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Executive Summary 

The main objective of the LDRD project entitled ―Computational Mechanics for Geosystems 

Management to Support the Energy and Natural Resources Mission‖ was to enable a 

foundational capability for advanced modeling of coupled multiphysics subsurface processes to 

support current and future Sandia National Laboratories (SNL) projects in geosystems. 

Multiphase, multicomponent, reactive flow systems arise in many crucial SNL projects: geologic 

sequestration of CO2 (a National Academy of Engineering challenge problem), geologic disposal 

of nuclear waste material, thermochemistry/decomposition of porous high explosive, nuclear 

weapons (NW) encapsulant foams and ablative materials, advanced designs of thermal/flow 

batteries, and many other projects in the energy security and conventional/nuclear weapons 

programs. Not all of these programs involve geosystems, but they all involve porous materials, 

and the research and development from this project can be directly applied.  

 

Prior to this project, SNL did not have an institutional computational geosciences capability for 

modeling coupled thermal, chemical, geomechanical and flow problems, instead relying on 

commercial or freely available software. The final implementation of the simulation capability 

resides in the Sierra software system. The development of the Sierra Mechanics software 

platform has been primarily funded by the Department of Energy (DOE) Advanced Simulation 

and Computing (ASC) program for more than ten years. For this project, Sierra provides a 

massively parallel, objected oriented platform actively supported by SNL to fulfill the 

engineering sciences mission.  

 

There are many pieces necessary to enable a parallel processing multiphysics simulator for 

nonisothermal reactive multicomponent multiphase fluid and solid mechanics in heterogeneous 

geologic media. While the Sierra system provides foundational support for solving discrete 

systems of equations, most of the needed physics modules did not exist.  

 

The flow module, implemented in Sierra/Aria, is discussed in Chapter 2, and includes single 

phase and several two-phase flow models: two-phase immiscible, two-phase water and air, and 

two-phase, three-component CO2-H2O-NaCl, with thermodynamically generated phase behavior. 

This latter model in particular was developed to support SNL activities in geologic CO2 

sequestration, the target problem studied by the Center for Subsurface Energy Security (CFSES), 

a BES-funded program joint with University of Texas at Austin (UT/Austin). These flow models 

can be coupled to energy transport and reactive species transport, enabling multiphysics 

applications with phase change and chemical reaction. The transport of reactive species in porous 

materials under multiphase conditions, a capability also developed in this project, is discussed in 

chapter 3.  

 

Sierra/Adagio is a large deformation and strain quasi-static solid mechanics module which 

utilizes the concept of effective stress for modeling mechanics of geomaterials. Several new 

constitutive models developed and implemented in this project are summarized in chapter 4. 

These models are able to treat multiphase nonlinear behavior (such as creep or consolidation) of 

clays and salt beds as a function of the volume fraction and capillary pressure for two-phase fluid 

systems. This project also enabled the application of the SNL-developed Geomodel for general 

treatment of geologic materials.  
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Strategies for multiphysics coupling in general are presented in chapter 5. The techniques 

enabling the general coupling of reactive flow and energy transport with geomechanics 

developed and utilized in this project are discussed here. The resulting algorithms allow the use 

of different grids for each of the physics modules using the concept of ―REGIONS,‖ and utilize 

the ―TRANSFER‖ functionality in Sierra to provide transfer of information between grids. The 

coupling capability enables the so-called Thermal-Hydrological-Mechanical-Chemical 

multiphysics modeling capability for geosciences. 

 

The treatment of phase behavior, based in the principle of Gibbs free energy minimization, is 

necessary to model complex fluid mixtures, in particular the CO2-H2O-NaCl system involved in 

CO2 sequestration, a target problem for this project. Chapter 6 summarizes our work in 

developing the multiphase thermodynamics capability of performing phase equilibrium for fluid 

mixtures. Much of this work was implemented in Cantera (Moffat and Goodwin 2011), a general 

open-source thermodynamics package which is linked in the Sierra software system as a third-

party library. Also discussed is an adaptive table lookup capability that makes the phase behavior 

thermodynamics available to the flow solver, or any other Sierra module, in an efficient manner. 

This obviates the need to perform so-called thermodynamic ―flash‖ calculations dynamically, a 

highly CPU-intensive procedure.  

 

A key feature of geologic materials is that they exhibit highly heterogeneous properties, e.g., 

porosity, permeability, geomechanics moduli, etc. Chapter 7 summarizes research into the 

statistical representation of heterogeneous properties exploring the use of Karhunen-Loeve 

expansions, and includes research in conditional simulation. The capability of dealing with 

heterogeneous properties is a newly developed feature in Adagio and Aria developed under this 

project. 

 

The last chapter presents several application problems chosen to demonstrate the capabilities 

fulfilling goals and milestones for this project. Several applications were performed jointly with 

other SNL and work-for-others funded projects, as a vehicle to quickly demonstrate the potential 

impact of this research. 

 

The accomplishments from this project support SNL in addressing many of the issues associated 

with protecting our economic and national security by assisting in the development of a diverse 

energy portfolio. In particular, the simulation software developed here enables SNL to address 

the wide range of multiphysics and multiscale issues associated with the entire energy cycle from 

in situ fuel extraction to waste disposal. The progress to date provides the proof of concept that 

our techniques for coupling multiphysics modules are viable and generally applicable. 

 

We have made significant progress toward integrating the coupled, multiphysics simulation 

software with SNL and DOE strategic goals of energy security and environmental management. 

Since its inception, this project was key to supporting the joint SNL/UT/Austin Center for 

Subsurface Energy Security. The software developed in this project forms the basis for advanced 

multiphysics models supporting the multiscale research performed by CFSES in establishing the 

science foundation for viable CO2 sequestration processes. The simulation software has been 

used in several key SNL energy projects, in particular, Clay/Shale and Salt Repository studies. 

This capability supports SNL initiatives directed at establishing SNL as a center for repository 
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management and analysis (nuclear waste and compressed air energy storage), and energy 

security (CO2 sequestration). In addition to CFSES, this work has led to several new projects at 

SNL, including a new LDRD project on experiments and models for investigating clay/shale 

high level waste repositories. Munitions/Weapons Safety will fund further development and 

validation of reactive transport to study hot gas channeling in foam decomposition. This work 

led to two new projects funded in the current fiscal year from the DOE Office of Electricity for 

compressed air energy storage and flow batteries (electrochemical porous electrodes and 

membranes), and to negotiations with the Southwest Partnership for Carbon Storage to apply the 

simulation capability to study coupled geomechanics effects associated with supercritical CO2 

injection in deep saline aquifers. The Nuclear Energy Advanced Modeling and Simulation 

(NEAMS) project is tasked to evaluate and develop multiphysics modeling capability for nuclear 

waste forms and disposal systems. Chapter 8 includes model problems aimed at demonstrating 

that the multiphysics capabilities key to the success of NEAMS exist in Sierra.  
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1. Introduction 

1.1. Purpose and Goals 

This report summarizes the accomplishments resulting from the LDRD project entitled 

―Computational Mechanics for Geosystems Management to Support the Energy and Natural 

Resources Mission.‖ The main objective of this project was to enable an advanced modeling 

capability for Sandia National Laboratories (SNL) to support current and future projects in 

geosystems. U.S. energy needs include more economical extraction of fossil fuels, protection of 

water resources, reduction of the impact of fossil fuels on climate change, mining nuclear fuel 

sources with minimal environmental impact, and technologies for safe disposal of energy wastes. 

SNL has active and potential programs in each of these areas. Long-term solutions to these needs 

require the ability to model and predict behavior of subsurface systems including complex, 

heterogeneous mineral and porous rock thermal-chemical-mechanical behavior as well as the 

interactions with multiphase pore fluids.  

 

The main goal of this project was the development of a foundational capability for coupled 

thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems 

utilizing massively parallel processing. To solve these complex issues, this project integrated 

research in numerical mathematics and algorithms for chemically reactive multiphase systems 

with computer science research in adaptive coupled solution control and framework architecture. 

This report summarizes and demonstrates the capabilities that were developed together with the 

supporting research underlying the models.  

 

Key accomplishments: 

 General capability for modeling nonisothermal, multiphase, multicomponent flow in 

heterogeneous porous geologic materials. 

 General capability to model multiphase reactive transport of species in heterogeneous 

porous media.  

 Constitutive models for describing real, general geomaterials under multiphase conditions 

utilizing laboratory data.  

 General capability to couple nonisothermal reactive flow with geomechanics (THMC). 

 Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation 

enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic 

capability to other simulators. 

 Capability for statistical modeling of heterogeneity in geologic materials. 

 Simulator utilizes unstructured grids on parallel processing computers. 

1.2 Collaborations 

From its inception, this project has been closely allied with securing and supporting the joint 

SNL/University of Texas at Austin (UT/Austin) Center for Subsurface Energy Security 

(CFSES), a BES-funded Energy Frontiers Research Center (EFRC). Several of the applications 

discussed in the following represent work jointly supported by this LDRD and CFSES. We have 

ongoing collaboration with UT/Austin faculty and staff in the Institute for Computational 

Engineering and Sciences (ICES) and Petroleum Engineering department regarding modeling of 
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multiscale (pore scale to field scale) multiphase multicomponent subsurface systems. We have 

used this opportunity to guide our LDRD developments to position us to address both SNL-

centric subsurface energy initiatives as well as position us to address broader national issues, 

such as CO2 sequestration.  

 

We also have established collaboration with the University of Utah via the Southwest 

Partnership for CO2 sequestration. The capability to model coupled flow and geomechanics of 

representative geomaterials is the focus of this effort.  

 

This project has also spawned and impacted a number of internal SNL collaborations, including 

the weapons program, energy storage (compressed air energy storage; flow batteries), the 

Nuclear Energy Advanced Modeling and Simulation (NEAMS) project, and waste disposal in 

clay, shales, and salt beds.  

1.3 Software Developed in this Project 

The Sierra software system was used as a platform for the development of the computational 

mechanics code developed in this project. The development of the Sierra Mechanics software 

platform has been primarily funded by the Department of Energy (DOE) Advanced Simulation 

and Computing (ASC) program for over ten years. The goal is the development of massively 

parallel multiphysics capabilities to support the SNL engineering sciences mission. Sierra 

Mechanics was designed and developed to run seamlessly on massively parallel computing 

hardware, spanning the hardware compute space from a single workstation to compute systems 

with thousands of processors. The foundation of Sierra Mechanics is the Sierra toolkit, which 

provides finite element application code services such as: (1) mesh and field data management, 

both parallel and distributed; (2) transfer operators for mapping field variables from one 

mechanics application to another; (3) a solution controller for code coupling; and (4) included 

third party libraries (e.g., solver libraries, MPI communications package, etc.).  

 

The Sierra Mechanics code suite is comprised of application codes that address specific physics 

regimes. The two Sierra Mechanics codes which were utilized in this project include Aria (Notz 

et al. 2007) and Adagio (Sierra Solid Mechanics Team, 2009). The suite of physics supported by 

Aria includes low Reynolds number incompressible flow all the way to high Reynolds number, 

turbulent, reactive fluid flow (for modeling fires). Under the current LDRD project, a 

nonisothermal, multiphase, multicomponent porous flow capability has been added. Adagio 

supports large deformation quasi-static mechanics, including SNL-developed matrix-free 

iterative solution algorithms that allow extremely large and highly nonlinear problems to be 

solved efficiently. Adagio supports several constitutive models applicable to geomaterials, and 

under this LDRD, several new models specific to multiphase flow systems were added. Support 

for dynamic, flexible solution control enabling fluid flow and geomechanics (THMC) resides 

within the Sierra Mechanics called Arpeggio. 

 

The following summarizes the physical/mathematical models developed in this project, the 

chapter describing the details of the models, and the code in which they were implemented. 
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Sierra/Aria 

 Nonisothermal, single and multiphase, multicomponent flow in heterogeneous porous 

media (chapter 2) 

 Multiphase, reactive species transport  (chapter 3) 

Sierra/Adagio 

 Geomaterial-specific, two-phase, elasto-plastic constitutive geomechanics models 

(chapter 4) 

Sierra/Arpeggio 

 Solution control for general THMC coupling between Aria and Adagio (chapter 5), or for 

general coupling of physics modules within a Sierra code  

Cantera 

 Real fluid equations of state (EoS) thermodynamic models with capability to perform 

multicomponent compositional (e.g., CO2-H2O-NaCl) equilibrium (chapter 6); Cantera 

can be included in Sierra codes as a third party library 

 Multidimensional adaptive tables of EoS and phase diagrams (chapter 6) 

Dakota 

 Numerical implementation of Karhunen-Loève (KL) expansion method for random field 

represention of spatially heterogeneous material properties (chapter 7) 
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2. Flow Physics Models 

2.1 Introduction 

In this chapter we present the physics models for multiphase flow in heterogeneous porous media 

developed and implemented in Sierra/Aria under this project. Prior to this effort, computational 

flow in porous media was not available in Sierra. This capability to model the flow and transport 

of fluids in the subsurface is a crucial piece needed to complete the development of a general 

subsurface simulation tool. In the following we will present the flow physics models starting 

from the simplest, for single phase flow, to the most complex, which include nonisothermal, 

multicomponent multiphase systems with complex phase behavior.  

 

The numerical method used to solve the equations is summarized briefly in Appendix A. Martinez 

and Stone (2008) discussed the general formulation of multiphase, multicomponent flow in 

deformable porous media. The following sections use specific cases of this general description. 

2.2 Single Phase Flow and Energy 

2.2.1 Model Formulation  

The general mass balance equation for single phase flow implemented in Aria is, 
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where the Darcy velocity (really a flux) vector is,  
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and  is porosity,  is fluid density, Q is a mass source, k is the permeability tensor, p is fluid 

pressure, and  is the fluid viscosity. The energy equation is implemented in the enthalpy form 

for single phase flow: 
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where e denotes fluid internal energy, es is the internal energy of the porous structure (sometimes 

referred to as the porous matrix or skeleton), h is fluid enthalpy, and e is the effective thermal 

conductivity. Notice that this model assumes thermal equilibrium between the porous skeleton 

and the flowing fluid.  

 

For a slightly compressible medium, we need to account for the porous medium and fluid 

compressibilities. In Aria, a general temperature and pressure dependent density model is the 

Compressible_Boussinesq model, 
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  1 ( )ref ref refp p T T        
   (2.4) 

 

in which  is the isothermal fluid compressibility defined by, 
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and  is a thermal expansion coefficient (negative for volumetric expansion with increasing 

temperature). If the problem is isothermal, this term may be omitted. One may also define the 

density as a constant (CONSTANT) or a polynomial (POLYNOMIAL) as a function of pressure or 

temperature.  

 

For ideal gas flow the density can be specified as Single_Component_Ideal_Gas, 

 

 
R p

M T
   (2.6) 

 

in which R is the universal gas constant and M is the molecular weight. The density is both 

pressure and temperature dependent.  

 

Following Aziz and Settari (1979), the following model specifies a dependence of porosity on 

pressure (Porosity=Rock_Compressible) for a slightly compressible medium, 
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with Cr is defined as the rock compressibility, and implies, 
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Again, the porosity can also be defined as constant (CONSTANT) or a polynomial (POLYNOMIAL) 

in terms of pressure. In single phase flow either the density or porosity has to be defined 

functionally in terms of the pressure; both cannot be constant.  

 

Specifying the foregoing models, the single phase mass balance equation can then be written in 

terms of pressure as (for isothermal problems), 
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where the product
0ref S is typically called the aquifer storativity by hydrologists, and we have 

defined, 

 

  0 ref rS C   , (2.10) 

 

in which we have ignored the second-order product of rC .  

 

The viscosity can be specified as a constant or a polynomial in terms of temperature or pressure. 

2.2.2 Verification Examples 

Single Phase Water Injection 

Fluid injection from a well into a confined aquifer of uniform porosity and permeability is 

described by the so-called well function solution, see e.g., chapter 8 of Bear (1979). The line 

source solution for pressure in a confined aquifer is: 
2
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
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in which the storage coefficient, assuming incompressible fluid density, is rS C . H is the 

thickness of the confined aquifer and Qw is the volume flow rate. W(u) is the well function (an 

exponential integral) for a confined aquifer. The values for the line source solution in Figure 2.2-

1 below were computed using a 4
th

 order asymptotic representation of the well function valid for 

u < 1.  

 

 
Figure 2.2-1. Numerical and analytical solutions for injection of water from a well into a confined aquifer. 

Solid lines are the numerical solution in a rectangular (1/4 symmetry) region on a coarse 
grid (~50 m grid blocks), while the symbols (both solid squares and circles) represent the 
analytical solution.  
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Parameters used in this problem are similar to values using by Ebigbo et al. (2007) on 

benchmark problems for modeling the CO2 leakage through an abandoned well: 

 

Cr = 10
-8

 Pa
-1

 

  = 0.15  

H = 100 m  

k  = 2x10
-14 

m
2
 

 = 2.54x10
-4

 Pa-s  

  = 1045 kg/m
3
 

 

The values are representative of brine at high pressure. The mass flow rate into the quarter region 

is 8.87 kg/s for brine, so the equivalent well mass flow rate for the analytical solution is 4x8.87 kg/s.  

 

The profiles of overpressure are along the diagonal of a rectangular 5 km x 5 km domain, 100 

meters thick. Grid blocks are about 50 m x 50 m by 12.5 m in the vertical direction. The brine 

injection flux is specified on the two corner sides of the stack of corner elements comprising the 

injection ―well.‖ Even though no attempt is made to resolve the well, the numerical solution is 

accurate at 50 meters and beyond. The Sierra/Aria solutions at 17.6 and 100 years are the same, 

i.e., it has reached steady state by 17.6 years. The analytical solution is self-similar, and strictly 

speaking has no steady solution. The numerical problem has a steady solution because the head 

is held constant at the outer boundaries of the rectangle. The solution at 5 years shows some 

deviation at large radius, owing to this boundary condition, both the fact that a fixed head is 

specified and the fact that it is specified on the edges of a rectangle as opposed to a radial 

boundary (the analytical solution is obviously axisymmetric).  

 

This solution was obtained with the immiscible physics model, to be discussed in the following, 

but with the non-wetting saturation set to zero as initial condition and on the boundaries, so the 

non-wetting mass balance equation is only along for the ride, and the wetting balance reverts to 

the single phase mass balance equation described above.  

Elder Problem 

As an example of a coupled thermal-hydrological problem, we consider buoyantly driven 

convection in a fluid-saturated porous layer. This problem was discussed by Elder (1967), under 

the Boussinesq approximation, providing both experimental and numerical results. In 

Sierra/Aria, the problem is described by the single phase heat and mass flow equations described 

in Eqns. (2.1) through (2.3). 

 

Figure 2.2-2(c) shows the steady solution and summarizes the boundary conditions for buoyant 

convection in a bottom-heated 10-to-1 aspect ratio (W/H = width/height = 10) porous (30% 

porosity) layer. All boundaries are closed to flow, the sides are insulated to heat loss. The bottom 

is heated over a centrally located region of length 4H by holding the temperature at 40
o 
C while 

the remainder of the boundary is held at 20
o
 C. The fluid thermophysical properties are constant 

except for the density which is modeled with the Compressible_Boussinesq Sierra/Aria 

density option, 
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 1 ( )ref ref refp p T T        

   

 

with  = -3.3x10
-3

 K
-1

 and negligible .  

 

We find a steady solution on a 100x20 uniform grid (only half the domain is modeled, because 

the problem is symmetric) of 4-node quadrilateral bilinear elements by solving a false transient 

until the solution is independent of time.  

 

The solutions to this problem are a function of the Rayleigh number, defined by Elder as: 

  

 m

k g T H
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

 


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in which k is the permeability, g is gravity, T is the temperature difference, m is the diffusivity 

based on the effective thermal conductivity and the fluid heat capacity, and  is the kinematic 

viscosity. Figure 2.2-2 shows the solution for various values of Rayleigh number. The number of 

convection cells and hot fingers increases with increasing Rayleigh number. This behavior is the 

same as what Elder shows in terms of the relationship between the number of cells and the 

Rayleigh number, though the values of Rayleigh number differ slightly, possibly because the 

present formulation is non-Boussinesq; the density is allowed to vary with temperature for all 

terms of the flow and energy equations. 

 

 
 

 
 

Figure 2.2-2. Buoyant Convection in a Porous Layer heated from below for a) Ra=72.5, b) Ra=106, and 

c) Ra=154. 

T=40o C T=20o C T=20o C 

T=20o C 

(a) 

(b) 

(c) 
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2.3 Two-Phase Immiscible Flow 

2.3.1 Model Formulation  

In this section, we define a formulation for two-phase flow of immiscible fluids, that is, without 

mass transfer between the phases. Common examples include oil/water, under pressure and 

temperature conditions where phase transitions are negligible, and systems involving non-

aqueous phase liquids (NAPL) occurring in subsurface contamination by organic liquids, e.g., 

solvents, fuels, oils. The present model formulation follows from the general two-phase 

formulation described in Martinez and Stone (2008). 

 

If we disallow partitioning of components across phases, then we get the following system of 

mass balance equations for a wetting and non-wetting phase,  
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In these equations, the subscript w represents wetting phase properties and the subscript n non-

wetting phase properties. We have also incorporated the Darcy flux terms, including pressure 

and gravitational forces, as well as capillary pressure: 

 

 c n wp p p   (2.12) 

 

The symbol p in the equations is used in place of wetting phase pressure, pw. Also, the pore space 

is assumed saturated with fluids, 

 

 1w nS S   (2.13) 

 

This constraint has been incorporated in the wetting phase mass balance.  

 

In addition to the density models described in the previous section, models for density and 

viscosity can be specified as constant, polynomial with respect to other primary or secondary 

variables, or by tabular functions, or a user-defined plug-in. 

Capillary Pressure and Relative Permeability 

Both the capillary pressure and relative permeability are functions of phase saturations. Either of 

these can be specified by the user in a tabular form, as a function of either phase saturation. A 

plug-in can also be written by the user for either of these functions. Several commonly used 

functions are built-in to the code.  
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The models described by Udell and Fitch (1985) have been implemented. The capillary pressure 

(Udell_Cubic_Immiscible) is defined as, 

 

       2 3

1 2 31 1 1cp c s c s c s
k


       (2.14) 

where   is the surface tension, k is permeability, and the scaled saturation is given by, 

 

     , , ,1w w r nw r w rs S S S S     (2.15) 

with residual wetting saturation, ,w rS and residual non-wetting saturation ,nw rS . The coefficients 

are input parameters; Udell and Fitch give coefficients corresponding to data from a particular 

type of sand. The relative permeability functions specified by Udell and Fitch are cubic 

(Udell_Cubic) functions of the scaled saturation,  

 

 
 

3

3
1

rw

rn

k s

k s



 
 (2.16) 

 

Also available are the so-called van Genuchten (1978) functions. The capillary pressure is 

defined as, 

  
1

1

0 1 1 1/ , 1c cp p s


   


      (2.17) 

in terms of the scaled saturation defined above and in which 0cp  plays the role of the ―entry‖ 

pressure. The corresponding relative permeabilities are given by,  
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k s s









 
   

 

   
  

 (2.18) 

2.3.2 Verification Example 

Five-Spot Problem 

To verify the two-phase immiscible flow implementation, the 5-spot waterflood problem, as 

described by Helmig (1997), is selected. This two-dimensional problem involves the injection of 

water (wetting phase) into an oil (non-wetting phase) saturated domain (300m x 300m). 

Capillary pressure and gravitational effects are not included. Two variations to the problem 

geometry and boundary conditions are considered (Figure 2.3-1). Case 1 involves water injection 

at the lower left corner and oil extraction at the upper right corner. In Case 2 water injection 

occurs at both the lower left and upper right corners; oil extraction occurs at both the upper left 

and lower right corners as indicated in Figure 2.3-1. Table 2.3-1 presents boundary and initial 

conditions as well as pertinent properties used in the calculations. 
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Figure 2.3-1. Schematic and mesh used for Case 1 (left) and Case 2 (right). 

Table 2.3-1. Material properties, boundary and initial conditions. 

Fluid Properties Value Units 

Water density 1000
 

kg/m
3
 

Oil density 1000 kg/m
3
 

Water dynamic viscosity 0.001 kg/ms 

Oil dynamic viscosity 0.001 kg/ms 

Solid Matrix Properties   

Porosity  0.2 - 

Intrinsic permeability 10
-7

 m
2
 

Relative permeability Udell cubic model  

Initial Conditions   

Oil saturation 1.0 - 

Pressure 2x10
5
 Pa 

Case 1 Boundary Conditions   

At lower left corner (x=0, y=0):   

Oil pressure 2x10
5
 Pa 

Water injection rate 0.12 kg/s 

At upper right corner (x=300,y=300):   

Water saturation 0.0 - 

Oil extraction rate 0.12 kg/s 

Case 2 Boundary Conditions   

At lower left and upper right corners 
(x=0, y=0) and (x=300, y=300): 

  

Oil pressure 2x10
5
 Pa 

Water injection rate 0.12 kg/s 

At upper left and lower right corners 
(x=0,y=300) and (x=300, y=0): 

  

Water saturation 0.0 - 

Oil extraction rate 0.12 kg/s 
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A difference to be noted is the applied form of the relative permeability function. Helmig uses 

relative permeability with a quadratic dependence on saturation. The Udell cubic was selected as 

the most representative among the available functions currently available. This is expected to 

contribute to some difference in solutions. 

 

The mesh (Figure 2.3-1) is made up of 16x16 quadrilateral elements of equal size (18.75m x 

18.75m), the same mesh used by Helmig. The simulations using this mesh were carried out with 

a fixed time step of 1 day for a total of 200 days. Water saturation contours at 200 days are 

shown in Figure 2.3-2 for both cases. The progress of the front, measured as the distance of the 

0.1 contour line along the x-axis, is within a few percent (less than 4%) of the distance presented 

by Helmig (1997) in Figure 5.45c (pg. 296). 

 

 

 
Figure 2.3-2. Water saturation contours at 200 days for Case 1 (left) and Case 2 (right). 

The original injection/extraction boundary conditions were applied uniformly to the outside 

edges of the corner elements. A linear variation and a point source/sink were both considered 

with no significant change in results. Another variation described in the paper and performed 

with Aria was to rotate the mesh of Case 2 by 45 degrees in the counter-clockwise direction. 

Water saturation results were indistinguishable from the original orientation. 

 

Finally, the mesh was refined by dividing each element side into 4 equal intervals to produce 16 

elements per original element. The water saturation contours from Case 1 at 200 days are 

compared with those from the original mesh in Figure 2.3-3. Clearly the degree of spreading, in 

particular at the front, is due to the mesh resolution.  
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Figure 2.3-3. Comparison of water saturation contours with original (left) and refined (right) mesh. 

This sample problem contributes to confidence that the two-phase immiscible flow formulation 

has been implemented correctly and that the solution method is capable of handling problems of 

this type. Additionally, the directional independence of this problem has been verified. 

 

In addition to this verification problem, section 2.6 presents another verification problem 

involving capillary exclusion of dense non-aqueous phase liquid by an embedded lens of finer 

textured material, with a high entry pressure. Another verification problem is included in chapter 

8, involving the leakage from an abandoned well during sequestration of CO2 into a deep 

subsurface brine reservoir. 

2.4 Two-Phase Air, Water, and Energy 

2.4.1 Model Formulation 

This model describes the nonisothermal two-component, two-phase transport of water and air in 

a porous medium. The air is treated as a non-condensible gas, but it can dissolve in the liquid 

phase. The water can exist as water vapor or liquid. The model allows the fluids to partition 

between the two phases, depending on pressure and temperature conditions. Two single phase 

states (all liquid or all gas) and one two-phase state are allowed.  

 

The component mass balance equations describing two-phase transport of water, air and energy are: 

 

Water:      0l wl l g wg g wl l l wg g g wg wS Y S Y Y Y Q
t
    


     


v v J  (2.19) 

 

Air:      0l al l g ag g al l l ag g g ag aS Y S Y Y Y Q
t
    


     


v v J  (2.20) 
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Energy: 
   

 
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s s l l l g g g

T l l l g g g wg wg ag ag e

e S e S e
t

T h h h h Q

    

  


   
 

        v v J J

 (2.21) 

 

where g g wa gD Y   J  (2.22) 

 

is the gas-phase binary diffusion flux for water vapor through air. In these equations, subscript l 

refers to the liquid phase and g to the gas phase. In addition to previously defined variables,  

Y  
= mass fraction of component  (w for water or a for air) in phase β 

S   = saturation of phase β (l for liquid, g for gas) 

  
=  phase density 

e =  internal energy of phase  (es is solid phase internal energy) 

T  
= effective thermal heat conduction 

h  
= enthalpy of phase 

gh 
 component enthalpy in gas phase 

 

The liquid and gas phase Darcy velocities are: 
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 (2.23) 

 

In addition, the following constraints must hold: 

 

 1l gS S   (2.24) 

 1,  for  or w aY Y l g      (2.25) 

Thermodynamics 

A challenging numerical issue with solving multicomponent, multiphase systems is the treatment 

of phase behavior, i.e., phase transitions can result in the appearance and disappearance of 

phases. The model must have the flexibility of dealing with dynamically evolving two-phase and 

single phase (all gas or all liquid) regions in the same grid. The difficulty arises from the fact that 

logical primary variables, defined as a set of variables such that all other secondary variables 

appearing in the mathematical model can be determined, are not persistent across the possible 

phase states. In the two-phase state, the liquid or gaseous saturation is a logical solution variable; 

it allows determination of the volume fraction occupied by each phase. However, saturation is 

not a variable in either of the two single phase states, but rather a constant. Martinez and Stone 
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(2008) review methods that have been applied to this problem; in the following we discuss a 

persistent variables formulation for the air-water-heat physics. 

 

A persistent variables formulation can be developed by choosing the following primary variable 

vector: 

 

w

aU P

T

 
 


 
  

 (2.26) 

where  

  1w l wl l g wg lY S Y S      (2.27) 

 

is the bulk density of water in the pore space of the two-phase system. The system pressure is 

 

  , ( , )a a w wP P T P T    (2.28) 

where aP and wP denote partial pressures of air and water, respectively, and a is the partial 

density of air. The liquid and gas phase pressures are given in terms of the system pressure and 

capillary pressure, 

 
( )l c l

g

P P P S

P P

 


 (2.29) 

 

Currently, thermodynamic properties for water in the liquid and two-phase states are represented 

by rational polynomials, as determined by Zyvoloski et al. (1995). Water in the gas-saturated 

state is currently treated as an ideal gas. Air is modeled as a non-condensible ideal gas. 

Dissolution of air in liquid water is approximated by a Henry‘s Law model,  

 

 / ( )a

al a HY P P T  (2.30) 

 

In this persistent variables formulation, the liquid saturation can be determined as follows, 
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 (2.31) 

 

where ,

w

g sat is the saturated water vapor density, and  , , / 1 / ( )w a

l sat l sat a HP P T   , with ,

w

l sat  

the saturated liquid water density. 
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2.4.2 Verification Example 

Heat Induced Dryout in a Heatpipe 

The steady heat pipe problem discussed by Udell and Fitch (1985) is the basis for this steady, 

thermal two-phase flow example problem. The problem involves the injection of heat into a one-

dimensional horizontal column of porous material in which the void volume is filled with air and 

water (liquid and vapor). This problem has been used as a benchmark for the TOUGH2 code 

(Pruess 1987) and for the PorSalsa code (Martinez et al. 2001). This problem exercises features 

of evaporation/condensation and vapor and liquid flows in the code. Binary diffusion in the gas 

phase is included, and a saturation-dependent effective thermal conductivity is specified. 

The material properties specified for this problem are the same as in the steady heat pipe 

problems posed by Udell and Fitch (1985). The grid used was the same as in the TOUGH2 

calculation; a 2.25 m column is discretized into 90, 2.5 cm finite elements. The material has 40% 

porosity and 1 Darcy permeability (=10
-12

 m
2
). The capillary pressure-saturation relation is a 

polynomial function fit to data by Udell and Fitch (Udell_Cubic_Air_Water) and the relative 

permeabilities are given by cubic functions of saturations, (Udell_Cubic) as described in 

section 2.3. In addition, the effective, saturation-dependent thermal conductivity was specified as 

(Thermal Conductivity=Saturation_Power_Law),  

 
 0 1 0T lS     

, 

with 582.00   W/m-K and 13.11   W/m-K.  

The steady solution is determined by computing a transient solution, starting from an arbitrary 

initial condition, until a steady-state solution is obtained. The initial conditions are T = 70
o 
C, Pg 

= 1 atm, and Sl = 0.5. To initiate the transport, the left end (x = 0) is abruptly saturated with 

liquid, while the temperature and pressure are maintained at 70
o 
C and 0.10133 MPa, 

respectively. At the same time, a 100 W/m
2
 heat flux is applied at x = L, which is also closed to 

the flow of air and water. 

Figure 2.4-1 compares the steady profiles of liquid saturation (S), air mole fraction (X) and 

temperature (T) as given by TOUGH2, PorSalsa, and our implementation in Sierra/Aria. The 

mole fractions are determined from the mass fractions (Y ) according to 

 

ag w

ag

ag w wg a

Y W
X

Y W Y W



 

 

where Wa and Ww are the molecular weights of air and water, respectively. The steady solution 

features a counter flow of water vapor toward the ―condenser‖ under a vapor pressure gradient 

from the ―evaporator‖ region, where heat is applied, balanced by an opposed flow of liquid 

wicked back toward the evaporator by capillary forces. It is noted that complete dry-out of the 

porous material occurs at about 2.1 m; the region closer to the evaporator is superheated single 

phase gas. This problem demonstrates the ability of our persistent variables formulation to deal 
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with phase appearance and disappearance. The solutions agree very well, including the location 

of the dry-out point. 

  
Figure 2.4-1. Comparison of steady heat pipe solutions given by Sierra/Aria (symbols), TOUGH2 (solid 

lines) and PorSalsa (dashed lines) for temperature (T), air mole fraction (X), and liquid 
saturation (S).  

In addition to this verification example, section 2.6 includes another verification problem 

involving isothermal vertical infiltration across a capillary interface. 

2.5 Two-Phase CO2-H2O-NaCl System 

2.5.1 Model Formulation 

The following presents a formulation for describing three-component two-phase flow for the 

CO2-H2O-NaCl system. This system is important to the subsurface sequestration of CO2 for 

reducing greenhouse gas emissions. The two phases are brine, denoted by subscript w, a liquid 

phase of water with salt and CO2 dissolved in it, and ―gas,‖ denoted by subscript g, a (generally 

supercritical) CO2-rich phase, with some water dissolved in it, but no salt. The formulation also 

deals with precipitation of salt from the liquid phase. The notation differs slightly from the 

models discussed above; this formulation uses typical symbols from the reservoir simulation 

literature for composition in two-phase gas-liquid systems: x for mass fractions (or mole 

fractions) in liquid (brine) phase and y for mass fractions in the gas (CO2) phase. 

 

To deal with the precipitation of NaCl from the liquid to form solid salt, the fluid system is 

treated as a three-phase system, with two flowing phases composed of the brine and CO2 phases, 

and one non-flowing solid phase, which is the solid salt precipitate. Obviously, the formulation 

holds for other chloride salts, e.g., CaCl, KCl. 

