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Abstract

In safety engineering, performance metrics are defined using probabilistic risk as-
sessments focused on the low-probability, high-consequence tail of the distribution of
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possible events, as opposed to best estimates based on central tendencies. We frame
the climate change problem and its associated risks in a similar manner. To properly
explore the tails of the distribution requires extensive sampling, which is not possible
with existing coupled atmospheric models due to the high computational cost of each
simulation. We therefore propose the use of specialized statistical surrogate models
(SSMs) for the purpose of exploring the probability law of various climate variables
of interest. A SSM is different than a deterministic surrogate model in that it rep-
resents each climate variable of interest as a space/time random field. The SSM can
be calibrated to available spatial and temporal data from existing climate databases,
e.g., the Program for Climate Model Diagnosis and Intercomparison (PCMDI), or to a
collection of outputs from a General Circulation Model (GCM), e.g., the Community
Earth System Model (CESM) and its predecessors. Because of its reduced size and
complexity, the realization of a large number of independent model outputs from a
SSM becomes computationally straightforward, so that quantifying the risk associated
with low-probability, high-consequence climate events becomes feasible. A Bayesian
framework is developed to provide quantitative measures of confidence, via Bayesian
credible intervals, in the use of the proposed approach to assess these risks.
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1 Introduction and motivation

The US Climate Change Research Program’s (CCRP) long-term performance measure is
to “deliver improved scientific data and models about the potential response of the Earth’s
climate and terrestrial biosphere to increased greenhouse gas levels for policy makers to
determine safe levels of greenhouse gases in the atmosphere.” One interpretation of this
goal is that: (1) there is a well-defined threshold above which levels of greenhouse gases are
“unsafe”; (2) this threshold is possible to determine; and (3) the Earth’s climate has not
yet crossed the threshold. The CCRP meaning of “safe” is presumed to be the level “that
would prevent dangerous anthropogenic interference with the climate system” referenced
by the 1992 United Nations Framework Convention on Climate Change (UNFCCC) [23].
Schneider and Lane [22] proposed metrics for dangerous climate change, which spanned the
sustainability measures of water, energy, health, agriculture, and biodiversity, and included
risks associated with extreme weather events and irreversible cascading chains of events
beyond “tipping points”. As a consequence, we are motivated by metrics associated with
high-consequence climate changes, which we define as the changes that would be experienced
if the true climate sensitivity is in the upper tail of its underlying probability distribution.
Climate sensitivity is commonly defined as the change in the global mean surface temperature
after the climate system has reached a new equilibrium in response to a doubling of the CO2

concentration in the atmosphere.

The large and growing body of literature on global climate change is mostly written from
a scientific perspective that focuses on the most probable future. A scientific approach is the
most appropriate method for gaining understanding of natural systems by applying physi-
cally sound theory, empirical observations, and validated models. Scientifically conservative
estimates are the ones that deviate the least from prior expectations. Scientific conservatism,
when applied to climate change, tends to downplay the degree of change, and virtually all
the climate change literature uses the term “conservative” in the opposite sense from that of
safety engineers. The common approach is to generate probability density functions (PDFs)
that encapsulate the best estimate of the future, plus some bounds on its uncertainty. The
lower bound on expected climate change is the scientifically conservative estimate.

The Intergovernmental Panel on Climate Change (IPCC) reports present climate fore-
casts as assessments of the most probable future, with the tendency to err on the side of
scientific conservatism. For example, the Fourth Assessment Report (AR4) of the IPCC pro-
vides a graph of “warming by 2090-2099 relative to 1980-1999 for non-mitigation scenarios”
in terms of “best estimate and likely ranges of warming.” “Likely” is defined by the AR4 as
an outcome that occurs with a probability of more than 66%. Thus, the ranges provided by
the IPCC for various scenarios tend to be of the most interest to decision makers because
they are the most probable. Unfortunately, they are often treated as accurate forecasts to
be used as the basis for informing policy decisions, as opposed to using high-consequence
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forecasts as suggested by Palmer [18].

