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Abstract 
 

Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative 

identification of all the isotopes present in a measurement. For low energy resolution detectors, 

when photopeaks alone are not sufficient for complete isotopic identification, such analysis 

requires template spectra for all the isotopes present in the measurement.  When many isotopes 

are present it is difficult to make the correct identification and this process often requires many 

trial solutions by highly skilled spectroscopists.  

 

This report investigates the potential of a new analysis method which uses spatial/temporal 

information from multiple low energy resolution measurements to test the hypothesis of the 

presence of a target spectrum of interest in these measurements without the need to identify all 

the other isotopes present. This method is referred to as targeted principal component analysis 

(TPCA).  For radiation portal monitor applications, multiple measurements of gamma spectra are 

taken at equally spaced time increments as a vehicle passes through the portal and the TPCA 

method is directly applicable to this type of measurement.  In this report we describe the method 

and investigate its application to the problem of detection of a radioactive localized source that is 

embedded in a distributed source in the presence of an ambient background. Examples using 

simulated spectral measurements indicate that this method works very well and has the potential 

for automated analysis for RPM applications.  This method is also expected to work well for 

isotopic detection in the presence of spectrally and spatially varying backgrounds as a result of 

vehicle-induced background suppression.  Further work is needed to include effects of shielding, 

to understand detection limits, setting of thresholds, and to estimate false positive probability.  
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 I.  Introduction 
 

Radiation Portal Monitors (RPMs), have been deployed at border crossings and other locations 

across the United States for the purpose of detection of illicit radioactive materials, with 

emphasis on special nuclear materials (SNM).  These detectors measure gamma and neutron 

radiation as a vehicle passes through the portal, producing a series of spectral measurements for 

each vehicle.  The RPM system alarms if a vehicle’s profile exceeds a fraction of the background 

level and/or the energy spectrum has specific characteristics associated with SNM. Vehicles that 

result in alarms are usually routed for a more rigorous secondary inspection that includes 

additional measurements as well as imaging of the cargo in some cases. 

 

The measured profiles for the majority of vehicles indicate the absence of radioactivity and show 

suppression of the ambient background as a result of shielding by vehicle structure and cargo. In 

a small fraction of vehicles, the measured profiles show the presence of radioactive sources that 

are mostly made up of naturally occurring radioactive materials (NORM), but also include other 

sources such as medical and industrial isotopes. Given the large volume of commerce, the total 

number of vehicles with radioactive material becomes significant. Since identification of the 

radiation source through manual inspection of the cargo is time consuming and manpower 

exhaustive, it is desirable to develop enhanced algorithms and analysis methods that improve the 

power of detecting illicit sources while reducing the false positive rate (i.e. the ability to 

distinguish benign and illicit sources of radiation with high confidence). The use of such 

algorithms in deployed systems would allow for reduction of alarm thresholds to increase 

sensitivity while improving throughput. The latter is accomplished by the ability to confidently 

detect and identify cargo with benign sources of radiation at the primary lane without the need to 

send a vehicle to secondary inspection.  Previous studies have explored and demonstrated data 

transformation methods to differentiate NORM cargo from other isotopes
(1-2)

. 

 

With automated analysis algorithms, it is equally important to consider all realistic scenarios that 

could result in incorrect conclusions.  This is especially important for extremely low probability 

events that can have major catastrophic consequences, such as terror related activity.  One such 

scenario is that of transport of illicit radioactive materials embedded in NORM cargo in an 

attempt to conceal their radiation signal.  A previous study of this type of scenario was 

conducted for low resolution polyvinyl toluene (PVT) detectors with only two energy 

channels
(3)

.  This study used the spatial profile of total counts to detect potential embedded 

sources and then used the available spectral information to determine if the region containing the 

potential source is different spectrally in a statistically significant way from the remainder of the 

profile.   

 

In this report we investigate the use of a novel spectral analysis method for detection of 

embedded sources for RPM applications with low energy resolution where photopeaks alone are 

not sufficient for isotopic identification. This method, referred to as Targeted Principal 

Component Analysis (TPCA), tests the hypothesis of the presence of a target isotope of interest 

without regard to other isotopes that are present in the measurement.  This is accomplished using 

a form of data fusion of the spectral and spatial/temporal information.  The requirement for this 

method to work is that the spatial profile for the target isotope of interest is different from other 

isotopes present in the measurement.  Essentially, as is done in the subtraction of a constant 
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ambient background, this method allows for the subtraction of spatially varying backgrounds in a 

self-consistent and transparent way. 

   

The method has a wide range of applicability for many spectral detection problems
(4)

.   Because 

of its reliance on spatial contrast between different isotopes it is believed that this method is 

ideally suited for the problem of detection of embedded sources using low or medium energy 

resolution detectors since an embedded source is expected to have a much smaller extent than the 

other radioactive cargo containing it.  This is the subject of this report. 

 

In section II the method is described in some detail and in section III the method for variance 

estimation is described.  Examples of detection of embedded sources and dependence on various 

parameters are described in section IV.  The remainder of the report discusses some aspects of 

optimization and extension to more complex problems where the embedded source is made up of 

multiple isotopes. 

 

This report provides an introductory description of the analysis and the examples considered are 

highly idealized and do not contain important physics effects such as shielding.  Extension of this 

work to more realistic cases will be the subject of a future report. 
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II. Basis of Method for Detection of Embedded Sources  
 

The Targetted Principal Component Analysis (TPCA) method has the advantage of exploiting 

spatial or temporal variations of multiple spectral measurements to test the hypothesis for the 

presence of a specific target isotope, when there are multiple unknown isotopes present in the 

measurements
(4)

.  This method is ideally suited for Radiation Portal Monitor (RPM) applications 

for the problem of detection of a localized radiation source that is embedded in a distributed 

source.  It is expected to work well for ASP-like detectors where multiple gamma spectra are 

collected at multiple time steps and might also be extendable to detectors with a small number of 

spectral bins such as the SAIC RPM-8 detectors.   

 

The basis for the TPCA method was discussed in reference (4) and is repeated here for 

completeness in the context of the problem under consideration.  In conventional spectral 

analysis, a measured spectrum is expressed in terms of signature (template) spectra and a 

confidence metric for target presence is estimated based on the calculated coefficient for the 

target signature and the goodness of fit using some optimization method such as least squares 

regression analysis.  All isotopes present in the measurements need to be represented by template 

spectra in the analysis.  In the TPCA approach, the opposite is done: the hypothesis target 

spectrum is represented as a linear combination of principal components or factors of measured 

spectra at multiple locations or times.  With sufficient spectral differences between the target and 

other isotopes present in the measurements, this representation is possible when the target 

spectrum is present with a different spatial/temporal profile from the other isotopes.  For this to 

be possible, without knowledge of spectra for all the non-target isotopes, the spatial or temporal 

variation needs to be subject to a constraint, expected to be satisfied for the case of embedded 

sources.  The constraint and method are illustrated by use of the following simple example. 