 

Water:    2 2 2H O H O H O

w w w g g w w w w g w g w gS x S y x y Q
t
    


     


v v J J  (2.32) 

 

CO2:    2 2 2

2 2 2 2

CO CO CO

w w CO g g CO w CO w g CO g w gS x S y x y Q
t
    


     


v v J J  (2.33) 

 

 

Water vaporP = 1 atm

= 0.4

k = 1.0 D
Q=100 W/m2

Liquid water

(wicked)

Sand

Liquid

Saturated
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Salt:    NACL NACL

w w NACL s s w NACL w wS x S x Q
t
   


   


v J  (2.34) 

 

Nomenclature 

sS
 

= saturation of solid salt precipitate 

wS
 

=  brine phase saturation 

gS
 

=  CO2-rich phase (―gas‖) saturation   

wx
 

=  mass fraction of water in the brine phase 

2COx
 

=  mass fraction of CO2 in the brine phase 

NACLx
 

=  mass fraction of salt dissolved in brine phase 

2COy
 

=  mass fraction of CO2 in the ―gas‖ (CO2-rich) phase 

wy
 

=  mass fraction of water in the gas phase 

w  
=  density of brine phase 

g  
=  density of CO2-rich phase (―gas‖) 

( , )s T p
 
=  density of solid precipitate 



J
 

=  diffusion flux of component  in phase ; can also include dispersion 

 

Subscripts 

w =  refers to brine phase 

g =  refers to CO2 phase 

s =  refers to solid salt phase 

 

This model treats all the separate-phase CO2 as a single CO2-rich phase. The phase diagram for 

the CO2-H2O system displays a saturation line where liquid water, liquid CO2 and a vapor phase 

can co-exist. The saturated water vapor pressure on this line is small, so the vapor phase is 

mostly CO2. 

 

Constraints: 

 1w g sS S S    (2.35) 

 
2

1w CO NACLx x x    (2.36) 

 
2

1w CO NACLy y y    (2.37) 

 

We also have the constraint on the overall composition, which can replace either of the last two 

constraints above, 

 
2

1w CO NACLz z z    (2.38) 

 



38 

The diffusion is approximated here by the formula for ordinary binary diffusion (c.f. Bird 

Stewart and Lightfoot, 1960, sec. 16.2), specialized for diffusion in a multiphase porous medium. 

For example, diffusion of CO2 dissolved in the brine phase is approximated by, 

  

 2 2

2

CO CO

w w w w COS D x    J . (2.39) 

 

In general, the diffusion of component  in the  phase would look like,  

 

 S D 

         J  (2.40) 

 

where   is the mass fraction of the diffusing component in the  phase (x or y), and  is the 

tortuosity factor, a property of the porous medium. The diffusion fluxes in a given phase satisfy, 

 

 0





J  (2.41) 

 

which, taking account of Eqns. (2.36) and (2.37), requires that all the diffusion coefficients in a 

phase are equal, 

 D D

     (2.42) 

 

With this restriction, summing the three mass balance equations will result in the mass balance 

equation for the mixture, the so-called pressure equation (see Eqn. (2.43) below). 

 

In the numerical implementation, in order to maintain the condition in Eqn. (2.41), one would 

compute two of the three diffusion fluxes in the brine phase from the definition in Eqn. (2.40) 

and the remaining one from the constraint Eqn. (2.41), for example, 

 

 
2 2H O CONaCl

w w w  J J J
. 

 

To solve for the pressure, in all compositional situations, we can solve a pressure equation, 

obtained by summing all component balances. Since the resulting equation is not independent, it 

replaces one of the three mass balance equations presented earlier. 

 

Pressure Equation: 

 

     2 2 0H O CO NACL

w w g g s s w w g gS S S Q Q Q
t
     


       


v v  (2.43) 

 

In the numerical implementation, this equation could be obtained after all boundary conditions 

have been applied to the discrete equations, by summing the three residual equations together. 
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2.5.2 Thermodynamic Equilibrium and Solution Algorithm 

Recall, the primary variables for this system are defined as a set of variables that allow one to 

compute all the remaining (secondary) variables appearing in the mass and energy balance 

equations. For this problem, the primary solution vector (assuming we will also solve an energy 

balance for T) is 
2

, , ,CO NACLP z T 
  , where  

 

  2 2

2 2 2
1

w w CO g g CO

CO CO CO

w w g g

S x S y
z v x vy

S S

 

 


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
, (2.44) 

 

is the over-all mass fraction of CO2 in the flowing phases. We have introduced the fraction of 

gas, defined as, 

 
g g

w w g g

S
v

S S



 



. (2.45) 

 

Similarly, the overall density of salt is defined by, 

 

 
(1 )

NACL w w NACL s s

NACL s s

S x S

v x F S

  



 
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 (2.46) 

 

where we have introduced, for later convenience, the flowing mass density, 

 

 w w g gF S S    (2.47) 

 

Note that the accumulation term in the CO2 balance can be written as 
2COFz . 

 

In this formulation, solve for P from the pressure equation, 
2COz from the CO2 mass balance, 

NACL from the NaCl balance and T from an energy balance.  

 

Since we are dealing with a definite chemical system, the phase equilibrium can be done ahead 

of time. This is the subject of chapter 6 on thermodynamics. Here we will assume the 

equilibrium phase behavior is made available in the following form: 

 

 

2

2

2

( , , )

( , )

( , , )

sat

CO NACL

sat

CO

sat

NACL CO

x f T P x

y f T P

x f T P x







 (2.48) 

 

The ―sat‖ superscript in these equations indicates these values as the equilibrium composition 

under thermodynamically saturated two-phase conditions. These relations, together with the 
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mass fraction constraints, are sufficient to solve for the composition. The phase densities are 

defined by temperature, pressure, and composition, 

 

  
2

, , , ,w w w NACL COT p x x x   (2.49) 

  
2

, , ,g g w COT p y y   (2.50) 

 

This model has been implemented in Sierra/Aria and is undergoing verification. Dissolution of 

components as described in Eqn. (2.48) is implemented with the adaptive grid tabular scheme 

discussed in chapter 6. This greatly simplifies the computation of phase behavior, which is 

implemented in a simplified ―flash‖ calculation module. The explicit forms for composition 

obviate the need to compute thermodynamics using complex equation of state models at each 

iteration and at each grid point, as is normally done in oil industry compositional simulators.  

2.6 Novel Treatment of Capillary Interfaces 

The subsurface is structured into layered or otherwise heterogeneous geologic formations which 

differ in their texture, resulting in variations in pore size distributions and intrinsic permeability. 

The treatment of capillary pressure across a material interface is important to proper modeling 

the interplay of capillary imbibition, gravity forces and pressure gradients, the driving forces for 

multiphase flows. Capillary pressure is continuous across a material interface but phase 

saturations are discontinuous. Saturation is usually a primary variable in multiphase systems, 

allowing one to determine the volume fraction occupied by each phase. Owing to this 

discontinuity, many numerical schemes use cell-centered discretizations. Even vertex-centered 

discretizations, such as PorSalsa (Martinez et al. 2001), utilize a material-centered geologic 

property model, wherein a unique material is assigned node-wise. In this project we implemented 

a method which assigns materials to elements and allows the saturation to jump across a material 

interface. Some pros and cons of these two treatments include: 

 

Cell-centered and/or material-centered grid model (assign material type node-wise) 

 Fuzzy material interface; interface lies somewhere inside each finite element 

 Difficult to mesh while respecting complex geometries, e.g., pinchouts, multi-material 

junctions  

 

Finite element centric material with multiple degrees-of-freedom (DOF) on interfaces  

 Captures discontinuous saturation values on interfaces 

 Requires constraint equation(s) on interfaces; increases DOF count 

 Requires code logic for automated assembly of capillary interfaces and constraints 

 

Two examples verifying the implementation of the multiple DOF scheme follow. 
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2.6.1 Flow Through a Two-Layer Medium 

Figure 2.6-1 summarizes a model problem in which isothermal liquid water is injected at the top 

of a layered region. The bottom of the domain is saturated with liquid water. The two materials 

are identical except for the capillary pressure function. Material 1 has a higher capillary pressure 

than Material 2, as shown in Figure 2.6-1. One grid used for numerical simulation is shown in 

the figure and will be referred to as mesh 2; mesh 1 is a uniform mesh with 10 elements in each 

material. The correct steady solution should have a continuous capillary pressure but 

discontinuous liquid saturation across the material interface.  

 

  
 
Figure 2.6-1. Problem definition and material capillary pressure. The black curve represents the capillary 

pressure for material 2 and the red curve for material 1.  

The material-centered discretization in the code PorSalsa (Martinez et al. 2001) yields a solution 

which approaches a discontinuous saturation at the interface as the mesh is refined (see Figure 

2.6-2). However, the interface location is shifted by a half grid spacing. The element 

discretization in Aria allows for a discontinuous saturation across the material interface by 

enforcing the continuity of capillary pressure and allowing for the jump in saturation. The 

solutions indicate that the limiting value of (continuous) capillary pressure is somewhere near 

4469. Checking with the capillary pressure curves for the two materials in Figure 2.6-1, this 

value of capillary pressure yields saturations of about 0.69 and 0.58 in materials 1 and 2, 

respectively. These values agree with the saturations given by the Aria solution in Figure 2.6-2, 

which can be obtained on a coarser grid than needed in the material-centered discretization. 

S=fixed 

Mat. 2 
Pcref=1000 Pa 

Mat. 1 
Pcref=2000 Pa 

2 m 

g 

Qwater 
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Figure 2.6-2. Saturation jump across a material interface.  

2.6.2  Capillary Exclusion 

This problem was described by Huber and Helmig (2000) in a paper discussing various 

numerical discretizations for heterogeneous porous materials. The problem is motivated by an 

experiment (see Huber and Helmig 2000) involving the infiltration under gravity and capillary 

forces of trichloroethylene (TCE) into a water-wet rectangular container (height 65 cm, width 90 

cm) filled with coarse sand. In the center of this box is a fine sand lens region measuring 13.7 cm 

in height and 52.5 cm in width, see figure 2.6-3, which shows only the symmetric portion of this 

domain. The fine material has a higher capillary wicking potential than the coarse sand, but the 

fine sand also has a higher entry pressure. This means the saturation level of TCE in the coarse 

sand has to increase significantly before it will enter the fine sand material. Another view is that 

the fine material prefers to retain the (wetting) water, and requires a high entry pressure before 

TCE can displace the wetting phase. The van Genuchten models for capillary pressure and 

relative permeability are used in the simulation, with parameters as defined in Huber and 

Helmig. Figure 2.6-3 shows the computed distribution of TCE on three discretizations after 100 

minutes of infiltration. The solutions on the two coarser grids compare very well with those 

given in Figure 6 of Huber and Helmig, using similar mesh densities. In the figure, each finer 

mesh is obtained by splitting each quadrilateral element in the coarser grid into four smaller 

elements, resulting in 580, 2223, and 8701 nodes, respectively, for the coarsest to finest grids 

shown. Note however, that Huber and Helmig use the material-centric discretization, wherein the 

interface between fine and coarse sand lies between two grid points, whereas here the actual 

jump in saturation is computed at the interface. 
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Figure 2.6-3. Distribution of TCE after 100 minutes of infiltration using the van Genuchten models. 

Contours are for Sn = 0.05, 0.1, 0.15, etc. 
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3. Reactive Flow 

3.1 Introduction 

This chapter describes our implementation for modeling transport of species and chemicals in 

porous media. The intent is that it be general enough to also meet current and future SNL 

requirements for treating reactive explosives, foam decomposition, and composite ablation. The 

model allows transport of species in multiple phases. The description of transfer between phases 

and of chemical reactions can be specified by source terms. The current implementation allows 

extension of the model to more general geochemical systems. 

3.2  Multiphase Species Transport in Porous Media 

3.2.1 Model Formulations 

The multiphase transport of reactive species is described as follows:  

 

    ,d k k k k kS R C C S C Q
t

    

    


   


v D  (3.1) 

where  

kC 
 is the concentration of species k in phase ,  

  is porosity 

S  is the saturation of phase 

, ,1 /d k solid d kR K S 

   is a so-called retardation factor 

,d kK is the material-dependent distribution coefficient for species k 

 

The dispersion-diffusion tensor (see chapter 10 of Bear 1972) is given by, 
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 (3.2) 

where L and T are material-dependent dispersivities,  is tortuosity, and ,kD  is a diffusion 

coefficient for species k in phase Notice that the hydrodynamic dispersion tensor is phase-

dependent (through the phase velocity) and material dependent, but not species dependent, 

whereas the molecular diffusion coefficient is phase and species dependent. The tortuosity is 

material dependent. 

 

The distribution coefficient is often modeled as a constant, but it really depends on temperature. 

In the numerical implementation, the user has the option of specifying a functional form 

dependent any other species concentration (―plug-in‖). This facilitates the capability to describe 

other forms of adsorption (e.g., nonlinear dependence on concentration, like Langmuir, Freunlich 

or others, see Bear 1979). 
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If the species in a particular phase are non-dilute, then an additional constraint applies, 

 

 
1

1
N

k

k

Y


  (3.3) 

 

where we have introduced the mass fractions /k kY C  and dropped the phase superscript for 

simplicity;  is the phase density. In view of this constraint, in practice only N-1 species are 

solved from the system (Eqn. (3.1)) and the remaining mass fraction is obtained from the 

constraint. In addition the overall mass balance is solved, for example Eqn. (2.11) discussed 

earlier for single phase flow.  

Chemical Reaction and Sources 

The general capability in Sierra/Aria to have user-specified source functions allows general 

descriptions of reactive transport problems. Several built-in sources for common geo-problems 

are available, including a plug-in for radioactive decay chains: 

 

 1 1 1k k k k k k kQ R C R C          (3.4) 

 

In general the source terms can be functions of all species concentrations, space, and time. This 

generality allows for the modeling of a wide variety of reactive flow problems. In the following 

sections several examples of chemically reactive flow problems are presented.  

3.2.2 Biodegradation Example 

In this section we present numerical results for a biodegradation problem studied by Kindred and 

Celia (1989) which involves the growth of subsurface bacteria populations. The growth rate is 

determined by the availability of oxygen and various inorganic nutrients. This relationship is 

represented by corresponding source terms in the transport equations, as detailed by Kindred and 

Celia, and which were incorporated into Aria using ―plug-ins.‖ One transport equation (Eqn. 

(3.1)) is solved for each of the substrate, oxygen, and biomass concentrations. The 1D problem 

domain consists of a 50.0 m length section of a porous medium with an initial oxygen 

concentration of 3.0 mg/L and a constant advection velocity of 1.0 m/day. The concentration of 

substrate at the left boundary is fixed at 10.0 mg/L and the concentration of oxygen is fixed at 

3.0 mg/L. A constant time step of 0.2 days and a diffusion constant of 0.2 m
2
/day were used. The 

constant Ib is related to the amount of biomass inhibition. Since no inhibition is used in this 

example (Ib = 1.0), the solution for biomass at the inflow boundary is extremely high. As 

illustrated in Figure 3.2-1, strong correlation is achieved between the published solution and the 

Sierra/Aria solution for the oxygen and biomass concentrations. The differences in the substrate 

concentration at the front location are due to the advection stabilization scheme used, which for 

this problem is slightly over-diffusive.  
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Figure 3.2-1. Comparison of biodegradation example solutions at time = 37 days given by Sierra/Aria 

(symbols) and published results in Kindred and Celia (1989) (solid lines).  

3.3 Calcite Formation 

3.3.1 Introduction 

This section describes the geochemical formulation of calcite formation, which is considered a 

key mechanism for mineralization of CO2 in deep saline aquifers. Modeling approaches for 

determining multiphase chemical equilibrium solutions to this chemical system are discussed in 

section 3.4. 

 

Carbonate-bearing phases such as calcium carbonate (CaCO3) or calcite are ubiquitous in natural 

geologic environments and play an important role in the carbon global cycle and other 

geochemical processes where CO2 is controlled by heterogeneous chemical reactions between 

co-existing minerals and fluids. The carbonate phase formation is important to many 

geochemical and industrial processes over a wide range of temperatures and pressures. For 

example, some of these processes are related to scale formation by precipitation of carbonate and 

silica phases in geothermal wells during CO2 breakout (Moller, Greenberg et al. 1998), 

interactions between calcium-bearing phases such as cementitous materials and CO2 injected at 

elevated pressures (Carey, Wigand et al. 2007; Carey, Svec et al. 2009; Carey, Svec et al. 2010), 

and mineral and/or solution trapping of CO2 injected into porous subsurface geologic 

environments (Bachu, Gunter et al. 1994; Bachu and Adams 2003). The latter is related to 

geological storage/disposal of CO2 and it is also the focus of the current study in terms of CO2 

solubility in the aqueous phase and its relation to carbonate solubility. 

 

The issue of mineral trapping of CO2 and the geochemical basis for its consideration as a long-

term carbon sink has been studied at length from model conceptualization to experimental 

investigations (Gunter and Perkins 1993; Bachu, Gunter et al. 1994; Perkins and Gunter 1995; 

Gunter, Perkins et al. 2000; Kaszuba, Janecky et al. 2003; Kaszuba, Janecky et al. 2005; 
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Kharaka, Cole et al. 2006; Benezeth, Palmer et al. 2007; Newell, Kaszuba et al. 2008; Hangx and 

Spiers 2009). In general, these studies suggest that carbonate-bearing phases such as calcite, 

magnesite (MgCO3), siderite (FeCO3), and ankerite (Ca(Fe, Mg, Mn)(CO3)2) are the likely 

candidates for CO2 mineral trapping if their mineral components are present in the pore solutions 

or the host mineral phases (Gunter and Perkins 1993; Kharaka, Cole et al. 2006). Other 

candidates such as dawsonite (NaAl(CO3)(OH)2) have been suggested but its absence in 

experiments (Kaszuba, Janecky et al. 2005; Newell, Kaszuba et al. 2008) and limited natural 

occurrence relative to carbonate minerals diminishes its consideration even when it has been 

reported at various localities (Benezeth, Palmer et al. 2007). Mineral trapping has been regarded 

as a long-term and near-permanent form of disposing CO2 in subsurface environments (Lemieux 

2011). However, the process is sluggish given the slow rates for silicate mineral dissolution in 

providing Ca (e.g., calcite formation) plus other needed components for carbonate precipitation 

(Lemieux 2011). The latter process may also be slow depending on local physico-chemical 

conditions for mineral growth to occur. Solution or solubility trapping in the pore solutions is 

also considered to be an efficient mechanism for both short- and long-term disposition of CO2 in 

an aquifer environment (Gunter and Perkins 1993; Gunter, Perkins et al. 2000; Kharaka, Cole et 

al. 2006; Lemieux 2011).  

3.3.2 Geochemical Modeling of Fluid-Mineral Equilibria 

It is necessary to represent the complex chemical interactions and feedbacks between the CO2–

rich phase (whether at subcritical or supercritical conditions) and the aqueous pore solution and 

mineral phases in the aquifer to accurately represent the carbon mass partitioning in each phase 

during CO2 injection. This knowledge would then provide information to assess the capacity for 

sequestering of CO2 in subsurface porous geologic formations. For this purpose, reactive-

transport models need to consider heterogeneous chemical reactions that capture solution-

mineral equilibria and dissolution/precipitation kinetics given the importance of precipitation of 

carbonate-bearing solids in mineral (and solution trapping of CO2 as well) as envisioned in 

carbon sequestration in subsurface environments. Such approaches involving the assessment of 

solution-mineral equilibria have been adopted in various forms to evaluate water-rock 

interactions in cases in which CO2 has been injected in the brine-bearing geologic formation 

(Kharaka, Cole et al. 2006) or in the study of potential non-sedimentary disposal environments 

such as porous basaltic rock (McGrail, Schaef et al. 2006). In all these cases, geochemical 

modeling of equilibria (and dissolution/precipitation kinetic phenomena, if necessary) between 

solids and fluids is crucial in the representation of these interactions in the porous aquifer 

formation. These models also need to capture the compositional complexities of pore waters 

where their chemistry, in most cases, is not limited to a few components, particularly those 

having saline or briny compositions. 

 

The system Ca-CO3-H2O-CO2 is adequate for this purpose since it involves equilibria between 

gas and aqueous solution, and heterogeneous kinetics between the calcite (CaCO3) solid and 

aqueous solution. It should be noted that most pore waters in geologic formations can contain 

various amounts of aqueous species such Na, Cl, Ca, Mg, and SO4; particularly for brines. 

However, for the sake of simplicity, we will restrict the following representation of carbonate 

equilibria to the system Ca-CO3-H2O-CO2. The pertinent reactions for the system can be 

summarized as follows: 
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3 3CaCO H Ca HCO     (3.5) 

--

3 3HCO H CO    (3.6) 

2( ) 2 3aqCO H O H HCO    (3.7) 

2( ) 2 3gCO H O H HCO    (3.8) 

2H O H OH    (3.9) 

3 3CaHCO Ca HCO     (3.10) 

3( ) 3aqCaCO H Ca HCO     (3.11) 

 

The above set of chemical reactions should be sufficient to describe the Ca-CO3-H2O-CO2 

system accurately and under some conditions it could be simplified further by ignoring the 

aqueous species 3CaHCO
 and 3( )aqCaCO  or reactions (3.10) and (3.11). Each of this species has 

a Gibbs energy of formation ( ,f iG ) for a given species i  that can be used to compute Gibbs 

energy for the n
th

 reaction ( ,rxn nG ) by the simple relation: 

 

 
, ,rxn n i f i

n

G G   
 (3.12) 

where i  is the corresponding number of moles of the ith  species in the reaction. By 

convention, the i  coefficients in the above reactions are taken as positive for products and 

negative for reactants. ,rxn nG  of the nth  reaction can be related to the solubility constant nK 
 

by: 

 

,ln rxn n

n

G
K

RT



 


 , (3.13) 

 

where R and T are the gas constant and absolute temperature, respectively. nK 
 is the equilibrium 

constant which is also expressed according to the mass action law as: 

 

 

i

n i

n

K a
   (3.14) 

where ia  corresponds to the activity of the ith  aqueous species. In case of a gas it would instead 

be denoted as the fugacity of the ith  species. Note that nK 
 is a standard state thermodynamic 
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constant at infinite dilution and it is therefore related to the standard state properties of the phases 

taking part in the reaction. 

 

Other constraints that must be satisfied in the above equilibria are mass and charge balance 

equations, for example, the total mass of Ca in solution is given by: 

 

 3 3,
, + + +

aq
T Ca Ca CaHCO CaCO

m m m m    (3.15) 

 

The charge balance constraint is expressed as: 

 

 
0i iz m   (3.16) 

 

where iz  is the charge and im  is the molal concentration of the aqueous species in solution. All 

these mass and charge relations need to be obeyed in the equilibrium speciation calculation. It 

should also be noted that  

 
 i i ia m  (3.17) 

 

where i  is the activity coefficient and mi is the molal concentration of the ith  species. i  is 

obtained from the Pitzer or b-dot formulations available in either EQ3/6 (Wolery and Jarek 2003) 

and Cantera codes (Moffat and Jove Colon 2009). 

 

Thermodynamic data for each of the aqueous and solid species in reactions (3.5) through (3.11) 

can be obtained from the thermodynamic databases developed for the Yucca Mountain Project 

(YMP) for the code EQ3/6, which are also available in Cantera.  

3.3.3 Rate Laws 

Various types of rate laws have been applied to mineral phases; see Lasaga (1998) for a 

comprehensive review of kinetic rate laws applied to mineral phases. This reference discusses 

several types of rate law expressions applied to mineral dissolution/precipitation processes 

ranging from simple linear expressions to more complex ones. Among the most commonly 

adopted formulation of mineral dissolution is that based on transition state theory (TST): 

 

 

= f k s 1 exp
ac
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f m f m
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In Eqns. (3.18) and (3.19), k f  and kb  are the forward and backward rate constants, respectively. 

sm  is the total surface area of the solid, fm  is a ‗fudge‘ factor denoting the fraction of mineral 

surface area active in the dissolution/precipitation process (it is usually taken as unity), 
ac

Na  

stands for the activity of the catalyzing/inhibiting activated complex of the rate-limiting reaction, 

m  and n  are positive values that are constrained experimentally; in most cases these exponents 

are simplified by having unity values. R  and T  are the gas constant and absolute temperature, 

respectively.   corresponds to a stoichiometric factor related to the average molar stoichiometry 

of the activated complex. A  and A  designate the chemical affinities for the forward and 

backward reactions. Chemical affinity is defined as: 

 

 

n

n

Q
A RT Ln

K 

 
   

 
 (3.20) 

 

where nQ  is the ion activity product for reaction n  given by: 

 

 

 i

n i

n

Q a


  (3.21) 

Note that the above expression (Eqn. (3.21) ) is very similar to that for nK 
 (Eqn. (3.14)) and the 

difference is that 
nQ  is strictly an actual measure of the activities at given reaction coordinates. 

That is, A  and A  represent how far or close the system is to equilibrium. For example, if nK 
 

equals 
nQ  then 0A   and the system is at equilibrium. Another important definition in the 

above expressions is the thermodynamic relation between k f  and kb , and the equilibrium 

constant nK 
: 

 

.
f

n

b

k
K

k

   (3.22) 

 

It should be noted that Eqns. (3.18) and (3.19) have been applied in more simplified forms based 

on assumptions about the identity of the activated complex. Still, the main application of this rate 

law has been to represent the dissolution of silicates with a reasonable degree of success. 

 

TST expressions (e.g., Eqns. (3.18) and (3.19)) have not been commonly used to describe calcite 

dissolution but are still widely adopted for silicate dissolution (Schott, Pokrovsky et al., 2009). 

One notable exception is the TST-based rate laws advanced by Pokrovsky and Schott (1999), 

Gautelier et al. (2007), and Schott et al. (2009) for carbonate phases. These authors advanced 

TST rate laws combined with a surface complexation model (SCM) for Mg-bearing carbonates 

where the SCM accounts for the inhibitory effects of carbonate ions on dissolution. This TST-

SCM model seems to explain both carbonate dissolution and precipitation phenomena for a wide 

range of pH and solution compositions. However, one potential drawback would be the retrieval 

of SCM constants at temperatures other than 25C since there is a strong reliance on 

experimental data for the retrieval of surface complexation constants. Still, this model is based 
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on relatively numerous experimental observations and seems to accurately capture the 

dissolution dependencies on solution composition. 

 

The more commonly adopted rate laws for calcite and other carbonate phases are essentially 

empirical and one of the widely used forms is that developed by Plummer et al. (1978) defined 

as: 

 

 2 3 2 3
1 2 3 1overall H CO H OH HCO

r k a k a k a k a      (3.23) 

 

Note that this rate expression is consistent with linear rate law formulations (i.e., rate constant 

multiplied by either the activity or species concentrations). This reaction includes both forward 

and backward rates and depends on the activities of aqueous carbonate species in solution. The 

reaction can be separated into forward and backward rates as follows: 

 

 2 3 21 2 3f H CO H OH
r k a k a k a    (3.24) 

 

 3
4   b HCO

r k a   (3.25) 

 

The rate constants 1k
, 2k

, 3k
, and 4k

 have been studied by Plummer et al. (1978), and Shiraki and 

Brantley (1995); the latter is a study at elevated temperatures. Shiraki et al. (2000) provides a 

similar model and rate expressions for calcite dissolution:  

 

 31 2 3overallr k H k HCO k OH              (3.26) 

 

where the values in brackets denote concentrations of the designated aqueous species in solution. 

Again, these rate expressions for calcite dissolution/precipitation are entirely empirical. It should 

be noted that Chou et al. (1989) reported results on carbonate phase dissolution that are 

consistent with others such as Plummer et al. Moreover, their rate expressions have the forms 

similar to those developed by Plummer et al. (1978).  
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3.4 Chemical Equilibrium and Kinetics: Computational 
Implementations 

3.4.1 Mass Action Law Reactions: EQ3/6 

This section outlines a common method for calculating the equilibrium composition of the 

calcite formation system outlined in Eqns. (3.5) through (3.11). In reactive transport problems, 

reaction (3.5) is usually treated in terms of a reaction rate law, whereas reactions (3.6) through 

(3.11) are not considered rate-limiting in the dissolution/precipitation process. These are, 

therefore, defined in terms of chemical equilibrium. That is, it would suffice to  assign 

equilibrium constants to reactions (3.6) through (3.11) to determine the equilibrium concentration 

of all carbonate species. The computer codes EQ3/6 (and similarly PHREEQC) are able to treat 

reactions in this way with a specified rate law. There is also the importance of units utilized in 

the rate expressions and their consistency with those adopted for the reactive transport 

formulations. Since experimental dissolution/precipitation rates are usually expressed in units of 

moles/(surface area * time), sometimes it is necessary to make unit conversions to bridge 

consistency with the concentration units utilized in the reactive transport calculations. Overall, 

the empirical rate expressions for calcite seem simple enough in their implementation. In the 

next section, reactive transport modeling coupled with a mixed kinetic-equilibrium approach will 

be discussed briefly. 

 

A potential scheme to implement a simplified form of the calcite equilibrium problem (given as 

an example in the EQ3/6 Manual (Wolery and Jarek 2003)) in reactive transport is to express the 

problem using the most relevant reactions at the near-neutral pH region. That is, calcite equilibria 

is defined with no kinetics and all relevant reactions are delineated by mass action law 

equilibrium constants with a reduced set of aqueous species. Let us assume for the moment that 

for this case, calcite equilibria can be defined by the following solid and aqueous species: 

CaCO3(solid), Ca
++

, HCO3
-
, H

+
, H2O, and CO2(g). This essentially will result in a mass action law 

expression (i.e., reaction (3.5)) that can be recast as: 

 

 3 3

log log log log log log log  calcite Ca Ca HCO HCO H H
K m m m              (3.27) 

 

The activity of the relevant species is defined as i im   where im  is the molality or moles of 

component i
 
per kg of H2O solvent and i

 
is the activity coefficient of component i  that can be 

computed from formulations such as that of Pitzer or Helgeson‘s b-dot. Note that the activity of 

calcite solid is conventionally taken as unity so it also vanishes from the equation. 

Similarly, the mass law expression for CO2(g) (or reaction (3.8)) is given as: 

 

 2( ) 2( )3 3
COlog log log log log logf logX log

g gCO W WHCO HCO H H
K m m             (3.28) 
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where logXW
 
is the mole fraction of H2O solvent and depends on the concentration of carbonate 

species in solution. 
2( )

log
gCOf  and pH are considered known inputs in this example. The above 

equations can be rearranged to have the unknowns on the left hand side: 

 

 3 3

log log log log log log logcalciteCa HCO Ca HCO H H
m m K m              (3.29) 

 

 2( ) 2( )3 3
COlog logX log log log log logf log

g gW CO WHCO HCO H H
m K m           

 (3.30)
 

 

We could assume for simplicity that this is a dilute solution so all i  can be assumed to be unity 

and thus end up dealing only with species molalities.  

 

Since this is an iterative Newton-Raphson approach, XW  will change with solute concentration 

and can be modified as done in EQ3/6 for any k + 1th step in the iteration as: 
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W k W k s k s k

s S s

X
m m

m
 







  (3.31) 

 

where S  refers to the relevant set of solute species ( 's ) in solution. In this case the right hand 

side term for the solute concentration can be expressed as: 

 

'

'

log
=

log

W
s

s

X
W

m




 (3.32)

 

 

where 's  is not equal to W .  

 

Then, Eqn. (3.30) in this calcite example would take the form: 

 

3 3

3 3

, 1 ,, 1 , 1 ,

,

logX log log logX log

log

W k W kCa Ca k HCO HCO k Ca Ca k

HCO HCO k

W m W m W m

W m

     

 

  
    

 (3.33) 

 

Evaluation of Eqn.(3.32) for H2O is not considered important for dilute solutions since WX  is 

not expected to change significantly with changes is solute concentration. Of course, this could 

become important in concentrated solutions.   
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In the Eqns. (3.29), (3.30), and (3.33) we have three equations with three unknowns and these are 

linear in accord with four log concentration variables. These equations can be solved 

simultaneously in matrix form as: 

 

 

3 3

3

1 1 0 log

0 1 1 log

1 logX

Ca Ca

HCO HCO

Ca HCO W W

m R

m R

W W R

 

 

 

    
    

     
     

     

 (3.34) 

 

For simplicity, the known elements of the RHS vector ( iR ) corresponds to those in the RHS of 

the mass action Eqns. (3.29), (3.30), and (3.33). 

 

Charge and mass balance constraints are maintained at each iteration in the code run. These 

constraints are represented in EQ3/6 as: 

 

=  s c c a a

c a

z m z m    (3.35) 

where c  denotes cation and a  corresponds to anion. cz  and az  stands for the charge of the 

cation and anion, respectively. Similarly, cm  and am  are cation and anion molalities in the 

aqueous solution, respectively. The parameter s  is related to a residual function s  by: 

 

 

 s
s

c c a a

c a

z m z m


 

 
 (3.36)  

 

In EQ3/6, s  is an aqueous species whose concentration is adjusted to make the residuals zero 

and it is related to the charge-mass balance constraint by: 

 

 

,

, 1 ,

s k

s k s k

s

m m
z


    (3.37)  

There are, of course, more details on how this is implemented in EQ3/6. This is just an example 

applicable to the calcite problem with a reduced set of relevant species, and thus reactions, to 

describe its equilibrium. Note that this example assumes a dilute solution where changes in WX  

with solute concentration are small enough as to be ignored.  
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3.4.2 Solubility of Calcite in Brine via Gibbs Energy Minimization: Cantera 

This section demonstrates the use of Cantera for calculating the equilibrium composition of the 

calcite formation system outlined in Eqns. (3.5) through (3.11), utilizing a  Gibbs energy 

minimization approach.   

Cantera is a general purpose open-source object-oriented constitutive modeling tool set for 

problems involving chemical thermodynamics, kinetics, and/or transport processes (Moffat and 

Goodwin 2011). Its origins trace back to applications in the modeling of combustion systems and 

chemical vapor deposition processes. Cantera also has the capability for treating kinetics this has 

not been developed yet for fluid-solid interactions. This is a topic of future research. Cantera can 

perform calculations similar to those based on mass action law equations such as EQ3/6 to obtain 

the same result; however, the method to compute multiphase chemical equilibria is different. 

There are no prescribed mass action law reactions as inputs and chemical equilibrium is 

computed using the Gibbs energy minimization (GEM) approach (Smith and Missen 1982; 

Karpov, Chudnenko et al. 1997). Chemical equilibrium is obtained by minimizing the total Gibbs 

free energy of the system through optimization of component abundances. The method 

implemented in Cantera for this GEM approach is referred to as Villars-Cruise-Smith (VCS) and 

it is described in detail by Smith and Missen (1982). This method as implemented in Cantera has 

been was extended to deal with non-ideal systems which makes it suitable for many geochemical 

problems of interest.  

 

An example of the application of chemical equilibrium computation is the solubility of calcite at 

various conditions of ionic strength and CO2(g) pressure. Figure 3.4-1 depicts the solubility of 

calcite as a function of NaCl concentration for a mole fraction of XCO2(g) of 0.0091 at 298.15 K 

(Moffat and Jove Colon 2009). The calculation of activity coefficients for neutral CO2(aq) 

aqueous species was computed using the Pitzer model implemented in Cantera from parameter 

data retrieved from Corti et al. (1990) and described in Mariner (2007). Notice the strong 

correspondence between the Cantera prediction and the solubility data from Wolf et al. (1989).  
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Figure 3.4-1.  Plot of calcite solubility as a function of NaCl concentration at 298 K and PCO2 fixed at 0.92 

kPa (experimental) or at the equivalent XCO2 of 0.0091 after Moffat and Jove Colon (2009). 
The solid line connecting the data points of Wolf, Breitkopf et al. (1989) is just a guide for 
the eye. 