The development of methods to quantify the uncertainty in climate sensitivity (and other
climate system response characteristics) is a topic of ongoing research. Some assessments
result in the generation of PDFs rather than the simple “likelihood bounds” as provided by
the IPCC. These studies consistently show that the high-end sensitivities have a significant
probability. For example, Forest, et al., [6], give a 5-to-95% confidence interval of 1.4 to 7.7
◦C climate sensitivity with a distribution that is strongly skewed with a sharp cutoff at the
low end and a fat tail at the high end. The sharp low-end cutoff is expected, because the best
understood feedbacks are strongly positive (e.g. water vapor) and any perfectly-canceling
negative feedback would need to cancel not only the forcing but also the large positive
feedbacks. Andronova & Schlesinger [1] calculated a distribution with a 10% probability of
climate sensitivity greater than 6.8 ◦C. Skewed distributions with a high-sensitivity tail are
characteristic of climate sensitivity PDFs, and Roe and Baker [20] argue that such skewness is
an inevitable consequence of the nature of the climate system and the inherent uncertainty
in the feedbacks. More recent research suggests that the upper bound of the confidence
interval in climate sensitivity may also have been underestimated [14] due to compensating
feedbacks assumed in previous studies. This interpretation further suggests the need for a
safety engineering approach to characterize the mechanisms that can lead to high sensitivity.

Murphy, et al. [17] used the ensemble method in a “perturbed physics” approach, which
systematically varied 29 model parameters to determine a probability distribution function
that has a 5% to 95% range of 2.4◦C to 5.4 ◦C, with a median of 3.5◦C and a most prob-
able value of 3.2◦C. This sophisticated analysis makes use of more advanced models and is
consistent with the transient effects of climate change and forcing. Processes that deter-
mine climate sensitivity are varied systematically and uncertainties are weighted according
to an objective index. However, the perturbed physics approach is prohibitively expensive in
many cases due to the cost of the coupled climate model. In practice, one must construct a
cheaper surrogate of a quantity of interest – say surface temperature or precipitation – whose
samples are used to approximate statistics. Constructing a surrogate model from scattered
data poses challenges for many existing techniques. In what follows, we propose a transla-
tion random field surrogate for a quantity of interest tuned to a set of output data from a
coupled climate model. With this surrogate, we are able to explore tail probabilities of the
quantity of interest that are essential to formal study of the consequences of the changing
climate system.

The outline of our paper is as follows. The statistical surrogate model (SSM) is developed
in Section 2, with emphasis on calibration of the SSM to available data, the use of the SSM to
make predictions, and the development of Bayesian methods to assess model credibility. The
general framework is then applied to two different climate variables of interest in Section 3:
global mean surface temperature and precipitation rate.
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2 Statistical surrogate model for climate variables

Let A(λ, φ, z) denote a climate variable of interest, e.g., temperature, precipitation rate, total
cloud fraction, etc., where 0 ≤ λ < 2π, −π/2 ≤ φ < π/2, and z ≥ 0 are spatial coordinates
denoting longitude, latitude, and geodesic altitude, respectively. To simplify notation, we
use u = (λ, φ, z)T ∈ D = [0, 2π) × [−π/2, π/2) × [0,∞) to collectively represent all spatial
coordinates and simply write A(u), u ∈ D.

To represent variability and uncertainty in climate variables, we model A(u) as a random
field, that is, A(u) is a random variable for every fixed u ∈ D. Hence, A = A(u, ω) also
depends on additional argument ω ∈ Ω, where Ω represents the appropriate sample space of
A. It is common practice to omit the explicit depiction of the functional dependence of A
on ω and we shall do so here. Further, our convention is to use a capital letter or symbol
to denote any random quantity; lowercase letters and symbols are reserved for deterministic
quantities.