Consider the case of a target with a known spectrum )(Et  and an unknown background with 

spectrum denoted by )(Eb .  Consider two measurements, )(1 E and )(2 E  that contain both 

target and background isotopes.  In the linear case the measured spectra can be written as: 

 

)()()( 211 ECECE bt     (1) 

 

)()()( 432 ECECE bt    (2) 

    

For this trivial example the step of generation of principal component spectra can be bypassed 

and we can write the solution for the target spectrum )(Et  in terms of the measured spectra as: 

 

 
 3214

2214 )()(
)(

CCCC

ECEC
Et







   (3) 

 

The denominator in the above equation is the determinant of the coefficients and a solution exists 

for the non-singular case when
4

2

3

1

C

C

C

C
 . This is precisely the variation requirement specified 

previously, that is, either target or background signal level varies between the two measurements 

such that the ratio is not constant.  This shows that when the variation requirement is met, the 
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target spectrum can be expressed as a linear combination of the two measured spectra.  Thus the 

hypothesis of target presence can be tested by a fit of the known target spectrum to the two 

measured spectra without any knowledge of the background spectrum.  If the variation 

requirement is violated this fit will not be possible for the ideal noiseless case. 

 

The above example can be extended to the case with N measurements containing target + (N-1) 

unknown background isotopes at varying concentrations.  For large N the variation requirement 

remains simple, that is, between the different measurements the ratio of concentration of target to 

background isotopes varies.  This constraint is clearly satisfied for the case of a localized source 

that is embedded in a distributed source in an ambient background which is the subject of this 

report.  Two or more measurements with identical ratio of target to background concentration are 

considered identical in the sense of information content and thus can’t be isolated. 

 

For the general case of a target in the presence of other background isotopes, the measured 

spectra can be written as linear combinations of the target and background template spectra as:   

 

NiEBbETaEM jijii ,...,1      )()()(
j s,background

    (4) 

 

where T is the target spectrum, jB  is the j-th background spectrum, and iM  is the i-th measured 

spectrum, all functions of the gamma energy E.  Note that the target and background spectra may 

depend on shielding and detector effects.  With some mixing of the target and background 

signals during measurements, linear independence between entities will be established as 

discussed in the above simplified example, and with this linear independence, the target 

spectrum can be written as a linear combination of the measurements, that is: 

 

    (E))(
1





N

i

ii McET  (5) 

 

When the number of measurements is large, principal component (PC) spectra can be used to 

limit the representation of the target spectrum to the physical variance of the measurements 

(assuming the higher order PCs mostly represent statistical noise): 
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where )(EPi  denotes the i-th PC spectrum.  The coefficients can then be estimated using Least 

Squares (LS) optimization of the reduced residual 
2
 which is given by: 
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where Mc is the number of energy channels and )(ˆ 2
jE  is the estimated statistical variance for 

the j-th energy channel.  This variance is due to statistical measurement noise and needs to be 

distinguished from physical variance between different measurements due differences between 

target and background spectra. The statistical variance estimate is considered in the next section.  

Note that )( NM c
  is the number of degrees of freedom.  Also note that N’ in Eq. (6) needs to 

be significantly smaller than the dimension of the measurement space (number of energy 

channels) to insure that no false positives result from the effects of orthogonal noise components.  

By using principal component decomposition and for sufficiently high signal-to-noise ratio 

(SNR), the desire is to isolate the physical variance due to the target and background spectra in 

the low-order PCs, so that high-order PCs represent mostly measurement noise.  Doing so, the 

linear combination given in Eq. (6) isolates the target from the backgrounds without any 

knowledge about the background spectra being required for the analysis.  The specific method 

used to derive the PC spectra is discussed in Appendix A. 

 

Depending on the measurement process and parameters, it is possible to increase the SNR by 

reducing the spectral resolution, i.e. summing multiple energy channels. However, sufficient 

discrimination between the target and background spectra (which includes the distributed source)  

has to be maintained including the effects of shielding and calibration drifts.  Because of 

improved isolation of noise from physical spectral characteristics with decreased spectral 

resolution, it is possible that fewer PC spectra will be needed for isolation of the target spectrum.  

The tradeoffs between spectral resolution and the number of representation PC spectra will be 

the subject of a future optimization study.  For most of the cases considered in this report, five 

PC spectra will be used.   

 

For embedded localized sources the spatial extent of the target signal is expected to only cover a 

subset of the total vehicle length.  For this situation, the larger the subset used to derive the PCs, 

the lower the overall contribution of the target to the PC spectra and thus the more likely that the 

target spectral information will be buried in higher order PCs and mixed with the noise.  

Therefore it is expected that there will be an optimum subset that should be used so that the 

target contribution is maximized while at the same time including the needed spatial/temporal 

variation to be able to isolate the target from the background clutter.  Choice of the analysis 

region will be further discussed in section IV in this report. 
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III. Estimate of Statistical Variance 
 

The reduced 
2 

residual given by equation (7) requires an estimate of the statistical variance.  

This residual is used for statistical evaluation of the target hypothesis.  In conventional gamma 

spectral analysis when a measurement is represented by a linear combination of a number of 

template spectra, the variance can be estimated directly from the measurement since the counts 

are expected to follow Poisson statistics. For this case a good estimate of variance is obtained 

from the filtered spectrum on a channel by channel basis.  The filtering reduces the effects of 

noise, especially for low counts, and attempts to approximate the true variance of the 

measurement.  A filtering algorithm capable of handling large dynamic ranges is used for 

estimation of variance in the Gamma Detector Response and Analysis Software (GADRAS)
(5-7)

.   

 

For the TPCA method, the solution (fit to the target spectrum) is in the form of a linear 

combination of PC spectra, which are linear combinations derived from the measured spectra.  

The statistical variance in this case might not be correlated at all with the target spectrum since 

the clutter spectra (background and distributed source) are subtracted in the process of obtaining 

the solution.  The variance also depends on the calculated coefficients which in turn depend on 

the variance through the optimization process.  Therefore an iterative method can be used where 

an initial solution is obtained without variance weighting and then the estimated variance can be 

used in subsequent iterations to refine the solution until a self-consistent solution is obtained.  In 

general convergence is expected to be rapid, but understanding and proving convergence 

requires further investigation of various test cases at varying SNR and will not be considered in 

this report. 