Of more relevance to the current study are calcite solubility calculations but in reaction path 

form where changes in the aqueous phase chemistry are tracked as CO2 mass is added to the 

system. The calculations were conducted under isothermal-isobaric conditions of 318.15 K and 

125 bars. Figures 3.4-2a and 2b show the trends in pH and Ca
++

 molal concentration consistent 

with a decrease in pH with added CO2 and augmentation in aqueous Ca due to the increase in 

calcite solubility. The Cantera code run is in the form of a titration or reaction path mode where 

moles of CO2 are added in small increments and each step generates an equilibrium aqueous 

speciation computation where charge and mass balance are maintained.  

 

The capability for reaction path modeling is extremely useful for characterizing chemical 

feedbacks and mapping phase solubilities in multicomponent systems. Moreover, Cantera can do 

this type of calculation for a wide range of pressures and temperatures without the input 

restrictions of pressure-temperature grids conditioned for mass action law equilibrium constants. 

This flexibility makes this approach more desirable for the efficient computation of 

thermodynamic properties of mixed fluid systems as a function of pressure, temperature, and 

composition. The use of these properties in Aria is facilitated by the use of multi-dimensional 

adaptive tables, which are discussed in section 6.6. 
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Figure 3.4-2. Plot of pH (a) and aqueous Ca

++
 (b) concentration in 1 m NaCl solution as a function of 

total added CO2 at temperature of 45C (318 K) and 125 bars—supercritical CO2 
conditions.  
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4. Mechanics Models 

4.1 Introduction 

This chapter documents the governing equations and implementation of two constitutive models 

for describing the response of two different types of geologic materials in the Sierra Solid 

Mechanics code Adagio (Spencer et al. 2011). Adagio supports large deformation quasi-static 

mechanics, including SNL-developed matrix-free iterative solution algorithms that allow 

extremely large and highly nonlinear problems to be solved efficiently. Adagio supports several 

constitutive models applicable to geomaterials, including elasto-plastic, visoplastic, crushable 

soil, and power law creep models. Under this LDRD, two new models specific to multiphase 

flow systems were added. These models have been implemented within the framework of the 

LAME constitutive model library (Scherzinger and Hammerand 2007) for use by Adagio. 

 

The first constitutive model, described in section 4.2, incorporates the influence of liquid 

saturation and suction on the isothermal elasto-plastic response of porous materials. The 

mathematical formulation and numerical implementation for this model is based on the work of 

Borja (2004). This rate independent constitutive model, in contrast to all the other models in 

LAME, generally requires information (phase saturation and suction) from a code capable of 

simulating two-phase flow (liquid and gas) in a porous media. The solution controller Arpeggio 

will be used to provide the connection between the porous flow code Aria and the solid 

mechanics code Adagio. 

 

The second model, the Multimechanism Deformation (MD) model, is used to model the creep 

behavior of salt, specifically the primary and secondary creep response of intact or undamaged 

salt. The MD model is based on the work of Munson and Dawson (1979,1982,1984) and was 

later extended by Munson et al. (1989). Historically the MD model has been implemented in a 

number of SNL solid mechanics codes including SANTOS (Stone 1997) and JAS3D (Blanford 

et al. 2001). A version of the MD model is currently in the Sierra Solid Mechanics code Adagio 

(2011). The implementations of the MD model in SANTOS, JAS3D, and Adagio are all 

essentially the same and use the forward Euler method to integrate the constitutive equations. 

The MD model has been used (Stone 1997) in two-dimensional simulations to model the creep 

closure of waste disposal rooms for the Waste Isolation Pilot Plant in New Mexico. 

Unfortunately, many attempts to use the MD model in three-dimension simulations have not 

been successful. Generally, it was found that the simulations were too time consuming and it was 

frequently difficult to obtain convergence of the equilibrium equations especially when contact 

surfaces were used. In section 4.3 we describe an implicit integration algorithm for the MD 

model which has allowed the solution of some relatively large three-dimensional coupled 

thermal-mechanical problems for a generic salt repository (Stone et al. 2010). 

4.2 Borja’s Cam-Clay Model for Partially Saturated Porous Materials 

The mathematical description of this constitutive model follows very closely the work presented 

in Borja (2004). The usual continuum mechanics sign convention will be used; positive strains 

correspond to elongation and positive stresses to tension. Fluid pressures are taken to be positive 

in compression. 
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The discussion begins with some standard definitions used to describe porous media in section 

4.2.1 and briefly introduces the concept of generalized effective stress for partially saturated 

porous media in section 4.2.2. The equations describing the nonlinear elasticity and plasticity 

components are described in sections 4.2.3 and 4.2.4, respectively. The numerical scheme used 

to integrate the constitutive equations is described in section 4.2.5. An initial verification of the 

implementation of this model is discussed in section 4.2.6 where the solutions for three test 

problems described in Borja (2004) are presented. 

4.2.1. Porous Media Definitions 

In this section we will briefly summarize some of the basic terminology and definitions used to 

describe a porous material. A representative volume V of the porous material is assumed to be a 

multiphase continuum consisting of a solid phase and one or two fluid phases (typically gas 

and/or liquid). The solid phase is comprised of the solid particles or grains occupying volume sV  

while the gas and liquid phases occupy volumes gV  and lV  respectively. The solid portion is 

sometimes called the matrix or skeleton. We assume that the pore volume vV  is filled with gas, 

liquid, or a combination of the two phases (Eqn. (4.1)), 

 

 s v s g lV V V V V V      (4.1) 

 

The liquid and gas phase saturations are defined, using Eqns. (4.2) and (4.3), as the ratios of the 

phase volumes to the pore volume and are subject to the constraint (Eqn. (4.4)), 

 

 l
l

v

V
S

V
  (4.2) 

 
g

g

v

V
S

V
  (4.3) 

 

 1l gS S   (4.4) 

 

Typically a soil is said to be saturated when 1lS   and partially saturated when 1lS  . 

 

It is useful to introduce three measures representing the amount of pore space in a given volume 

of soil. If we assume that the solid phase is incompressible then the deformation of the porous 

soils is due solely to the reduction of pore volume. 

 

The void ratio e is defined as the ratio of the pore volume to the solid volume, 

 

 v

s

V
e

V
  (4.5) 
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The specific volume  is defined as the ratio of the total volume to the solid volume, 

 

 1
s

V
v e

V
    (4.6) 

 

The porosity  is defined as the ratio of the void volume to the total volume, 

 

 
1

vV e

V e
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
 (4.7) 

 

Using these equations we can derive the following relationships between the different quantities, 
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As an example, a material having a porosity 0.2   has a void ratio 0.25e  and a specific 

volume 1.25  . 

4.2.2 The Generalized Effective Stress Concept for Partially Saturated Porous 
Materials 

It is generally accepted that the mechanical response of saturated soils can be described using the 

effective stress concept (Terzaghi 1943). Recalling that we have assumed that tensile stresses are 

positive the effective stress tensor σ  may be defined as the sum of the total stress 
T

σ and the pore 

pressure lp I  (Eqn. (4.11)). The pore pressure is the pressure exerted by the pore fluid on the soil 

skeleton. The symbol I appearing in Eqn. (4.11) is the second order identity tensor; therefore, 

the pore water pressure only affects the normal components of the effective stress tensor. 

 

 
T

lp σ σ I  (4.11) 

For reference the total stress tensor is the stress tensor that appears in the Cauchy‘s equation of 

motion or the equilibrium equations (Malvern 1969). It should be noted that in the soil 

mechanics literature compressive stresses are often assumed to be positive and thus Eqn. (4.11) 

would be written 
T

lp σ σ I . 
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A generalization of the effective stress concept extended to partially saturated materials was 

proposed by Bishop (1959). The variables , ,l gp p appearing in Eqn.(4.12) are a weighting 

factor, and the liquid and gas phase pressures, repectively. 

 

  1T

l gp p      σ σ I   (4.12) 

 

The weighting factor   will be assumed to be equal to the liquid saturation. 

 

 T

pp σ σ I  (4.13) 

The ―effective pore pressure‖ pp is  

 

 p l l g gp S p S p   (4.14) 

 

A possible advantage of using lS  for the weighting factor is that when 1lS  , Eqn. (4.12) 

reduces to the effective stress definition for liquid saturated soils (Eqn. (4.11)). 

 

Another stress variable that is frequently encountered in discussions of unsaturated constitutive 

models is the net stress 
netσ . It is defined as 

 

 net T

gp σ σ I  (4.15) 

 

The matric suction s (or capillary pressure) is defined as the difference between the gas phase 

and liquid phase pressures. The matric suction increases as the liquid saturation decreases and 

generally exhibits hydraulic hysteresis. 

 

    l g ls S p p   (4.16) 

 

We can rewrite Eqn. (4.12) using Eqns. (4.15) and (4.16) to relate the effective stress to the net 

stress and suction 

 

 
net s σ σ I  (4.17) 

 

The Barcelona Basic Model (Alonso et al. 1990) is probably the most well-known model for 

partially saturated soils. It uses the net stress and suction as two independent stress variables. The 

Borja model used here is described in terms of the generalized effective stress. Another model 

formulated in terms of generalized effective stress is the model proposed by Loret and Khalili 

(2002). 
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4.2.3 Nonlinear Elasticity Model 

The elastic formulation is based on a two invariant hyperelastic model developed from a stored 

energy function (Borja et al., 1997; Borja and Tamagnini, 1998). The model produces a bulk 

modulus that is a linear function of the mean effective stress. The shear modulus may be chosen 

to be a constant or a function of the mean effective stress. When the latter is used the 

hyperelastic model leads to coupled volumetric and deviatoric elastic responses. 

 

The model is restricted to isotropic materials and thus can be developed in terms of stress and 

strain invariants. For example the elastic strain tensor 
eε can always be decomposed into 

deviatoric 
ee and volumetric 

e

v  parts.  

 
1

3

e

v e e
ε I e  (4.18) 

 

The volumetric 
e

v  and deviatoric 
e

s elastic strain invariants are defined using the following 

equations. 

 

   εe e

v iitr  e
ε  (4.19) 
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The hyperelastic formulation assumes a stored energy function with these two elastic strain 

invariants as the independent variables 
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  0

e e

v


   


   (4.23) 

 

Eqn. (4.22) is the stored energy function for isotropic conditions  0e

s  and Eqn. (4.23) 

represents the functional form of the elastic shear modulus. The hyperelastic formulation used in 

this model requires five material constants ( 0p ,  , 0

e

v , 0 ,  ) compared to the two usually 

needed in isotropic linear elasticity. The parameter op is the mean effective stress corresponding 

to e

vo .   is the elastic compressibility index. o is a constant term used in the shear modulus 
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function (Eqn.(4.23)).  is a constant term that controls the elastic volumetric-deviatoric 

coupling. When 0  then the shear modulus is simply o . 

 

The effective stress tensor is defined as the partial derivative of the stored energy function (Eqn. 

(4.21)) with respect to the elastic strain tensor. Using the chain rule gives 
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Defining the effective stress invariants  
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where p s σ I . 

 

The functional relationships between the elastic strain invariants and the effective stress 

invariants are  
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4.2.4 Plasticity Model 

Yield and Plastic Potential Functions 

Many of the constitutive models developed for partially saturated soils (e.g., Alonso et al. 1990) 

are extensions of the principles of Critical State Soil Mechanics (Schofield and Wroth 1968) for 

saturated soils. Wood (1990) provides background information on the Cam-Clay models and 

Critical State Soil Mechanics concepts and Simo and Hughes (1998) consider the mathematical 

and computational aspects related to inelastic constitutive modeling. 

 

The Borja model (Borja 2004) is based on the modified Cam-Clay plasticity theory extended to 

partially saturated soils. It can be classified as a strain-hardening/softening model where the 

concept of a yield surface is used to indicate when plastic deformations occur. The equation for 

the yield function is given by Eqn. (4.29) and the relevant parameters are shown in Figure 4.2-1 

(Borja 2004). 
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q
F p p p p

M
      (4.29) 

 

 
 
Figure 4.2-1. Yield Surface: p-q plane (Borja 2004). 

This particular form for the yield function uses two stress invariants  ,p q  and is independent of 

the Lode angle. The yield surface is an ellipsoid which intersects the mean effective stress axis 

 0q  at  and s cp p p p  . In Eqn. (4.29) cp is the effective preconsolidation stress which is 

assumed to depend on the plastic volumetric strain 
p

v , the matric suction s , and the liquid 

saturation lS . sp
 
represents the apparent adhesion resulting from matric suction. In an effective 

stress formulation 0sp ; however, in a net stress formulation sp is assumed to be a linear 

function of the matric suction, sp k s  (Alonso et al. 1990). The parameter M is the slope of the 

critical state line. 

 

The flow rule used in this model is  
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
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 (4.30) 

where the plastic potential function G is  

 

  
2

2
( )s c

q
G p p p p

M


     (4.31) 

 

When 1  the yield function (Eqn. (4.29)) and the plastic potential function (Eqn. (4.31)) are 

identical and the flow rule is associative; otherwise, when 1  the flow rule is non-associative. 
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The non-negative parameter  is the consistency parameter that satisfies the Kuhn-Tucker 

complementary conditions (loading/un-loading conditions) (Simo and Hughes 1998) 

 

 
0           0

and     0

F
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

 


 (4.32) 

 

and the consistency condition 

 

 0F   (4.33) 

Compressibility Laws for Saturated Conditions 

Two compressibility laws are commonly used to define the relationship between specific volume 

satv  and preconsolidation stress cp in the Cam-Clay model for saturated clayey soils. The 

compressibility law is used to define the hardening function used in the plasticity formulation. 

 

The first compressibility law (Eqn. (4.34)) is a linear relation between specific volume and the 

natural logarithm of the preconsolidation stress (see Figure 4.2-2).  is the compressibility index 

and o is the value of specific volume satv at the reference preconsolidation stress cop . 

 ln c
sat o

co

p
v

p
    (4.34) 

 

 
Figure 4.2-2. Semi-logarithmic compressibility law. 

In some cases this compressibility law can produce unphysical values of 1sat  (negative void 

ratio or porosity) even at reasonable values of stress, therefore, Borja et al. (1997) advocate using 

the following bilogarithmic relationship (see Figure 4.2-3) 
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p
    (4.35) 

 
 
Figure 4.2-3. Bi-logarithmic compressibility law. 

These equations are used to describe the normal consolidation line (NCL) for saturated clays. 

For convenience we will set 1cop    so these equations become 

 

  lnsat o cv p     (4.36) 

 

Note Eqn. (4.15) in Borja (2004) is missing the negative sign. In that paper he also uses N

instead of o  and   instead of . 

  ln ln lnsat o cv p     (4.37) 

 

For a volume strain measure v we use the natural strain definition (Eqn. (4.38)) where V  and oV  

are the current and initial volumes respectively. For the second expression we have used Eqn. 

(4.6). 
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 (4.38) 

 

The volumetric strain rate can be obtained by taking the time derivative of Eqn. (4.38) 

 

 v





  (4.39) 
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Taking the time derivative of Eqn. (4.36) and dividing by sat gives for the semi-logarithmic case 
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v p
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    (4.40) 

and for the bi-logarithmic case Eqn. (4.37)  
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v p
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The elastic component of the volumetric strain rate can be obtained from Eqn. (4.27)  if we 

assume isotropic loading, 0 e

s , and identify p  with cp  then 

 

 
e c
v

c

p

p
    (4.42) 

 

Defining the total volumetric strain rate to be the sum of the elastic and plastic volumetric strain 

rates 

 
e p ε ε ε  (4.43) 

 

and combining Eqns. (4.41) and (4.42) gives the equation for plastic volumetric strain rate when 

the bilogarithmic compressibility function is used. 

 

  p c
v

c

p

p
     (4.44) 

 

Eqn. (4.44) is the plastic strain rate that Borja uses throughout his development. However he uses 

Eqn. (4.36) to evaluate the specific volume in his example problems. This would appear to be 

inconsistent but by restricting his analysis to infinitesimal deformation the differences between 

the engineering strain and natural strain are small (Borja and Tamagnini, 1998). In our 

implementation we have two options. The first uses the combination of Eqns. (4.36) and (4.44); 

the second uses Eqns. (4.37) and (4.44). 

 

Using the semi-logarithmic compressibility function the plastic volumetric strain rate is  
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 (4.45) 

 

Under the assumption of infinitesimal deformations the value of sat would be the initial value of 

specific volume. 
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Compressibility Law Modification for Partially Saturated Conditions 

Gallipoli et al. (2003) showed that the ratio of the void ratio in a partially saturated state to the 

corresponding void ratio in a saturated state, when both were measured at the same effective 

mean stress, could be reasonably approximated by 

 

    1 21 1 exp
sat

e
c c c

e
        (4.46) 

 

where 1c and 2c are fitting constants. Based on their examination of data from Sivakumar (1993) 

and Sharma (1998) these fitting constants values were found to 0.369 and 1.419 respectively. 

 

The independent variable  in Eqn. (4.46) is called the bonding parameter (Gallipoli et al. 2003) 

and represents the inter-particle bonding due to water menisci. They reason that the magnitude of 

the inter-particle bonding should be the result of two effects: (1) the number of water menisci per 

unit volume of solid fraction and (2) the intensity of the stabilizing force exerted at the inter-

particle contacts by a single meniscus. The bonding variable is assumed to be a function of the 

matric suction and liquid saturation 

 

   1 lf s S    (4.47) 

 

The factor  1 lS  is introduced to grossly represent the effect of the number of menisci per unit 

volume of solid fraction. The function  f s  obtained from an analytic solution by Fisher (1926) 

for the ratio of the inter-particle forces at a given suction and the forces at zero suction for a 

single meniscus and equal size spherical particles. The function varies from 1.0 to 1.5 for values 

of suction between zero and infinity. 

 

Borja (2004) approximated the function from Gallipoli et al. (2003), which assumed the particles 

were 1  (approximately the texture of compacted kaolin) with the following equation 
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 (4.48) 

 

where atmp is the normalizing pressure (atmospheric). 

 

Since we are using specific volume rather than void ratio we need to derive an expression for 

  satc    . 
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Substituting Eqn. (4.46) into Eqn. (4.49) we get 

 

    1 21 1 exp
sat

c c c


 


       (4.50) 

 

where    1 1 11 1 1 1sat satc c c e    . 

 

We need to obtain a functional relationship between the effective preconsolidation stress cp and 

the preconsolidation stress cp . It is convenient to choose o as the specific volume at 1cop   . 

 

For the semi-log case the desired relationship is given by  
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where 
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For the bilogarithmic compressibility law Eqn. (4.35) the relationship is 

 

  
1

c cp p c        (4.54) 

 

In order to numerically integrate the constitutive equations the implicit first order accurate 

backward-Euler scheme was used. Complete details of the numerical integration procedure are 

presented in Borja (2004). 

 

The model requires initialization of state variables before the simulation can proceed. The true 

state variables are the elastic strain tensor 
eε  and the preconsolidation stress cp . There are two 

ways the elastic strain tensor can be specified. The first is by specifying the initial elastic strains 

as initial conditions. From the initial elastic strains the initial stresses can be computed, 
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From these the stress invariants can be calculated and used to calculate the effective stress tensor. 
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Specifying the initial elastic strain tensor may be useful for some problems but is not practical 

for problems where the initial effective stresses vary with position in the finite element model. 

Thus the second way is to specify the initial effective stresses as initial conditions and then we 

use the nonlinear elasticity model to determine the initial elastic strain tensor. This is done by 

iteratively solving the two equations given above for the elastic strain invariants using Newton 

Raphson iteration. The elastic strain tensor 
eε can then be computed from   
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since 
s

n
s

can be computed from the specified initial stress tensor.  

 

Most porous flow models require the user to specify the porosity of each material. Therefore, in 

order to maintain some consistency between Aria and Adagio we have chosen to require the 

initial porosity to be specified in this model rather than specific volume or void ratio. The 

specific volume can be calculated from the porosity using 
1

1
v





 . The final state variable that 

we need is the preconsolidation stress cp corresponding to the specified initial porosity and mean 

effective stress p . For the semi-logarithmic compressibility model we use 
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and for the bi-logarithmic model we use 
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Table 4.2-1 summarizes the input variables required by the model. 

 
Table 4.2-1. Input variables required by model. 

Model Variable Input Variable Name Model Variable Description 

op  P0 
reference mean effective stress in nonlinear elastic 
model (4.22) 

 or    KAPPA 
unload-reload elastic slope in nonlinear elastic model 
(4.22) 

vo  EV0 
reference elastic volume strain in nonlinear elastic 
model (4.22) 

o  MU0 shear modulus term in nonlinear elastic model (4.23) 

  ALPHA coupling coefficient in nonlinear elastic model (4.23) 

k  K coefficient used in net stress formulation sp k s   

atmp  PATM reference pressure used in Borja’s  f s  function (4.48) 

1c  C1 fitting parameter used in  c   (4.50) 

2c  C2 fitting parameter used in  c   (4.50)   

o  N specific volume at 1p  
 (4.34) and (4.35)

 

m  M slope of critical state line (4.29) 

 or    COMPRESSION INDEX slope of NCL line (4.34) and (4.35) 

  BETA associative/non-associative flow rule parameter (4.31) 

  POROSITY porosity=
1







(4.10)

 

- VERSION 
Option Flag for compressibility function 
 =0 for bi-log NCL 
 >0 for semi-log NCL 

 

4.2.5 Verification Examples 

Borja (2004) presented three problems that we have used to verify the model implementation in 

the Adagio only mode. For these problems we specify the effective pore pressure, the suction ( = 

capillary pressure) and the non-wetting phase saturation using Adagio‘s function definition 

capabilities. In a coupled hydro-mechanical problem, Aria would compute these quantities and 

Arpeggio would control the flow of these data to Adagio. At this time we have not tested the 

complete coupling of Aria and Adagio for this model. There is one task remaining and that is to 

compute the effective pore pressure in the Aria calculation and to verify that the data transfer 

from Aria to Adagio is operating as required. 
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These verification problems were all run using a single three dimensional hexagonal finite 

element aligned with the coordinate axes. The semi-log compressibility model was used in order 

to compare with the results presented by Borja (2004). The following model parameters are used 

in these verification problems. The hyperelastic model parameters are: 0.03   , 103  , 

0vo   and 0o  . The plasticity model parameters are: 1.0M  , 0.11   , 2.76o N   , 

0.6k  , and 1  . A relationship between liquid saturation lS and suction s  (van Genuchten, 

1980) with 1 0.25S  , 2 1S  , 20 kPaas  , 2.5n  , and 0.6m  was specified. 
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 (4.58) 

 

The non-wetting phase saturation gS  was evaluated using (4.58) for s starting at 20 kPa and 

linearly decreasing to 0 kPa. The initial value of gS was 0.25518. The fitting parameters 1c and 

2c were 0.185 and 1.42, respectively. 

Isotropic stress relaxation due to loss of suction 

The first problem involves isotropic stress relaxation due to loss of suction. A reduction in 

suction corresponds to an increase in liquid phase saturation or equivalently a wetting of the 

material. From an effective stress state initially inside the effective yield surface the suction is 

linearly decreased from 20 kPa to 0 in 40 steps. In Borja‘s problem definition the hyperelastic 

parameter op = -20 kPa, the initial elastic strain tensor
eε =0 and the initial preconsolidation stress 

cp = -10 kPa were specified. Using Eqns.  and  we have p = -20 kPa and q = 0 kPa . 

 

In our setup of the problem, rather than specifying the initial elastic strain tensor
eε we specified 

the initial effective normal stresses. From the given initial preconsolidation stress cp and the 

mean stress  1 2 3 / 3p       = -20 kPa the values of specific volume ( =2.4895) and the 

porosity ( =0.5977) were computed using Eqns. (4.56) and (4.10), respectively. This value of 

porosity was used as input to the model. 

 

From the initial values of suction (s = 20 kPa) and non-wetting phase saturation ( gS =0.25518) 

and using atmp =101.3 kPa we can determine the initial bonding variable using Eqns. (4.47) and 

(4.48). 
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The suction was decreased from 20 kPa to zero in 40 steps while holding the boundaries of the 

element fixed. Under these conditions the element does not undergo any deformation and thus 

the components of the total strain tensor are zero during the suction reduction. As the suction is 

reduced the yield surface collapses. Figure 4.2-4 illustrates the evolution of the bonding 

parameter  . Plastic yielding occurs when the effective yield surface (indicated by cp ) reaches 

the effective stress state p = -20 kPa. This occurs when the bonding variable is approximately 

=0.078. From that point the stress state is forced to remain on the collapsing effective yield 

surface and plastic deformation occurs. The zero suction yield surface expands (indicated by cp

becoming more negative) (see Figure 4.2-5). When the suction is zero the effective yield surface 

and the zero suction yield surface are the same. Since the total strain is constant the elastic and 

plastic strain are equal but opposite in sign (see Figure 4.2-6). The plastic strain is negative 

indicating compressive strains. Since the loading conditions are isotropic the stress state moves 

along the mean effective stress axis  0q  and all components of normal stress and strain are 

identical. This problem illustrates the idea of wetting collapse which can occur when a soil 

undergoes plastic compaction when the suction is decreased. 

 
Figure 4.2-4. Test Problem 1: Evolution of bonding parameter. 
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Figure 4.2-5. Test Problem 1: Evolution of mean stress variables. 

 
Figure 4.2-6. Test Problem 1: Evolution of strain. 

Deviatoric stress relaxation due to loss of suction 

In this problem the element is subjected to an initial elastic strain state 

1 2 30.00351,  =0 e e e      , with an initial preconsolidation stress 100cp   kPa and 

100op   kPa. The suction history and boundary conditions (fixed displacement) are the same 

as in the first problem. 

 

In contrast to the first problem the elastic strain tensor was set as an initial condition in the 

Adagio input file and the initial stresses were computed during the initialization phase. Using 

Eqns. (4.27) and (4.28) the initial stress invariants    , 108.5 kPa,125.2 kPap q    are 

calculated. The elastic strain tensor has deviatoric components therefore the initial stress state is 



76 

not isotropic  0q  . In order to compute the initial specific volume  we use Eqn. (4.56) with the 

initial mean stress p and the initial preconsolidation stress cp . This gives an initial specific 

volume of 2.251 which corresponds to a porosity of 0.5557. 

 

The stress state starts out inside the effective yield surface. As the suction decreases the stress 

state  ,p q remains constant until the effective yield surface collapses to the stress state point 

(See Figures 4.2-7, 4.2-8, and 4.2-9). This occurs at step 15 at a value of bonding parameter 

0.113  . As the suction continues to be reduced the stress state remains on the effective yield 

surface and plastic strains are computed. During the suction decrease the stress state  ,p q  

relaxes. This is indicated by the reduction in effective shear stress q  in Figure 4.2-9 and the 

reduction in effective mean stress p in Figure 4.2-8. At the same time the zero suction yield 

surface increase slightly in size as indicated by the decrease in cp in Figure 4.2-8. Figure 4.2-10 

shows the elastic and plastic strain components computed by the model for these loading 

conditions. 

 

 
Figure 4.2-7. Test Problem 2: Evolution of mean stress variables. 
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Figure 4.2-8. Test Problem 2: Evolution of mean stress variables p and cp . 

 

 
Figure 4.2-9. Test Problem 2: Evolution of effective shear stress q. 
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Figure 4.2-10. Test Problem 2: Evolution of strain variables. 

Constrained compression combined with loss of suction 

This problem uses the same material parameters and initial conditions as the previous problem. 

However, in this case an incremental compressive strain is applied, 2 0.001    at each load 

step while holding the other element boundaries fixed. A specified uniaxial displacement history 

was applied to the nodes on one surface of the finite element to provide the equivalent strain 

conditions. As in the first two cases the suction was reduced from 20 kPa to zero in the first 40 

steps (Figure 4.2-11); however, the strain increments were applied for another 122 steps. The 

initial stress state    , 108.5 kPa,125.2 kPap q   lies inside the effective yield surface.  

Figure 4.2-12 shows the evolution of the mean stress variables computed by the model. Figure 

4.2-13 shows the stress path resulting from the combined suction reduction and applied load. 

Figure 4.2-14 shows the specific volume computed by the model. 

 
Figure 4.2-11. Test Problem 3: Evolution of bonding parameter. 
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Figure 4.2-12. Test Problem 3: Evolution of mean stress variables. 

 
Figure 4.2-13. Test Problem 3: Stress path in p-q space. 
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Figure 4.2-14. Test Problem 3: Evolution of specific volume. 

During the first five load steps (path A to B) the model shows elastic response. The bonding 

parameter has a value of 0.211 at point B when plastic deformation begins. In Figure 4.2-13 the 

path from B to C shows the combined effect of suction reduction and applied loading contributes 

to the reduction in effective shear stress q. At point C the suction has been reduced to zero and 

the effective yield surface and the zero suction yield surface are the same ( c cp p ). 

4.3 Multimechanism Deformation Creep Model 

The Multimechanism Deformation Creep Model (MD model), developed by Munson and 

Dawson (1979,1982,1984) and later extended by Munson et al. (1989), is based on the concept 

of a deformation mechanism map (Munson 1979); the active temperature and stress regime 

determines which micromechanical mechanisms are active. The MD model mathematically 

represents the primary and secondary creep behavior of salt due to dislocations under relatively 

low temperatures (compared to the melting temperature) and low to moderate stresses which are 

typical of mining and storage cavern operations. In this section the model and its implementation 

are discussed with particular emphasis on the implicit formulation used to integrate the creep 

equations. 

4.3.1 MD Model Equations 

The MD model defines the creep strain rate tensor as follows. 

 

 
c c

eqε g  (4.59) 

 

In Eqn.(4.59), c

eq is the equivalent creep strain rate and g is the gradient of the flow potential 

defined by the equivalent stress eq  
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eq




g
σ

 (4.60) 

 

In the MD model the equivalent stress is taken to be the Tresca stress T

eq  which is twice the 

maximum shear stress. The Tresca stress can be expressed in terms of the principal stresses. If 

the principal stresses are ordered such that 1 2 3     

 

 1 3

T

eq eq       (4.61) 

 

The Tresca stress can also be written in terms of stress invariants 

 

 22cosT

eq J   (4.62) 

 

where  is the Lode angle, 2J and 3J are the second and third invariants of the deviatoric stress 

tensor s , and 1 2 3,  ,  and s  s s are the principal deviatoric stresses (Hill 1950). 
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Three thermally activated dislocation creep mechanisms are included in the MD model. 

 

1. Dislocation climb (
1s

 ) which is active high temperatures and low stresses 

2. An unnamed, but experimentally observed mechanism (
2s ) at low temperatures and low 

stresses 

3. Dislocation slip (
3s ) which is active at high stresses 

 

The equivalent steady state creep strain rate s  is defined as the sum of the steady state creep 

rates for each mechanism. 
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The parameters 1 2 1 2 1 2 0, , , , , , ,A A B B n n q   are material constants, 1 2 and Q Q  are activation 

energies, G is the shear modulus, R is the universal gas constant, and T is the absolute 

temperature. The function H with argument 0eq   is the Heaviside step function 
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In the MD Creep model, primary creep effects are included by introducing a transient function F 

as a multiplying factor on the equivalent steady state strain rate. 
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The function F appearing in Eqn. (4.72)has three branches: a work hardening branch (F > 1), an 

equilibrium branch (F = 1), and a recovery branch (F < 1). 
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The choice of the particular branch depends on the transient strain limit 
f

t  and the internal 

variable  . The transient strain limit is defined by Eqn. (4.74)where 0K , c, and m are material 

parameters, and T is the absolute temperature. 

 

 
0

m

eqf cT

t K e
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 (4.74) 

 

The internal variable  used in the calculation of the transient function F is obtained by 

integration of an evolution equation 

 

  1 sF    (4.75) 

 

  and , appearing in Eqn.(4.73), are the work hardening and recovery parameters and are 

given by Eqns. (4.76)and (4.77) respectively. In these equations ,  , r , and r  are material 

parameters. The recovery parameter  is assumed to be constant (i.e., r  ) in this 

implementation. 
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The gradient of the flow potential is calculated using the chain rule 
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where 
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Substituting these results into Eqn.(4.78) gives the gradient when the Tresca flow potential is 

used. 
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The Tresca stress is continuous for all values of Lode angle; however, the gradient 
Tg is 

discontinuous when  or cos(3 ) 0
6


    . This is due to the presence of corners in the flow 

potential. Special consideration must be given to the gradient computation at these locations. To 

eliminate the indeterminacy at these values of Lode angle, the gradients at these values of Lode 

angle are computed on each side of  or -
6 6

 
   and then averaged. This is equivalent to using 

a flow potential based on the von Mises stress when
6


   . Ultimately, it must be decided 

when to use the Tresca flow potential or the von Mises flow potential for calculating the 

gradient. This will be addressed in section 4.3.3. 

4.3.2 Numerical Integration Algorithms for the MD Creep Model 

We assume that the deviatoric stress tensor s  and internal variable   at time t are known. For an 

increment of time we use 

 1      n nt t t    (4.86) 

 

and for the deviatoric stress tensor and internal variable   at times nt and 1nt   we use 
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The generalized trapezoidal rule provides an algorithm for obtaining  +1ij ns  and 1n  . 

 

 
 

 

1 1

1 1

1

1

n n n n n n

n n n n n n

t t

t t





 

      

  

  

        

        

s s s s s s
 (4.88) 

 

The forward Euler method is obtained with the choice 0  . The forward Euler method is an 

explicit integration method because it only uses information at the beginning of the step to 

compute the values at the end of the step. While extremely simple there is a time step size 

restriction that must be satisfied for the integration to be stable. 
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The backward Euler method is obtained when 1  .  

 
1 1

1 1

n n n

n n n

t

t  

 

 

 

 

s s s
 (4.90) 

The backward Euler method is always stable. Both of these schemes are first order accurate 

4.3.3 MD Model Implementation 

Traditionally the creep models included in the material libraries of the quasi-static finite element 

codes at SNL have used forward Euler integration. Sub-stepping is often needed when the global 

time step, chosen based on accuracy conditions, is larger than the time step required for stability. 

Frequently it is necessary to start a simulation with a small time step in order to accurately 

represent the primary creep behavior. An added benefit of using a small step size is that it often 

reduces the number of iterations the nonlinear conjugate gradient solver needs to satisfy 

equilibrium of the system. 

 

Once the transient creep phase has passed it often becomes more efficient to use integration 

algorithms which are unconditionally stable. The approach used in this work is that whenever the 

global time step is smaller than the time step required for stability (Cormeau 1975) the forward 

Euler method is used, otherwise the backward Euler method is used. When the backward Euler 

method is used a system of two nonlinear equations must be solved. The reduction from 7 

equations (6 stress components plus the evolution equation) is based on the ideas presented by 

Schreyer (2002). 

 

Using the stress state at the beginning of the step we evaluate the critical time step crt . If the 

specified time step interval t  is less than t crA t   ( tA is a user specified value 0 1tA  ) the 

integration is performed explicitly; otherwise, the backward Euler integration method is used. 
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As stated earlier we know the stress tensor nσ  and state variable n  at the beginning of the time 

step nt t . The strain rate tensor ε  and the time step t are given and the objective is to 

determine the stress tensor 1nσ and state variable 1n  at the end of the step. 