Our objective is to develop a class of surrogate models for A that can be used to make
defensible predictions about the probability of various climate change scenarios of interest.
Special emphasis is placed on the tails of the probability distribution, the calibration of the
surrogate model to available data from current and future runs of complex climate models,
and to providing a quantitative measure of confidence in any model predictions. Throughout
the discussion we assume A is a scalar quantity; the approach can be extended to represent
vector-valued climate variables.

2.1 Model definition

Let G(u) be a real-valued Gaussian random field with zero mean, unit variance, and covari-
ance function c(u,v) = E[G(u)G(v)], where E[X] denotes the expected value of random
variable X. We model A by a monotonic transformation of G of the following form

A(u) = F−1A ◦ Φ (G(u)) , (1)

where FA = FA(a|θ) is an arbitrary cumulative distribution function (CDF) that depends
on parameter vector θ ∈ Rd, and Φ is the CDF of a N(0, 1) random variable, that is, a
Gaussian or normal random variable with zero mean and unit variance. Herein, we assume
FA is absolutely continuous, that is, we assume there exists an integrable function fA such
that fA(a|θ) = dFA(a|θ)/da is a probability density function (PDF). It can be shown that
random field A has marginal CDF FA and marginal PDF fA. This class of model is a
special type of non-Gaussian random field referred to as a translation random field (see [10,
Section 3.1.1] and [11]); it is common to refer to G as the Gaussian image of A.
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By careful selection of the properties of G, as well as the functional form of FA and
its parameters θ, it is possible to calibrate A to match statistical estimates of the mean,
covariance, and marginal probability distribution functions of a climate variable of interest.
The translation random field model defined by Eq. (1) is a very flexible model and has proved
effective for a variety of applications in stochastic mechanics (see, for example, [4, 5]) and
the modeling of various environmental phenomena [8, 9].

2.2 Model calibration

Let zk(u), k = 1, . . . , n, denote the available data on A, that is, results from a sequence of
climate model calculations. We use z = (z1(u), . . . , zn(u))T to represent the collection of
available data to simplify notation. Calibration of the random field model defined by Eq. (1)
to z requires three steps:

1. Choose the functional form for FA, the marginal CDF of A defined by Eq. (1).

2. Calibrate θ, the associated parameters of FA.

3. Construct the covariance function, c(u,v), of G, the Gaussian image of A.

The objective of step 1 is to select a marginal distribution function FA that is sufficiently
flexible to capture any desired behavior observed in the data z, and is consistent with the
known physics. For example, if A models precipitation rate, the distribution function must
have support on the positive real line with positive skewness; the lognormal distribution
satisfies these constraints and is often used to model precipitation rate [21].

Calibration of parameters θ = (θ1, . . . , θd)
T to be consistent with available data z, that

is, step two of the calibration procedure, can be completed by one of two methods: the
method of moments, or the method of maximum likelihood [15, Chapter 6]. For the former,
we choose θ = θ̂ such that fA(a|θ̂) satisfies∫

R
aq fA(a|θ̂) da =

1

n

n∑
k=1

(z)q , q = 1, . . . , d. (2)

For the latter, we choose θ = θ̂ that maximizes

l(z|θ) =
n∏
k=1

fA(zk|θ), (3)

where l(z|θ), viewed as a function of θ, represents the likelihood that the data has PDF
fA(a|θ). We note that, by either method, the calibrated value for θ may depend on u ∈ D.
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Upon completion of steps 1 and 2 in the calibration procedure, the available data on
A can be mapped to available data on G, i.e. gk(u) = Φ−1 ◦ FA(zk(u)|θ̂), k = 1, . . . , n.
The objective for step three of the calibration procedure is to construct covariance function
c(u,v) = E[G(u)G(v)] of G, a Gaussian random field with zero mean and unit variance,
that is consistent with the data {gk(u), k = 1, . . . , n}. One approach is to utilize the
Karhunen-Loéve (K-L) representation for a Gaussian random field, i.e.

