is T = T0a

k where 0 < a < 1. In our simulations, a is chosen such that
temperature decreases by six orders of magnitude by the end of the maximum number of
iterations, i.e. ln(a) = ln(10−6)/(maximum number iterations).

118

Algorithm 4 Lift operator algorithm with reduced error

1: start with the coarse scale description of vacancy concentration, {cpre
I }

2: for s = 1 to Ns do
3: compute cs using equation (5.42)
4: end for
5: initialize Ndel and integer array (of size Ns) for flagging of atoms to be deleted (del flag)
6: while Ndel < c̄Ns do
7: pick a random site index s from the range [1,Ns]
8: if del flag[s] = 0 then
9: choose a random number from the range [0,1] (rs)

10: if rs < cs then
11: add atomic site s to the deletion list and set del flag[s] = 1
12: increase Ndel by 1
13: end if
14: end if
15: end while
16: using the deletion list, construct lists (deques) of atoms (sites occupied by an atom) and

vacancies (sites occupied by a vacancy)
17: execute the restrict operator, equation (5.11), to compute

{
cpost
I

}
18: calculate the nodal errors {εI} using equation (5.52) and the global error E using equa-

tion (5.53)
19: if E > Etol then
20: set initial value of T = T0 and iteration index k = 1; store initial value of E as E0

21: while E
E0
> tol and k ≤ max number iterations do

22: pick a random site from the atom list and a random site from the vacancy list
23: calculate ∆cI using equation (5.54) and accumulate global error change ∆E using

equation (5.57)
24: if ∆E ≤ 0 then
25: modify deletion list value for the two sites
26: remove sites from their respective lists and add them to the opposite list
27: modify cI , εI and E using the calculated changes
28: else
29: calculate the acceptance probability p = exp(−∆E/T)
30: choose a random number from the range [0,1] (r)
31: if r ≤ p then
32: modify deletion list value for the two sites
33: remove sites from their respective lists and add them to the opposite list
34: modify cI , εI and E using the calculated changes
35: end if
36: end if
37: recalculate the sizes of the atom and vacancy lists to verify no change in c̄
38: increment k by 1
39: modify T according to some cooling schedule, e.g. T = T0a

k where 0 < a < 1
40: end while
41: end if

119

5.5 Example Simulations

In this section, we examine the behavior of our restrict (equation (5.11)) and lift (algorithm 4)
operators. We use atomistic systems of copper (a0 = 3.615Å) as modeled using the embed-
ded atom method by Foiles, Baskes and Daw [8]. These systems contain significant amounts
of vacancies, on the order of 1 to 3%, in both uniform and non-uniform arrangements (as
will be described). Simulations are performed using the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) code [38] developed by Sandia National Laboratories
in conjunction with a specially written code to implement the lift operator.

5.5.1 Uniformly random vacancy concentration

We first examine a system of 32,000 atomic sites (20 x 20 x 20 unit cells) for which 1% of
the sites are randomly chosen to be unoccupied, i.e. c̄ = 0.01. From this initial distribution
of vacancies, we use our restrict operator to establish the initial coarse scale distribution
of vacancy concentration cv(x). We then perform 20 consecutive lift/restrict operations.
Figure 5.2 shows the initial coarse-scale vacancy concentration field (the ‘zeroth’ iteration),
after the 1st lift/restrict iteration, and after the 20th iteration. We notice that our lift

Figure 5.2. cv(x) for 3 different lift / restrict iterations
(left to right: 0, 1, 20) for a system with c̄ = 0.01.

algorithm does a good job at creating new fine-scale realizations that produce very similar

120

coarse-scale distributions of the vacancy concentration field. In particular, the distribution
of cv(x) for the zeroth and first iterations appear nearly identical. The 20th iteration does
show some divergence from the initial distribution. However, within an EFPI simulation
our lift/restrict approach would only be used as a single iteration, thereby minimizing this
divergence.

Figure 5.3 shows the atomic configuration initially used (iteration 0) along with the
fine-scale configurations produced by the lift operator at iterations 1 and 20. In this figure

Figure 5.3. Atomic sites colored by occupancy (blue -
atom, red - vacancy) for 3 different lift/restrict iterations
(left to right: 0, 1, 20) for a system with c̄ = 0.01.

atomic sites are colored according to their occupancy where blue sites are atoms and red sites
are vacancies. It is clear that while the lift operator creates a fine-scale configuration that
corresponds to the same coarse-scale distribution of vacancy concentration upon successive
application of the restrict operator (as shown in Figure 5.2), it does not produce the same
fine-scale configuration each time. Not only is this behavior anticipated in the use of an
equation-free simulation approach, but conceivably our lift operator could be used to create
multiple fine-scale realizations of the same coarse-scale distribution. These realizations would
then be run in parallel to more effectively form system averages of time-integrated behavior,
as recently shown by Wagner et al. [64].

Figure 5.4 shows how the total and incremental global error (as defined in equations (5.56)
and (5.57), respectively) evolve over the course of the simulated annealing algorithm for the
1st , 10th and 20th application of the lift operator. We observe that the error converges very
quickly initially, and then slowly later, reaching the approximate final value within 60% of
the maximum number of iterations (equal to 10 x Na = 320,000 for this simulation).