 

In order to determine which flow potential is active we compute the Lode angle   

corresponding to the stress state at the beginning of time step using Eqn. (4.64). 
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The closeness of the stress state nσ  to the corner region  or -
6 6

 
   is then used to determine 

which flow potential will be used. If the stress state is within a user specified tolerance (e.g.,  = 

0.1 degree) to the corner region the von Mises flow potential is used; otherwise, the Tresca flow 

potential will be used. Converting the Lode angle in radians  to Lode angle in degrees 
* this 

is represented by 
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 (4.91) 

 

When the Tresca flow potential is active the integration takes place in deviatoric principal stress 

space. The principal directions of the gradient 
Tg are taken to be the same as the principal 

directions of the trial deviatoric stress (Borja et al. 2003). The advantage of performing the 

integration in principal stress space is the simplicity of computing the gradient and the necessary 

partial derivatives needed by the Newton Raphson algorithm. The draw back of operating in 

principal stress space is that the spectral decomposition (principal values and directions) of a 3x3 

symmetric matrix needs to be computed.The principal directions An and principal deviatoric trial 

stresses  1

tr

A ns   are computed using a Jacobi iteration algorithm (Press et al. 1992). The Jacobi 

method has also been used in an implicit implementation of a three-invariant, isotropic-kinematic 

hardening cap plasticity model (Foster et al. 2005). There are other options for performing the 

spectral decomposition that may prove more efficient (e.g., Scherzinger and Dorhmann 2008) 

than the current method and they should be considered. 

 

Whenever the backward Euler algorithm is used it possible that the Newton Raphson iteration 

will not converge. To avoid having the entire simulation abort it is highly recommended that the 

Adaptive Time Stepping with METHOD = MATERIAL be used with GROWTH FACTOR and 

CUTBACK FACTOR specified. Setting CUTBACK FACTOR to a number less than 1 allows 

Adagio to reduce the time step if the MD model fails to converge or the nonlinear conjugate 

gradient algorithm fails to meet the user specified tolerances for the equilibrium solution. 
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Another advantage of using the Adagio Adaptive Time Stepping option with the METHOD = 

MATERIAL is the MD model will evaluate the relative change in equivalent stress and 

equivalent creep strain over the current time step t and calculate what the next time step 1nt   

should be. These two time steps are denoted t  and t . The minimum of these two estimates 

is used to determine the value for the next time step 1nt  . Smaller values of tol will result in 

smaller time steps. Setting tol = 0.005-0.01 is generally sufficient. 
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Introducing s  and g as reduction and growth factors the time step computed based on relative 

changes in variables may be restricted according to 
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Experience with the MD model generally suggests using a small time step at the start of the run 

and letting the MD model compute the time step for the code rather than having the user specify 

the time step sizes. Both the MD model and the Adaptive time stepping option have input that 

controls the maximum growth and reduction of the time step from one step to the next. 

 

The more stringent of two sets, Adagio‘s GROWTH FACTOR and CUTBACK FACTOR and 

the MD model‘s , s g  , will be used if they are specified differently. In some cases the relative 

change in variables keeps driving the time step computed by the MD model lower and lower. 

Setting 1s  in the MD model input prevents this from happening but setting CUTBACK 

FACTOR < 1 allows Adagio to handle failure to converge issues. 

 

In this implementation we have also added the option of using the von Mises flow potential 

exclusively. This is invoked by setting the MD model input parameter ITYPE = 1. The default is 

to use the Tresca flow potential or ITYPE = 0. 

 

Table 4.3-1 lists the input required by the MD model. In addition two elastic constants are 

required. Generally for the MD model these are the shear modulus and the bulk modulus but 

other combinations are allowed. 
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Table 4.3-1. Inputs required by MD model. 

Model Variable Input Variable Name Model Equation Reference 

1A  A1 (4.68) 

1Q R  Q1/R 
(4.68)and (4.70) 

R is the universal gas constant 

1n  N1 (4.68) 

1B  B1 (4.70) 

2A  A2 (4.69) 

2Q R  Q2/R (4.69)and (4.70) 

2n  N2 (4.69) 

2B  B2 (4.70) 

o  SIG0 (4.71) 

q  QLC (4.70) 

m  M (4.74) 

ok  K0 (4.74) 

c  C (4.74) 

  ALPHA (4.76) 

  BETA (4.76) 

  DELTALC (4.77) 

tA  AMULT 
Multiplier on computed critical time 
step to determine when to switch 
from explicit to implicit integration 

tol  EPSTOL (4.92) 

g  GRWFAC (4.93) 

s  SHKFAC (4.93) 

  ANGLE 
(4.91) 

input in degrees 

- ITYPE 
ITYPE = 0 use Tresca 
ITYPE = 1 use von Mises 

 

4.3.4 MD Model Application 

One example illustrating the use of the new MD Creep model implementation has been described 

in Stone et al. (2010). This work examined the behavior of storage rooms in a generic salt 

repository for two different constitutive representations of the salt. A staggered-in-time scheme 

with the thermal analysis leading the geomechanical analysis was used. In this method, the 

thermal analysis moves forward a thermal time step, without any update from the geomechanics 

code. Once the thermal time step has been completed, temperatures are passed back to the 

geomechanics code and a quasistatic solution is obtained for the same time interval. Updated 
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nodal displacements are then passed back to the thermal analysis code for use in updating the 

geometry for the next time step. Ninety-six processors were used in all simulations. 

 

Figure 4-3.1 illustrates the region represented in the model. The region labeled canister 

represents the heat generating source, the green region is a simulated backfill and the remainder 

is salt. Points A and B are used to record the convergence of the alcove and access tunnel as the 

salt creeps inward. 

 

The MD Creep model and the standard power law creep (PLC) model were both used to compare 

the rate of storage room closure. Through appropriate selection of input it is possible to reduce 

the MD Creep equations to those of the standard power law creep model. This allows for a 

comparison of the two different numerical implementations since the MD Creep model uses 

combined explicit/implicit integration and the standard power law creep model uses explicit 

integration exclusively. 

 

The storage room closure is driven by the elevated temperatures generated by the heat producing 

waste. Figure 4-3.2 shows the temperature history computed at the center of the canister and the 

mid-wall location. The calculations showed that the use of the MD Creep model results in a 

faster rate of room closure compared to the PLC model (Figure 4-3.3). This is due to the 

inclusion of primary creep in the formulation in the MD Creep model while the PLC model only 

represents secondary or steady-state creep. 

 

In general, the full MD Creep model requires significantly more computational effort than the 

MD model with parameters adjusted to simulate the PLC model. A surprising result was the 

increase in simulation time associated with the standard PLC model when compared to the 

simulation time using the MD with PLC-only parameters. This result (96 hours for PLC 

compared to 32 hours for MD reduced to PLC) suggests that the adaptive integration scheme 

used in the MD model should also be applied to the standard PLC model. The analysis effort is 

also dominated by the cost associated with the contact algorithm for the deforming alcove and 

access tunnel surfaces (Figures 4-3.4 and 4-3.5). It should be noted that the deformation of the 

repository is quite complex and the use of a robust, large deformation, contact algorithm is 

necessary. If the determination of repository response to complete drift closure is required then 

the increased cost of the analysis requiring the contact algorithm should be expected. 

 

Additional information regarding the simulations can be found in the paper by Stone et al. 

(2010). 
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Figure 4.3-1. Schematic showing the location of points at the alcove and access tunnel corners where 

closure and temperature is being reported. 

 

 
 
Figure 4.3-2. Temperature histories at the canister centerline and at the mid-wall location. 



91 

 
 
Figure 4.3-3. Closure histories for the analysis comparing the MD and PLC models 

 

 
 

 
Figure 4.3-4. Undeformed and deformed views of the access tunnel looking from the back of the model 

toward the alcove–access tunnel intersection. 
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Figure 4.3-5. Undeformed and deformed views of the access tunnel–alcove intersection looking down 

the access tunnel toward the back of the model. 

Another example of the use of this model has been described in Sobolik et al. (2010). This study 

involved predictions of the geomechanical behavior at the West Hackberry Strategic Petroleum 

Reserve site. They also compared an early implementation of the MD Creep and PLC models in 

JAS3D (Blanford et al. 2001) and concluded that the calculations using the MD Creep model 

produced predictions of geomechanical behavior that more closely matched field measurements 

than those that used the PLC model; however, in their application the MD model was 

approximately four times slower than the PLC model. Perhaps future Stategic Petroleum Reserve 

simulations will be performed using the Sierra codes and we will be able to further improve the 

performance of the MD Creep model for those types of problems.  
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5. Multiphysics Coupling 

5.1 Introduction 

Early in its development, the Sierra software system was designed to facilitate multiphysics 

coupling between member physics modules. In this chapter we will focus on coupling of fluid 

flow physics, energy transport, reactive species transport, and geomechanics. Developments 

under this project for each of these individual physics modules were discussed in the foregoing 

chapters. Multiphysics coupling of these modules was a focus for this project, enabling the goal 

of developing a so-called THMC (Thermal-Hydrologic-Mechanical-Chemical) numerical 

simulation platform. Some applications of current interest to SNL include geologic sequestration 

of anthropogenic CO2, gas generation in rapid thermal decomposition of porous high explosive, 

encapsulant foams and ablative materials, and modeling electrochemistry-induced swelling of 

fluid-filled porous electrodes for the design of thermal batteries. In the following we will discuss 

the techniques developed to enable THMC for geosystems, and chapter 8 includes examples of 

the application of multiphysics coupling.  

5.2 Solving Multiphysics Problems 

5.2.1 Considerations for Coupling Multiphysics Problems 

There are various strategies and trade-offs for solving multiphysics problems. One may consider 

a spectrum of strategies from fully coupled to very loosely coupled methods. Each has 

advantages and disadvantages.  

 

For the fully coupled method, wherein the full system of discrete equations is solved 

simultaneously in one large matrix problem, one may include the following trade-offs:   

 Provides a consistent solution 

 Known convergence properties 

 Expensive to solve 

 Requires compatible algorithms among physics 

 

Another technique is the use of segregated methods, in which various subsets of the full system 

of equations are solved in sequence. This method can be implemented with various levels of 

―tight‖ to ―loose‖ coupling. Some properties of segregated methods include:  

 Can be efficient to solve (smaller, well-conditioned matrices) 

 Allows separate meshes, time steps, discretizations  

 Best de-coupling strategy may be unknown 

 May be more expensive in the long run 

 

Since the Sierra platform includes very diverse physics modules, using a diverse set of numerical 

methods particular to the type of physics being modeled, the segregated method has been 

developed for coupling multiphysics problems. This technique is flexible as it allows loose to 

tight coupling methods to be applied. For time-dependent problems, a loosely coupled approach 

could mean solving, for example, fluid flow and geomechanics with coupling fields ―frozen‖ 

within the time steps, and only updating these fields between physics modules at the end of the 
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timestep. A more tightly coupled approach would iterate the two systems of equations to a user-

specified tolerance within the time step. With proper control of error norms, this technique can 

be made to produce the same solution as the fully coupled approach, albeit perhaps requiring a 

significant amount of subcycling. However, the degree of coupling can be controlled by the user 

via user-defined logic which can be specified entirely through the input command file.  

5.2.2 Building Blocks for Coupled Equations 

In Sierra, a region (REGION) is abstractly defined as a mesh (grid) and a set of fields (e.g., 

pressure, temperature, concentration), and perhaps constraints. For concreteness, we will 

continue the discussion in terms of the porous flow physics in Sierra/Aria and the geomechanics 

in Sierra/Adagio. Each of these Sierra modules is a stand-alone code that solves its partial 

differential equations (PDEs) in a single matrix. Sierra/Aria for example generally accomplishes 

this using Newton iteration with either analytical, or numerical (via finite difference 

approximation) Jacobian, or using the NOX solver in the Trilinos package (Heroux et al. 2005). 

 

Multiple regions can be coupled in one simulation via transfers (TRANSFER). A transfer copies 

or interpolates data between regions, either the entire mesh or between selected element blocks, 

or sidesets/nodesets. Each region can specify its own discretization, both in terms of its mesh and 

the order of interpolants for the solution variables in the PDEs being solved in the region. Fields 

may be copied when the two regions are using the same mesh and when the field has the same 

interpolation representation in the two regions, e.g., node variable in both region or element 

variable in both regions. Otherwise, fields can be interpolated between different meshes and 

converted between interpolant types (e.g., fluid pressure can be a node variable in Sierra/Aria 

and an element variable in Sierra/Adagio).  

5.2.3 Various Levels of Coupling 

The sequencing of the transfers described above is user-defined and can include user-defined 

logical conditionals. These two capabilities allow a variety of levels of coupling between the 

regions. The input file specification in Sierra codes includes a PROCEDURE block in which the 

user defines the solution control instructions. These include the sequence of solves and transfers 

of multiphysics modules being coupled.  

 

The schematic in Figure 5.2-1 illustrates some options for levels of iteration and convergence 

within the segregated strategy in a fluid flow and mechanics multiphysics problem. To facilitate 

coupling with disparate flow and mechanics time scales, the coupling strategy allows for 

different time steps in the flow solve compared to the mechanics solve. This is illustrated by a 

conditional on whether to perform the mechanics solve within this time step. If time steps are 

synchronized, the controller allows intra-time-step iterations. The coupling may be dynamically 

controlled by monitoring a norm measuring the degree of variation in the deformed porosity, 

thereby controlling the frequency of mechanics solves compared to flow solves. These various 

levels of coupling can be defined by user input.  
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Figure 5.2-1. Options for solution control. 

The schematic also illustrates ―subcycling‖ within the fluid solve itself. For example, if the fluid 

solve involves multiphase porous flow and reactive transport, these two sets of equations could 

be segregated and solved to convergence within Sierra/Aria itself. This control logic will be used 

to implement operator splitting in chemically reactive flow and transport problems solved with 

Sierra/Aria. Here the algorithm involves splitting the advective/diffusive processes from 

chemical reactions, to deal with disparate time scales.  

5.3 Multiphysics Coupling for THMC 

Flow through deformable porous materials is coupled to solid mechanics by virtue of Terzaghi‘s 

principle of effective stress, wherein stresses in porous materials are borne by both pore pressure 

and the stress field in the solid skeleton. Here we discuss our Sierra implementation for coupling 

of nonisothermal multiphase, multicomponent porous flow capability in Sierra/Aria with the 

geomechanics capability in Sierra/Adagio. The geomechanics is coupled to the flow via the 

variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the 

concomitant material strains which alter the pore volume (porosity field) and hence the 

permeability field. 

5.3.1 Coupling Geomechanics and Flow in Porous Media 

Treatments of coupled deformation and flow in porous materials begin with the works of von 

Terzaghi (1943) and Biot (1941) on consolidation. These papers introduce the important concept 

of effective stress in saturated porous media for describing the ―settlements of soils under load.‖ 

In a more recent paper, Schrefler and Scotta (2001) define the mixture fluid pressure for an air 

and water system as
w w a ap S p S p  , which is used in the effective stress principle, augmented 

by the volumetric deformation of solid particles (Biot and Willis 1957), 

 

 eff p σ σ I  (5.1) 
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to couple the fluid pressures with the deformation mechanics;  is a material parameter, usually 

referred to as the Biot effective stress parameter. All constitutive models in Sierra/Adagio are 

based on the effective stress. Chapter 4 presents more details on the treatment of the effective 

stress model for multiphase systems.  

 

Owing to the dynamic deformation of the porous skeleton, our formulation is naturally in terms 

of a moving (accelerating) coordinate system. Much existing work in coupling flow and 

geomechanics resorts to small deformation theory, such that material deformation can be 

assumed negligible. For example, see the review by Rutqvist et al. (2001). In contrast, in this 

work both flow and mechanics implementations allow for large deformation and both compute 

solutions on dynamically deforming grid. The coupling of porosity and mechanical deformation 

can be generally defined from kinematics in terms of the mechanical deformation gradient ( F ), 

 

 
01

det
1









F  (5.2) 

 

where 
0 refers to the porosity in the reference configuration. This formula attributes deformation 

of the porous body to change in porosity, assuming the solid material is much more rigid than the 

pores. The deformation gradient is computed in Sierra/Aria, using the transferred displacement 

field computed in Sierra/Adagio. In addition to the displacement field, other measures of 

deformation and/or damage can also be transferred for use in Aria. For example, variations in 

permeability based on a model of damage, which could itself be based on say critical shear, can 

be modeled in this way.  

 

To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy 

implemented in Sierra/Arpeggio allows for different time steps in the flow solve compared to the 

mechanics solve. If time steps are synchronized, the controller allows intra-time-step iterations. 

In cases where the time scale for deformation is long compared to the flow time scale, the 

coupling is dynamically controlled by monitoring a norm measuring the degree of variation in 

the deformed porosity approximated in Sierra/Aria, thereby controlling the frequency of 

mechanics solves compared to flow solves, or vice versa. To measure the degree of deformation 

from a prior synchronization time, a model for the porosity variation during the intervening time 

for the flow simulation is defined by the Rock_Deformable porosity model defined in chapter 

2, repeated here in the form,  

 

 
 1n r nC p p      . 

The subscript n denotes the porosity and pressure fields corresponding at the last synchronization 

time. The user may define a tolerance n     to trigger a synchronization procedure 

wherein the modules transfer fields in order to reset the reference fields in the porosity model. 

This introduces a jump in porosity in Sierra/Aria and a jump in pore pressure in Sierra/Adagio, 

the magnitude of which is controlled by the tolerance on estimated porosity variation.  
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This is but one error measure that can be conceived. Other error norms can be defined as 

appropriate for the problem at hand. For example, if the mechanics time scale is fast compared to 

flow, then a different error norm, measuring pore pressure variations would be more appropriate. 

5.4 Verification: Dynamically Coupled Flow and Mechanics  

In this verification problem we consider the subsidence of a reservoir resulting from extraction of 

fluid via a centrally located well. Geomechanics is coupled to flow via the variation in the fluid 

pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material 

strains which alter the pore volume (porosity field) and hence the permeability field. The 

implementation for multiphysics coupling was verified by comparing the solution to subsidence 

―problem 1‖ discussed by Dean et al. (SPE-79709, 2003), as depicted in Figure 5.4-1 below. The 

figure shows the effects of the level of coupling the porosity to the flow problem. In the solution 

marked ―uncoupled‖ porosity, the porosity variation in the flow problem is not transferred from 

the mechanics solution; it is approximated with a constant value of matrix compressibility (see 

Eqn. (2.7)) in the flow simulation (however, the displacements are transferred and the flow mesh 

allowed to deform.). In the solution marked ―coupled‖ porosity, the displacements are transferred 

to the flow problem and the change in porosity is mapped from the deformation gradient as 

described in the previous section. The comparison shows the uncoupled porosity to ultimately 

lead to significant error in the subsidence over the well, whereas the fully coupled solution 

agrees with Dean et al.  

 

 

 

 
Figure 5.4-1. Comparison of the time history of subsidence due to production in a porous layer, under 

two levels of geomechanics/flow coupling, with the solution of Dean et al. (2003). Also 
shown is the final porosity distribution and (exaggerated) subsidence on a cross section 
through the layer. 
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6. Thermodynamics 

6.1 Introduction and Summary 

The thermodynamic behavior of CO2-H2O fluids and their mixtures is of fundamental 

importance to the quantitative description of fluid/rock interactions in geologic environments. 

For example, it is known that aqueous fluids in porous rock can have significant concentrations 

of CO2 and NaCl and their interactions with co-existing host minerals are important to reactive 

transport scenarios assessing the fate of greenhouse gases in geologic storage/disposal, mineral 

stability in diagenetic and hydrothermal systems, and the formation of economic ore deposits. 

 

In this study, we are focused on the non-ideal behavior of CO2-H2O-NaCl fluid mixtures 

primarily at temperatures below 100C and at pressures ranging from ambient to 600 bars. These 

pressure-temperature (P-T) conditions are relevant to CO2 sequestration where this phase is 

injected into aquifers within porous geologic formations reaching supercritical conditions at 

depth (Spycher, Pruess et al. 2003). In order to quantitatively characterize and predict the fate of 

CO2 and its interaction with aqueous and solid phases in geologic media, it is crucial to 

accurately calculate the pressure-temperature-composition (P-T-X) properties of CO2-H2O-NaCl 

co-existing mixtures. This is achieved in this study using equations of state (EoS) formulations 

and the thermodynamic formulations implemented in the computational tool Cantera (Moffat and 

Goodwin 2011). The main problem with the thermodynamic and volumetric properties of CO2-

H2O mixtures is to obtain an accurate description of these across their multiphase and 

compositional domains for the pressure and temperature range of interest (Spycher, Pruess et al. 

2003; Duan, Hu et al. 2008; Mao and Duan 2008). This problem becomes exacerbated when 

additional components such as NaCl, among others, are also part of the fluid mixture. EoS 

expressions have been developed for a number of years to accurately capture the thermodynamic 

and volumetric properties of pure fluid phases and to a fair extent their mixtures (Spycher, Pruess 

et al. 2003; Duan, Hu et al. 2008; Mao and Duan 2008; Akinfiev and Diamond 2010). Given the 

strong reliance of bounding EoS parameters to existing data, sometimes there are extrapolation 

issues within the P-T-X domain and in some cases discrepancies between different EoS 

formulations could give rise to consistency problems. 

 

In this work, we will limit our fluid solubility calculations to temperatures below 100C but 

pressures up to 600 bars following the approach of Spycher et al. (2003). The following sections 

will provide descriptions on the calculation of thermodynamic and volumetric properties of CO2-

H2O-NaCl fluids and their EoS implementation and usage in Cantera to calculate solubility 

relations in this system. Some of the EoS used in this work is already implemented in Cantera 

but is combined with others to obtain the necessary parameter values demonstrating the 

flexibility of Cantera for model implementation and development. A detailed description of the 

Spycher et al. (2003) implementation in the form of a thermodynamic class object into Cantera is 

given to make this approach more general within the object-oriented platform of the Cantera 

code suite. 

 

Although Cantera is linked into the Sierra software suite as a third-party library, the preferred 

method of utilizing thermodynamics functions in the flow module is through the use of 

(adaptive) tables, which is discussed in section 6.6. The direct linking of Cantera to dynamically 
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compute thermodynamics data would be computationally expensive. However, this linked 

approach will be investigated in future work for certain coupled flow and chemistry problems. 

6.2 Cantera Computational Tool 

Cantera is a general purpose, object-oriented, constitutive modeling package distributed as an 

open source application developed by Professor David G. Goodwin from the applied physics 

department at Caltech. The code suite is hosted on sourcefource.net and Google Code. The 

multicomponent real fluid modules described here have been copyrighted by SNL/DOE for open 

source distribution and have been added to the Google Code Cantera distribution site. Cantera 

has been developed with interfaces to C++, FORTRAN, Python, and Matlab. Its origins lie in 

modeling combustion systems and chemical vapor deposition processes [(Goodwin and Aivazis 

1999; Goodwin 2003; Moffat and Goodwin 2011). However, its use and application has been 

extended to solid oxide fuel cell (SOFC) modeling (Hao and Goodwin 2007), battery modeling 

(Colclasure and Kee 2010), and the modeling of soot formation (Moffat 2007). Of direct benefit 

to this project, Cantera has been extended to model the liquid thermodynamic properties of 

brines by the addition of a Pitzer molality-based approach (Moffat and Colon 2009). Essentially, 

the basic thermodynamic principles to compute fluid-solid equilibria from the EQ3/6 code 

(Wolery and Jarek 2003) developed by Dr. Thomas J. Wolery of Lawrence Livermore National 

Laboratory, has been incorporated into Cantera. Cantera also has the capability to compute 

multiphase chemical equilibrium between solids, aqueous species, and gases. Incorporating the 

thermodynamic databases developed for EQ3/6 as part of the Yucca Mountain Project including 

the Pitzer database (2007), Cantera has inherited an extensive and validated capability to model 

the thermodynamics of brine systems, including dissolved gases within the brines (i.e., CO2) and 

their geochemical interactions with mineral systems. It should be noted that Cantera has the 

flexibility of accepting inputs from various comprehensive thermodynamic database sources for 

solids and fluids. This allows Cantera to be a powerful testing tool for models and data given the 

continuous expansion and refinements typical of thermodynamic database development. 

 

We have extended Cantera to include a multicomponent real EoS capability. Previously, Cantera 

had several models for pure real fluids. That is, a fluid that could be a gas or a liquid and has a 

critical point. Models of this sort are based on the Helmholtz free energy formulation. However, 

previously these models have been limited to single species gases and liquids. The CO2-H2O is a 

binary system and, therefore, Cantera needed to be expanded to include the possibility of H2O 

being present in the CO2(g) and CO2(liq) phases. We chose our initial implementation to be the 

multicomponent Redlich-Kwong (R-K) equation system; Prausnitz et al. has an extensive 

discussion of this system of equations (Prausnitz, Lichtenthaler et al. 1986). This system also has 

been applied to the CO2-H2O system by Spycher et al. (2003) and essentially implemented 

within Cantera to calculate CO2 solubility. 

6.3 Thermodynamic Properties 

6.3.1 Equation of State 

There is a myriad of EoS formulations to calculate the pressure-volume-temperature (P-V-T) 

properties of fluids and a good discussion of these and their uses is given by Prausnitz et al. 

(1998). The thermodynamic properties of CO2, H2O, and NaCl as pure single phase fluids are 

implemented in Cantera in the form of EoS and their associated parameters. For example, the 



101 

thermodynamic properties computed for CO2 are implemented in Cantera through the EoS given 

by Reynolds (1979). As a test, the fugacity coefficient of pure CO2 is computed as a function of 

pressure and temperature. The results are presented in Figure 6-3.1 in the form isotherms as a 

function of pressure. The obtained values are in excellent agreement to those given by the 

tabulations of Angus et al. (1976) and those reported in Spycher et al. (Spycher, Pruess et al. 

2003). 

 
Figure 6.3-1. Plot of pure phase CO2 fugacity coefficients using the EoS by Reynolds (1979) 

implemented in Cantera.  

Accurate representation of fugacity coefficients is important in this case to capture their behavior 

as a function of pressure and temperature when use in combination with other thermodynamic 

approaches to calculate CO2 solubilities in the solution phase. 

 

Volumetric properties of the pure CO2, H2O, and NaCl phases are also important for the 

calculation of mixed fluid properties at the conditions of interest in this study. The EoS for pure 

CO2 and H2O implemented in Cantera are used in this study. For NaCl solutions, there are a 

couple of options in Cantera: the HKFT EoS for ions and the Pitzer approach. The HKFT 

(Helgeson-Kirkham-Flowers-Tanger; see (Moffat and Jove Colon 2009)) EoS is implemented 

through the HMWSoln thermodynamics object and works well with dilute solutions up to 

molalities of ~1 molal. The Pitzer formulation relates the excess Gibbs energy of the electrolyte 

to volume through its derivative with respect to pressure: 

 
EX

EX

T

G
V

P

 
  

 
 (6.1) 

where EXG  is the excess Gibbs molal free energy computed from the Pitzer equations, EXV  

corresponds to the excess volume, and P  stands for the pressure (Rogers and Pitzer 1982; 

Krumgalz et al. 2000; Peiper et al. 1984). The desired volumetric properties of the NaCl 
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electrolyte mixture (i.e., NaCl and H2O) can be obtained such as the density of the solution 

mixture: 

 

2

1000

(1000 / )

NaClw

NaCl

H O NaCl

mM

mV 








 (6.2) 

where m  is the NaCl(aq) or electrolyte concentration in molality units, 
NaClwM  refers to the 

molecular weight of the solute or NaCl (58.4428 g/mol), 
2H O  represents the H2O density, and 

NaClV 
 denotes the apparent molal volume of the NaCl solute. The latter is obtained from the 

Pitzer formulations by: 

 
EX
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NaCl NaCl NaCl

T

G
mV mV mV V

P

   
    

 
 (6.3) 

where NaClV 
 delineates the standard partial molar volume of NaCl(aq) at infinite dilution, and 

EXV  corresponds to the excess volume computed from the Pitzer equations. Unfortunately, the 

Pitzer parameterization in Cantera is solely expressed as a function of temperature and the 

pressure effects are mainly captured by NaClV 
 which can be readily obtained from the Cantera 

EoS implementation for standard thermodynamic properties of ions. To implement the Pitzer 

relations by the derivative given by Eqn. (6.1), a required set of volumetric Pitzer parameters for 

a given electrolyte need to be specified. Such implementation is feasible given the flexibility in 

Cantera thermodynamic class objects to incorporate these changes (see Moffat and Colon 

(2009)) for a description of such implementation).  

 

It should be noted, however, that the effects of pressure on the thermodynamic properties of 

electrolyte mixtures are known to be much less pronounced than those of temperature. Moreover, 

the amount of experimental volumetric data needed with sufficient level of accuracy for the 

parameterization in the Pitzer formulation at a given range of pressures and temperatures is 

scarce and limited to relatively few electrolytes. Figure 6-3.2 shows the prediction of solution 

densities as a function of molality concentration and pressure. Notice the good agreement at 1 

molal NaCl concentration between the Cantera predictions and the comprehensive data 

tabulations of Pitzer et al. (1984). However, there is a clear discrepancy, although small, at 5 

molal NaCl concentration. This discrepancy is expected for the aforementioned reasons and the 

calculation results are just shown for comparison. Even when the density predictions at 5 molal 

follow the proper trend given by the data tabulation, the slight shift in the curve toward larger 

values (approximately 2-3%) demonstrates the need to account for ion interactions close to the 

salt solubility. Nevertheless, as already noted, the discrepancies are small and these are even 

lower NaCl concentrations (~0.5 – ~3 molal) common to deep-seated aquifers. 

A more recent EoS considered in the calculation of volumetric properties of H2O-CO2-NaCl 

fluid mixtures are those advanced by Duan et al. (2008), and Mao and Duan (2008). This 

approach is also based on the use Pitzer formulations for the computation of volumetric 

properties of electrolytes (as explained above) where the EoS fitting parameters were obtained 

using a comprehensive set of data for this system. The EoS formulations advanced by these 

authors were implemented in Cantera but not as part of the Pitzer implementation within a 

thermodynamic class object as will be described later. The implementation was coded in 
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separately and is specific to H2O-CO2-NaCl fluids as advanced by the authors. Such 

implementation makes use of the Cantera native EoS and the thermodynamic class objects to 

retrieve the standard thermodynamic properties of these phases and related parameter data. This 

EoS implementation provides for a better description of the volumetric properties of fluid 

mixtures for this system and also allows for great flexibility to implement and combine complex 

models to accurately describe fluid properties. The implementation and reported parameter data 

were tested at various pressures, temperatures, and phase composition producing results in good 

agreement with the reported data. Figure 6-3.2 shows the excellent agreement between the 

NaCl(aq) solution densities computed using the EoS by Mao and Duan (2008) and those reported 

by Pitzer et al. (1984). It should be noted that Akinfiev and Diamond (2010) use a similar 

approach where NaCl(aq) apparent molar volumes are corrected using the Pitzer approach. 

Density calculations using this EoS for 1 molal NaCl(aq) essentially overlap with those given by 

Pitzer et al. (1984) and are omitted from the figure for clarity. 

 

  
Figure 6.3-2. Plot of NaCl(aq) densities at 25C as a function of pressure and salt concentration. Notice 

the excellent agreement between the Cantera predictions using the EoS by Mao and Duan 
(2008) and the comprehensive tabulations of Pitzer et al. (1984). Cantera Pitzer 
calculations are shown for comparison (see text). 

The solubility relations of the H2O-CO2-NaCl system are implemented using the approach of 

Spycher et al. (2003). One form of the implementation is done through the use of the appropriate 

equations given by the authors using some of the EoS native to Cantera. The other form is 

implemented within the ThermoPhase class object in Cantera and will be described in a later 

section. The implementation described here is more specific (as the one for the fluid volumetric 

properties) but it is straightforward and takes advantage of other EoS and class objects within 

Cantera.  
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6.3.2 Model Description 

Spycher et al. (2003) describes the solubility of CO2 in fluids by using thermodynamic 

formulations in the form of mutual solubilities between liquids and gases. That is, the 

equilibrium solubility of CO2 and H2O between the gas and the liquid phase can be expressed by 

mass action laws as follows:  

 2( ) 2( )aq gCO CO  (6.4) 

 2 ( ) 2 ( )liq gH O H O  (6.5) 

 
The equilibria given by these two reactions can be described through the following 

thermodynamic relations: 
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 (6.7) 

 

The equilibrium constant iK changes with pressure and temperature. The expression for iK  that 

accounts for pressure corrections is given by Prausnitz et al. (1998):

 
 

 
( P )

exp
ref iP V

RT

 
 
 
 

 (6.8) 

 

where 
i

K   is the equilibrium constant at the absolute temperature T at the reference pressure of 

P
ref



 (1 bar). iV  is the standard partial molal volume at T  and R  is the gas constant. The 

exponential term corresponds to the ―Poynting‖ correction for pressure on the Gibbs energies of 

the reaction as described by Prausnitz et al. (1998). Equation (6.8) can be related to the 

expression for fugacities ( )if by Prausnitz et al. (1998): 

 

 
i i if y P  (6.9) 
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where 
i  stands for the fugacity coefficient, 

iy  refers to the mole fraction of the phase, and P  is 

the total pressure of the system. Combination of Eqns. (6.4), (6.5), and (6.7) result in the needed 

expression that relates fugacities with thermodynamic constants and these can be recasted as 

follows—after Spycher et al. (2003): 

 

 
2 2 2 2 2( ) ( )H O H O g H O g T H O H Of y P K a   (6.10) 

 

 
2 2 2 2 2( ) ( ) ( ) ( )  CO CO g CO g T CO g CO aqf y P K a   (6.11) 

 

The equation for 
2 ( )H O gy , for example, can be obtained by combining Eqns. (6.6) and (6.8) and 

some term rearrangement to yield: 
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 (6.12) 

 

The value for 
2H Oa  is taken as unity given the relatively low solubility at the considered pressure 

and temperature conditions. In cases where NaCl(aq) or dissolved CO2(aq) are present in large 

amounts, activity coefficient models such as Pitzer need to be considered to account for H2O 

activities deviating from unity. This will be discussed later for the computation of CO2(aq) in the 

liquid phase. The values for 
2 ( , )refH O T P

K 


  as a function of temperature (and 1 bar) are computed 

from the native EoS for pure gases and aqueous species in Cantera from their Gibbs energies of 

reaction of the mass action law expression. Similarly, values for 
2 ( )H O lV  as a function of 

temperature were also obtained from the EoS implementation in Cantera. Values for 
2 ( )H O g  are 

derived from the R-K EoS expression given by Spycher et al. (2003), which is described in a 

later section but is also given here for completeness: 
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where 
mixa , 

mixb , and 
ib  are interaction parameters specific to a given mixture, in this case a 

CO2-H2O fluid. The implementation of Spycher et al. (2003) reduces the expansion form of these 

terms for this binary system through the adoption of key assumptions on the solubility of H2O in 

the CO2-rich phase which is rather low. Therefore, it is assumed then that the properties of CO2 

in the mixture can be represented with a sufficient level of accuracy by treating this species as a 
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pure phase instead of a mixture. Such an assumption is very important in simplifying the 

representation of these mixing parameters and thus the implementation of this expression in the 

Cantera code. Notice that this expression requires the phase volume 
iV  which can be computed 

from the resulting R-K cubic equation as done by Spycher et al. (2003). These authors use the 

analytical approach by Nickalls (1993) based on the Cardan‘s solution for solving cubic 

equations and it is discussed in section 6.4.4. In the current Cantera implementation, it is 

assumed that the volume in the mixed fluid CO2-rich phase can be described by treating it as a 

pure phase on the basis of low H2O solubility into the CO2-rich phase for the pressure and 

temperature conditions considered in this study. Such treatment allows for the direct retrieval of 

the pure phase thermodynamic properties from the native EoS in Cantera. The results of this 

approach were checked by comparing values for volumes obtained from solving the R-K cubic 

equation (using Mathematica
®
) along with the parameters given by Spycher et al. (2003) and 

those obtained from the native EoS for pure CO2 in Cantera. The resulting volumes from this 

comparison are in very good agreement for the pressure and temperature range of interest.  