G(u) =
∑
k≥1

√
ζk ψk(u)Wk, u ∈ D, (4)

where {ζk, ψk(u), k ≥ 1} are the eigenvalues and eigenfunctions, respectively, of c(u,v) =
E[G(u)G(v)], and satisfy the integral equation∫

D

c(u,v)ψk(v) dv = ζk ψk(u), (5)

and {Wk, k ≥ 1} is a collection of independent and identically distributed (iid) N(0, 1)
random variables. In practice, the infinite sum defined by Eq. (4) is truncated at r ≥ 1
terms; we refer to the truncated sum as the K-L approximation for G. Calibration of the
K-L approximation model requires a method to choose: (i) r, the number of terms retained
in the sum, and (ii) the associated eigenvalues and eigenvectors, (ζk, ψk(u)), k = 1, . . . , r.
An efficient method to do this based on the the singular value decomposition of a matrix
containing the available data {gk(u), k = 1, . . . , n} is presented in A.

2.3 Model prediction and credibility

Let h(A(u)) be a particular property of A that is of interest, e.g., a functional of climate
field data such as the extreme or average value. Our objective is to predict values for

p(θ) = Pr
(
h(A(u)) ∈ Sh | θ

)
=

∫
Sh

h(a) fA(a|θ) da, (6)

where Sh denotes an appropriate “safe set,” that is, a set such that if the quantity of interest
h(A(u)) remains within Sh, there is no cause for alarm. We note that it is oftentimes more
useful to report values for 1 − p which corresponds to the probability that the quantity of
interest departs from the safe set. The concept of a “tipping point” described in climate
literature [16] is an example of the boundary of a safe set for this study.

Exact solutions to the integral defined by Eq. (6) do not exist in general. However,
because generating a large number of samples from the surrogate model is computationally
inexpensive, we can make use of straightforward Monte Carlo simulation to estimate the
value for the integral in Eq. (6) with high accuracy. Further, as indicated by Eq. (6), our
prediction p depends on the parameter vector θ which, due to limited data, is also uncertain.
We can handle this issue in one of two ways, as described in Sections 2.3.1 and 2.3.2.
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2.3.1 Point estimates

The calibrated model for A can be used directly to provide point estimates for p defined by
Eq. (6). Let p̂ denote an estimate for p. This estimate can be achieved by the following
steps:

1. Generate m� 1 samples of the calibrated K-L approximation for G using a truncated
version of Eq. (4).

2. Translate each sample of G using Eq. (1) with θ replaced by θ̂ defined in Section 2.2.

3. Evaluate the quantity of interest for each sample of A, herein denoted by hk, k =
1, . . . ,m.

The point estimate for p defined by Eq. (6) is then given by

p̂ =
1

m

m∑
k=1

1 (hk ∈ S) , (7)

where 1( · ) denotes the indicator function, i.e. 1(B) = 1 if event B is true and is zero
otherwise. p̂ defined by Eq. (7) is an unbiased estimator for p with variance proportional
to 1/m. Hence, the point estimate can be made very accurate because generating many
samples of the surrogate model (large m) is inexpensive.

2.3.2 Bayesian approach

The approach of the previous section provides only point estimates for p defined by Eq. (6).
We have limited confidence in these estimates due to the fact that we have limited data on
A, and we would like to quantify our level of confidence in some manner. One approach is
to instead treat θ ∈ Rd, the parameters of the marginal CDF of A, as a random vector and
apply a Bayesian approach. Bayesian credible sets can then be used to quantify prediction
confidence.

Let Θ be a random vector with d coordinates and support DΘ ⊂ Rd representing the
uncertainty in the parameters of FA defined by Eq. (1). Given a prior PDF, denoted by
fΘ(θ), that describes our knowledge on the uncertainty of Θ prior to studying the available
data, the posterior PDF for Θ given the data is [24, Section 2.1]

fΘ|z(θ|z) ∝ l(z|θ) fΘ(θ), (8)
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where z = (z1(u), . . . , zn(u))T denotes the available data on the climate variable of interest,
l denotes the likelihood function defined by Eq. (3), and the ∝ symbol is used to denote that
the left and right side of Eq. (8) are equal to within a normalizing constant.