 

Two methods of variance estimation were considered.  The first method is based on the 

following simple procedure:  1- An initial fit of the target spectrum is obtained without variance 

weighting.  2- The calculated fit is polynomial smoothed (Savitzky-Golay filter) using 

parameters such that the physical features of the target spectrum are not significantly distorted 

(peak resolution of the detector can be used to guide the choice of filtering parameters).  3- 

Squared deviation between filtered and original fit spectrum is calculated.  4- The squared 

deviation is filtered and used as an estimate of variance.   

 

The second and more formal method of variance estimation directly uses the measurement 

statistical variance.  As discussed in the previous section, the TPCA method expresses the target 

spectrum as a linear combination of PC vectors.  Since the PC vectors are themselves linear 

combinations of the measurements, it is possible to express the target spectrum as an overall 

linear combination of the measurements.  Thus Eq. (6) can be written as: 

 

    (E))(
1





N

i

ii MET    (8) 

 

Equation (8) is similar but not identical to Eq. (5), and is based on the exact relationship between 

the PC vectors and the measurements as discussed in Appendix A.  Given such a description, the 

overall variance of the fitted target spectrum can be written as: 
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     



N

i

ii EMET
1

2
)( variance)( variance    (9) 

 

which applies at every energy channel E.  Since the measurements are assumed to follow Poisson 

statistics, the variance of a measurement can be estimated in the normal way as the value of the 

filtered spectrum for each energy channel.  It is also possible to co-add a number of spectra from 

adjacent measurements as a form of additional filtering if the physical variation between the 

adjacent measurements is not expected to be large.  

 

The expression given in Eq. (9) does not include contribution to variance from the coefficients 

which is expected to result in small errors.  Note that for each statistical realization of the set of 

measurements the derived PC vectors will be different and therefore the coefficients in Eq. (8) 

will have an associated variance. We will attempt to estimate the significance of this contribution 

to variance in future studies. 

 

Now we turn to evaluation of the coefficients in Eq. (8).  In appendix A, the PC vectors are 

expressed in terms of the measurement vectors by:   
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Combining this with Eq. (6) we can write: 
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and 

 


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


N

i

kiik Nk
1

,,1            (12) 

 

These coefficients are then used in Eq. (9) to obtain numerical estimates of variance which can 

be used in Eq. (7) to iteratively obtain a solution.  The converged residual 2 is then used to 

compare the plausibility of different target hypotheses.   

  

The above two methods of variance estimation were tested for a small number of cases and both 

resulted in reasonable values for the reduced 
2
 residual.  However, additional testing is needed 

to understand the advantages and disadvantages of the two methods.  For the analysis presented 

later in this report we will only consider the second method since it appears to have a sounder 

physical basis and only requires one filtering process.  It should be noted however that even with 

a justifiable variance estimate, more detailed statistical analysis and justification is needed to 

conclude that the residual given by Eq. (7) possesses the same properties compared to classical 

linear least squares (LS) optimization.  Such an analysis is beyond the scope of this report.   
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Regardless of the variance estimation method used, when measurement counts are zero for 

several adjacent channels, it is possible that the filtering will result in zero or negative variance 

for one or more channels.  To avoid this singular behavior, a lower limit on the channel variance 

as a fraction of the average variance over all the channels is imposed.  All channels below this 

limit are not used in the evaluation of the 
2
 residual.  However, such channels are still used in 

evaluation of the PC spectra. 
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IV. Application of TPCA for Detection of Embedded Sources 
 

In this section we present a simple example of the application of the TPCA method for detection 

of a localized source that is embedded in a distributed source in the presence of an ambient 

background.  This is done in the context of an RPM measurement of a vehicle with multiple time 

samples. The combinations of isotopes used for the sources and background were chosen to 

generate sufficiently complex spectra for illustrative purposes only, and otherwise they have no 

application to any specific real measurement. For this analysis the effects of shielding and 

background suppression are not considered. 

Model Spectra 

For this test the localized source is 
137

Cs and is embedded in a distributed source which is made 

up of a mixture of four isotopes (
226

Ra, 
232

U, 
201

Tl, and 
60

Co).  The background spectrum is made 

up of two isotopes (
40

K and 
232

Th).  The spectra for all the isotopes were generated using the 

GADRAS 1D model (spherical) for a NaI detector (GR-135) at a distance of 100 cm from the 

edge of the spherical source of 10 cm radius.  The source shell is made of a material specified in 

GADRAS as “Cargo” with a density of 0.4 g/cm
3
 with a specified activity of 10 Ci for each 

isotope (note the detected gamma counts for the isotopes can be significantly different because of 

differences in branching ratios and gamma energies).  For isotopes with daughters, the resulting 

GADRAS spectra include contributions of decay of all daughter isotopes (20 years was used for 

the age in the GADRAS model).  The baseline model spectra (noiseless) for the sources and 

background at the specified activity of 10 Ci for all isotopes are shown in the figure below.     
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Figure 1.  GADRAS model spectra for the sources and background.  The distributed source 

spectrum is the sum over model spectra for 226Ra, 232U, 201Tl, and 60Co, each at 10 Ci.  The 

background is sum over model spectra for 40K and 232Th, each at 10 Ci.  The localized source 

is 137Cs at 10 Ci.  The detector used is a GR-135 at 100 cm distance from the source (sources 
are modeled as 10 cm radius spheres with uniformly distributed isotopes). 



 

   -18- 

Temporal/Spatial Dependence of Simulated Measurements 

The situation under consideration here is that of a vehicle passing through a radiation portal 

monitor. The radioactive cargo is distributed along the length of the vehicle and at some location 

an additional localized source is embedded in the cargo.  For this analysis we use idealized line 

and point sources to model the spatial distribution of the distributed and embedded sources.  

These simple models have been used in previous analysis
(3)

 and with proper choice of parameters 

can result in profiles that match measured profiles very well.  The description of the source 

models is given in appendix B for completeness.  It should be noted that many other models have 

been used and most can generate similar profiles by proper choice of the source parameters. 

 

The spatial distributions of the sources result in a time dependent measured signal as the vehicle 

passes through the portal.  For the point, P, and distributed, D, sources the profiles are given by: 
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where )( 0zz   is the distance from the source center to the center of the detector along the 

direction of vehicle motion.  The other source parameters are defined in appendix B.  Figure (2) 

shows sample profiles for typical source parameters. 
  

The simulated measured spectrum as a function of time sample (or position along direction of 

vehicle motion) is given by the profile-modulated model spectra as follows: 

 

)()()()()(),( ESCzfESCzfESCEzS BBDDDPPp    (16) 

 

where the profile modulation functions )(zfP  and )(zfD are given by equations (13) and (14).  