The mass fraction of H2O(g) in the CO2-rich phase (i.e., 
2 ( )H O gy ) was computed as function of 

pressure for a temperature of 50°C and the result is given in Figure 6.3-3. The resulting curve 

was compared to the one given by Spycher et al. (2003) and the agreement is excellent. For this 

EoS implementation, the parameter 
2COb  which relates to the mixing terms in Eqn. (6.11) is 

slightly different – 28.2 cm
3
/mol instead of 27.8 cm

3
/mol as given by Spycher et al. (2003). This 

parameter needed to be modified to obtain better consistency with the 
2 ( )H O gy  values at the high 

pressure range. The reason for this slight discrepancy was not determined in this work but 

plausible reasons are the use of a different EoS to obtain CO2 volumes instead of R-K expression 

and associated parameters in Spycher et al. (2003) or slight discrepancies in the Gibbs energies 

resulting small differences in 
2 ( , )refH O T P

K 


 as a function of temperature. In any case, the resulting 

curve is nearly identical to that reported by Spycher et al. (2003) along with the data therein.  
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Figure 6.3-3. Plot of the predicted mole fraction of H2O  

2 ( )H O gy  in the CO2-rich phase at 50°C as 

function of pressure using Cantera and the model implementation of Spycher et al. (2003).  

The solubility of CO2 in the aqueous phase was computed using the EoS native to Cantera for 

pure phase CO2 and H2O, and the Pitzer model parameters for CO2(aq) neutral species from Corti 

et al. (1990) and Mariner (2007). The Pitzer model parameters for activity coefficients of CO2(aq) 

neutral species have been tested for natural brine cases (Mariner 2007) and problems involving 

carbonate equilibria for a wide range of pressures of temperatures(Corti, Depablo et al. 1990; 

Mariner 2007; Moffat and Jove Colon 2009). The model as implemented also makes use of the 

Cantera solver (VCS) to compute chemical equilibrium speciation in the aqueous phase (Moffat 

and Jove Colon 2009). The results of this model implementation are given in Figure 6.3-4 for 

CO2 solubility in 0.5 molal NaCl solution. 
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Figure 6.3-4. Plot of predicted CO2 solubility at 30°C in 0.5 molal NaCl solution as a function of pressure 

using Cantera and the Pitzer model. Notice the close correspondence with the data by 
Bando et al. (2003). 

The results indicate a close correspondence with the model and the solubility curves reported in 

Spycher and Pruess (2005). Code runs for salt-free systems also produces solubility curves that 

are in excellent correspondence with those presented in Spycher et al. (2003) and the solubility 

data given by Bando et al. (2003) in NaCl(aq) solutions, particularly at elevated pressures. It 

should be noted that CO2(aq) volumetric and solubility data for salt-bearing systems is relatively 

scarce; even more so at the elevated pressures of interest for CO2 sequestration. Still, there is 

some data available comprising a wide temperature range up to 250°C (Spycher and Pruess 

2010). It is envisioned that applications of this thermodynamic implementation in Cantera will be 

expanded and tested at temperatures typical of hydrothermal systems. 

 

The thermodynamic description and chemical equilibria for the CO2-H2O-NaCl system has been 

implemented in Cantera with encouraging results. Such implementation demonstrates the 

capabilities of Cantera to model complex multiphase cases of chemical equilibria and 

thermodynamic properties of mixed fluid systems over a wide temperature and pressure range. 
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6.4 Implementation of Multicomponent Redlich-Kwong EoS within 
Cantera’s ThermoPhase Objects 

6.4.1 Introduction 

This section describes another implementation of the Spycher et al. (2003) approach to describe 

multiphase equilibria in the CO2-H2O system. This implementation is native to the Cantera 

thermodynamic class objects and therefore more general with the goal of introducing a rigorous 

capability base for modeling non-ideal multiphase systems. The native base class 

thermodynamics object within Cantera is called ThermoPhase. ThermoPhase consists of a 

large set of queries about the values of thermodynamics functions, and the values/ properties of 

the mechanical EoS. Under ThermoPhase are objects that implement mole fractions and 

species elemental compositions. The HMWSoln thermodynamics object, which implements the 

Pitzer equations, is a derived object of the ThermoPhase class.  

 

 
Figure 6.4-1. Layout of thermodynamic objects associated to the ThermoPhase class in Cantera.  

Figure 6-4.1 describes the inheritance of objects within this architecture. The HMWSoln object is 

derived from several hierarchical class components. However, to describe the multicomponent 

real-gas EoS, a fugacity representation is needed. This involves applying a representation of a 

reference state model for each species in the mixture, which is based on the ideal gas EoS 

applied at a given pressure. Fugacities are then calculated integrated over the pressure (P) range 

ThermoPhase is the base thermodynamics class for solutions and 
phases. Mechanical EoS as well as the electrochemical potential 
are covered. ThermoPhase is itself derived from additional 

subclasses.  

VPStandardStateTP 

ThermoPhase  

MixtureFugacityTP 

RedlichKwongMFTP 

VPStandardStateTP implements a variable pressure standard state 
model for species in a phase.   All models that are based on 
activities or activity coefficients are children of this class. 

 

MixtureFugacityTP implements an API based on a fugacity based 
non-ideal thermodynamic formulation. The reference state is 
defined to be an ideal gas at the reference pressure. Models are 
assumed to be based on a Helmhotz free energy expression with T, 
V and X_i as the natural independent variables. The press is 
calculated. 

RedlichKwongMFTP  implement s T,V –based  
thermodynamics models on top of the 
MixtureFugacityTP object. The mechanical EoS is 
based on the cubic RedlichKwong EoS with mixing 
rules to specify the interaction parameters. 
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of interest at constant temperature (T). This approach is actually applicable even if the system 

turns out to be in the liquid state. This is fundamentally different from an activity model based 

system such as the Pitzer equation set, which is based on setting a standard state that is a function 

of temperature and pressure. Therefore, we have spawned a new intermediate class called 

MixtureFugacityTP to reflect this split in the thermodynamics representations. Models based 

on the MixtureFugacityTP class are assumed to be based on a Helmholtz free energy 

representation of the phase with independent variables being the temperature, density (or molar 

volume), and the mole fractions of the species. Then, a class called RedlichKwongMFTP 

implements the temperature-volume based R-K EoS model representation as a child of the 

MixtureFugacityTP class. Figure 6-4.1 displays this inheritance relationship with the R-K EoS. 

6.4.2 Calculation of the Total Helmholtz Free Energy Equation 

We define the molar volume of the mixture as v, which is related to the total volume of the 

mixture by V nv . Then, 

 
       

2

mix T mixT

mix T mixmix T mix

a n an RTRT
P

v b V n bT v v b T V V n b
   

  
 (6.13) 

 

Following Spycher et al. (2003), we calculate the following mixture formulas for the coefficients 

in Eqn.(6.14). 

 1 1

N N
T T

mix i j ij

i j

a X X a
 


 

 
1

N
T

mix i i

i

b X b


  (6.14) 

Here, T

iX  refers to the mole fraction of species i in the combined liquid and gas phase system 

represented by the R-K EoS. Note, ija and 
ib may be functions of the temperature as well. The 

first task it to generate the Helmholtz free energy representation of the EoS. We do this by 

recognizing that  

 
 

 
, iT n

d nA
P

d nv
   (6.15) 

So we can take the integral of  P V
 

 

Using 
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  
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 , 
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    ln ln , .mix T T mix
T mix i

mix

a n V n b
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Vb T

 
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 , ic T n  is the integration constant that we can then identify with 
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      ,, ln ln .o o

i T RS i RS i i i

i i

c T n RTn v n a T RTn X   
 

 

In the last expression, o

RSV  is the reference state volume approximation, which is the ideal gas 

approximation at the adopted reference state pressure of 1 bar. 

 

 
1

o

RS o

RT RT
v

bar p
   (6.16) 

 

 ,

o

RS ia T  is Helmholtz free energy of the i
th

 species in its reference state, which is defined as an 

ideal gas at a temperature T and at the reference pressure, op , one bar.  

 

 
 , , ,

o o o

RS i RS i RS ia T u Ts   (6.17) 

 

Therefore, the final result is Eqn. (6.18). 
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Eqn. (6.18) may be rearranged to yield Eqn. (6.19). 
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This formula can be compared to the Prausnitz formula (3.4-11) (Prausnitz et al. 1986, p. 38), to 

verify our formulation. 
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In this formula, we have modified Prausnitz‘s formula by adding a op  to the ln term to ensure 

that this term is unitless, as is obviously required (note: there is an existing error in the Prausnitz‘ 

book). 
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Having arrived at the general expression for Helmholtz free energy, the remaining 

thermodynamic potentials required for computing thermodynamic properties for equilibrium 

calculations can be derived. For completeness, these are given in Appendix B.  

6.4.3 Solution Methods within the Objects 

We have implemented a traditional approach to solving the vapor dome problem for the 

multicomponent R-K equation set. In this approach, which is strictly a constant mole number 

approach, we solve for the equilibration of the gas and liquid molar Gibbs free energies at a 

particular temperature and pressure. 

 

      , ,l vf P G T P G T P   (6.21) 

 

The update to  f P  is generated from the following differential formula, 

     ldG VdP    

 

so that the update to the pressure may be determined from the following Eqn. (6.22). 
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 (6.22) 

 

This formula is extremely efficient when a good starting guess can be generated for lV , gV , and 

P. However, there is problem with generating good initial guesses especially around the critical 

point. The key to the method involves finding a pressure where there are three solutions to the 

P-V-T equation. Once the algorithm had been adjusted to account for this issue, the method is 

robust as long as a starting pressure with multiple solutions can be found.  

 

However, the traditional approach to the vapor dome problem is not actually correct for the 

multicomponent R-K problem and moreover is not sufficient either; a key point that is not 

sufficiently addressed in the current iteration and especially within the papers by Spycher et al. 

(2003) and Spycher and Pruess (2010). The reason why the traditional vapor dome problem is 

not correct is because the mole fractions of species on the vapor side and on the liquid side may 

not be the same. Therefore, the equations that are actually applicable in this case are represented 

by Eqn. (6.23). 

 

    , ,i i

l gT P T P    for all species i   (6.23) 
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What this means in practice is that for a particular temperature the saturation pressure changes 

because the mole fractions on each side of the interface may be different. For the CO2/H2O 

problem we have seen 15% changes in the predicted saturation pressure due to this effect. 

Moreover, solution of the vapor dome problem is not sufficient. This means that while the vapor 

dome represents one form of a miscibility gap, the multicomponent R-K EoS actually have 

multiple miscibility gaps, the other ones being associated with coordinates representing mole 

fractions. For an N species multicomponent R-K equation system, the Gibbs phase rule reduces 

to the following equation for the number of degrees of freedom, 2 N   , where  is the 

number of stable phases present. Therefore, when there are two species in the system, there can 

be at most two phases present in a region according to this rule. Three stable phases may only be 

present along a line in T, P space. The fact that there are two phases that are stable at any point 

means that there is a miscibility gap along a mole fraction direction. This can and does happen 

within the multicomponent R-K equation set, depending upon the values of the interaction 

parameters (e.g., ,i ja ) that are the off-diagonal entries. Therefore, the proper treatment of the 

R-K phase space is to assign labels associated with the gas phase and with multiple liquid phases 

that may develop. We have associated each of these liquid phases with a primary component 

within the liquid. The following labels are used that address this complexity. 

 FLUID_SUPERCRIT 

 FLUID_GAS 

 FLUID_LIQUID_0 

 FLUID_LIQUID_1 

 FLUID_LIQUID_2 

 

We have added a supercritical fluid label in this equation system, because it is still useful to flag 

compositions which are above their critical temperature and or pressure at a given composition. 

There are multiple liquid labels that may be assigned; they are assigned based on the maximum 

species in that phase. Therefore, the CO2 rich liquid phase is labeled FLUID_LIQUID_0, while 

the H2O rich liquid phase is labeled FLUID_LIQUID_1, if the multiple R-K EoS is used for both 

the H2O and CO2 liquid phases. 

 

In general, equilibrium in miscibility gap systems can be simply handled by the equilibrium 

solver, even if there are multiple phases represented by the same EoS treatment, as long as there 

is a separate ThermoPhase object for each local minimum in the Gibbs energy function. Note, if 

multiple ThermoPhase objects are bumped into the same local minimum then the system will 

become degenerate at the end of the calculation as it approaches an equilibrium state. Therefore, 

the equilibrium solver is actually used to solve the multiple species vapor dome problem. This 

works as long as the equilibrium solver has separate ThermoPhase objects for both sides of the 

vapor dome that it can test for relative stability.  

 

This discussion also points out the necessity of forcing individual ThermoPhase objects to stay 

or remain in their respective local Gibbs energy minimums within which they were originally 
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assigned. This is again accomplished using a field within each object that forces the labels 

defined above not to change, if at all possible. Therefore, an R-K gas object defined as a forced 

FLUID_GAS label stays as an R-K gas object even if the liquid phase is more stable, and a 

FLUID_LIQUID_0 object stays as a liquid object dominated by species 0 even if the gas phase is 

more stable. The phases can theoretically exist in a metastable manner even though they are not 

the stable phase up until the point at which they cease to become a local Gibbs energy minimum. 

This point or the locus of points in PV space is called the spinodal decomposition curves for the 

phase system. The spinodal decomposition curves are calculated within the multicomponent R-K 

system as well. Internally, it is a significant help in some algorithms to understand where these 

curves exist. In a numerical context, their values are more significant than the saturation pressure 

curve itself, and they are calculated using the following equation for both the liquid side and the 

gas side of the vapor dome. 

 0
T

dP

dV
  (6.24) 

Forcing the ThermoPhase objects to be in one state or another turns out to be essential for the 

CO2 -H2O problem. We have found that the water phase is adequately modeled by the previously 

developed HMWSoln object that represents concentrated brines (Moffat and Colon 2009). Thus, 

the water liquid phase is handled. However, the CO2 rich liquid phase and the non-ideal gas 

phase are then handled by multicomponent R-K ThermoPhase objects that have been developed 

within this project. These multicomponent R-K ThermoPhase objects are restricted to range 

only within their assigned roles. 

6.4.4 Solution of the Cubic Equation of State 

At the heart of these calculations is the solution of the R-K cubic EoS. 

 

 3 2 0av bv cv d     (6.25) 

  

We choose to solve Eqn. (6.25) using the Nickalls method (Nickalls 1993). Essentially, what this 

does is give a fairly full proof method of finding all of the real roots of Eqn. (6.25) using 

analytical formulae related to the arc cosine function. However, there are several complications 

in using the Nickalls method. The first is that, while the method is analytical, the actual formulas 

suffer from ill-conditioning in some regions. In particular, as the region trends towards the ideal 

gas limit, the formulas become singular, and calculation of the discriminants in many of the 

expressions requires the subtraction of two large numbers. Because we are using finite 

arithmetic, these singularities must be guarded against by the inclusion of additional logic. For 

example, in the limit of the ideal gas solution, the original formulae in the Nickalls method are 

discarded in favor of simpler ones. Additionally, at the very end of the solution procedure, each 

of the solutions found by Eqn. (6.25) is refined using a standard Newton‘s method approach in 

order to obtain better accuracy, which is lost due to the ill-conditioning. Typically we are seeking 

13 or 14 digits of accuracy from the solution of Eqn. (6.25), so that inaccuracies in the solution 

of the cubic EoS do not affect property calculations elsewhere in the routine.  
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It should be noted also that Nickall‘s method provides for the solution of the turning points to 

Eqn. (6.25). However, these turning points are not related to the spinodal curve representing the 

limits of the stability of each phase. Therefore, their calculation is of no importance. 
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Figure 6.4-2. Illustration of P-V-T relationships calculated with the Redlich-Kwong (R-K) EoS. The 

calculated curves are for the pure CO2 phase. 

6.4.5 General Issues with Equilibrium 

In general the equilibrium issues between phases are much more complex due to the multispecies 

aspect. Let us take the case of two species in a R-K fluid. In general we can have three phases 

present, L1, L2, and G. L1 would be a liquid dominated by component 1, while L2 would be a 

liquid dominated by component 2. The phase rule states that the number of degrees of freedom in 

this case is 2 + 2 – P. So, if all three phases are present, then this must occur only along a line in 

T,P space. This is in fact what occurs within the CO2-H2O system. L1 in this case would be H2O. 

The CO2 turns from gas to liquid along a line in T,P space. However, what is significantly 

different and complicating is that the concentration of water in the liquid CO2 and gaseous CO2 

is different. This type of complication can only be handled via the equilibrium solver. Therefore, 

the R-K multispecies ThermoPhase object must be constructed so as to permit only gas or 

liquid phases below the critical point. Then, for the case of two species, there may be three R-K 

phases present, one representing L1, one representing L2, and one representing G. One of the 

three R-K phases will be unstable with respect to the other phases, and therefore, have a zero 

mole number assigned to it. This is permissible. Generalizations to more than two species are 

straightforward when paying attention to the phase rule (Smith and Van Ness 1975): 2 + N – P. 

In general, there can be N + 1 phases to be considered, with only N phases present within an area 

of T, P space, and with N+1 phases present along one dimensional lines in T,P space.  
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What does this mean for the R-K multispecies object? It means that a lot of the equilibrium 

issues should be relegated to the equilibrium solver to adjudicate. However, the R-K object 

should handle all equilibrium issues assuming that the R-K fluid stays at a constant composition. 

As long as the R-K fluid is at a constant composition, the critical point, the saturation pressure, 

and the spinodal curves may be calculated. The equilibrium with respect to the gas to liquid 

phase transition may be also calculated. However, this equilibrium will be only a minimum 

condition. The extra degrees of freedom associated with the change in composition will cause 

phase transitions to occur sooner. Additionally, a gas and liquid R-K phase in equilibrium with 

one another will have different compositions in the different phases and occupy a region in T,P 

space rather than a line. This complex equilibrium situation may be handled by the equilibrium 

solver only. Calculation of the spinodal curve is important because that limits the viability of the 

local phase condition. 

6.5 Verification Problems 

6.5.1 First Problem – Verification of CO2 Pure Fluid Behavior 

Spycher uses the following pure species CO2 parameters for the R-K parameterization: 

 
7 4

2 7.54 10 4.13 10COa T    bar cm
6
 K

0.5
 gmol

-2
 (6.26) 

2 27.80COb  cm
3
 gmol

-1
  

 

These values produced the following critical properties: 

 311.022cT  K (critical temperature) 

 68.06 10cP    Pa (critical pressure) 

 107.cV   cm
3
 gmol

-1
 (critical volume) 

 

The critical properties of CO2 were compared to an existing PureFluid implementation of CO2 

within Cantera. The comparison was close in terms of the predicted critical properties, but not as 

close in terms of predicting the saturation curves. This property of the R-K EoS is well known. 

6.5.2 Second Problem – Calculation of H2O Parameters 

The H2O critical properties are: 

 647.286cT  K (critical temperature) 

 622.089 10cP    Pa (critical pressure) 

 56.8cV   cm
3
 gmol

-1
 (critical volume) 

 

Because the 2H Ob  value is specified by Spycher et al. (2003) in order to specify the partial molar 

volume of H2O in the CO2-rich phase, we have left the value unchanged. Then, we have to fit 

2H Oa  to the cT  value. Then, we noticed that the 100°C vapor pressure for water was grossly 
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overpredicted. This necessitated adding a temperature term to the 
2H Oa

 
value, just as in the CO2 

case. The procedure yields the values given below. 
8 4

2 1.745 10 8.0 10H Oa T    bar cm
6
 K

0.5
 gmol

-2
 (6.27) 

2 18.18H Ob  cm
3
 gmol

-1
 

 

6.5.3 Third Problem – Prediction of Water Solubility in the CO2–rich Phase 

In order to test the multicomponent R-K capability within Cantera, we duplicated calculations 

presented in Spycher et al. (2003). Sample results are presented in Figure 6.5-1 for one 

temperature.  
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Figure 6.5-1. Prediction of the mole fraction of water in the CO2 phase at 18ºC as a function of the 

pressure. 

Calculations were carried out within Cantera using the equilibrium solver to calculate the 

equilibrium mole fraction of water in the CO2 rich phase. Equilibrium was achieved against three 

different ThermoPhase objects representing the real behavior of water with virtually identical 

results: a real PureFluid ThermoPhase object for water, a brine phase with CO2 solubility 

enabled using the HMWSoln ThermoPhase object, and another R-K phase with an almost pure 

H2O mole fraction used as an initial guess.  

 

The jump in the solubility of water in the CO2 phase is due to the abrupt phase transition between 

the gas CO2 phase at low pressures and the liquid CO2 phase at high pressures. The liquid CO2 

phase had a higher solubility for water than the gas CO2 phase. Note, also that this phase 

transition occurred at 56 bars, and not at a pressure that would have been predicted by a constant 
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mole fraction approximation of the system (i.e., 62 bars), a point that has been previously 

discussed above. The results of Figure 6.5-1 agree quite well with Spycher et al. (2003). 

An additional point should be discussed. The equilibrium solver demonstrated some hysteresis in 

its calculation of the CO2 gas to liquid phase transition in this calculation. This hysteresis was 

created because the equilibrium solver must have an a priori instantiation of an alternative phase 

to test against in order to find a global minimum in the Gibbs free energy. Without this, it may 

get stuck in local minimums. This is a well-known issue with Gibbs free energy minimization 

techniques. In order to get around this problem, we supplied both a CO2 gas and liquid phase 

R-K object to the equilibrium solver. It could then choose between the two (once it knew that 

there was a choice!) in order to find the global minimum for the equilibrium problem. 

6.5.4 Fourth Problem - Prediction of the CO2 Solubility in the Liquid Water Phase 

To complete the calculation, we report the results for the prediction of the CO2 solubility in the 

brine phase as a function of the pressure. The results for 18ºC are presented in Figure 6.5-2. The 

calculations were carried out by equilibrating a R-K multicomponent ThermoPhase object 

representing the gas phase and liquid CO2 phases. The liquid H2O phase was represented by an 

HMWSoln object, with multiple species, using the usual carbonate anions and H+, representing 

the CO2 within the brine phase. These parameters were taken from the Yucca Mountain Project 

database. The carbonate anions were all in low concentrations relative to the total concentration 

of the aqueous CO2 species. 
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Figure 6.5-2. Prediction of the mole fraction of CO2 in the brine phase at 18ºC as a function of the 

pressure. 

The model mostly duplicates the results of Spycher et al. (2003). However, it shows more clearly 

that there is an inflection point in the CO2 mole fraction solubility due to the gas to liquid CO2 

phase change. This was not brought out in the Spycher et al. (2003) paper, because their solution 

method was not coupled enough to capture this effect.  
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Note that we attempted to use the R-K multicomponent model to represent the H2O rich phase. 

However, it turned out that the solubility of CO2 in water was underpredicted by this model by 

two orders of magnitude. This serves as a reminder that thermodynamic data should be verified 

before being used, especially when the data is used in a parameter region for which it was not 

originally fitted. 

6.6 Adaptive Grid Scheme for Table Look-up 

As described in the foregoing sections, evaluation of general EoS for fluid mixtures can be 

computationally costly and challenging to implement. Determination of equilibrium 

compositions, which must be performed at each grid point, for each time step, only adds to the 

computational expense. This section describes three different approaches we used to speed up 

EoS calculations—improved solvers, look-up tables, and adaptive tables. 

  

For the Span and Wagner (1996) and Modified Redlich-Kwong (McPherson et al. 2008) EoS 

with pressure and temperature as primary variables, the most time consuming step is the solve to 

find density. Using the ideal gas density as an initial guess, we found that Newton's method 

converged slowly, often failing to converge at all. The modified Newton iteration used by Han 

and McPherson's code was more robust, but it was only marginally faster than Newton's method. 

A hybrid bisection-secant method performed much better than either the Newton or modified 

Newton approaches. This hybrid method uses the bisection method to get within the radius of 

convergence, then the secant method to converge on the solution. The method achieved a 6x 

speedup over the Newton and modified Newton methods, and converged in all regimes in which 

it was tested. 

 

It is likely one could achieve additional speedup by using more specialized solvers tailored to the 

specific EoS, better initial guesses motivated by the physics, and series acceleration such as 

Anderson acceleration (Walker and Ni 2010). However, instead of pursuing these techniques, we 

investigated replacing the run-time solver with pre-computed lookup tables. 

  

For standard lookup tables on a regular rectangular grid using both nearest neighbor and bilinear 

interpolation, the computation was approximately 1000 times faster than the standard Newton‘s 

method. However, the tables took up approximately 100 MB per thermodynamic variable for 

single phase calculations that only depended on pressure and temperature (not mole fraction). As 

expected, high refinement levels were needed to resolve the thermodynamic surface near the 

critical point, but were superfluous in most of the rest of the domain. 

  

To reduce the memory requirement, we implemented 2D and 3D adaptive lookup tables as 

plugins to be used with the Aria finite element code. In this method, thermodynamic state space 

(e.g., P-T space) is recursively subdivided into smaller and smaller boxes, on which nearest 

neighbor or multi-linear interpolation is done. In regions where a coarse grid is good enough, the 

subdivision stops, whereas in regions where more detail is needed (such as near the critical 

point), the grid is refined. 

  

The adaptive lookup tables achieved a 600x speedup over Newton‘s method, while reducing the 

memory footprint to approximately 200 KB per thermodynamic variable for single phase 
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calculations that only depended on pressure and temperature. Furthermore, adaptive tables 

provide a general method for connecting EoS codes to compositional simulators. Adaptive tables 

can be pre-computed using only the EoS code. The table is then available to any simulator 

capable of reading the adaptive table format. 

 

 
 

Figure 6.6-1. Adaptive table visualization for density as a function of pressure and temperature using the 

Span & Wagner EoS. 

Since adaptive tables with non-uniform refinement contain hanging nodes, adaptive multi-linear 

interpolation of the thermodynamic surface may have (small) discontinuities. Such 

discontinuities have the potential to create instabilities when used with numerical methods that 

expect the thermodynamic surface to be weakly differentiable. Nevertheless, the adaptive tables 

have worked fine in practice. 

  

Two potential future research directions to remedy the hanging node discontinuity are as follows. 

First, one could adjust the values in the table at the hanging nodes so that the surfaces match up, 

though this would incur a slight decrease in accuracy in the more refined region. Second, one 

could implement more advanced interpolation methods such as Coons patches (Forrest 1972) in 

2D, or Gordon surfaces (Gordon 1971) in higher dimensions, though this would incur an increase 

in computational time. 
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7. Random Fields Using Fourier Expansions for 

Modeling Heterogeneity 

Random fields (RFs), often also referred to as stochastic processes (SPs), can be thought of as 

extensions to random variables (RVs). While RVs only apply as a constant over a give time 

interval or space region for a given sample, RFs are an entity that can be thought of as a different 

random variable at each point in space or time. Thus, in general RFs can be thought of as a non-

countable collection of random variables and this property allows one to handle situations that 

require more analytical flexibility than random variables can accommodate. In Figure 7.0-1 we 

provide an illustration of the difference between RV and RF realizations. Note that RVs are 

uniform over the domain   while RFs can have spatial (or time) variation.  

 

 
 
Figure 7.0-1. Illustration of the difference between realizations of RVs and RFs. 

In geomechanics, where various constitutive properties of soil have been observed to vary 

spatially and where data are often quite sparse, researchers and analysts have employed RFs for 

many years. However, specific computational forms of RFs that we commonly encounter involve 

large numbers of random variables, one for each grid, say, in a computational discretization of a 

continuum. 

 

In this chapter, we describe an approach that takes a different view of building such a 

computational form—we approximate our random fields based on canonical global properties of 

the field and construct expansions that depend on a minimal number of random variables. 

 

While reducing the number of random variables in the model is itself sufficient motivation for 

our approach, there is a second, equally important aspect. These canonical expansion methods, 

and expansions that derive from them, have been the subject of much research over recent years; 

much of this research has been focused specifically on the development of computationally 

efficient numerical quadrature algorithms for performing so-called uncertainty propagation as 

compared with more common Monte Carlo sampling techniques. This research has yielded 

reductions in computational burdens on the orders of magnitude scale. 

 

Here we describe the foundational aspects of these expansion methods, and provide an example 

where we compute an expansion for an important output flow response in a heterogeneous 

porous medium. 
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We then use this construction as the basis for developing a generalization to conditional 

simulations, an approach that constrains a random field to match limited, sparse data acquired via 

experiments on the physical domain of the field being modeled computationally. While we are 

early in the development phase of this approach, we provide a simple example of such a 

simulation using realizations from an analytical random field, and we describe our anticipated 

future work in some detail in the text. 

7.1 An Introduction to Random Fields 

The foundation of random fields are random variables, which are widely used in science and 

engineering to represent uncertainty in quantities. In the context of modeling and simulation, 

these quantities can be input parameters or output responses. 

 

Mathematically speaking, RVs are (measurable) functional mappings with a domain consisting 

of a sample space,  , of elementary events that is well-defined in the context of a probability 

space. A probability space consists of a triple,        , which includes, in addition to the 

sample space, a  -algebra   of subsets of   called events, and a probability measure  . Each of 

these entities has well-established and precise mathematical properties (Rosenthal 2000). A real 

random variable   is a real-valued function mapping the sample space to the real line:      . 

 

A random field is a function,  , on a product space     where the index set,  , is the domain 

of a non-probability space. Often, in engineering applications   is the domain of the original 

deterministic problem. Note that for any    , the function          is a random variable. In 

fact, one way to view a RF is to think of it as a collection of RVs indexed over  ; this includes 

the case where   is an uncountable continuum as would be the case, for example, if it were the 

real line,    , or some continuum subset of it. 

 

RFs have similarities with finite vectors of RVs (VRVs), since the value of the RF at two points 

      is correlated. In fact, an RF can be determined completely by the family of all joint 

cumulative distribution functions (CDFs) (Papoulis 1991) over all sets of finite points        
  

 . However, RFs are different from vectors of RVs in that they are typically described by an 

infinite number of RVs, as we discuss below. There are also technical mathematical 

requirements such as measurability and separability that apply to random fields we will consider, 

and we direct the interested reader to Rosenthal (2000) for more detail on these. 

 

Under suitable assumptions, a zero-mean RF   can be decomposed using a so-called Karhunen-

Loève (KL) expansion (Schwab and Tudor 2006)  

 

        ∑   
   √             (7.1) 

 

 where the      and       come from the KL eigenproblem, which is given by 

 

 ∫  
  

                       (7.2) 

 

and the       are zero-mean, uncorrelated RVs. In Eqn. (7.2),        is deterministic problem 

subdomain that the RF occupies,  , which we state here for the only time throughout this 
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document to make the point that the RF need not occupy the entire physical problem domain; 

this is commonly the case. Also in Eqn. (7.2)                        is the correlation 

function of the RF and          is the operator of mathematical expectation  

 

      ∫  
 

            (7.3) 

 

where   and   are constituents from the baseline probability triple in the RF as described herein. 

We note that Eqns. (7.1) and (7.2) provide information about the deterministic properties of the 

RF based on its correlation function. The RV coefficients,   , are computed by projection onto 

the eigenfunctions as follows:  

 

       
 

√  
∫  
 

                (7.4) 

 

which, due to the spectral nature of the KL eigenproblem, can be shown to be zero mean and 

uncorrelated (orthogonal). Thus, the only information we get on      , which derives from the 

canonical nature of the KL relationships, is that  

 

 
       

               
 (7.5) 

 

We emphasize that there is still work to do to acquire the necessary probabilistic information to 

specify fully the RF model; in particular, one should not take this to mean that they have any 

particular independence characteristics whatsoever. Regardless, this relates to the non-trivial 

process of building the actual models for RFs from experimental information, and is the subject 

of a later section in this document, and we will not comment on it further here. 

 

The variance can be computed at each point     as  

 

            ∑   
        

     

 

with global average variance  

 

 
 

   
∫  
 

              
 

   
∑   

      

 

where we use the fact that the eigenfunctions are normalized to have unit       norm. 

 

Finally, we mention that while the above definitions apply to the case of a zero-mean RF, it is 

trivial to generalize them to the non-zero mean case by defining the mean field,      
         , and substituting        for   in the above relationships. In this case, the 

correlation function is replaced by the covariance function,             , where  

 

                                       (7.6) 
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7.2 Computational Considerations of RFs: Discretization 

7.2.1 Stochastic Discretization 

Because the set   in all of the above is usually uncountable, as it is for the case of a time interval 

defined on the real line, then, as we mentioned previously, the RF can be thought of as an 

uncountable collection of RVs. The assumption of topological separability allows us to reduce 

our considerations to a countably infinite number of RVs as in Eqn. (7.1), From this countable 

set our discretization process will involve developing criteria to restrict this set finite number. 

The way we will do this is to truncate the sum in Eqn. (7.1) based on a variance criterion, which 

will leave us with a finite number of   . Whatever criteria this process entails, IT is a modeling 

decision, and we will refer to the finite number of RV coefficients retained as the stochastic 

dimension of the approximation to the RF. 

 

Once we have established the stochastic dimension, for various technical reasons we will need to 

get the approximate RF into a form that is amenable to simulation and evaluation. For the time 

being we will assume that the available experimental data give sufficient probabilistic 

information to perform a change of variables to a new set of RVs for which the probability 

measures are well known and accessible. Polynomial Chaos Expansions (PCEs) are generalized 

Fourier expansions (Kolmogorov and Fomin 1975) in a vector of uncorrelated, and thus 

independent, standard normal RVs (Papoulis 1991),              , where   is the stochastic 

dimension. The set of orthogonal basis functions for these RVs is the well-known multi-

dimensional Hermite polynomials (Abramowitz and Stegun 1970). Thus, again omitting the 

technical details, in our work we assume that a PCE approximation to our RF is given, which has 

the following form  

 

           ∑   
               (7.7) 

 

where           are the aforementioned Hermite polynomials, and the generalized Fourier 

coefficients,      , are given by  

       
              

    
     

  (7.8) 

  

Here the expectation   is taken with respect to the joint probability density function (PDF) 

(Papoulis 1991) of the  -dimensional independent, standard normal RVs. 

 

We note that the PCE pairing of standard normal RVs with Hermite polynomials is not arbitrary: 

The weighting function for the inner product that arises from its underlying Sturm-Liouville 

system equation can be identified simply by inspection as coinciding with the probability density 

function of the standard normal RV. Of course this means that other pairings can be considered 

that originate similarly. For example, an exponentially distributed RV defined on the interval 

      is affiliated with the Laguerre polynomials (Abramowitz and Stegun 1970). Note that for 

the case of finite dimensional collections, none of the underlying theory, nor the operations 

necessary for constructing a generalized Fourier expansion, rely on a particular RV/orthogonal 

polynomial pairing. Thus, theoretically, it is possible that PCEs can be generalized to any 

appropriate pairing. These generalizations, often termed Askey Expansions (Xiu and Karniadakis 

2002,2003; Schwab and Alexandru 2006) in the literature, are the subject of active research. 
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7.2.2 Deterministic Discretization  

At this point, we have discussed an approximation process that has yielded a discretization of the 

stochastic sub-problem. That is, on our now finite stochastic dimension we have finite-order 

expansions of the vector of RVs in the domain of the PCE. We have yet to discuss the Fourier 

coefficients, which are still defined on the continuum domain  . To accomplish our overall 

computation, we must discretize these as well. 