With θ replaced by Θ, the conditional probability p(Θ) defined by Eq. (6) is a random
variable taking values in [0, 1]. It is possible to find the probability that p(Θ) belongs to
any subset C of [0, 1]; this probability is equal to

∫
CΘ

p(θ) fΘ|z(θ|z) dθ, where CΘ = {θ ∈
DΘ : p(θ) ∈ C}. In particular, the 100(1− α)% credible set for p(Θ) is the set C such that
[2, Section 4.3.2]

1− α ≤
∫
{θ∈DΘ : p(θ)∈C}

p(θ) fΘ|z(θ|z) dθ. (9)

For the special case when random variable p(Θ) has uni-modal density, the credible set can
be expressed as a credible interval, i.e. C = [a, b].

The implementation of the Bayesian approach described in this section is as follows:

1. Postulate fΘ(θ), the prior PDF for model parameters Θ; non-informative priors [24,
Section 2.3] may be used for the case when no information on fΘ(θ) is available.

2. Compute the likelihood function and posterior PDF for Θ using Eq. (8).

3. Draw m1 � 1 independent samples of random vector Θ from fΘ|z(θ|z); Markov Chain
Monte Carlo methods can be used for this step [7, 12].

4. For each sample θk of Θ, k = 1, . . . ,m1, drawm2 independent samples from fA(a|θk, z).

5. Utilize the procedure in the previous section to estimate

p̂k =
1

m2

m2∑
j=1

1(hk,j ∈ S), (10)

where hk,j denotes the jth random sample drawn from fA(a|θk, z).

6. Estimate the endpoints of the 100(1−α)% credible interval for p(Θ), denoted by â ≤ b̂,
where â and b̂ satisfy

1

m1

m1∑
k=1

1(p̂k ≤ â) =
α

2

1

m1

m1∑
k=1

1(p̂k > b̂) = 1− α

2
(11)
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We conclude this section by noting that we have ignored any uncertainty in the parametric
description of the Gaussian image of A, that is, in the eigenvalues and eigenvectors of the
K-L approximation for G defined by Eq. (4). This information can also be included in the
Bayesian approach outlined above if necessary.

16



3 Application to CCSM data

To illustrate the use of the statistical surrogate model for climate variables developed in
Section 2, we consider two collections of output from the Community Climate System Model
(CCSM) v3.0, a fully-coupled global climate model sponsored by the National Center for
Atmospheric Research (NCAR). The first collection, presented in Section 3.1, corresponds to
average December surface temperature for years 1990–1999 based on a collection of 8 different
model runs obtained from the Program for Climate Model Diagnosis and Intercomparison
[19]. We calibrate the surrogate model to the available model data and make various point
predictions that may be of interest. In Section 3.2, we study average precipitation rate in
June, July, and August over a 54-year period assuming a “cyclic Y2K ocean model.” We
apply the calibrated surrogate model to study the probability that the precipitation rate
falls below certain thresholds, then utilize the Bayesian approach described in Section 2.3.2
to quantify our confidence in these predictions.

3.1 Surface temperature

Let zk(u), k = 1, . . . , n = 80, denote the available surface temperature data; Fig. 1 illustrates
the first data set, z1(u), as contours of average surface air temperature as a function of
longitude, λ, and latitude φ. Upon inspection, we find that the data exhibits considerable
skewness, i.e. the probability distribution of surface temperature is not symmetric about its
mean value, and the degree of skewness changes with spatial location. An estimate of the
coefficient of skewness is given by

γ̂3(u) =
n
√
n− 1

n− 2

∑n
k=1 (zk(u)− µ̂(u))3(∑n

k=1 (zk(u)− µ̂(u))2
)3/2 (12)

where µ̂(u) = (1/n)
∑n

k=1 zk(u) is an unbiased estimator for the mean surface temperature.
The coefficient of skewness of the data is illustrated by Fig. 2. Regions of large positive
skewness, e.g. parts of South America, correspond to locales where infrequent but large
increases in temperature can be expected. It therefore seems appropriate to choose a non-
Gaussian distribution that is able to match the large range of observed skewness exemplified
by Fig. 2. In regions with near zero skewness, a Gaussian distribution may be adequate.