The spectra )(ESP , )(ESD , and )(ESB  are the point source, distributed source, and 

background spectra respectively that are shown in figure (1) above.  The coefficients CP, CD, and 

CB will be used to scale the counts to realistic levels for the detection analysis.  After the scale 

factors are applied, Poisson statistics are applied to the simulation spectra at all z and E values. 

 

Figure (3) shows the total counts profile (summed over all energy channels) for a simulation with 

scale factors:  CP = 0.02, CD = 0.01, and CB = 0.01.  A total of 160 time samples are used.  The 

simulated spectra represent measurements at different time samples as the vehicle passes through 

the portal.  At the time sample of maximum counts (time sample 111), the simulated spectrum is 
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shown in figure (4).  As noted earlier the simulated spectra do not include effects of shielding or 

background suppression.  The width of each time sample is assumed to be 0.1 seconds for 

comparison to RPM measurements.  
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Figure 2.  Model profiles for point and distributed sources.  All spatial quantities are normalized 
to the overall vehicle length and the first and last time samples correspond to the entry and exit 
of the vehicle from the portal respectively.  A total of 160 time samples are used. The 
normalized source parameters are:  Point source:  zo = 0.7, Ro = 0.07.  Distributed source: zo = 

0.6, Ro = 0.07,  = 0.25. 
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Figure 3.  The total counts profile as a function of time sample.  The sources and background 
spectra are scaled by the factors:  CP = 0.02, CD = 0.01, and CB = 0.01.  The source geometric 
parameters are the same as in figure (2).  
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Figure 4.  Simulated spectrum for the time sample with maximum total counts (time sample 
111).  All parameters are the same as in figure (3).   

Effect of Spectral Resolution 

As discussed in reference (2), for the TPCA method to work efficiently, it is important that the 

principal component (PC) spectra used in the analysis reflect the true physical variance present in 

the measurements with the effect of statistical noise minimized as much as possible.  When the 

signal-to-noise ratio (SNR) of the measurements is sufficiently low, the resulting low order PC 

spectra can become more a reflection of statistical noise rather than physical spectral variation, 

clearly a situation that needs to be avoided.  For the same sources and measurements, the SNR 

can be increased by co-adding spectra and/or summing counts for multiple spectral channels 

(referred to here as reducing spectral resolution).  Both of these techniques can be used with the 

constraints that spatial/temporal variation and discriminating spectral features are not washed out 

in the process. 

 

Another important consideration in optimization of the spectral resolution used in analysis is to 

consider possible alternate hypotheses for the target spectrum.  Reduction of the spectral 

resolution can result in reduction of the orthogonal component between the target spectrum of 

interest and other non-target isotopes possibly leading to false positives.  Thus it is important to 

consider possible interferents when optimizing the analysis parameters.       

 

In this report we will consider the effect of changing the spectral resolution from 1024 to 256 

and 128 channels by adding counts in adjacent channels.  The effect of this reduction on 

discrimination capability can be quantified by the length of the orthogonal component between 

normalized spectra.  For normalized spectra denoted by the vectors 1S


 and 2S


 (vectors of counts 

in each channel normalized to a length of 1) this length is: 

 

  2/121 pl      21 SSp


    (17)  
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where the dot product is defined in the usual way for a finite dimensional space, that is, p denotes 

the parallel component between the two spectra.  Table 1 shows the lengths of the orthogonal 

components between the source spectra for different resolutions. The loss of discrimination 

capability is minimal in going from 1024 to 128 channels for these sources.  However, the results 

can be significantly different for other source isotopes, if other alternate hypotheses spectra are 

used, or spectral distortion due to shielding is significant.  

 
Table 1. Orthogonal length between spectra for different spectral resolutions. 

Spectral resolution 
(channels) 

Target & distributed 
source 

Target & 
background 

Distributed source & 
background 

1024 0.55 0.53 0.23 

256 0.55 0.52 0.23 

128 0.53 0.51 0.21 

 

TPCA Analysis of Simulation Spectra – High SNR Test 

The TPCA method was applied to the above simulation spectra for detection of the 
137

Cs 

localized source without using any knowledge regarding the other isotopes present in the 

distributed source or the background.  All the time sample measurements were used to derive the 

PC spectra and then LS optimization was applied using the 
137

Cs target spectrum to determine 

the coefficients that minimize the 
2
 residual in equation (7).   

 

For the first test, to illustrate the method and also as a check on the computer software used for 

the analysis, a high SNR case with scale factors CP = 2.0, CD = 1.0, and CB = 1.0 was considered. 

The SNR for this test should be a factor of 10 higher than shown in figures (3 - 4).  For these 

scale factors the results of application of the TPCA method with 5 PC spectra are shown in 

figures (5 - 7) for the first set of simulated measurements made up of 160 time samples.  A total 

of 100 independent statistical sets were processed to estimate the properties of the resulting 

distribution of residuals.  The average and standard deviation of the resulting reduced 
2
 residual 

are 0.9982 and 0.0054 respectively for the 
137

Cs target hypothesis.  For the variance estimate 4 

iterations were used for each case (for these parameters one test showed that convergence is 

attained after 3 iterations) and the channels used in the LS fit were limited to those with variance 

larger than 0.0001 times the average to avoid singular behavior as discussed earlier.  If the 

variance lower limit factor is changed from 0.0001 to 0.001, the average residual is 0.9972 and 

the standard deviation is 0.0055 for the same set of 100 simulations.  This indicates that the 

lower limit used is adequate and has no effect on the resulting solution.   

 

Figures (6 - 7) clearly show that for this high SNR case the first 3 PC spectra contain almost all 

the physical variance due to the localized source, distributed source, and background spectra 

while all other PC spectra are due to noise. When the simulations were run without including 

Poisson noise, only three eigenvalues have non-zero values and the fit to the target spectrum is 

perfect as expected (residual is identically equal to zero).  As noted earlier, for the noiseless case, 

the three PCs correspond to orthogonal linear combinations of the localized source, distributed 

source, and background spectra.  Note that the vertical scale in figure (6) is a result of using a 

covariance matrix that is not normalized to the number of measurements. 
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Figure 5.  Target spectrum and fit using 5 PC spectra for a case with high SNR and 1024 
energy channels.  Also shown is the estimated variance.  The scale factors used are: CP = 2.0, 

CD =1.0, and CB = 1.0.   The average reduced residual is 2 = 0.9982 for 100 statistical cases 
and using 4 iterations for the variance estimate.   Note the shape of the variance profile is 
consistent with measured spectra and not necessarily the hypothesis target spectrum. 
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Figure 6.  The first 20 eigenvalues in descending order for the PC spectra for simulations in 
figure 5. The first eigenvalue represents the mean of all the measurements used in obtaining the 
PC spectral vectors and is very large (off scale).  The next two eigenvalues represent the 
remaining variance due to spectral differences between the localized source, distributed source, 
and background.  All other eigenvalues (up to 160) mostly represent noise contributions.  If 
Poisson noise is turned off in the simulations only three eigenvalues are non-zero.  Note that in 
the PCA the covariance matrix is evaluated about the origin rather than the mean spectrum.   
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Figure 7.  The first 5 PC spectra using all 160 simulated measurements in the time profile.  It is 
clear for this high SNR case that the first 3 PC spectra contain almost all the physical variance 
due to the spectra for the localized source, distributed source, and background while all other 
higher order PC spectra are due to noise.  
 