 

The strategy that we assumed in this project, which is based on a finite element approach, is to 

discretize and approximate the functions        and      , the domain  , and the operator 

represented by the equality in Eqn. (7.2) using a finite element strategy on the grid and shape 

function set of the original deterministic problem. The residual equations comprise a discrete 

generalized matrix eigenvalue problem on the same degrees of freedom. At this point, both the 

     , and concomitantly, the      , in Eqns. (7.1) and (7.7) will have been discretized on the 

finite element mesh and interpolated either to the node locations or the elements depending on 

the natural modeling context for the RF. 

 

Computational realizations of the approximate RF for   are now specified on the finite element 

mesh given for   . 

7.3 Putting Things Together: Non-Intrusive UQ  

At this point, we have given a fairly concise overview of what a RF is, and how we get to a 

discretized version of Eqn. (7.7) suitable for using in a computational setting. The question now 

is: How do we assess the effects, say, of a RF representing an input parametric uncertainty on the 

system response? 

 

Consider the input-output Model Problem depicted in Figure 7.3-1, which can be represented as  

 

 
 

Figure 7.3-1. Model Problem. 

 

           (7.9) 

 

In Eqn. (7.9),   is the operator,   the system external input,   the output or system response, and 

  is representing, generally, a vector containing any parameters that may be present in the 

transformation from input to response. Examples could include parameters in material 

constitutive models, or even boundary or initial conditions. Here, we will consider the case of a 

parameters in material models as RFs, and we will set    , a scalar, real-valued RF. 
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When we have an input or parameter in our system that is a RF (or even a RV), we have 

implicitly migrated the deterministic output function to one requiring a probability space as a 

constituent. We will expand this similarly to   to arrive at a PCE for the output  

 

  ̃  ∑  
  
               (7.10) 

 

 where we comment that    here is generally different than   in the sum of Eqn. (7.7). 

 

To compute the approximate output,  ̃, we must compute the (discretized) Fourier coefficients, 

     , in Eqn. (7.10). We do this by substituting the expansions for   and   into Eqn. (7.9), 

subtracting the right hand side from both sides of this equation, then, as with any Galerkin 

scheme, projecting the result onto the Hermite polynomials. When we do this, we arrive at the 

following expression for the     

  

    
       ̃     

    
  

 (7.11) 

 

  

where we have exploited the orthogonality of the    relative to the multidimensional standard 

normal measure. This explains why the PCE and more generally the Askey pairings use special 

functions from Sturm-Liouville eigensystems, and also demonstrates that the basis function/RV 

pairings are made by comparisons with the Sturm-Liouville weighting function and the PDFs of 

RVs in them. 

 

In our simplified RF analysis framework, depicted graphically in Figure 7.3-2, we used the SNL 

software package Dakota (Eldred et al. 2007a, 2007b, 2007c) as a driver and other user tools 

developed at SNL for constructing the discretized  ̃ (ComputeKL), for taking the input RV 

realizations passed from Dakota via plain-text files and using them to generate realizations for  ̃ 

(RealizeRF), and for passing this information to the given Sierra analysis codes. The 

mechanism we used was via entity identifiers, such as material blocks or element side sets, with 

the realization values embedded as variables into ExodusII databases. We identified that data 

entity and variable name to the analysis code using Sierra user input in appropriate sections. 

Previously, we also coordinated with Sierra code developers to define how this data is to be 

accessed by the analysis code, and to ensure that the heterogeneous data is processed by the code 

correctly. Finally, we provided a means to post-process the analysis code output to the actual 

realization of  ̃, and put them all together using a user-defined function shell script interface per 

Dakota requirements. 
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Figure 7.3-2. Graphical depiction of Sierra/Dakota RF framework. 

In the next section, we illustrate this newly developed capability via our example application. 

7.4 Example Application: Porous Flow 

An important application of random fields is modeling uncertain material properties of 

subsurface zones, for use in reservoir modeling of transport of water, hydrocarbons, chemicals, 

and more recently, in carbon sequestration. We illustrate in this section the use of a scalar 

random field that models the intrinsic permeability in a subsurface zone. 

 

Our test problem is a three-dimensional reservoir simulation for carbon sequestration. The 

domain   is a rectangular volume of dimension            meters with the vertical 

direction along the  -coordinate. An abandoned well is located near one corner of the domain, 

extending upwards for an additional 130 meters. The simulation code models the two-phase 

transport of brine and CO2 within the reservoir as a flux of CO2 enters the reservoir from another 

well at one corner of the domain. The main response quantity of interest is the time history of the 

CO2 leakage out of the top of the well. 

 

The stochastic nature of the simulation arises from the unknown intrinsic permeability of the 

reservoir, which we model as a spatial random field  . In order to generate realizations of   and 
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thus of the CO2 leakage, we build a truncated KL series representation of  . Using a mesh of 

approximately 90,000 hex elements, we solve the approximate KL eigenvalue problem 

  

 ∫  
 

                              (7.12) 

 

using a Galerkin finite element based on piecewise constant basis functions. The covariance 

kernel was anistropic, using length scales             and parametric form  

 

        ∏   
      ( 

       

  
)  (7.13) 

 

The matrix associated with the discrete problem is an     dense matrix with         , 

which cannot be stored in memory. Our solver for the KL eigenproblem is based on a matrix free 

operator (implemented in the Sierra/Encore code) and a Krylov-based iterative Davidson solver 

(implemented in the Trilinos/Anasazi code). The KL solver was run on 24 processors requiring 

about 15 hours of wall clock time in order to compute the first ten pairs of eigenvalues and 

eigenfunctions. We plot four of the ten eigenfunctions in Figure 7-4.1. The ten eigenvalues 

ranged from 41870 down to 28325.  

    

  

  
Figure 7.4-1. KL eigenfunctions 3, 4, 8 and 10 for the log intrinsic permeability        

The representation of   then took the form  

 

                ∑   
   √         (7.14) 

 

where   =1e-14 is the mean value of   and             
  are the (approximate) solutions to Eqn. 

(7.12). In this case the zero-mean random field   is actually the logarithm of the random field  . 

 

The coefficients        
  are uncorrelated random variables with no spatial dependence, the 

―coordinates‖ of the random field in stochastic space. They also have mean zero and unit 

variance. For this calculation, we made the additional assumption that they were distributed as 

Gaussian RVs. Due to the constraints imposed by the KL eigenproblem, this implies that they 

were independent identically distributed (iid) standard normal random variables. 
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For the nondeterministic simulation, we chose     and computed a polynomial response 

function over this four-dimensional space for the maximum CO2 leakage flux over a specified 

time (150 days). This was done using the DAKOTA software tool using a non-intrusive sparse 

grid integration of level three. The total number of model runs required was 201, each requiring 

4-10 hours of wall clock time using 32 processors. A sample plot of a realization of   and the 

resulting CO2 saturation field is shown in Figure 7-4.2. The effect of the non-uniform 

permeability can be seen in the increased mobility of CO2 along the right hand boundary. The 

resulting surrogate model was sampled until a distribution function was obtained for the 

maximum CO2 leakage flux (see Figure 7.4-3). We can also plot the time history of the CO2 

leakage flux for a number of realizations to see the spread in the data. At any point in time, a 

distribution could be calculated by the same integration method used for the maximum CO2 

leakage flux. In Figure 7.4-4 a representative sample of time histories are shown for the CO2 

leakage flux (as a percentage of the input CO2 flux from the well). We see agreement for about 

the first 50 days, but then significant divergence occurs by about 100 days.  

 

  
 
Figure 7.4-2. Sample realization of   using sparse grid integration from DAKOTA. (left) contours of  . 

(right) contours of CO2 saturation at 150 days. 

 
 
Figure 7.4-3. Cumulative distribution function for maximum CO2 leakage flux. 
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Figure 7.4-4. Sample time histories of CO2 leakage flux for some realizations of  . 

7.5 Example Application: Soil Properties  

In this section, we extend the methods of the previous section to develop a generalization to 

conditional simulations, which, for example, constrain a random field to match limited, sparse 

data acquired via experimental measurement.  

 

Let       ,    , represent a soil property of interest (e.g., permeability, porosity, density, 

etc.) in region     . In this section, we propose a non-Gaussian random field model for  , 

and provide algorithms to generate statistical samples of this model. 

 

Typical information on   includes one or more of the following: (i) the mean function; (ii) the 

covariance function; (iii) the marginal distribution, that is,           , for all    ; and (iv) 

a collection of   measurements, denoted by        , taken at sites          . Note that one 

or more of the measurements      may be subject to measurement uncertainty. In section 7.5.1, 

we propose a model that is consistent with each piece of information listed above; algorithms to 

generate independent realizations of the model are discussed in section 7.5.2. Several examples 

are provided in section 7.5.3, including models for soil properties over one- and two-dimensional 

spatial domains. 

7.5.1 Model Definition 

Let   be a random field expressed as  

 

                 ̅         (7.15) 

 

where              and                 are deterministic functions that denote the mean 

and variance of  , respectively, and  ̅    is a random field with zero mean and unit variance. 

Herein we model  ̅ as  

 

  ̅                           (7.16) 
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where   is a Gaussian random field with zero mean, unit variance, and covariance function 

                   ,   is the CDF of a standard Gaussian random variable, that is,      

        ∫  
 

  
         , and   is an arbitrary CDF with zero mean and unit variance. It is 

common to refer to   as the Gaussian image of  ̅. 

 

We note that  ̅ and   are Gaussian fields if, and only if,    ; otherwise  ̅ and   are non-

Gaussian. Further,  ̅ is a homogeneous random field if, and only if,   is homogeneous and the 

mapping   is independent of    ; otherwise  ̅ is inhomogeneous.   defined by Eqn. (7.15) is 

homogeneous if, and only if,  ̅ is homogeneous and        and        are independent of  . 

 

The marginal distribution and covariance functions of random field   can be expressed in terms 

of   and   defined above. The marginal CDF of   is  

 

              ( ̅    
      

    
) 

    (          (
      

    
)) 

   (
      

    
) (7.17) 

 

 

where   is defined by Eqn. (7.16). The covariance function of   is  

 

 

                                        (7.18) 

 

where  

 

           ̅     ̅     ∫  
                                      (7.19) 

 

 

is the covariance function of  ̅,        is defined by Eqn. (7.16),           denotes the joint 

PDF of a zero mean Gaussian random vector with two coordinates and covariance matrix 

[
  
  

], and      √      . In general, there is no closed-form solution to Eqn. (7.19) so that 

solutions for   must be obtained numerically. 

 

We propose the model for   defined by Eqns. (7.15) and (7.16) for several reasons. First, by 

careful selection of quantities  ,  ,  , and  , the random field   can be calibrated to match 

specified second-moment properties and marginal distributions. Second, the calibration of   to 

the measured data is also straightforward by requiring   to be a conditional Gaussian random 

field. Third, the non-Gaussian random field   is simply a mapping of a suitable Gaussian 

random field  . Hence, generating samples of   is straightforward and involves two steps: (i) 

generate samples of Gaussian field   using, for example, its Karhunen-Loéve expansion; and (ii) 
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map each sample by Eqns. (7.15) and (7.16) to produce samples of  . Alternatively, step (ii) can 

be achieved via the polynomial chaos approximation. 

7.5.2 Sample Generation 

As mentioned, suppose that the following information on  , the random field representing a 

particular soil property of interest over  , is known and available:  

 

             , the mean function; 

 

                                  , the covariance function, for any two points 

  and   in  ; 

 

 The marginal distribution of  ̅,            ̅      , for all    ; and 

 

 A collection of   permeability measurements, denoted by          , taken at sites 

         . The measurements may or may not be taken error free. 

 

Our approach can be generalized to the case where some of the items above are unknown. For 

example, we can use the measurement data to estimate the mean and/or covariance functions of  . 

 

The following four steps can be used to calibrate  , the random field model for permeability, and 

to generate independent samples of   over  :  

 

1. Map the measured data on   to   via  

        (
        

     
) (7.20) 

 

2. Solve for   as a function of          using Eqn. (7.19). Invert this relationship to solve 

for        as a function of               √             . 

 

3. Generate samples of Gaussian field  , a Gaussian random field with zero mean and 

covariance function   using, for example, its Karhunen-Loéve expansion. Enforce   to 

interpolate through              by making it a conditional Gaussian random field 

(see Appendix C). 

 

4. Map each sample of   to a sample of   using Eqns. (7.15) and (7.16). Alternatively, the 

polynomial chaos approximation can be used for this step. 

7.5.3 Examples 

We next present two examples to illustrate the calibration and sample generation of the random 

field  . The first is limited to one spatial dimension and is completely academic so as to 

illustrate various features of the approach. We then consider a more realistic example over a 2D 

spatial domain. 
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1D random field 

Here we construct          , a non-Gaussian random field over a 1D spatial domain, 

         . The following information on   is assumed known:  

 

      
 

 
           

 

        
 

  
              

 

                  (7.21) 

 

By Eqn. (7.21),   is a lognormal random field with mean     , covariance function       , 

and constant variance        . Suppose further that     measurements        , 

       , and        , are taken at sites       ,       , and       , without error. 

 

Shown in Figure 7.5-1(a) are 100 samples of      calibrated to the available information using 

the approach presented in section 1.5.2; the measurements        ,        , are denoted by 

blue dots in the figure. We note that, because all measurements are assumed error free, each 

sample of   passes through the points        ,        . Further, the variance of the field is 

greatest at points   far from any measurement site. 

 

  
Figure 7.5-1. 100 samples of random field      assuming: (a) perfect measurements, and (b) 

measurement errors.  

Suppose now that each site measurement is subject to experimental error, and the statistics of 

these errors are known. For illustrative purposes we assume the   ,        , to be iid lognormal 

random variables each with variance     ; the mean values of   ,   , and    in this case 

coincide with the measurements without error listed above. Figure 7.5-1(b) illustrates 100 

samples of      for this case. In general, the inclusion of measurement error leads to increased 

variance in the process for all        . 
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2D random field 

In this section, we illustrate the use of the proposed model over a 2D spatial domain by 

considering a particular data set of interest to the geostatistical community. Data on coal ash for 

the Robena Mine Property in Greene County, PA, is listed in Table 7.5-1; this data is taken 

directly from (Cressie 1993). The values for    and    define the site locations and correspond to 

east-west and north-south coordinates, respectively, and the values for the measurements   are in 

units of per cent coal ash. For this example, we assume all measurements are taken without error; 

the extension of the method to include measurement error is straightforward as demonstrated in 

section 7.5.3. 

 
Table 7.5-1. Available coal ash measurements (taken from [Cressie 1993, 34]).  

        (% coal ash)         (% coal ash) 

4 7 11.11 7 10 9.16 

4 8 11.04 7 11 10.7 

4 9 11.75 7 12 8.45 

4 10 10.17 8 7 8.69 

4 11 9.37 8 8 11.58 

4 12 10.11 8 9 10.19 

5 7 10.96 8 10 10.04 

5 8 10.28 8 11 9.27 

5 9 9.78 8 12 8.9 

5 10 10.55 9 7 11.17 

5 11 11.21 9 8 9.46 

5 12 11.46 9 9 9.15 

6 7 10.83 9 10 11.19 

6 8 13.07 9 11 9.28 

6 9 11 9 12 8.07 

6 10 11.61 10 7 9.39 

6 11 9.93 10 8 8.54 

6 12 10.41 10 9 8.15 

7 7 10.09 10 10 8.1 

7 8 10.47 10 11 10.13 

7 9 9.79 10 12 7.96 

 

Cressie and other authors have studied this data set extensively, and applied various kriging 

interpolation methods. Herein, we apply the proposed random field          to model per cent 

coal ash over domain                . The mean of the field is assumed to take the form  

 

 

                                        (7.22) 

 

 

where   ,          , are coefficients determined using linear regression analysis on the 

available date from Table 7.5-1. Further, the covariance function of   is given by  
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        √                     (7.23) 

 

 

where  , defined by Eqn. (7.19), has been estimated by Cressie (see [Cressie 1993, 157]). 

 

One sample of         , the random field modeling per cent coal ash over   is illustrated by 

Figure 7.5-2 assuming the marginal distribution of   is Gaussian, i.e., assuming   defined by 

Eqn. (7.16) is given by  , the CDF of the standard Gaussian random variable. The 

measurements listed in Table 7.5-1 are also shown and denoted by black dots in the figure. 

 

   
Figure 7.5-2. One sample of Gaussian random field modeling coal-ash. 

Of coarse, a Gaussian distribution may be inappropriate when modeling percent coal ash since it 

permits small but negative values for  . Therefore, consider Figure 7.5-3, which is identical to 

Figure 7.5-2 except that we have assumed the marginal distribution of the field   to be uniform 

rather than Gaussian. Note that in both cases, because it is assumed all measurements are taken 

without error, the samples of   pass through each measurement point. 
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Figure 7.5-3. One sample of uniform random field modeling coal-ash. 

7.6 Conditional Simulation by Kriging 

Here we discuss another method to model soil properties based on a kriging conditional 

simulation combined with the PCE/KL approach. We start with the brief introduction to kriging 

and then augment it with a probabilistic description based on PCE. 

7.6.1 Brief Introduction to Kriging 

Consider an RF,        , where   could be, for example, permeability of the soil, and   an 

element of the spatial domain,  . We assume that         has a covariance function   as 

defined in Eqn. (7.6), but with the additional property that it depends functionally only on the 

difference in the spatial locations. I.e.             with        . We all assume mean, 

    , which is possibly spatial dependent. To account for non-zero mean of the underlying 

process regression terms are included in the functional form of predictor. We will closely follow 

Sasena (2002) and Lophaven et al. (2002) to describe kriging predictor with regression, also 

known as universal kriging in the geological applications. Our unknown random field is 

represented by following model: 

 

                   (7.24) 

 

where   is a vector of the regression functions: 

 

                          (7.25) 

 

  vector of unknown constants  

              
  

 

and   is zero mean random process. 
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We also introduce an     matrix    

 

  [

                   

  
                   

] 

 

where the    are described in Eqn. (7.25). A vector of sampled values that represents a realization 

of the stochastic process at    is given by  

 

     [          
                  ]

 
 

 

and, for the sampled data, Eqn. (7.24) can be rewritten as:  

 

           (7.26) 

 

where  

 

                         

 

We would like to construct predictor 

 

 ̂    
   

 

which is linear with respect to sampled data, unbiased and has minimum variance property. This 

type of predictor is usually referred to as Best Linear Unbiased Predictor (BLUP). The condition 

of the predictor being unbiased is expressed as follows, after multiplying Eqn. (7.26) by   
  and 

taking the expectation of the result,  

 

   ̂      
        

         
      

 

It can be shown after some linear algebra manipulations that solution for predictor takes form 

Eqn. (7.19): 

 

  ̂          
  ̂    

         ̂  (7.27) 

 

where 

 

  ̂                 (7.28) 

 

7.7 Conditional Simulation 

Given data sampled from the random field at points   , realizations of that random field 

conditioned on data can be constructed. One of the methods to achieve that is so-called 

conditioning by kriging (Journel 1981). The method requires constructing a kriging predictor for 
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sampled data,              , as well as an additional zero-mean independent random field 

      with the same covariance      and then a second kriging predictor,       , built using 

realizations of the       . The new conditioned random field takes form  

 

                                              (7.29) 

 

It is possible to show that a RF defined by Eqn. (7.29) has covariance      and, since kriging is 

an interpolator, realizations of this RF match the data at the sample points. We show a typical 

example of this method of conditional simulation in Figure 7.7-1, where we show a full-field RF 

conditional simulation, and in Figure 7.7-2 we zoom into the plot to observe the typical behavior 

at the data sample points where the reader can see that the simulated RF is constrained to pass 

through the data at those points. 

 
Figure 7.7-1. Typical example of kriging conditional simulation  

 
Figure 7.7-2. Zoom of kriging conditional simulation at a sampled data points 
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The ability to perform this conditional simulation depends on the generation of unconditioned 

random field       with prescribed covariance. One possible method is based on the KL 

expansion, similar to Eqn. (7.1): 

 

       ∑   
   √          (7.30) 

 

where, as before,    and    are eigenvalues and eigenvectors of the KL eigenproblem, Eqn. (7.2). 

 

While this equation can be solved using a standard spatial discretization approach, as was 

described in the Section 2.2, a new, potentially very efficient method is being explored based on 

approximation of the kernel,       , in the KL eigenproblem, and reducing it to degenerate 

form Eqn. (7.20). A detailed description of this method will be the subject of a separate report. 

 

Non-gaussian conditional simulation can be achieved by proper selection of the      . Non-

gaussian properties can be modeled by selection of non-normal    in the Eqn. (7.30), method 

described in section 7.5, or by the procedure presented in Sakamoto and Ghanem (2002). A 

comparison of these procedures and the selection of the most efficient is the subject of future 

research. 

7.7.1 The Nexus to RF Expansion 

Our conditional simulation, while generally based on an KL expansion, needs to be put into a 

form that: (1) adheres to the original assumptions on the covariance; (2) is amenable to fitting to 

data; and (3) is amenable to its use in generating samples of the target RF. To satisfy all three, 

we are proposing to convert the KL random variables,    from Eqn. (7.1), which after truncation 

can be assembled into a zero-mean unit-correlation vector of RVs, into an expression in terms of 

a vector standard normal RVs. Ultimately, we will express the KL RVs as a dependent PCE. 

 

Conceptually, in the scenario where full probabilistic information is available, this step is always 

possible using the so-called Rosenblatt transformation (Rosenblatt 1952) along with an 

intermediate vector of uniform RVs with components   . Assuming a stochastic dimension of  , 

the  -dimensional transformation for the case where the    are all absolutely continuous 

(Rosenthal 2000) is based on the following identity:  

 

 

                 
                          

 
                                             

 (7.31) 

 

 

where the                 are Conditional Cumulative Distribution Functions (CCDFs) (Rosenthal 

2000). Interested readers should refer to Rosenblatt (1952) to convince themselves that the 

transformation,        , of the real vector,  , into the real vector,  , will take the vector of 

RVs,   , into a vector of uniform RVs,  , the latter of which can be shown to have components, 

  , that are independent, uniform RVs on the interval       of  . That is,  
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         (7.32) 

 

where the vectors are defined in the natural way relative to the component RVs. We note that this 

is the vector RV extension to the transformation described in Eqn. (7.16) . We also note that for 

the case where the    have discontinuous CCDFs, a similar transformation process is still 

possible although beyond the scope of our brief discussion here. 

 

To complete our full transformation, we perform the same process, only now from a vector of 

independent standard normal RVs,  , to uniform using   . Now using the common vector of 

uniform RVs as the nexus one can readily see that the transformation from KL RVs to standard 

normal RVs is given by 

 

     
                (7.33) 

 

 

 The equality is, by definition, in distribution. 

 

Once we have the transformation in Eqn. (7.33), it is a simple matter to build a polynomial chaos 

expansion for the   by making the appropriate symbol transcriptions in Eqn. (7.7) and replacing 

the RF,  , in Eqn. (7.8) with the vector     , and truncating based on an mean-square error 

criterion. 

 

In constructing the above transformation, we re-emphasize that we assumed that we had full 

probability information available to us. Unfortunately, this is rarely if ever the case. We now turn 

to the problem of building a finite-order PCE expansion for   in the face of limited data, which 

has only recently gained attention in the research community, and thus is left as a subject for 

future work. 

 

We start with an explicit statement of our expansion  

 

 

  ̂    ∑   
            (7.34) 

 

 

where each of the PCE coefficients,   , is an  -vector, as is   and  , and the       are the 

Hermite polynomials now accommodating a vector argument. We will need to estimate the 

coefficients with the proviso that  ̂ satisfies the KL RV criteria of zero mean and delta 

correlation as given in Eqn. (7.5). Note that in the conceptual case described above, the 

Rosenblatt transformation, these constraints are satisfied by definition through the canonical 

nature of the KL expansion. 

 

We derive our  ̂ samples,  ̂            from   samples of the original data using the 

identity given by Eqn. (7.4) using our now discretized eigenfunctions from the KL eigenproblem, 

Eqn. (7.2), for our sample covariance. 
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In Ghanem et al. (2008), the authors assumed that the components of  ̂ were statistically 

independent and estimated the PCE coefficients of the uncoupled expansions one at a time using 

a maximum likelihood estimation (MLE) approach constrained by the KL RV criteria. Thus, 

they maximized the likelihood function  

 

 

                ∏   
     ̂   

  ̂ 
   

              (7.35) 

 

 

where the     are the   PCE coefficients in the expansion for  ̂ ,            is the Conditional 

PDF of the data given a set of coefficients. Finally, the maximization constraint is  

 

 

 ∑   
      

       (7.36) 

 

 

Desceliers et al. (2007) followed a similar path by again assuming independence of the KL RVs 

   in an MLE approach, although the authors assembled a full likelihood for all the expansion 

coefficients simultaneously before executing the constrained optimization process. 

 

Arnst et al. (2010) take this a step further by adding a Bayes estimation process to estimate 

posterior probabilities for the   . In their approach, they use a Markov-Chain Monte Carlo 

(MCMC) sampling scheme to estimate the likelihoods in conjunction with Maximum Entropy-

based priors. This approach allows one to consider the PCE coefficients as themselves random 

variables whose uncertainty domain models the epistemic uncertainty due to data limitations. 

 

While none of the above related techniques were implemented during the course of our work, we 

emphasize that the attractive feature is that the correlation function that we assume in the 

construction of our conditional simulation is not modified due to the constraint represented by 

Eqn. (7.5). 

7.8 Concluding Remarks on RF Expansions  

In this section, we have motivated the use of Karhunen-Loève based random field expansions 

both as a means to minimize the stochastic dimension in the representations of random fields, as 

well as their computational efficiency vs. sampling-based methods for uncertainty propagation. 

We then described two methods for generating conditional simulations of these random fields 

based on these expansions. 
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8. Applications 

8.1 Introduction 

This chapter includes several applications and studies performed during this project. They are 

included to illustrate the scope of analyses that have been performed and to demonstrate 

numerical analysis capabilities that are available in the Sierra software. The applications also 

serve to demonstrate completion of milestone goals set at the beginning of the project. 

8.2 Leaky Well—Benchmark and Effect of Heterogeneity  

Injection of CO2 into formations containing brine has been proposed as a long-term sequestration 

solution. A significant obstacle to sequestration performance is the presence of existing wells 

providing a transport pathway out of the sequestration formation. The leaky well benchmark 

study by Class et al. (2009) was designed to test a wide range of mathematical and numerical 

models applied to specific aspects of CO2 sequestration. The models tested include: COORES 

(developed at IFP Energies), DuMu
x
 (developed at University of Stuttgart), ECLIPSE 

(developed at Schlumberger), ELSA (developed at Princeton University), FEHM (developed at 

Los Alamos National Laboratory), GEM (developed by the Computer Modeling Group), GPRS 

(developed at Stanford University), IPARS-CO2 (developed at UT/Austin), MoReS (developed 

by Shell), MUFTE (developed at University of Stuttgart), ROCKFLOW (developed jointly by 

the German Federal Institute for Geosciences and Natural Resources and the University of 

Hannover), RTADD2 (developed by The French Geological Survey), TOUGH2 (developed at 

Lawrence Berkeley National Laboratory), and VESA (developed at Princeton University). Three 

benchmark problems were tested in the study. The first problem explores the leakage rate of CO2 

into overlying formations through a leaky well. This problem was used as a starting point in the 

current research as a way to verify that the multiphase fluid dynamics models used here replicate 

the results from the benchmark study and to explore the effect of heterogeneity on the leak rate. 

 

A cross section of the leaky well scenario taken from Class et al. (2009) is shown in Figure 8.2-

1. The model domain is 1,000 by 1,000 m with an injection well at the center and a single leaky 

well 100 m away. The geologic formation consists of two 30 m aquifers separated by a 100 m 

aquitard. CO2 is injected at a constant rate into the lower aquifer for the duration of the 

simulation. The leak rate is measured as a fraction of the total CO2 injected, monitored at the 

midpoint in the aquitard along the leaky well. Table 8.2-1 presents the pertinent fluid and 

material properties, along with details of the domain and applied initial/boundary conditions, 

used in the benchmark study.  
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Figure 8.2-1. Cross-section of the 3D leaky well benchmark study (taken from Class et al.). 

 
Table 8.2-1. Geometry, fluid and material properties, and initial/boundary conditions for the leaky well 

benchmark study. 

Parameter Value Units 

Domain geometry Aquifer depth 2,840-3,000  m 

Aquifer thickness 30  m 

Aquitard thickness 100  m 

Dimensions of the model domain 1,000 x 1,000 x 160  m 

Distance between wells 100  m 

Leaky and injection well radius 0.15  m 

Fluid properties CO2 density 479  kg/m
3
 

Brine density 1,045  kg/m
3
 

CO2 viscosity 3.950E-05  Pa-s 

Brine viscosity 2.535E-04  Pa-s 

Porous media 
properties 

Aquifer permeability 2E-14  m
2 

Leaky well permeability 1E-12  m
2
 

Porosity 0.15 - 

Residual brine saturation 0 - 

Residual CO2 saturation 0 - 

Relative permeability Linear (kra = Sa)  

Capillary pressure -  

Initial conditions, 
boundary 
conditions and 
simulation time 

Initial conditions Hydrostatic pressure distribution Pa 

Initial saturation Brine - 

Initial pressure 3.086E07  Pa 

Lateral boundary conditions Dirichlet equal to initial conditions Pa 

Top and bottom boundary conditions No Flow  

Injection rate 8.87  kg/s 

Simulation time 1000  days 
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8.2.1 The Leaky Well Benchmark Problem 

To reduce computations and facilitate visualization, one half of the full three-dimensional model 

described above was taken by cutting with a vertical plane of symmetry along the x-axis through 

the midpoints of the injection and leaky wells. A structured mesh composed of just over 431,000 

finite elements (hexahedral) was used. The height of each of the aquifers was discretized into 10 

equal intervals of 3 m. Smaller elements were used in the vicinity of the wells and between the 

wells increasing in size toward the outer boundaries.  

 

The boundary and initial conditions are as given in Table 8.2-1 except that the boundary of 

symmetry created by the cutting plane is treated as no flow. Additionally, the CO2 saturation was 

held at zero over the outside lateral boundaries of the lower aquifer. This simulation was carried 

out to 1200 days using 2809 adaptive time steps. Calculations were run on 480 processors for 3.5 

days. 

 

Figure 8.2-2 shows the CO2 saturation at 200 days. The CO2 is injected along the entire depth of 

the injection well but rises to the top of the aquifer as it spreads outward. Recall that the top of 

the lower aquifer is adjacent to the impermeable aquitard and is represented with a no-flow 

condition. The CO2 has risen through the leaky well and into the upper aquifer. There the 

spreading is again predominately at the top surface.  

 

 
 
Figure 8.2-2. CO2 saturation at 200 days. 

Class uses a semi-analytical solution to define values of specific measures of simulation results. 

One measure is the approximate time it takes for the injected CO2 to reach the leaky well (arrival 

time). The CO2 is declared to have arrived at the leaky well when the leakage value exceeds 

5x10
-3

%. The leakage value is defined as the calculated leakage rate taken at the midpoint of the 

aquitard in the leaky well divided by the injection rate and expressed as a percentage. The other 

measures are the maximum leakage value, and the leakage value at 1000 days. Table 8.2-2 

compares the values of the three measures for the semi-analytical solution, the simulation 
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presented by Class et al., and the Sierra/Aria results. The Sierra/Aria values fall between the 

values for those of the semi-analytical solution and Class et al., except for the maximum leakage 

value which is 3.6% lower than that reported by Class et al. 

 
Table 8.2-2. Measures of comparison between solutions. 

Measure Semi-analytical Class et al.  results Sierra/Aria results Units 

Approximate arrival time of CO2 14 8 11 days 

Maximum leakage value 0.231 0.222 0.214 % 

Leakage value at t=1,000 days 0.109 0.126 0.116 % 

 

In addition to Sierra/Aria, STOMP, developed at Pacific Northwest National Laboratory (White 

and Oostrom 2006), was also used to model this problem and add insight into differences in 

results. STOMP uses finite difference methods to solve the PDEs that describe multiphase fluid 

dynamics. Sierra/Aria and STOMP differ in their inclusion of capillary pressure. STOMP 

simulations must include a capillary pressure vs. saturation curve. While this function can 

specify low values of capillary pressure, the amount cannot be set to zero as the Class et al. 

benchmark problem defines. The leaky well scenario setup in STOMP uses a quarter section of 

the model domain and assumes symmetry (no flow) along the internal axis. The problem 

specifications used by STOMP are given in Table 8.2-1. A minimal amount of capillary pressure 

is defined using a Van Genutchen function.  

 

The range in leakage rates (max and min), as calculated by the 14 numerical models included in 

the benchmark study, are shown as dotted gray lines in Figure 8.2-3. The Sierra/Aria result is 

within the range of results reported in Class et al. The discrepancy in the peak leak rate, as 

calculated by STOMP, is believed to be a result of capillary pressure. STOMP requires some 

degree of capillary pressure in the model setup, and while this was set very low, the capillary 

pressure at the leaky well must be overcome to push CO2 into the upper aquifer.  

 
Figure 8.2-3. Time history of leakage value calculated by study participants. 
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8.2.2 Effect of Heterogeneity on Leakage Rates 

The problem described in section 8.2.1 was used to explore the effect of material heterogeneity 

on the calculated leakage value. To facilitate computing multiple solutions using Aria, the 

computational demand of a simulation was reduced by using a quarter section of the domain as 

described in the model used by STOMP, and the upper aquifer is removed. The leaky well 

extends to the mid-point between the upper and low aquifers, where the pressure is held at the 

initial hydrostatic value. This will affect the leakage rates computed in this study compared to the 

benchmark. Also, to account for the heterogeneity in all directions, the leaky well was moved 45 

degrees into the domain along a radial distance of 100 m from the injection well reducing the 

impact of the no-flow symmetry boundary. Ten different spatially correlated heterogeneous 

permeability and porosity fields were generated over the domain of interest using Sequential 

Gaussian Simulation (SGSIM). These heterogeneous fields are read from a file and stored as 

―field‖ vectors in Aria. Porosity values were selected from a Normal distribution over the range 

0.1 to 0.2. The permeability values were selected from a lognormal distribution with direction-

dependent correlation lengths as given in Table 8.2-3.  

 
Table 8.2-3. Correlation lengths of heterogeneous permeability fields. 

Direction Correlation Length Units 

x-axis 50 m

 

y-axis 25 m 

z-axis 5 m 

 

Figure 8.2-4 shows the distribution of the permeability values generated over a regular grid and 

then interpolated to the nearest nodal location of the finite element mesh used in the simulation. 

The permeability field used in one of the simulations is shown in Figure 8.2-5.  

 
Figure 8.2-4. Assumed distribution of permeability. 
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Figure 8.2-5. Two realizations of a spatially-correlated heterogeneous permeability field (top) and the 

corresponding CO2 saturation at 80 days (bottom). 
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The simulation described in section 8.2.1, with geometry modifications described here, was run 

using each of the ten permeability fields. In this quarter section model, the injection well is at the 

left and front corner; the leaky well is visible along a diagonal in the interior of the domain. Two 

of the permeability fields generated by SGSIM are shown in Figure 8.2-5 with the corresponding 

calculated CO2 saturation at 80 days. The location of low permeability zones can clearly be seen 

in the saturation distribution. Also, in the second realization example, the appearance of CO2 at a 

high permeability zone on the surface suggests a faster subsurface path. 