Figure 5.5 shows how the standard deviation in the distribution of nodal vacancy con-
centration values evolves with successive iterations of the lift/restrict operations. We note
that the values observed lie between 0.00294 and 0.00315. We also note that σc appears to
be decreasing with successive applications of the lift/restrict operations. The cause of this

121

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E

k / max_number_iterations

1st iteration
10th iteration
20th iteration

(a)

-1e-07

-5e-08

 0

 5e-08

 1e-07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d
E

k / max_number_iterations

1st iteration
10th iteration
20th iteration

(b)

Figure 5.4. (a) E and (b) ∆E as a function of simulated
annealing iteration number for a 32,000 atom system with
initial mean porosity of 1%.

 0.00294

 0.00296

 0.00298

 0.003

 0.00302

 0.00304

 0.00306

 0.00308

 0.0031

 0.00312

 0.00314

 0.00316

 0 5 10 15 20

s
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f
v
a
c
a
n
c
y
 c

o
n
c
e
n
tr

a
ti
o
n

L/R iteration

Figure 5.5. σc as a function of lift/restrict iteration number
for repeated calls of µ and M for a 32,000 atom system with
initial mean porosity of 1%.

122

behavior is not apparent.

Before leaving this example, we examine how application of the restrict and lift operator
affects the dynamics of the atomistic ensemble used for fine scale simulation. In such a study,
we are not yet performing projective integration but merely using our restrict operator to
convert the fine scale system to a coarse scale representation, and then using the lift operator
to create a new fine scale system with the same coarse scale characteristics before contin-
uing dynamics at the fine scale. Nevertheless, performing this exercise gives us knowledge
about the minimum disruption expected by application of our operators to an actual EFPI
simulation.

Figure 5.6 shows the evolution of system (a) potential energy, (b) kinetic energy, (c)
total energy, and (d) pressure for a molecular dynamics simulation of our 1% vacancy sys-
tem initially at 0 K. We perform 10,000 timesteps of 0.001 ps (a total of 10 ps) between
restrict / lift iterations. During this time, a time integration method consistent with NVE
ensemble dynamics is used. From this figure, we observe that the system’s excess potential
energy (originating from the presence of the vacancies) is quickly equipartitioned into excess
potential and kinetic energy. However, once that process occurs the system maintains a
constant total energy over the course of the 10,000 step fine scale simulation. As application
of the restrict and lift operators causes a slightly different vacancy distribution, the amount
of this excess energy differs slightly. In Figure 5.6(c), we observe a variation of total en-
ergy of about 2 eV, or 0.0018%. Figures 5.6(b) and (d) show that after each restrict / lift
interrupt (which causes a spike in values due to reinitialization of the system) the system
returns to approximately the same values of kinetic energy and pressure. Overall, the figure
shows that the restrict and lift operators have minimal effect on system dynamics. It does
suggest, however, that the lift process should include a reinitialization of atomic velocities
to be consistent with the amount of kinetic (or perhaps total) energy present prior to the
restrict operation, rather than a resetting to the initial values used (zero in this case).

Figure 5.7 shows the results for a similar simulation run where the atomic system is
initially set with a velocity distribution consistent with a temperature of 500 K. As for
the 0 K case, this system experiences small variations of total energy (∼1 eV, 0.0009%)
and nearly constant levels of potential energy, kinetic energy and pressure with step-to-step
variations consistent with MD simulation. Large spikes in these quantities still appear due
to the reinitialization process.

Figure 5.8 shows the results for a similar simulation where the atomic system is again
initially set with a velocity distribution consistent with a temperature of 500 K, and the
system is treated as an NVT (isochoric-isothermal) ensemble. With regards to total energy,
this system does display a larger variation during the reinitialization process. However,
close examination of Figure 5.8(c) shows that the total energy stays essentially at the same
value of approximately -107600 eV for all fine scale simulation periods. This value has a
somewhat large variance initially (∼50 eV, 0.047%) that decreases significantly over the
10,000 timesteps of simulation. Similar trends are noticed in the other graphed quantities.

From these studies, we conclude that our restrict and lift operators can maintain system

123

-111735

-111734

-111733

-111732

-111731

-111730

-111729

-111728

-111727

-111726

 0 500 1000 1500 2000 2500

p
o
te

n
tia

l e
n
e
rg

y
(e

V
)

timestep (sorta)

(a)

 0

 1

 2

 3

 4

 5

 6

 0 500 1000 1500 2000 2500

ki
n

e
tic

 e
n

e
rg

y
(e

V
)

timestep (sorta)

(b)

-111730

-111729

-111728

-111728

-111728

-111727

-111726

 0 500 1000 1500 2000 2500

to
ta

l e
n

e
rg

y
(e

V
)

timestep (sorta)

(c)

-4200

-4000

-3800

-3600

-3400

-3200

-3000

-2800

-2600

 0 500 1000 1500 2000 2500

p
re

ss
u

re
 (

b
a

rs
)

timestep (sorta)

(d)

Figure 5.6. MD simulation of 1% vacancy system with
10,000 time-steps between restrict / lift interrupts, NVE at
initial temperature of 0 K. Horizontal axis is in units of 100
timesteps.