 

An important consideration in the analysis is the nature of the resulting distribution of the 

reduced residual values.  Figure (8) shows a comparison between the classic 
2
 distribution 

(mean value of 1.0) and the distribution of reduced 
2
 values resulting from 10,000 statistically 

independent simulation sets for the same high SNR parameters used above (mean value of 1.05).  

Only the number of channels was reduced to 256 to reduce CPU time. Even though the 
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distributions are similar, they are not identical.  The reason for the difference is not completely 

understood at the present time, but likely can be attributed to the spectral filtering algorithm that 

is used for estimation of variance (4-th degree and 21 samples centered polynomial filtering 

which was used for this test).  An additional factor could be the ignored terms in the variance 

estimate discussed in the previous section.  Simulations with a factor of 10 higher signal levels 

for all sources resulted in a nearly identical distribution.  Further analysis is required to 

understand the differences between these distributions. 
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Figure 8.  Comparison of the classic 2 distribution and distribution of reduced  2 residuals 
from 10,000 simulation sets for the same parameters as in figure (5), only the number of 
channels is reduced to 256.  The number of degrees of freedom is 251 (256 channels minus 5 
adjustable coefficients for the 5 PC spectra).  The mean value of the reduced residual is 1.05.    
 
 

Another simple but very important test is that of a false positive, that is, with the target scale 

factor CP = 0.0 in the simulated measurements.  Using identical parameters as used for the 

previous example, the average residual is 1054.3 and the standard deviation is 1923.6 for 100 

simulations.  The minimum residual is 138.6 which is extremely large and clearly indicates that 

the target isotope spectrum is not present at a statistically significant level in the simulated 

measurements. Thus the probability of a false positive is very small for the considered signal 

levels. The result of the LS fit from the first simulation is shown in figure (9).  This analysis can 

also be extended to estimate an upper limit on the target signal that could be present with the 

other sources.  This type of analysis is beyond the scope of this report and might be considered in 

a future study of detection limits for the TPCA method.    
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Figure 9.  Target spectrum and fit using 5 PC spectra for simulations without target.  The scale 
factors for the simulation spectra are: CP = 0.0, CD = 1.0, and CB = 1.0.   All other parameters 

are the same as in figure (5).  The reduced residual for the case shown is 2 = 322.0 which is 
very large and indicates that the target hypothesis is highly improbable. 

 

TPCA Analysis of Simulation Spectra – Moderate SNR Test 

In this section we consider simulations with more realistic counts for the source spectra used 

previously.  This analysis uses scale factors of CP = 0.02, CD = 0.01, and CB = 0.01.  At these 

values of the scale factors the counts are of the order of observed counts for real RPM 

measurements.  This is seen in the total counts profile in figure (3) where it is assumed that each 

time sample has duration of 0.1 seconds as in actual RPMs. 

 

The TPCA analysis was carried out using the first five PC spectra and the results are shown in 

figure (10) for three spectral resolutions for the 
137

Cs target.  Ranges of values of the reduced 

residuals are given in table 2 below.   

 
Table 2. Range of values of reduced residuals 

Spectral resolution 
(channels) 

Mean 2 Standard  
Deviation 

Minimum 2 Maximum 2 

1024 3.34 0.71 2.09 6.87 

256 1.74 0.25 1.20 2.35 

128 1.62 0.32 0.91 3.14 
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Figure 10.  Results of application of the TPCA method for the 137Cs target spectrum for different 
spectral resolutions. For all cases the first 5 PC spectra were used in the analysis. Only half the 
spectral channels are shown in the plots for clarity. The plots on the right show the first 20 

eigenvalues – the first eigenvalue in dark blue is off the scale.  Top: 1024 channels (2 = 3.38), 

Middle:  256 channels (2 = 2.02), Bottom: 128 channels (2 = 1.41).  The results are for the first 
simulation set out of a total of 100 that were run. 
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For all three spectral resolutions the same filtering parameters were used in the variance 

estimates (4-th degree polynomial smoothing with 21 samples).  These filtering parameters are 

not necessarily optimal for any of the three cases and are likely the cause of the large residuals 

for the case with 128 channels.  Further work is needed to obtain the proper estimate of variance 

for different spectral resolutions.   

 

Even at the lowest spectral resolution, the eigenvalue plots indicate that the effect of noise is 

large and it is possible that five PC spectra are not sufficient to span the physical variance in the 

measurements and possibly lead to the larger than expected 
2
 residuals. To test this hypothesis 

we repeated the analysis for the 128 channel case using 10 PC spectra.  The results are shown in 

figure (11).  For this case the average 
2
 = 1.29 and its standard deviation is 0.24 for 100 sets of 

simulations.  The maximum residual is 1.88.  This improvement clearly shows that the additional 

PC spectra contain physical variance in addition to a noise component.  The relationship between 

spectral resolution and number of needed PC spectra will be the subject of a future optimization 

study for this detection method. 

 

With additional PC spectra it is important to insure that the probability of false positives does not 

increase to unacceptable levels.  For the same parameters as the above simulations, but without 

the target present, the average 
2
 is 52.1 and its standard deviation is 24.5 for 100 sets of 

simulations.  The minimum residual is 
2
 = 19.8 indicating no significant increase in the false 

positive rate.    
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Figure 11.  Results of application of the TPCA method for the 137Cs target spectrum using 10 

PC spectra and 128 spectral channels.  The residual for this case is 
2
 = 1.24. 
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The results considered in this section for an example with moderate SNR and large clutter 

(distributed source + ambient background) relative to the source of interest illustrate the 

usefulness of this method for detection of embedded sources using automated analysis.  There 

are many possible techniques for optimization of the method to improve detection limits.  We 

will consider a couple of such techniques in the following sections, but considerable further work 

is needed to fully establish the range of applicability of the method. 

 

Adding Adjacent Spectra 

For the problem under consideration and depending on the total number of time samples in an 

RPM measurement, it is possible for the localized source signal to extend over many samples.  