 

In two dimensions, the flow is more likely to be forced through a zone of low permeability and 

will eventually meet the leaky well. However in three dimensions, the flow may circumvent low 

permeability zones resulting in a faster travel time or a high permeability zone may divert the 

flow from ever reaching the leaky well. Therefore, one would expect the computed leakage value 

from a three-dimensional heterogeneous permeability field to exhibit greater variation. 

 

The time history of the computed leakage value for each of the ten realizations is shown in 

Figure 8.2-6 and can be compared to the leakage value produced using the original constant 

permeability (Figure 8.2-3). As expected, the amount of CO2 reaching the leaky well and its 

time-dependence shows significant variation. The leakage value average and standard deviation 

of the ten realizations are presented in Figure 8.2-7. The average in this problem is not directly 

comparable to the benchmark owing to geometry changes and the approximated outflow 

boundary conditions applied to the truncated well. To get a sense of the adequacy of ten 

realizations, a running average leakage value time history was computed as each realization was 

included. Figure 8.2-8 shows the average when including 1, 3, 6, 9, and all 10 realizations. There 

is only a small change in the average after the eighth realization is included. 

 

 
Figure 8.2-6. Comparison of leakage time histories for ten realizations. 
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Figure 8.2-7. Average (curve) and standard deviation (bars) of leakage time histories for ten realizations. 

 
Figure 8.2-8. Running average of leakage time histories. 
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8.2.3 Geologic Controls in CO2 Loss from a Leaky Well  

To better understand how specific geologic controls impact the leakage rate, we employ three 

dimensional models of the CO2 injection process into a sandstone aquifer with shale inclusions. 

The leaky well scenario used in this analysis replicates the benchmark study described in Class et 

al. (2009) with the addition of aquifer heterogeneity and capillary pressure. Simulations are 

carried out using STOMP (White and Oostrom 2006). The original intent was to perform a 

similar calculation with Aria, but this part of the study was never completed due to time 

constraints. Here, we examine the impact of heterogeneity on the amount of CO2 released 

through a leaky well. A ―design of experiments‖ approach is used to identify the most important 

parameters and combinations of parameters to control CO2 migration while making efficient use 

of a limited number of computations. Additionally, two-dimensional and three-dimensional 

simulations are compared to quantify the influence that surrounding geologic media has on the 

CO2 leakage rate.  

 

Design of experiments is commonly used to analyze physical experiments to determine the 

relative importance of individual factors and combinations of factors on experimental results 

(Montgomery 2000). The design of experiments approach also determines the best set of 

experiments to run to avoid bias. With numerical experiments, randomization is not an issue, 

however, this approach is useful when considering numerical simulations that have a large 

number of factors or take a long time to run. Individual simulations in this study take 

approximately 3.5 days to run on a workstation with total available RAM memory of 11.3 GB. 

Given the long runtime, identifying key simulations to explore the parameter space is an 

important first step to the research.  

 

The design of experiments analysis considers three factors related to heterogeneity that might 

influence the leak rate of CO2 from a well. These factors are stratigraphic dip angle, shale 

inclusion size and shale fraction. For each factor, three levels are considered. These levels are 

segmented into low (-1), medium (0) and high (1) values for each factor. The three levels for 

stratigraphic dip are -15 degrees (dipping away from the leaky well), no dip, and 15 degrees 

(dipping towards the leaky well). The shale inclusion size is set to 25 m, 50 m, and 75 m. The 

size defines the diameter of a circular shale inclusion. The shale fraction is set to 10%, 20% and 

30% of the total aquifer volume. The full factorial design, therefore, requires 3
3
, or 27, 

simulations. Additionally, 4 realizations are run for each simulation.  

 

Stratigraphic dip is added to the model by changing the hydrostatic boundary conditions. In this 

way, the aquifer heterogeneity and well configuration does not change between simulations 

using -15, 0, or +15 degree dip. While this facilitates not having to change the model grid for 

each instance of dip, the assumption does imply that the wells are always perpendicular to the 

stratigraphy. Based on the dip direction, the hydrostatic boundary conditions are symmetric 

across the line bisecting the injection and leaky well. The model domain is one half the model 

domain specified by Class et al. as described in section 8.2.1. 

 

Heterogeneous fields are generated using ELLIPSIM. The ELLIPSIM program is included in 

the publicly available Geostatistical Software LIBrary (GSLIB) (Deutsch and Journel 1998). 

ELLIPSIM creates shale inclusions of a specified length, width and thickness over the model 

domain given a specified total area (or percent) for the inclusions. In this case, we define circular 
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lenses using the shale inclusion size. Each inclusion is 1 m thick. The shale fraction defines the 

total volume for the shale inclusions in the aquifer. An example ELLIPSIM field is shown in 

Figure 8.2-9, this field defines the heterogeneity in the lower aquifer. Simulation results include 

CO2 saturation (i.e., Figure 8.2-10) and cumulative CO2 leaked out of the lower aquifer after 

1000 days (Figure 8.2-11). 

 

 
Figure 8.2-9. 3D view of heterogeneity in the lower aquifer. Example shows shale inclusions (blue) with 

75 m diameter covering 30% of the domain surrounded by sand (green). The blocky nature 
of the shale inclusions on the outer regions of the model is due to grid discretization. The 
two vertical red lines indicate the position of the injection and leaky well. 

 

 
 

 

 
Figure 8.2-10. 3D view of CO2 saturation in the lower aquifer after 500 days using the heterogeneity 

shown in Figure 8.2-9. The top figure has a negative dip, the bottom figure has a positive 
dip.  
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Figure 8.2-11. Mean and standard deviation of the cumulative leaked CO2 for the 27 simulations and 4 

realizations used in the design of experiments. D = stratigraphic dip, F = shale fraction, 
and S = shale inclusion size. Each factor has one of three levels, -1 = low, 0 = medium, 1 
= high.  

The mean cumulative leaked CO2, based on the 27 simulations and 4 realizations from the design 

of experiments, shows a gradual increase in the leaked CO2 with increasing dip. In the case 

where stratigraphic dip is positive (in the direction of the leaky well), the leak rate is increased. 

Dip, in conjunction with the buoyant force, plays a large role in CO2 migration as seen in Figure 

8.2-9. Additionally, cumulative leaked CO2 increases slightly as the size of the shale inclusion 

decreases. The standard deviation of the leaked CO2 shows that the variation in simulation 

results increases significantly as shale fraction increases.  

 

The design of experiments analysis uses the mean cumulative leaked CO2 to rank main and 

interaction effects using regression coefficients. The polynomial model includes the intercept, 

linear and quadratic interaction terms (Eqn. (8.1)). Main effects are defined by a single factor, 

while interaction effects are defined by two of the three factors.  
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Table 8.2-4 ranks the regression coefficient for each main and interaction effect. Results show 

that dip has the highest influence on the leak rate of CO2. The second and third most influential 

factors are the shale inclusion size and shale fraction, respectively. The interaction between shale 

fraction and shale inclusion size is nearly as influential as shale fraction alone. The other 
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interaction terms (related to stratigraphic dip) are far less influential. The regression coefficients 

are used to create a quadratic response surface model, shown in Figure 8.2-12. The response 

surface illustrates that the lowest leak rate is associated with a negative dip, low shale fraction 

and high shale inclusion size while a high leak rate is associated with just the opposite. Due to 

the high variability in results related to the shale fraction, more realizations are needed to explore 

the interaction effects between shale fraction and shale inclusion size. Stratigraphic dip is not 

commonly included in simulation studies for carbon sequestration. While a limited number of 

simulations were used for this analysis, the results demonstrate the importance of dip on long 

term storage of CO2.  

 
Table 8.2-4. Design of experiments main and interaction effects, ranked according to influence on the 

leakage rate. 

Main and interaction effect 
Regression 
Coefficient 

Rank 

Stratigraphic dip 20924.3 1 

Shale fraction 9993.2 3 

Shale inclusion size 15567.0 2 

Stratigraphic dip and shale fraction 928.9 5 

Stratigraphic dip and shale inclusion size 764.0 6 

Shale fraction and shale inclusion size 8731.9 4 

 

 

 

 
Figure 8.2-12. Response surface model from the design of experiments. The experimental data points 

are marked in the upper left plot. The data associated with the color bar is the average 
leak rate. -1, 0, and1 refer to the low, medium, and high levels for each of the factors. 

Given the long run time for the 3D multiphase leaky well scenario, a 2D approximation would 

help to analyze a large number of simulations. When reducing a 3D model to a 2D section, 

several challenges arise. First, it is important to maintain the injection pressure. In the absence of 
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stratigraphic dip, this can be done by using a narrow radial section of the model, aligned with the 

injection and leaky well. The width of the radial section is equal to the diameter of the leaky well 

100 m away from the injection point. Second, the 2D radial model assumes that the surrounding 

media has no impact on the leak rate. Using the benchmark case (no stratigraphic dip and 

homogeneous aquifer properties), the leak rate from the 2D and 3D models are compared in 

Figure 8.2-13. This analysis shows that the surrounding media plays a large role in the leakage 

rate that 2D models do not adequately capture. The presence of a leaky well induces pressure 

changes that influence CO2 migration in the surrounding media. 

 

 
Figure 8.2-13. Leak fraction for the benchmark leaky well problem using a 3D and 2D model. 

8.3 Clay/Shale Repository Example  

This problem represents the first application of the THMC capability resulting from this project. 

The following is an excerpt of the complete problem, which has been discussed fully elsewhere 

(Hansen et al. 2010; Stone and Martinez 2010; Stone et al. 2011). The analyses utilized the 

capabilities of the Sierra codes Adagio for mechanical calculations and Aria for 

thermal/hydrological calculations. 

 

This problem describes the simulation of a nuclear waste repository sited in a clay/shale 

stratigraphy. The model geometry can be defined via a ―unit cell‖ model of a hypothetical waste 

repository sited in a 600-m thick clay/shale layer overlain by 100 m of sandstone and 200 m of 

other sediments (Figure 8.3-1). The entire domain is 900 m deep, 63.5 m wide, and 10 m in the 

horizontal direction perpendicular to the page. The repository is situated within the clay layer. 

Repository workings are represented by a horizontal, 5 m diameter access tunnel, with a 

perpendicular, 0.7 m diameter, 40 m long horizontal emplacement borehole. The waste packages 

occupy a distance of 30 m from the blind-end of the borehole, followed by a 3 m concrete plug, 

and finally a 7 m bentonite seal flush with the wall of the access tunnel. 
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Figure 8.3-1. Schematic of the clay/shale repository model geometry. 

A detail of the mesh at the repository horizon is shown in Figure 8.3-2. The finite element grid 

consists of 404,076 nodes and 383,214 eight-node hex elements. The analysis was run on a 

multiprocessor computer using 32 processors requiring approximately five hours of computer 

time for 10,000 years of simulation time. 

 

 
 
Figure 8.3-2. Closeup of finite element mesh at the waste horizon showing the access tunnel and 

horizontal waste borehole. The stored waste (red), concrete plug (yellow), and bentonite 
(green) materials are shown in the borehole. 
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The geometry shown in Figures 8.3-1 and 8.3-2 represents a ―3D slice‖ taken from the 

repository. The vertical planes in the model are symmetry boundaries with normal displacements 

fixed against horizontal movement. The base of the model is fixed against vertical movement. 

The geologic materials—clay, sandstone, and sediments—are set to an initial hydrostatic stress 

condition (the horizontal normal stresses are equal to the vertical overburden stress). The applied 

external forces are body forces associated with weight of the overburden. Excavation of the 

access drift and emplacement boreholes is simulated by releasing the initial normal stresses at the 

free surfaces, over a construction period of one day. After excavation, the thermal loads and 

water vapor pressures are transferred from Aria and the coupled calculation is run out to 10,000 

years. 

8.3.1 Mechanical Model 

With the exception of the clay layer, the stratigraphic materials were modeled as linear elastic; 

their properties are listed in Table 8.3-1. The clay and bentonite backfill were modeled with a 

crushable soil model; a more complete discussion of these material models can be found in Stone 

et al. 2011.  

 
Table 8.3-1. Physical and elastic material properties. 

Property Waste Canister Concrete Plug 
Typical 

Sandstone 
Surficial 

Sediments 
Units 

Density 1256.7 2247.3 2100 1800 kg/m
3
 

Young’s Modulus 4.32 23.87 23.0 0.145 GPa 

Poisson Ratio 0.3 0.2 0.3 0.2 — 

Coefficient of 
Thermal 
Expansion 

11.7E-06 12.0E-06 11.6E-06 11.6E-08 C°
−1

 

 
The thermal-hydrologic boundary and initial conditions are summarized in Figure 8.3-3. Initially, 

the entire domain is assumed to be at 20°C and initial saturation corresponding roughly to a 

(hydrologic) steady state with the upper surface set to 25% liquid saturation. The steady 

hydrostatic solution was computed separately, and results in nearly uniform saturations in each 

material, away from material interfaces. These steady saturations were applied as initial 

saturations in each material for the heat-driven simulation, with values as depicted in Figure 8.3-3. 
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Figure 8.3-3. Schematic of hydrologic stratigraphy with initial and boundary conditions. 

The top of the domain represents the ground surface and was set to a temperature of 20°C and a 

liquid saturation of 25%. The bottom boundary temperature was also set to 20°C. The access 

tunnel was assumed impermeable to flow and was subject to a natural convection boundary 

condition with 20°C reference temperature (Figure 8.3-3). All other surfaces were specified as 

symmetry surfaces, impermeable to mass flow and insulated from heat flow. For the high-level 

waste glass (HLWG) case, the initial saturation of the host rock was 61%, and this saturation 

condition was also maintained at the bottom boundary. For the pressurized water reactor (PWR) 

used nuclear fuel (UNF) cases (discussed below), the initial saturation was increased to 91% to 

evaluate the potential for pore pressure excursions and the associated mechanical responses. The 

thermal-hydrologic model assumes an unsaturated system occupied by water and its vapor. Air is 

not considered in the present model. 

 

The waste package region is assumed to be composed of the clay material, but with uniform 

volume generation of decay heat. Three different thermal loads, depicted in Figure 8.3-4, were 

used in the analyses, to represent: (1) fresh HLWG; (2) the hottest PWR UNF considered for the 

Yucca Mountain license application; and (3) a bounding case for PWR UNF: 

 The HLWG thermal power decays with a half-life of about 30 years (representing 
137

Cs 

and 
90

Sr) and rapidly decays to insignificance. For this case the power density for 

Hanford HLWG was scaled up to represent fresh HLW, such that peak emplacement 
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temperatures approach but do not exceed boiling. This condition was chosen to maximize 

evaporation and condensation behavior in the near field, without exceeding 100°C. 

 The hottest PWR UNF case is based on the average base case PWR UNF thermal output 

used in performance assessment analyses to support the Yucca Mountain license 

application, which was then scaled up to envelop the estimated limiting waste stream 

(ELWS) PWR UNF developed for that application (see Hansen et al. 2010, sec. 

1.3.1.2.5). It thus represents commercial UNF with the greatest thermal decay energy 

density that was considered for the license application. 

 

The bounding case was developed by scaling up the Yucca Mountain ELWS by approximately 

180%, to represent possible hotter, future waste forms. When decay storage is implemented for 

50 years prior to emplacement, this bounding case resembles the HLWG case (Figure 8.3-4), 

hence the THMC analyses were conducted only for the three cases. 

 

Figure 8.3-4. Normalized power curves for modeled waste. 

8.3.2 Thermal-Hydrologic-Chemical Model 

Material properties and parameters applied in the model are given in Table 8.3-2. Again, these 

values are within a realistic range of values for the type of porous material. Note that the porosity 

of the clay/shale formation is assigned a large value (30%) to investigate the potential for pore 

water and vapor mobilization. The permeability of the clay/shale formation is assigned a value of 

10
-16

 m
2
 for the HLWG case, and 10

-19
 m

2
 for the hottest PWR UNF and bounding cases, 

reflecting a progression of cases intended to explore the maximum range of pore pressure and 

mechanical responses. 

 

Curve fits to thermodynamic properties for water (liquid and vapor) are used in the model. The 

parameters ―VG Pc0‖ and ―VG ‖ refer to the van Genuchten model. The Udell cubic model of 

relative permeability was used. These models are discussed in chapter 2. 
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Table 8.3-2. Thermal-hydrologic material properties. 

Property 
Clay 
Formation 

Sandstone Sediments Concrete Plug Bentonite 
(Backfill/buffer) 

Units 

Porosity 0.3 0.2 0.4 0.1 0.276 - 

Permeability  
10

-16 

to 
10

-19 
10

-15
 710

-14
 10

-18
 2.610

-19
 (m

2
) 

Thermal 
Diffusivity 

1.0410
-6

 1.4010
-6

 1.0510
-6

 4.5510
-7

 1.0010
-6

 (m
2
/sec) 

VG Pc0 10 10 8.63 10 10 (kPa) 

VG  1.69 1.69 1.88 1.69 1.69 - 

Sr 0.11 0.11 0.2 0.11
a 

0.11 - 
a 
Residual liquid saturation = 0.005 in relative permeability model. 

 

The transport of radionuclides is also modeled. Initially, the entire domain is chosen to have zero 

concentration, except for the waste package region, which is taken to be equal to unity. The 

waste package region experiences a radiologic decay rate consistent with first order decay and a 

half-life of 30.1 years (
137

Cs), which is also consistent with the thermal loading rate discussed in 

the previous section.  

8.3.3 Thermal-Hydrologic-Mechanical-Chemical Model Results 

The tunnel excavation occurs over several solution steps prior to the start of waste heating. 

Figure 8.3-5 shows color contour plots of maximum principal stress at the end of the excavation 

period. The plots show an area of tensile stress that exists in the access tunnel roof and floor at 

the location of the emplacement borehole. This location is unique due to the intersection of two 

symmetry planes (x- and z-directions). No tensile stresses were observed in the tunnel roof and 

floor for the linear elastic clay model. This illustrates the need for appropriate, site-specific 

material models for the clay/shale to get accurate stress results for tunnel integrity assessment. 

This result also shows the value of three-dimensional calculations and clearly identifies an area 

for further evaluation. 
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Figure 8.3-5. Contour plots of post-processed yield state variable and maximum principal stress (SMAX) 

after access tunnel excavation. 

Figure 8.3-5 also shows the volume of clay material that is exhibiting nonlinear material 

response. The plotted yield state quantity is the non-dimensional ratio of the computed 

von Mises stress divided by the a0 constant in the constitutive model. This figure indicates that 

the zone of inelastic response extends to a distance of several diameters surrounding the access 

tunnel, but not the emplacement borehole.  

 

The peak emplacement borehole temperatures range from 83.5°C for the HLWG case, to greater 

than 200°C for the bounding case (Figures 8.3-6 and 8.3-7). For the HLWG case with relatively 

small temperature changes, thermal expansion of the solid matrix has a very small effect on the 

stress state. Also, displacements near the access tunnel are small. From these calculations, the 

largest structural response of the clay surrounding the access tunnel and emplacement borehole 

apparently occurs during excavation. 
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Figure 8.3-6. Liquid saturation (Sl) and temperature distributions near the waste packages at 16 years for 

the fresh HLWG thermal case. 

 

 
 
Figure 8.3-7. Time history in the emplacement borehole of temperature (left), liquid saturation (middle), 

and pore pressure (right). 
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All of the thermal power decay histories are defined such that the repository dries out noticeably 

within a few years and then re-wets as the repository cools down. For the HLWG case with 

greater rock permeability (10
−16

 m
2
; Table 8.3-2), water is evaporated near the emplacement 

borehole, driven away by vapor pressure gradients, and condenses further out, forming a zone of 

increased saturation. Capillary gradients support liquid flow back toward the borehole. A zone of 

increased saturation forms below the borehole, subsequently seeping downward by gravity and 

dissipating by capillary action, see Figure 8.3-8. Note that the initial saturation of the host rock 

was set to 61% for this simulation. 

 

 

Figure 8.3-8. Temperature (T) and liquid saturation (Sl) distribution as a function of vertical distance from 
the waste package (WP), for the fresh HLWG thermal case (upper) and the bounding PWR 
UNF case (lower). 

For the PWR UNF cases with lower permeability (10
−19

 m
2
), the dewatering response occurs but 

the subsequent gravity-driven flow is much weaker, as indicated by the vertical symmetry of 

saturation profiles (Figure 8.3-8). Notice that the condensate fully saturates the pores, forming a 

saturated halo about the waste package. Pore pressure response closely follows the vapor 

pressure of water (Figure 8.3-7), with some dissipation especially for the HLWG case with 

greater permeability. Note that the initial saturation of the host rock was set to 91% for this 

simulation. 

The spatial extent of elevated pore pressure and the time scale for dissipation are demonstrated 

for the bounding PWR UNF case, in Figure 8.3-9. Noting that this is a bounding case for which 

peak temperature greatly exceeds the 100°C limit, this result shows that the duration of elevated 
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temperatures is limited and the thermal gradients in the rock are small beyond a few meters 

distance. Thermo-diffusion (Soret effect) can therefore be excluded as a significant radionuclide 

transport process. 

 

Figure 8.3-9. Pore pressure response as a function of vertical distance from the waste package for the 

bounding PWR UNF case. 

Because of the short half-life and relatively large retardation factor used in this calculation, 

transport distances from the waste package are short relative to decay times. By approximately 

30 years, sufficient radioactive decay has led to the near disappearance of solute in the vicinity of 

the repository, and by 60 years, the solute has nearly disappeared from the solution (see Stone et 

al. 2011). This shows that fission products comprising the constituents of HLW that have the 

greatest specific activities and shortest half-lives are completely isolated from the geosphere 

overlying the simulated clay/shale repository. 

8.3.4 Summary 

Results presented in the foregoing sections are generally consistent with calculations performed 

by international programs. The duration of elevated host rock temperatures can be limited to a 

few hundred years, during which substantial dewatering of the near-field host rock could occur, 

given sufficient permeability. The region of plastic deformation and stress conditions modified 

by excavation could be dominated by the larger diameter access drift. The behavior of 
137

Cs in 

radionuclide transport simulations represents the isolation, and attenuation by radioactive decay, 

that is expected for disposal in clay/shale formations. Based on these results, and excavation 

disturbed zone (EDZ) investigations by international programs (Hansen et al. 2010, sec. 2.3.1), 

the extent of the EDZ is limited to a few meters and can be ignored as a transport path segment 

in the performance analysis of a generic clay/shale repository. 
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8.4 Coupled Porous Flow and Geomechanics for CO2 Sequestration 
and Caprock Integrity Analysis 

8.4.1 Introduction 

Global consumption of fossil fuels has significantly increased levels of atmospheric CO2, a 

greenhouse gas. Carbon capture and storage (CCS) is a promising mitigation strategy. CCS 

consists of capturing and sequestering CO2 emissions from large ―point sources‖ such as coal-

fired power plants. A coal-fired power plant can produce several megatons of CO2 per year and a 

typical design life is roughly 30 years. The storage of CO2 in deep saline aquifers is one 

sequestration option under consideration. Depths of 1000 m or more are typically considered in 

order to assure injected CO2 remains in a supercritical state, thereby minimizing pore volume 

requirements. 

 

For long-term storage the saline aquifer, or reservoir, must be capped by at least one, possibly 

several, relatively impermeable layers, called caprocks. Both the choice of an adequate 

sequestration site and the control of the injection rate of supercritical CO2 (sCO2) into the 

reservoir are constrained by the requirement to maintain the integrity of the caprock. The 

integrity of a caprock layer may be quantified by the specification of an allowable average 

leakage rate. The leakage of a caprock layer can occur through porous flow within the caprock, 

flow within discrete fractures or joints, or flow within a fault. The injection of sCO2 into the 

reservoir results in an increased pore pressure within the reservoir that varies with position and 

time as the sCO2 flows throughout the reservoir. This change in pore pressure within the 

reservoir results in deformation of both the reservoir and the caprock layers. This deformation 

could reactivate impermeable fractures and faults as well as create new fractures, thus 

comprising the caprock integrity. 

 

In this section, we model the injection sCO2 into two idealized repositories (model problems) 

using a coupled flow (Aria) and geomechanics (Adagio) model. Model Problem 1 consists of a 

layered system with a single caprock. Model Problem 2 is identical to Model Problem 1 except 

for the presence of a fault. For each model problem we investigate the deformation of the 

caprock and assess the caprock integrity against potential shear failure. 

8.4.2 Model Problem 1 

For the first model problem, we consider the layered system shown in Figure 8.4-1, consisting of 

a single caprock layer (yellow) above the injection zone (red). The thickness of each layer is 

shown in the figure and Table 8.4-1 gives key parameters for each layer. The top of the caprock 

layer is 1350 m from the free surface. The injection rate schedule is shown in Figure 8.4-2. The 

injection schedule consists of a linear ramp up from an initial value of 1 MT/yr to a max rate of 3 

MT/yr at year five, and a linearly ramp down to zero at the end of service life at year 30. 
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Figure 8.4-1. Schematic of Model Problem 1 consisting of a single caprock layer and injection reservoir. 

The thickness of each layer is given along with the horizontal length.  

 
 
Figure 8.4-2. Injection rate schedule with a linear ramp up to max rate of 3 MT/yr at year five, and a 

linearly ramp down to zero at the end of service life at year 30. 

The material properties of each layer are given in Table 8.4-1. Only two phases are considered: 

(1) brine, and (2) supercritical CO2. The two phases are taken to be immiscible, with fluid 

properties as described in the leaky well benchmark problem discussed in section 8.2. The 

capillary pressure was modeled by the van Genuchten function with a low entry pressure (5 kPa). 

For simplicity, the mechanical response is taken to be linear elastic. Both the porous flow 

analysis and the mechanical analysis are taken to be isothermal. 
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Table 8.4-1. Material properties used in the porous flow and geomechanical analysis of Model Problem 1.  

Property Aquifer Caprock Injection zone Base Units 

Density 2100 2100 2100 2100 Kg/m
3 

Biot’s coefficient 1 1 1 1  

Young modulus 20 50 20 50 GPa 

Poisson’s ratio 0.2 0.12 0.2 0.12  

Initial porosity 0.15 0.05 0.15 0.10  

Intrinsic permeability 2.01014
 1.01017

 2.01014
 1.01016

 m
2 

 

Finite Element Model 

The finite element mesh is shown in Figure 8.4-3. This mesh contains approximately 120,000 

hexahedral elements. A detailed view of the mesh in the caprock and injection zones is also in 

Figure 8.4-3(b). Only one quadrant of the system is modeled. CO2 is injected along the nearest 

edge in the figure uniformly over the depth of the injection zone. The two adjacent lateral sides 

are no-flow boundaries, the opposite lateral sides are constant pressure boundary boundaries 

corresponding to the initial hydrostatic state. The top and bottom surfaces are taken to be 

impermeable. For the mechanical model, all lateral sides and the bottom are fixed against normal 

motion. The region above the saline aquifer is not modeled, but instead a uniform pressure is 

applied representing the overburden. 

 

 
                                (a)                                                                           (b) 

 
Figure 8.4-3. Finite element mesh of Model Problem 1. The mesh contains approximately 120K 

elements. A detailed view of the caprock and injection zones is shown in (b). 

Critical-Shear Failure Criterion 

The stress sign convention for this example is positive in compression. The mechanical analysis 

uses the effective stress assumption in which the solid matrix of the porous medium effectively 

sees the total stress minus the pore pressure (Biot coefficient of 1.0). Thus, the deviatoric 

components of the stress tensor remain unchanged, but the hydrostatic stress in the solid matrix 

is reduced by the pore pressure. Following Rutqvist et al. (2007), we use a critical-shear failure 

criterion to assess the caprock integrity, as shown in Figure 8.4-4. This criterion is based on the 

Mohr-Coulomb failure criterion and provides a conservative estimate of the caprock integrity 

since it assumes that the caprock is composed of subscale fractures that have no cohesion, have a 

friction coefficient of 0.6, and are randomly oriented such that there is always a worst-case 
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oriented fracture with respect to shear slip. With these assumptions, shear slip is predicted to 

occur when the maximum principal effective stress is larger than three times the minimum 

principal effective stress. We define the critical shear-stress as 31 3 pp  , so that a positive 

value represents a potential for shear slip. A secondary failure criterion is that the minimum 

principal effective stress should be compressive to avoid a tensile failure.  

 
 

 
Figure 8.4-4. Mohr’s circle representation of the stress state within a solid medium. All stresses are 

positive in compression. 1p  is the maximum effective principal stress. 3p  is the 

minimum effective principal stress. The red curve is the Mohr-Coulomb shear limit surface 
(critical shear failure criterion). Through the effective stress assumption, an increase in the 
pore pressure shifts the Mohr circle to the left. Stress redistribution can cause an increase 
or decrease in the diameter of the circle and thus the shear stress. 

Regional Stress State 

The initial stress state (before injection) strongly influences the allowable injection rates 

(Rutqvist et al. 2007). Any stress state that is not lithostatic has a nonzero shear stress and is thus 

―closer‖ to the critical-shear limit surface. Depending on the regional geological setting, the 

horizontal principle stresses can be less than (extensional) or greater than (compressional) the 

vertical stress. For this example, we assume that the vertical stress (V) is a principal stress and 

we assume that the two horizontal principal stresses are equal (H). For simplicity, we assume 

that the ratio of the horizontal stress value to the vertical stress value is a constant value 

throughout the reservoir. For the extensional stress state we take VH  7.0  and for the 

compressional stress state we take VH  4.1 . These horizontal and vertical stresses are shown 

in Figure 8.4-5 as a function of depth. Since each layer has the same density, the both the vertical 

and horizontal stresses vary linearly in depth. 

 

intact 
rock 

critical shear stress (fracture slip) 

poro-mechanical stressing 

shear stress 

effective  
normal stress 

3p 1p
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Figure 8.4-5. Variation of the horizontal and vertical stresses with depth for the extensional  

(
VH  7.0 ) and compressional (

VH  4.1 ) stress regimes. 

Results and Discussion 

The displacement vector field is shown in Figure 8.4-6 at year 5 for the extensional case. The 

maximum uplift at the top of the saline aquifer above the caprock is approximately 0.1 meters. 

The uplift increased monotonically to year 5 and then decreased monotonically thereafter. The 

displacement field for the compressional case was similar to the extensional case. 

 

The variation in pore pressure with depth on the injection axis is shown in Figure 8.4-7, for the 

extensional case, at year 0, 5, and 30. Note that even though the permeability of the caprock is 

2000 times less than the permeability of the injection aquifer, there is still significant change in 

pore pressure within the caprock in the vicinity of the injection zone. The caprock permeability 

in the present analysis is higher than have been used in similar analyses by others, e.g., Rutqvist 

et al. (2007). The peak pore pressure occurs at year 5.  
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Figure 8.4-6. Displacement vector field at year 5 for the extensional case. The simulation results were 

reflected in the figure to obtain a full view. The color shading is the magnitude of the 
displacement vector in meters. The injection axis is on the front surface, middle axis. 

 

 
 
Figure 8.4-7. Variation of the pore pressure with depth on the injection axis, for the extensional case, at 

year 0, 5, and 30. 
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The critical-shear stress is shown in Figure 8.4-8 for both the extensional and compressional 

cases. As expected, the extensional case is the more severe case due to the lower mean stress. 

The critical shear stress is plotted as function of depth in Figure 8.4-9 on the injection axis. The 

critical shear stress is given at both the initial time and for year 5. A positive value represents a 

potential for shear slip on a worst-case oriented fracture. 

 
 (a)       (b) 

 
Figure 8.4-8. Comparison of critical shear stress for the (a) extensional and (b) compressional cases. A 

positive value indicates a potential for shear slip on a worst-case oriented fracture. 

 

 

(a)                                                                           (b) 

 
Figure 8.4-9. Critical shear stress variation as a function of depth on the injection axis at year 0 and year 

5 in the (a) extensional and (b) compressional initial stress regimes. A positive value 
indicates a potential for shear slip on a worst-case oriented fracture.  
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8.4.3 Model Problem 2 

Some faults can be difficult to detect. A fault in a sequestration site may pose a risk of leakage 

by reactivation during injection. For the second model problem, we consider the same layered 

system as in Model Problem 1, but with the addition of a fault as shown in Figure 8.4-10. The 

angle of the fault is 80 degrees from the horizontal axis (x-axis). The location of the fault is 1000 

m from the injection axis in the injection zone. The thickness of the fault is 10 m. The fault 

extends through the model in the y-direction. The material properties of the fault are given in 

Table 8.4-2. Two cases are considered: (1) a low permeability fault, and (2) a high permeability 

fault. 

 

 

 
Figure 8.4-10. Schematic of Model Problem 2 consisting of a single caprock layer and injection reservoir 

along with the addition of a fault. 

 
Table 8.4-2. Material properties used in the analysis of a fault in Model Problem 2. 

Property Low permeability fault High permeability fault Units 

Density 2100 2100 Kg/m
3
 

Biot’s coefficient 1.0 1.0  

Young modulus 5 5 GPa 

Poisson’s ratio 0.2 0.2  

Initial porosity 0.15 0.05  

Intrinsic permeability 1.01017
 1.01015

 m
2
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Finite Element Model 

The finite element mesh for the faulted system is shown in Figure 8.4-11. This mesh contains 

approximately 148K elements. A detailed view of the mesh is also in Figure 8.4-11(b). Only one 

quadrant of the system is modeled.  

 

                                (a)                                                                    (b) 

 
Figure 8.4-11. Finite element mesh of Model Problem 2. The mesh contains approximately 148K 

elements. A detailed view of the fault zone is shown in (b). 

Results and Discussion 

Since the extensional initial stress case results in greater critical shear stress in the caprock 

compared to the compressional case, the simulations including the fault will only be presented 

for the extensional initial stress case. The low permeability fault acts as a barrier to migration of 

the CO2 through the reservoir as shown in Figure 8.4-12. Figure 8.4-13 shows the resulting 

buildup of pore pressure behind the fault at year 17 which could reactivate the fault and cause 

leakage.  

Figure 8.4-14 shows the critical shear stress and the deformed shape of the fault in the injection 

zone. Note the positive critical shear stress near the fault. Figure 8.4-15 shows the CO2 saturation 

for the high permeability fault case. For this case, the fault provides a leak path for the CO2 as 

illustrated in Figure 8.4-15(b). The leaked CO2 pools at the upper surface, which was assumed 

impermeable, perhaps modeling an upper caprock layer. The distribution on the upper surface 

reflects the early arrival of CO2 at the closest radial distance to the fault, followed by buoyancy-

assisted upward migration through the high permeability fault. The critical consequence of the 

fault is breaching of the caprock. The solution illustrates buoyant migration through the fault and 

the upper (high permeability) aquifer once the caprock has been breached. 
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Figure 8.4-12. CO2 saturation after 17 years of injection for the low permeability fault. The layers above 

the injection aquifer are not shown for clarity in viewing the extent of CO2 migration. Two 
cutting planes of the caprock and upper layers are shown instead.  

 

 

   
 
Figure 8.4-13. Pore pressure at year 17 for the low permeability fault. The displacement field is applied to 

the mesh with a scale of 750 to illustrate material deformation. Note the deformed shape 

of the fault within the injection zone. 
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Figure 8.4-14. Critical shear stress at year 17 for the low permeability fault. The displacement field is 

applied to the mesh with a scale factor of 750. Note the deformed shape of the fault within 
the injection zone and the positive critical shear stress near the fault. 