Because of these observations, we choose FA to be the CDF of a generalized version of
the Gaussian distribution [13], that is, FA(a|θ) =

∫ a
−∞ fA(ξ|θ) dξ, where

fA(a|θ) =
1√

2π (θ2 − θ3(a− θ1))
e−y

2/2, (13)
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of skewness: (a) the PDFs, and (b) the CDFs. Each has
zero mean and unit variance. For γ3 = 0, FA is a Gaussian
distribution.

is the corresponding PDF, θ = (θ1, θ2, θ3)
T is a vector of model parameters with support

θ1, θ3 ∈ R, θ2 > 0 and, assuming θ3 6= 0,

y = − 1

θ3
ln

(
1− θ3(a− θ1)

θ2

)
.

The CDF and PDF defined by Eq. (13) are illustrated by Figs. 3(a) and (b), respectively,
for various values of parameters θ1, θ2, and θ3; more details on this distribution are provided
in B.

For illustrative purposes, we make point predictions for two potential climate change
scenarios of interest. First, we develop an estimate of

p1 = Pr (h1(A(u)) ∈ S1) = Pr
(
Ā(u) ≤ 2

)
, (14)

where Ā(u) = (A(u) − E[A(u)])/
√

Var[A(u)]) is a random field with zero mean and unit
variance. By Eq. (14), 1− p1 corresponds to the probability that A will exceed the so-called
“2-σ level” and is illustrated by Fig. 4 as a function of latitude and longitude. This result
illustrates a point estimate of the probability of higher than average air temperature during
December based on the available CCSM data.

Next let D′ ⊂ D be a region of interest whose boundary is defined by lines of longitude
170 deg and 240 deg and lines of latitude −30 deg and 30 deg (this corresponds roughly
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Figure 4. Estimate of exceedance probability 1 − p1 =
Pr
(
Ā > 2

)
using the statistical surrogate model calibrated

for data on air surface temperature.

to the Pacific ocean). Suppose the maximum average surface temperature within D′ is a
quantity of interest so that

p2 = Pr (h2(A(u)) ∈ S2, ∀u ∈ D′) = Pr

(
max
u∈D′

A(u) ≤ t

)
. (15)

Figure 5 illustrates a point estimate of 1 − p2 as a function of temperature t; the estimate
is based on 20,000 independent samples of A, the statistical surrogate model calibrated for
average surface temperature.

3.2 Precipitation rate

The proposed statistical surrogate model has also been calibrated to CCSM model predic-
tions of precipitation rate. This data set consists of monthly average precipitation rates for
June, July, and August, over a 54-year period. Let zk(u), k = 1, . . . , n = 162, denote the
available data on precipitation rate; Fig, 6 illustrates z1(u) in units of mm/hr as a function
of longitude, λ, and latitude φ. As mentioned, the lognormal distribution is often used to
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21



 

 

0  60 120 180 240 300 360
−90

−60

−30

0  

 30

 60

 90

0 0.2 0.4 0.6 0.8

φ
[d
eg
]

λ [deg]

z1(λ, φ) [mm/hr]
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model precipitation rate [21]; the corresponding PDF is given by

fA(a|θ1, θ2) =
1√

2π θ2 a
e−(ln a−θ1)

2/(2 θ22), a > 0, (16)

where θ1 ∈ R and θ2 > 0 are model parameters.

We first consider point estimates of

p3 = Pr
(
Ā(u) ≤ −1

)
, (17)

where Ā is defined by Eq. (14); p3 corresponds to the probability that the precipitation rate
will be equal to or less than the “1-σ level”. Figure 7 illustrates an estimate of p3 using
the surrogate model calibrated to the available data; this result illustrates a point estimate
of the probability of drier than average conditions. Estimates of the model parameters,
θ̂1 = n−1

∑n
k=1 ln zk and θ̂22 = n−1

∑n
k=1(ln zk − θ̂1)

2, are obtained using the method of
maximum likelihood, Eq. (3).