124

-110740

-110720

-110700

-110680

-110660

 0 500 1000 1500 2000 2500

p
o

te
n

tia
l e

n
e

rg
y

(e
V

)

timestep (sorta)

(a)

 1000

 1020

 1040

 1060

 1080

 1100

 0 500 1000 1500 2000 2500

ki
n

e
tic

 e
n

e
rg

y
(e

V
)

timestep (sorta)

(b)

-109682

-109682

-109681

-109680

-109680

-109680

 0 500 1000 1500 2000 2500

to
ta

l e
n

e
rg

y
(e

V
)

timestep (sorta)

(c)

 12000

 12200

 12400

 12600

 12800

 13000

 0 500 1000 1500 2000 2500

p
re

ss
u

re
 (

b
a

rs
)

timestep (sorta)

(d)

Figure 5.7. MD simulation of 1% vacancy system with
10,000 time-steps between restrict / lift interrupts, NVE at
initial temperature of 500 K. Horizontal axis is in units of
100 timesteps.

125

-109800

-109750

-109700

-109650

-109600

 0 500 1000 1500 2000 2500

p
o

te
n

tia
l e

n
e

rg
y

(e
V

)

timestep (sorta)

(a)

 1950

 2000

 2050

 2100

 2150

 0 500 1000 1500 2000 2500

ki
n
e
tic

 e
n
e
rg

y
(e

V
)

timestep (sorta)

(b)

-110000

-109500

-109000

-108500

-108000

-107500

 0 500 1000 1500 2000 2500

to
ta

l e
n

e
rg

y
(e

V
)

timestep (sorta)

(c)

 26000

 26500

 27000

 27500

 28000

 28500

 29000

 0 500 1000 1500 2000 2500

p
re

ss
u

re
 (

b
a

rs
)

timestep (sorta)

(d)

Figure 5.8. MD simulation of 1% vacancy system with
10,000 time-steps between restrict / lift interrupts, NVT at
temperature of 500 K. Horizontal axis is in units of 100
timesteps.

126

statistics for interrupted dynamics run. Clearly, some room for improvement exists with
regard to reinitialization of atomic velocities at the end of the lift process. However, even
without this improvement restrict / lift interrupts appear to have minimal impact on fine
scale system dynamics.

5.5.2 Bilinear vacancy concentration profile

In the previous example, we used our restrict and lift operators on a system with a uniform
vacancy concentration, with no pre-defined spatial distribution of the coarse scale concen-
tration field. In this section, we examine a somewhat longer system (96,000 sites, 20 x 20 x
60 unit cells) in which a bilinear distribution is initially set for the coarse scale concentration
field. In this system, the system is divided into a 5 x 5 x 14 element grid with cv(x) set to
values varying from 3% for the middle plane of nodes along the long (z) direction and a value
of 0% at the periodic ends. Analytic functions are used to prescribe nodal values to vary
linearly between these values of 0 and 3%. As in the previous case, 20 successive restrict /
lift operations are performed.

Figure 5.9 shows the coarse scale vacancy concentration distribution after the 1st, 2nd,
10th and 20th lift / restrict iterations. We observe that our lift / restrict process does a good
job at maintaining the coarse scale distribution between two consecutive iterations. As in the
case of the uniform distribution, we notice a variation of this coarse scale field that evolves
over the span of 20 iterations. As before, we point out that within an EFPI simulation our
lift / restrict approach would only be used as a single iteration, thereby minimizing this
variation.

Figure 5.10 shows the atomic configurations produced by the lift operator at iterations 1,
2, 10, and 20. In this figure atomic sites are colored according to their occupancy where blue
sites are atoms and red sites are vacancies. As before, we note that fine scale configurations
are such that they produce similar coarse scale distributions of vacancy concentration, even
though they themselves are distinctly different from one another.

Figure 5.11 shows the evolution of global error E and change in E between iterations for
the simulated annealing algorithm for the 1st, 10th and 20th lift / restrict iterations. Again, as
with the uniform concentration example we observe quick convergence of this error, reaching
its final value within 50 to 60% of the total number of simulated annealing steps used.

One feature different for this bilinear case than the previous example is that while the total
number of vacancies in our system remains constant (1,440), our lift and restrict algorithms
no longer maintain the same value of c̄. Figure 5.12(a) shows a small decrease of c̄ over the 20
lift / restrict iterations, from an initial value of 0.015 to a final value of 0.0149989. While this
decrease does not impact the number of vacancies created in the fine scale configurations, it
certainly will at some point. Based on the rate of decrease observed in Figure 5.12(a), we
can estimate that at about 109 iterations the coarse scale field will be such that application
of the lift process will result in one less vacancy. As we noted above, our lift and restrict

127

Figure 5.9. cv(x) for 4 different lift / restrict iterations (left
to right: 1, 2, 10, 20) for a system with a bilinear distribution
varying from 0 at the ends to 0.03 at the middle plane of nodes
on a grid of 14 elements in the z-direction.

128

Figure 5.10. Atomic sites colored by occupancy (blue -
atom, red - vacancy) for 4 different lift / restrict iterations
(left to right: 1, 2, 10, 20) for a system with a bilinear distri-
bution varying from 0 at the ends to 0.03 at the middle plane
of nodes on a grid of 14 elements in the z-direction.

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E

k / max_number_iterations

1st iteration
10th iteration
20th iteration

(a)

-1e-07

-5e-08

 0

 5e-08

 1e-07

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

d
E

k / max_number_iterations

1st iteration
10th iteration
20th iteration

(b)

Figure 5.11. (a) E and (b) ∆E as a function of simulated
annealing iteration number for a 96,000 atom system with a
bilinear distribution of cv that varies between 0 and 0.03 on
a grid of 14 elements in the z-direction.