 

  

                                 (a)                                                                            (b) 

 
Figure 8.4-15. High permeability fault in the extensional regional stress regime: (a) Interior view of CO2 

saturation after 27 years within the injection zone; (b) Exterior view of the CO2 leakage 
through high permeable fault to the upper aquifer layer. 

Future Work 

The two model problems considered in this section are the first step in more detailed 

geomechanical analyses of CO2 sequestration using Sierra. Future work will investigate the 

efficiency of the coupling scheme between Aria and Adagio, the effect of material heterogeneity 

in both the porous flow properties and mechanical properties, and the use of nonlinear elasto-

plastic models in the geomechanical analysis (e.g., the SNL Geomodel). 
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8.5 Reactive Transport in Model Porous Media 

A key aspect of this project was the development of reactive transport modeling capability. In 

this section we discuss the results of several benchmarking studies involving reactions of the 

type A+B → C. Though simple in appearance, this nonlinear reaction displays a rich variety of 

physical effects. In the following we consider the effects of reaction rates in transverse mixing of 

reactants in uniform flow (similar to porous flow) and slow, inertia-free flow in a model porous 

medium. 

8.5.1 Instantaneous Reaction Flow Problem 

For the case of an instantaneous reaction in a uniform flow field the steady state reaction product 

due to the transverse mixing of two parallel reactant streams can be solved analytically. A 

schematic of the physical system considered is shown in Figure 8.5-1. 

 

 
Figure 8.5-1. Schematic of instantaneous reaction in a uniform flow field profile. For instantaneous 

reaction A+B → C. 

For the bimolecular reaction considered here the two solutes react and form the product (sAA + 

sBB → sCC), where si is the stoichiometric coefficient of solute i. Symbols A, B, and C represent 

concentrations of reactants A, B, and the product C. For the simplified case where the 

stoichiometry is equimolar (sA = sB = sC = 1), the rate of production of C at any point is equal to 

the rate of loss of each reactant: 

 C A Br r r     (8.2) 

 

The model describing steady state transport of these reactants and the product in porous media 

can be expressed by the advection-diffusion-reaction equations as follows: 
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20C

C C C C
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
u  (8.5) 

 

This is the system investigated in Acharya et al. (2007) where the following interpretation is 

described: ―We also assume that the reaction rate is very large; that is, the reaction occurs 

instantaneously as soon as species A and B mix together. Under this assumption, solution of the 

coupled system of Eqns. (8.3) through (8.5) is greatly simplified. It can be seen that (assuming 

all the diffusion coefficients are equal) the quantity 







 B

s

s
AC

B

A* is conserved. Under the 

assumption of instantaneous reaction, it is not possible for both to coexist at the same spatial 

location. Therefore instead of solving the coupled nonlinear system Eqns. (8.3) and (8.4), only 

the conservative transport equation for C* needs to be solved, and the values of A and B can be 

easily recovered from the positive and negative values of C*, respectively.‖ 

 

With the same strategy, the analytical solution for the product profile (Eqn. (8.5)) can be derived 

as follows: 
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Here, we use C*=B+C and DA = DB = DC. For given initial condition (C*=0) and boundary 

condition (C* (y=0 at lower boundary) = 1), it transforms the advection and diffusion equation 

into a simple diffusion equation. The analytical solution at the distance x (=u*t) along the main 

flow direction is well known as 
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where C0 is the concentration at the inlet. For the instantaneous reaction, the amount of product 

is determined by the concentration of the limiting reactant. As shown in Figure 8.5-1, the 

limiting reactant is A or B which diffuses into the other half domain. Once the limiting solute is 

completely consumed, the reaction will not occur any more. Thus, the concentration of product is 

given by 
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Here, y is the distance from the bottom and W/2 is the distance to the centerline. Since diffusion 

coefficients are the same, the product profile is symmetric along the centerline as shown in 
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Figure 8.5-1. Based on Eqns. (8.7) and (8.8), the product concentration is half of the inlet 

concentration and the reaction zone increases with the flow distance x as shown in Figure 8.5-1. 

 

The chemically reactive flow problem was solved using the Aria reactive flow module described 

in chapter 3. The chemical reactions are solved along with the Navier-Stokes and continuity 

equations for the fluid flow in the model porous medium described below. The problem is solved 

in two dimensions representing a horizontal slice out of the flow field away from the vertical 

surfaces. The properties of the fluid are assumed not to vary as the chemical reaction proceeds. 

This assumption allows for a decoupling of the problem, where the steady state fluid flow can be 

solved initially and the constant flow field applied to the transient chemical species reaction and 

transport problem. 

 

The specific equations solved are simplified by the assumption of steady state, incompressible 

flow, constant properties, and no body forces. Over the range of cases of interest the Reynolds 

number is on the order of 10
-1

, so the Navier-Stokes equations can be simplified to the Stokes 

equation by removing the inertial terms. The continuity and Stokes equations solved for the fluid 

flow portion of the problem are: 
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The initial condition for the fluid problem is zero flow       throughout the domain with 

boundary conditions of a specified inlet velocity in the x-direction        , a zero pressure 

outlet condition, and the no-slip condition on the boundaries. 

 

The reactant and product species transport is modeled using the transient versions of Eqns. 8.3 

through 8.5 with the addition of a reaction rate constant. The above instantaneous reaction means 

that reaction occurs very fast as soon as A and B mix together, which can be described with a 

large reaction rate constant. For this case, Eqn. (8.2) can be expressed as 

 

 C A B A Br r r kC C      (8.10) 

 

where k is the reaction rate (1/t). The species transport equations solved are: 
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The initial and boundary conditions are the following: 
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where W is the width of the channel in the y-direction. This solution method was applied to a 

series of benchmark problems to validate its capabilities. The benchmark problems were 

chemical reaction and transport in plug fluid flow, fluid flow through an array of circular 

cylinders, and chemically reacting flow in a circular array. 

8.5.2 Discussion of Benchmark Cases 

The initial benchmark problem solved is the simple case described above and illustrated in 

Figure 8.5-1 where two reactant streams (in a uniform flow) are injected into the top and bottom 

halves of a channel and allowed to diffusively mix and react to form product along the channel 

length. An asymptotic ( k  ) analytic solution exists for this scenario allowing direct 

comparison of the results of the numerical scheme to the idealized case. In this specific case the 

channel is 1 cm wide (y-direction) and 2 cm long (x-direction). The fluid is injected at a uniform 

velocity of 0.02 cm/s. The fluid carries reactants A and B at equal initial concentrations of 0.5. 

Both reactants and the product are assumed to have equal and constant diffusivities of 10
-5

 cm
2
/s. 

The fluid is assumed to be water at room temperature with constant properties: density, ρ=1.0 

gm/cm
3
, and viscosity, μ=0.01 gm/cm/s. 

 

The benchmark asymptotic solution assumes an instantaneous reaction between the two 

reactants. In the numerical scheme a reaction constant, k, is used to model the reaction. The 

numerical model was run with values of k from 0.01 to 1000 to determine the effect of the rate 

constant on the calculated product value and the computational requirements. Increasing values 

of k require smaller mesh element sizes in order to converge to a solution. The value of k = 1000 

was selected as the best balance between solution accuracy and computational time. A 

comparison of the product profiles in the channel between the analytic solution and the 

numerical result for k = 1000 is presented in Figure 8.5-2. 
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(a) 

 
(b) 

 
Figure 8.5-2. Comparison of the product concentration of the analytic solution and the numerical solution 

for k = 1000. (a) Analytic solution. (b) Numerical solution. 

The comparison of the product profiles illustrates the similarity between the numerical solution 

and analytic solution. The analytic solution for the product profile is a concentration of 0.25 

along the centerline of the channel. The numerical solution approaches this value to within 2%, a 

concentration of 0.244924 vs. 0.25. The effect of the selected value of k can be seen in the 

product concentration profiles in Figure 8.5-3. 

 

  

(a) (b) 
 

Figure 8.5-3. Comparison of the effect of the reaction rate constant, k, in the numerical solution to the 
asymptotic analytic solution. (a) Product concentration along the centerline of the channel 
in the flow direction. (b) Product concentration in the cross flow direction at the channel 
outflow. 
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The effect of the reaction rate constant is evident in either plot of the product concentration 

profile. In Figure 8.5-3(a), the increasing value of k brings the numerical solution closer to the 

instantaneous, analytic value of 0.25. The case of k = 1000 shows the best agreement to the 

analytic solution with a difference of 2%, but also indicates the limit on the current mesh size. 

The curve exhibits a spike in concentration over the first two mesh elements in the model which 

would be eliminated with a more refined mesh, at a greater computational expense. A similar 

result is seen in Figure 8.5-3(b), where the largest values of k demonstrate good agreement with 

the cross flow spread in the product concentration. Selection of a value of k = 1000 provides a 

numerical solution that closely correlates to the analytic solution while maintaining a low 

computational overhead. 

 

The second benchmark case is a study of fluid flow through an array of circular cylinders. With 

the current two dimensional problem this results in a fluid flow around an array of circles. The 

spacing of the circles was taken from Sangini and Acrivos (1982) who developed an analytic 

expression for drag on a cylinder in a periodic array that demonstrated agreement to 

experimental results. The circles were spaced one non-dimensional unit apart in the x-direction 

and √  non-dimensional units apart in the y-direction, on a center to center basis. The cylinder 

radius was varied to test different values of porosity in the array. 

 

The numerical model used the same size mesh and property values specified in the previous 

benchmark problem. Figure 8.5-4 illustrates the three representative circles from the mesh where 

the drag was measured for comparison to Sangini and Acrivos. 

 

 
 
Figure 8.5-4. Array of circles used for comparing fluid drag to published results. The circles in gold are 

the circles where the drag is measured. The radius of the circles is 0.035 cm. The fluid flow 
is from left to right. 

A series of five meshes was used with circle radii of 0.015 cm, 0.025 cm, 0.035 cm, 0.040 cm, 

and 0.045 cm. These radii corresponded to a range of cylinder volume fraction, c, from 0.078 to 

0.73. The cylinder volume fraction is the ratio of volume occupied by the cylinders to the total 

volume of the geometry (assuming a unit depth for the 2D problem). For comparison to the 

published results the measured drag force, F, on a cylinder was non-dimensionalized by the fluid 
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viscosity, μ, and the mean flow velocity, U:     
  ⁄ . Table 8.5-1 contains the measured drag 

forces and non-dimensionalized quantities. Figure 8.5-5 compares the current numerical results 

to the published results. 

 
Table 8.5-1. Measured drag quantities and non-dimensionalized values. 

Cylinder 
radius 

Drag Circle 
1 

Drag Circle 
2 

Drag Circle 
3 

F=drag 
avg 

U c F* 

(cm) (dyn) (dyn) (dyn) (dyn) (cm/s)   

0.015 0.00368 0.00370 0.00370 0.00370 0.0170 0.0778 21.7 

0.025 0.00890 0.00893 0.00885 0.00889 0.0148 0.217 60.2 

0.035 0.0299 0.0230 0.0299 0.0299 0.0124 0.435 242 

0.040 0.0794 0.0796 0.0793 0.0794 0.0112 0.573 711 

0.045 0.432 0.432 0.431 0.432 0.00998 0.729 4330 

 

 

 

 
 
Figure 8.5-5. Comparison of the non-dimensional drag force computed by the numerical method to 

results published by Sangini and Acrivos (1982). 

Figure 8.5-5 shows that the calculated drag forces match up well with accepted analytical and 

experimental results. The results of this benchmark problem demonstrate that the numerical 

method is correctly modeling the fluidic forces in an array of obstructions. 
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The third and final benchmark problem combines the fluid flow through an array of circles with 

the chemical reaction. The model parameters remain the same as in the previous two 

benchmarks. The mesh used contains circles with a radius of 0.035 cm, as in Figure 8.5-4. The 

results from the current finite element method are compared to results of the method of Yoon et 

al. (2011). The computational method in Yoon et al. (2011) consists of the lattice Boltzmann 

method for fluid flow and the finite volume method for reactive transport (LBFVM). The 

LBFVM numerical method was developed and validated in Willingham et al. (2008,2010). A 

comparison of the product profiles determined by each method is shown in Figure 8.5-6. 

 

 
(a) 

 
(b) 

 
Figure 8.5-6. Comparison of the product profiles for reactive flow through an array of circles. (a) Result 

from the LBFVM of Yoon et al. (2011). (b) Result from the current finite element method. 

Qualitatively the two methods predict similar concentration profiles. Quantitatively the models 

are not precisely the same. The LBFVM model uses a reaction rate constant, k, of 10
4
 whereas 

the finite element model uses a value of k = 100. There is also a discrepancy in the fluid velocity 

between the two models due to different boundary conditions. The LBFVM has an average pore 

space velocity of 0.02 cm/s, while the average pore space velocity in the finite element model is 
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0.0182 cm/s. Despite these small differences the two numerical methods produce similar results. 

A direct comparison of the velocity and product profiles is shown in Figure 8.5-7. 

 
(a) 

 
(b) 

 
Figure 8.5-7. Comparison of the LBFVM and finite element (ARIA) methods for combined fluid and 

reactive transport. (a) Profile of velocity in the x-direction taken at the horizontal centerline 
of the computational mesh. (b) Profile of total product concentration, integrated in the cross 
flow direction, along the length of the mesh. 

The velocity profile for flow between the pores, in Figure 8.5-7(a), is the same for the two 

methods except for the known velocity difference due to differing boundary conditions. The 
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cross flow integrated product profile in Figure 8.5-7(b) likewise demonstrates good agreement 

between the computational methods. The results from the finite element method grow smaller 

than the LBFVM results at large values of distance along the flow direction. The difference in 

product concentration can be attributed to the smaller value of reaction constant used in the finite 

element method. With a smaller rate constant, less product will be formed and leads to the 

difference seen between the codes. The favorable comparison of the finite element method to 

analytic and published results over the three benchmark problems lends confidence that the 

numerical method is properly solving for reactive transport within a representative porous media. 

 8.5.3 Future Applications 

The finite element method described above and implemented using Aria has thus far been 

applied to simple benchmark cases to verify and validate the methodology. The results presented 

demonstrate that the implementation is correctly solving the fluid flow and reactive transport 

within porous media. In the future, the methodology could be applied to a wide range of 

problems. Immediate goals include inclusion of varying fluid viscosity caused by the chemical 

reaction. Fluids with changing viscosity are of interest in natural resource extraction and 

geological storage of materials. A key component of the finite element method is that it can 

readily scale, leading to plans to expand the models to model full three-dimensional problems 

and account for out of plane boundary interactions. Longer term goals include more complicated 

reaction pathways in order to model more realistic geologic chemistries. An initial system of 

interest is calcium carbonate (CaCO3) precipitation and dissolution, a key reaction in the 

underground storage of captured carbon dioxide. 

8.6 THMC model of a Repository Sited in Clay  

As a final example, we consider another nuclear waste repository problem representative of 

scenarios being considered by the NEAMS project. The following problem is for demonstration 

purposes only, and does not represent any particular site or repository conditions, but does 

specify a realistic scenario. 

8.6.1 Introduction and Problem Definition 

This sample problem involves the effects of heat generating waste on the flow and transport of 

radioactive contaminants coupled with the geomechanical deformations of the surrounding 

subsurface region. Figure 8.6-1 is a schematic of the subsurface model. In the results presented 

below, the ―basal unit‖ is also clay. The fault in the present model represents a material offset. 

The repository horizon is 1500 meters below the surface, sited in a clay/shale layer. The clay is 

overlain by a permeable sandstone layer, which is itself overlain by a sediment layer of similar 

permeability. The entire domain is assumed to be below the water table, much as many European 

repository systems (e.g., sited in granite). Tables 8.6-1 and 8.6-2 list key problem parameters. 
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Table 8.6-1. Parameters for elastic material model. 

Property Sediment Sandstone Clay Units 

Density 2100 2100 2100 kg/m
3
 

Young's Modulus 0.145 20 50 GPa 

Poissons Ratio 0.2 0.2 0.12 --- 

Coefficient of Linear 
Thermal Expansion 

1.16E-07 1.16E-05 1.4E-05 m/m-C°

 

 

Table 8.6-2. Flow and transport parameters. 

Property Sediment Sandstone Clay Units 

Initial Porosity 0.4 0.15 0.1 - 

Permeability  5.0E-15
 

1.0E-14 1.0E-15 (m
2
) 

Thermal Diffusivity 6.95E-07 7.27E-07 7.27E-07 (m
2
/sec) 

Species Diffusivity 1.0E-08 1.0E-08 1.0E-08 (m
2
/sec) 

Retardation Factor 1.0 1.0 1.0 - 

 

The repository is represented by a 5 m thick layer, 500 m by 250 m in plan view, backfilled with 

clay and packed to the same permeability as the surroundings, but with an elastic modulus of 5 

GPa (compared to 50 GPa for the in-situ clay/shale). In the present simulation the repository 

radioactive decay power follows an exponential decay in time, with an initial power of 60 

kW/acre, and a half-life of 50 years.  

 

The initial regional stress state is assumed extensional with VH  7.0 , see section 8.4.  The 

overburden pressure is specified at the top of the computational domain, and the bottom and 

lateral surfaces are fixed against normal displacement. There is also a regional (lateral) 

volumetric seepage rate of 5 cm/yr in the sediment, 10 cm/yr in the sandstone layer, and roughly 

1 cm/yr in the clay layer.  

 

A simple contaminant scenario is considered, for purposes of demonstration. The contaminants 

are composed of a two-member decay chain. The precursor species has a half-life of 100 years 

and the daughter species a much longer half-life, modeled here as a conserved species. The 

initial precursor inventory in the repository is modeled as unit concentration, with zero initial 

concentration elsewhere. The daughter species does not exist initially, and in the present 

demonstration neither species is adsorbed by the porous materials. The lateral seepage and 

buoyancy-induced flow are primary mechanisms for transport of contaminants from the 

repository to the biosphere. 
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Figure 8.6-1. Schematic representation of the model geometry and geostratigraphy (not to scale). 

8.6.2 Results 

Figure 8.6-2 shows the temperature, vertical displacement and critical shear at 26 years in the 

sandstone and clay layers; the sediment layer has been removed to more clearly display the 

thermal expansion induced deformation. As noted, the actual vertical displacement is about 10 

cm over the center of the repository. The repository attains a maximum temperature of about 

135
o 
C at 26 years.  The vertical component of effective stress displays a large gradient near the 

ends of the repository, and the repository horizon itself experiences a bow-shaped deformation. 

This is clearly displayed in the plot of critical shear (see section 8.4 for more discussion on the 

meaning and calculation of critical shear). Shear failure is indicated at the interfaces between the 

repository and the in-situ clay and at the interface with the sandstone. Together with the 

indicated warping of the repository horizon, the shear failure and mechanical deformations could 

damage the waste canisters and engineered barriers, indicating further investigations would be 

warranted.  

 

Figure 8.6-3 shows a time sequence of the distribution of the daughter species; the precursor 

species disappears early owing to a short half-life and convective/diffusive processes. In this 

figure, the sandstone and clay near the repository have been removed to reveal the movement of 

the contaminant plume. The daughter species is formed from decay of its precursor near the 

repository, is convected upward by thermally induced buoyant upwelling through the repository 

into the fast-moving (10 cm/yr) horizontal flow in the sandstone. The plume is convected and 

diffused along the sandstone until it exits the domain, about 1.5 km from the repository, in 

roughly 2000 years. Not all of the contaminant exits the domain, some of it remains trapped in 

the adjoining sediment layer. 
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Figure 8.6-2. Distribution of temperature, vertical component of effective stress and critical shear at 26 

years in the clay/shale and sandstone layers. The sediment layer has been removed to 
accentuate the thermal expansion induced deformation.  
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Figure 8.6-3. Time sequence of contaminant plume migration.  

Though highly simplified, this demonstration problem suggests several features of this scenario 

that would warrant further study. There are a host of additional, important model features that 

could be considered, including permeability as a function of damage (e.g., critical shear), 

dissolution effects in the repository for better modeling of contaminant release, contaminant 

adsorption, either with a constant distribution coefficient or with nonlinear dependence on the 

local concentration (see Bear 1979), to name a few. The simulation displays and highlights some 

of the coupled multiphysics capabilities for geosystems modeling that are available in the Sierra 

system as a result of this research and development effort. 
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9. Conclusions 

The foregoing chapters have summarized the research and development performed in this LDRD 

project. The main accomplishment was development of a foundational SNL capability for 

computational thermal, chemical, fluid and solid mechanics analysis of geosystems. The code 

was developed within the Sierra software system and was developed from the outset to run on 

massively parallel computers. Much auxiliary software is available for developing grids and 

viewing the results using parallel processing capabilities, enabling application of the software on 

massively parallel computers just as easily as on a single workstation.  

 

Project milestone goals developed at the beginning of the project were ambitious and have been 

met, with the exception of the geochemical modeling, which was partially completed. First, 

multiphase flow physics models for porous media were developed, implemented and verified 

against solutions provided in the literature or in a few cases against analytical solutions. These 

models describe single- and two-phase flows in heterogeneous porous materials and can be 

coupled with heat and reactive species transport. The development and implementation of 

multiphase reactive species transport specific to porous media was also a major goal. This 

capability enables another goal, the development of computational geochemistry. Geochemistry 

models describing carbonate systems, crucial to subsurface sequestration of carbon dioxide, were 

formulated, implemented in Cantera and verified, as described in Chapter 3. Owing to time 

constraints, these models have not been applied in a reactive flow setting. However, the 

machinery is in place for fully coupled flow and geochemistry and its development will continue 

under the CFSES project mentioned in the introduction.  

 

Multiphase models of the CO2-brine system in particular and reactive species modeling in 

general require real fluid computational thermodynamics models. Thermodynamics models were 

developed in Cantera. Accurate equation of state (EoS)-based phase behavior of the CO2-H2O-

NaCl system was developed and implemented. Additionally, phase behavior of general fluid 

mixtures can be modeled using a multicomponent Redlick-Kwong EoS. Cantera also provides 

thermodynamic functions such as activities and fugacities necessary for solving chemical 

reaction problems.  

 

Several geomechanics constitutive models describing geomaterials have been developed and 

implemented into the Sierra software system. One model is specifically developed for describing 

creep, primarily for modeling of salt beds. A second model incorporates the influence of 

capillary pressure and phase saturation on the isothermal elasto-plastic response of porous 

materials whose pore space is saturated with liquid and gas phases. Finally, an elasto-plastic 

constitutive model for Castlegate Sandstone, was implemented in the SNL Geomodel using 

laboratory data provided by T. Dewers (6914). The Geomodel is a general constitutive model for 

describing a very large variety of geologic materials. Castlegate Sandstone is being utilized as 

representative of a saline reservoir for CO2 sequestration simulations. 

 

Geologic materials are highly spatially heterogeneous in their properties. Geostatistical methods 

are applied to model material variability. Aria and Adagio were enhanced to allow heterogeneous 

descriptions of properties as fields. Random field representation of material properties using the 
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Karhunen-Loeve (KL) expansion was developed. This construction was used as a basis for 

developing conditional simulations of properties constrained to sparsely known field data.  

 

A general coupling strategy was developed for multiphysics simulations. Together with the 

physics models discussed above, this capability enables the ultimate goal of the project, coupled 

multiphase thermal, chemical, solid and fluid mechanics simulations in heterogeneous porous 

materials. This capability was demonstrated in Chapter 8.  

 

The accomplishments of this project impact SNL‘s Energy, Climate and Infrastructure Security 

(ECIS) Strategic Management Unit‘s ability to respond to important national energy problems 

such as disposal of nuclear waste, CO2 sequestration, bioremediation, and engineered geothermal 

systems. They also position SNL to more effectively compete for DOE, CRADA, and Work for 

Others projects in the area of energy security, a key to ensuring the nation‘s economic stability 

and national security. This work also impacts national security projects dealing with weapon 

safety and reliability, particularly in energetic materials, such as cook-off, smoldering, and 

multiphase material relocation, to name a few. Finally, this effort promoted close collaborations 

with the University of Texas at Austin Center for Subsurface Modeling and the Jackson School 

of Geosciences including the Bureau of Economic Geology on research issues related to 

reaction/transport modeling of deforming geomaterials. This effort expands the potential 

customer and application base for computational geosciences at SNL and addresses many 

technologically important applications of great national significance. 
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11. Appendix A:  Numerical Implementation of Fluid 

Flow 

Unstructured Grid Finite Element-Based Discretization 

The discretization is based on an unstructured grid finite element method (FEM), wherein 

variables are represented by a finite dimensional basis. Taking the nonisothermal air/water 

system as an example, the canonical form of the spatially discrete coupled system is: 
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 (11.1) 

 

written as a system of residual equations, the right hand side of which represent the balance 

equations for water, air and energy. The indices I and J represent discrete nodal values of 

variables. Also,   1l l l g g ld Y S Y S       represents the bulk density of component  , 

while e is the bulk energy density. This is the Galerkin finite element formulation (GFEM), 

which typically may be used for single phase systems, but usually needs modifications for 

multiphase systems, especially when involving phase transitions. 

 

A lumped mass matrix promotes stability for temporal problems, which amounts to row-

summing the mass matrix of an equation and placing the result on the diagonal, 
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where the last term includes a first-order discretization in time. The other modification needed is 

upwinding.  

 

Edge-Based Upwind Flux 

Experience has demonstrated that to solve multiphase flow problems with phase appearances or 

disappearances, an upwinded Darcy flux is necessary. A consistent method for applying 

upwinding on a finite element discretization is a method originally discussed by Dalen (1979) 

and later by Forsyth (1991). The method yields an edge-based mass conservative discretization.  

 

Recall the Galerkin Darcy flux term (integrated by parts) 
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in which we left off the gravitational term for clarity, and the spatial representation of the 

coefficient  (= /rY k   for a multiphase flow problem) is not yet specified. The edge-based 

method derives from the following property of FEM, 
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therefore, 
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If we apply this to the Galerkin flux residual above, we can get, 
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To this point, this is still the Galerkin representation. Now we apply upwinding to the flow 

coefficient. Define, 

 

 
 

 
( , )

, 0

, 0

J IJ J Iu

I J

I IJ J I

K P P

K P P






 
 

 

 (11.7) 

 

where we have included the assembled transmissivity, as suggested by Forsyth, 
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so as to prevent ―down-winding,‖ an unstable scheme. Applying these approximations and 

definitions yields 
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The minus sign comes from the definition of the transmissivity matrix. Notice that each term in 

the sum can be interpreted as the flux between nodes I and J, and that this flux has a conservative 

property, 

 

  ( , )

u

IJ I J IJ J I JIF K P P F      (11.10) 

 

It is also noteworthy that the residual can be written in the form 
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where the flux is defined by, 
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The architectural difference between this form and the GFEM form is that here the discrete flux 

vector depends on the I-th node explicitly, as opposed to all the nodes, with no particular 

preference for any one particular node, as in the GFEM. 

 

Including the transmissivity in the upwinding can be unwieldy in the usual processing of FEM; 

the assembled matrix would require a pre-processing loop over the elements, not to mention 

storing the transmissivity matrix. The alternative is to have meshes that produce no negative 

entries, but these are hard to come by. A solution that comes close is to use vertex quadrature for 

these upwinded flow terms. 

 

Treatment of the gravity term 

The formulation above rests on treating the flux in terms of the gradient of a flow potential. Here 

we define a pseudopotential that will allow us to use the foregoing forms of the upwinded flux. 

The gravitational potential can be written as,  
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where  is the elevation from a datum. The total potential can be written as 
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where the spatial representation of density is approximated by, 
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The potential (pressure and gravity) gradient for the fluxes can then be defined by 
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12. Appendix B:  Thermodynamic Functions for the 

Multicomponent R-K System  

Calculation of the Expression for the Chemical Potential 

We may take Eqn. (6.18), and find the formula for the chemical potential 
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And then rearranged to yield Eqn. (12.2): 
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The first three terms of Eqn. (12.2) are recognized as the EoS for the ideal gas approximation. 

The remaining terms may be identified with an activity coefficient representation for the mixture, 

Eqn. (12.3). 
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where the standard state includes the ideal gas pressure term, 
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Derivation of the Fugacity Expressions 

The fugacity expressions may be calculated from the following starting point 
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Where the circled reference state is the ideal gas reference state where o

i if X P . Then 
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Therefore, the fugacity coefficient is equal to 
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This last equation agrees with that given by Spycher et al. (2003). 

 

Derivation of the Entropy Expression 

The entropy can be derived from the following expression: 
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Taking the derivative of Eqn. (6.20) yields, 
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Note that this expression again differs from that in Prausnitz. However, this is resolved after 

considering that the standard states are actually at constant pressure, and we are taking a constant 

volume differentiation. Taking that into account gets rid of the TRn  factor at the end of the 

expression leading to the one in Prausnitz‘s book. Note also that this agrees with the ideal gas 

entropy limit, or with taking the derivative of the Gibbs free energy with respect to temperature 

at constant pressure, which is consistent with the reference state. 
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Now, we will assume in the analysis below that only has a dependence on temperature. Then, we 

can calculate the derivative of the pressure with temperature. 
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Then, we can calculate the integral as we did before. 
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We can also separate out the parts of the last term, 
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Lastly, we can separate out the ideal gas contributions for the enthalpy from the correction to the 

ideal gas contribution. 
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Most of the terms in the second line of Eqn. (12.12) are the ideal gas contributions, while all of 

the terms in the first line are corrections to the ideal gas EoS. 
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Derivation of the Internal Energy Expression 

We can calculate the total internal energy from the expression, 
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This can be simplified to, 
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Derivation of the Total Enthalpy Expression 

We can calculate the total enthalpy from the expression 
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Derivation and Self-Consistency of the Total Gibbs Free Energy Expression 

We can calculate the total internal energy from the expression 

nG nA PV   (12.18) 

Plugging in the expression for the Helmholtz free energy 
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This can be simplified 
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 (12.19) 
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We can verify the last expression by calculating the additional equation, Eqn. (12.20). 

 , ,i i i

i

nG n T P n  (12.20) 

Let us take Eqn. (12.2), 
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We obtain, 
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which can be then simplified to, 
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Further simplification leads to Eqn. (12.21). 
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 (12.21) 

The two equations, Eqn. (12.19)and Eqn. (12.21), agree. 
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Derivation of First Derivatives of the Pressure 

Let us calculate the derivative of pressure with respect to temperature, volume, and mole 

number. 
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 (12.24) 

These expressions are then used in subsequent derivations. 

 

Derivation of Partial Molar Volume Expressions 

For given conditions one can calculate the total volume of a mixture by solving the cubic EoS. 

However, it is less obvious how the partial molar volumes of the mixture are calculated. We start 

by manipulating the EoS to the following form 
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 (12.25) 

Then, we can rearrange the following expression, 
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 (12.26) 

Now, we can formulate the partial molar volume expression, Eqn. (12.27) as 
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i
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Carrying this out on Eqn. (12.26), 
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Collecting terms yields, 
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And then, 
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(12.28) 

This is a closed form expression for the partial molar volume. It is correct for the ideal gas limit. 

When its multiple with 
in  is summed up over all species, it should equal V again. This is true for 

all partial molar properties. 

 

Heat Capacities 

Taking derivatives at constant pressure is not possible with a volume based EoS. However, we 

can take our cues from Wagner and Prub (Wagner and Prub 2002) who develop thermodynamic 

functions from a Helmholtz formulation with T and  being independent variables. 

First, let us derive a useful formula, 

p T

dS dS
dS dT dp

dT dP
   
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V p T V

dS dS dS dP
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Now, it is a trick to rearrange 
P

dV

dT
 so that it is a function of P. The resulting expression is 
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dV dT

dT dP
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Note, the negative sign in Eqn. (12.29) is correct. Eqn. (12.29) can be verified on any simple 

system, and is a trick worth remembering. Plugging it in yields Eqn.(12.30). 
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 (12.30) 

Then, it is just a matter of developing the formulas. 

There is an alternative to the above treatment starting with a differential expression for the 

change in enthalpy with constant mole numbers assumed. 

T P

dH dH
dH dP dT

dP dT
 

  

 

We can make that specific via Eqn. (12.31) (note this equation can easily be verified for an ideal 

gas case). 
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Therefore, 
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 (12.32) 

As derived in the next section, Eqn. (12.32) may be simplified for a volume-based formulation 
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All of these quantities are readily calculated. Starting with the equation below, we derive the 

derivative of the enthalpy with respect to temperature. 
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 (12.34) 

 

Partial Molar Quantities – Partial Molar Enthalpy 

We need to develop an equation to describe the enthalpy approximation as a function of ni, v, and 

T. Normally, we could just take the derivative of the expression with respect to ni to determine 

the partial molar enthalpy. However, partial molar quantities have a property that the pressure is 

held constant and therefore, we cannot just do this simple treatment and instead we adopt the 

following approach. We will calculate the derivative of the enthalpy with respect to mole number 

at constant volume. Then, we will derive a ―fixed-up‖ formula for translating that result to a 

constant pressure result. Let us begin with the differential of the enthalpy expression at constant 

pressure. Then, we will take the derivative of the differential with respect to the i
th

 species mole 

number at constant volume, thereby generating an expression that relates the constant molar 

volume derivative to the constant pressure derivative, Eqn. (12.35), 
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dn dn dP dn
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Note that a more sophisticated treatment beginning with a full differential results in the same 

expression as Eqn.(12.35). The above equation then appears to be correct and has been shown to 

be correct by using the partial molar summation property rule. Now, 
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Note, this formula works for the ideal gas case. Most of the expressions have already been 

derived previously. Here, we derive the last expression. 
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 (12.38) 

Note, for an ideal gas, the following expression holds, 

, , , ,i iV T nj P T nj

dnH dnH

dn dn
  (12.39) 

 

Partial Molar Quantities – Partial Molar Entropy 

For the partial molar entropy we may use the following expression (Smith and Ness 1975): 

,

i
i

p nj

d
S

dT


   (12.40) 

However, we are still left with a problem in determining the constant pressure property and the 

following formula provides the solution, 
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Then, this may be simplified to 
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Thus, we are left with developing one expression for the derivative of the chemical potential in 

order to calculate the partial molar entropies. We start with Eqn. (12.2) to develop the expression 
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In the limit of an ideal gas, 
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13. Appendix C:  Conditional Gaussian Fields 

Let     ,       ,    , be a real-valued Gaussian random field with mean      
        and covariance function                                  . Suppose   is 

measured without error at   points                and that         ,        . 

 

Consider the     dimensional Gaussian random vector with coordinates  

 

 

                                                      (13.1) 

 

 

mean vector  
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 (13.2) 

 

and covariance matrix  
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 (13.3) 

 

The first   coordinates of the Gaussian random vector defined by Eqn. (13.1) correspond to 

values of the field at arbitrary locations in  , and the last   coordinates of this vector correspond 

to the field at the known measurement sites. 

 

It can be shown (see, for example, [Grigoriu 2002, 66]) that the conditional vector  

 

 

                                        (13.4) 

 

 

is Gaussian with     mean vector  ̃ and     covariance matrix  ̃, where  

 

 

  ̃           
         

  ̃            
      (13.5) 
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We note that  ̃ defined above is consistent with the ―simple Kriging‖ interpolation scheme 

(Cressie 1993, chap. 3). 

 

Because           are arbitrary, the second moment properties of this vector constitute the 

second moment properties of the random field     , conditional on measurements 

               . Samples of the conditional Gaussian field on the grid              can 

be produced by generating samples of the conditional Gaussian vector defined by Eqn. (13.4) 

using, for example, its Karhunen-Loéve expansion. 
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