Because of the deleterious effect of noise on the calculated PC spectra, it is beneficial to co-add 

spectra from adjacent time samples when such addition does not adversely affect the variation 

requirement for the TPCA method.  For the simulated measurements used in this report (see 

figure 2), the localized source signal extends over roughly 25 samples.  Therefore we should be 

able to co-add spectra for groups of several adjacent time samples and still maintain a high 

degree of contrast between the localized source and the other sources while reducing the effect of 

noise. This process should improve isolation of physical variance from noise in the low order PC 

spectral vectors. 

 

The results of co-adding 5 spectra are shown in figure (12) for two spectral resolutions. The 

eigenvalue plots show significantly improved separation between the first three PCs and the 

others.  There is also significant improvement in the fit to the target spectrum as seen in the 

residuals (256 channels:  average 
2
 = 1.26 and standard deviation = 0.15.  128 channels: average 


2
 = 1.08 and standard deviation = 0.19).    
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Figure 12.  Results of application of the TPCA method for the 137Cs target spectrum using 5 
PCs.  Each 5 simulated time sample spectra were added before application of the PCA.  The 

residuals for these two cases are: top: 
2
 = 1.4 (256 channels) and bottom: 1.02 (128 channels).  

 

Detection by Direct Use of Measurements 

For the problem of detection of embedded sources for a specific detection system and concept of 

operations, the spatial extent of the source signal is somewhat known and can be bounded.  This 

was the case for the simulations considered earlier.  In such cases adjacent measurements can be 

added to form a small number of summed measurements which contain the spatial/temporal 

variation information required to enable isolation of the spectrum of the target of interest.  In 

such cases, when the number of summed measurements is small, it is possible to bypass the PCA 

step and use the summed spectra directly instead of the PC spectra.  This is considerably easier 

and also has the advantage of retaining spectral information that could be lost in higher order PC 

spectra not included in the solution.  This is particularly important for low SNR cases. 

 

For the example considered previously and using 5 overall spectra (each 32 time sample spectra 

were co-added), the results are shown in the table 3 below.  As expected this shows some 

improvement over using PC spectra due to fuller use of the physical variance.   
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Table 3. Range of values of reduced residuals 

Spectral resolution 
(channels) 

Mean 2 Standard  
Deviation 

Minimum 2 Maximum 2 

1024 2.39 0.20 1.85 2.99 

256 1.32 0.18 0.94 1.78 

128 1.10 0.19 0.76 1.60 

 

 

Other Geometries 

The example discussed in the previous section dealt with a localized source that is embedded in a 

wide distributed source.  The same method is expected to work as well for other source 

geometries such as multiple adjacent localized sources. The only requirement is that the target of 

interest must have a different spatial profile from the other clutter sources that are present so that 

its spectrum can be isolated from the others. 
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V. Multiple Region Analysis 
 

In the previous section all simulated measurements that make up the vehicle profile were used in 

calculation of the principal component spectra that were then used in fitting the target spectrum 

which represents the localized embedded source.  This is certainly not the optimal method for 

detection of the localized source.  In some sense, obtaining this fit is equivalent to subtraction of 

the integrated (summed over time samples) background and distributed source spectra from the 

total spectrum if these two spectra were known.  Thus the noise in the total spectrum is reflected 

in the fit for the target.  Since the embedded source signal extends over a subset of the total 

vehicle length, it is useful to limit the analysis region to a subset of the total measurements that 

includes most of the rise and fall of the embedded source (to maintain the variation requirement), 

but excludes other measurements that do not contain significant embedded source signal in order 

to maximize the SNR of the source.  However, the source location is one of the unknowns that 

needs to be determined by automated analysis. 

 

In some instances the profile of total counts can be used to infer information on location and 

extent of a potential embedded localized source
(3)

.  However, this might not work in all cases 

especially for low SNR.  Since the spatial extent of a small source can be estimated (extent is 

smaller for shielded sources) and a specific target spectrum is being sought, it is possible to 

define a metric that provides information on the likelihood of target presence and use the region 

that maximizes this metric.  An example of such a metric is the parallel component of the 

measured spectrum in a region to the target spectrum (see equation 17).  The moving summed 

spectrum over the anticipated extent of the source and its parallel component to the target 

spectrum can be calculated as a function of time sample.  The region with maximum parallel 

component is then the most likely to contain the target and can be used for application of TPCA.  

This method requires further development and testing and will not be considered in this report.   

 

Another method considered here is to apply TPCA over multiple overlapping regions as shown 

in the illustration in figure (13).  The extent of each region is of the order of the anticipated 

extent of the source signal.  This method has the advantage that all time samples are tested for 

target presence.  

 

 
Figure 13.  Illustration of overlapping regions to be used for analysis.  The extent of the arrow 
defines the analysis samples for a region which should be wide enough to include most of the 
signal rise and fall for the localized source.  For actual measurements pre- and post-samples do 
not need to be analyzed. 

 

For multiple region analysis there are two quantities that need to be maximized for optimal 

detection of a localized embedded source with unknown location.  First, the width of the analysis 

region or region of interest (ROI) needs to be chosen so that the target signal-to-noise ratio 

(TSNR) is maximized.  Second, the signal contrast or variation between the localized source and 

other sources needs to be maximized.  

Pre Post 
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Region Width: 

For the localized source model given by equation (13) and for the limiting case when the 

distributed source and background can be approximated as constant over the ROI, the scaling of 

the TSNR can be approximated by the expression: 
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where 2z  and 1z  denote the boundaries of the ROI.  In equation (18) we made the additional 

assumption that the localized source amplitude is sufficiently small so that its contribution to 

overall noise can be neglected.  Thus the noise which is proportional to the square root of the 

total signal in the ROI is approximately proportional to the width of the ROI.  When the source is 

centered in the ROI we obtain: 
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The RHS of equation (19) has a maximum value of 1.0 for 0.2 .  This is the optimum width 

of the ROI for maximizing the TSNR for the source model used (when the source is centered).  

The maximum of equation (19) is somewhat shallow with a value of 0.9 for the RHS when 

0.1 .   

 

The other quantity to consider is the variation in source signal over the ROI which provides the 

contrast between the target and the other sources.  This can be written as: 
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where eZ  is the edge (either left or right) of the ROI.  This quantity increases with increasing 

region width.  When the source is located at the center of the ROI  pf  0.83, 0.65, and 0.28 for 

  3.0, 2.0, and 1.0 respectively. When the source is off center the contrast factor pf increases 

for the side with the larger signal.  However, even though we understand the requirement for 

having sufficient variation, it is not clear at this point what the optimum variation is and its effect 
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on the TPCA solution.   For now we consider a value of  0.2  to be reasonable for both 

TSNR and target signal variation. 