129

 0.0149988

 0.014999

 0.0149992

 0.0149994

 0.0149996

 0.0149998

 0.015

 0 5 10 15 20

m
e

a
n

 v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

L/R iteration

(a)

 0.00835

 0.0084

 0.00845

 0.0085

 0.00855

 0.0086

 0.00865

 0.0087

 0.00875

 0.0088

 0.00885

 0 5 10 15 20

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

L/R iteration

(b)

Figure 5.12. (a) c̄ and (b) σc as a function of lift / restrict
iteration number for repeated calls of µ and M for a 96,000
atom system with a bilinear distribution of cv that varies
between 0 and 0.03 on a grid of 14 elements in the z-direction.

operators will not ordinarily be used in a repetitive fashion as was done here. However, it is
disconcerting that some error is introduced such that µM is not exactly equal to unity.

We can investigate this behavior further by examining how the variation of site weights
and the average weight of occupied sites interacts with the gradient imposed by cv. To start,
we recall the necessity of solving for the site weights for use in atomic quadrature due to the
fact that the discreteness of the mesh reflected by element size can be uneven with respect
to the discreteness of the underlying atomic lattice. Thus, different elements of the same
size can contain different numbers of atomic sites. For this example, we used 60 unit cells of
sites (120 atomic planes) in the z-direction broken into 14 elements. As 60/14 = 4.2857...,
we do not have the same number of sites in each element and expect a distribution of site
weights. This distribution is shown in histogram form in Figure 5.13. This figure shows
a non-normal distribution of site weights for the system. As compared with the mean site
weight value w̄ (shown as a pink bar in the figure), we observe non-uniformly spaced peaks
in the distribution at both higher and lower values.

In equation (5.38), we expressed the system-averaged vacancy concentration as c̄ = 1 −
(w̄aNa)/(w̄Ns), where w̄a is the mean weight for occupied sites and w̄ is the mean weight for
all sites. If we express w̄a as w̄ + δw̄, we can recast this as

c̄ = c̄ideal −
δw̄Na

w̄Ns

, (5.58)

where c̄ideal = 1−Na/Ns = Nv/Ns is the “ideal” mean vacancy concentration based only on
this numbers of occupied and unoccupied sites. Equation (5.58) shows that depending on
the sign of the variance δw̄, c̄ can be either higher or lower than its ideal value. Figure 5.14

130

Figure 5.13. Histogram of site weights for the 96,000
atomic site system where 60 unit cells and 14 elements are
used in the z-direction. The pink bar shows the mean site
weight, w̄

shows this variance as a function of number of lift / restrict iterations for the 14 element
case examined here. We observe that for this case, δw̄ is positive at all iterations. This
corresponds well with c̄ < c̄ideal as observed in Figure 5.12(a). We also examine how the site
weight distribution affects the deviation of our initial bilinear distribution of cv. Figure 5.15
shows this variation as a function of nodal position in the z-direction. For this figure, values
have been averaged among all nodes lying in the x-y plane at the same value of z. This figure
shows a few illuminating features. First, as previously noted the distribution produced after
the 2nd lift / restrict iteration is virtually identical to the one before it. Second, by the 20th

iteration there has been a slight reduction in cv at nodes in the middle of the system (at
the higher values of cv) and a noticeable increase in cv at nodes towards the ends of the
system (at the lower values of cv). Figure 5.15(b) shows a definitive pattern in the spatial
distribution of site weights, but little correspondence between value of wα and value of cv.
There may be some correspondence between the slope of how wα varies in the z-direction
and the deviation of cv from its original bilinear form. We observe that positions at which
the slope has a high value coincide coincide with positions of the lowest and highest values
of cv. This slope is lower around 55 and 160 Å, where there appears to be closer agreement
with the bilinear form.

We also investigate how the choice of number of elements impacts these features. Fig-
ures 5.16 and 5.17 shows the variation of c̄ and σc with lift / restrict iteration number for
grids composed of 10 and 16 elements in the z-direction, respectively. As the use of 10
elements produces a uniform number of atoms in each element, we observe that c̄ remains
at its initial value of 0.015. By comparison, the use of 16 elements (as with 14) gives an
uneven number of atomic planes per element in the z-direction, which again produces a small
variation of c̄ such that c̄ < 0.015 for all lift / restrict iterations. It is interesting that this

131

 0

 2e-06

 4e-06

 6e-06

 8e-06

 1e-05

 1.2e-05

 1.4e-05

 0 2 4 6 8 10 12 14 16 18 20

m
e
a
n
 a

to
m

 w
e
ig

h
t
-

m
e
a
n
 s

it
e
 w

e
ig

h
t
(A

n
g
s
tr

o
m

s
^3

)

L/R iteration

Figure 5.14. Difference between mean atom (occupied
site) weight and mean site weight (δw̄) as a function of lift /
restrict iteration number for the bilinear example.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250

v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

nodal position (Angstroms)

1st L/R iteration
2nd L/R iteration

20th L/R iteration

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250
 11.7

 11.72

 11.74

 11.76

 11.78

 11.8

 11.82

 11.84

 11.86

 11.88

 11.9

v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

a
to

m
ic

 w
e

ig
h

t
(A

n
g

s
tr

o
m

s
^3

)

nodal position (Angstroms)

1st L/R iteration
2nd L/R iteration

20th L/R iteration
atomic weight

(b)

Figure 5.15. (a) Variation of vacancy concentration as
a function of nodal position in the z-direction for the 1st,
2nd and 20th lift / restrict iterations. (b) Same graph also
showing z-direction variation of site weights.