A more useful result for the assessment of risk is to apply the Bayesian analysis described
in Section 2.3.2. We predict

p4(ρ) = Pr (A(u) ≤ ρ) , (18)
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Figure 7. Estimate of exceedance probability p3 =
Pr
(
Ā ≤ −1

)
using the statistical surrogate model calibrated

for data on precipitation rate.
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the probability that the precipitation rate is less than or equal to threshold ρ, and provide a
measure of confidence on our predictions of p4 as a function of ρ. To simplify the discussion,
we present such an analysis for a fixed spatial location, i.e. a fixed u ∈ D, that is roughly
located at the city of Albuquerque, New Mexico. The analysis can be generalized to consider
the entire domain D, but we focus here on a single grid point to clarify the discussion.

Following the procedure outlined in Section 2.3.2, we first model θ = (θ1, θ2)
T , the

parameters of the lognormal PDF defined by Eq. (16), as Θ = (Θ1,Θ2)
T a random vector

with independent coordinates and non-informative prior PDF

fΘ(θ1, θ2) ∝ const., θ1 ∈ R, θ2 > 0. (19)

Given the available CCSM data on precipitation rate, z, application of Eqs. (8) and (16)
yields the posterior PDF for the model parameters, i.e.

fΘ|z(θ1, θ2|z) ∝ θ−n2 exp

(
− n

2 θ22

(
ŝ2 − 2µ̂θ1 + θ21

))
, θ1 ∈ R, θ2 > 0, (20)

where µ̂ = n−1
∑n

k=1 ln zk and ŝ2 = n−1
∑n

k=1(ln zk)
2 denote the sample mean and sample

mean square of the natural log of the data. The posterior PDF for Θ is illustrated by
Fig. 8(a).

Following step 3, the Markov Chain Monte Carlo (MCMC) method [12], was used to draw
10,000 independent samples of random vector Θ from fΘ|z(θ1, θ2|z) defined by Eq. (20).
These samples are illustrated by Fig. 8(b); level contours of the posterior PDF are also
plotted to illustrate the performance of the MCMC method.

We next apply steps 4–6 from Section 2.3.2 to calculate the 100(1−α)% Bayesian credible
interval for p4 defined by Eq. (18); for calculations, we assume α = 0.1. Two cases are
studied, as illustrated by Figs. 9(a) and (b), respectively. In each case, the estimate of p4(ρ)
is denoted by a blue solid line, while the corresponding 90% Bayesian credible intervals are
illustrated by red dashed lines. In panel (a), we restrict the analysis to half of the available
data points. The resulting credible intervals are wider, indicating a lower degree of model
credibility, when compared to panel (b), which corresponds to the same analysis based on
the full data set. In addition, we note that the width of the credible intervals changes with
ρ.
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4 Conclusions

We have formulated risk assessment in climate change impact studies in a framework similar
to that used in safety engineering, by acknowledging that probabilistic risk assessments
focused on low-probability, high-consequence climate events are perhaps more appropriate
than studies focused simply on best estimates. To aid in this study, we have developed
specialized statistical surrogate models (SSMs) that can be used to make predictions about
the tails of the associated probability distributions. The SSM represents each climate variable
output of interest as a space/time random field, and can be calibrated to available spatial
and temporal data from existing climate databases, or from a collection of outputs from
Global Circulation Models. Due to its reduced size and complexity, the realization of a large
number of independent model outputs from a SSM becomes computationally straightforward,
so that estimates of low-probability, high-consequence climate events becomes feasible. A
Bayesian framework was also developed to provide quantitative measures of confidence, via
Bayesian credible intervals, in the use of the proposed SSM as a statistical replacement for
the associated GCM.
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A Calibration of the K-L representation for a

Gaussian random field

We present a method to calibrate a covariance model of a Gaussian random field based on
the singular value decomposition (SVD) of the data matrix of measurements described in
Section 2.2. In practice, the data exist as point measurements over the spatial domain D; let
uj ∈ D, j = 1 . . .m be the locations of measurements. We assume samples of the surrogate
random field model occur at the uj. If we wish to sample the model at other points in D,
we can use standard spatial interpolation techniques [3].