 

Region Overlap: 

Once the region width is chosen, the next issue to be considered is the amount of overlap 

between multiple regions for independent analysis.  This is required since the source location is 

not known a priori.  The safest and most optimal choice for overlap is to consider all possible 

regions, that is, advancing regions by a single time sample.  This however is not practical from a 

computational point of view and is also not necessary.  What is necessary is to maintain 

sufficient TSNR and target signal variation regardless of the source location.   

 

As was discussed the contrast pf  increases for the side of a region with the larger signal as the 

source is moved from the center.  This increase continues until the source maximum moves 

outside the region.  If the next region has any overlap with the previous, the contrast pf  is then 

picked up by this new region.  Thus it seems that the main issue for overlap is maintaining a 

reasonable value for the TSNR.   

 

For two overlapping regions, the smallest TSNR (with all the assumptions and approximations 

that were discussed above) occurs when the source is located at the center of the overlap segment 

of the two regions.  This is also the point at which the TSNR is equal for the two regions and can 

be referred to as the transition point.  From equation (18) the TSNR for the region extending 

from 1z  to 2z  (all quantities are normalized to 0R ) is given by: 
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At the transition point we have )( 02  zz  where   denotes the half-width of the overlap 

between the two regions.  At this point equation (21) becomes: 
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In the limit 2/  (complete overlap of the two regions) we obtain the result given by 

equation (19).  In the limit 0  
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
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



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




2)(1

1
TSNR , which is equal to 0.63 for = 2.0.  

For 4/  (half overlap as shown in figure (13), the RHS of equation (21) is 0.90 which is 

very close to the maximum possible value of unity.  Thus = 2.0 and half overlap appear to be 

near optimum for the chosen source and background models. 
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The example of the previous section was analyzed using 7 overlapping regions that covered all 

160 samples.  For this example the spectral resolution was reduced to 128 channels and the first 

5 PC spectra were used.  The samples and the resulting reduced 
2
 values are shown in table 4.     

 

Table 4. Results of multi-region analysis using the 137Cs spectrum for target.  The 2 values are 
based on 100 simulation sets. 

Region Starting sample Ending sample Average 2 Min 2 Max 2 
1 1 41 81.4 11.8 588 

2 21 61 90.7 17.7 493 

3 41 81 101.9 18.4 676 

4 61 101 35.2 5.28 242 

5 81 121 1.22 0.84 1.65 

6 101 141 1.72 1.00 2.91 

7 121 160 17.9 4.28 68.1 

 

For region 5, these results show a slight improvement over the 1-region analysis results in table 2 

(2 = 1.62). We were expecting better improvement based on the increased separation of noise 

and physical variance in the first 5 PC spectra because of the increase in TSNR.  Further 

optimization for multiple region analysis will be considered in future studies.   
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VI. Detection of Multiple Isotope Sources 
 

In the previous sections the TPCA method was illustrated for detection of sources that were 

represented by a single spectrum.  The same method can be applied to detection of sources 

composed of multiple isotopes with unknown concentration ratios.  Important examples of this 

are SNM sources with unknown enrichment, age, or source of origin. 

 

To apply the TPCA method it still has to be assumed that all isotopes that make up the target 

result in the same measured spatial/temporal profile.  For this case Eq. (6) and (7) are modified 

to include multiple target spectra as follows: 
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where  is the number of isotopes in the target; )(ETi is the spectrum for the i-th isotope; and the 

coefficients, i , denote the unknown relative isotopic composition.  All other quantities are as 

defined previously.   One of the coefficients, i , is arbitrary and can be set to 1 and therefore the 

number of degrees of freedom is reduced by ( - 1).   

 

The solution for the coefficients in Eq. (24) is obtained in the normal way by solving the linear 

system resulting from the minimization of 
2
, that is: 
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The above linear system needs to be solved with the constraint that all coefficients, βi, are 

positive.  This constraint is easily incorporated in the solution by forcing the largest negative 

coefficient to zero and repeating the solution without the associated spectrum. 

 

Direct measurements can also be used in Eq. (23) as discussed in the previous section depending 

on the problem being addressed.  Implementation and testing of the TPCA method for sources 

with multiple isotopes will be considered in future work.  
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V. Summary and Conclusions  
 

In this report we have considered a new spectral analysis method, TPCA, which uses 

spatial/temporal variations in multiple measurements to test the hypothesis of the presence of a 

target isotope of interest.  This is done without any required knowledge of other background 

isotopes that might also be present.  The only requirement for the method to work properly is that 

the spatial distribution for the target of interest is different from that for the background sources. 

 

We applied the TPCA method to the problem of detection of a localized source that is embedded 

in a distributed source in the presence of an ambient background.  The measurements were 

simulated for an RPM-like setup.  The method worked very well and detected the presence of the 

target without any information on the other six clutter isotopes present in the measurements.  

Also, for a case without the target, the resulting residual clearly indicated absence of the target. 

 

This method is anticipated to complement full spectrum analysis methods such as implemented 

in GADRAS.  It is specifically applicable to cases where multiple measurements are taken and 

there is an expected difference between the spatial distribution of the target of interest and that 

for other clutter.  In addition to detection of embedded sources, this method is expected to be 

ideal for search problems where the background is complex and is spatially varying.  Similarly 

we expect the method to work well for RPM applications where the background is spatially and 

spectrally varying as a result of strong vehicle-induced background suppression. 

 

This report only covered the basic application of the method for the problem of detection of 

embedded sources and significant additional work is needed to include effects of shielding, 

optimization of parameters, noise isolation in relation to the derived principal component spectra, 

and applicable constraints to limit residuals to physically realizable spectra.  In addition, further 

work is required for estimation of target activity, localization, and estimation of detection limits 

and false positive rates. 

 

Because of the isolation of one or a few target isotopes, this method is well-suited for automated 

applications.  Also, this leads to significantly simpler optimization for effects of shielding and 

calibration changes since the number of local minima in the optimization processes is expected 

to be much smaller than for conventional analysis methods because of the smaller number of 

degrees of freedom.   
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Appendix A: Description of Generation of Principal Components 

 

Principal Component Analysis (PCA) is a method that involves decomposition of a data 

covariance or correlation matrix to extract features of a series of measurements in the form of 

orthogonal vectors.  The extracted vectors are ordered according to how dominant the features 

they represent are in the measured data.  The description given here follows the treatment given 

in reference (3). 

 

Let data matrix D  represent a set of measurements where each column represents a measured 

spectrum. The rows represent channel energy, wavelength, time sample, or some other 

measurement characteristic.  For the purposes of our analysis, the measurement data will not be 

normalized, so that the data contributes directly to the Principal Component vectors (PCs).     