132

 0.0148

 0.01485

 0.0149

 0.01495

 0.015

 0.01505

 0.0151

 0.01515

 0 5 10 15 20

m
e

a
n

 v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

L/R iteration

(a)

 0.00875

 0.0088

 0.00885

 0.0089

 0.00895

 0.009

 0 5 10 15 20

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

L/R iteration

(b)

Figure 5.16. (a) c̄ and (b) σc as a function of lift / restrict
iteration number for repeated calls of µ and M for a 96,000
atom system with a bilinear distribution of cv that varies
between 0 and 0.03 on a grid of 10 elements in the z-direction.

 0.0149993

 0.0149994

 0.0149995

 0.0149996

 0.0149997

 0.0149998

 0.0149999

 0.015

 0 5 10 15 20

m
e

a
n

 v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

L/R iteration

(a)

 0.0084

 0.00845

 0.0085

 0.00855

 0.0086

 0.00865

 0.0087

 0.00875

 0.0088

 0 5 10 15 20

s
ta

n
d

a
rd

 d
e

v
ia

ti
o

n
 o

f
v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

L/R iteration

(b)

Figure 5.17. (a) c̄ and (b) σc as a function of lift / restrict
iteration number for repeated calls of µ and M for a 96,000
atom system with a bilinear distribution of cv that varies
between 0 and 0.03 on a grid of 16 elements in the z-direction.

133

variation, however, is less monotonic in its form than for the 14 element case. The behavior
of c̄ for these systems again correlates well with the variance δw̄, as shown in Figure 5.18. As

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 a
to

m
 w

e
ig

h
t

-
m

e
a

n
 s

it
e

 w
e

ig
h

t
(A

n
g

s
tr

o
m

s
^3

)

L/R iteration

(a)

 0

 1e-06

 2e-06

 3e-06

 4e-06

 5e-06

 6e-06

 7e-06

 8e-06

 0 2 4 6 8 10 12 14 16 18 20

m
e

a
n

 a
to

m
 w

e
ig

h
t

-
m

e
a

n
 s

it
e

 w
e

ig
h

t
(A

n
g

s
tr

o
m

s
^3

)

L/R iteration

(b)

Figure 5.18. Difference between mean atom (occupied
site) weight and mean site weight (δw̄) as a function of lift
/ restrict iteration number for the bilinear example: (a) 10
elements in the z-direction, (b) 16 elements in the z-direction.

seen in Figure 5.12(b), Figures 5.16(b) and 5.17(b) also show a decrease of σc with increasing
lift / restrict iteration, the rate of which is somewhat less for the 10 element system than
for the 14 or 16 element ones.

Figure 5.19 shows the variation of cv as a function of nodal position in the z-direction for
the 10 and 16 element cases. As we would expect, we see very small variations of the exact
bilinear form for the 10 element case (the largest observable variation being at the ends of
the system where cv → 0), and variations for the 16 element case are comparable to those
for our original 14 element system. For clarity, Figure 5.20 compares the distribution of cv
after the 20th lift / restrict iteration for all three systems.

5.6 Concluding Remarks

We have formulated a coarse scale representation of vacancy concentration in a solid material
to be used in the framework of equation-free projective integration. This restrict operation,
given in equation (5.11), used site weights determined from atomic quadrature with linear
interpolation functions commonly used in finite element analysis. We have also developed a
corresponding lift operation that takes a given coarse scale distribution of vacancy concentra-
tion and creates a consistent fine scale configuration. This operation is shown as Algorithm 4
and uses a simulated annealing process to minimize the error between a given coarse scale

134

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200 250

v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

nodal position (Angstroms)

1st L/R iteration
2nd L/R iteration

20th L/R iteration

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 50 100 150 200 250

v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

nodal position (Angstroms)

1st L/R iteration
2nd L/R iteration

20th L/R iteration

(b)

Figure 5.19. Variation of vacancy concentration as a
function of nodal position in the z-direction for the 1st, 2nd

and 20th lift / restrict iterations: (a) 10 elements in the z-
direction, (b) 16 elements in the z-direction.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 50 100 150 200 250

v
a

c
a

n
c
y
 c

o
n

c
e

n
tr

a
ti
o

n

nodal position (Angstroms)

nelms = 10
nelms = 14
nelms = 16

Figure 5.20. Variation of vacancy concentration as a func-
tion of nodal position in the z-direction for the 20th lift /
restrict iteration for the 10, 14 and 16 element systems.

135

field, and the resultant of the restrict operator applied to a given fine scale configuration.
We have applied these operators to simple examples to establish their properties and the
fidelity with which they exhibit consistency. Potential methods for future improvement of
our operators include the creation and use of multiple fine scale configurations within the
lift process, and the need for attention to be paid when spatial gradients of the coarse scale
field are large relative to the scale over which site weights vary.