The kth measurement at the point uj is written gk(uj), which we assume comes from a
zero mean random field. Define the m× n data matrix x with entries

xjk = gk(uj). (21)

To calibrate an empirical covariance matrix, we compute the SVD of the zero-mean samples

x = yσ vT . (22)

We then pose the following surrogate model for the Gaussian random field G(uj): G(u1)
...

G(um)

 ≈ 1√
n− 1

n−1∑
i=1

σiyiWi, (23)

where yi are the left singular vectors and σi are the singular values. This is similar to the
truncated Karhunen-Loéve expansion defined by Eq. (4), since yi are the eigenvectors of the
empirical covariance matrix 1

n−1x xT , and σ2
i /(n − 1) are its eigenvalues. Notice that the

maximum possible truncation level is set by the number of available data n. However, we
may be able to further truncate the expansion to less than n terms depending on the decay
of the singular values. To generate samples of the calibrated field G(uj), we draw samples
from the iid Gaussian Wi and apply the transformation given by yσ.
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B A generalized normal distribution

Let A be a random variable with PDF fA(a|θ1, θ2, θ3) defined by Eq. (13). We can show that
the support of the distribution, denoted by DA, is given by

DA =


(−∞, θ1 + θ2/θ3), θ3 > 0;

(θ1 + θ2/θ3,∞), θ3 < 0;

(−∞,∞), θ3 = 0,

(24)

meaning that the PDF defined by Eq. (13) is zero for all a /∈ DA. It follows that the mean,
variance, and coefficient of skewness of A are

E[A] =

∫
DA

a fA(a) da = θ1 −
θ2
θ3

(
eθ

2
3/2 − 1

)
,

var[A] =

∫
DA

(a− E[A])2 fA(a) da =

(
θ2
θ3

)2

eθ
2
3

(
eθ

2
3 − 1

)
,

skew[A] = (var[A])−3/2
∫
DA

(a− E[A])3 fA(a) da =
3eθ

2
3 − e3θ23 − 2(
eθ

2
3 − 1

)3/2 sign(θ3). (25)

Further, A is a Gaussian random variable with zero skewness if, and only if, θ3 = 0; A is a
non-Gaussian random variable with positive (negative) skewness when θ3 < 0 (θ3 > 0).

Given n independent samples of A, denoted by z = (z1, . . . , zn)T , the likelihood that this
collection of samples was drawn from the generalized normal distribution is given by Eq. (3).
This is often conveniently expressed as the negative of the log of the likelihood function, that
is, − ln l(z|θ) where, by Eqs. (3) and (13)

− ln l(z|θ) =
n

2
ln 2π +

n∑
k=1

1

2 θ23

[
ln

(
1− θ3(zk − θ1)

θ2

)]2
+ ln (θ2 − θ3(zk − θ1)) . (26)

It follows that the values for θ that maximize the likelihood function also minimize Eq. 26
and are the solution θ̂ = (θ̂1, θ̂2, θ̂3)

T to the following set of equations

n∑
k=1

θ̂3

θ̂2 − θ̂3(zk − θ̂1)
+

ln ξk

θ̂2 θ̂3 ξk
= 0

n∑
k=1

1

θ̂2 − θ̂3(zk − θ̂1)
+

ln ξk

θ̂22 θ̂3 ξk
(zk − θ̂1) = 0

n∑
k=1

θ̂1 − zk
θ̂2 − θ̂3(zk − θ̂1)

− (ln ξk)
2

θ̂33
− ln ξk

θ̂2 θ̂23 ξk
(zk − θ̂1) = 0 (27)
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where ξk = 1− (θ̂3/θ̂2)(zk − θ̂1).
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