 

The data matrix D  is made up of (r) rows and (c) columns.  The objective is to decompose D  

according to: 

 

CRD  ,  (A.1) 

 

where R  is (r x n) matrix of factors, C  is (n x c) matrix of the loadings or contributions to the 

measurements, and (n) is the number of factors.  The factors are the PC vectors. 

 

Given the data matrix D , one can attempt to find (n), R , and C .  These can be calculated in 

multiple ways and are not unique.  The PCA procedure is effective because it calculates these 

quantities in a way that extracts the features in the original data matrix according to their degree 

of dominance in the data.  Consider the matrix 
T

DDZ  , which is an (r x r) square matrix: 

 













































           

     matrix    r  x c         
matrix   

    cr x     
Z  

 

When the mean measurement is subtracted from the measurements in the data matrix, Z is the 

usual covariance matrix. Otherwise Z is a covariance matrix about the origin.  Consider the 

diagonalization process of Z , i.e. finding its eigenvalues and eigenvectors: 

 

ri
iii

,...,1 qqZ    (A.2) 
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For now we assume that the number of measurements (c) is large enough (i.e. c > r) so that (r) 

non-zero eigenvalues and eigenvectors can be calculated.  Later this assumption will be relaxed. 

Let the matrix Q  be defined by  
r

qqqQ ...,,,
21

 .  Thus equation (A.2) can be written as: 

 

λQQZ    (A.3) 

 

where λ  is a diagonal matrix with elements  ijiij   .  Since the eigenvectors 
i

q  are 

orthonormal, the matrix Q  is an orthogonal matrix, that is, 
1T

QQ


 .  Multiply equation (A.3) 

by 
T

Q : 

 

λQZQ
T

  

 

or 

 

λQDDQ
TT

   (A.4) 

 

This equation can be separated out as:   

 

λUU
T
   (A.5) 

 

where U is defined by: DQU
T

 .  Multiplying on the left side by the matrix Q we obtain: 

 

UQD    (A.6) 

 

Note that equation (A.6) can be written as an equality only when the product 
T

QQ is the identity 

matrix of size (r) which assumes that (r) eigenvalues and eigenvectors have been determined.   

From equation (A.1) the following identifications can be made: 

 

QR      ( r x r) matrix 

 

UC       ( r x c) matrix   ( n = r) 

 

Thus Q  is the orthogonal matrix of Principal Component vectors and U  is the matrix of 

coefficients for all the measurements.    We also have from equation (A.5): 
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Expanding this out we get: 
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111 cCCC             for first PC (A.8) 

 
2

2

2

22

2

212 cCCC            for second PC (A.9) 

 

and so on for the other eigenvalues.  Thus the first eigenvalue is the sum of the squares of the 

coefficients for all the measurements for the first principal component vector and so on for the 

other eigenvalues.  Because we assumed that (r) orthonormal eigenvectors are determined, these 

eigenvectors span the measurement space (i.e. form a complete set) and therefore any 

measurement vector Μ   in the space can be expressed by the projections on these eigenvectors 

as follows: 
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 (A.10) 

 

The PCA method is useful for cases when a relatively small number of PC vectors adequately 

represent measurements of interest.  This is indicated by the magnitudes of the eigenvalues as 

given in Eq. (A.7).  For such cases Eq. (A.10) can be truncated to a small number of elements.  

This is also applicable to cases where the number of measurements is smaller than the dimension 

of the measurement space (c < r).  For this case the maximum possible number of eigenvectors is 

(c) and the matrix Q  is no longer a square matrix.   

 

For the numerical generation of the principal components, we used the Jacobi and the 

Householder transformation methods, both as implemented in Numerical Recipes
(4)

.   These 

Numerical Recipes functions calculate the eigenvalues and eigenvectors of real symmetric 

matrices and both worked well with very similar results.  The Householder transformation 

method however was found to be considerably faster.   
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Representing PC Vectors in Terms of the Measurement Vectors:   

In the variance estimate discussed in section III of this report, it is required to express the PC 

vectors as linear combinations of the measurement vectors used to calculate these PC vectors. 

This representation can be obtained directly from Eq. (A.2) or (A.3) for the i-th eigenvector: 
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where ikQ is the k-th element of the i-th eigenvector 
i

q .   Note that (c) the number of 

measurements and (r) the measurement dimension are used as defined previously.  Writing the 

same equation in vector form we obtain: 

 

 
im

c

m

m

i
i

qΜΜq  
1

1


   (A.12) 

 

This equation can be verified numerically as a check on the derived PC vectors.  We can also 

write Eq. (A.12) as: 
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which provides the needed linear combination expressing the PC vectors in terms of the 

measurement vectors. 
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Appendix B: Representation of Signals by Idealized Simple Sources 
 
The simple models of sources in this appendix were used in several previous studies and are 

included here for completeness.  With proper choice of the parameters these models can 

adequately represent profiles from actual measurements. 

 

Point Source 

The simplest possible representation for a source is an isotropic point source. Consider an 

isotropic point source of strength So (units of photons per unit time) placed at the origin of a 

coordinate system. In this coordinate system, the particle’s (photon’s) current density (units of 

photons per unit area per unit time) at radius r is given by 
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, (B.1) 

 

where r̂ is the unit vector along radius r. For a detector of area A  with normal unit vector n̂ , 

the photon flux through the detector is 
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The detector area is assumed to be small enough so that only one radial vector needs to be 

considered. If the detector is oriented along the x-axis (detector in y-z plane, i.e., xn ˆˆ  ) and is 

located at distance r from the source (defined by position vector zzyyxxr ˆˆˆ 


), then 

the flux through the detector is 
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where   2/1222 zyxr  . Because the dependence of the flux on z (the direction of vehicle 

motion) is only through the distance between detector and source along z, the coordinate system 

can be translated along the z-axis so that the source and detector are at positions z and zo, 

respectively. Following this convention, we obtain 
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where 222
yxRo   is the perpendicular distance from the detector to the z-axis. This can be 

written as 
2/3

22
0

2
0

0
)(

)(















ozzR

R
AzFflux , (B.5) 

 



 

   -42- 

where A0 is the signal amplitude. 

 

Ideal Line Source 

We assume a simple line source extending from )( 0 z  to )( 0 z  with the same detector 

configuration as above. Integrating the expression for a point source over this range, we obtain 
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The signal amplitude in this case is given by 
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The radiation signals are given as functions of time and can be translated to z-position by using 

the vehicle speed. By the same token, the above source representations are given in terms of z-

position and can be changed to time units by dividing by the vehicle speed. 

 

Note that in the limit 0 , Equation B.6 reduces to the point-source limit. This can be shown 

by using a Taylor expansion, which gives 
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where   2/12
0

2
0 )( zzRU  . Using the above definition of the amplitude, we obtain the point-

source limit: 
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