136

References

[1] R. V. Abramov. The multidimensional moment-constrained maximum entropy problem:
A BFGS algorithm with constraint scaling. J. Comput. Phys., 228:96–108, 2009.

[2] N. C. Bartelt, W. Theis, and R. M. Tromp. Ostwald ripening of two-dimensional islands
on Si(001). Phys. Rev. B, 54(16):11741–11751, 1996.

[3] E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch. Structural relaxation
made simple. Phys. Rev. Lett., 97:170201, 2006.

[4] A. B. Bortz, M. H. Kalos, and J. L. Lebowitz. New algorithm for Monte-Carlo simulation
of Ising spin systems. J. Comput. Phys., 17(1):10–18, 1975.

[5] A. Chatterjee. An introduction to the proper orthogonal decomposition. Current Sci-
ence, 78(7):808—817, 2000.

[6] A. Chatterjee and D. G. Vlachos. An overview of spatial microscopic and accelerated
kinetic Monte Carlo methods. J. Comput.-Aided Mater., 14(2):253–308, 2007.

[7] L. Chen, P. G. Debenedetti, C. W. Gear, and I. G. Kevrekidis. From molecular dynamics
to coarse self-similar solutions: a simple example using equation-free computation. J.
Non-Newton. Fluid, 120(1-3):215–223, 2004.

[8] S. M. Foiles, M. I. Baskes, and M. S. Daw. Embedded-atom-method functions for the
fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B, 33:7983–7991, 1986.

[9] D. Frenkel and B. Smit. Understanding Molecular Simulation: From Algorithms to
Applications. Academic Press, San Diego, 1996.

[10] C. W. Gear, T. J. Kaper, I. G. Kevrekidis, and A. Zagaris. Projecting to a slow
manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst.,
4(3):711–732, 2005.

[11] C. W. Gear and I. G. Kevrekidis. Projective methods for stiff differential equations:
Problems with gaps in their eigenvalue spectrum. SIAM J. Sci. Comput., 24(4):1091–
1106, 2003.

[12] C. W. Gear and I. G. Kevrekidis. Constraint-defined manifolds: A legacy code approach
to low-dimensional computation. J. Sci. Comput., 25(1):17–28, 2005.

[13] R. J. Hardy. Formulas for determining local properties in molecular-dynamics simula-
tions: Shock waves. J. Chem. Phys., 76(1):622–628, 1982.

137

[14] G. Henkelman and H. Jónsson. Improved tangent estimate in the nudged elastic band
method for finding minimum energy paths and saddle points. J. Chem. Phys., 113:9978–
9985, 2000.

[15] G. Henkelman and H. Jonsson. Long time scale kinetic monte carlo simulations without
lattice approximation and predefined event table. J. Chem. Phys., 115(21):9657–9666,
2001.

[16] G. Henkelman, B. P. Uberuaga, and H. Jónsson. A climbing image nudged elastic
band method for finding saddle points and minimum energy paths. J. Chem. Phys.,
113:9901–9904, 2000.

[17] H. C. Huang, G. H. Gilmer, and T. D. de la Rubia. An atomistic simulator for thin film
deposition in three dimensions. J. Appl. Phys., 84(7):3636–3649, 1998.

[18] E. T. Jaynes. Information theory and statistical mechanics. Phys. Rev., 106(4):620–630,
1957.

[19] Z. Jiang and C. Ebner. Simulations of low-temperature annealing of crystal surfaces.
Phys. Rev. B, 53(16):11146–11151, 1996.

[20] Y. Jiao, F. H. Stillinger, and S. Torquato. Modeling hetergeneous materials via two-
point correlation functions: Basic principles. Phys. Rev. E., 76:031110, 2007.

[21] Y. Jiao, F. H. Stillinger, and S. Torquato. Modeling hetergeneous materials via two-
point correlation functions: II. Algorithmic details and applications. Phys. Rev. E.,
77:031135, 2008.

[22] H. Jonsson, G. Mills, and K. W. Jacobsen. Nudged elastic band method for finding
minimum energy paths of transitions. In B. J. Berne, G Ciccotti, and D. F Coker,
editors, Classical and Quantum Dynamics in Condensed Phase Simulations, pages 385–
404. World Scientific, Singapore, 1998.

[23] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and
C. Theodoropoulos. Equation-free, coarse-grained multiscale computation: enabling
microscopic simulators to perform system-level analysis. Comm. Math. Sci., 1(4):715–
762, 2003.

[24] I. G. Kevrekidis and G. Samaey. Equation-free multiscale computation: Algorithms and
applications. Annu. Rev. Phys. Chem., 60:321–344, 2009.

[25] J. Klars and W. Selke. Disordered flat phase of a crystal surface: Critical and dynamic
properties. Phys. Rev. B, 74(7):073405, 2006.

[26] P. S. Koutsourelakis. Probabilistic characterization and simulation of multi-phase ran-
dom media. Probabilist Eng. Mech., 21(3):227–234, 2006.

[27] H.J. Leamy, G.H. Gilmer, and K.A. Jackson. Statistical thermodynamics of clean sur-
faces. In J.M. Blakely, editor, Surface Physics of Materials, Volume 1. Academic Press,
New York, 1975.

138

[28] J. Li, P. G. Kevrekidis, C. W. Gear, and I. G. Kevrekidis. Deciding the nature of the
coarse equation through microscopic simulations: The baby-bathwater scheme. Multi-
scale Model. Sim., 1(3):391–407, 2003.

[29] M. Love. Probability Theory. Springer-Verlag, 4th edition, 1977.

[30] G. Mills and H. Jónsson. Quantum and thermal effects in h2 dissociative adsorption:
Evaluation of free energy barriers in multidimensional quantum systems. Phys. Rev.
Lett., 72:1124–1128, 1994.

[31] G. Mills, H. Jónsson, and G. K. Schenter. Reversible work transition state theory:
application to dissociative adsorption of hydrogen. Surf. Sci., 324:305–337, 1995.

[32] W. W. Mullins. Theory of thermal grooving. J. Appl. Phys., 28(3):333–339, 1957.

[33] M. V. R. Murty. Morphological stability of nanostructures. Phys. Rev. B, 62(24):17004–
17011, 2000.

[34] M. V. R. Murty and B. H. Cooper. Dynamics of surface profile evolution through surface
diffusion. Phys. Rev. B, 54(15):10377–10380, 1996.

[35] F. A. Nichols and W. W. Mullins. Morphological changes of a surface of revolution due
to capillarity-induced surface diffusion. J. Appl. Phys., 36(6):1826–1835, 1965.

[36] C. Oskay and J. Fish. Fatigue life prediction using 2-scale temporal asymptotic homog-
enization. Int. J. Numer. Meth. Eng., 61(3):329–359, 2004.

[37] E. Patelli and G. Schueller. On optimization techniques to reconstruct microstructures
of random heterogeneous media. Comp. Mater. Sci., 45(2):536–549, 2009.

[38] S. J. Plimpton. LAMMPS Molecular Dynamics package. http://lammps.sandia.gov,
2011.

[39] S. J. Plimpton. LAMMPS Molecular Dynamics package, interatomic potential compar-
isons. http://lammps.sandia.gov/bench.html/#potentials, 2011.

[40] S. J. Plimpton. SPPARKS kinetic Monte Carlo package. http://www.sandia.gov/
∼sjplimp/spparks.html, 2011.

[41] S. J. Plimpton, C. C. Battalie, M. E. Chandross, E. A. Holm, A. P. Thompson,
V. Tikare, G. J. Wagner, E. B. Webb, X. Zhou, C. Garcia Cardona, and A. Slepoy.
Crossing the mesoscale no-man’s land via parallel kinetic monte carlo. Technical Re-
port SAND2009-6226, Sandia National Laboratories, October 2009.

[42] S. J. Plimpton and A. P. Thompson. Efficient exact and approximate kinetic Monte
Carlo algorithms. ICIAM 2011 conference, Symposium on Multiscale Approximations
of Kinetic Monte Carlo Simulations, Vancouver, Canada, 2011.

[43] J. A. Quiblier. A new 3-dimensional modeling technique for studying porous-media. J.
Colloid Interf. Sci., 98(1):84–102, 1984.

139

[44] N. N. Schraudolph and T. Graepel. Towards stochastic conjugate gradient methods.
ICONIP’02: Proceedings of the 9th International Conference on Neural Information
Processing, pages 853–856, 2002.

[45] P. C. Searson, R. Li, and K. Sieradzki. Surface-diffusion in the solid-on-solid model.
Phys. Rev. Lett., 74(8):1395–1398, 1995.

[46] W. Selke and T. Bieker. Morphological-changes of periodic surface profiles. Surf. Sci.,
281(1-2):163–177, 1993.

[47] W. Selke and P. M. Duxbury. Surface profile evolution above roughening. Z. Phys. B
Con. Mat., 94(3):311–318, 1994.

[48] W. Selke and P. M. Duxbury. Equilibration of crystal surfaces. Phys. Rev. B,
52(24):17468–17479, 1995.

[49] M. A. Shay, J. F. Drake, and B. Dorland. Equation free projective integration: A
multiscale method applied to a plasma ion acoustic wave. J. Comput. Phys., 226(1):571–
585, 2007.

[50] N. Sheehan and S. Torquato. Generating microstructures with specified correlation
functions. J. Appl. Phys., 89(1):53–60, 2001.

[51] D. Sheppard, R. Terrell, and G. Henkelman. Optimization methods for finding minimum
energy paths. J. Chem. Phys., 128:134106, 2008.

[52] Y. Shim, J. G. Amar, B. P. Uberuaga, and A. F. Voter. Reaching extended length scales
and time scales in atomistic simulations via spatially parallel temperature-accelerated
dynamics. Phys. Rev. B, 76(20):205439, 2007.

[53] S. Sirisup, G. E. Karniadakis, D. Xiu, and I.G. Kevrekidis. Equation-free/Galerkin-free
POD-assisted comptuation of incompressible flows. J. Comput. Phys., 207:568–587,
2005.

[54] B. E. Sonday, M. Haataja, and I. G. Kevrekidis. Coarse-graining the dynamics of a
driven interface in the presence of mobile impurities: Effective description via diffusion
maps. Phys. Rev. E, 80:031102–1–031102–11, 2009.

[55] M. R. Sørensen and A. F. Voter. Temperature-accelerated dynamics for simulation of
infrequent events. J. Chem. Phys., 112:9599–9606, 2000.

[56] S. Sriraman, I. G. Kevrekidis, and G. Hummer. Coarse nonlinear dynamics and metasta-
bility of filling-emptying transitions: Water in carbon nanotubes. Phys. Rev. Lett.,
95(13):130603, 2005.

[57] F. Szalma, W. Selke, and S. Fischer. Dynamics of surface steps. Physica A, 294(3-
4):313–322, 2001.

140

[58] J. A. Templeton, R. E. Jones, J. W. Lee, J. A. Zimmerman, and B. M. Wong. A
long-range electric field solver for molecular dynamics based on atomistic-to-continuum
modeling. J. Chem. Theory Comput., 7:1736–1749, 2011.

[59] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.

[60] S. Torquato. Statistical Description of Microstructures. Annu. Rev. Mater. Res., 32:77–
111, 2002.

[61] B. P. Uberuaga, R. G. Hoagland, A. F. Voter, and S. M. Valone. Direct transformation
of vacancy voids to stacking fault tetrahedra. Phys. Rev. Lett., 99(13):135501, 2007.

[62] A. F. Voter. Parallel replica method for dynamics of infrequent events. Phys. Rev. B,
57(22):R13985–R13988, 1998.

[63] A. F. Voter, F. Montalenti, and T. C. Germann. Extending the time scale in atomistic
simulation of materials. Annu. Rev. Mater. Res., 32:321–346, 2002.

[64] G. J. Wagner, X. W. Zhou, and S. J. Plimpton. Equation-free accelerated simulations
of the morphological relaxation of crystal surfaces. Int. J. Multiscale Comp. Eng.,
8(4):423–439, 2010.

[65] E. B. Webb III, J. A. Zimmerman, and S. C. Seel. Reconsideration of continuum
thermomechanical quantities in atomic scale simulations. Math. Mech. Solids, 13:221–
266, 2008.

[66] D. B. Xiu and I. G. Kevrekidis. Equation-free, multiscale computation for unsteady
random diffusion. Multiscale Model. Sim., 4(3):915–935, 2005.

[67] C. L. Y. Yeong and S. Torquato. Reconstructing random media. Phys. Rev. E,
57(1):495–506, 1998.

[68] N. Zabaras and S. Sankaran. A maximum entropy approach for property prediction of
random microstructures. Acta Mater., 54(8):2265–2276, 2006.

[69] J. A. Zimmerman, R. E. Jones, and J. A. Templeton. A material frame approach for
evaluating continuum variables in atomistic simulations. J. Comput. Phys., 229(6):2364–
2389, 2010.

141

DISTRIBUTION:

1 MS 0316 R.C. Schmidt, 1444

1 MS 0372 H.E. Fang, 1524

1 MS 0747 V. Tikare, 6223

1 MS 0825 J.S. Lash, 1510

1 MS 0889 C.C. Battaile, 1814

1 MS 0889 M.E. Chandross, 1814

1 MS 0889 J.M. Lane, 1814

1 MS 1315 M.J. Stevens, 1814

1 MS 1316 S.J. Plimpton, 1426

1 MS 1318 R.J. Hoekstra, 1426

1 MS 1318 R. Hooper, 1445

1 MS 1318 R.P. Pawlowski, 1444

1 MS 1320 R.B. Lehoucq, 1444

1 MS 1320 M.L. Parks, 1444

1 MS 1322 J.B. Aidun, 1425

1 MS 1322 P.S. Crozier, 1426

1 MS 1322 S. Jayaraman, 1425

1 MS 1322 R.P. Muller, 1425

1 MS 1322 P.A. Schultz, 1425

1 MS 1322 T.-R. Shan, 1425

1 MS 1322 A.P. Thompson, 1425

1 MS 1411 S.F. Foiles, 1814

1 MS 1411 A.L. Frischknecht, 1814

1 MS 1411 L.M. Hall, 1814

1 MS 1411 E.A. Holm, 1814

1 MS 1411 R.A. Roach, 1823

1 MS 1411 G. Tucker, 1814

1 MS 1411 C.R. Weinberger, 1814

1 MS 9042 J.W. Foulk III, 8246

1 MS 9042 C.D. Moen, 8246

1 MS 9042 J.T. Ostien, 8246

1 MS 9051 B.J. Debusschere, 8351

1 MS 9054 R.W. Carling, 8300

1 MS 9153 R.G. Miller, 8200

1 MS 9154 M.E. Gonzales, 8240

1 MS 9161 R.H. Nilson, 8365

1 MS 9402 D. Ward, 8131

1 MS 9403 L.M. Hale, 8246

142

1 MS 9403 B.M. Wong, 8223

1 MS 9404 R.E. Jones, 8246

1 MS 9404 N.R. Moody, 8222

1 MS 9404 A. Mota, 8246

1 MS 9404 X. Zhou, 8246

1 MS 9404 J.A. Zimmerman, 8246

1 MS 9409 J. Deng, 8365

1 MS 9409 L.C. Erickson, 8365

1 MS 9409 N.R. Fornaciari, 8365

1 MS 9409 J. Lee, 8365

1 MS 9409 K.K. Mandadapu, 8365

1 MS 9409 J.A. Templeton, 8365

1 MS 9409 G.J. Wagner, 8365

1 MS 0899 Technical Library, 9536 (electronic copy)

1 MS 0359 D. Chavez, LDRD Office, 1911

143

144

v1.36

